xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision efe4a1ac)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_trace.h"
34 
35 struct workqueue_struct *xfs_discard_wq;
36 
37 /*
38  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
39  * recover, so we don't allow failure here. Also, we allocate in a context that
40  * we don't want to be issuing transactions from, so we need to tell the
41  * allocation code this as well.
42  *
43  * We don't reserve any space for the ticket - we are going to steal whatever
44  * space we require from transactions as they commit. To ensure we reserve all
45  * the space required, we need to set the current reservation of the ticket to
46  * zero so that we know to steal the initial transaction overhead from the
47  * first transaction commit.
48  */
49 static struct xlog_ticket *
50 xlog_cil_ticket_alloc(
51 	struct xlog	*log)
52 {
53 	struct xlog_ticket *tic;
54 
55 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
56 				KM_SLEEP|KM_NOFS);
57 
58 	/*
59 	 * set the current reservation to zero so we know to steal the basic
60 	 * transaction overhead reservation from the first transaction commit.
61 	 */
62 	tic->t_curr_res = 0;
63 	return tic;
64 }
65 
66 /*
67  * After the first stage of log recovery is done, we know where the head and
68  * tail of the log are. We need this log initialisation done before we can
69  * initialise the first CIL checkpoint context.
70  *
71  * Here we allocate a log ticket to track space usage during a CIL push.  This
72  * ticket is passed to xlog_write() directly so that we don't slowly leak log
73  * space by failing to account for space used by log headers and additional
74  * region headers for split regions.
75  */
76 void
77 xlog_cil_init_post_recovery(
78 	struct xlog	*log)
79 {
80 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
81 	log->l_cilp->xc_ctx->sequence = 1;
82 }
83 
84 static inline int
85 xlog_cil_iovec_space(
86 	uint	niovecs)
87 {
88 	return round_up((sizeof(struct xfs_log_vec) +
89 					niovecs * sizeof(struct xfs_log_iovec)),
90 			sizeof(uint64_t));
91 }
92 
93 /*
94  * Allocate or pin log vector buffers for CIL insertion.
95  *
96  * The CIL currently uses disposable buffers for copying a snapshot of the
97  * modified items into the log during a push. The biggest problem with this is
98  * the requirement to allocate the disposable buffer during the commit if:
99  *	a) does not exist; or
100  *	b) it is too small
101  *
102  * If we do this allocation within xlog_cil_insert_format_items(), it is done
103  * under the xc_ctx_lock, which means that a CIL push cannot occur during
104  * the memory allocation. This means that we have a potential deadlock situation
105  * under low memory conditions when we have lots of dirty metadata pinned in
106  * the CIL and we need a CIL commit to occur to free memory.
107  *
108  * To avoid this, we need to move the memory allocation outside the
109  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
110  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
111  * vector buffers between the check and the formatting of the item into the
112  * log vector buffer within the xc_ctx_lock.
113  *
114  * Because the log vector buffer needs to be unchanged during the CIL push
115  * process, we cannot share the buffer between the transaction commit (which
116  * modifies the buffer) and the CIL push context that is writing the changes
117  * into the log. This means skipping preallocation of buffer space is
118  * unreliable, but we most definitely do not want to be allocating and freeing
119  * buffers unnecessarily during commits when overwrites can be done safely.
120  *
121  * The simplest solution to this problem is to allocate a shadow buffer when a
122  * log item is committed for the second time, and then to only use this buffer
123  * if necessary. The buffer can remain attached to the log item until such time
124  * it is needed, and this is the buffer that is reallocated to match the size of
125  * the incoming modification. Then during the formatting of the item we can swap
126  * the active buffer with the new one if we can't reuse the existing buffer. We
127  * don't free the old buffer as it may be reused on the next modification if
128  * it's size is right, otherwise we'll free and reallocate it at that point.
129  *
130  * This function builds a vector for the changes in each log item in the
131  * transaction. It then works out the length of the buffer needed for each log
132  * item, allocates them and attaches the vector to the log item in preparation
133  * for the formatting step which occurs under the xc_ctx_lock.
134  *
135  * While this means the memory footprint goes up, it avoids the repeated
136  * alloc/free pattern that repeated modifications of an item would otherwise
137  * cause, and hence minimises the CPU overhead of such behaviour.
138  */
139 static void
140 xlog_cil_alloc_shadow_bufs(
141 	struct xlog		*log,
142 	struct xfs_trans	*tp)
143 {
144 	struct xfs_log_item_desc *lidp;
145 
146 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
147 		struct xfs_log_item *lip = lidp->lid_item;
148 		struct xfs_log_vec *lv;
149 		int	niovecs = 0;
150 		int	nbytes = 0;
151 		int	buf_size;
152 		bool	ordered = false;
153 
154 		/* Skip items which aren't dirty in this transaction. */
155 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
156 			continue;
157 
158 		/* get number of vecs and size of data to be stored */
159 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
160 
161 		/*
162 		 * Ordered items need to be tracked but we do not wish to write
163 		 * them. We need a logvec to track the object, but we do not
164 		 * need an iovec or buffer to be allocated for copying data.
