xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision e1f7c9ee)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_shared.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_alloc.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_discard.h"
30 #include "xfs_trans.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 
35 /*
36  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37  * recover, so we don't allow failure here. Also, we allocate in a context that
38  * we don't want to be issuing transactions from, so we need to tell the
39  * allocation code this as well.
40  *
41  * We don't reserve any space for the ticket - we are going to steal whatever
42  * space we require from transactions as they commit. To ensure we reserve all
43  * the space required, we need to set the current reservation of the ticket to
44  * zero so that we know to steal the initial transaction overhead from the
45  * first transaction commit.
46  */
47 static struct xlog_ticket *
48 xlog_cil_ticket_alloc(
49 	struct xlog	*log)
50 {
51 	struct xlog_ticket *tic;
52 
53 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54 				KM_SLEEP|KM_NOFS);
55 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56 
57 	/*
58 	 * set the current reservation to zero so we know to steal the basic
59 	 * transaction overhead reservation from the first transaction commit.
60 	 */
61 	tic->t_curr_res = 0;
62 	return tic;
63 }
64 
65 /*
66  * After the first stage of log recovery is done, we know where the head and
67  * tail of the log are. We need this log initialisation done before we can
68  * initialise the first CIL checkpoint context.
69  *
70  * Here we allocate a log ticket to track space usage during a CIL push.  This
71  * ticket is passed to xlog_write() directly so that we don't slowly leak log
72  * space by failing to account for space used by log headers and additional
73  * region headers for split regions.
74  */
75 void
76 xlog_cil_init_post_recovery(
77 	struct xlog	*log)
78 {
79 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80 	log->l_cilp->xc_ctx->sequence = 1;
81 }
82 
83 /*
84  * Prepare the log item for insertion into the CIL. Calculate the difference in
85  * log space and vectors it will consume, and if it is a new item pin it as
86  * well.
87  */
88 STATIC void
89 xfs_cil_prepare_item(
90 	struct xlog		*log,
91 	struct xfs_log_vec	*lv,
92 	struct xfs_log_vec	*old_lv,
93 	int			*diff_len,
94 	int			*diff_iovecs)
95 {
96 	/* Account for the new LV being passed in */
97 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
98 		*diff_len += lv->lv_bytes;
99 		*diff_iovecs += lv->lv_niovecs;
100 	}
101 
102 	/*
103 	 * If there is no old LV, this is the first time we've seen the item in
104 	 * this CIL context and so we need to pin it. If we are replacing the
105 	 * old_lv, then remove the space it accounts for and free it.
106 	 */
107 	if (!old_lv)
108 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
109 	else if (old_lv != lv) {
110 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
111 
112 		*diff_len -= old_lv->lv_bytes;
113 		*diff_iovecs -= old_lv->lv_niovecs;
114 		kmem_free(old_lv);
115 	}
116 
117 	/* attach new log vector to log item */
118 	lv->lv_item->li_lv = lv;
119 
120 	/*
121 	 * If this is the first time the item is being committed to the
122 	 * CIL, store the sequence number on the log item so we can
123 	 * tell in future commits whether this is the first checkpoint
124 	 * the item is being committed into.
125 	 */
126 	if (!lv->lv_item->li_seq)
127 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
128 }
129 
130 /*
131  * Format log item into a flat buffers
132  *
133  * For delayed logging, we need to hold a formatted buffer containing all the
134  * changes on the log item. This enables us to relog the item in memory and
135  * write it out asynchronously without needing to relock the object that was
136  * modified at the time it gets written into the iclog.
137  *
138  * This function builds a vector for the changes in each log item in the
139  * transaction. It then works out the length of the buffer needed for each log
140  * item, allocates them and formats the vector for the item into the buffer.
141  * The buffer is then attached to the log item are then inserted into the
142  * Committed Item List for tracking until the next checkpoint is written out.
143  *
144  * We don't set up region headers during this process; we simply copy the
145  * regions into the flat buffer. We can do this because we still have to do a
146  * formatting step to write the regions into the iclog buffer.  Writing the
147  * ophdrs during the iclog write means that we can support splitting large
148  * regions across iclog boundares without needing a change in the format of the
149  * item/region encapsulation.
