xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision afb46f79)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_shared.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_alloc.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_discard.h"
30 #include "xfs_trans.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 
35 /*
36  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37  * recover, so we don't allow failure here. Also, we allocate in a context that
38  * we don't want to be issuing transactions from, so we need to tell the
39  * allocation code this as well.
40  *
41  * We don't reserve any space for the ticket - we are going to steal whatever
42  * space we require from transactions as they commit. To ensure we reserve all
43  * the space required, we need to set the current reservation of the ticket to
44  * zero so that we know to steal the initial transaction overhead from the
45  * first transaction commit.
46  */
47 static struct xlog_ticket *
48 xlog_cil_ticket_alloc(
49 	struct xlog	*log)
50 {
51 	struct xlog_ticket *tic;
52 
53 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54 				KM_SLEEP|KM_NOFS);
55 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56 
57 	/*
58 	 * set the current reservation to zero so we know to steal the basic
59 	 * transaction overhead reservation from the first transaction commit.
60 	 */
61 	tic->t_curr_res = 0;
62 	return tic;
63 }
64 
65 /*
66  * After the first stage of log recovery is done, we know where the head and
67  * tail of the log are. We need this log initialisation done before we can
68  * initialise the first CIL checkpoint context.
69  *
70  * Here we allocate a log ticket to track space usage during a CIL push.  This
71  * ticket is passed to xlog_write() directly so that we don't slowly leak log
72  * space by failing to account for space used by log headers and additional
73  * region headers for split regions.
74  */
75 void
76 xlog_cil_init_post_recovery(
77 	struct xlog	*log)
78 {
79 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80 	log->l_cilp->xc_ctx->sequence = 1;
81 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
82 								log->l_curr_block);
83 }
84 
85 /*
86  * Prepare the log item for insertion into the CIL. Calculate the difference in
87  * log space and vectors it will consume, and if it is a new item pin it as
88  * well.
89  */
90 STATIC void
91 xfs_cil_prepare_item(
92 	struct xlog		*log,
93 	struct xfs_log_vec	*lv,
94 	struct xfs_log_vec	*old_lv,
95 	int			*diff_len,
96 	int			*diff_iovecs)
97 {
98 	/* Account for the new LV being passed in */
99 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
100 		*diff_len += lv->lv_buf_len;
101 		*diff_iovecs += lv->lv_niovecs;
102 	}
103 
104 	/*
105 	 * If there is no old LV, this is the first time we've seen the item in
106 	 * this CIL context and so we need to pin it. If we are replacing the
107 	 * old_lv, then remove the space it accounts for and free it.
108 	 */
109 	if (!old_lv)
110 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
111 	else if (old_lv != lv) {
112 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
113 
114 		*diff_len -= old_lv->lv_buf_len;
115 		*diff_iovecs -= old_lv->lv_niovecs;
116 		kmem_free(old_lv);
117 	}
118 
119 	/* attach new log vector to log item */
120 	lv->lv_item->li_lv = lv;
121 
122 	/*
123 	 * If this is the first time the item is being committed to the
124 	 * CIL, store the sequence number on the log item so we can
125 	 * tell in future commits whether this is the first checkpoint
126 	 * the item is being committed into.
127 	 */
128 	if (!lv->lv_item->li_seq)
129 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
130 }
131 
132 /*
133  * Format log item into a flat buffers
134  *
135  * For delayed logging, we need to hold a formatted buffer containing all the
136  * changes on the log item. This enables us to relog the item in memory and
137  * write it out asynchronously without needing to relock the object that was
138  * modified at the time it gets written into the iclog.
139  *
140  * This function builds a vector for the changes in each log item in the
141  * transaction. It then works out the length of the buffer needed for each log
142  * item, allocates them and formats the vector for the item into the buffer.
143  * The buffer is then attached to the log item are then inserted into the
144  * Committed Item List for tracking until the next checkpoint is written out.
145  *
146  * We don't set up region headers during this process; we simply copy the
147  * regions into the flat buffer. We can do this because we still have to do a
148  * formatting step to write the regions into the iclog buffer.  Writing the
149  * ophdrs during the iclog write means that we can support splitting large
150  * regions across iclog boundares without needing a change in the format of the
151  * item/region encapsulation.