165 		 */
166 		if (niovecs == XFS_LOG_VEC_ORDERED) {
167 			ordered = true;
168 			niovecs = 0;
169 			nbytes = 0;
170 		}
171 
172 		/*
173 		 * We 64-bit align the length of each iovec so that the start
174 		 * of the next one is naturally aligned.  We'll need to
175 		 * account for that slack space here. Then round nbytes up
176 		 * to 64-bit alignment so that the initial buffer alignment is
177 		 * easy to calculate and verify.
178 		 */
179 		nbytes += niovecs * sizeof(uint64_t);
180 		nbytes = round_up(nbytes, sizeof(uint64_t));
181 
182 		/*
183 		 * The data buffer needs to start 64-bit aligned, so round up
184 		 * that space to ensure we can align it appropriately and not
185 		 * overrun the buffer.
186 		 */
187 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
188 
189 		/*
190 		 * if we have no shadow buffer, or it is too small, we need to
191 		 * reallocate it.
192 		 */
193 		if (!lip->li_lv_shadow ||
194 		    buf_size > lip->li_lv_shadow->lv_size) {
195 
196 			/*
197 			 * We free and allocate here as a realloc would copy
198 			 * unecessary data. We don't use kmem_zalloc() for the
199 			 * same reason - we don't need to zero the data area in
200 			 * the buffer, only the log vector header and the iovec
201 			 * storage.
202 			 */
203 			kmem_free(lip->li_lv_shadow);
204 
205 			lv = kmem_alloc(buf_size, KM_SLEEP|KM_NOFS);
206 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
207 
208 			lv->lv_item = lip;
209 			lv->lv_size = buf_size;
210 			if (ordered)
211 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
212 			else
213 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
214 			lip->li_lv_shadow = lv;
215 		} else {
216 			/* same or smaller, optimise common overwrite case */
217 			lv = lip->li_lv_shadow;
218 			if (ordered)
219 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
220 			else
221 				lv->lv_buf_len = 0;
222 			lv->lv_bytes = 0;
223 			lv->lv_next = NULL;
224 		}
225 
226 		/* Ensure the lv is set up according to ->iop_size */
227 		lv->lv_niovecs = niovecs;
228 
229 		/* The allocated data region lies beyond the iovec region */
230 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
231 	}
232 
233 }
234 
235 /*
236  * Prepare the log item for insertion into the CIL. Calculate the difference in
237  * log space and vectors it will consume, and if it is a new item pin it as
238  * well.
239  */
240 STATIC void
241 xfs_cil_prepare_item(
242 	struct xlog		*log,
243 	struct xfs_log_vec	*lv,
244 	struct xfs_log_vec	*old_lv,
245 	int			*diff_len,
246 	int			*diff_iovecs)
247 {
248 	/* Account for the new LV being passed in */
249 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
250 		*diff_len += lv->lv_bytes;
251 		*diff_iovecs += lv->lv_niovecs;
252 	}
253 
254 	/*
255 	 * If there is no old LV, this is the first time we've seen the item in
256 	 * this CIL context and so we need to pin it. If we are replacing the
257 	 * old_lv, then remove the space it accounts for and make it the shadow
258 	 * buffer for later freeing. In both cases we are now switching to the
259 	 * shadow buffer, so update the the pointer to it appropriately.
260 	 */
261 	if (!old_lv) {
262 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
263 		lv->lv_item->li_lv_shadow = NULL;
264 	} else if (old_lv != lv) {
265 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
266 
267 		*diff_len -= old_lv->lv_bytes;
268 		*diff_iovecs -= old_lv->lv_niovecs;
269 		lv->lv_item->li_lv_shadow = old_lv;
270 	}
271 
272 	/* attach new log vector to log item */
273 	lv->lv_item->li_lv = lv;
274 
275 	/*
276 	 * If this is the first time the item is being committed to the
277 	 * CIL, store the sequence number on the log item so we can
278 	 * tell in future commits whether this is the first checkpoint
279 	 * the item is being committed into.
280 	 */
281 	if (!lv->lv_item->li_seq)
282 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
283 }
284 
285 /*
286  * Format log item into a flat buffers
287  *
288  * For delayed logging, we need to hold a formatted buffer containing all the
289  * changes on the log item. This enables us to relog the item in memory and
290  * write it out asynchronously without needing to relock the object that was
291  * modified at the time it gets written into the iclog.
292  *
293  * This function takes the prepared log vectors attached to each log item, and
294  * formats the changes into the log vector buffer. The buffer it uses is
295  * dependent on the current state of the vector in the CIL - the shadow lv is
296  * guaranteed to be large enough for the current modification, but we will only
297  * use that if we can't reuse the existing lv. If we can't reuse the existing
298  * lv, then simple swap it out for the shadow lv. We don't free it - that is
299  * done lazily either by th enext modification or the freeing of the log item.
300  *
301  * We don't set up region headers during this process; we simply copy the
302  * regions into the flat buffer. We can do this because we still have to do a
303  * formatting step to write the regions into the iclog buffer.  Writing the
304  * ophdrs during the iclog write means that we can support splitting large
305  * regions across iclog boundares without needing a change in the format of the
306  * item/region encapsulation.