150  *
151  * Hence what we need to do now is change the rewrite the vector array to point
152  * to the copied region inside the buffer we just allocated. This allows us to
153  * format the regions into the iclog as though they are being formatted
154  * directly out of the objects themselves.
155  */
156 static void
157 xlog_cil_insert_format_items(
158 	struct xlog		*log,
159 	struct xfs_trans	*tp,
160 	int			*diff_len,
161 	int			*diff_iovecs)
162 {
163 	struct xfs_log_item_desc *lidp;
164 
165 
166 	/* Bail out if we didn't find a log item.  */
167 	if (list_empty(&tp->t_items)) {
168 		ASSERT(0);
169 		return;
170 	}
171 
172 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
173 		struct xfs_log_item *lip = lidp->lid_item;
174 		struct xfs_log_vec *lv;
175 		struct xfs_log_vec *old_lv;
176 		int	niovecs = 0;
177 		int	nbytes = 0;
178 		int	buf_size;
179 		bool	ordered = false;
180 
181 		/* Skip items which aren't dirty in this transaction. */
182 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
183 			continue;
184 
185 		/* get number of vecs and size of data to be stored */
186 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
187 
188 		/* Skip items that do not have any vectors for writing */
189 		if (!niovecs)
190 			continue;
191 
192 		/*
193 		 * Ordered items need to be tracked but we do not wish to write
194 		 * them. We need a logvec to track the object, but we do not
195 		 * need an iovec or buffer to be allocated for copying data.
196 		 */
197 		if (niovecs == XFS_LOG_VEC_ORDERED) {
198 			ordered = true;
199 			niovecs = 0;
200 			nbytes = 0;
201 		}
202 
203 		/*
204 		 * We 64-bit align the length of each iovec so that the start
205 		 * of the next one is naturally aligned.  We'll need to
206 		 * account for that slack space here. Then round nbytes up
207 		 * to 64-bit alignment so that the initial buffer alignment is
208 		 * easy to calculate and verify.
209 		 */
210 		nbytes += niovecs * sizeof(uint64_t);
211 		nbytes = round_up(nbytes, sizeof(uint64_t));
212 
213 		/* grab the old item if it exists for reservation accounting */
214 		old_lv = lip->li_lv;
215 
216 		/*
217 		 * The data buffer needs to start 64-bit aligned, so round up
218 		 * that space to ensure we can align it appropriately and not
219 		 * overrun the buffer.
220 		 */
221 		buf_size = nbytes +
222 			   round_up((sizeof(struct xfs_log_vec) +
223 				     niovecs * sizeof(struct xfs_log_iovec)),
224 				    sizeof(uint64_t));
225 
226 		/* compare to existing item size */
227 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
228 			/* same or smaller, optimise common overwrite case */
229 			lv = lip->li_lv;
230 			lv->lv_next = NULL;
231 
232 			if (ordered)
233 				goto insert;
234 
235 			/*
236 			 * set the item up as though it is a new insertion so
237 			 * that the space reservation accounting is correct.
238 			 */
239 			*diff_iovecs -= lv->lv_niovecs;
240 			*diff_len -= lv->lv_bytes;
241 		} else {
242 			/* allocate new data chunk */
243 			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
244 			lv->lv_item = lip;
245 			lv->lv_size = buf_size;
246 			if (ordered) {
247 				/* track as an ordered logvec */
248 				ASSERT(lip->li_lv == NULL);
249 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
250 				goto insert;
251 			}
252 			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
253 		}
254 
255 		/* Ensure the lv is set up according to ->iop_size */
256 		lv->lv_niovecs = niovecs;
257 
258 		/* The allocated data region lies beyond the iovec region */
259 		lv->lv_buf_len = 0;
260 		lv->lv_bytes = 0;
261 		lv->lv_buf = (char *)lv + buf_size - nbytes;
262 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
263 
264 		lip->li_ops->iop_format(lip, lv);
265 insert:
266 		ASSERT(lv->lv_buf_len <= nbytes);
267 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
268 	}
269 }
270 
271 /*
272  * Insert the log items into the CIL and calculate the difference in space
273  * consumed by the item. Add the space to the checkpoint ticket and calculate
274  * if the change requires additional log metadata. If it does, take that space
275  * as well. Remove the amount of space we added to the checkpoint ticket from
276  * the current transaction ticket so that the accounting works out correctly.