152  *
153  * Hence what we need to do now is change the rewrite the vector array to point
154  * to the copied region inside the buffer we just allocated. This allows us to
155  * format the regions into the iclog as though they are being formatted
156  * directly out of the objects themselves.
157  */
158 static void
159 xlog_cil_insert_format_items(
160 	struct xlog		*log,
161 	struct xfs_trans	*tp,
162 	int			*diff_len,
163 	int			*diff_iovecs)
164 {
165 	struct xfs_log_item_desc *lidp;
166 
167 
168 	/* Bail out if we didn't find a log item.  */
169 	if (list_empty(&tp->t_items)) {
170 		ASSERT(0);
171 		return;
172 	}
173 
174 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
175 		struct xfs_log_item *lip = lidp->lid_item;
176 		struct xfs_log_vec *lv;
177 		struct xfs_log_vec *old_lv;
178 		int	niovecs = 0;
179 		int	nbytes = 0;
180 		int	buf_size;
181 		bool	ordered = false;
182 
183 		/* Skip items which aren't dirty in this transaction. */
184 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
185 			continue;
186 
187 		/* get number of vecs and size of data to be stored */
188 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
189 
190 		/* Skip items that do not have any vectors for writing */
191 		if (!niovecs)
192 			continue;
193 
194 		/*
195 		 * Ordered items need to be tracked but we do not wish to write
196 		 * them. We need a logvec to track the object, but we do not
197 		 * need an iovec or buffer to be allocated for copying data.
198 		 */
199 		if (niovecs == XFS_LOG_VEC_ORDERED) {
200 			ordered = true;
201 			niovecs = 0;
202 			nbytes = 0;
203 		}
204 
205 		/*
206 		 * We 64-bit align the length of each iovec so that the start
207 		 * of the next one is naturally aligned.  We'll need to
208 		 * account for that slack space here. Then round nbytes up
209 		 * to 64-bit alignment so that the initial buffer alignment is
210 		 * easy to calculate and verify.
211 		 */
212 		nbytes += niovecs * sizeof(uint64_t);
213 		nbytes = round_up(nbytes, sizeof(uint64_t));
214 
215 		/* grab the old item if it exists for reservation accounting */
216 		old_lv = lip->li_lv;
217 
218 		/*
219 		 * The data buffer needs to start 64-bit aligned, so round up
220 		 * that space to ensure we can align it appropriately and not
221 		 * overrun the buffer.
222 		 */
223 		buf_size = nbytes +
224 			   round_up((sizeof(struct xfs_log_vec) +
225 				     niovecs * sizeof(struct xfs_log_iovec)),
226 				    sizeof(uint64_t));
227 
228 		/* compare to existing item size */
229 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
230 			/* same or smaller, optimise common overwrite case */
231 			lv = lip->li_lv;
232 			lv->lv_next = NULL;
233 
234 			if (ordered)
235 				goto insert;
236 
237 			/*
238 			 * set the item up as though it is a new insertion so
239 			 * that the space reservation accounting is correct.
240 			 */
241 			*diff_iovecs -= lv->lv_niovecs;
242 			*diff_len -= lv->lv_buf_len;
243 		} else {
244 			/* allocate new data chunk */
245 			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
246 			lv->lv_item = lip;
247 			lv->lv_size = buf_size;
248 			if (ordered) {
249 				/* track as an ordered logvec */
250 				ASSERT(lip->li_lv == NULL);
251 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
252 				goto insert;
253 			}
254 			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
255 		}
256 
257 		/* Ensure the lv is set up according to ->iop_size */
258 		lv->lv_niovecs = niovecs;
259 
260 		/* The allocated data region lies beyond the iovec region */
261 		lv->lv_buf_len = 0;
262 		lv->lv_buf = (char *)lv + buf_size - nbytes;
263 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
264 
265 		lip->li_ops->iop_format(lip, lv);
266 insert:
267 		ASSERT(lv->lv_buf_len <= nbytes);
268 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
269 	}
270 }
271 
272 /*
273  * Insert the log items into the CIL and calculate the difference in space
274  * consumed by the item. Add the space to the checkpoint ticket and calculate
275  * if the change requires additional log metadata. If it does, take that space
276  * as well. Remove the amount of space we added to the checkpoint ticket from
277  * the current transaction ticket so that the accounting works out correctly.
