xref: /openbmc/linux/fs/xfs/xfs_log_priv.h (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #ifndef	__XFS_LOG_PRIV_H__
7 #define __XFS_LOG_PRIV_H__
8 
9 struct xfs_buf;
10 struct xlog;
11 struct xlog_ticket;
12 struct xfs_mount;
13 
14 /*
15  * Flags for log structure
16  */
17 #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
18 #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
19 #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
20 					   shutdown */
21 #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
22 
23 /*
24  * get client id from packed copy.
25  *
26  * this hack is here because the xlog_pack code copies four bytes
27  * of xlog_op_header containing the fields oh_clientid, oh_flags
28  * and oh_res2 into the packed copy.
29  *
30  * later on this four byte chunk is treated as an int and the
31  * client id is pulled out.
32  *
33  * this has endian issues, of course.
34  */
35 static inline uint xlog_get_client_id(__be32 i)
36 {
37 	return be32_to_cpu(i) >> 24;
38 }
39 
40 /*
41  * In core log state
42  */
43 enum xlog_iclog_state {
44 	XLOG_STATE_ACTIVE,	/* Current IC log being written to */
45 	XLOG_STATE_WANT_SYNC,	/* Want to sync this iclog; no more writes */
46 	XLOG_STATE_SYNCING,	/* This IC log is syncing */
47 	XLOG_STATE_DONE_SYNC,	/* Done syncing to disk */
48 	XLOG_STATE_CALLBACK,	/* Callback functions now */
49 	XLOG_STATE_DIRTY,	/* Dirty IC log, not ready for ACTIVE status */
50 	XLOG_STATE_IOERROR,	/* IO error happened in sync'ing log */
51 };
52 
53 #define XLOG_STATE_STRINGS \
54 	{ XLOG_STATE_ACTIVE,	"XLOG_STATE_ACTIVE" }, \
55 	{ XLOG_STATE_WANT_SYNC,	"XLOG_STATE_WANT_SYNC" }, \
56 	{ XLOG_STATE_SYNCING,	"XLOG_STATE_SYNCING" }, \
57 	{ XLOG_STATE_DONE_SYNC,	"XLOG_STATE_DONE_SYNC" }, \
58 	{ XLOG_STATE_CALLBACK,	"XLOG_STATE_CALLBACK" }, \
59 	{ XLOG_STATE_DIRTY,	"XLOG_STATE_DIRTY" }, \
60 	{ XLOG_STATE_IOERROR,	"XLOG_STATE_IOERROR" }
61 
62 
63 /*
64  * Log ticket flags
65  */
66 #define XLOG_TIC_PERM_RESERV	0x1	/* permanent reservation */
67 
68 #define XLOG_TIC_FLAGS \
69 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
70 
71 /*
72  * Below are states for covering allocation transactions.
73  * By covering, we mean changing the h_tail_lsn in the last on-disk
74  * log write such that no allocation transactions will be re-done during
75  * recovery after a system crash. Recovery starts at the last on-disk
76  * log write.
77  *
78  * These states are used to insert dummy log entries to cover
79  * space allocation transactions which can undo non-transactional changes
80  * after a crash. Writes to a file with space
81  * already allocated do not result in any transactions. Allocations
82  * might include space beyond the EOF. So if we just push the EOF a
83  * little, the last transaction for the file could contain the wrong
84  * size. If there is no file system activity, after an allocation
85  * transaction, and the system crashes, the allocation transaction
86  * will get replayed and the file will be truncated. This could
87  * be hours/days/... after the allocation occurred.
88  *
89  * The fix for this is to do two dummy transactions when the
90  * system is idle. We need two dummy transaction because the h_tail_lsn
91  * in the log record header needs to point beyond the last possible
92  * non-dummy transaction. The first dummy changes the h_tail_lsn to
93  * the first transaction before the dummy. The second dummy causes
94  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
95  *
96  * These dummy transactions get committed when everything
97  * is idle (after there has been some activity).
98  *
99  * There are 5 states used to control this.
100  *
101  *  IDLE -- no logging has been done on the file system or
102  *		we are done covering previous transactions.
103  *  NEED -- logging has occurred and we need a dummy transaction
104  *		when the log becomes idle.