307  *
308  * Hence what we need to do now is change the rewrite the vector array to point
309  * to the copied region inside the buffer we just allocated. This allows us to
310  * format the regions into the iclog as though they are being formatted
311  * directly out of the objects themselves.
312  */
313 static void
314 xlog_cil_insert_format_items(
315 	struct xlog		*log,
316 	struct xfs_trans	*tp,
317 	int			*diff_len,
318 	int			*diff_iovecs)
319 {
320 	struct xfs_log_item_desc *lidp;
321 
322 
323 	/* Bail out if we didn't find a log item.  */
324 	if (list_empty(&tp->t_items)) {
325 		ASSERT(0);
326 		return;
327 	}
328 
329 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
330 		struct xfs_log_item *lip = lidp->lid_item;
331 		struct xfs_log_vec *lv;
332 		struct xfs_log_vec *old_lv = NULL;
333 		struct xfs_log_vec *shadow;
334 		bool	ordered = false;
335 
336 		/* Skip items which aren't dirty in this transaction. */
337 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
338 			continue;
339 
340 		/*
341 		 * The formatting size information is already attached to
342 		 * the shadow lv on the log item.
343 		 */
344 		shadow = lip->li_lv_shadow;
345 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
346 			ordered = true;
347 
348 		/* Skip items that do not have any vectors for writing */
349 		if (!shadow->lv_niovecs && !ordered)
350 			continue;
351 
352 		/* compare to existing item size */
353 		old_lv = lip->li_lv;
354 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
355 			/* same or smaller, optimise common overwrite case */
356 			lv = lip->li_lv;
357 			lv->lv_next = NULL;
358 
359 			if (ordered)
360 				goto insert;
361 
362 			/*
363 			 * set the item up as though it is a new insertion so
364 			 * that the space reservation accounting is correct.
365 			 */
366 			*diff_iovecs -= lv->lv_niovecs;
367 			*diff_len -= lv->lv_bytes;
368 
369 			/* Ensure the lv is set up according to ->iop_size */
370 			lv->lv_niovecs = shadow->lv_niovecs;
371 
372 			/* reset the lv buffer information for new formatting */
373 			lv->lv_buf_len = 0;
374 			lv->lv_bytes = 0;
375 			lv->lv_buf = (char *)lv +
376 					xlog_cil_iovec_space(lv->lv_niovecs);
377 		} else {
378 			/* switch to shadow buffer! */
379 			lv = shadow;
380 			lv->lv_item = lip;
381 			if (ordered) {
382 				/* track as an ordered logvec */
383 				ASSERT(lip->li_lv == NULL);
384 				goto insert;
385 			}
386 		}
387 
388 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
389 		lip->li_ops->iop_format(lip, lv);
390 insert:
391 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
392 	}
393 }
394 
395 /*
396  * Insert the log items into the CIL and calculate the difference in space
397  * consumed by the item. Add the space to the checkpoint ticket and calculate
398  * if the change requires additional log metadata. If it does, take that space
399  * as well. Remove the amount of space we added to the checkpoint ticket from
400  * the current transaction ticket so that the accounting works out correctly.
401  */
402 static void
403 xlog_cil_insert_items(
404 	struct xlog		*log,
405 	struct xfs_trans	*tp)
406 {
407 	struct xfs_cil		*cil = log->l_cilp;
408 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
409 	struct xfs_log_item_desc *lidp;
410 	int			len = 0;
411 	int			diff_iovecs = 0;
412 	int			iclog_space;
413 
414 	ASSERT(tp);
415 
416 	/*
417 	 * We can do this safely because the context can't checkpoint until we
418 	 * are done so it doesn't matter exactly how we update the CIL.
419 	 */
420 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
421 
422 	/*
423 	 * Now (re-)position everything modified at the tail of the CIL.
424 	 * We do this here so we only need to take the CIL lock once during
425 	 * the transaction commit.
426 	 */
427 	spin_lock(&cil->xc_cil_lock);
428 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
429 		struct xfs_log_item	*lip = lidp->lid_item;
430 
431 		/* Skip items which aren't dirty in this transaction. */
432 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
433 			continue;
434 
435 		/*
436 		 * Only move the item if it isn't already at the tail. This is
437 		 * to prevent a transient list_empty() state when reinserting
438 		 * an item that is already the only item in the CIL.
439 		 */
440 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
441 			list_move_tail(&lip->li_cil, &cil->xc_cil);
442 	}
443 
444 	/* account for space used by new iovec headers  */
445 	len += diff_iovecs * sizeof(xlog_op_header_t);
446 	ctx->nvecs += diff_iovecs;
447 
448 	/* attach the transaction to the CIL if it has any busy extents */
449 	if (!list_empty(&tp->t_busy))
450 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
451 
452 	/*
453 	 * Now transfer enough transaction reservation to the context ticket
454 	 * for the checkpoint. The context ticket is special - the unit
455 	 * reservation has to grow as well as the current reservation as we
456 	 * steal from tickets so we can correctly determine the space used
457 	 * during the transaction commit.