278  */
279 static void
280 xlog_cil_insert_items(
281 	struct xlog		*log,
282 	struct xfs_trans	*tp)
283 {
284 	struct xfs_cil		*cil = log->l_cilp;
285 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
286 	struct xfs_log_item_desc *lidp;
287 	int			len = 0;
288 	int			diff_iovecs = 0;
289 	int			iclog_space;
290 
291 	ASSERT(tp);
292 
293 	/*
294 	 * We can do this safely because the context can't checkpoint until we
295 	 * are done so it doesn't matter exactly how we update the CIL.
296 	 */
297 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
298 
299 	/*
300 	 * Now (re-)position everything modified at the tail of the CIL.
301 	 * We do this here so we only need to take the CIL lock once during
302 	 * the transaction commit.
303 	 */
304 	spin_lock(&cil->xc_cil_lock);
305 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
306 		struct xfs_log_item	*lip = lidp->lid_item;
307 
308 		/* Skip items which aren't dirty in this transaction. */
309 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
310 			continue;
311 
312 		list_move_tail(&lip->li_cil, &cil->xc_cil);
313 	}
314 
315 	/* account for space used by new iovec headers  */
316 	len += diff_iovecs * sizeof(xlog_op_header_t);
317 	ctx->nvecs += diff_iovecs;
318 
319 	/* attach the transaction to the CIL if it has any busy extents */
320 	if (!list_empty(&tp->t_busy))
321 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
322 
323 	/*
324 	 * Now transfer enough transaction reservation to the context ticket
325 	 * for the checkpoint. The context ticket is special - the unit
326 	 * reservation has to grow as well as the current reservation as we
327 	 * steal from tickets so we can correctly determine the space used
328 	 * during the transaction commit.
329 	 */
330 	if (ctx->ticket->t_curr_res == 0) {
331 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
332 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
333 	}
334 
335 	/* do we need space for more log record headers? */
336 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
337 	if (len > 0 && (ctx->space_used / iclog_space !=
338 				(ctx->space_used + len) / iclog_space)) {
339 		int hdrs;
340 
341 		hdrs = (len + iclog_space - 1) / iclog_space;
342 		/* need to take into account split region headers, too */
343 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
344 		ctx->ticket->t_unit_res += hdrs;
345 		ctx->ticket->t_curr_res += hdrs;
346 		tp->t_ticket->t_curr_res -= hdrs;
347 		ASSERT(tp->t_ticket->t_curr_res >= len);
348 	}
349 	tp->t_ticket->t_curr_res -= len;
350 	ctx->space_used += len;
351 
352 	spin_unlock(&cil->xc_cil_lock);
353 }
354 
355 static void
356 xlog_cil_free_logvec(
357 	struct xfs_log_vec	*log_vector)
358 {
359 	struct xfs_log_vec	*lv;
360 
361 	for (lv = log_vector; lv; ) {
362 		struct xfs_log_vec *next = lv->lv_next;
363 		kmem_free(lv);
364 		lv = next;
365 	}
366 }
367 
368 /*
369  * Mark all items committed and clear busy extents. We free the log vector
370  * chains in a separate pass so that we unpin the log items as quickly as
371  * possible.
372  */
373 static void
374 xlog_cil_committed(
375 	void	*args,
376 	int	abort)
377 {
378 	struct xfs_cil_ctx	*ctx = args;
379 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
380 
381 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
382 					ctx->start_lsn, abort);
383 
384 	xfs_extent_busy_sort(&ctx->busy_extents);
385 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
386 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
387 
388 	spin_lock(&ctx->cil->xc_push_lock);
389 	list_del(&ctx->committing);
390 	spin_unlock(&ctx->cil->xc_push_lock);
391 
392 	xlog_cil_free_logvec(ctx->lv_chain);
393 
394 	if (!list_empty(&ctx->busy_extents)) {
395 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
396 
397 		xfs_discard_extents(mp, &ctx->busy_extents);
398 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
399 	}
400 
401 	kmem_free(ctx);
402 }
403 
404 /*
405  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
406  * is a background flush and so we can chose to ignore it. Otherwise, if the
407  * current sequence is the same as @push_seq we need to do a flush. If
408  * @push_seq is less than the current sequence, then it has already been
409  * flushed and we don't need to do anything - the caller will wait for it to
410  * complete if necessary.
