xref: /openbmc/linux/fs/xfs/xfs_log_priv.h (revision 710b797c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #ifndef	__XFS_LOG_PRIV_H__
7 #define __XFS_LOG_PRIV_H__
8 
9 struct xfs_buf;
10 struct xlog;
11 struct xlog_ticket;
12 struct xfs_mount;
13 
14 /*
15  * Flags for log structure
16  */
17 #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
18 #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
19 #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
20 					   shutdown */
21 #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
22 
23 /*
24  * get client id from packed copy.
25  *
26  * this hack is here because the xlog_pack code copies four bytes
27  * of xlog_op_header containing the fields oh_clientid, oh_flags
28  * and oh_res2 into the packed copy.
29  *
30  * later on this four byte chunk is treated as an int and the
31  * client id is pulled out.
32  *
33  * this has endian issues, of course.
34  */
35 static inline uint xlog_get_client_id(__be32 i)
36 {
37 	return be32_to_cpu(i) >> 24;
38 }
39 
40 /*
41  * In core log state
42  */
43 enum xlog_iclog_state {
44 	XLOG_STATE_ACTIVE,	/* Current IC log being written to */
45 	XLOG_STATE_WANT_SYNC,	/* Want to sync this iclog; no more writes */
46 	XLOG_STATE_SYNCING,	/* This IC log is syncing */
47 	XLOG_STATE_DONE_SYNC,	/* Done syncing to disk */
48 	XLOG_STATE_CALLBACK,	/* Callback functions now */
49 	XLOG_STATE_DIRTY,	/* Dirty IC log, not ready for ACTIVE status */
50 	XLOG_STATE_IOERROR,	/* IO error happened in sync'ing log */
51 };
52 
53 /*
54  * Log ticket flags
55  */
56 #define XLOG_TIC_PERM_RESERV	0x1	/* permanent reservation */
57 
58 #define XLOG_TIC_FLAGS \
59 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
60 
61 /*
62  * Below are states for covering allocation transactions.
63  * By covering, we mean changing the h_tail_lsn in the last on-disk
64  * log write such that no allocation transactions will be re-done during
65  * recovery after a system crash. Recovery starts at the last on-disk
66  * log write.
67  *
68  * These states are used to insert dummy log entries to cover
69  * space allocation transactions which can undo non-transactional changes
70  * after a crash. Writes to a file with space
71  * already allocated do not result in any transactions. Allocations
72  * might include space beyond the EOF. So if we just push the EOF a
73  * little, the last transaction for the file could contain the wrong
74  * size. If there is no file system activity, after an allocation
75  * transaction, and the system crashes, the allocation transaction
76  * will get replayed and the file will be truncated. This could
77  * be hours/days/... after the allocation occurred.
78  *
79  * The fix for this is to do two dummy transactions when the
80  * system is idle. We need two dummy transaction because the h_tail_lsn
81  * in the log record header needs to point beyond the last possible
82  * non-dummy transaction. The first dummy changes the h_tail_lsn to
83  * the first transaction before the dummy. The second dummy causes
84  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
85  *
86  * These dummy transactions get committed when everything
87  * is idle (after there has been some activity).
88  *
89  * There are 5 states used to control this.
90  *
91  *  IDLE -- no logging has been done on the file system or
92  *		we are done covering previous transactions.
93  *  NEED -- logging has occurred and we need a dummy transaction
94  *		when the log becomes idle.
95  *  DONE -- we were in the NEED state and have committed a dummy
96  *		transaction.
97  *  NEED2 -- we detected that a dummy transaction has gone to the
98  *		on disk log with no other transactions.
99  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
100  *
101  * There are two places where we switch states:
102  *
103  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
104  *	We commit the dummy transaction and switch to DONE or DONE2,
105  *	respectively. In all other states, we don't do anything.
106  *
107  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
108  *
109  *	No matter what state we are in, if this isn't the dummy
110  *	transaction going out, the next state is NEED.
