xref: /openbmc/linux/fs/xfs/xfs_log_priv.h (revision a080a92a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #ifndef	__XFS_LOG_PRIV_H__
7 #define __XFS_LOG_PRIV_H__
8 
9 struct xfs_buf;
10 struct xlog;
11 struct xlog_ticket;
12 struct xfs_mount;
13 
14 /*
15  * Flags for log structure
16  */
17 #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
18 #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
19 #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
20 					   shutdown */
21 #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
22 
23 /*
24  * get client id from packed copy.
25  *
26  * this hack is here because the xlog_pack code copies four bytes
27  * of xlog_op_header containing the fields oh_clientid, oh_flags
28  * and oh_res2 into the packed copy.
29  *
30  * later on this four byte chunk is treated as an int and the
31  * client id is pulled out.
32  *
33  * this has endian issues, of course.
34  */
35 static inline uint xlog_get_client_id(__be32 i)
36 {
37 	return be32_to_cpu(i) >> 24;
38 }
39 
40 /*
41  * In core log state
42  */
43 enum xlog_iclog_state {
44 	XLOG_STATE_ACTIVE,	/* Current IC log being written to */
45 	XLOG_STATE_WANT_SYNC,	/* Want to sync this iclog; no more writes */
46 	XLOG_STATE_SYNCING,	/* This IC log is syncing */
47 	XLOG_STATE_DONE_SYNC,	/* Done syncing to disk */
48 	XLOG_STATE_CALLBACK,	/* Callback functions now */
49 	XLOG_STATE_DIRTY,	/* Dirty IC log, not ready for ACTIVE status */
50 	XLOG_STATE_IOERROR,	/* IO error happened in sync'ing log */
51 };
52 
53 /*
54  * Flags to log ticket
55  */
56 #define XLOG_TIC_INITED		0x1	/* has been initialized */
57 #define XLOG_TIC_PERM_RESERV	0x2	/* permanent reservation */
58 
59 #define XLOG_TIC_FLAGS \
60 	{ XLOG_TIC_INITED,	"XLOG_TIC_INITED" }, \
61 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
62 
63 /*
64  * Below are states for covering allocation transactions.
65  * By covering, we mean changing the h_tail_lsn in the last on-disk
66  * log write such that no allocation transactions will be re-done during
67  * recovery after a system crash. Recovery starts at the last on-disk
68  * log write.
69  *
70  * These states are used to insert dummy log entries to cover
71  * space allocation transactions which can undo non-transactional changes
72  * after a crash. Writes to a file with space
73  * already allocated do not result in any transactions. Allocations
74  * might include space beyond the EOF. So if we just push the EOF a
75  * little, the last transaction for the file could contain the wrong
76  * size. If there is no file system activity, after an allocation
77  * transaction, and the system crashes, the allocation transaction
78  * will get replayed and the file will be truncated. This could
79  * be hours/days/... after the allocation occurred.
80  *
81  * The fix for this is to do two dummy transactions when the
82  * system is idle. We need two dummy transaction because the h_tail_lsn
83  * in the log record header needs to point beyond the last possible
84  * non-dummy transaction. The first dummy changes the h_tail_lsn to
85  * the first transaction before the dummy. The second dummy causes
86  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
87  *
88  * These dummy transactions get committed when everything
89  * is idle (after there has been some activity).
90  *
91  * There are 5 states used to control this.
92  *
93  *  IDLE -- no logging has been done on the file system or
94  *		we are done covering previous transactions.
95  *  NEED -- logging has occurred and we need a dummy transaction
96  *		when the log becomes idle.
97  *  DONE -- we were in the NEED state and have committed a dummy
98  *		transaction.
99  *  NEED2 -- we detected that a dummy transaction has gone to the
100  *		on disk log with no other transactions.
101  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
102  *
103  * There are two places where we switch states:
104  *
105  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
106  *	We commit the dummy transaction and switch to DONE or DONE2,
107  *	respectively. In all other states, we don't do anything.
108  *
109  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
110  *
111  *	No matter what state we are in, if this isn't the dummy
112  *	transaction going out, the next state is NEED.
113  *	So, if we aren't in the DONE or DONE2 states, the next state
114  *	is NEED. We can't be finishing a write of the dummy record
115  *	unless it was committed and the state switched to DONE or DONE2.
116  *
117  *	If we are in the DONE state and this was a write of the
118  *		dummy transaction, we move to NEED2.
