xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
41 
42 	/*
43 	 * set the current reservation to zero so we know to steal the basic
44 	 * transaction overhead reservation from the first transaction commit.
45 	 */
46 	tic->t_curr_res = 0;
47 	return tic;
48 }
49 
50 /*
51  * Unavoidable forward declaration - xlog_cil_push_work() calls
52  * xlog_cil_ctx_alloc() itself.
53  */
54 static void xlog_cil_push_work(struct work_struct *work);
55 
56 static struct xfs_cil_ctx *
57 xlog_cil_ctx_alloc(void)
58 {
59 	struct xfs_cil_ctx	*ctx;
60 
61 	ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
62 	INIT_LIST_HEAD(&ctx->committing);
63 	INIT_LIST_HEAD(&ctx->busy_extents);
64 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
65 	return ctx;
66 }
67 
68 static void
69 xlog_cil_ctx_switch(
70 	struct xfs_cil		*cil,
71 	struct xfs_cil_ctx	*ctx)
72 {
73 	ctx->sequence = ++cil->xc_current_sequence;
74 	ctx->cil = cil;
75 	cil->xc_ctx = ctx;
76 }
77 
78 /*
79  * After the first stage of log recovery is done, we know where the head and
80  * tail of the log are. We need this log initialisation done before we can
81  * initialise the first CIL checkpoint context.
82  *
83  * Here we allocate a log ticket to track space usage during a CIL push.  This
84  * ticket is passed to xlog_write() directly so that we don't slowly leak log
85  * space by failing to account for space used by log headers and additional
86  * region headers for split regions.
87  */
88 void
89 xlog_cil_init_post_recovery(
90 	struct xlog	*log)
91 {
92 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
93 	log->l_cilp->xc_ctx->sequence = 1;
94 }
95 
96 static inline int
97 xlog_cil_iovec_space(
98 	uint	niovecs)
99 {
100 	return round_up((sizeof(struct xfs_log_vec) +
101 					niovecs * sizeof(struct xfs_log_iovec)),
102 			sizeof(uint64_t));
103 }
104 
105 /*
106  * Allocate or pin log vector buffers for CIL insertion.
107  *
108  * The CIL currently uses disposable buffers for copying a snapshot of the
109  * modified items into the log during a push. The biggest problem with this is
110  * the requirement to allocate the disposable buffer during the commit if:
111  *	a) does not exist; or
112  *	b) it is too small
113  *
114  * If we do this allocation within xlog_cil_insert_format_items(), it is done
115  * under the xc_ctx_lock, which means that a CIL push cannot occur during
116  * the memory allocation. This means that we have a potential deadlock situation
117  * under low memory conditions when we have lots of dirty metadata pinned in
118  * the CIL and we need a CIL commit to occur to free memory.
119  *
120  * To avoid this, we need to move the memory allocation outside the
121  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
122  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
123  * vector buffers between the check and the formatting of the item into the
124  * log vector buffer within the xc_ctx_lock.
125  *
126  * Because the log vector buffer needs to be unchanged during the CIL push
127  * process, we cannot share the buffer between the transaction commit (which
128  * modifies the buffer) and the CIL push context that is writing the changes
129  * into the log. This means skipping preallocation of buffer space is
130  * unreliable, but we most definitely do not want to be allocating and freeing
131  * buffers unnecessarily during commits when overwrites can be done safely.
132  *
133  * The simplest solution to this problem is to allocate a shadow buffer when a
134  * log item is committed for the second time, and then to only use this buffer
135  * if necessary. The buffer can remain attached to the log item until such time
136  * it is needed, and this is the buffer that is reallocated to match the size of
137  * the incoming modification. Then during the formatting of the item we can swap
138  * the active buffer with the new one if we can't reuse the existing buffer. We
139  * don't free the old buffer as it may be reused on the next modification if
140  * it's size is right, otherwise we'll free and reallocate it at that point.
141  *
142  * This function builds a vector for the changes in each log item in the
143  * transaction. It then works out the length of the buffer needed for each log
144  * item, allocates them and attaches the vector to the log item in preparation
145  * for the formatting step which occurs under the xc_ctx_lock.
146  *
147  * While this means the memory footprint goes up, it avoids the repeated
148  * alloc/free pattern that repeated modifications of an item would otherwise
149  * cause, and hence minimises the CPU overhead of such behaviour.
150  */
151 static void
152 xlog_cil_alloc_shadow_bufs(
153 	struct xlog		*log,
154 	struct xfs_trans	*tp)
155 {
156 	struct xfs_log_item	*lip;
157 
158 	list_for_each_entry(lip, &tp->t_items, li_trans) {
159 		struct xfs_log_vec *lv;
160 		int	niovecs = 0;
161 		int	nbytes = 0;
162 		int	buf_size;
163 		bool	ordered = false;
164 
165 		/* Skip items which aren't dirty in this transaction. */
166 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
167 			continue;
168 
169 		/* get number of vecs and size of data to be stored */
170 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
171 
172 		/*
173 		 * Ordered items need to be tracked but we do not wish to write
174 		 * them. We need a logvec to track the object, but we do not
175 		 * need an iovec or buffer to be allocated for copying data.
176 		 */
177 		if (niovecs == XFS_LOG_VEC_ORDERED) {
178 			ordered = true;
179 			niovecs = 0;
180 			nbytes = 0;
181 		}
182 
183 		/*
184 		 * We 64-bit align the length of each iovec so that the start
185 		 * of the next one is naturally aligned.  We'll need to
186 		 * account for that slack space here. Then round nbytes up
187 		 * to 64-bit alignment so that the initial buffer alignment is
188 		 * easy to calculate and verify.
189 		 */
190 		nbytes += niovecs * sizeof(uint64_t);
191 		nbytes = round_up(nbytes, sizeof(uint64_t));
192 
193 		/*
194 		 * The data buffer needs to start 64-bit aligned, so round up
195 		 * that space to ensure we can align it appropriately and not
196 		 * overrun the buffer.
197 		 */
198 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
199 
200 		/*
201 		 * if we have no shadow buffer, or it is too small, we need to
202 		 * reallocate it.
203 		 */
204 		if (!lip->li_lv_shadow ||
205 		    buf_size > lip->li_lv_shadow->lv_size) {
206 
207 			/*
208 			 * We free and allocate here as a realloc would copy
209 			 * unnecessary data. We don't use kmem_zalloc() for the
210 			 * same reason - we don't need to zero the data area in
211 			 * the buffer, only the log vector header and the iovec
212 			 * storage.
