1 /* 2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write the Free Software Foundation, 15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 16 */ 17 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_alloc.h" 32 33 /* 34 * Perform initial CIL structure initialisation. If the CIL is not 35 * enabled in this filesystem, ensure the log->l_cilp is null so 36 * we can check this conditional to determine if we are doing delayed 37 * logging or not. 38 */ 39 int 40 xlog_cil_init( 41 struct log *log) 42 { 43 struct xfs_cil *cil; 44 struct xfs_cil_ctx *ctx; 45 46 log->l_cilp = NULL; 47 if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG)) 48 return 0; 49 50 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); 51 if (!cil) 52 return ENOMEM; 53 54 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); 55 if (!ctx) { 56 kmem_free(cil); 57 return ENOMEM; 58 } 59 60 INIT_LIST_HEAD(&cil->xc_cil); 61 INIT_LIST_HEAD(&cil->xc_committing); 62 spin_lock_init(&cil->xc_cil_lock); 63 init_rwsem(&cil->xc_ctx_lock); 64 sv_init(&cil->xc_commit_wait, SV_DEFAULT, "cilwait"); 65 66 INIT_LIST_HEAD(&ctx->committing); 67 INIT_LIST_HEAD(&ctx->busy_extents); 68 ctx->sequence = 1; 69 ctx->cil = cil; 70 cil->xc_ctx = ctx; 71 cil->xc_current_sequence = ctx->sequence; 72 73 cil->xc_log = log; 74 log->l_cilp = cil; 75 return 0; 76 } 77 78 void 79 xlog_cil_destroy( 80 struct log *log) 81 { 82 if (!log->l_cilp) 83 return; 84 85 if (log->l_cilp->xc_ctx) { 86 if (log->l_cilp->xc_ctx->ticket) 87 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 88 kmem_free(log->l_cilp->xc_ctx); 89 } 90 91 ASSERT(list_empty(&log->l_cilp->xc_cil)); 92 kmem_free(log->l_cilp); 93 } 94 95 /* 96 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 97 * recover, so we don't allow failure here. Also, we allocate in a context that 98 * we don't want to be issuing transactions from, so we need to tell the 99 * allocation code this as well. 100 * 101 * We don't reserve any space for the ticket - we are going to steal whatever 102 * space we require from transactions as they commit. To ensure we reserve all 103 * the space required, we need to set the current reservation of the ticket to 104 * zero so that we know to steal the initial transaction overhead from the 105 * first transaction commit. 106 */ 107 static struct xlog_ticket * 108 xlog_cil_ticket_alloc( 109 struct log *log) 110 { 111 struct xlog_ticket *tic; 112 113 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, 114 KM_SLEEP|KM_NOFS); 115 tic->t_trans_type = XFS_TRANS_CHECKPOINT; 116 117 /* 118 * set the current reservation to zero so we know to steal the basic 119 * transaction overhead reservation from the first transaction commit. 120 */ 121 tic->t_curr_res = 0; 122 return tic; 123 } 124 125 /* 126 * After the first stage of log recovery is done, we know where the head and 127 * tail of the log are. We need this log initialisation done before we can 128 * initialise the first CIL checkpoint context. 129 * 130 * Here we allocate a log ticket to track space usage during a CIL push. This 131 * ticket is passed to xlog_write() directly so that we don't slowly leak log 132 * space by failing to account for space used by log headers and additional 133 * region headers for split regions. 134 */ 135 void 136 xlog_cil_init_post_recovery( 137 struct log *log) 138 { 139 if (!log->l_cilp) 140 return; 141 142 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 143 log->l_cilp->xc_ctx->sequence = 1; 144 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, 145 log->l_curr_block); 146 } 147 148 /* 149 * Format log item into a flat buffers 150 * 151 * For delayed logging, we need to hold a formatted buffer containing all the 152 * changes on the log item. This enables us to relog the item in memory and 153 * write it out asynchronously without needing to relock the object that was 154 * modified at the time it gets written into the iclog. 