xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision ca79522c)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_alloc.h"
30 #include "xfs_extent_busy.h"
31 #include "xfs_discard.h"
32 
33 /*
34  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35  * recover, so we don't allow failure here. Also, we allocate in a context that
36  * we don't want to be issuing transactions from, so we need to tell the
37  * allocation code this as well.
38  *
39  * We don't reserve any space for the ticket - we are going to steal whatever
40  * space we require from transactions as they commit. To ensure we reserve all
41  * the space required, we need to set the current reservation of the ticket to
42  * zero so that we know to steal the initial transaction overhead from the
43  * first transaction commit.
44  */
45 static struct xlog_ticket *
46 xlog_cil_ticket_alloc(
47 	struct xlog	*log)
48 {
49 	struct xlog_ticket *tic;
50 
51 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 				KM_SLEEP|KM_NOFS);
53 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54 
55 	/*
56 	 * set the current reservation to zero so we know to steal the basic
57 	 * transaction overhead reservation from the first transaction commit.
58 	 */
59 	tic->t_curr_res = 0;
60 	return tic;
61 }
62 
63 /*
64  * After the first stage of log recovery is done, we know where the head and
65  * tail of the log are. We need this log initialisation done before we can
66  * initialise the first CIL checkpoint context.
67  *
68  * Here we allocate a log ticket to track space usage during a CIL push.  This
69  * ticket is passed to xlog_write() directly so that we don't slowly leak log
70  * space by failing to account for space used by log headers and additional
71  * region headers for split regions.
72  */
73 void
74 xlog_cil_init_post_recovery(
75 	struct xlog	*log)
76 {
77 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 	log->l_cilp->xc_ctx->sequence = 1;
79 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 								log->l_curr_block);
81 }
82 
83 /*
84  * Format log item into a flat buffers
85  *
86  * For delayed logging, we need to hold a formatted buffer containing all the
87  * changes on the log item. This enables us to relog the item in memory and
88  * write it out asynchronously without needing to relock the object that was
89  * modified at the time it gets written into the iclog.
90  *
91  * This function builds a vector for the changes in each log item in the
92  * transaction. It then works out the length of the buffer needed for each log
93  * item, allocates them and formats the vector for the item into the buffer.
94  * The buffer is then attached to the log item are then inserted into the
95  * Committed Item List for tracking until the next checkpoint is written out.
96  *
97  * We don't set up region headers during this process; we simply copy the
98  * regions into the flat buffer. We can do this because we still have to do a
99  * formatting step to write the regions into the iclog buffer.  Writing the
100  * ophdrs during the iclog write means that we can support splitting large
101  * regions across iclog boundares without needing a change in the format of the
102  * item/region encapsulation.
103  *
104  * Hence what we need to do now is change the rewrite the vector array to point
105  * to the copied region inside the buffer we just allocated. This allows us to
106  * format the regions into the iclog as though they are being formatted
107  * directly out of the objects themselves.
108  */
109 static struct xfs_log_vec *
110 xlog_cil_prepare_log_vecs(
111 	struct xfs_trans	*tp)
112 {
113 	struct xfs_log_item_desc *lidp;
114 	struct xfs_log_vec	*lv = NULL;
115 	struct xfs_log_vec	*ret_lv = NULL;
116 
117 
118 	/* Bail out if we didn't find a log item.  */
119 	if (list_empty(&tp->t_items)) {
120 		ASSERT(0);
121 		return NULL;
122 	}
123 
124 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
125 		struct xfs_log_vec *new_lv;
126 		void	*ptr;
127 		int	index;
128 		int	len = 0;
129 		uint	niovecs;
130 
131 		/* Skip items which aren't dirty in this transaction. */
132 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
133 			continue;
134 
135 		/* Skip items that do not have any vectors for writing */
136 		niovecs = IOP_SIZE(lidp->lid_item);
137 		if (!niovecs)
138 			continue;
139 
140 		new_lv = kmem_zalloc(sizeof(*new_lv) +
141 				niovecs * sizeof(struct xfs_log_iovec),
142 				KM_SLEEP);
143 
144 		/* The allocated iovec region lies beyond the log vector. */
145 		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
146 		new_lv->lv_niovecs = niovecs;
147 		new_lv->lv_item = lidp->lid_item;
148 
149 		/* build the vector array and calculate it's length */
150 		IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
151 		for (index = 0; index < new_lv->lv_niovecs; index++)
152 			len += new_lv->lv_iovecp[index].i_len;
153 
154 		new_lv->lv_buf_len = len;
155 		new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
156 				KM_SLEEP|KM_NOFS);
157 		ptr = new_lv->lv_buf;
158 
159 		for (index = 0; index < new_lv->lv_niovecs; index++) {
160 			struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
161 
162 			memcpy(ptr, vec->i_addr, vec->i_len);
163 			vec->i_addr = ptr;
164 			ptr += vec->i_len;
165 		}
166 		ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
167 
168 		if (!ret_lv)
169 			ret_lv = new_lv;
170 		else
171 			lv->lv_next = new_lv;
172 		lv = new_lv;
173 	}
174 
175 	return ret_lv;
176 }
177 
178 /*
179  * Prepare the log item for insertion into the CIL. Calculate the difference in
180  * log space and vectors it will consume, and if it is a new item pin it as
181  * well.