213 			 */
214 			kmem_free(lip->li_lv_shadow);
215 
216 			/*
217 			 * We are in transaction context, which means this
218 			 * allocation will pick up GFP_NOFS from the
219 			 * memalloc_nofs_save/restore context the transaction
220 			 * holds. This means we can use GFP_KERNEL here so the
221 			 * generic kvmalloc() code will run vmalloc on
222 			 * contiguous page allocation failure as we require.
223 			 */
224 			lv = kvmalloc(buf_size, GFP_KERNEL);
225 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
226 
227 			lv->lv_item = lip;
228 			lv->lv_size = buf_size;
229 			if (ordered)
230 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
231 			else
232 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
233 			lip->li_lv_shadow = lv;
234 		} else {
235 			/* same or smaller, optimise common overwrite case */
236 			lv = lip->li_lv_shadow;
237 			if (ordered)
238 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
239 			else
240 				lv->lv_buf_len = 0;
241 			lv->lv_bytes = 0;
242 			lv->lv_next = NULL;
243 		}
244 
245 		/* Ensure the lv is set up according to ->iop_size */
246 		lv->lv_niovecs = niovecs;
247 
248 		/* The allocated data region lies beyond the iovec region */
249 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
250 	}
251 
252 }
253 
254 /*
255  * Prepare the log item for insertion into the CIL. Calculate the difference in
256  * log space and vectors it will consume, and if it is a new item pin it as
257  * well.
258  */
259 STATIC void
260 xfs_cil_prepare_item(
261 	struct xlog		*log,
262 	struct xfs_log_vec	*lv,
263 	struct xfs_log_vec	*old_lv,
264 	int			*diff_len,
265 	int			*diff_iovecs)
266 {
267 	/* Account for the new LV being passed in */
268 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
269 		*diff_len += lv->lv_bytes;
270 		*diff_iovecs += lv->lv_niovecs;
271 	}
272 
273 	/*
274 	 * If there is no old LV, this is the first time we've seen the item in
275 	 * this CIL context and so we need to pin it. If we are replacing the
276 	 * old_lv, then remove the space it accounts for and make it the shadow
277 	 * buffer for later freeing. In both cases we are now switching to the
278 	 * shadow buffer, so update the pointer to it appropriately.
279 	 */
280 	if (!old_lv) {
281 		if (lv->lv_item->li_ops->iop_pin)
282 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
283 		lv->lv_item->li_lv_shadow = NULL;
284 	} else if (old_lv != lv) {
285 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
286 
287 		*diff_len -= old_lv->lv_bytes;
288 		*diff_iovecs -= old_lv->lv_niovecs;
289 		lv->lv_item->li_lv_shadow = old_lv;
290 	}
291 
292 	/* attach new log vector to log item */
293 	lv->lv_item->li_lv = lv;
294 
295 	/*
296 	 * If this is the first time the item is being committed to the
297 	 * CIL, store the sequence number on the log item so we can
298 	 * tell in future commits whether this is the first checkpoint
299 	 * the item is being committed into.
300 	 */
301 	if (!lv->lv_item->li_seq)
302 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
303 }
304 
305 /*
306  * Format log item into a flat buffers
307  *
308  * For delayed logging, we need to hold a formatted buffer containing all the
309  * changes on the log item. This enables us to relog the item in memory and
310  * write it out asynchronously without needing to relock the object that was
311  * modified at the time it gets written into the iclog.
312  *
313  * This function takes the prepared log vectors attached to each log item, and
314  * formats the changes into the log vector buffer. The buffer it uses is
315  * dependent on the current state of the vector in the CIL - the shadow lv is
316  * guaranteed to be large enough for the current modification, but we will only
317  * use that if we can't reuse the existing lv. If we can't reuse the existing
318  * lv, then simple swap it out for the shadow lv. We don't free it - that is
319  * done lazily either by th enext modification or the freeing of the log item.
320  *
321  * We don't set up region headers during this process; we simply copy the
322  * regions into the flat buffer. We can do this because we still have to do a
323  * formatting step to write the regions into the iclog buffer.  Writing the
324  * ophdrs during the iclog write means that we can support splitting large
325  * regions across iclog boundares without needing a change in the format of the
326  * item/region encapsulation.
327  *
328  * Hence what we need to do now is change the rewrite the vector array to point
329  * to the copied region inside the buffer we just allocated. This allows us to
330  * format the regions into the iclog as though they are being formatted
331  * directly out of the objects themselves.
332  */
333 static void
334 xlog_cil_insert_format_items(
335 	struct xlog		*log,
336 	struct xfs_trans	*tp,
337 	int			*diff_len,
338 	int			*diff_iovecs)
339 {
340 	struct xfs_log_item	*lip;
341 
342 
343 	/* Bail out if we didn't find a log item.  */
344 	if (list_empty(&tp->t_items)) {
345 		ASSERT(0);
346 		return;
347 	}
348 
349 	list_for_each_entry(lip, &tp->t_items, li_trans) {
350 		struct xfs_log_vec *lv;
351 		struct xfs_log_vec *old_lv = NULL;
352 		struct xfs_log_vec *shadow;
353 		bool	ordered = false;
354 
355 		/* Skip items which aren't dirty in this transaction. */
356 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
357 			continue;
358 
359 		/*
360 		 * The formatting size information is already attached to
361 		 * the shadow lv on the log item.
362 		 */
363 		shadow = lip->li_lv_shadow;
364 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
365 			ordered = true;
366 
367 		/* Skip items that do not have any vectors for writing */
368 		if (!shadow->lv_niovecs && !ordered)
369 			continue;
370 
371 		/* compare to existing item size */
372 		old_lv = lip->li_lv;
373 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
374 			/* same or smaller, optimise common overwrite case */
375 			lv = lip->li_lv;
376 			lv->lv_next = NULL;
377 
378 			if (ordered)
379 				goto insert;
380 
381 			/*
382 			 * set the item up as though it is a new insertion so
383 			 * that the space reservation accounting is correct.
384 			 */
385 			*diff_iovecs -= lv->lv_niovecs;
386 			*diff_len -= lv->lv_bytes;
387 
388 			/* Ensure the lv is set up according to ->iop_size */
389 			lv->lv_niovecs = shadow->lv_niovecs;
390 
391 			/* reset the lv buffer information for new formatting */
392 			lv->lv_buf_len = 0;
393 			lv->lv_bytes = 0;
394 			lv->lv_buf = (char *)lv +
395 					xlog_cil_iovec_space(lv->lv_niovecs);
396 		} else {
397 			/* switch to shadow buffer! */
398 			lv = shadow;
399 			lv->lv_item = lip;
400 			if (ordered) {
401 				/* track as an ordered logvec */
402 				ASSERT(lip->li_lv == NULL);
403 				goto insert;
404 			}
405 		}
406 
407 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
408 		lip->li_ops->iop_format(lip, lv);
409 insert:
410 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
411 	}
412 }
413 
414 /*
415  * Insert the log items into the CIL and calculate the difference in space
416  * consumed by the item. Add the space to the checkpoint ticket and calculate
417  * if the change requires additional log metadata. If it does, take that space
418  * as well. Remove the amount of space we added to the checkpoint ticket from
419  * the current transaction ticket so that the accounting works out correctly.