155 * 156 * This function builds a vector for the changes in each log item in the 157 * transaction. It then works out the length of the buffer needed for each log 158 * item, allocates them and formats the vector for the item into the buffer. 159 * The buffer is then attached to the log item are then inserted into the 160 * Committed Item List for tracking until the next checkpoint is written out. 161 * 162 * We don't set up region headers during this process; we simply copy the 163 * regions into the flat buffer. We can do this because we still have to do a 164 * formatting step to write the regions into the iclog buffer. Writing the 165 * ophdrs during the iclog write means that we can support splitting large 166 * regions across iclog boundares without needing a change in the format of the 167 * item/region encapsulation. 168 * 169 * Hence what we need to do now is change the rewrite the vector array to point 170 * to the copied region inside the buffer we just allocated. This allows us to 171 * format the regions into the iclog as though they are being formatted 172 * directly out of the objects themselves. 173 */ 174 static void 175 xlog_cil_format_items( 176 struct log *log, 177 struct xfs_log_vec *log_vector) 178 { 179 struct xfs_log_vec *lv; 180 181 ASSERT(log_vector); 182 for (lv = log_vector; lv; lv = lv->lv_next) { 183 void *ptr; 184 int index; 185 int len = 0; 186 187 /* build the vector array and calculate it's length */ 188 IOP_FORMAT(lv->lv_item, lv->lv_iovecp); 189 for (index = 0; index < lv->lv_niovecs; index++) 190 len += lv->lv_iovecp[index].i_len; 191 192 lv->lv_buf_len = len; 193 lv->lv_buf = kmem_alloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS); 194 ptr = lv->lv_buf; 195 196 for (index = 0; index < lv->lv_niovecs; index++) { 197 struct xfs_log_iovec *vec = &lv->lv_iovecp[index]; 198 199 memcpy(ptr, vec->i_addr, vec->i_len); 200 vec->i_addr = ptr; 201 ptr += vec->i_len; 202 } 203 ASSERT(ptr == lv->lv_buf + lv->lv_buf_len); 204 } 205 } 206 207 /* 208 * Prepare the log item for insertion into the CIL. Calculate the difference in 209 * log space and vectors it will consume, and if it is a new item pin it as 210 * well. 211 */ 212 STATIC void 213 xfs_cil_prepare_item( 214 struct log *log, 215 struct xfs_log_vec *lv, 216 int *len, 217 int *diff_iovecs) 218 { 219 struct xfs_log_vec *old = lv->lv_item->li_lv; 220 221 if (old) { 222 /* existing lv on log item, space used is a delta */ 223 ASSERT(!list_empty(&lv->lv_item->li_cil)); 224 ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs); 225 226 *len += lv->lv_buf_len - old->lv_buf_len; 227 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs; 228 kmem_free(old->lv_buf); 229 kmem_free(old); 230 } else { 231 /* new lv, must pin the log item */ 232 ASSERT(!lv->lv_item->li_lv); 233 ASSERT(list_empty(&lv->lv_item->li_cil)); 234 235 *len += lv->lv_buf_len; 236 *diff_iovecs += lv->lv_niovecs; 237 IOP_PIN(lv->lv_item); 238 239 } 240 241 /* attach new log vector to log item */ 242 lv->lv_item->li_lv = lv; 243 244 /* 245 * If this is the first time the item is being committed to the 246 * CIL, store the sequence number on the log item so we can 247 * tell in future commits whether this is the first checkpoint 248 * the item is being committed into. 249 */ 250 if (!lv->lv_item->li_seq) 251 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 252 } 253 254 /* 255 * Insert the log items into the CIL and calculate the difference in space 256 * consumed by the item. Add the space to the checkpoint ticket and calculate 257 * if the change requires additional log metadata. If it does, take that space 258 * as well. Remove the amount of space we addded to the checkpoint ticket from 259 * the current transaction ticket so that the accounting works out correctly. 