277  */
278 static void
279 xlog_cil_insert_items(
280 	struct xlog		*log,
281 	struct xfs_trans	*tp)
282 {
283 	struct xfs_cil		*cil = log->l_cilp;
284 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
285 	struct xfs_log_item_desc *lidp;
286 	int			len = 0;
287 	int			diff_iovecs = 0;
288 	int			iclog_space;
289 
290 	ASSERT(tp);
291 
292 	/*
293 	 * We can do this safely because the context can't checkpoint until we
294 	 * are done so it doesn't matter exactly how we update the CIL.
295 	 */
296 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
297 
298 	/*
299 	 * Now (re-)position everything modified at the tail of the CIL.
300 	 * We do this here so we only need to take the CIL lock once during
301 	 * the transaction commit.
302 	 */
303 	spin_lock(&cil->xc_cil_lock);
304 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
305 		struct xfs_log_item	*lip = lidp->lid_item;
306 
307 		/* Skip items which aren't dirty in this transaction. */
308 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
309 			continue;
310 
311 		list_move_tail(&lip->li_cil, &cil->xc_cil);
312 	}
313 
314 	/* account for space used by new iovec headers  */
315 	len += diff_iovecs * sizeof(xlog_op_header_t);
316 	ctx->nvecs += diff_iovecs;
317 
318 	/* attach the transaction to the CIL if it has any busy extents */
319 	if (!list_empty(&tp->t_busy))
320 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
321 
322 	/*
323 	 * Now transfer enough transaction reservation to the context ticket
324 	 * for the checkpoint. The context ticket is special - the unit
325 	 * reservation has to grow as well as the current reservation as we
326 	 * steal from tickets so we can correctly determine the space used
327 	 * during the transaction commit.
328 	 */
329 	if (ctx->ticket->t_curr_res == 0) {
330 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
331 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
332 	}
333 
334 	/* do we need space for more log record headers? */
335 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
336 	if (len > 0 && (ctx->space_used / iclog_space !=
337 				(ctx->space_used + len) / iclog_space)) {
338 		int hdrs;
339 
340 		hdrs = (len + iclog_space - 1) / iclog_space;
341 		/* need to take into account split region headers, too */
342 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
343 		ctx->ticket->t_unit_res += hdrs;
344 		ctx->ticket->t_curr_res += hdrs;
345 		tp->t_ticket->t_curr_res -= hdrs;
346 		ASSERT(tp->t_ticket->t_curr_res >= len);
347 	}
348 	tp->t_ticket->t_curr_res -= len;
349 	ctx->space_used += len;
350 
351 	spin_unlock(&cil->xc_cil_lock);
352 }
353 
354 static void
355 xlog_cil_free_logvec(
356 	struct xfs_log_vec	*log_vector)
357 {
358 	struct xfs_log_vec	*lv;
359 
360 	for (lv = log_vector; lv; ) {
361 		struct xfs_log_vec *next = lv->lv_next;
362 		kmem_free(lv);
363 		lv = next;
364 	}
365 }
366 
367 /*
368  * Mark all items committed and clear busy extents. We free the log vector
369  * chains in a separate pass so that we unpin the log items as quickly as
370  * possible.
371  */
372 static void
373 xlog_cil_committed(
374 	void	*args,
375 	int	abort)
376 {
377 	struct xfs_cil_ctx	*ctx = args;
378 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
379 
380 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
381 					ctx->start_lsn, abort);
382 
383 	xfs_extent_busy_sort(&ctx->busy_extents);
384 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
385 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
386 
387 	/*
388 	 * If we are aborting the commit, wake up anyone waiting on the
389 	 * committing list.  If we don't, then a shutdown we can leave processes
390 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
391 	 * will never happen because we aborted it.
392 	 */
393 	spin_lock(&ctx->cil->xc_push_lock);
394 	if (abort)
395 		wake_up_all(&ctx->cil->xc_commit_wait);
396 	list_del(&ctx->committing);
397 	spin_unlock(&ctx->cil->xc_push_lock);
398 
399 	xlog_cil_free_logvec(ctx->lv_chain);
400 
401 	if (!list_empty(&ctx->busy_extents)) {
402 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
403 
404 		xfs_discard_extents(mp, &ctx->busy_extents);
405 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
406 	}
407 
408 	kmem_free(ctx);
409 }
410 
411 /*
412  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
413  * is a background flush and so we can chose to ignore it. Otherwise, if the
414  * current sequence is the same as @push_seq we need to do a flush. If
415  * @push_seq is less than the current sequence, then it has already been
416  * flushed and we don't need to do anything - the caller will wait for it to
417  * complete if necessary.