111  *	So, if we aren't in the DONE or DONE2 states, the next state
112  *	is NEED. We can't be finishing a write of the dummy record
113  *	unless it was committed and the state switched to DONE or DONE2.
114  *
115  *	If we are in the DONE state and this was a write of the
116  *		dummy transaction, we move to NEED2.
117  *
118  *	If we are in the DONE2 state and this was a write of the
119  *		dummy transaction, we move to IDLE.
120  *
121  *
122  * Writing only one dummy transaction can get appended to
123  * one file space allocation. When this happens, the log recovery
124  * code replays the space allocation and a file could be truncated.
125  * This is why we have the NEED2 and DONE2 states before going idle.
126  */
127 
128 #define XLOG_STATE_COVER_IDLE	0
129 #define XLOG_STATE_COVER_NEED	1
130 #define XLOG_STATE_COVER_DONE	2
131 #define XLOG_STATE_COVER_NEED2	3
132 #define XLOG_STATE_COVER_DONE2	4
133 
134 #define XLOG_COVER_OPS		5
135 
136 /* Ticket reservation region accounting */
137 #define XLOG_TIC_LEN_MAX	15
138 
139 /*
140  * Reservation region
141  * As would be stored in xfs_log_iovec but without the i_addr which
142  * we don't care about.
143  */
144 typedef struct xlog_res {
145 	uint	r_len;	/* region length		:4 */
146 	uint	r_type;	/* region's transaction type	:4 */
147 } xlog_res_t;
148 
149 typedef struct xlog_ticket {
150 	struct list_head   t_queue;	 /* reserve/write queue */
151 	struct task_struct *t_task;	 /* task that owns this ticket */
152 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
153 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
154 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
155 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
156 	char		   t_ocnt;	 /* original count		 : 1  */
157 	char		   t_cnt;	 /* current count		 : 1  */
158 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
159 	char		   t_flags;	 /* properties of reservation	 : 1  */
160 
161         /* reservation array fields */
162 	uint		   t_res_num;                    /* num in array : 4 */
163 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
164 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
165 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
166 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
167 } xlog_ticket_t;
168 
169 /*
170  * - A log record header is 512 bytes.  There is plenty of room to grow the
171  *	xlog_rec_header_t into the reserved space.
172  * - ic_data follows, so a write to disk can start at the beginning of
173  *	the iclog.
174  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
175  * - ic_next is the pointer to the next iclog in the ring.
176  * - ic_log is a pointer back to the global log structure.
177  * - ic_size is the full size of the log buffer, minus the cycle headers.
178  * - ic_offset is the current number of bytes written to in this iclog.
179  * - ic_refcnt is bumped when someone is writing to the log.
180  * - ic_state is the state of the iclog.
181  *
182  * Because of cacheline contention on large machines, we need to separate
183  * various resources onto different cachelines. To start with, make the
184  * structure cacheline aligned. The following fields can be contended on
185  * by independent processes:
186  *
187  *	- ic_callbacks
188  *	- ic_refcnt
189  *	- fields protected by the global l_icloglock
190  *
191  * so we need to ensure that these fields are located in separate cachelines.
192  * We'll put all the read-only and l_icloglock fields in the first cacheline,
193  * and move everything else out to subsequent cachelines.
194  */
195 typedef struct xlog_in_core {
196 	wait_queue_head_t	ic_force_wait;
197 	wait_queue_head_t	ic_write_wait;
198 	struct xlog_in_core	*ic_next;
199 	struct xlog_in_core	*ic_prev;
200 	struct xlog		*ic_log;
201 	u32			ic_size;
202 	u32			ic_offset;
203 	enum xlog_iclog_state	ic_state;
204 	char			*ic_datap;	/* pointer to iclog data */
205 
206 	/* Callback structures need their own cacheline */
207 	spinlock_t		ic_callback_lock ____cacheline_aligned_in_smp;
208 	struct list_head	ic_callbacks;
209 
210 	/* reference counts need their own cacheline */
211 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
212 	xlog_in_core_2_t	*ic_data;
213 #define ic_header	ic_data->hic_header
214 #ifdef DEBUG
215 	bool			ic_fail_crc : 1;
216 #endif
217 	struct semaphore	ic_sema;
218 	struct work_struct	ic_end_io_work;
219 	struct bio		ic_bio;
220 	struct bio_vec		ic_bvec[];
221 } xlog_in_core_t;
222 
223 /*
224  * The CIL context is used to aggregate per-transaction details as well be
225  * passed to the iclog for checkpoint post-commit processing.  After being
226  * passed to the iclog, another context needs to be allocated for tracking the
227  * next set of transactions to be aggregated into a checkpoint.