420  */
421 static void
422 xlog_cil_insert_items(
423 	struct xlog		*log,
424 	struct xfs_trans	*tp)
425 {
426 	struct xfs_cil		*cil = log->l_cilp;
427 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
428 	struct xfs_log_item	*lip;
429 	int			len = 0;
430 	int			diff_iovecs = 0;
431 	int			iclog_space;
432 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
433 
434 	ASSERT(tp);
435 
436 	/*
437 	 * We can do this safely because the context can't checkpoint until we
438 	 * are done so it doesn't matter exactly how we update the CIL.
439 	 */
440 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
441 
442 	spin_lock(&cil->xc_cil_lock);
443 
444 	/* account for space used by new iovec headers  */
445 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
446 	len += iovhdr_res;
447 	ctx->nvecs += diff_iovecs;
448 
449 	/* attach the transaction to the CIL if it has any busy extents */
450 	if (!list_empty(&tp->t_busy))
451 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
452 
453 	/*
454 	 * Now transfer enough transaction reservation to the context ticket
455 	 * for the checkpoint. The context ticket is special - the unit
456 	 * reservation has to grow as well as the current reservation as we
457 	 * steal from tickets so we can correctly determine the space used
458 	 * during the transaction commit.
459 	 */
460 	if (ctx->ticket->t_curr_res == 0) {
461 		ctx_res = ctx->ticket->t_unit_res;
462 		ctx->ticket->t_curr_res = ctx_res;
463 		tp->t_ticket->t_curr_res -= ctx_res;
464 	}
465 
466 	/* do we need space for more log record headers? */
467 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
468 	if (len > 0 && (ctx->space_used / iclog_space !=
469 				(ctx->space_used + len) / iclog_space)) {
470 		split_res = (len + iclog_space - 1) / iclog_space;
471 		/* need to take into account split region headers, too */
472 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
473 		ctx->ticket->t_unit_res += split_res;
474 		ctx->ticket->t_curr_res += split_res;
475 		tp->t_ticket->t_curr_res -= split_res;
476 		ASSERT(tp->t_ticket->t_curr_res >= len);
477 	}
478 	tp->t_ticket->t_curr_res -= len;
479 	ctx->space_used += len;
480 
481 	/*
482 	 * If we've overrun the reservation, dump the tx details before we move
483 	 * the log items. Shutdown is imminent...
484 	 */
485 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
486 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
487 		xfs_warn(log->l_mp,
488 			 "  log items: %d bytes (iov hdrs: %d bytes)",
489 			 len, iovhdr_res);
490 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
491 			 split_res);
492 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
493 		xlog_print_trans(tp);
494 	}
495 
496 	/*
497 	 * Now (re-)position everything modified at the tail of the CIL.
498 	 * We do this here so we only need to take the CIL lock once during
499 	 * the transaction commit.
500 	 */
501 	list_for_each_entry(lip, &tp->t_items, li_trans) {
502 
503 		/* Skip items which aren't dirty in this transaction. */
504 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
505 			continue;
506 
507 		/*
508 		 * Only move the item if it isn't already at the tail. This is
509 		 * to prevent a transient list_empty() state when reinserting
510 		 * an item that is already the only item in the CIL.
511 		 */
512 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
513 			list_move_tail(&lip->li_cil, &cil->xc_cil);
514 	}
515 
516 	spin_unlock(&cil->xc_cil_lock);
517 
518 	if (tp->t_ticket->t_curr_res < 0)
519 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
520 }
521 
522 static void
523 xlog_cil_free_logvec(
524 	struct xfs_log_vec	*log_vector)
525 {
526 	struct xfs_log_vec	*lv;
527 
528 	for (lv = log_vector; lv; ) {
529 		struct xfs_log_vec *next = lv->lv_next;
530 		kmem_free(lv);
531 		lv = next;
532 	}
533 }
534 
535 static void
536 xlog_discard_endio_work(
537 	struct work_struct	*work)
538 {
539 	struct xfs_cil_ctx	*ctx =
540 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
541 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
542 
543 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
544 	kmem_free(ctx);
545 }
546 
547 /*
548  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
549  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
550  * get the execution delayed up to 30 seconds for weird reasons.
551  */
552 static void
553 xlog_discard_endio(
554 	struct bio		*bio)
555 {
556 	struct xfs_cil_ctx	*ctx = bio->bi_private;
557 
558 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
559 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
560 	bio_put(bio);
561 }
562 
563 static void
564 xlog_discard_busy_extents(
565 	struct xfs_mount	*mp,
566 	struct xfs_cil_ctx	*ctx)
567 {
568 	struct list_head	*list = &ctx->busy_extents;
569 	struct xfs_extent_busy	*busyp;
570 	struct bio		*bio = NULL;
571 	struct blk_plug		plug;
572 	int			error = 0;
573 
574 	ASSERT(xfs_has_discard(mp));
575 
576 	blk_start_plug(&plug);
577 	list_for_each_entry(busyp, list, list) {
578 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
579 					 busyp->length);
580 
581 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
582 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
583 				XFS_FSB_TO_BB(mp, busyp->length),
584 				GFP_NOFS, 0, &bio);
585 		if (error && error != -EOPNOTSUPP) {
586 			xfs_info(mp,
587 	 "discard failed for extent [0x%llx,%u], error %d",
588 				 (unsigned long long)busyp->bno,
589 				 busyp->length,
590 				 error);
591 			break;
592 		}
593 	}
594 
595 	if (bio) {
596 		bio->bi_private = ctx;
597 		bio->bi_end_io = xlog_discard_endio;
598 		submit_bio(bio);
599 	} else {
600 		xlog_discard_endio_work(&ctx->discard_endio_work);
601 	}
602 	blk_finish_plug(&plug);
603 }
604 
605 /*
606  * Mark all items committed and clear busy extents. We free the log vector
607  * chains in a separate pass so that we unpin the log items as quickly as
608  * possible.
609  */
610 static void
611 xlog_cil_committed(
612 	struct xfs_cil_ctx	*ctx)
613 {
614 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
615 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
616 
617 	/*
618 	 * If the I/O failed, we're aborting the commit and already shutdown.