458 	 */
459 	if (ctx->ticket->t_curr_res == 0) {
460 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
461 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
462 	}
463 
464 	/* do we need space for more log record headers? */
465 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
466 	if (len > 0 && (ctx->space_used / iclog_space !=
467 				(ctx->space_used + len) / iclog_space)) {
468 		int hdrs;
469 
470 		hdrs = (len + iclog_space - 1) / iclog_space;
471 		/* need to take into account split region headers, too */
472 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
473 		ctx->ticket->t_unit_res += hdrs;
474 		ctx->ticket->t_curr_res += hdrs;
475 		tp->t_ticket->t_curr_res -= hdrs;
476 		ASSERT(tp->t_ticket->t_curr_res >= len);
477 	}
478 	tp->t_ticket->t_curr_res -= len;
479 	ctx->space_used += len;
480 
481 	spin_unlock(&cil->xc_cil_lock);
482 }
483 
484 static void
485 xlog_cil_free_logvec(
486 	struct xfs_log_vec	*log_vector)
487 {
488 	struct xfs_log_vec	*lv;
489 
490 	for (lv = log_vector; lv; ) {
491 		struct xfs_log_vec *next = lv->lv_next;
492 		kmem_free(lv);
493 		lv = next;
494 	}
495 }
496 
497 static void
498 xlog_discard_endio_work(
499 	struct work_struct	*work)
500 {
501 	struct xfs_cil_ctx	*ctx =
502 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
503 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
504 
505 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
506 	kmem_free(ctx);
507 }
508 
509 /*
510  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
511  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
512  * get the execution delayed up to 30 seconds for weird reasons.
513  */
514 static void
515 xlog_discard_endio(
516 	struct bio		*bio)
517 {
518 	struct xfs_cil_ctx	*ctx = bio->bi_private;
519 
520 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
521 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
522 }
523 
524 static void
525 xlog_discard_busy_extents(
526 	struct xfs_mount	*mp,
527 	struct xfs_cil_ctx	*ctx)
528 {
529 	struct list_head	*list = &ctx->busy_extents;
530 	struct xfs_extent_busy	*busyp;
531 	struct bio		*bio = NULL;
532 	struct blk_plug		plug;
533 	int			error = 0;
534 
535 	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
536 
537 	blk_start_plug(&plug);
538 	list_for_each_entry(busyp, list, list) {
539 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
540 					 busyp->length);
541 
542 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
543 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
544 				XFS_FSB_TO_BB(mp, busyp->length),
545 				GFP_NOFS, 0, &bio);
546 		if (error && error != -EOPNOTSUPP) {
547 			xfs_info(mp,
548 	 "discard failed for extent [0x%llx,%u], error %d",
549 				 (unsigned long long)busyp->bno,
550 				 busyp->length,
551 				 error);
552 			break;
553 		}
554 	}
555 
556 	if (bio) {
557 		bio->bi_private = ctx;
558 		bio->bi_end_io = xlog_discard_endio;
559 		submit_bio(bio);
560 	} else {
561 		xlog_discard_endio_work(&ctx->discard_endio_work);
562 	}
563 	blk_finish_plug(&plug);
564 }
565 
566 /*
567  * Mark all items committed and clear busy extents. We free the log vector
568  * chains in a separate pass so that we unpin the log items as quickly as
569  * possible.
570  */
571 static void
572 xlog_cil_committed(
573 	void	*args,
574 	int	abort)
575 {
576 	struct xfs_cil_ctx	*ctx = args;
577 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
578 
579 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
580 					ctx->start_lsn, abort);
581 
582 	xfs_extent_busy_sort(&ctx->busy_extents);
583 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
584 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
585 
586 	/*
587 	 * If we are aborting the commit, wake up anyone waiting on the
588 	 * committing list.  If we don't, then a shutdown we can leave processes
589 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
590 	 * will never happen because we aborted it.
591 	 */
592 	spin_lock(&ctx->cil->xc_push_lock);
593 	if (abort)
594 		wake_up_all(&ctx->cil->xc_commit_wait);
595 	list_del(&ctx->committing);
596 	spin_unlock(&ctx->cil->xc_push_lock);
597 
598 	xlog_cil_free_logvec(ctx->lv_chain);
599 
600 	if (!list_empty(&ctx->busy_extents))
601 		xlog_discard_busy_extents(mp, ctx);
602 	else
603 		kmem_free(ctx);
604 }
605 
606 /*
607  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
608  * is a background flush and so we can chose to ignore it. Otherwise, if the
609  * current sequence is the same as @push_seq we need to do a flush. If
610  * @push_seq is less than the current sequence, then it has already been
611  * flushed and we don't need to do anything - the caller will wait for it to
612  * complete if necessary.
613  *
614  * @push_seq is a value rather than a flag because that allows us to do an
615  * unlocked check of the sequence number for a match. Hence we can allows log
616  * forces to run racily and not issue pushes for the same sequence twice. If we
617  * get a race between multiple pushes for the same sequence they will block on
618  * the first one and then abort, hence avoiding needless pushes.