411  *
412  * @push_seq is a value rather than a flag because that allows us to do an
413  * unlocked check of the sequence number for a match. Hence we can allows log
414  * forces to run racily and not issue pushes for the same sequence twice. If we
415  * get a race between multiple pushes for the same sequence they will block on
416  * the first one and then abort, hence avoiding needless pushes.
417  */
418 STATIC int
419 xlog_cil_push(
420 	struct xlog		*log)
421 {
422 	struct xfs_cil		*cil = log->l_cilp;
423 	struct xfs_log_vec	*lv;
424 	struct xfs_cil_ctx	*ctx;
425 	struct xfs_cil_ctx	*new_ctx;
426 	struct xlog_in_core	*commit_iclog;
427 	struct xlog_ticket	*tic;
428 	int			num_iovecs;
429 	int			error = 0;
430 	struct xfs_trans_header thdr;
431 	struct xfs_log_iovec	lhdr;
432 	struct xfs_log_vec	lvhdr = { NULL };
433 	xfs_lsn_t		commit_lsn;
434 	xfs_lsn_t		push_seq;
435 
436 	if (!cil)
437 		return 0;
438 
439 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
440 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
441 
442 	down_write(&cil->xc_ctx_lock);
443 	ctx = cil->xc_ctx;
444 
445 	spin_lock(&cil->xc_push_lock);
446 	push_seq = cil->xc_push_seq;
447 	ASSERT(push_seq <= ctx->sequence);
448 
449 	/*
450 	 * Check if we've anything to push. If there is nothing, then we don't
451 	 * move on to a new sequence number and so we have to be able to push
452 	 * this sequence again later.
453 	 */
454 	if (list_empty(&cil->xc_cil)) {
455 		cil->xc_push_seq = 0;
456 		spin_unlock(&cil->xc_push_lock);
457 		goto out_skip;
458 	}
459 	spin_unlock(&cil->xc_push_lock);
460 
461 
462 	/* check for a previously pushed seqeunce */
463 	if (push_seq < cil->xc_ctx->sequence)
464 		goto out_skip;
465 
466 	/*
467 	 * pull all the log vectors off the items in the CIL, and
468 	 * remove the items from the CIL. We don't need the CIL lock
469 	 * here because it's only needed on the transaction commit
470 	 * side which is currently locked out by the flush lock.
471 	 */
472 	lv = NULL;
473 	num_iovecs = 0;
474 	while (!list_empty(&cil->xc_cil)) {
475 		struct xfs_log_item	*item;
476 
477 		item = list_first_entry(&cil->xc_cil,
478 					struct xfs_log_item, li_cil);
479 		list_del_init(&item->li_cil);
480 		if (!ctx->lv_chain)
481 			ctx->lv_chain = item->li_lv;
482 		else
483 			lv->lv_next = item->li_lv;
484 		lv = item->li_lv;
485 		item->li_lv = NULL;
486 		num_iovecs += lv->lv_niovecs;
487 	}
488 
489 	/*
490 	 * initialise the new context and attach it to the CIL. Then attach
491 	 * the current context to the CIL committing lsit so it can be found
492 	 * during log forces to extract the commit lsn of the sequence that
493 	 * needs to be forced.
494 	 */
495 	INIT_LIST_HEAD(&new_ctx->committing);
496 	INIT_LIST_HEAD(&new_ctx->busy_extents);
497 	new_ctx->sequence = ctx->sequence + 1;
498 	new_ctx->cil = cil;
499 	cil->xc_ctx = new_ctx;
500 
501 	/*
502 	 * The switch is now done, so we can drop the context lock and move out
503 	 * of a shared context. We can't just go straight to the commit record,
504 	 * though - we need to synchronise with previous and future commits so
505 	 * that the commit records are correctly ordered in the log to ensure
506 	 * that we process items during log IO completion in the correct order.