260 */ 261 static void 262 xlog_cil_insert_items( 263 struct log *log, 264 struct xfs_log_vec *log_vector, 265 struct xlog_ticket *ticket) 266 { 267 struct xfs_cil *cil = log->l_cilp; 268 struct xfs_cil_ctx *ctx = cil->xc_ctx; 269 struct xfs_log_vec *lv; 270 int len = 0; 271 int diff_iovecs = 0; 272 int iclog_space; 273 274 ASSERT(log_vector); 275 276 /* 277 * Do all the accounting aggregation and switching of log vectors 278 * around in a separate loop to the insertion of items into the CIL. 279 * Then we can do a separate loop to update the CIL within a single 280 * lock/unlock pair. This reduces the number of round trips on the CIL 281 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall 282 * hold time for the transaction commit. 283 * 284 * If this is the first time the item is being placed into the CIL in 285 * this context, pin it so it can't be written to disk until the CIL is 286 * flushed to the iclog and the iclog written to disk. 287 * 288 * We can do this safely because the context can't checkpoint until we 289 * are done so it doesn't matter exactly how we update the CIL. 290 */ 291 for (lv = log_vector; lv; lv = lv->lv_next) 292 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs); 293 294 /* account for space used by new iovec headers */ 295 len += diff_iovecs * sizeof(xlog_op_header_t); 296 297 spin_lock(&cil->xc_cil_lock); 298 299 /* move the items to the tail of the CIL */ 300 for (lv = log_vector; lv; lv = lv->lv_next) 301 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil); 302 303 ctx->nvecs += diff_iovecs; 304 305 /* 306 * Now transfer enough transaction reservation to the context ticket 307 * for the checkpoint. The context ticket is special - the unit 308 * reservation has to grow as well as the current reservation as we 309 * steal from tickets so we can correctly determine the space used 310 * during the transaction commit. 311 */ 312 if (ctx->ticket->t_curr_res == 0) { 313 /* first commit in checkpoint, steal the header reservation */ 314 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len); 315 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; 316 ticket->t_curr_res -= ctx->ticket->t_unit_res; 317 } 318 319 /* do we need space for more log record headers? */ 320 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 321 if (len > 0 && (ctx->space_used / iclog_space != 322 (ctx->space_used + len) / iclog_space)) { 323 int hdrs; 324 325 hdrs = (len + iclog_space - 1) / iclog_space; 326 /* need to take into account split region headers, too */ 327 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 328 ctx->ticket->t_unit_res += hdrs; 329 ctx->ticket->t_curr_res += hdrs; 330 ticket->t_curr_res -= hdrs; 331 ASSERT(ticket->t_curr_res >= len); 332 } 333 ticket->t_curr_res -= len; 334 ctx->space_used += len; 335 336 spin_unlock(&cil->xc_cil_lock); 337 } 338 339 static void 340 xlog_cil_free_logvec( 341 struct xfs_log_vec *log_vector) 342 { 343 struct xfs_log_vec *lv; 344 345 for (lv = log_vector; lv; ) { 346 struct xfs_log_vec *next = lv->lv_next; 347 kmem_free(lv->lv_buf); 348 kmem_free(lv); 349 lv = next; 350 } 351 } 352 353 /* 354 * Mark all items committed and clear busy extents. We free the log vector 355 * chains in a separate pass so that we unpin the log items as quickly as 356 * possible. 