228  */
229 struct xfs_cil;
230 
231 struct xfs_cil_ctx {
232 	struct xfs_cil		*cil;
233 	xfs_lsn_t		sequence;	/* chkpt sequence # */
234 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
235 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
236 	struct xlog_ticket	*ticket;	/* chkpt ticket */
237 	int			nvecs;		/* number of regions */
238 	int			space_used;	/* aggregate size of regions */
239 	struct list_head	busy_extents;	/* busy extents in chkpt */
240 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
241 	struct list_head	iclog_entry;
242 	struct list_head	committing;	/* ctx committing list */
243 	struct work_struct	discard_endio_work;
244 };
245 
246 /*
247  * Committed Item List structure
248  *
249  * This structure is used to track log items that have been committed but not
250  * yet written into the log. It is used only when the delayed logging mount
251  * option is enabled.
252  *
253  * This structure tracks the list of committing checkpoint contexts so
254  * we can avoid the problem of having to hold out new transactions during a
255  * flush until we have a the commit record LSN of the checkpoint. We can
256  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
257  * sequence match and extract the commit LSN directly from there. If the
258  * checkpoint is still in the process of committing, we can block waiting for
259  * the commit LSN to be determined as well. This should make synchronous
260  * operations almost as efficient as the old logging methods.
261  */
262 struct xfs_cil {
263 	struct xlog		*xc_log;
264 	struct list_head	xc_cil;
265 	spinlock_t		xc_cil_lock;
266 
267 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
268 	struct xfs_cil_ctx	*xc_ctx;
269 
270 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
271 	xfs_lsn_t		xc_push_seq;
272 	struct list_head	xc_committing;
273 	wait_queue_head_t	xc_commit_wait;
274 	xfs_lsn_t		xc_current_sequence;
275 	struct work_struct	xc_push_work;
276 	wait_queue_head_t	xc_push_wait;	/* background push throttle */
277 } ____cacheline_aligned_in_smp;
278 
279 /*
280  * The amount of log space we allow the CIL to aggregate is difficult to size.
281  * Whatever we choose, we have to make sure we can get a reservation for the
282  * log space effectively, that it is large enough to capture sufficient
283  * relogging to reduce log buffer IO significantly, but it is not too large for
284  * the log or induces too much latency when writing out through the iclogs. We
285  * track both space consumed and the number of vectors in the checkpoint
286  * context, so we need to decide which to use for limiting.
287  *
288  * Every log buffer we write out during a push needs a header reserved, which
289  * is at least one sector and more for v2 logs. Hence we need a reservation of
290  * at least 512 bytes per 32k of log space just for the LR headers. That means
291  * 16KB of reservation per megabyte of delayed logging space we will consume,
292  * plus various headers.  The number of headers will vary based on the num of
293  * io vectors, so limiting on a specific number of vectors is going to result
294  * in transactions of varying size. IOWs, it is more consistent to track and
295  * limit space consumed in the log rather than by the number of objects being
296  * logged in order to prevent checkpoint ticket overruns.
297  *
298  * Further, use of static reservations through the log grant mechanism is
299  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
300  * grant) and a significant deadlock potential because regranting write space
301  * can block on log pushes. Hence if we have to regrant log space during a log
302  * push, we can deadlock.