182  */
183 STATIC void
184 xfs_cil_prepare_item(
185 	struct xlog		*log,
186 	struct xfs_log_vec	*lv,
187 	int			*len,
188 	int			*diff_iovecs)
189 {
190 	struct xfs_log_vec	*old = lv->lv_item->li_lv;
191 
192 	if (old) {
193 		/* existing lv on log item, space used is a delta */
194 		ASSERT(!list_empty(&lv->lv_item->li_cil));
195 		ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
196 
197 		*len += lv->lv_buf_len - old->lv_buf_len;
198 		*diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
199 		kmem_free(old->lv_buf);
200 		kmem_free(old);
201 	} else {
202 		/* new lv, must pin the log item */
203 		ASSERT(!lv->lv_item->li_lv);
204 		ASSERT(list_empty(&lv->lv_item->li_cil));
205 
206 		*len += lv->lv_buf_len;
207 		*diff_iovecs += lv->lv_niovecs;
208 		IOP_PIN(lv->lv_item);
209 
210 	}
211 
212 	/* attach new log vector to log item */
213 	lv->lv_item->li_lv = lv;
214 
215 	/*
216 	 * If this is the first time the item is being committed to the
217 	 * CIL, store the sequence number on the log item so we can
218 	 * tell in future commits whether this is the first checkpoint
219 	 * the item is being committed into.
220 	 */
221 	if (!lv->lv_item->li_seq)
222 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
223 }
224 
225 /*
226  * Insert the log items into the CIL and calculate the difference in space
227  * consumed by the item. Add the space to the checkpoint ticket and calculate
228  * if the change requires additional log metadata. If it does, take that space
229  * as well. Remove the amount of space we added to the checkpoint ticket from
230  * the current transaction ticket so that the accounting works out correctly.
231  */
232 static void
233 xlog_cil_insert_items(
234 	struct xlog		*log,
235 	struct xfs_log_vec	*log_vector,
236 	struct xlog_ticket	*ticket)
237 {
238 	struct xfs_cil		*cil = log->l_cilp;
239 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
240 	struct xfs_log_vec	*lv;
241 	int			len = 0;
242 	int			diff_iovecs = 0;
243 	int			iclog_space;
244 
245 	ASSERT(log_vector);
246 
247 	/*
248 	 * Do all the accounting aggregation and switching of log vectors
249 	 * around in a separate loop to the insertion of items into the CIL.
250 	 * Then we can do a separate loop to update the CIL within a single
251 	 * lock/unlock pair. This reduces the number of round trips on the CIL
252 	 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
253 	 * hold time for the transaction commit.
254 	 *
255 	 * If this is the first time the item is being placed into the CIL in
256 	 * this context, pin it so it can't be written to disk until the CIL is
257 	 * flushed to the iclog and the iclog written to disk.
258 	 *
259 	 * We can do this safely because the context can't checkpoint until we
260 	 * are done so it doesn't matter exactly how we update the CIL.