357 */ 358 static void 359 xlog_cil_committed( 360 void *args, 361 int abort) 362 { 363 struct xfs_cil_ctx *ctx = args; 364 struct xfs_log_vec *lv; 365 int abortflag = abort ? XFS_LI_ABORTED : 0; 366 struct xfs_busy_extent *busyp, *n; 367 368 /* unpin all the log items */ 369 for (lv = ctx->lv_chain; lv; lv = lv->lv_next ) { 370 xfs_trans_item_committed(lv->lv_item, ctx->start_lsn, 371 abortflag); 372 } 373 374 list_for_each_entry_safe(busyp, n, &ctx->busy_extents, list) 375 xfs_alloc_busy_clear(ctx->cil->xc_log->l_mp, busyp); 376 377 spin_lock(&ctx->cil->xc_cil_lock); 378 list_del(&ctx->committing); 379 spin_unlock(&ctx->cil->xc_cil_lock); 380 381 xlog_cil_free_logvec(ctx->lv_chain); 382 kmem_free(ctx); 383 } 384 385 /* 386 * Push the Committed Item List to the log. If @push_seq flag is zero, then it 387 * is a background flush and so we can chose to ignore it. Otherwise, if the 388 * current sequence is the same as @push_seq we need to do a flush. If 389 * @push_seq is less than the current sequence, then it has already been 390 * flushed and we don't need to do anything - the caller will wait for it to 391 * complete if necessary. 392 * 393 * @push_seq is a value rather than a flag because that allows us to do an 394 * unlocked check of the sequence number for a match. Hence we can allows log 395 * forces to run racily and not issue pushes for the same sequence twice. If we 396 * get a race between multiple pushes for the same sequence they will block on 397 * the first one and then abort, hence avoiding needless pushes. 398 */ 399 STATIC int 400 xlog_cil_push( 401 struct log *log, 402 xfs_lsn_t push_seq) 403 { 404 struct xfs_cil *cil = log->l_cilp; 405 struct xfs_log_vec *lv; 406 struct xfs_cil_ctx *ctx; 407 struct xfs_cil_ctx *new_ctx; 408 struct xlog_in_core *commit_iclog; 409 struct xlog_ticket *tic; 410 int num_lv; 411 int num_iovecs; 412 int len; 413 int error = 0; 414 struct xfs_trans_header thdr; 415 struct xfs_log_iovec lhdr; 416 struct xfs_log_vec lvhdr = { NULL }; 417 xfs_lsn_t commit_lsn; 418 419 if (!cil) 420 return 0; 421 422 ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence); 423 424 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); 425 new_ctx->ticket = xlog_cil_ticket_alloc(log); 426 427 /* 428 * Lock out transaction commit, but don't block for background pushes 429 * unless we are well over the CIL space limit. See the definition of 430 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic 431 * used here. 432 */ 433 if (!down_write_trylock(&cil->xc_ctx_lock)) { 434 if (!push_seq && 435 cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log)) 436 goto out_free_ticket; 437 down_write(&cil->xc_ctx_lock); 438 } 439 ctx = cil->xc_ctx; 440 441 /* check if we've anything to push */ 442 if (list_empty(&cil->xc_cil)) 443 goto out_skip; 444 445 /* check for spurious background flush */ 446 if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) 447 goto out_skip; 448 449 /* check for a previously pushed seqeunce */ 450 if (push_seq && push_seq < cil->xc_ctx->sequence) 451 goto out_skip; 452 453 /* 454 * pull all the log vectors off the items in the CIL, and 455 * remove the items from the CIL. We don't need the CIL lock 456 * here because it's only needed on the transaction commit 457 * side which is currently locked out by the flush lock. 458 */ 459 lv = NULL; 460 num_lv = 0; 461 num_iovecs = 0; 462 len = 0; 463 while (!list_empty(&cil->xc_cil)) { 464 struct xfs_log_item *item; 465 int i; 466 467 item = list_first_entry(&cil->xc_cil, 468 struct xfs_log_item, li_cil); 469 list_del_init(&item->li_cil); 470 if (!ctx->lv_chain) 471 ctx->lv_chain = item->li_lv; 472 else 473 lv->lv_next = item->li_lv; 474 lv = item->li_lv; 475 item->li_lv = NULL; 476 477 num_lv++; 478 num_iovecs += lv->lv_niovecs; 479 for (i = 0; i < lv->lv_niovecs; i++) 480 len += lv->lv_iovecp[i].i_len; 481 } 482 483 /* 484 * initialise the new context and attach it to the CIL. Then attach 485 * the current context to the CIL committing lsit so it can be found 486 * during log forces to extract the commit lsn of the sequence that 487 * needs to be forced. 