507 	 *
508 	 * For example, if we get an EFI in one checkpoint and the EFD in the
509 	 * next (e.g. due to log forces), we do not want the checkpoint with
510 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
511 	 * we must strictly order the commit records of the checkpoints so
512 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
513 	 * correct order; and b) the checkpoints are replayed in correct order
514 	 * in log recovery.
515 	 *
516 	 * Hence we need to add this context to the committing context list so
517 	 * that higher sequences will wait for us to write out a commit record
518 	 * before they do.
519 	 *
520 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
521 	 * structure atomically with the addition of this sequence to the
522 	 * committing list. This also ensures that we can do unlocked checks
523 	 * against the current sequence in log forces without risking
524 	 * deferencing a freed context pointer.
525 	 */
526 	spin_lock(&cil->xc_push_lock);
527 	cil->xc_current_sequence = new_ctx->sequence;
528 	list_add(&ctx->committing, &cil->xc_committing);
529 	spin_unlock(&cil->xc_push_lock);
530 	up_write(&cil->xc_ctx_lock);
531 
532 	/*
533 	 * Build a checkpoint transaction header and write it to the log to
534 	 * begin the transaction. We need to account for the space used by the
535 	 * transaction header here as it is not accounted for in xlog_write().
536 	 *
537 	 * The LSN we need to pass to the log items on transaction commit is
538 	 * the LSN reported by the first log vector write. If we use the commit
539 	 * record lsn then we can move the tail beyond the grant write head.
540 	 */
541 	tic = ctx->ticket;
542 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
543 	thdr.th_type = XFS_TRANS_CHECKPOINT;
544 	thdr.th_tid = tic->t_tid;
545 	thdr.th_num_items = num_iovecs;
546 	lhdr.i_addr = &thdr;
547 	lhdr.i_len = sizeof(xfs_trans_header_t);
548 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
549 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
550 
551 	lvhdr.lv_niovecs = 1;
552 	lvhdr.lv_iovecp = &lhdr;
553 	lvhdr.lv_next = ctx->lv_chain;
554 
555 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
556 	if (error)
557 		goto out_abort_free_ticket;
558 
559 	/*
560 	 * now that we've written the checkpoint into the log, strictly
561 	 * order the commit records so replay will get them in the right order.
562 	 */
563 restart:
564 	spin_lock(&cil->xc_push_lock);
565 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
566 		/*
567 		 * Higher sequences will wait for this one so skip them.
568 		 * Don't wait for own own sequence, either.
569 		 */
570 		if (new_ctx->sequence >= ctx->sequence)
571 			continue;
572 		if (!new_ctx->commit_lsn) {
573 			/*
574 			 * It is still being pushed! Wait for the push to
575 			 * complete, then start again from the beginning.
576 			 */
577 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
578 			goto restart;
579 		}
580 	}
581 	spin_unlock(&cil->xc_push_lock);
582 
583 	/* xfs_log_done always frees the ticket on error. */
584 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
585 	if (commit_lsn == -1)
586 		goto out_abort;
587 
588 	/* attach all the transactions w/ busy extents to iclog */
589 	ctx->log_cb.cb_func = xlog_cil_committed;
590 	ctx->log_cb.cb_arg = ctx;
591 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
592 	if (error)
593 		goto out_abort;
594 
595 	/*
596 	 * now the checkpoint commit is complete and we've attached the
597 	 * callbacks to the iclog we can assign the commit LSN to the context
598 	 * and wake up anyone who is waiting for the commit to complete.
599 	 */
600 	spin_lock(&cil->xc_push_lock);
601 	ctx->commit_lsn = commit_lsn;
602 	wake_up_all(&cil->xc_commit_wait);
603 	spin_unlock(&cil->xc_push_lock);
604 
605 	/* release the hounds! */
606 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
607 
608 out_skip:
609 	up_write(&cil->xc_ctx_lock);
610 	xfs_log_ticket_put(new_ctx->ticket);
611 	kmem_free(new_ctx);
612 	return 0;
613 
614 out_abort_free_ticket:
615 	xfs_log_ticket_put(tic);
616 out_abort:
617 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
618 	return XFS_ERROR(EIO);
619 }
620 
621 static void
622 xlog_cil_push_work(
623 	struct work_struct	*work)
624 {
625 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
626 							xc_push_work);
627 	xlog_cil_push(cil->xc_log);
628 }
629 
630 /*
631  * We need to push CIL every so often so we don't cache more than we can fit in
632  * the log. The limit really is that a checkpoint can't be more than half the
633  * log (the current checkpoint is not allowed to overwrite the previous
634  * checkpoint), but commit latency and memory usage limit this to a smaller
635  * size.