105  *  DONE -- we were in the NEED state and have committed a dummy
106  *		transaction.
107  *  NEED2 -- we detected that a dummy transaction has gone to the
108  *		on disk log with no other transactions.
109  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
110  *
111  * There are two places where we switch states:
112  *
113  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
114  *	We commit the dummy transaction and switch to DONE or DONE2,
115  *	respectively. In all other states, we don't do anything.
116  *
117  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
118  *
119  *	No matter what state we are in, if this isn't the dummy
120  *	transaction going out, the next state is NEED.
121  *	So, if we aren't in the DONE or DONE2 states, the next state
122  *	is NEED. We can't be finishing a write of the dummy record
123  *	unless it was committed and the state switched to DONE or DONE2.
124  *
125  *	If we are in the DONE state and this was a write of the
126  *		dummy transaction, we move to NEED2.
127  *
128  *	If we are in the DONE2 state and this was a write of the
129  *		dummy transaction, we move to IDLE.
130  *
131  *
132  * Writing only one dummy transaction can get appended to
133  * one file space allocation. When this happens, the log recovery
134  * code replays the space allocation and a file could be truncated.
135  * This is why we have the NEED2 and DONE2 states before going idle.
136  */
137 
138 #define XLOG_STATE_COVER_IDLE	0
139 #define XLOG_STATE_COVER_NEED	1
140 #define XLOG_STATE_COVER_DONE	2
141 #define XLOG_STATE_COVER_NEED2	3
142 #define XLOG_STATE_COVER_DONE2	4
143 
144 #define XLOG_COVER_OPS		5
145 
146 #define XLOG_ICL_NEED_FLUSH	(1 << 0)	/* iclog needs REQ_PREFLUSH */
147 #define XLOG_ICL_NEED_FUA	(1 << 1)	/* iclog needs REQ_FUA */
148 
149 /* Ticket reservation region accounting */
150 #define XLOG_TIC_LEN_MAX	15
151 
152 /*
153  * Reservation region
154  * As would be stored in xfs_log_iovec but without the i_addr which
155  * we don't care about.
156  */
157 typedef struct xlog_res {
158 	uint	r_len;	/* region length		:4 */
159 	uint	r_type;	/* region's transaction type	:4 */
160 } xlog_res_t;
161 
162 typedef struct xlog_ticket {
163 	struct list_head   t_queue;	 /* reserve/write queue */
164 	struct task_struct *t_task;	 /* task that owns this ticket */
165 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
166 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
167 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
168 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
169 	char		   t_ocnt;	 /* original count		 : 1  */
170 	char		   t_cnt;	 /* current count		 : 1  */
171 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
172 	char		   t_flags;	 /* properties of reservation	 : 1  */
173 
174         /* reservation array fields */
175 	uint		   t_res_num;                    /* num in array : 4 */
176 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
177 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
178 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
179 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
180 } xlog_ticket_t;
181 
182 /*
183  * - A log record header is 512 bytes.  There is plenty of room to grow the
184  *	xlog_rec_header_t into the reserved space.
185  * - ic_data follows, so a write to disk can start at the beginning of
186  *	the iclog.
187  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
188  * - ic_next is the pointer to the next iclog in the ring.
189  * - ic_log is a pointer back to the global log structure.
190  * - ic_size is the full size of the log buffer, minus the cycle headers.
191  * - ic_offset is the current number of bytes written to in this iclog.
192  * - ic_refcnt is bumped when someone is writing to the log.
193  * - ic_state is the state of the iclog.
194  *
195  * Because of cacheline contention on large machines, we need to separate
196  * various resources onto different cachelines. To start with, make the
197  * structure cacheline aligned. The following fields can be contended on
198  * by independent processes:
199  *
200  *	- ic_callbacks
201  *	- ic_refcnt
202  *	- fields protected by the global l_icloglock
203  *
204  * so we need to ensure that these fields are located in separate cachelines.
205  * We'll put all the read-only and l_icloglock fields in the first cacheline,
206  * and move everything else out to subsequent cachelines.