418  *
419  * @push_seq is a value rather than a flag because that allows us to do an
420  * unlocked check of the sequence number for a match. Hence we can allows log
421  * forces to run racily and not issue pushes for the same sequence twice. If we
422  * get a race between multiple pushes for the same sequence they will block on
423  * the first one and then abort, hence avoiding needless pushes.
424  */
425 STATIC int
426 xlog_cil_push(
427 	struct xlog		*log)
428 {
429 	struct xfs_cil		*cil = log->l_cilp;
430 	struct xfs_log_vec	*lv;
431 	struct xfs_cil_ctx	*ctx;
432 	struct xfs_cil_ctx	*new_ctx;
433 	struct xlog_in_core	*commit_iclog;
434 	struct xlog_ticket	*tic;
435 	int			num_iovecs;
436 	int			error = 0;
437 	struct xfs_trans_header thdr;
438 	struct xfs_log_iovec	lhdr;
439 	struct xfs_log_vec	lvhdr = { NULL };
440 	xfs_lsn_t		commit_lsn;
441 	xfs_lsn_t		push_seq;
442 
443 	if (!cil)
444 		return 0;
445 
446 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
447 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
448 
449 	down_write(&cil->xc_ctx_lock);
450 	ctx = cil->xc_ctx;
451 
452 	spin_lock(&cil->xc_push_lock);
453 	push_seq = cil->xc_push_seq;
454 	ASSERT(push_seq <= ctx->sequence);
455 
456 	/*
457 	 * Check if we've anything to push. If there is nothing, then we don't
458 	 * move on to a new sequence number and so we have to be able to push
459 	 * this sequence again later.
460 	 */
461 	if (list_empty(&cil->xc_cil)) {
462 		cil->xc_push_seq = 0;
463 		spin_unlock(&cil->xc_push_lock);
464 		goto out_skip;
465 	}
466 
467 
468 	/* check for a previously pushed seqeunce */
469 	if (push_seq < cil->xc_ctx->sequence) {
470 		spin_unlock(&cil->xc_push_lock);
471 		goto out_skip;
472 	}
473 
474 	/*
475 	 * We are now going to push this context, so add it to the committing
476 	 * list before we do anything else. This ensures that anyone waiting on
477 	 * this push can easily detect the difference between a "push in
478 	 * progress" and "CIL is empty, nothing to do".
479 	 *
480 	 * IOWs, a wait loop can now check for:
481 	 *	the current sequence not being found on the committing list;
482 	 *	an empty CIL; and
483 	 *	an unchanged sequence number
484 	 * to detect a push that had nothing to do and therefore does not need
485 	 * waiting on. If the CIL is not empty, we get put on the committing
486 	 * list before emptying the CIL and bumping the sequence number. Hence
487 	 * an empty CIL and an unchanged sequence number means we jumped out
488 	 * above after doing nothing.
489 	 *
490 	 * Hence the waiter will either find the commit sequence on the
491 	 * committing list or the sequence number will be unchanged and the CIL
492 	 * still dirty. In that latter case, the push has not yet started, and
493 	 * so the waiter will have to continue trying to check the CIL
494 	 * committing list until it is found. In extreme cases of delay, the
495 	 * sequence may fully commit between the attempts the wait makes to wait
496 	 * on the commit sequence.
497 	 */
498 	list_add(&ctx->committing, &cil->xc_committing);
499 	spin_unlock(&cil->xc_push_lock);
500 
501 	/*
502 	 * pull all the log vectors off the items in the CIL, and
503 	 * remove the items from the CIL. We don't need the CIL lock
504 	 * here because it's only needed on the transaction commit
505 	 * side which is currently locked out by the flush lock.