303  *
304  * However, we can avoid this by use of a dynamic "reservation stealing"
305  * technique during transaction commit whereby unused reservation space in the
306  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
307  * space needed by the checkpoint transaction. This means that we never need to
308  * specifically reserve space for the CIL checkpoint transaction, nor do we
309  * need to regrant space once the checkpoint completes. This also means the
310  * checkpoint transaction ticket is specific to the checkpoint context, rather
311  * than the CIL itself.
312  *
313  * With dynamic reservations, we can effectively make up arbitrary limits for
314  * the checkpoint size so long as they don't violate any other size rules.
315  * Recovery imposes a rule that no transaction exceed half the log, so we are
316  * limited by that.  Furthermore, the log transaction reservation subsystem
317  * tries to keep 25% of the log free, so we need to keep below that limit or we
318  * risk running out of free log space to start any new transactions.
319  *
320  * In order to keep background CIL push efficient, we only need to ensure the
321  * CIL is large enough to maintain sufficient in-memory relogging to avoid
322  * repeated physical writes of frequently modified metadata. If we allow the CIL
323  * to grow to a substantial fraction of the log, then we may be pinning hundreds
324  * of megabytes of metadata in memory until the CIL flushes. This can cause
325  * issues when we are running low on memory - pinned memory cannot be reclaimed,
326  * and the CIL consumes a lot of memory. Hence we need to set an upper physical
327  * size limit for the CIL that limits the maximum amount of memory pinned by the
328  * CIL but does not limit performance by reducing relogging efficiency
329  * significantly.
330  *
331  * As such, the CIL push threshold ends up being the smaller of two thresholds:
332  * - a threshold large enough that it allows CIL to be pushed and progress to be
333  *   made without excessive blocking of incoming transaction commits. This is
334  *   defined to be 12.5% of the log space - half the 25% push threshold of the
335  *   AIL.
336  * - small enough that it doesn't pin excessive amounts of memory but maintains
337  *   close to peak relogging efficiency. This is defined to be 16x the iclog
338  *   buffer window (32MB) as measurements have shown this to be roughly the
339  *   point of diminishing performance increases under highly concurrent
340  *   modification workloads.
341  *
342  * To prevent the CIL from overflowing upper commit size bounds, we introduce a
343  * new threshold at which we block committing transactions until the background
344  * CIL commit commences and switches to a new context. While this is not a hard
345  * limit, it forces the process committing a transaction to the CIL to block and
346  * yeild the CPU, giving the CIL push work a chance to be scheduled and start
347  * work. This prevents a process running lots of transactions from overfilling
348  * the CIL because it is not yielding the CPU. We set the blocking limit at
349  * twice the background push space threshold so we keep in line with the AIL
350  * push thresholds.
351  *
352  * Note: this is not a -hard- limit as blocking is applied after the transaction
353  * is inserted into the CIL and the push has been triggered. It is largely a
354  * throttling mechanism that allows the CIL push to be scheduled and run. A hard
355  * limit will be difficult to implement without introducing global serialisation
356  * in the CIL commit fast path, and it's not at all clear that we actually need
357  * such hard limits given the ~7 years we've run without a hard limit before
358  * finding the first situation where a checkpoint size overflow actually
359  * occurred. Hence the simple throttle, and an ASSERT check to tell us that
360  * we've overrun the max size.
361  */
362 #define XLOG_CIL_SPACE_LIMIT(log)	\
363 	min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4)
364 
365 #define XLOG_CIL_BLOCKING_SPACE_LIMIT(log)	\
366 	(XLOG_CIL_SPACE_LIMIT(log) * 2)
367 
368 /*
369  * ticket grant locks, queues and accounting have their own cachlines
370  * as these are quite hot and can be operated on concurrently.
371  */
372 struct xlog_grant_head {
373 	spinlock_t		lock ____cacheline_aligned_in_smp;
374 	struct list_head	waiters;
375 	atomic64_t		grant;
376 };
377 
378 /*
379  * The reservation head lsn is not made up of a cycle number and block number.
380  * Instead, it uses a cycle number and byte number.  Logs don't expect to
381  * overflow 31 bits worth of byte offset, so using a byte number will mean
382  * that round off problems won't occur when releasing partial reservations.