119  *
120  *	If we are in the DONE2 state and this was a write of the
121  *		dummy transaction, we move to IDLE.
122  *
123  *
124  * Writing only one dummy transaction can get appended to
125  * one file space allocation. When this happens, the log recovery
126  * code replays the space allocation and a file could be truncated.
127  * This is why we have the NEED2 and DONE2 states before going idle.
128  */
129 
130 #define XLOG_STATE_COVER_IDLE	0
131 #define XLOG_STATE_COVER_NEED	1
132 #define XLOG_STATE_COVER_DONE	2
133 #define XLOG_STATE_COVER_NEED2	3
134 #define XLOG_STATE_COVER_DONE2	4
135 
136 #define XLOG_COVER_OPS		5
137 
138 /* Ticket reservation region accounting */
139 #define XLOG_TIC_LEN_MAX	15
140 
141 /*
142  * Reservation region
143  * As would be stored in xfs_log_iovec but without the i_addr which
144  * we don't care about.
145  */
146 typedef struct xlog_res {
147 	uint	r_len;	/* region length		:4 */
148 	uint	r_type;	/* region's transaction type	:4 */
149 } xlog_res_t;
150 
151 typedef struct xlog_ticket {
152 	struct list_head   t_queue;	 /* reserve/write queue */
153 	struct task_struct *t_task;	 /* task that owns this ticket */
154 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
155 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
156 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
157 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
158 	char		   t_ocnt;	 /* original count		 : 1  */
159 	char		   t_cnt;	 /* current count		 : 1  */
160 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
161 	char		   t_flags;	 /* properties of reservation	 : 1  */
162 
163         /* reservation array fields */
164 	uint		   t_res_num;                    /* num in array : 4 */
165 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
166 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
167 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
168 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
169 } xlog_ticket_t;
170 
171 /*
172  * - A log record header is 512 bytes.  There is plenty of room to grow the
173  *	xlog_rec_header_t into the reserved space.
174  * - ic_data follows, so a write to disk can start at the beginning of
175  *	the iclog.
176  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
177  * - ic_next is the pointer to the next iclog in the ring.
178  * - ic_log is a pointer back to the global log structure.
179  * - ic_size is the full size of the log buffer, minus the cycle headers.
180  * - ic_offset is the current number of bytes written to in this iclog.
181  * - ic_refcnt is bumped when someone is writing to the log.
182  * - ic_state is the state of the iclog.
183  *
184  * Because of cacheline contention on large machines, we need to separate
185  * various resources onto different cachelines. To start with, make the
186  * structure cacheline aligned. The following fields can be contended on
187  * by independent processes:
188  *
189  *	- ic_callbacks
190  *	- ic_refcnt
191  *	- fields protected by the global l_icloglock
192  *
193  * so we need to ensure that these fields are located in separate cachelines.
194  * We'll put all the read-only and l_icloglock fields in the first cacheline,
195  * and move everything else out to subsequent cachelines.
196  */
197 typedef struct xlog_in_core {
198 	wait_queue_head_t	ic_force_wait;
199 	wait_queue_head_t	ic_write_wait;
200 	struct xlog_in_core	*ic_next;
201 	struct xlog_in_core	*ic_prev;
202 	struct xlog		*ic_log;
203 	u32			ic_size;
204 	u32			ic_offset;
205 	enum xlog_iclog_state	ic_state;
206 	char			*ic_datap;	/* pointer to iclog data */
207 
208 	/* Callback structures need their own cacheline */
209 	spinlock_t		ic_callback_lock ____cacheline_aligned_in_smp;
210 	struct list_head	ic_callbacks;
211 
212 	/* reference counts need their own cacheline */
213 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
214 	xlog_in_core_2_t	*ic_data;
215 #define ic_header	ic_data->hic_header
216 #ifdef DEBUG
217 	bool			ic_fail_crc : 1;
218 #endif
219 	struct semaphore	ic_sema;
220 	struct work_struct	ic_end_io_work;
221 	struct bio		ic_bio;
222 	struct bio_vec		ic_bvec[];
223 } xlog_in_core_t;
224 
225 /*
226  * The CIL context is used to aggregate per-transaction details as well be
227  * passed to the iclog for checkpoint post-commit processing.  After being
228  * passed to the iclog, another context needs to be allocated for tracking the
229  * next set of transactions to be aggregated into a checkpoint.