506 	 */
507 	lv = NULL;
508 	num_iovecs = 0;
509 	while (!list_empty(&cil->xc_cil)) {
510 		struct xfs_log_item	*item;
511 
512 		item = list_first_entry(&cil->xc_cil,
513 					struct xfs_log_item, li_cil);
514 		list_del_init(&item->li_cil);
515 		if (!ctx->lv_chain)
516 			ctx->lv_chain = item->li_lv;
517 		else
518 			lv->lv_next = item->li_lv;
519 		lv = item->li_lv;
520 		item->li_lv = NULL;
521 		num_iovecs += lv->lv_niovecs;
522 	}
523 
524 	/*
525 	 * initialise the new context and attach it to the CIL. Then attach
526 	 * the current context to the CIL committing lsit so it can be found
527 	 * during log forces to extract the commit lsn of the sequence that
528 	 * needs to be forced.
529 	 */
530 	INIT_LIST_HEAD(&new_ctx->committing);
531 	INIT_LIST_HEAD(&new_ctx->busy_extents);
532 	new_ctx->sequence = ctx->sequence + 1;
533 	new_ctx->cil = cil;
534 	cil->xc_ctx = new_ctx;
535 
536 	/*
537 	 * The switch is now done, so we can drop the context lock and move out
538 	 * of a shared context. We can't just go straight to the commit record,
539 	 * though - we need to synchronise with previous and future commits so
540 	 * that the commit records are correctly ordered in the log to ensure
541 	 * that we process items during log IO completion in the correct order.
542 	 *
543 	 * For example, if we get an EFI in one checkpoint and the EFD in the
544 	 * next (e.g. due to log forces), we do not want the checkpoint with
545 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
546 	 * we must strictly order the commit records of the checkpoints so
547 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
548 	 * correct order; and b) the checkpoints are replayed in correct order
549 	 * in log recovery.
550 	 *
551 	 * Hence we need to add this context to the committing context list so
552 	 * that higher sequences will wait for us to write out a commit record
553 	 * before they do.
554 	 *
555 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
556 	 * structure atomically with the addition of this sequence to the
557 	 * committing list. This also ensures that we can do unlocked checks
558 	 * against the current sequence in log forces without risking
559 	 * deferencing a freed context pointer.
560 	 */
561 	spin_lock(&cil->xc_push_lock);
562 	cil->xc_current_sequence = new_ctx->sequence;
563 	spin_unlock(&cil->xc_push_lock);
564 	up_write(&cil->xc_ctx_lock);
565 
566 	/*
567 	 * Build a checkpoint transaction header and write it to the log to
568 	 * begin the transaction. We need to account for the space used by the
569 	 * transaction header here as it is not accounted for in xlog_write().
570 	 *
571 	 * The LSN we need to pass to the log items on transaction commit is
572 	 * the LSN reported by the first log vector write. If we use the commit
573 	 * record lsn then we can move the tail beyond the grant write head.
574 	 */
575 	tic = ctx->ticket;
576 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
577 	thdr.th_type = XFS_TRANS_CHECKPOINT;
578 	thdr.th_tid = tic->t_tid;
579 	thdr.th_num_items = num_iovecs;
580 	lhdr.i_addr = &thdr;
581 	lhdr.i_len = sizeof(xfs_trans_header_t);
582 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
583 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
584 
585 	lvhdr.lv_niovecs = 1;
586 	lvhdr.lv_iovecp = &lhdr;
587 	lvhdr.lv_next = ctx->lv_chain;
588 
589 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
590 	if (error)
591 		goto out_abort_free_ticket;
592 
593 	/*
594 	 * now that we've written the checkpoint into the log, strictly
595 	 * order the commit records so replay will get them in the right order.
596 	 */
597 restart:
598 	spin_lock(&cil->xc_push_lock);
599 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
600 		/*
601 		 * Avoid getting stuck in this loop because we were woken by the
602 		 * shutdown, but then went back to sleep once already in the
603 		 * shutdown state.
604 		 */
605 		if (XLOG_FORCED_SHUTDOWN(log)) {
606 			spin_unlock(&cil->xc_push_lock);
607 			goto out_abort_free_ticket;
608 		}
609 
610 		/*
611 		 * Higher sequences will wait for this one so skip them.
612 		 * Don't wait for our own sequence, either.
613 		 */
614 		if (new_ctx->sequence >= ctx->sequence)
615 			continue;
616 		if (!new_ctx->commit_lsn) {
617 			/*
618 			 * It is still being pushed! Wait for the push to
619 			 * complete, then start again from the beginning.