619  */
620 STATIC int
621 xlog_cil_push(
622 	struct xlog		*log)
623 {
624 	struct xfs_cil		*cil = log->l_cilp;
625 	struct xfs_log_vec	*lv;
626 	struct xfs_cil_ctx	*ctx;
627 	struct xfs_cil_ctx	*new_ctx;
628 	struct xlog_in_core	*commit_iclog;
629 	struct xlog_ticket	*tic;
630 	int			num_iovecs;
631 	int			error = 0;
632 	struct xfs_trans_header thdr;
633 	struct xfs_log_iovec	lhdr;
634 	struct xfs_log_vec	lvhdr = { NULL };
635 	xfs_lsn_t		commit_lsn;
636 	xfs_lsn_t		push_seq;
637 
638 	if (!cil)
639 		return 0;
640 
641 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
642 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
643 
644 	down_write(&cil->xc_ctx_lock);
645 	ctx = cil->xc_ctx;
646 
647 	spin_lock(&cil->xc_push_lock);
648 	push_seq = cil->xc_push_seq;
649 	ASSERT(push_seq <= ctx->sequence);
650 
651 	/*
652 	 * Check if we've anything to push. If there is nothing, then we don't
653 	 * move on to a new sequence number and so we have to be able to push
654 	 * this sequence again later.
655 	 */
656 	if (list_empty(&cil->xc_cil)) {
657 		cil->xc_push_seq = 0;
658 		spin_unlock(&cil->xc_push_lock);
659 		goto out_skip;
660 	}
661 
662 
663 	/* check for a previously pushed seqeunce */
664 	if (push_seq < cil->xc_ctx->sequence) {
665 		spin_unlock(&cil->xc_push_lock);
666 		goto out_skip;
667 	}
668 
669 	/*
670 	 * We are now going to push this context, so add it to the committing
671 	 * list before we do anything else. This ensures that anyone waiting on
672 	 * this push can easily detect the difference between a "push in
673 	 * progress" and "CIL is empty, nothing to do".
674 	 *
675 	 * IOWs, a wait loop can now check for:
676 	 *	the current sequence not being found on the committing list;
677 	 *	an empty CIL; and
678 	 *	an unchanged sequence number
679 	 * to detect a push that had nothing to do and therefore does not need
680 	 * waiting on. If the CIL is not empty, we get put on the committing
681 	 * list before emptying the CIL and bumping the sequence number. Hence
682 	 * an empty CIL and an unchanged sequence number means we jumped out
683 	 * above after doing nothing.
684 	 *
685 	 * Hence the waiter will either find the commit sequence on the
686 	 * committing list or the sequence number will be unchanged and the CIL
687 	 * still dirty. In that latter case, the push has not yet started, and
688 	 * so the waiter will have to continue trying to check the CIL
689 	 * committing list until it is found. In extreme cases of delay, the
690 	 * sequence may fully commit between the attempts the wait makes to wait
691 	 * on the commit sequence.
692 	 */
693 	list_add(&ctx->committing, &cil->xc_committing);
694 	spin_unlock(&cil->xc_push_lock);
695 
696 	/*
697 	 * pull all the log vectors off the items in the CIL, and
698 	 * remove the items from the CIL. We don't need the CIL lock
699 	 * here because it's only needed on the transaction commit
700 	 * side which is currently locked out by the flush lock.
701 	 */
702 	lv = NULL;
703 	num_iovecs = 0;
704 	while (!list_empty(&cil->xc_cil)) {
705 		struct xfs_log_item	*item;
706 
707 		item = list_first_entry(&cil->xc_cil,
708 					struct xfs_log_item, li_cil);
709 		list_del_init(&item->li_cil);
710 		if (!ctx->lv_chain)
711 			ctx->lv_chain = item->li_lv;
712 		else
713 			lv->lv_next = item->li_lv;
714 		lv = item->li_lv;
715 		item->li_lv = NULL;
716 		num_iovecs += lv->lv_niovecs;
717 	}
718 
719 	/*
720 	 * initialise the new context and attach it to the CIL. Then attach
721 	 * the current context to the CIL committing lsit so it can be found
722 	 * during log forces to extract the commit lsn of the sequence that
723 	 * needs to be forced.
724 	 */
725 	INIT_LIST_HEAD(&new_ctx->committing);
726 	INIT_LIST_HEAD(&new_ctx->busy_extents);
727 	new_ctx->sequence = ctx->sequence + 1;
728 	new_ctx->cil = cil;
729 	cil->xc_ctx = new_ctx;
730 
731 	/*
732 	 * The switch is now done, so we can drop the context lock and move out
733 	 * of a shared context. We can't just go straight to the commit record,
734 	 * though - we need to synchronise with previous and future commits so
735 	 * that the commit records are correctly ordered in the log to ensure
736 	 * that we process items during log IO completion in the correct order.
737 	 *
738 	 * For example, if we get an EFI in one checkpoint and the EFD in the
739 	 * next (e.g. due to log forces), we do not want the checkpoint with
740 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
741 	 * we must strictly order the commit records of the checkpoints so
742 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
743 	 * correct order; and b) the checkpoints are replayed in correct order
744 	 * in log recovery.
745 	 *
746 	 * Hence we need to add this context to the committing context list so
747 	 * that higher sequences will wait for us to write out a commit record
748 	 * before they do.
749 	 *
750 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
751 	 * structure atomically with the addition of this sequence to the
752 	 * committing list. This also ensures that we can do unlocked checks
753 	 * against the current sequence in log forces without risking
754 	 * deferencing a freed context pointer.