207  */
208 typedef struct xlog_in_core {
209 	wait_queue_head_t	ic_force_wait;
210 	wait_queue_head_t	ic_write_wait;
211 	struct xlog_in_core	*ic_next;
212 	struct xlog_in_core	*ic_prev;
213 	struct xlog		*ic_log;
214 	u32			ic_size;
215 	u32			ic_offset;
216 	enum xlog_iclog_state	ic_state;
217 	unsigned int		ic_flags;
218 	char			*ic_datap;	/* pointer to iclog data */
219 	struct list_head	ic_callbacks;
220 
221 	/* reference counts need their own cacheline */
222 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
223 	xlog_in_core_2_t	*ic_data;
224 #define ic_header	ic_data->hic_header
225 #ifdef DEBUG
226 	bool			ic_fail_crc : 1;
227 #endif
228 	struct semaphore	ic_sema;
229 	struct work_struct	ic_end_io_work;
230 	struct bio		ic_bio;
231 	struct bio_vec		ic_bvec[];
232 } xlog_in_core_t;
233 
234 /*
235  * The CIL context is used to aggregate per-transaction details as well be
236  * passed to the iclog for checkpoint post-commit processing.  After being
237  * passed to the iclog, another context needs to be allocated for tracking the
238  * next set of transactions to be aggregated into a checkpoint.
239  */
240 struct xfs_cil;
241 
242 struct xfs_cil_ctx {
243 	struct xfs_cil		*cil;
244 	xfs_csn_t		sequence;	/* chkpt sequence # */
245 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
246 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
247 	struct xlog_ticket	*ticket;	/* chkpt ticket */
248 	int			nvecs;		/* number of regions */
249 	int			space_used;	/* aggregate size of regions */
250 	struct list_head	busy_extents;	/* busy extents in chkpt */
251 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
252 	struct list_head	iclog_entry;
253 	struct list_head	committing;	/* ctx committing list */
254 	struct work_struct	discard_endio_work;
255 };
256 
257 /*
258  * Committed Item List structure
259  *
260  * This structure is used to track log items that have been committed but not
261  * yet written into the log. It is used only when the delayed logging mount
262  * option is enabled.
263  *
264  * This structure tracks the list of committing checkpoint contexts so
265  * we can avoid the problem of having to hold out new transactions during a
266  * flush until we have a the commit record LSN of the checkpoint. We can
267  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
268  * sequence match and extract the commit LSN directly from there. If the
269  * checkpoint is still in the process of committing, we can block waiting for
270  * the commit LSN to be determined as well. This should make synchronous
271  * operations almost as efficient as the old logging methods.
272  */
273 struct xfs_cil {
274 	struct xlog		*xc_log;
275 	struct list_head	xc_cil;
276 	spinlock_t		xc_cil_lock;
277 
278 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
279 	struct xfs_cil_ctx	*xc_ctx;
280 
281 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
282 	xfs_csn_t		xc_push_seq;
283 	struct list_head	xc_committing;
284 	wait_queue_head_t	xc_commit_wait;
285 	xfs_csn_t		xc_current_sequence;
286 	struct work_struct	xc_push_work;
287 	wait_queue_head_t	xc_push_wait;	/* background push throttle */
288 } ____cacheline_aligned_in_smp;
289 
290 /*
291  * The amount of log space we allow the CIL to aggregate is difficult to size.
292  * Whatever we choose, we have to make sure we can get a reservation for the
293  * log space effectively, that it is large enough to capture sufficient
294  * relogging to reduce log buffer IO significantly, but it is not too large for
295  * the log or induces too much latency when writing out through the iclogs. We
296  * track both space consumed and the number of vectors in the checkpoint
297  * context, so we need to decide which to use for limiting.
298  *
299  * Every log buffer we write out during a push needs a header reserved, which
300  * is at least one sector and more for v2 logs. Hence we need a reservation of
301  * at least 512 bytes per 32k of log space just for the LR headers. That means
302  * 16KB of reservation per megabyte of delayed logging space we will consume,
303  * plus various headers.  The number of headers will vary based on the num of
304  * io vectors, so limiting on a specific number of vectors is going to result
305  * in transactions of varying size. IOWs, it is more consistent to track and
306  * limit space consumed in the log rather than by the number of objects being
307  * logged in order to prevent checkpoint ticket overruns.