620 			 */
621 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
622 			goto restart;
623 		}
624 	}
625 	spin_unlock(&cil->xc_push_lock);
626 
627 	/* xfs_log_done always frees the ticket on error. */
628 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
629 	if (commit_lsn == -1)
630 		goto out_abort;
631 
632 	/* attach all the transactions w/ busy extents to iclog */
633 	ctx->log_cb.cb_func = xlog_cil_committed;
634 	ctx->log_cb.cb_arg = ctx;
635 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
636 	if (error)
637 		goto out_abort;
638 
639 	/*
640 	 * now the checkpoint commit is complete and we've attached the
641 	 * callbacks to the iclog we can assign the commit LSN to the context
642 	 * and wake up anyone who is waiting for the commit to complete.
643 	 */
644 	spin_lock(&cil->xc_push_lock);
645 	ctx->commit_lsn = commit_lsn;
646 	wake_up_all(&cil->xc_commit_wait);
647 	spin_unlock(&cil->xc_push_lock);
648 
649 	/* release the hounds! */
650 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
651 
652 out_skip:
653 	up_write(&cil->xc_ctx_lock);
654 	xfs_log_ticket_put(new_ctx->ticket);
655 	kmem_free(new_ctx);
656 	return 0;
657 
658 out_abort_free_ticket:
659 	xfs_log_ticket_put(tic);
660 out_abort:
661 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
662 	return -EIO;
663 }
664 
665 static void
666 xlog_cil_push_work(
667 	struct work_struct	*work)
668 {
669 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
670 							xc_push_work);
671 	xlog_cil_push(cil->xc_log);
672 }
673 
674 /*
675  * We need to push CIL every so often so we don't cache more than we can fit in
676  * the log. The limit really is that a checkpoint can't be more than half the
677  * log (the current checkpoint is not allowed to overwrite the previous
678  * checkpoint), but commit latency and memory usage limit this to a smaller
679  * size.
680  */
681 static void
682 xlog_cil_push_background(
683 	struct xlog	*log)
684 {
685 	struct xfs_cil	*cil = log->l_cilp;
686 
687 	/*
688 	 * The cil won't be empty because we are called while holding the
689 	 * context lock so whatever we added to the CIL will still be there
690 	 */
691 	ASSERT(!list_empty(&cil->xc_cil));
692 
693 	/*
694 	 * don't do a background push if we haven't used up all the
695 	 * space available yet.
696 	 */
697 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
698 		return;
699 
700 	spin_lock(&cil->xc_push_lock);
701 	if (cil->xc_push_seq < cil->xc_current_sequence) {
702 		cil->xc_push_seq = cil->xc_current_sequence;
703 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
704 	}
705 	spin_unlock(&cil->xc_push_lock);
706 
707 }
708 
709 /*
710  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
711  * number that is passed. When it returns, the work will be queued for
712  * @push_seq, but it won't be completed. The caller is expected to do any
713  * waiting for push_seq to complete if it is required.
714  */
715 static void
716 xlog_cil_push_now(
717 	struct xlog	*log,
718 	xfs_lsn_t	push_seq)
719 {
720 	struct xfs_cil	*cil = log->l_cilp;
721 
722 	if (!cil)
723 		return;
724 
725 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
726 
727 	/* start on any pending background push to minimise wait time on it */
728 	flush_work(&cil->xc_push_work);
729 
730 	/*
731 	 * If the CIL is empty or we've already pushed the sequence then
732 	 * there's no work we need to do.
733 	 */
734 	spin_lock(&cil->xc_push_lock);
735 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
736 		spin_unlock(&cil->xc_push_lock);
737 		return;
738 	}
739 
740 	cil->xc_push_seq = push_seq;
741 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
742 	spin_unlock(&cil->xc_push_lock);
743 }
744 
745 bool
746 xlog_cil_empty(
747 	struct xlog	*log)
748 {
749 	struct xfs_cil	*cil = log->l_cilp;
750 	bool		empty = false;
751 
752 	spin_lock(&cil->xc_push_lock);
753 	if (list_empty(&cil->xc_cil))
754 		empty = true;
755 	spin_unlock(&cil->xc_push_lock);
756 	return empty;
757 }
758 
759 /*
760  * Commit a transaction with the given vector to the Committed Item List.