619 	 * Wake any commit waiters before aborting the log items so we don't
620 	 * block async log pushers on callbacks. Async log pushers explicitly do
621 	 * not wait on log force completion because they may be holding locks
622 	 * required to unpin items.
623 	 */
624 	if (abort) {
625 		spin_lock(&ctx->cil->xc_push_lock);
626 		wake_up_all(&ctx->cil->xc_start_wait);
627 		wake_up_all(&ctx->cil->xc_commit_wait);
628 		spin_unlock(&ctx->cil->xc_push_lock);
629 	}
630 
631 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
632 					ctx->start_lsn, abort);
633 
634 	xfs_extent_busy_sort(&ctx->busy_extents);
635 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
636 			      xfs_has_discard(mp) && !abort);
637 
638 	spin_lock(&ctx->cil->xc_push_lock);
639 	list_del(&ctx->committing);
640 	spin_unlock(&ctx->cil->xc_push_lock);
641 
642 	xlog_cil_free_logvec(ctx->lv_chain);
643 
644 	if (!list_empty(&ctx->busy_extents))
645 		xlog_discard_busy_extents(mp, ctx);
646 	else
647 		kmem_free(ctx);
648 }
649 
650 void
651 xlog_cil_process_committed(
652 	struct list_head	*list)
653 {
654 	struct xfs_cil_ctx	*ctx;
655 
656 	while ((ctx = list_first_entry_or_null(list,
657 			struct xfs_cil_ctx, iclog_entry))) {
658 		list_del(&ctx->iclog_entry);
659 		xlog_cil_committed(ctx);
660 	}
661 }
662 
663 /*
664 * Record the LSN of the iclog we were just granted space to start writing into.
665 * If the context doesn't have a start_lsn recorded, then this iclog will
666 * contain the start record for the checkpoint. Otherwise this write contains
667 * the commit record for the checkpoint.
668 */
669 void
670 xlog_cil_set_ctx_write_state(
671 	struct xfs_cil_ctx	*ctx,
672 	struct xlog_in_core	*iclog)
673 {
674 	struct xfs_cil		*cil = ctx->cil;
675 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
676 
677 	ASSERT(!ctx->commit_lsn);
678 	if (!ctx->start_lsn) {
679 		spin_lock(&cil->xc_push_lock);
680 		/*
681 		 * The LSN we need to pass to the log items on transaction
682 		 * commit is the LSN reported by the first log vector write, not
683 		 * the commit lsn. If we use the commit record lsn then we can
684 		 * move the tail beyond the grant write head.
685 		 */
686 		ctx->start_lsn = lsn;
687 		wake_up_all(&cil->xc_start_wait);
688 		spin_unlock(&cil->xc_push_lock);
689 		return;
690 	}
691 
692 	/*
693 	 * Take a reference to the iclog for the context so that we still hold
694 	 * it when xlog_write is done and has released it. This means the
695 	 * context controls when the iclog is released for IO.
696 	 */
697 	atomic_inc(&iclog->ic_refcnt);
698 
699 	/*
700 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
701 	 * iclog for an entire commit record, so we can attach the context
702 	 * callbacks now.  This needs to be done before we make the commit_lsn
703 	 * visible to waiters so that checkpoints with commit records in the
704 	 * same iclog order their IO completion callbacks in the same order that
705 	 * the commit records appear in the iclog.
706 	 */
707 	spin_lock(&cil->xc_log->l_icloglock);
708 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
709 	spin_unlock(&cil->xc_log->l_icloglock);
710 
711 	/*
712 	 * Now we can record the commit LSN and wake anyone waiting for this
713 	 * sequence to have the ordered commit record assigned to a physical
714 	 * location in the log.
715 	 */
716 	spin_lock(&cil->xc_push_lock);
717 	ctx->commit_iclog = iclog;
718 	ctx->commit_lsn = lsn;
719 	wake_up_all(&cil->xc_commit_wait);
720 	spin_unlock(&cil->xc_push_lock);
721 }
722 
723 
724 /*
725  * Ensure that the order of log writes follows checkpoint sequence order. This
726  * relies on the context LSN being zero until the log write has guaranteed the
727  * LSN that the log write will start at via xlog_state_get_iclog_space().
728  */
729 enum _record_type {
730 	_START_RECORD,
731 	_COMMIT_RECORD,
732 };
733 
734 static int
735 xlog_cil_order_write(
736 	struct xfs_cil		*cil,
737 	xfs_csn_t		sequence,
738 	enum _record_type	record)
739 {
740 	struct xfs_cil_ctx	*ctx;
741 
742 restart:
743 	spin_lock(&cil->xc_push_lock);
744 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
745 		/*
746 		 * Avoid getting stuck in this loop because we were woken by the
747 		 * shutdown, but then went back to sleep once already in the
748 		 * shutdown state.
749 		 */
750 		if (xlog_is_shutdown(cil->xc_log)) {
751 			spin_unlock(&cil->xc_push_lock);
752 			return -EIO;
753 		}
754 
755 		/*
756 		 * Higher sequences will wait for this one so skip them.
757 		 * Don't wait for our own sequence, either.
758 		 */
759 		if (ctx->sequence >= sequence)
760 			continue;
761 
762 		/* Wait until the LSN for the record has been recorded. */
763 		switch (record) {
764 		case _START_RECORD:
765 			if (!ctx->start_lsn) {
766 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
767 				goto restart;
768 			}
769 			break;
770 		case _COMMIT_RECORD:
771 			if (!ctx->commit_lsn) {
772 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
773 				goto restart;
774 			}
775 			break;
776 		}
777 	}
778 	spin_unlock(&cil->xc_push_lock);
779 	return 0;
780 }
781 
782 /*
783  * Write out the log vector change now attached to the CIL context. This will
784  * write a start record that needs to be strictly ordered in ascending CIL
785  * sequence order so that log recovery will always use in-order start LSNs when
786  * replaying checkpoints.
787  */
788 static int
789 xlog_cil_write_chain(
790 	struct xfs_cil_ctx	*ctx,
791 	struct xfs_log_vec	*chain)
792 {
793 	struct xlog		*log = ctx->cil->xc_log;
794 	int			error;
795 
796 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
797 	if (error)
798 		return error;
799 	return xlog_write(log, ctx, chain, ctx->ticket, XLOG_START_TRANS);
800 }
801 
802 /*
803  * Write out the commit record of a checkpoint transaction to close off a
804  * running log write. These commit records are strictly ordered in ascending CIL
805  * sequence order so that log recovery will always replay the checkpoints in the
806  * correct order.