308  *
309  * Further, use of static reservations through the log grant mechanism is
310  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
311  * grant) and a significant deadlock potential because regranting write space
312  * can block on log pushes. Hence if we have to regrant log space during a log
313  * push, we can deadlock.
314  *
315  * However, we can avoid this by use of a dynamic "reservation stealing"
316  * technique during transaction commit whereby unused reservation space in the
317  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
318  * space needed by the checkpoint transaction. This means that we never need to
319  * specifically reserve space for the CIL checkpoint transaction, nor do we
320  * need to regrant space once the checkpoint completes. This also means the
321  * checkpoint transaction ticket is specific to the checkpoint context, rather
322  * than the CIL itself.
323  *
324  * With dynamic reservations, we can effectively make up arbitrary limits for
325  * the checkpoint size so long as they don't violate any other size rules.
326  * Recovery imposes a rule that no transaction exceed half the log, so we are
327  * limited by that.  Furthermore, the log transaction reservation subsystem
328  * tries to keep 25% of the log free, so we need to keep below that limit or we
329  * risk running out of free log space to start any new transactions.
330  *
331  * In order to keep background CIL push efficient, we only need to ensure the
332  * CIL is large enough to maintain sufficient in-memory relogging to avoid
333  * repeated physical writes of frequently modified metadata. If we allow the CIL
334  * to grow to a substantial fraction of the log, then we may be pinning hundreds
335  * of megabytes of metadata in memory until the CIL flushes. This can cause
336  * issues when we are running low on memory - pinned memory cannot be reclaimed,
337  * and the CIL consumes a lot of memory. Hence we need to set an upper physical
338  * size limit for the CIL that limits the maximum amount of memory pinned by the
339  * CIL but does not limit performance by reducing relogging efficiency
340  * significantly.
341  *
342  * As such, the CIL push threshold ends up being the smaller of two thresholds:
343  * - a threshold large enough that it allows CIL to be pushed and progress to be
344  *   made without excessive blocking of incoming transaction commits. This is
345  *   defined to be 12.5% of the log space - half the 25% push threshold of the
346  *   AIL.
347  * - small enough that it doesn't pin excessive amounts of memory but maintains
348  *   close to peak relogging efficiency. This is defined to be 16x the iclog
349  *   buffer window (32MB) as measurements have shown this to be roughly the
350  *   point of diminishing performance increases under highly concurrent
351  *   modification workloads.
352  *
353  * To prevent the CIL from overflowing upper commit size bounds, we introduce a
354  * new threshold at which we block committing transactions until the background
355  * CIL commit commences and switches to a new context. While this is not a hard
356  * limit, it forces the process committing a transaction to the CIL to block and
357  * yeild the CPU, giving the CIL push work a chance to be scheduled and start
358  * work. This prevents a process running lots of transactions from overfilling
359  * the CIL because it is not yielding the CPU. We set the blocking limit at
360  * twice the background push space threshold so we keep in line with the AIL
361  * push thresholds.
362  *
363  * Note: this is not a -hard- limit as blocking is applied after the transaction
364  * is inserted into the CIL and the push has been triggered. It is largely a
365  * throttling mechanism that allows the CIL push to be scheduled and run. A hard
366  * limit will be difficult to implement without introducing global serialisation
367  * in the CIL commit fast path, and it's not at all clear that we actually need
368  * such hard limits given the ~7 years we've run without a hard limit before
369  * finding the first situation where a checkpoint size overflow actually
370  * occurred. Hence the simple throttle, and an ASSERT check to tell us that
371  * we've overrun the max size.
372  */
373 #define XLOG_CIL_SPACE_LIMIT(log)	\
374 	min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4)
375 
376 #define XLOG_CIL_BLOCKING_SPACE_LIMIT(log)	\
377 	(XLOG_CIL_SPACE_LIMIT(log) * 2)
378 
379 /*
380  * ticket grant locks, queues and accounting have their own cachlines
381  * as these are quite hot and can be operated on concurrently.
382  */
383 struct xlog_grant_head {
384 	spinlock_t		lock ____cacheline_aligned_in_smp;
385 	struct list_head	waiters;
386 	atomic64_t		grant;
387 };
388 
389 /*
390  * The reservation head lsn is not made up of a cycle number and block number.