755 	 */
756 	spin_lock(&cil->xc_push_lock);
757 	cil->xc_current_sequence = new_ctx->sequence;
758 	spin_unlock(&cil->xc_push_lock);
759 	up_write(&cil->xc_ctx_lock);
760 
761 	/*
762 	 * Build a checkpoint transaction header and write it to the log to
763 	 * begin the transaction. We need to account for the space used by the
764 	 * transaction header here as it is not accounted for in xlog_write().
765 	 *
766 	 * The LSN we need to pass to the log items on transaction commit is
767 	 * the LSN reported by the first log vector write. If we use the commit
768 	 * record lsn then we can move the tail beyond the grant write head.
769 	 */
770 	tic = ctx->ticket;
771 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
772 	thdr.th_type = XFS_TRANS_CHECKPOINT;
773 	thdr.th_tid = tic->t_tid;
774 	thdr.th_num_items = num_iovecs;
775 	lhdr.i_addr = &thdr;
776 	lhdr.i_len = sizeof(xfs_trans_header_t);
777 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
778 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
779 
780 	lvhdr.lv_niovecs = 1;
781 	lvhdr.lv_iovecp = &lhdr;
782 	lvhdr.lv_next = ctx->lv_chain;
783 
784 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
785 	if (error)
786 		goto out_abort_free_ticket;
787 
788 	/*
789 	 * now that we've written the checkpoint into the log, strictly
790 	 * order the commit records so replay will get them in the right order.
791 	 */
792 restart:
793 	spin_lock(&cil->xc_push_lock);
794 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
795 		/*
796 		 * Avoid getting stuck in this loop because we were woken by the
797 		 * shutdown, but then went back to sleep once already in the
798 		 * shutdown state.
799 		 */
800 		if (XLOG_FORCED_SHUTDOWN(log)) {
801 			spin_unlock(&cil->xc_push_lock);
802 			goto out_abort_free_ticket;
803 		}
804 
805 		/*
806 		 * Higher sequences will wait for this one so skip them.
807 		 * Don't wait for our own sequence, either.
808 		 */
809 		if (new_ctx->sequence >= ctx->sequence)
810 			continue;
811 		if (!new_ctx->commit_lsn) {
812 			/*
813 			 * It is still being pushed! Wait for the push to
814 			 * complete, then start again from the beginning.
815 			 */
816 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
817 			goto restart;
818 		}
819 	}
820 	spin_unlock(&cil->xc_push_lock);
821 
822 	/* xfs_log_done always frees the ticket on error. */
823 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
824 	if (commit_lsn == -1)
825 		goto out_abort;
826 
827 	/* attach all the transactions w/ busy extents to iclog */
828 	ctx->log_cb.cb_func = xlog_cil_committed;
829 	ctx->log_cb.cb_arg = ctx;
830 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
831 	if (error)
832 		goto out_abort;
833 
834 	/*
835 	 * now the checkpoint commit is complete and we've attached the
836 	 * callbacks to the iclog we can assign the commit LSN to the context
837 	 * and wake up anyone who is waiting for the commit to complete.
838 	 */
839 	spin_lock(&cil->xc_push_lock);
840 	ctx->commit_lsn = commit_lsn;
841 	wake_up_all(&cil->xc_commit_wait);
842 	spin_unlock(&cil->xc_push_lock);
843 
844 	/* release the hounds! */
845 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
846 
847 out_skip:
848 	up_write(&cil->xc_ctx_lock);
849 	xfs_log_ticket_put(new_ctx->ticket);
850 	kmem_free(new_ctx);
851 	return 0;
852 
853 out_abort_free_ticket:
854 	xfs_log_ticket_put(tic);
855 out_abort:
856 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
857 	return -EIO;
858 }
859 
860 static void
861 xlog_cil_push_work(
862 	struct work_struct	*work)
863 {
864 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
865 							xc_push_work);
866 	xlog_cil_push(cil->xc_log);
867 }
868 
869 /*
870  * We need to push CIL every so often so we don't cache more than we can fit in
871  * the log. The limit really is that a checkpoint can't be more than half the
872  * log (the current checkpoint is not allowed to overwrite the previous
873  * checkpoint), but commit latency and memory usage limit this to a smaller
874  * size.
875  */
876 static void
877 xlog_cil_push_background(
878 	struct xlog	*log)
879 {
880 	struct xfs_cil	*cil = log->l_cilp;
881 
882 	/*
883 	 * The cil won't be empty because we are called while holding the
884 	 * context lock so whatever we added to the CIL will still be there
885 	 */
886 	ASSERT(!list_empty(&cil->xc_cil));
887 
888 	/*
889 	 * don't do a background push if we haven't used up all the
890 	 * space available yet.
891 	 */
892 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
893 		return;
894 
895 	spin_lock(&cil->xc_push_lock);
896 	if (cil->xc_push_seq < cil->xc_current_sequence) {
897 		cil->xc_push_seq = cil->xc_current_sequence;
898 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
899 	}
900 	spin_unlock(&cil->xc_push_lock);
901 
902 }
903 
904 /*
905  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
906  * number that is passed. When it returns, the work will be queued for
907  * @push_seq, but it won't be completed. The caller is expected to do any
908  * waiting for push_seq to complete if it is required.