761  *
762  * To do this, we need to format the item, pin it in memory if required and
763  * account for the space used by the transaction. Once we have done that we
764  * need to release the unused reservation for the transaction, attach the
765  * transaction to the checkpoint context so we carry the busy extents through
766  * to checkpoint completion, and then unlock all the items in the transaction.
767  *
768  * Called with the context lock already held in read mode to lock out
769  * background commit, returns without it held once background commits are
770  * allowed again.
771  */
772 void
773 xfs_log_commit_cil(
774 	struct xfs_mount	*mp,
775 	struct xfs_trans	*tp,
776 	xfs_lsn_t		*commit_lsn,
777 	int			flags)
778 {
779 	struct xlog		*log = mp->m_log;
780 	struct xfs_cil		*cil = log->l_cilp;
781 	int			log_flags = 0;
782 
783 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
784 		log_flags = XFS_LOG_REL_PERM_RESERV;
785 
786 	/* lock out background commit */
787 	down_read(&cil->xc_ctx_lock);
788 
789 	xlog_cil_insert_items(log, tp);
790 
791 	/* check we didn't blow the reservation */
792 	if (tp->t_ticket->t_curr_res < 0)
793 		xlog_print_tic_res(mp, tp->t_ticket);
794 
795 	tp->t_commit_lsn = cil->xc_ctx->sequence;
796 	if (commit_lsn)
797 		*commit_lsn = tp->t_commit_lsn;
798 
799 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
800 	xfs_trans_unreserve_and_mod_sb(tp);
801 
802 	/*
803 	 * Once all the items of the transaction have been copied to the CIL,
804 	 * the items can be unlocked and freed.
805 	 *
806 	 * This needs to be done before we drop the CIL context lock because we
807 	 * have to update state in the log items and unlock them before they go
808 	 * to disk. If we don't, then the CIL checkpoint can race with us and
809 	 * we can run checkpoint completion before we've updated and unlocked
810 	 * the log items. This affects (at least) processing of stale buffers,
811 	 * inodes and EFIs.
812 	 */
813 	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
814 
815 	xlog_cil_push_background(log);
816 
817 	up_read(&cil->xc_ctx_lock);
818 }
819 
820 /*
821  * Conditionally push the CIL based on the sequence passed in.
822  *
823  * We only need to push if we haven't already pushed the sequence
824  * number given. Hence the only time we will trigger a push here is
825  * if the push sequence is the same as the current context.
826  *
827  * We return the current commit lsn to allow the callers to determine if a
828  * iclog flush is necessary following this call.
829  */
830 xfs_lsn_t
831 xlog_cil_force_lsn(
832 	struct xlog	*log,
833 	xfs_lsn_t	sequence)
834 {
835 	struct xfs_cil		*cil = log->l_cilp;
836 	struct xfs_cil_ctx	*ctx;
837 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
838 
839 	ASSERT(sequence <= cil->xc_current_sequence);
840 
841 	/*
842 	 * check to see if we need to force out the current context.
843 	 * xlog_cil_push() handles racing pushes for the same sequence,
844 	 * so no need to deal with it here.
845 	 */
846 restart:
847 	xlog_cil_push_now(log, sequence);
848 
849 	/*
850 	 * See if we can find a previous sequence still committing.
851 	 * We need to wait for all previous sequence commits to complete
852 	 * before allowing the force of push_seq to go ahead. Hence block
853 	 * on commits for those as well.
854 	 */
855 	spin_lock(&cil->xc_push_lock);
856 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
857 		/*
858 		 * Avoid getting stuck in this loop because we were woken by the
859 		 * shutdown, but then went back to sleep once already in the
860 		 * shutdown state.
861 		 */
862 		if (XLOG_FORCED_SHUTDOWN(log))
863 			goto out_shutdown;
864 		if (ctx->sequence > sequence)
865 			continue;
866 		if (!ctx->commit_lsn) {
867 			/*
868 			 * It is still being pushed! Wait for the push to
869 			 * complete, then start again from the beginning.