261 	 */
262 	for (lv = log_vector; lv; lv = lv->lv_next)
263 		xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
264 
265 	/* account for space used by new iovec headers  */
266 	len += diff_iovecs * sizeof(xlog_op_header_t);
267 
268 	spin_lock(&cil->xc_cil_lock);
269 
270 	/* move the items to the tail of the CIL */
271 	for (lv = log_vector; lv; lv = lv->lv_next)
272 		list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
273 
274 	ctx->nvecs += diff_iovecs;
275 
276 	/*
277 	 * Now transfer enough transaction reservation to the context ticket
278 	 * for the checkpoint. The context ticket is special - the unit
279 	 * reservation has to grow as well as the current reservation as we
280 	 * steal from tickets so we can correctly determine the space used
281 	 * during the transaction commit.
282 	 */
283 	if (ctx->ticket->t_curr_res == 0) {
284 		/* first commit in checkpoint, steal the header reservation */
285 		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
286 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
287 		ticket->t_curr_res -= ctx->ticket->t_unit_res;
288 	}
289 
290 	/* do we need space for more log record headers? */
291 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
292 	if (len > 0 && (ctx->space_used / iclog_space !=
293 				(ctx->space_used + len) / iclog_space)) {
294 		int hdrs;
295 
296 		hdrs = (len + iclog_space - 1) / iclog_space;
297 		/* need to take into account split region headers, too */
298 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
299 		ctx->ticket->t_unit_res += hdrs;
300 		ctx->ticket->t_curr_res += hdrs;
301 		ticket->t_curr_res -= hdrs;
302 		ASSERT(ticket->t_curr_res >= len);
303 	}
304 	ticket->t_curr_res -= len;
305 	ctx->space_used += len;
306 
307 	spin_unlock(&cil->xc_cil_lock);
308 }
309 
310 static void
311 xlog_cil_free_logvec(
312 	struct xfs_log_vec	*log_vector)
313 {
314 	struct xfs_log_vec	*lv;
315 
316 	for (lv = log_vector; lv; ) {
317 		struct xfs_log_vec *next = lv->lv_next;
318 		kmem_free(lv->lv_buf);
319 		kmem_free(lv);
320 		lv = next;
321 	}
322 }
323 
324 /*
325  * Mark all items committed and clear busy extents. We free the log vector
326  * chains in a separate pass so that we unpin the log items as quickly as
327  * possible.
328  */
329 static void
330 xlog_cil_committed(
331 	void	*args,
332 	int	abort)
333 {
334 	struct xfs_cil_ctx	*ctx = args;
335 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
336 
337 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
338 					ctx->start_lsn, abort);
339 
340 	xfs_extent_busy_sort(&ctx->busy_extents);
341 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
342 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
343 
344 	spin_lock(&ctx->cil->xc_cil_lock);
345 	list_del(&ctx->committing);
346 	spin_unlock(&ctx->cil->xc_cil_lock);
347 
348 	xlog_cil_free_logvec(ctx->lv_chain);
349 
350 	if (!list_empty(&ctx->busy_extents)) {
351 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
352 
353 		xfs_discard_extents(mp, &ctx->busy_extents);
354 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
355 	}
356 
357 	kmem_free(ctx);
358 }
359 
360 /*
361  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
362  * is a background flush and so we can chose to ignore it. Otherwise, if the
363  * current sequence is the same as @push_seq we need to do a flush. If
364  * @push_seq is less than the current sequence, then it has already been
365  * flushed and we don't need to do anything - the caller will wait for it to
366  * complete if necessary.
367  *
368  * @push_seq is a value rather than a flag because that allows us to do an
369  * unlocked check of the sequence number for a match. Hence we can allows log
370  * forces to run racily and not issue pushes for the same sequence twice. If we
371  * get a race between multiple pushes for the same sequence they will block on
372  * the first one and then abort, hence avoiding needless pushes.
373  */
374 STATIC int
375 xlog_cil_push(
376 	struct xlog		*log)
377 {
378 	struct xfs_cil		*cil = log->l_cilp;
379 	struct xfs_log_vec	*lv;
380 	struct xfs_cil_ctx	*ctx;
381 	struct xfs_cil_ctx	*new_ctx;
382 	struct xlog_in_core	*commit_iclog;
383 	struct xlog_ticket	*tic;
384 	int			num_lv;
385 	int			num_iovecs;
386 	int			len;
387 	int			error = 0;
388 	struct xfs_trans_header thdr;
389 	struct xfs_log_iovec	lhdr;
390 	struct xfs_log_vec	lvhdr = { NULL };
391 	xfs_lsn_t		commit_lsn;
392 	xfs_lsn_t		push_seq;
393 
394 	if (!cil)
395 		return 0;
396 
397 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
398 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
399 
400 	down_write(&cil->xc_ctx_lock);
401 	ctx = cil->xc_ctx;
402 
403 	spin_lock(&cil->xc_cil_lock);
404 	push_seq = cil->xc_push_seq;
405 	ASSERT(push_seq <= ctx->sequence);
406 
407 	/*
408 	 * Check if we've anything to push. If there is nothing, then we don't
409 	 * move on to a new sequence number and so we have to be able to push
410 	 * this sequence again later.