636  */
637 static void
638 xlog_cil_push_background(
639 	struct xlog	*log)
640 {
641 	struct xfs_cil	*cil = log->l_cilp;
642 
643 	/*
644 	 * The cil won't be empty because we are called while holding the
645 	 * context lock so whatever we added to the CIL will still be there
646 	 */
647 	ASSERT(!list_empty(&cil->xc_cil));
648 
649 	/*
650 	 * don't do a background push if we haven't used up all the
651 	 * space available yet.
652 	 */
653 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
654 		return;
655 
656 	spin_lock(&cil->xc_push_lock);
657 	if (cil->xc_push_seq < cil->xc_current_sequence) {
658 		cil->xc_push_seq = cil->xc_current_sequence;
659 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
660 	}
661 	spin_unlock(&cil->xc_push_lock);
662 
663 }
664 
665 /*
666  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
667  * number that is passed. When it returns, the work will be queued for
668  * @push_seq, but it won't be completed. The caller is expected to do any
669  * waiting for push_seq to complete if it is required.
670  */
671 static void
672 xlog_cil_push_now(
673 	struct xlog	*log,
674 	xfs_lsn_t	push_seq)
675 {
676 	struct xfs_cil	*cil = log->l_cilp;
677 
678 	if (!cil)
679 		return;
680 
681 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
682 
683 	/* start on any pending background push to minimise wait time on it */
684 	flush_work(&cil->xc_push_work);
685 
686 	/*
687 	 * If the CIL is empty or we've already pushed the sequence then
688 	 * there's no work we need to do.
689 	 */
690 	spin_lock(&cil->xc_push_lock);
691 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
692 		spin_unlock(&cil->xc_push_lock);
693 		return;
694 	}
695 
696 	cil->xc_push_seq = push_seq;
697 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
698 	spin_unlock(&cil->xc_push_lock);
699 }
700 
701 bool
702 xlog_cil_empty(
703 	struct xlog	*log)
704 {
705 	struct xfs_cil	*cil = log->l_cilp;
706 	bool		empty = false;
707 
708 	spin_lock(&cil->xc_push_lock);
709 	if (list_empty(&cil->xc_cil))
710 		empty = true;
711 	spin_unlock(&cil->xc_push_lock);
712 	return empty;
713 }
714 
715 /*
716  * Commit a transaction with the given vector to the Committed Item List.
717  *
718  * To do this, we need to format the item, pin it in memory if required and
719  * account for the space used by the transaction. Once we have done that we
720  * need to release the unused reservation for the transaction, attach the
721  * transaction to the checkpoint context so we carry the busy extents through
722  * to checkpoint completion, and then unlock all the items in the transaction.
723  *
724  * Called with the context lock already held in read mode to lock out
725  * background commit, returns without it held once background commits are
726  * allowed again.
727  */
728 void
729 xfs_log_commit_cil(
730 	struct xfs_mount	*mp,
731 	struct xfs_trans	*tp,
732 	xfs_lsn_t		*commit_lsn,
733 	int			flags)
734 {
735 	struct xlog		*log = mp->m_log;
736 	struct xfs_cil		*cil = log->l_cilp;
737 	int			log_flags = 0;
738 
739 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
740 		log_flags = XFS_LOG_REL_PERM_RESERV;
741 
742 	/* lock out background commit */
743 	down_read(&cil->xc_ctx_lock);
744 
745 	xlog_cil_insert_items(log, tp);
746 
747 	/* check we didn't blow the reservation */
748 	if (tp->t_ticket->t_curr_res < 0)
749 		xlog_print_tic_res(mp, tp->t_ticket);
750 
751 	tp->t_commit_lsn = cil->xc_ctx->sequence;
752 	if (commit_lsn)
753 		*commit_lsn = tp->t_commit_lsn;
754 
755 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
756 	xfs_trans_unreserve_and_mod_sb(tp);
757 
758 	/*
759 	 * Once all the items of the transaction have been copied to the CIL,
760 	 * the items can be unlocked and freed.