383  */
384 struct xlog {
385 	/* The following fields don't need locking */
386 	struct xfs_mount	*l_mp;	        /* mount point */
387 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
388 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
389 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
390 	struct workqueue_struct	*l_ioend_workqueue; /* for I/O completions */
391 	struct delayed_work	l_work;		/* background flush work */
392 	uint			l_flags;
393 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
394 	struct list_head	*l_buf_cancel_table;
395 	int			l_iclog_hsize;  /* size of iclog header */
396 	int			l_iclog_heads;  /* # of iclog header sectors */
397 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
398 	int			l_iclog_size;	/* size of log in bytes */
399 	int			l_iclog_bufs;	/* number of iclog buffers */
400 	xfs_daddr_t		l_logBBstart;   /* start block of log */
401 	int			l_logsize;      /* size of log in bytes */
402 	int			l_logBBsize;    /* size of log in BB chunks */
403 
404 	/* The following block of fields are changed while holding icloglock */
405 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
406 						/* waiting for iclog flush */
407 	int			l_covered_state;/* state of "covering disk
408 						 * log entries" */
409 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
410 	spinlock_t		l_icloglock;    /* grab to change iclog state */
411 	int			l_curr_cycle;   /* Cycle number of log writes */
412 	int			l_prev_cycle;   /* Cycle number before last
413 						 * block increment */
414 	int			l_curr_block;   /* current logical log block */
415 	int			l_prev_block;   /* previous logical log block */
416 
417 	/*
418 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
419 	 * read without needing to hold specific locks. To avoid operations
420 	 * contending with other hot objects, place each of them on a separate
421 	 * cacheline.
422 	 */
423 	/* lsn of last LR on disk */
424 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
425 	/* lsn of 1st LR with unflushed * buffers */
426 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
427 
428 	struct xlog_grant_head	l_reserve_head;
429 	struct xlog_grant_head	l_write_head;
430 
431 	struct xfs_kobj		l_kobj;
432 
433 	/* The following field are used for debugging; need to hold icloglock */
434 #ifdef DEBUG
435 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
436 #endif
437 	/* log recovery lsn tracking (for buffer submission */
438 	xfs_lsn_t		l_recovery_lsn;
439 };
440 
441 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
442 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
443 
444 #define XLOG_FORCED_SHUTDOWN(log) \
445 	(unlikely((log)->l_flags & XLOG_IO_ERROR))
446 
447 /* common routines */
448 extern int
449 xlog_recover(
450 	struct xlog		*log);
451 extern int
452 xlog_recover_finish(
453 	struct xlog		*log);
454 extern void
455 xlog_recover_cancel(struct xlog *);
456 
457 extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
458 			    char *dp, int size);
459 
460 extern kmem_zone_t *xfs_log_ticket_zone;
461 struct xlog_ticket *
462 xlog_ticket_alloc(
463 	struct xlog	*log,
464 	int		unit_bytes,
465 	int		count,
466 	char		client,
467 	bool		permanent);
468 
469 static inline void
470 xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
471 {
472 	*ptr += bytes;
473 	*len -= bytes;
474 	*off += bytes;
475 }
476 
477 void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
478 void	xlog_print_trans(struct xfs_trans *);
479 int	xlog_write(struct xlog *log, struct xfs_log_vec *log_vector,
480 		struct xlog_ticket *tic, xfs_lsn_t *start_lsn,
481 		struct xlog_in_core **commit_iclog, uint flags,
482 		bool need_start_rec);
483 int	xlog_commit_record(struct xlog *log, struct xlog_ticket *ticket,
484 		struct xlog_in_core **iclog, xfs_lsn_t *lsn);
485 void	xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket);
486 void	xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket);
487 
488 /*
489  * When we crack an atomic LSN, we sample it first so that the value will not
490  * change while we are cracking it into the component values. This means we
491  * will always get consistent component values to work from. This should always
492  * be used to sample and crack LSNs that are stored and updated in atomic
493  * variables.