488 */ 489 INIT_LIST_HEAD(&new_ctx->committing); 490 INIT_LIST_HEAD(&new_ctx->busy_extents); 491 new_ctx->sequence = ctx->sequence + 1; 492 new_ctx->cil = cil; 493 cil->xc_ctx = new_ctx; 494 495 /* 496 * mirror the new sequence into the cil structure so that we can do 497 * unlocked checks against the current sequence in log forces without 498 * risking deferencing a freed context pointer. 499 */ 500 cil->xc_current_sequence = new_ctx->sequence; 501 502 /* 503 * The switch is now done, so we can drop the context lock and move out 504 * of a shared context. We can't just go straight to the commit record, 505 * though - we need to synchronise with previous and future commits so 506 * that the commit records are correctly ordered in the log to ensure 507 * that we process items during log IO completion in the correct order. 508 * 509 * For example, if we get an EFI in one checkpoint and the EFD in the 510 * next (e.g. due to log forces), we do not want the checkpoint with 511 * the EFD to be committed before the checkpoint with the EFI. Hence 512 * we must strictly order the commit records of the checkpoints so 513 * that: a) the checkpoint callbacks are attached to the iclogs in the 514 * correct order; and b) the checkpoints are replayed in correct order 515 * in log recovery. 516 * 517 * Hence we need to add this context to the committing context list so 518 * that higher sequences will wait for us to write out a commit record 519 * before they do. 520 */ 521 spin_lock(&cil->xc_cil_lock); 522 list_add(&ctx->committing, &cil->xc_committing); 523 spin_unlock(&cil->xc_cil_lock); 524 up_write(&cil->xc_ctx_lock); 525 526 /* 527 * Build a checkpoint transaction header and write it to the log to 528 * begin the transaction. We need to account for the space used by the 529 * transaction header here as it is not accounted for in xlog_write(). 530 * 531 * The LSN we need to pass to the log items on transaction commit is 532 * the LSN reported by the first log vector write. If we use the commit 533 * record lsn then we can move the tail beyond the grant write head. 534 */ 535 tic = ctx->ticket; 536 thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 537 thdr.th_type = XFS_TRANS_CHECKPOINT; 538 thdr.th_tid = tic->t_tid; 539 thdr.th_num_items = num_iovecs; 540 lhdr.i_addr = &thdr; 541 lhdr.i_len = sizeof(xfs_trans_header_t); 542 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; 543 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); 544 545 lvhdr.lv_niovecs = 1; 546 lvhdr.lv_iovecp = &lhdr; 547 lvhdr.lv_next = ctx->lv_chain; 548 549 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); 550 if (error) 551 goto out_abort; 552 553 /* 554 * now that we've written the checkpoint into the log, strictly 555 * order the commit records so replay will get them in the right order. 556 */ 557 restart: 558 spin_lock(&cil->xc_cil_lock); 559 list_for_each_entry(new_ctx, &cil->xc_committing, committing) { 560 /* 561 * Higher sequences will wait for this one so skip them. 562 * Don't wait for own own sequence, either. 563 */ 564 if (new_ctx->sequence >= ctx->sequence) 565 continue; 566 if (!new_ctx->commit_lsn) { 567 /* 568 * It is still being pushed! Wait for the push to 569 * complete, then start again from the beginning. 