411 	 */
412 	if (list_empty(&cil->xc_cil)) {
413 		cil->xc_push_seq = 0;
414 		spin_unlock(&cil->xc_cil_lock);
415 		goto out_skip;
416 	}
417 	spin_unlock(&cil->xc_cil_lock);
418 
419 
420 	/* check for a previously pushed seqeunce */
421 	if (push_seq < cil->xc_ctx->sequence)
422 		goto out_skip;
423 
424 	/*
425 	 * pull all the log vectors off the items in the CIL, and
426 	 * remove the items from the CIL. We don't need the CIL lock
427 	 * here because it's only needed on the transaction commit
428 	 * side which is currently locked out by the flush lock.
429 	 */
430 	lv = NULL;
431 	num_lv = 0;
432 	num_iovecs = 0;
433 	len = 0;
434 	while (!list_empty(&cil->xc_cil)) {
435 		struct xfs_log_item	*item;
436 		int			i;
437 
438 		item = list_first_entry(&cil->xc_cil,
439 					struct xfs_log_item, li_cil);
440 		list_del_init(&item->li_cil);
441 		if (!ctx->lv_chain)
442 			ctx->lv_chain = item->li_lv;
443 		else
444 			lv->lv_next = item->li_lv;
445 		lv = item->li_lv;
446 		item->li_lv = NULL;
447 
448 		num_lv++;
449 		num_iovecs += lv->lv_niovecs;
450 		for (i = 0; i < lv->lv_niovecs; i++)
451 			len += lv->lv_iovecp[i].i_len;
452 	}
453 
454 	/*
455 	 * initialise the new context and attach it to the CIL. Then attach
456 	 * the current context to the CIL committing lsit so it can be found
457 	 * during log forces to extract the commit lsn of the sequence that
458 	 * needs to be forced.
459 	 */
460 	INIT_LIST_HEAD(&new_ctx->committing);
461 	INIT_LIST_HEAD(&new_ctx->busy_extents);
462 	new_ctx->sequence = ctx->sequence + 1;
463 	new_ctx->cil = cil;
464 	cil->xc_ctx = new_ctx;
465 
466 	/*
467 	 * mirror the new sequence into the cil structure so that we can do
468 	 * unlocked checks against the current sequence in log forces without
469 	 * risking deferencing a freed context pointer.
470 	 */
471 	cil->xc_current_sequence = new_ctx->sequence;
472 
473 	/*
474 	 * The switch is now done, so we can drop the context lock and move out
475 	 * of a shared context. We can't just go straight to the commit record,
476 	 * though - we need to synchronise with previous and future commits so
477 	 * that the commit records are correctly ordered in the log to ensure
478 	 * that we process items during log IO completion in the correct order.
479 	 *
480 	 * For example, if we get an EFI in one checkpoint and the EFD in the
481 	 * next (e.g. due to log forces), we do not want the checkpoint with
482 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
483 	 * we must strictly order the commit records of the checkpoints so
484 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
485 	 * correct order; and b) the checkpoints are replayed in correct order
486 	 * in log recovery.
487 	 *
488 	 * Hence we need to add this context to the committing context list so
489 	 * that higher sequences will wait for us to write out a commit record
490 	 * before they do.
491 	 */
492 	spin_lock(&cil->xc_cil_lock);
493 	list_add(&ctx->committing, &cil->xc_committing);
494 	spin_unlock(&cil->xc_cil_lock);
495 	up_write(&cil->xc_ctx_lock);
496 
497 	/*
498 	 * Build a checkpoint transaction header and write it to the log to
499 	 * begin the transaction. We need to account for the space used by the
500 	 * transaction header here as it is not accounted for in xlog_write().