870 			 */
871 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
872 			goto restart;
873 		}
874 		if (ctx->sequence != sequence)
875 			continue;
876 		/* found it! */
877 		commit_lsn = ctx->commit_lsn;
878 	}
879 
880 	/*
881 	 * The call to xlog_cil_push_now() executes the push in the background.
882 	 * Hence by the time we have got here it our sequence may not have been
883 	 * pushed yet. This is true if the current sequence still matches the
884 	 * push sequence after the above wait loop and the CIL still contains
885 	 * dirty objects. This is guaranteed by the push code first adding the
886 	 * context to the committing list before emptying the CIL.
887 	 *
888 	 * Hence if we don't find the context in the committing list and the
889 	 * current sequence number is unchanged then the CIL contents are
890 	 * significant.  If the CIL is empty, if means there was nothing to push
891 	 * and that means there is nothing to wait for. If the CIL is not empty,
892 	 * it means we haven't yet started the push, because if it had started
893 	 * we would have found the context on the committing list.
894 	 */
895 	if (sequence == cil->xc_current_sequence &&
896 	    !list_empty(&cil->xc_cil)) {
897 		spin_unlock(&cil->xc_push_lock);
898 		goto restart;
899 	}
900 
901 	spin_unlock(&cil->xc_push_lock);
902 	return commit_lsn;
903 
904 	/*
905 	 * We detected a shutdown in progress. We need to trigger the log force
906 	 * to pass through it's iclog state machine error handling, even though
907 	 * we are already in a shutdown state. Hence we can't return
908 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
909 	 * LSN is already stable), so we return a zero LSN instead.
910 	 */
911 out_shutdown:
912 	spin_unlock(&cil->xc_push_lock);
913 	return 0;
914 }
915 
916 /*
917  * Check if the current log item was first committed in this sequence.
918  * We can't rely on just the log item being in the CIL, we have to check
919  * the recorded commit sequence number.
920  *
921  * Note: for this to be used in a non-racy manner, it has to be called with
922  * CIL flushing locked out. As a result, it should only be used during the
923  * transaction commit process when deciding what to format into the item.
924  */
925 bool
926 xfs_log_item_in_current_chkpt(
927 	struct xfs_log_item *lip)
928 {
929 	struct xfs_cil_ctx *ctx;
930 
931 	if (list_empty(&lip->li_cil))
932 		return false;
933 
934 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
935 
936 	/*
937 	 * li_seq is written on the first commit of a log item to record the
938 	 * first checkpoint it is written to. Hence if it is different to the
939 	 * current sequence, we're in a new checkpoint.
940 	 */
941 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
942 		return false;
943 	return true;
944 }
945 
946 /*
947  * Perform initial CIL structure initialisation.
948  */
949 int
950 xlog_cil_init(
951 	struct xlog	*log)
952 {
953 	struct xfs_cil	*cil;
954 	struct xfs_cil_ctx *ctx;
955 
956 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
957 	if (!cil)
958 		return -ENOMEM;
959 
960 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
961 	if (!ctx) {
962 		kmem_free(cil);
963 		return -ENOMEM;
964 	}
965 
966 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
967 	INIT_LIST_HEAD(&cil->xc_cil);
968 	INIT_LIST_HEAD(&cil->xc_committing);
969 	spin_lock_init(&cil->xc_cil_lock);
970 	spin_lock_init(&cil->xc_push_lock);
971 	init_rwsem(&cil->xc_ctx_lock);
972 	init_waitqueue_head(&cil->xc_commit_wait);
973 
974 	INIT_LIST_HEAD(&ctx->committing);
975 	INIT_LIST_HEAD(&ctx->busy_extents);
976 	ctx->sequence = 1;
977 	ctx->cil = cil;
978 	cil->xc_ctx = ctx;
979 	cil->xc_current_sequence = ctx->sequence;
980 
981 	cil->xc_log = log;
982 	log->l_cilp = cil;
983 	return 0;
984 }
985 
986 void
987 xlog_cil_destroy(
988 	struct xlog	*log)
989 {
990 	if (log->l_cilp->xc_ctx) {
991 		if (log->l_cilp->xc_ctx->ticket)
992 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
993 		kmem_free(log->l_cilp->xc_ctx);
994 	}
995 
996 	ASSERT(list_empty(&log->l_cilp->xc_cil));
997 	kmem_free(log->l_cilp);
998 }
999 
1000