391  * Instead, it uses a cycle number and byte number.  Logs don't expect to
392  * overflow 31 bits worth of byte offset, so using a byte number will mean
393  * that round off problems won't occur when releasing partial reservations.
394  */
395 struct xlog {
396 	/* The following fields don't need locking */
397 	struct xfs_mount	*l_mp;	        /* mount point */
398 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
399 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
400 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
401 	struct workqueue_struct	*l_ioend_workqueue; /* for I/O completions */
402 	struct delayed_work	l_work;		/* background flush work */
403 	uint			l_flags;
404 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
405 	struct list_head	*l_buf_cancel_table;
406 	int			l_iclog_hsize;  /* size of iclog header */
407 	int			l_iclog_heads;  /* # of iclog header sectors */
408 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
409 	int			l_iclog_size;	/* size of log in bytes */
410 	int			l_iclog_bufs;	/* number of iclog buffers */
411 	xfs_daddr_t		l_logBBstart;   /* start block of log */
412 	int			l_logsize;      /* size of log in bytes */
413 	int			l_logBBsize;    /* size of log in BB chunks */
414 
415 	/* The following block of fields are changed while holding icloglock */
416 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
417 						/* waiting for iclog flush */
418 	int			l_covered_state;/* state of "covering disk
419 						 * log entries" */
420 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
421 	spinlock_t		l_icloglock;    /* grab to change iclog state */
422 	int			l_curr_cycle;   /* Cycle number of log writes */
423 	int			l_prev_cycle;   /* Cycle number before last
424 						 * block increment */
425 	int			l_curr_block;   /* current logical log block */
426 	int			l_prev_block;   /* previous logical log block */
427 
428 	/*
429 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
430 	 * read without needing to hold specific locks. To avoid operations
431 	 * contending with other hot objects, place each of them on a separate
432 	 * cacheline.
433 	 */
434 	/* lsn of last LR on disk */
435 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
436 	/* lsn of 1st LR with unflushed * buffers */
437 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
438 
439 	struct xlog_grant_head	l_reserve_head;
440 	struct xlog_grant_head	l_write_head;
441 
442 	struct xfs_kobj		l_kobj;
443 
444 	/* The following field are used for debugging; need to hold icloglock */
445 #ifdef DEBUG
446 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
447 #endif
448 	/* log recovery lsn tracking (for buffer submission */
449 	xfs_lsn_t		l_recovery_lsn;
450 
451 	uint32_t		l_iclog_roundoff;/* padding roundoff */
452 };
453 
454 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
455 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
456 
457 #define XLOG_FORCED_SHUTDOWN(log) \
458 	(unlikely((log)->l_flags & XLOG_IO_ERROR))
459 
460 /* common routines */
461 extern int
462 xlog_recover(
463 	struct xlog		*log);
464 extern int
465 xlog_recover_finish(
466 	struct xlog		*log);
467 extern void
468 xlog_recover_cancel(struct xlog *);
469 
470 extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
471 			    char *dp, int size);
472 
473 extern kmem_zone_t *xfs_log_ticket_zone;
474 struct xlog_ticket *
475 xlog_ticket_alloc(
476 	struct xlog	*log,
477 	int		unit_bytes,
478 	int		count,
479 	char		client,
480 	bool		permanent);
481 
482 static inline void
483 xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
484 {
485 	*ptr += bytes;
486 	*len -= bytes;
487 	*off += bytes;
488 }
489 
490 void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
491 void	xlog_print_trans(struct xfs_trans *);
492 int	xlog_write(struct xlog *log, struct xfs_log_vec *log_vector,
493 		struct xlog_ticket *tic, xfs_lsn_t *start_lsn,
494 		struct xlog_in_core **commit_iclog, uint optype);
495 int	xlog_commit_record(struct xlog *log, struct xlog_ticket *ticket,
496 		struct xlog_in_core **iclog, xfs_lsn_t *lsn);
497 void	xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket);
498 void	xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket);
499 
500 int xlog_state_release_iclog(struct xlog *log, struct xlog_in_core *iclog);
501 
502 /*
503  * When we crack an atomic LSN, we sample it first so that the value will not
504  * change while we are cracking it into the component values. This means we
505  * will always get consistent component values to work from. This should always
506  * be used to sample and crack LSNs that are stored and updated in atomic
507  * variables.