501 	 *
502 	 * The LSN we need to pass to the log items on transaction commit is
503 	 * the LSN reported by the first log vector write. If we use the commit
504 	 * record lsn then we can move the tail beyond the grant write head.
505 	 */
506 	tic = ctx->ticket;
507 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
508 	thdr.th_type = XFS_TRANS_CHECKPOINT;
509 	thdr.th_tid = tic->t_tid;
510 	thdr.th_num_items = num_iovecs;
511 	lhdr.i_addr = &thdr;
512 	lhdr.i_len = sizeof(xfs_trans_header_t);
513 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
514 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
515 
516 	lvhdr.lv_niovecs = 1;
517 	lvhdr.lv_iovecp = &lhdr;
518 	lvhdr.lv_next = ctx->lv_chain;
519 
520 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
521 	if (error)
522 		goto out_abort_free_ticket;
523 
524 	/*
525 	 * now that we've written the checkpoint into the log, strictly
526 	 * order the commit records so replay will get them in the right order.
527 	 */
528 restart:
529 	spin_lock(&cil->xc_cil_lock);
530 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
531 		/*
532 		 * Higher sequences will wait for this one so skip them.
533 		 * Don't wait for own own sequence, either.
534 		 */
535 		if (new_ctx->sequence >= ctx->sequence)
536 			continue;
537 		if (!new_ctx->commit_lsn) {
538 			/*
539 			 * It is still being pushed! Wait for the push to
540 			 * complete, then start again from the beginning.
541 			 */
542 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
543 			goto restart;
544 		}
545 	}
546 	spin_unlock(&cil->xc_cil_lock);
547 
548 	/* xfs_log_done always frees the ticket on error. */
549 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
550 	if (commit_lsn == -1)
551 		goto out_abort;
552 
553 	/* attach all the transactions w/ busy extents to iclog */
554 	ctx->log_cb.cb_func = xlog_cil_committed;
555 	ctx->log_cb.cb_arg = ctx;
556 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
557 	if (error)
558 		goto out_abort;
559 
560 	/*
561 	 * now the checkpoint commit is complete and we've attached the
562 	 * callbacks to the iclog we can assign the commit LSN to the context
563 	 * and wake up anyone who is waiting for the commit to complete.
564 	 */
565 	spin_lock(&cil->xc_cil_lock);
566 	ctx->commit_lsn = commit_lsn;
567 	wake_up_all(&cil->xc_commit_wait);
568 	spin_unlock(&cil->xc_cil_lock);
569 
570 	/* release the hounds! */
571 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
572 
573 out_skip:
574 	up_write(&cil->xc_ctx_lock);
575 	xfs_log_ticket_put(new_ctx->ticket);
576 	kmem_free(new_ctx);
577 	return 0;
578 
579 out_abort_free_ticket:
580 	xfs_log_ticket_put(tic);
581 out_abort:
582 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
583 	return XFS_ERROR(EIO);
584 }
585 
586 static void
587 xlog_cil_push_work(
588 	struct work_struct	*work)
589 {
590 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
591 							xc_push_work);
592 	xlog_cil_push(cil->xc_log);
593 }
594 
595 /*
596  * We need to push CIL every so often so we don't cache more than we can fit in
597  * the log. The limit really is that a checkpoint can't be more than half the
598  * log (the current checkpoint is not allowed to overwrite the previous
599  * checkpoint), but commit latency and memory usage limit this to a smaller
600  * size.
601  */
602 static void
603 xlog_cil_push_background(
604 	struct xlog	*log)
605 {
606 	struct xfs_cil	*cil = log->l_cilp;
607 
608 	/*
609 	 * The cil won't be empty because we are called while holding the
610 	 * context lock so whatever we added to the CIL will still be there
611 	 */
612 	ASSERT(!list_empty(&cil->xc_cil));
613 
614 	/*
615 	 * don't do a background push if we haven't used up all the
616 	 * space available yet.