230  */
231 struct xfs_cil;
232 
233 struct xfs_cil_ctx {
234 	struct xfs_cil		*cil;
235 	xfs_lsn_t		sequence;	/* chkpt sequence # */
236 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
237 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
238 	struct xlog_ticket	*ticket;	/* chkpt ticket */
239 	int			nvecs;		/* number of regions */
240 	int			space_used;	/* aggregate size of regions */
241 	struct list_head	busy_extents;	/* busy extents in chkpt */
242 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
243 	struct list_head	iclog_entry;
244 	struct list_head	committing;	/* ctx committing list */
245 	struct work_struct	discard_endio_work;
246 };
247 
248 /*
249  * Committed Item List structure
250  *
251  * This structure is used to track log items that have been committed but not
252  * yet written into the log. It is used only when the delayed logging mount
253  * option is enabled.
254  *
255  * This structure tracks the list of committing checkpoint contexts so
256  * we can avoid the problem of having to hold out new transactions during a
257  * flush until we have a the commit record LSN of the checkpoint. We can
258  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
259  * sequence match and extract the commit LSN directly from there. If the
260  * checkpoint is still in the process of committing, we can block waiting for
261  * the commit LSN to be determined as well. This should make synchronous
262  * operations almost as efficient as the old logging methods.
263  */
264 struct xfs_cil {
265 	struct xlog		*xc_log;
266 	struct list_head	xc_cil;
267 	spinlock_t		xc_cil_lock;
268 
269 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
270 	struct xfs_cil_ctx	*xc_ctx;
271 
272 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
273 	xfs_lsn_t		xc_push_seq;
274 	struct list_head	xc_committing;
275 	wait_queue_head_t	xc_commit_wait;
276 	xfs_lsn_t		xc_current_sequence;
277 	struct work_struct	xc_push_work;
278 } ____cacheline_aligned_in_smp;
279 
280 /*
281  * The amount of log space we allow the CIL to aggregate is difficult to size.
282  * Whatever we choose, we have to make sure we can get a reservation for the
283  * log space effectively, that it is large enough to capture sufficient
284  * relogging to reduce log buffer IO significantly, but it is not too large for
285  * the log or induces too much latency when writing out through the iclogs. We
286  * track both space consumed and the number of vectors in the checkpoint
287  * context, so we need to decide which to use for limiting.
288  *
289  * Every log buffer we write out during a push needs a header reserved, which
290  * is at least one sector and more for v2 logs. Hence we need a reservation of
291  * at least 512 bytes per 32k of log space just for the LR headers. That means
292  * 16KB of reservation per megabyte of delayed logging space we will consume,
293  * plus various headers.  The number of headers will vary based on the num of
294  * io vectors, so limiting on a specific number of vectors is going to result
295  * in transactions of varying size. IOWs, it is more consistent to track and
296  * limit space consumed in the log rather than by the number of objects being
297  * logged in order to prevent checkpoint ticket overruns.
298  *
299  * Further, use of static reservations through the log grant mechanism is
300  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
301  * grant) and a significant deadlock potential because regranting write space
302  * can block on log pushes. Hence if we have to regrant log space during a log
303  * push, we can deadlock.
304  *
305  * However, we can avoid this by use of a dynamic "reservation stealing"
306  * technique during transaction commit whereby unused reservation space in the
307  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
308  * space needed by the checkpoint transaction. This means that we never need to
309  * specifically reserve space for the CIL checkpoint transaction, nor do we
310  * need to regrant space once the checkpoint completes. This also means the
311  * checkpoint transaction ticket is specific to the checkpoint context, rather
312  * than the CIL itself.
313  *
314  * With dynamic reservations, we can effectively make up arbitrary limits for
315  * the checkpoint size so long as they don't violate any other size rules.
316  * Recovery imposes a rule that no transaction exceed half the log, so we are
317  * limited by that.  Furthermore, the log transaction reservation subsystem
318  * tries to keep 25% of the log free, so we need to keep below that limit or we
319  * risk running out of free log space to start any new transactions.
320  *
321  * In order to keep background CIL push efficient, we will set a lower
322  * threshold at which background pushing is attempted without blocking current
323  * transaction commits.  A separate, higher bound defines when CIL pushes are
324  * enforced to ensure we stay within our maximum checkpoint size bounds.
325  * threshold, yet give us plenty of space for aggregation on large logs.