909  */
910 static void
911 xlog_cil_push_now(
912 	struct xlog	*log,
913 	xfs_lsn_t	push_seq)
914 {
915 	struct xfs_cil	*cil = log->l_cilp;
916 
917 	if (!cil)
918 		return;
919 
920 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
921 
922 	/* start on any pending background push to minimise wait time on it */
923 	flush_work(&cil->xc_push_work);
924 
925 	/*
926 	 * If the CIL is empty or we've already pushed the sequence then
927 	 * there's no work we need to do.
928 	 */
929 	spin_lock(&cil->xc_push_lock);
930 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
931 		spin_unlock(&cil->xc_push_lock);
932 		return;
933 	}
934 
935 	cil->xc_push_seq = push_seq;
936 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
937 	spin_unlock(&cil->xc_push_lock);
938 }
939 
940 bool
941 xlog_cil_empty(
942 	struct xlog	*log)
943 {
944 	struct xfs_cil	*cil = log->l_cilp;
945 	bool		empty = false;
946 
947 	spin_lock(&cil->xc_push_lock);
948 	if (list_empty(&cil->xc_cil))
949 		empty = true;
950 	spin_unlock(&cil->xc_push_lock);
951 	return empty;
952 }
953 
954 /*
955  * Commit a transaction with the given vector to the Committed Item List.
956  *
957  * To do this, we need to format the item, pin it in memory if required and
958  * account for the space used by the transaction. Once we have done that we
959  * need to release the unused reservation for the transaction, attach the
960  * transaction to the checkpoint context so we carry the busy extents through
961  * to checkpoint completion, and then unlock all the items in the transaction.
962  *
963  * Called with the context lock already held in read mode to lock out
964  * background commit, returns without it held once background commits are
965  * allowed again.
966  */
967 void
968 xfs_log_commit_cil(
969 	struct xfs_mount	*mp,
970 	struct xfs_trans	*tp,
971 	xfs_lsn_t		*commit_lsn,
972 	bool			regrant)
973 {
974 	struct xlog		*log = mp->m_log;
975 	struct xfs_cil		*cil = log->l_cilp;
976 
977 	/*
978 	 * Do all necessary memory allocation before we lock the CIL.
979 	 * This ensures the allocation does not deadlock with a CIL
980 	 * push in memory reclaim (e.g. from kswapd).
981 	 */
982 	xlog_cil_alloc_shadow_bufs(log, tp);
983 
984 	/* lock out background commit */
985 	down_read(&cil->xc_ctx_lock);
986 
987 	xlog_cil_insert_items(log, tp);
988 
989 	/* check we didn't blow the reservation */
990 	if (tp->t_ticket->t_curr_res < 0)
991 		xlog_print_tic_res(mp, tp->t_ticket);
992 
993 	tp->t_commit_lsn = cil->xc_ctx->sequence;
994 	if (commit_lsn)
995 		*commit_lsn = tp->t_commit_lsn;
996 
997 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
998 	xfs_trans_unreserve_and_mod_sb(tp);
999 
1000 	/*
1001 	 * Once all the items of the transaction have been copied to the CIL,
1002 	 * the items can be unlocked and freed.
1003 	 *
1004 	 * This needs to be done before we drop the CIL context lock because we
1005 	 * have to update state in the log items and unlock them before they go
1006 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1007 	 * we can run checkpoint completion before we've updated and unlocked
1008 	 * the log items. This affects (at least) processing of stale buffers,
1009 	 * inodes and EFIs.
1010 	 */
1011 	xfs_trans_free_items(tp, tp->t_commit_lsn, false);
1012 
1013 	xlog_cil_push_background(log);
1014 
1015 	up_read(&cil->xc_ctx_lock);
1016 }
1017 
1018 /*
1019  * Conditionally push the CIL based on the sequence passed in.
1020  *
1021  * We only need to push if we haven't already pushed the sequence
1022  * number given. Hence the only time we will trigger a push here is
1023  * if the push sequence is the same as the current context.
1024  *
1025  * We return the current commit lsn to allow the callers to determine if a
1026  * iclog flush is necessary following this call.
1027  */
1028 xfs_lsn_t
1029 xlog_cil_force_lsn(
1030 	struct xlog	*log,
1031 	xfs_lsn_t	sequence)
1032 {
1033 	struct xfs_cil		*cil = log->l_cilp;
1034 	struct xfs_cil_ctx	*ctx;
1035 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1036 
1037 	ASSERT(sequence <= cil->xc_current_sequence);
1038 
1039 	/*
1040 	 * check to see if we need to force out the current context.
1041 	 * xlog_cil_push() handles racing pushes for the same sequence,
1042 	 * so no need to deal with it here.
1043 	 */
1044 restart:
1045 	xlog_cil_push_now(log, sequence);
1046 
1047 	/*
1048 	 * See if we can find a previous sequence still committing.
1049 	 * We need to wait for all previous sequence commits to complete
1050 	 * before allowing the force of push_seq to go ahead. Hence block
1051 	 * on commits for those as well.