570 */ 571 sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0); 572 goto restart; 573 } 574 } 575 spin_unlock(&cil->xc_cil_lock); 576 577 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); 578 if (error || commit_lsn == -1) 579 goto out_abort; 580 581 /* attach all the transactions w/ busy extents to iclog */ 582 ctx->log_cb.cb_func = xlog_cil_committed; 583 ctx->log_cb.cb_arg = ctx; 584 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); 585 if (error) 586 goto out_abort; 587 588 /* 589 * now the checkpoint commit is complete and we've attached the 590 * callbacks to the iclog we can assign the commit LSN to the context 591 * and wake up anyone who is waiting for the commit to complete. 592 */ 593 spin_lock(&cil->xc_cil_lock); 594 ctx->commit_lsn = commit_lsn; 595 sv_broadcast(&cil->xc_commit_wait); 596 spin_unlock(&cil->xc_cil_lock); 597 598 /* release the hounds! */ 599 return xfs_log_release_iclog(log->l_mp, commit_iclog); 600 601 out_skip: 602 up_write(&cil->xc_ctx_lock); 603 out_free_ticket: 604 xfs_log_ticket_put(new_ctx->ticket); 605 kmem_free(new_ctx); 606 return 0; 607 608 out_abort: 609 xlog_cil_committed(ctx, XFS_LI_ABORTED); 610 return XFS_ERROR(EIO); 611 } 612 613 /* 614 * Commit a transaction with the given vector to the Committed Item List. 615 * 616 * To do this, we need to format the item, pin it in memory if required and 617 * account for the space used by the transaction. Once we have done that we 618 * need to release the unused reservation for the transaction, attach the 619 * transaction to the checkpoint context so we carry the busy extents through 620 * to checkpoint completion, and then unlock all the items in the transaction. 621 * 622 * For more specific information about the order of operations in 623 * xfs_log_commit_cil() please refer to the comments in 624 * xfs_trans_commit_iclog(). 625 * 626 * Called with the context lock already held in read mode to lock out 627 * background commit, returns without it held once background commits are 628 * allowed again. 629 */ 630 int 631 xfs_log_commit_cil( 632 struct xfs_mount *mp, 633 struct xfs_trans *tp, 634 struct xfs_log_vec *log_vector, 635 xfs_lsn_t *commit_lsn, 636 int flags) 637 { 638 struct log *log = mp->m_log; 639 int log_flags = 0; 640 int push = 0; 641 642 if (flags & XFS_TRANS_RELEASE_LOG_RES) 643 log_flags = XFS_LOG_REL_PERM_RESERV; 644 645 if (XLOG_FORCED_SHUTDOWN(log)) { 646 xlog_cil_free_logvec(log_vector); 647 return XFS_ERROR(EIO); 648 } 649 650 /* 651 * do all the hard work of formatting items (including memory 652 * allocation) outside the CIL context lock. This prevents stalling CIL 653 * pushes when we are low on memory and a transaction commit spends a 654 * lot of time in memory reclaim. 655 */ 656 xlog_cil_format_items(log, log_vector); 657 658 /* lock out background commit */ 659 down_read(&log->l_cilp->xc_ctx_lock); 660 if (commit_lsn) 661 *commit_lsn = log->l_cilp->xc_ctx->sequence; 662 663 xlog_cil_insert_items(log, log_vector, tp->t_ticket); 664 665 /* check we didn't blow the reservation */ 666 if (tp->t_ticket->t_curr_res < 0) 667 xlog_print_tic_res(log->l_mp, tp->t_ticket); 668 669 /* attach the transaction to the CIL if it has any busy extents */ 670 if (!list_empty(&tp->t_busy)) { 671 spin_lock(&log->l_cilp->xc_cil_lock); 672 list_splice_init(&tp->t_busy, 673 &log->l_cilp->xc_ctx->busy_extents); 674 spin_unlock(&log->l_cilp->xc_cil_lock); 675 } 676 677 tp->t_commit_lsn = *commit_lsn; 678 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 679 xfs_trans_unreserve_and_mod_sb(tp); 680 681 /* 682 * Once all the items of the transaction have been copied to the CIL, 683 * the items can be unlocked and freed. 