508  */
509 static inline void
510 xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
511 {
512 	xfs_lsn_t val = atomic64_read(lsn);
513 
514 	*cycle = CYCLE_LSN(val);
515 	*block = BLOCK_LSN(val);
516 }
517 
518 /*
519  * Calculate and assign a value to an atomic LSN variable from component pieces.
520  */
521 static inline void
522 xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
523 {
524 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
525 }
526 
527 /*
528  * When we crack the grant head, we sample it first so that the value will not
529  * change while we are cracking it into the component values. This means we
530  * will always get consistent component values to work from.
531  */
532 static inline void
533 xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
534 {
535 	*cycle = val >> 32;
536 	*space = val & 0xffffffff;
537 }
538 
539 static inline void
540 xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
541 {
542 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
543 }
544 
545 static inline int64_t
546 xlog_assign_grant_head_val(int cycle, int space)
547 {
548 	return ((int64_t)cycle << 32) | space;
549 }
550 
551 static inline void
552 xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
553 {
554 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
555 }
556 
557 /*
558  * Committed Item List interfaces
559  */
560 int	xlog_cil_init(struct xlog *log);
561 void	xlog_cil_init_post_recovery(struct xlog *log);
562 void	xlog_cil_destroy(struct xlog *log);
563 bool	xlog_cil_empty(struct xlog *log);
564 void	xlog_cil_commit(struct xlog *log, struct xfs_trans *tp,
565 			xfs_csn_t *commit_seq, bool regrant);
566 
567 /*
568  * CIL force routines
569  */
570 xfs_lsn_t xlog_cil_force_seq(struct xlog *log, xfs_csn_t sequence);
571 
572 static inline void
573 xlog_cil_force(struct xlog *log)
574 {
575 	xlog_cil_force_seq(log, log->l_cilp->xc_current_sequence);
576 }
577 
578 /*
579  * Wrapper function for waiting on a wait queue serialised against wakeups
580  * by a spinlock. This matches the semantics of all the wait queues used in the
581  * log code.
582  */
583 static inline void
584 xlog_wait(
585 	struct wait_queue_head	*wq,
586 	struct spinlock		*lock)
587 		__releases(lock)
588 {
589 	DECLARE_WAITQUEUE(wait, current);
590 
591 	add_wait_queue_exclusive(wq, &wait);
592 	__set_current_state(TASK_UNINTERRUPTIBLE);
593 	spin_unlock(lock);
594 	schedule();
595 	remove_wait_queue(wq, &wait);
596 }
597 
598 int xlog_wait_on_iclog(struct xlog_in_core *iclog);
599 
600 /*
601  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
602  * means that the next log record that includes this metadata could have a
603  * smaller LSN. In turn, this means that the modification in the log would not
604  * replay.
605  */
606 static inline bool
607 xlog_valid_lsn(
608 	struct xlog	*log,
609 	xfs_lsn_t	lsn)
610 {
611 	int		cur_cycle;
612 	int		cur_block;
613 	bool		valid = true;
614 
615 	/*
616 	 * First, sample the current lsn without locking to avoid added
617 	 * contention from metadata I/O. The current cycle and block are updated
618 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
619 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
620 	 * when it is not).
621 	 *
622 	 * The current block is always rewound before the cycle is bumped in
623 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
624 	 * a transiently forward state. Instead, we can see the LSN in a
625 	 * transiently behind state if we happen to race with a cycle wrap.
626 	 */
627 	cur_cycle = READ_ONCE(log->l_curr_cycle);
628 	smp_rmb();
629 	cur_block = READ_ONCE(log->l_curr_block);
630 
631 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
632 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
633 		/*
634 		 * If the metadata LSN appears invalid, it's possible the check
635 		 * above raced with a wrap to the next log cycle. Grab the lock
636 		 * to check for sure.
637 		 */
638 		spin_lock(&log->l_icloglock);
639 		cur_cycle = log->l_curr_cycle;
640 		cur_block = log->l_curr_block;
641 		spin_unlock(&log->l_icloglock);
642 
643 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
644 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
645 			valid = false;
646 	}
647 
648 	return valid;
649 }
650 
651 #endif	/* __XFS_LOG_PRIV_H__ */
652