807  */
808 static int
809 xlog_cil_write_commit_record(
810 	struct xfs_cil_ctx	*ctx)
811 {
812 	struct xlog		*log = ctx->cil->xc_log;
813 	struct xfs_log_iovec	reg = {
814 		.i_addr = NULL,
815 		.i_len = 0,
816 		.i_type = XLOG_REG_TYPE_COMMIT,
817 	};
818 	struct xfs_log_vec	vec = {
819 		.lv_niovecs = 1,
820 		.lv_iovecp = &reg,
821 	};
822 	int			error;
823 
824 	if (xlog_is_shutdown(log))
825 		return -EIO;
826 
827 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
828 	if (error)
829 		return error;
830 
831 	error = xlog_write(log, ctx, &vec, ctx->ticket, XLOG_COMMIT_TRANS);
832 	if (error)
833 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
834 	return error;
835 }
836 
837 /*
838  * Push the Committed Item List to the log.
839  *
840  * If the current sequence is the same as xc_push_seq we need to do a flush. If
841  * xc_push_seq is less than the current sequence, then it has already been
842  * flushed and we don't need to do anything - the caller will wait for it to
843  * complete if necessary.
844  *
845  * xc_push_seq is checked unlocked against the sequence number for a match.
846  * Hence we can allow log forces to run racily and not issue pushes for the
847  * same sequence twice.  If we get a race between multiple pushes for the same
848  * sequence they will block on the first one and then abort, hence avoiding
849  * needless pushes.
850  */
851 static void
852 xlog_cil_push_work(
853 	struct work_struct	*work)
854 {
855 	struct xfs_cil_ctx	*ctx =
856 		container_of(work, struct xfs_cil_ctx, push_work);
857 	struct xfs_cil		*cil = ctx->cil;
858 	struct xlog		*log = cil->xc_log;
859 	struct xfs_log_vec	*lv;
860 	struct xfs_cil_ctx	*new_ctx;
861 	struct xlog_ticket	*tic;
862 	int			num_iovecs;
863 	int			error = 0;
864 	struct xfs_trans_header thdr;
865 	struct xfs_log_iovec	lhdr;
866 	struct xfs_log_vec	lvhdr = { NULL };
867 	xfs_lsn_t		preflush_tail_lsn;
868 	xfs_csn_t		push_seq;
869 	struct bio		bio;
870 	DECLARE_COMPLETION_ONSTACK(bdev_flush);
871 	bool			push_commit_stable;
872 
873 	new_ctx = xlog_cil_ctx_alloc();
874 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
875 
876 	down_write(&cil->xc_ctx_lock);
877 
878 	spin_lock(&cil->xc_push_lock);
879 	push_seq = cil->xc_push_seq;
880 	ASSERT(push_seq <= ctx->sequence);
881 	push_commit_stable = cil->xc_push_commit_stable;
882 	cil->xc_push_commit_stable = false;
883 
884 	/*
885 	 * As we are about to switch to a new, empty CIL context, we no longer
886 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
887 	 * the hard push throttle may have caught so they can start committing
888 	 * to the new context. The ctx->xc_push_lock provides the serialisation
889 	 * necessary for safely using the lockless waitqueue_active() check in
890 	 * this context.
891 	 */
892 	if (waitqueue_active(&cil->xc_push_wait))
893 		wake_up_all(&cil->xc_push_wait);
894 
895 	/*
896 	 * Check if we've anything to push. If there is nothing, then we don't
897 	 * move on to a new sequence number and so we have to be able to push
898 	 * this sequence again later.
899 	 */
900 	if (list_empty(&cil->xc_cil)) {
901 		cil->xc_push_seq = 0;
902 		spin_unlock(&cil->xc_push_lock);
903 		goto out_skip;
904 	}
905 
906 
907 	/* check for a previously pushed sequence */
908 	if (push_seq < ctx->sequence) {
909 		spin_unlock(&cil->xc_push_lock);
910 		goto out_skip;
911 	}
912 
913 	/*
914 	 * We are now going to push this context, so add it to the committing
915 	 * list before we do anything else. This ensures that anyone waiting on
916 	 * this push can easily detect the difference between a "push in
917 	 * progress" and "CIL is empty, nothing to do".
918 	 *
919 	 * IOWs, a wait loop can now check for:
920 	 *	the current sequence not being found on the committing list;
921 	 *	an empty CIL; and
922 	 *	an unchanged sequence number
923 	 * to detect a push that had nothing to do and therefore does not need
924 	 * waiting on. If the CIL is not empty, we get put on the committing
925 	 * list before emptying the CIL and bumping the sequence number. Hence
926 	 * an empty CIL and an unchanged sequence number means we jumped out
927 	 * above after doing nothing.
928 	 *
929 	 * Hence the waiter will either find the commit sequence on the
930 	 * committing list or the sequence number will be unchanged and the CIL
931 	 * still dirty. In that latter case, the push has not yet started, and
932 	 * so the waiter will have to continue trying to check the CIL
933 	 * committing list until it is found. In extreme cases of delay, the
934 	 * sequence may fully commit between the attempts the wait makes to wait
935 	 * on the commit sequence.
936 	 */
937 	list_add(&ctx->committing, &cil->xc_committing);
938 	spin_unlock(&cil->xc_push_lock);
939 
940 	/*
941 	 * The CIL is stable at this point - nothing new will be added to it
942 	 * because we hold the flush lock exclusively. Hence we can now issue
943 	 * a cache flush to ensure all the completed metadata in the journal we
944 	 * are about to overwrite is on stable storage.
945 	 *
946 	 * Because we are issuing this cache flush before we've written the
947 	 * tail lsn to the iclog, we can have metadata IO completions move the
948 	 * tail forwards between the completion of this flush and the iclog
949 	 * being written. In this case, we need to re-issue the cache flush
950 	 * before the iclog write. To detect whether the log tail moves, sample
951 	 * the tail LSN *before* we issue the flush.
952 	 */
953 	preflush_tail_lsn = atomic64_read(&log->l_tail_lsn);
954 	xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev,
955 				&bdev_flush);
956 
957 	/*
958 	 * Pull all the log vectors off the items in the CIL, and remove the
959 	 * items from the CIL. We don't need the CIL lock here because it's only
960 	 * needed on the transaction commit side which is currently locked out
961 	 * by the flush lock.