1052 	 */
1053 	spin_lock(&cil->xc_push_lock);
1054 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1055 		/*
1056 		 * Avoid getting stuck in this loop because we were woken by the
1057 		 * shutdown, but then went back to sleep once already in the
1058 		 * shutdown state.
1059 		 */
1060 		if (XLOG_FORCED_SHUTDOWN(log))
1061 			goto out_shutdown;
1062 		if (ctx->sequence > sequence)
1063 			continue;
1064 		if (!ctx->commit_lsn) {
1065 			/*
1066 			 * It is still being pushed! Wait for the push to
1067 			 * complete, then start again from the beginning.
1068 			 */
1069 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1070 			goto restart;
1071 		}
1072 		if (ctx->sequence != sequence)
1073 			continue;
1074 		/* found it! */
1075 		commit_lsn = ctx->commit_lsn;
1076 	}
1077 
1078 	/*
1079 	 * The call to xlog_cil_push_now() executes the push in the background.
1080 	 * Hence by the time we have got here it our sequence may not have been
1081 	 * pushed yet. This is true if the current sequence still matches the
1082 	 * push sequence after the above wait loop and the CIL still contains
1083 	 * dirty objects. This is guaranteed by the push code first adding the
1084 	 * context to the committing list before emptying the CIL.
1085 	 *
1086 	 * Hence if we don't find the context in the committing list and the
1087 	 * current sequence number is unchanged then the CIL contents are
1088 	 * significant.  If the CIL is empty, if means there was nothing to push
1089 	 * and that means there is nothing to wait for. If the CIL is not empty,
1090 	 * it means we haven't yet started the push, because if it had started
1091 	 * we would have found the context on the committing list.
1092 	 */
1093 	if (sequence == cil->xc_current_sequence &&
1094 	    !list_empty(&cil->xc_cil)) {
1095 		spin_unlock(&cil->xc_push_lock);
1096 		goto restart;
1097 	}
1098 
1099 	spin_unlock(&cil->xc_push_lock);
1100 	return commit_lsn;
1101 
1102 	/*
1103 	 * We detected a shutdown in progress. We need to trigger the log force
1104 	 * to pass through it's iclog state machine error handling, even though
1105 	 * we are already in a shutdown state. Hence we can't return
1106 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1107 	 * LSN is already stable), so we return a zero LSN instead.
1108 	 */
1109 out_shutdown:
1110 	spin_unlock(&cil->xc_push_lock);
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Check if the current log item was first committed in this sequence.
1116  * We can't rely on just the log item being in the CIL, we have to check
1117  * the recorded commit sequence number.
1118  *
1119  * Note: for this to be used in a non-racy manner, it has to be called with
1120  * CIL flushing locked out. As a result, it should only be used during the
1121  * transaction commit process when deciding what to format into the item.
1122  */
1123 bool
1124 xfs_log_item_in_current_chkpt(
1125 	struct xfs_log_item *lip)
1126 {
1127 	struct xfs_cil_ctx *ctx;
1128 
1129 	if (list_empty(&lip->li_cil))
1130 		return false;
1131 
1132 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1133 
1134 	/*
1135 	 * li_seq is written on the first commit of a log item to record the
1136 	 * first checkpoint it is written to. Hence if it is different to the
1137 	 * current sequence, we're in a new checkpoint.
1138 	 */
1139 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1140 		return false;
1141 	return true;
1142 }
1143 
1144 /*
1145  * Perform initial CIL structure initialisation.
1146  */
1147 int
1148 xlog_cil_init(
1149 	struct xlog	*log)
1150 {
1151 	struct xfs_cil	*cil;
1152 	struct xfs_cil_ctx *ctx;
1153 
1154 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
1155 	if (!cil)
1156 		return -ENOMEM;
1157 
1158 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
1159 	if (!ctx) {
1160 		kmem_free(cil);
1161 		return -ENOMEM;
1162 	}
1163 
1164 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1165 	INIT_LIST_HEAD(&cil->xc_cil);
1166 	INIT_LIST_HEAD(&cil->xc_committing);
1167 	spin_lock_init(&cil->xc_cil_lock);
1168 	spin_lock_init(&cil->xc_push_lock);
1169 	init_rwsem(&cil->xc_ctx_lock);
1170 	init_waitqueue_head(&cil->xc_commit_wait);
1171 
1172 	INIT_LIST_HEAD(&ctx->committing);
1173 	INIT_LIST_HEAD(&ctx->busy_extents);
1174 	ctx->sequence = 1;
1175 	ctx->cil = cil;
1176 	cil->xc_ctx = ctx;
1177 	cil->xc_current_sequence = ctx->sequence;
1178 
1179 	cil->xc_log = log;
1180 	log->l_cilp = cil;
1181 	return 0;
1182 }
1183 
1184 void
1185 xlog_cil_destroy(
1186 	struct xlog	*log)
1187 {
1188 	if (log->l_cilp->xc_ctx) {
1189 		if (log->l_cilp->xc_ctx->ticket)
1190 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1191 		kmem_free(log->l_cilp->xc_ctx);
1192 	}
1193 
1194 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1195 	kmem_free(log->l_cilp);
1196 }
1197 
1198