684 * 685 * This needs to be done before we drop the CIL context lock because we 686 * have to update state in the log items and unlock them before they go 687 * to disk. If we don't, then the CIL checkpoint can race with us and 688 * we can run checkpoint completion before we've updated and unlocked 689 * the log items. This affects (at least) processing of stale buffers, 690 * inodes and EFIs. 691 */ 692 xfs_trans_free_items(tp, *commit_lsn, 0); 693 694 /* check for background commit before unlock */ 695 if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log)) 696 push = 1; 697 698 up_read(&log->l_cilp->xc_ctx_lock); 699 700 /* 701 * We need to push CIL every so often so we don't cache more than we 702 * can fit in the log. The limit really is that a checkpoint can't be 703 * more than half the log (the current checkpoint is not allowed to 704 * overwrite the previous checkpoint), but commit latency and memory 705 * usage limit this to a smaller size in most cases. 706 */ 707 if (push) 708 xlog_cil_push(log, 0); 709 return 0; 710 } 711 712 /* 713 * Conditionally push the CIL based on the sequence passed in. 714 * 715 * We only need to push if we haven't already pushed the sequence 716 * number given. Hence the only time we will trigger a push here is 717 * if the push sequence is the same as the current context. 718 * 719 * We return the current commit lsn to allow the callers to determine if a 720 * iclog flush is necessary following this call. 721 * 722 * XXX: Initially, just push the CIL unconditionally and return whatever 723 * commit lsn is there. It'll be empty, so this is broken for now. 724 */ 725 xfs_lsn_t 726 xlog_cil_force_lsn( 727 struct log *log, 728 xfs_lsn_t sequence) 729 { 730 struct xfs_cil *cil = log->l_cilp; 731 struct xfs_cil_ctx *ctx; 732 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 733 734 ASSERT(sequence <= cil->xc_current_sequence); 735 736 /* 737 * check to see if we need to force out the current context. 738 * xlog_cil_push() handles racing pushes for the same sequence, 739 * so no need to deal with it here. 740 */ 741 if (sequence == cil->xc_current_sequence) 742 xlog_cil_push(log, sequence); 743 744 /* 745 * See if we can find a previous sequence still committing. 746 * We need to wait for all previous sequence commits to complete 747 * before allowing the force of push_seq to go ahead. Hence block 748 * on commits for those as well. 749 */ 750 restart: 751 spin_lock(&cil->xc_cil_lock); 752 list_for_each_entry(ctx, &cil->xc_committing, committing) { 753 if (ctx->sequence > sequence) 754 continue; 755 if (!ctx->commit_lsn) { 756 /* 757 * It is still being pushed! Wait for the push to 758 * complete, then start again from the beginning. 759 */ 760 sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0); 761 goto restart; 762 } 763 if (ctx->sequence != sequence) 764 continue; 765 /* found it! */ 766 commit_lsn = ctx->commit_lsn; 767 } 768 spin_unlock(&cil->xc_cil_lock); 769 return commit_lsn; 770 } 771 772 /* 773 * Check if the current log item was first committed in this sequence. 774 * We can't rely on just the log item being in the CIL, we have to check 775 * the recorded commit sequence number. 776 * 777 * Note: for this to be used in a non-racy manner, it has to be called with 778 * CIL flushing locked out. As a result, it should only be used during the 779 * transaction commit process when deciding what to format into the item. 780 */ 781 bool 782 xfs_log_item_in_current_chkpt( 783 struct xfs_log_item *lip) 784 { 785 struct xfs_cil_ctx *ctx; 786 787 if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG)) 788 return false; 789 if (list_empty(&lip->li_cil)) 790 return false; 791 792 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; 793 794 /* 795 * li_seq is written on the first commit of a log item to record the 796 * first checkpoint it is written to. Hence if it is different to the 797 * current sequence, we're in a new checkpoint. 798 */ 799 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) 800 return false; 801 return true; 802 } 803