617 	 */
618 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
619 		return;
620 
621 	spin_lock(&cil->xc_cil_lock);
622 	if (cil->xc_push_seq < cil->xc_current_sequence) {
623 		cil->xc_push_seq = cil->xc_current_sequence;
624 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
625 	}
626 	spin_unlock(&cil->xc_cil_lock);
627 
628 }
629 
630 static void
631 xlog_cil_push_foreground(
632 	struct xlog	*log,
633 	xfs_lsn_t	push_seq)
634 {
635 	struct xfs_cil	*cil = log->l_cilp;
636 
637 	if (!cil)
638 		return;
639 
640 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
641 
642 	/* start on any pending background push to minimise wait time on it */
643 	flush_work(&cil->xc_push_work);
644 
645 	/*
646 	 * If the CIL is empty or we've already pushed the sequence then
647 	 * there's no work we need to do.
648 	 */
649 	spin_lock(&cil->xc_cil_lock);
650 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
651 		spin_unlock(&cil->xc_cil_lock);
652 		return;
653 	}
654 
655 	cil->xc_push_seq = push_seq;
656 	spin_unlock(&cil->xc_cil_lock);
657 
658 	/* do the push now */
659 	xlog_cil_push(log);
660 }
661 
662 /*
663  * Commit a transaction with the given vector to the Committed Item List.
664  *
665  * To do this, we need to format the item, pin it in memory if required and
666  * account for the space used by the transaction. Once we have done that we
667  * need to release the unused reservation for the transaction, attach the
668  * transaction to the checkpoint context so we carry the busy extents through
669  * to checkpoint completion, and then unlock all the items in the transaction.
670  *
671  * Called with the context lock already held in read mode to lock out
672  * background commit, returns without it held once background commits are
673  * allowed again.
674  */
675 int
676 xfs_log_commit_cil(
677 	struct xfs_mount	*mp,
678 	struct xfs_trans	*tp,
679 	xfs_lsn_t		*commit_lsn,
680 	int			flags)
681 {
682 	struct xlog		*log = mp->m_log;
683 	int			log_flags = 0;
684 	struct xfs_log_vec	*log_vector;
685 
686 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
687 		log_flags = XFS_LOG_REL_PERM_RESERV;
688 
689 	/*
690 	 * Do all the hard work of formatting items (including memory
691 	 * allocation) outside the CIL context lock. This prevents stalling CIL
692 	 * pushes when we are low on memory and a transaction commit spends a
693 	 * lot of time in memory reclaim.
694 	 */
695 	log_vector = xlog_cil_prepare_log_vecs(tp);
696 	if (!log_vector)
697 		return ENOMEM;
698 
699 	/* lock out background commit */
700 	down_read(&log->l_cilp->xc_ctx_lock);
701 	if (commit_lsn)
702 		*commit_lsn = log->l_cilp->xc_ctx->sequence;
703 
704 	xlog_cil_insert_items(log, log_vector, tp->t_ticket);
705 
706 	/* check we didn't blow the reservation */
707 	if (tp->t_ticket->t_curr_res < 0)
708 		xlog_print_tic_res(log->l_mp, tp->t_ticket);
709 
710 	/* attach the transaction to the CIL if it has any busy extents */
711 	if (!list_empty(&tp->t_busy)) {
712 		spin_lock(&log->l_cilp->xc_cil_lock);
713 		list_splice_init(&tp->t_busy,
714 					&log->l_cilp->xc_ctx->busy_extents);
715 		spin_unlock(&log->l_cilp->xc_cil_lock);
716 	}
717 
718 	tp->t_commit_lsn = *commit_lsn;
719 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
720 	xfs_trans_unreserve_and_mod_sb(tp);
721 
722 	/*
723 	 * Once all the items of the transaction have been copied to the CIL,
724 	 * the items can be unlocked and freed.
725 	 *
726 	 * This needs to be done before we drop the CIL context lock because we
727 	 * have to update state in the log items and unlock them before they go
728 	 * to disk. If we don't, then the CIL checkpoint can race with us and
729 	 * we can run checkpoint completion before we've updated and unlocked
730 	 * the log items. This affects (at least) processing of stale buffers,
731 	 * inodes and EFIs.
732 	 */
733 	xfs_trans_free_items(tp, *commit_lsn, 0);
734 
735 	xlog_cil_push_background(log);
736 
737 	up_read(&log->l_cilp->xc_ctx_lock);
738 	return 0;
739 }
740 
741 /*
742  * Conditionally push the CIL based on the sequence passed in.
743  *
744  * We only need to push if we haven't already pushed the sequence
745  * number given. Hence the only time we will trigger a push here is
746  * if the push sequence is the same as the current context.