494  */
495 static inline void
496 xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
497 {
498 	xfs_lsn_t val = atomic64_read(lsn);
499 
500 	*cycle = CYCLE_LSN(val);
501 	*block = BLOCK_LSN(val);
502 }
503 
504 /*
505  * Calculate and assign a value to an atomic LSN variable from component pieces.
506  */
507 static inline void
508 xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
509 {
510 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
511 }
512 
513 /*
514  * When we crack the grant head, we sample it first so that the value will not
515  * change while we are cracking it into the component values. This means we
516  * will always get consistent component values to work from.
517  */
518 static inline void
519 xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
520 {
521 	*cycle = val >> 32;
522 	*space = val & 0xffffffff;
523 }
524 
525 static inline void
526 xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
527 {
528 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
529 }
530 
531 static inline int64_t
532 xlog_assign_grant_head_val(int cycle, int space)
533 {
534 	return ((int64_t)cycle << 32) | space;
535 }
536 
537 static inline void
538 xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
539 {
540 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
541 }
542 
543 /*
544  * Committed Item List interfaces
545  */
546 int	xlog_cil_init(struct xlog *log);
547 void	xlog_cil_init_post_recovery(struct xlog *log);
548 void	xlog_cil_destroy(struct xlog *log);
549 bool	xlog_cil_empty(struct xlog *log);
550 
551 /*
552  * CIL force routines
553  */
554 xfs_lsn_t
555 xlog_cil_force_lsn(
556 	struct xlog *log,
557 	xfs_lsn_t sequence);
558 
559 static inline void
560 xlog_cil_force(struct xlog *log)
561 {
562 	xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence);
563 }
564 
565 /*
566  * Wrapper function for waiting on a wait queue serialised against wakeups
567  * by a spinlock. This matches the semantics of all the wait queues used in the
568  * log code.
569  */
570 static inline void
571 xlog_wait(
572 	struct wait_queue_head	*wq,
573 	struct spinlock		*lock)
574 		__releases(lock)
575 {
576 	DECLARE_WAITQUEUE(wait, current);
577 
578 	add_wait_queue_exclusive(wq, &wait);
579 	__set_current_state(TASK_UNINTERRUPTIBLE);
580 	spin_unlock(lock);
581 	schedule();
582 	remove_wait_queue(wq, &wait);
583 }
584 
585 /*
586  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
587  * means that the next log record that includes this metadata could have a
588  * smaller LSN. In turn, this means that the modification in the log would not
589  * replay.
590  */
591 static inline bool
592 xlog_valid_lsn(
593 	struct xlog	*log,
594 	xfs_lsn_t	lsn)
595 {
596 	int		cur_cycle;
597 	int		cur_block;
598 	bool		valid = true;
599 
600 	/*
601 	 * First, sample the current lsn without locking to avoid added
602 	 * contention from metadata I/O. The current cycle and block are updated
603 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
604 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
605 	 * when it is not).
606 	 *
607 	 * The current block is always rewound before the cycle is bumped in
608 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
609 	 * a transiently forward state. Instead, we can see the LSN in a
610 	 * transiently behind state if we happen to race with a cycle wrap.
611 	 */
612 	cur_cycle = READ_ONCE(log->l_curr_cycle);
613 	smp_rmb();
614 	cur_block = READ_ONCE(log->l_curr_block);
615 
616 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
617 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
618 		/*
619 		 * If the metadata LSN appears invalid, it's possible the check
620 		 * above raced with a wrap to the next log cycle. Grab the lock
621 		 * to check for sure.
622 		 */
623 		spin_lock(&log->l_icloglock);
624 		cur_cycle = log->l_curr_cycle;
625 		cur_block = log->l_curr_block;
626 		spin_unlock(&log->l_icloglock);
627 
628 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
629 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
630 			valid = false;
631 	}
632 
633 	return valid;
634 }
635 
636 #endif	/* __XFS_LOG_PRIV_H__ */
637