962 	 */
963 	lv = NULL;
964 	num_iovecs = 0;
965 	while (!list_empty(&cil->xc_cil)) {
966 		struct xfs_log_item	*item;
967 
968 		item = list_first_entry(&cil->xc_cil,
969 					struct xfs_log_item, li_cil);
970 		list_del_init(&item->li_cil);
971 		if (!ctx->lv_chain)
972 			ctx->lv_chain = item->li_lv;
973 		else
974 			lv->lv_next = item->li_lv;
975 		lv = item->li_lv;
976 		item->li_lv = NULL;
977 		num_iovecs += lv->lv_niovecs;
978 	}
979 
980 	/*
981 	 * Switch the contexts so we can drop the context lock and move out
982 	 * of a shared context. We can't just go straight to the commit record,
983 	 * though - we need to synchronise with previous and future commits so
984 	 * that the commit records are correctly ordered in the log to ensure
985 	 * that we process items during log IO completion in the correct order.
986 	 *
987 	 * For example, if we get an EFI in one checkpoint and the EFD in the
988 	 * next (e.g. due to log forces), we do not want the checkpoint with
989 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
990 	 * we must strictly order the commit records of the checkpoints so
991 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
992 	 * correct order; and b) the checkpoints are replayed in correct order
993 	 * in log recovery.
994 	 *
995 	 * Hence we need to add this context to the committing context list so
996 	 * that higher sequences will wait for us to write out a commit record
997 	 * before they do.
998 	 *
999 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1000 	 * structure atomically with the addition of this sequence to the
1001 	 * committing list. This also ensures that we can do unlocked checks
1002 	 * against the current sequence in log forces without risking
1003 	 * deferencing a freed context pointer.
1004 	 */
1005 	spin_lock(&cil->xc_push_lock);
1006 	xlog_cil_ctx_switch(cil, new_ctx);
1007 	spin_unlock(&cil->xc_push_lock);
1008 	up_write(&cil->xc_ctx_lock);
1009 
1010 	/*
1011 	 * Build a checkpoint transaction header and write it to the log to
1012 	 * begin the transaction. We need to account for the space used by the
1013 	 * transaction header here as it is not accounted for in xlog_write().
1014 	 *
1015 	 * The LSN we need to pass to the log items on transaction commit is
1016 	 * the LSN reported by the first log vector write. If we use the commit
1017 	 * record lsn then we can move the tail beyond the grant write head.
1018 	 */
1019 	tic = ctx->ticket;
1020 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1021 	thdr.th_type = XFS_TRANS_CHECKPOINT;
1022 	thdr.th_tid = tic->t_tid;
1023 	thdr.th_num_items = num_iovecs;
1024 	lhdr.i_addr = &thdr;
1025 	lhdr.i_len = sizeof(xfs_trans_header_t);
1026 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
1027 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
1028 
1029 	lvhdr.lv_niovecs = 1;
1030 	lvhdr.lv_iovecp = &lhdr;
1031 	lvhdr.lv_next = ctx->lv_chain;
1032 
1033 	/*
1034 	 * Before we format and submit the first iclog, we have to ensure that
1035 	 * the metadata writeback ordering cache flush is complete.
1036 	 */
1037 	wait_for_completion(&bdev_flush);
1038 
1039 	error = xlog_cil_write_chain(ctx, &lvhdr);
1040 	if (error)
1041 		goto out_abort_free_ticket;
1042 
1043 	error = xlog_cil_write_commit_record(ctx);
1044 	if (error)
1045 		goto out_abort_free_ticket;
1046 
1047 	xfs_log_ticket_ungrant(log, tic);
1048 
1049 	/*
1050 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1051 	 * to complete before we submit the commit_iclog. We can't use state
1052 	 * checks for this - ACTIVE can be either a past completed iclog or a
1053 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1054 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1055 	 * In the latter case, if it's a future iclog and we wait on it, the we
1056 	 * will hang because it won't get processed through to ic_force_wait
1057 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1058 	 * iclog header lsn and compare it to the commit lsn to determine if we
1059 	 * need to wait on iclogs or not.
1060 	 */
1061 	spin_lock(&log->l_icloglock);
1062 	if (ctx->start_lsn != ctx->commit_lsn) {
1063 		xfs_lsn_t	plsn;
1064 
1065 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1066 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1067 			/*
1068 			 * Waiting on ic_force_wait orders the completion of
1069 			 * iclogs older than ic_prev. Hence we only need to wait
1070 			 * on the most recent older iclog here.
1071 			 */
1072 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1073 			spin_lock(&log->l_icloglock);
1074 		}
1075 
1076 		/*
1077 		 * We need to issue a pre-flush so that the ordering for this
1078 		 * checkpoint is correctly preserved down to stable storage.
1079 		 */
1080 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1081 	}
1082 
1083 	/*
1084 	 * The commit iclog must be written to stable storage to guarantee
1085 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1086 	 * storage.
1087 	 *
1088 	 * If the push caller needs the commit to be immediately stable and the
1089 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1090 	 * will be written when released, switch it's state to WANT_SYNC right
1091 	 * now.
1092 	 */
1093 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1094 	if (push_commit_stable &&
1095 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1096 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1097 	xlog_state_release_iclog(log, ctx->commit_iclog, preflush_tail_lsn);
1098 
1099 	/* Not safe to reference ctx now! */
1100 
1101 	spin_unlock(&log->l_icloglock);
1102 	return;
1103 
1104 out_skip:
1105 	up_write(&cil->xc_ctx_lock);
1106 	xfs_log_ticket_put(new_ctx->ticket);
1107 	kmem_free(new_ctx);
1108 	return;
1109 
1110 out_abort_free_ticket:
1111 	xfs_log_ticket_ungrant(log, tic);
1112 	ASSERT(xlog_is_shutdown(log));
1113 	if (!ctx->commit_iclog) {
1114 		xlog_cil_committed(ctx);
1115 		return;
1116 	}
1117 	spin_lock(&log->l_icloglock);
1118 	xlog_state_release_iclog(log, ctx->commit_iclog, 0);
1119 	/* Not safe to reference ctx now! */
1120 	spin_unlock(&log->l_icloglock);
1121 }
1122 
1123 /*
1124  * We need to push CIL every so often so we don't cache more than we can fit in
1125  * the log. The limit really is that a checkpoint can't be more than half the
1126  * log (the current checkpoint is not allowed to overwrite the previous
1127  * checkpoint), but commit latency and memory usage limit this to a smaller
1128  * size.
1129  */
1130 static void
1131 xlog_cil_push_background(
1132 	struct xlog	*log) __releases(cil->xc_ctx_lock)
1133 {
1134 	struct xfs_cil	*cil = log->l_cilp;
1135 
1136 	/*
1137 	 * The cil won't be empty because we are called while holding the
1138 	 * context lock so whatever we added to the CIL will still be there
1139 	 */
1140 	ASSERT(!list_empty(&cil->xc_cil));
1141 
1142 	/*
1143 	 * Don't do a background push if we haven't used up all the
1144 	 * space available yet.