747  *
748  * We return the current commit lsn to allow the callers to determine if a
749  * iclog flush is necessary following this call.
750  */
751 xfs_lsn_t
752 xlog_cil_force_lsn(
753 	struct xlog	*log,
754 	xfs_lsn_t	sequence)
755 {
756 	struct xfs_cil		*cil = log->l_cilp;
757 	struct xfs_cil_ctx	*ctx;
758 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
759 
760 	ASSERT(sequence <= cil->xc_current_sequence);
761 
762 	/*
763 	 * check to see if we need to force out the current context.
764 	 * xlog_cil_push() handles racing pushes for the same sequence,
765 	 * so no need to deal with it here.
766 	 */
767 	xlog_cil_push_foreground(log, sequence);
768 
769 	/*
770 	 * See if we can find a previous sequence still committing.
771 	 * We need to wait for all previous sequence commits to complete
772 	 * before allowing the force of push_seq to go ahead. Hence block
773 	 * on commits for those as well.
774 	 */
775 restart:
776 	spin_lock(&cil->xc_cil_lock);
777 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
778 		if (ctx->sequence > sequence)
779 			continue;
780 		if (!ctx->commit_lsn) {
781 			/*
782 			 * It is still being pushed! Wait for the push to
783 			 * complete, then start again from the beginning.
784 			 */
785 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
786 			goto restart;
787 		}
788 		if (ctx->sequence != sequence)
789 			continue;
790 		/* found it! */
791 		commit_lsn = ctx->commit_lsn;
792 	}
793 	spin_unlock(&cil->xc_cil_lock);
794 	return commit_lsn;
795 }
796 
797 /*
798  * Check if the current log item was first committed in this sequence.
799  * We can't rely on just the log item being in the CIL, we have to check
800  * the recorded commit sequence number.
801  *
802  * Note: for this to be used in a non-racy manner, it has to be called with
803  * CIL flushing locked out. As a result, it should only be used during the
804  * transaction commit process when deciding what to format into the item.
805  */
806 bool
807 xfs_log_item_in_current_chkpt(
808 	struct xfs_log_item *lip)
809 {
810 	struct xfs_cil_ctx *ctx;
811 
812 	if (list_empty(&lip->li_cil))
813 		return false;
814 
815 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
816 
817 	/*
818 	 * li_seq is written on the first commit of a log item to record the
819 	 * first checkpoint it is written to. Hence if it is different to the
820 	 * current sequence, we're in a new checkpoint.
821 	 */
822 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
823 		return false;
824 	return true;
825 }
826 
827 /*
828  * Perform initial CIL structure initialisation.
829  */
830 int
831 xlog_cil_init(
832 	struct xlog	*log)
833 {
834 	struct xfs_cil	*cil;
835 	struct xfs_cil_ctx *ctx;
836 
837 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
838 	if (!cil)
839 		return ENOMEM;
840 
841 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
842 	if (!ctx) {
843 		kmem_free(cil);
844 		return ENOMEM;
845 	}
846 
847 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
848 	INIT_LIST_HEAD(&cil->xc_cil);
849 	INIT_LIST_HEAD(&cil->xc_committing);
850 	spin_lock_init(&cil->xc_cil_lock);
851 	init_rwsem(&cil->xc_ctx_lock);
852 	init_waitqueue_head(&cil->xc_commit_wait);
853 
854 	INIT_LIST_HEAD(&ctx->committing);
855 	INIT_LIST_HEAD(&ctx->busy_extents);
856 	ctx->sequence = 1;
857 	ctx->cil = cil;
858 	cil->xc_ctx = ctx;
859 	cil->xc_current_sequence = ctx->sequence;
860 
861 	cil->xc_log = log;
862 	log->l_cilp = cil;
863 	return 0;
864 }
865 
866 void
867 xlog_cil_destroy(
868 	struct xlog	*log)
869 {
870 	if (log->l_cilp->xc_ctx) {
871 		if (log->l_cilp->xc_ctx->ticket)
872 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
873 		kmem_free(log->l_cilp->xc_ctx);
874 	}
875 
876 	ASSERT(list_empty(&log->l_cilp->xc_cil));
877 	kmem_free(log->l_cilp);
878 }
879 
880