326  */
327 #define XLOG_CIL_SPACE_LIMIT(log)	(log->l_logsize >> 3)
328 
329 /*
330  * ticket grant locks, queues and accounting have their own cachlines
331  * as these are quite hot and can be operated on concurrently.
332  */
333 struct xlog_grant_head {
334 	spinlock_t		lock ____cacheline_aligned_in_smp;
335 	struct list_head	waiters;
336 	atomic64_t		grant;
337 };
338 
339 /*
340  * The reservation head lsn is not made up of a cycle number and block number.
341  * Instead, it uses a cycle number and byte number.  Logs don't expect to
342  * overflow 31 bits worth of byte offset, so using a byte number will mean
343  * that round off problems won't occur when releasing partial reservations.
344  */
345 struct xlog {
346 	/* The following fields don't need locking */
347 	struct xfs_mount	*l_mp;	        /* mount point */
348 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
349 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
350 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
351 	struct workqueue_struct	*l_ioend_workqueue; /* for I/O completions */
352 	struct delayed_work	l_work;		/* background flush work */
353 	uint			l_flags;
354 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
355 	struct list_head	*l_buf_cancel_table;
356 	int			l_iclog_hsize;  /* size of iclog header */
357 	int			l_iclog_heads;  /* # of iclog header sectors */
358 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
359 	int			l_iclog_size;	/* size of log in bytes */
360 	int			l_iclog_bufs;	/* number of iclog buffers */
361 	xfs_daddr_t		l_logBBstart;   /* start block of log */
362 	int			l_logsize;      /* size of log in bytes */
363 	int			l_logBBsize;    /* size of log in BB chunks */
364 
365 	/* The following block of fields are changed while holding icloglock */
366 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
367 						/* waiting for iclog flush */
368 	int			l_covered_state;/* state of "covering disk
369 						 * log entries" */
370 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
371 	spinlock_t		l_icloglock;    /* grab to change iclog state */
372 	int			l_curr_cycle;   /* Cycle number of log writes */
373 	int			l_prev_cycle;   /* Cycle number before last
374 						 * block increment */
375 	int			l_curr_block;   /* current logical log block */
376 	int			l_prev_block;   /* previous logical log block */
377 
378 	/*
379 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
380 	 * read without needing to hold specific locks. To avoid operations
381 	 * contending with other hot objects, place each of them on a separate
382 	 * cacheline.
383 	 */
384 	/* lsn of last LR on disk */
385 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
386 	/* lsn of 1st LR with unflushed * buffers */
387 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
388 
389 	struct xlog_grant_head	l_reserve_head;
390 	struct xlog_grant_head	l_write_head;
391 
392 	struct xfs_kobj		l_kobj;
393 
394 	/* The following field are used for debugging; need to hold icloglock */
395 #ifdef DEBUG
396 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
397 #endif
398 	/* log recovery lsn tracking (for buffer submission */
399 	xfs_lsn_t		l_recovery_lsn;
400 };
401 
402 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
403 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
404 
405 #define XLOG_FORCED_SHUTDOWN(log)	((log)->l_flags & XLOG_IO_ERROR)
406 
407 /* common routines */
408 extern int
409 xlog_recover(
410 	struct xlog		*log);
411 extern int
412 xlog_recover_finish(
413 	struct xlog		*log);
414 extern void
415 xlog_recover_cancel(struct xlog *);
416 
417 extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
418 			    char *dp, int size);
419 
420 extern kmem_zone_t *xfs_log_ticket_zone;
421 struct xlog_ticket *
422 xlog_ticket_alloc(
423 	struct xlog	*log,
424 	int		unit_bytes,
425 	int		count,
426 	char		client,
427 	bool		permanent,
428 	xfs_km_flags_t	alloc_flags);
429 
430 
431 static inline void
432 xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
433 {
434 	*ptr += bytes;
435 	*len -= bytes;
436 	*off += bytes;
437 }
438 
439 void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
440 void	xlog_print_trans(struct xfs_trans *);
441 int
442 xlog_write(
443 	struct xlog		*log,
444 	struct xfs_log_vec	*log_vector,
445 	struct xlog_ticket	*tic,
446 	xfs_lsn_t		*start_lsn,
447 	struct xlog_in_core	**commit_iclog,
448 	uint			flags);
449 
450 /*
451  * When we crack an atomic LSN, we sample it first so that the value will not
452  * change while we are cracking it into the component values. This means we
453  * will always get consistent component values to work from. This should always
454  * be used to sample and crack LSNs that are stored and updated in atomic
455  * variables.