1145 	 */
1146 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1147 		up_read(&cil->xc_ctx_lock);
1148 		return;
1149 	}
1150 
1151 	spin_lock(&cil->xc_push_lock);
1152 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1153 		cil->xc_push_seq = cil->xc_current_sequence;
1154 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1155 	}
1156 
1157 	/*
1158 	 * Drop the context lock now, we can't hold that if we need to sleep
1159 	 * because we are over the blocking threshold. The push_lock is still
1160 	 * held, so blocking threshold sleep/wakeup is still correctly
1161 	 * serialised here.
1162 	 */
1163 	up_read(&cil->xc_ctx_lock);
1164 
1165 	/*
1166 	 * If we are well over the space limit, throttle the work that is being
1167 	 * done until the push work on this context has begun. Enforce the hard
1168 	 * throttle on all transaction commits once it has been activated, even
1169 	 * if the committing transactions have resulted in the space usage
1170 	 * dipping back down under the hard limit.
1171 	 *
1172 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1173 	 * using the lockless waitqueue_active() check in this context.
1174 	 */
1175 	if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1176 	    waitqueue_active(&cil->xc_push_wait)) {
1177 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1178 		ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1179 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1180 		return;
1181 	}
1182 
1183 	spin_unlock(&cil->xc_push_lock);
1184 
1185 }
1186 
1187 /*
1188  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1189  * number that is passed. When it returns, the work will be queued for
1190  * @push_seq, but it won't be completed.
1191  *
1192  * If the caller is performing a synchronous force, we will flush the workqueue
1193  * to get previously queued work moving to minimise the wait time they will
1194  * undergo waiting for all outstanding pushes to complete. The caller is
1195  * expected to do the required waiting for push_seq to complete.
1196  *
1197  * If the caller is performing an async push, we need to ensure that the
1198  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1199  * don't do this, then the commit record may remain sitting in memory in an
1200  * ACTIVE iclog. This then requires another full log force to push to disk,
1201  * which defeats the purpose of having an async, non-blocking CIL force
1202  * mechanism. Hence in this case we need to pass a flag to the push work to
1203  * indicate it needs to flush the commit record itself.
1204  */
1205 static void
1206 xlog_cil_push_now(
1207 	struct xlog	*log,
1208 	xfs_lsn_t	push_seq,
1209 	bool		async)
1210 {
1211 	struct xfs_cil	*cil = log->l_cilp;
1212 
1213 	if (!cil)
1214 		return;
1215 
1216 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1217 
1218 	/* start on any pending background push to minimise wait time on it */
1219 	if (!async)
1220 		flush_workqueue(cil->xc_push_wq);
1221 
1222 	/*
1223 	 * If the CIL is empty or we've already pushed the sequence then
1224 	 * there's no work we need to do.
1225 	 */
1226 	spin_lock(&cil->xc_push_lock);
1227 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1228 		spin_unlock(&cil->xc_push_lock);
1229 		return;
1230 	}
1231 
1232 	cil->xc_push_seq = push_seq;
1233 	cil->xc_push_commit_stable = async;
1234 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1235 	spin_unlock(&cil->xc_push_lock);
1236 }
1237 
1238 bool
1239 xlog_cil_empty(
1240 	struct xlog	*log)
1241 {
1242 	struct xfs_cil	*cil = log->l_cilp;
1243 	bool		empty = false;
1244 
1245 	spin_lock(&cil->xc_push_lock);
1246 	if (list_empty(&cil->xc_cil))
1247 		empty = true;
1248 	spin_unlock(&cil->xc_push_lock);
1249 	return empty;
1250 }
1251 
1252 /*
1253  * Commit a transaction with the given vector to the Committed Item List.
1254  *
1255  * To do this, we need to format the item, pin it in memory if required and
1256  * account for the space used by the transaction. Once we have done that we
1257  * need to release the unused reservation for the transaction, attach the
1258  * transaction to the checkpoint context so we carry the busy extents through
1259  * to checkpoint completion, and then unlock all the items in the transaction.
1260  *
1261  * Called with the context lock already held in read mode to lock out
1262  * background commit, returns without it held once background commits are
1263  * allowed again.
1264  */
1265 void
1266 xlog_cil_commit(
1267 	struct xlog		*log,
1268 	struct xfs_trans	*tp,
1269 	xfs_csn_t		*commit_seq,
1270 	bool			regrant)
1271 {
1272 	struct xfs_cil		*cil = log->l_cilp;
1273 	struct xfs_log_item	*lip, *next;
1274 
1275 	/*
1276 	 * Do all necessary memory allocation before we lock the CIL.
1277 	 * This ensures the allocation does not deadlock with a CIL
1278 	 * push in memory reclaim (e.g. from kswapd).
1279 	 */
1280 	xlog_cil_alloc_shadow_bufs(log, tp);
1281 
1282 	/* lock out background commit */
1283 	down_read(&cil->xc_ctx_lock);
1284 
1285 	xlog_cil_insert_items(log, tp);
1286 
1287 	if (regrant && !xlog_is_shutdown(log))
1288 		xfs_log_ticket_regrant(log, tp->t_ticket);
1289 	else
1290 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1291 	tp->t_ticket = NULL;
1292 	xfs_trans_unreserve_and_mod_sb(tp);
1293 
1294 	/*
1295 	 * Once all the items of the transaction have been copied to the CIL,
1296 	 * the items can be unlocked and possibly freed.
1297 	 *
1298 	 * This needs to be done before we drop the CIL context lock because we
1299 	 * have to update state in the log items and unlock them before they go
1300 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1301 	 * we can run checkpoint completion before we've updated and unlocked
1302 	 * the log items. This affects (at least) processing of stale buffers,
1303 	 * inodes and EFIs.
1304 	 */
1305 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1306 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1307 		xfs_trans_del_item(lip);
1308 		if (lip->li_ops->iop_committing)
1309 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1310 	}
1311 	if (commit_seq)
1312 		*commit_seq = cil->xc_ctx->sequence;
1313 
1314 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1315 	xlog_cil_push_background(log);
1316 }
1317 
1318 /*
1319  * Flush the CIL to stable storage but don't wait for it to complete. This
1320  * requires the CIL push to ensure the commit record for the push hits the disk,
1321  * but otherwise is no different to a push done from a log force.
1322  */
1323 void
1324 xlog_cil_flush(
1325 	struct xlog	*log)
1326 {
1327 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1328 
1329 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1330 	xlog_cil_push_now(log, seq, true);
1331 }
1332 
1333 /*
1334  * Conditionally push the CIL based on the sequence passed in.
1335  *
1336  * We only need to push if we haven't already pushed the sequence number given.