456  */
457 static inline void
458 xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
459 {
460 	xfs_lsn_t val = atomic64_read(lsn);
461 
462 	*cycle = CYCLE_LSN(val);
463 	*block = BLOCK_LSN(val);
464 }
465 
466 /*
467  * Calculate and assign a value to an atomic LSN variable from component pieces.
468  */
469 static inline void
470 xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
471 {
472 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
473 }
474 
475 /*
476  * When we crack the grant head, we sample it first so that the value will not
477  * change while we are cracking it into the component values. This means we
478  * will always get consistent component values to work from.
479  */
480 static inline void
481 xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
482 {
483 	*cycle = val >> 32;
484 	*space = val & 0xffffffff;
485 }
486 
487 static inline void
488 xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
489 {
490 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
491 }
492 
493 static inline int64_t
494 xlog_assign_grant_head_val(int cycle, int space)
495 {
496 	return ((int64_t)cycle << 32) | space;
497 }
498 
499 static inline void
500 xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
501 {
502 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
503 }
504 
505 /*
506  * Committed Item List interfaces
507  */
508 int	xlog_cil_init(struct xlog *log);
509 void	xlog_cil_init_post_recovery(struct xlog *log);
510 void	xlog_cil_destroy(struct xlog *log);
511 bool	xlog_cil_empty(struct xlog *log);
512 
513 /*
514  * CIL force routines
515  */
516 xfs_lsn_t
517 xlog_cil_force_lsn(
518 	struct xlog *log,
519 	xfs_lsn_t sequence);
520 
521 static inline void
522 xlog_cil_force(struct xlog *log)
523 {
524 	xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence);
525 }
526 
527 /*
528  * Unmount record type is used as a pseudo transaction type for the ticket.
529  * It's value must be outside the range of XFS_TRANS_* values.
530  */
531 #define XLOG_UNMOUNT_REC_TYPE	(-1U)
532 
533 /*
534  * Wrapper function for waiting on a wait queue serialised against wakeups
535  * by a spinlock. This matches the semantics of all the wait queues used in the
536  * log code.
537  */
538 static inline void
539 xlog_wait(
540 	struct wait_queue_head	*wq,
541 	struct spinlock		*lock)
542 		__releases(lock)
543 {
544 	DECLARE_WAITQUEUE(wait, current);
545 
546 	add_wait_queue_exclusive(wq, &wait);
547 	__set_current_state(TASK_UNINTERRUPTIBLE);
548 	spin_unlock(lock);
549 	schedule();
550 	remove_wait_queue(wq, &wait);
551 }
552 
553 /*
554  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
555  * means that the next log record that includes this metadata could have a
556  * smaller LSN. In turn, this means that the modification in the log would not
557  * replay.
558  */
559 static inline bool
560 xlog_valid_lsn(
561 	struct xlog	*log,
562 	xfs_lsn_t	lsn)
563 {
564 	int		cur_cycle;
565 	int		cur_block;
566 	bool		valid = true;
567 
568 	/*
569 	 * First, sample the current lsn without locking to avoid added
570 	 * contention from metadata I/O. The current cycle and block are updated
571 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
572 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
573 	 * when it is not).
574 	 *
575 	 * The current block is always rewound before the cycle is bumped in
576 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
577 	 * a transiently forward state. Instead, we can see the LSN in a
578 	 * transiently behind state if we happen to race with a cycle wrap.
579 	 */
580 	cur_cycle = READ_ONCE(log->l_curr_cycle);
581 	smp_rmb();
582 	cur_block = READ_ONCE(log->l_curr_block);
583 
584 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
585 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
586 		/*
587 		 * If the metadata LSN appears invalid, it's possible the check
588 		 * above raced with a wrap to the next log cycle. Grab the lock
589 		 * to check for sure.
590 		 */
591 		spin_lock(&log->l_icloglock);
592 		cur_cycle = log->l_curr_cycle;
593 		cur_block = log->l_curr_block;
594 		spin_unlock(&log->l_icloglock);
595 
596 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
597 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
598 			valid = false;
599 	}
600 
601 	return valid;
602 }
603 
604 #endif	/* __XFS_LOG_PRIV_H__ */
605