1337  * Hence the only time we will trigger a push here is if the push sequence is
1338  * the same as the current context.
1339  *
1340  * We return the current commit lsn to allow the callers to determine if a
1341  * iclog flush is necessary following this call.
1342  */
1343 xfs_lsn_t
1344 xlog_cil_force_seq(
1345 	struct xlog	*log,
1346 	xfs_csn_t	sequence)
1347 {
1348 	struct xfs_cil		*cil = log->l_cilp;
1349 	struct xfs_cil_ctx	*ctx;
1350 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1351 
1352 	ASSERT(sequence <= cil->xc_current_sequence);
1353 
1354 	if (!sequence)
1355 		sequence = cil->xc_current_sequence;
1356 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1357 
1358 	/*
1359 	 * check to see if we need to force out the current context.
1360 	 * xlog_cil_push() handles racing pushes for the same sequence,
1361 	 * so no need to deal with it here.
1362 	 */
1363 restart:
1364 	xlog_cil_push_now(log, sequence, false);
1365 
1366 	/*
1367 	 * See if we can find a previous sequence still committing.
1368 	 * We need to wait for all previous sequence commits to complete
1369 	 * before allowing the force of push_seq to go ahead. Hence block
1370 	 * on commits for those as well.
1371 	 */
1372 	spin_lock(&cil->xc_push_lock);
1373 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1374 		/*
1375 		 * Avoid getting stuck in this loop because we were woken by the
1376 		 * shutdown, but then went back to sleep once already in the
1377 		 * shutdown state.
1378 		 */
1379 		if (xlog_is_shutdown(log))
1380 			goto out_shutdown;
1381 		if (ctx->sequence > sequence)
1382 			continue;
1383 		if (!ctx->commit_lsn) {
1384 			/*
1385 			 * It is still being pushed! Wait for the push to
1386 			 * complete, then start again from the beginning.
1387 			 */
1388 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1389 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1390 			goto restart;
1391 		}
1392 		if (ctx->sequence != sequence)
1393 			continue;
1394 		/* found it! */
1395 		commit_lsn = ctx->commit_lsn;
1396 	}
1397 
1398 	/*
1399 	 * The call to xlog_cil_push_now() executes the push in the background.
1400 	 * Hence by the time we have got here it our sequence may not have been
1401 	 * pushed yet. This is true if the current sequence still matches the
1402 	 * push sequence after the above wait loop and the CIL still contains
1403 	 * dirty objects. This is guaranteed by the push code first adding the
1404 	 * context to the committing list before emptying the CIL.
1405 	 *
1406 	 * Hence if we don't find the context in the committing list and the
1407 	 * current sequence number is unchanged then the CIL contents are
1408 	 * significant.  If the CIL is empty, if means there was nothing to push
1409 	 * and that means there is nothing to wait for. If the CIL is not empty,
1410 	 * it means we haven't yet started the push, because if it had started
1411 	 * we would have found the context on the committing list.
1412 	 */
1413 	if (sequence == cil->xc_current_sequence &&
1414 	    !list_empty(&cil->xc_cil)) {
1415 		spin_unlock(&cil->xc_push_lock);
1416 		goto restart;
1417 	}
1418 
1419 	spin_unlock(&cil->xc_push_lock);
1420 	return commit_lsn;
1421 
1422 	/*
1423 	 * We detected a shutdown in progress. We need to trigger the log force
1424 	 * to pass through it's iclog state machine error handling, even though
1425 	 * we are already in a shutdown state. Hence we can't return
1426 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1427 	 * LSN is already stable), so we return a zero LSN instead.
1428 	 */
1429 out_shutdown:
1430 	spin_unlock(&cil->xc_push_lock);
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Check if the current log item was first committed in this sequence.
1436  * We can't rely on just the log item being in the CIL, we have to check
1437  * the recorded commit sequence number.
1438  *
1439  * Note: for this to be used in a non-racy manner, it has to be called with
1440  * CIL flushing locked out. As a result, it should only be used during the
1441  * transaction commit process when deciding what to format into the item.
1442  */
1443 bool
1444 xfs_log_item_in_current_chkpt(
1445 	struct xfs_log_item *lip)
1446 {
1447 	struct xfs_cil_ctx *ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1448 
1449 	if (list_empty(&lip->li_cil))
1450 		return false;
1451 
1452 	/*
1453 	 * li_seq is written on the first commit of a log item to record the
1454 	 * first checkpoint it is written to. Hence if it is different to the
1455 	 * current sequence, we're in a new checkpoint.
1456 	 */
1457 	return lip->li_seq == ctx->sequence;
1458 }
1459 
1460 /*
1461  * Perform initial CIL structure initialisation.
1462  */
1463 int
1464 xlog_cil_init(
1465 	struct xlog	*log)
1466 {
1467 	struct xfs_cil	*cil;
1468 	struct xfs_cil_ctx *ctx;
1469 
1470 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1471 	if (!cil)
1472 		return -ENOMEM;
1473 	/*
1474 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1475 	 * concurrency the log spinlocks will be exposed to.
1476 	 */
1477 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1478 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1479 			4, log->l_mp->m_super->s_id);
1480 	if (!cil->xc_push_wq)
1481 		goto out_destroy_cil;
1482 
1483 	INIT_LIST_HEAD(&cil->xc_cil);
1484 	INIT_LIST_HEAD(&cil->xc_committing);
1485 	spin_lock_init(&cil->xc_cil_lock);
1486 	spin_lock_init(&cil->xc_push_lock);
1487 	init_waitqueue_head(&cil->xc_push_wait);
1488 	init_rwsem(&cil->xc_ctx_lock);
1489 	init_waitqueue_head(&cil->xc_start_wait);
1490 	init_waitqueue_head(&cil->xc_commit_wait);
1491 	cil->xc_log = log;
1492 	log->l_cilp = cil;
1493 
1494 	ctx = xlog_cil_ctx_alloc();
1495 	xlog_cil_ctx_switch(cil, ctx);
1496 
1497 	return 0;
1498 
1499 out_destroy_cil:
1500 	kmem_free(cil);
1501 	return -ENOMEM;
1502 }
1503 
1504 void
1505 xlog_cil_destroy(
1506 	struct xlog	*log)
1507 {
1508 	if (log->l_cilp->xc_ctx) {
1509 		if (log->l_cilp->xc_ctx->ticket)
1510 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1511 		kmem_free(log->l_cilp->xc_ctx);
1512 	}
1513 
1514 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1515 	destroy_workqueue(log->l_cilp->xc_push_wq);
1516 	kmem_free(log->l_cilp);
1517 }
1518 
1519