761 	 *
762 	 * This needs to be done before we drop the CIL context lock because we
763 	 * have to update state in the log items and unlock them before they go
764 	 * to disk. If we don't, then the CIL checkpoint can race with us and
765 	 * we can run checkpoint completion before we've updated and unlocked
766 	 * the log items. This affects (at least) processing of stale buffers,
767 	 * inodes and EFIs.
768 	 */
769 	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
770 
771 	xlog_cil_push_background(log);
772 
773 	up_read(&cil->xc_ctx_lock);
774 }
775 
776 /*
777  * Conditionally push the CIL based on the sequence passed in.
778  *
779  * We only need to push if we haven't already pushed the sequence
780  * number given. Hence the only time we will trigger a push here is
781  * if the push sequence is the same as the current context.
782  *
783  * We return the current commit lsn to allow the callers to determine if a
784  * iclog flush is necessary following this call.
785  */
786 xfs_lsn_t
787 xlog_cil_force_lsn(
788 	struct xlog	*log,
789 	xfs_lsn_t	sequence)
790 {
791 	struct xfs_cil		*cil = log->l_cilp;
792 	struct xfs_cil_ctx	*ctx;
793 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
794 
795 	ASSERT(sequence <= cil->xc_current_sequence);
796 
797 	/*
798 	 * check to see if we need to force out the current context.
799 	 * xlog_cil_push() handles racing pushes for the same sequence,
800 	 * so no need to deal with it here.
801 	 */
802 restart:
803 	xlog_cil_push_now(log, sequence);
804 
805 	/*
806 	 * See if we can find a previous sequence still committing.
807 	 * We need to wait for all previous sequence commits to complete
808 	 * before allowing the force of push_seq to go ahead. Hence block
809 	 * on commits for those as well.
810 	 */
811 	spin_lock(&cil->xc_push_lock);
812 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
813 		if (ctx->sequence > sequence)
814 			continue;
815 		if (!ctx->commit_lsn) {
816 			/*
817 			 * It is still being pushed! Wait for the push to
818 			 * complete, then start again from the beginning.
819 			 */
820 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
821 			goto restart;
822 		}
823 		if (ctx->sequence != sequence)
824 			continue;
825 		/* found it! */
826 		commit_lsn = ctx->commit_lsn;
827 	}
828 
829 	/*
830 	 * The call to xlog_cil_push_now() executes the push in the background.
831 	 * Hence by the time we have got here it our sequence may not have been
832 	 * pushed yet. This is true if the current sequence still matches the
833 	 * push sequence after the above wait loop and the CIL still contains
834 	 * dirty objects.
835 	 *
836 	 * When the push occurs, it will empty the CIL and
837 	 * atomically increment the currect sequence past the push sequence and
838 	 * move it into the committing list. Of course, if the CIL is clean at
839 	 * the time of the push, it won't have pushed the CIL at all, so in that
840 	 * case we should try the push for this sequence again from the start
841 	 * just in case.
842 	 */
843 
844 	if (sequence == cil->xc_current_sequence &&
845 	    !list_empty(&cil->xc_cil)) {
846 		spin_unlock(&cil->xc_push_lock);
847 		goto restart;
848 	}
849 
850 	spin_unlock(&cil->xc_push_lock);
851 	return commit_lsn;
852 }
853 
854 /*
855  * Check if the current log item was first committed in this sequence.
856  * We can't rely on just the log item being in the CIL, we have to check
857  * the recorded commit sequence number.
858  *
859  * Note: for this to be used in a non-racy manner, it has to be called with
860  * CIL flushing locked out. As a result, it should only be used during the
861  * transaction commit process when deciding what to format into the item.
862  */
863 bool
864 xfs_log_item_in_current_chkpt(
865 	struct xfs_log_item *lip)
866 {
867 	struct xfs_cil_ctx *ctx;
868 
869 	if (list_empty(&lip->li_cil))
870 		return false;
871 
872 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
873 
874 	/*
875 	 * li_seq is written on the first commit of a log item to record the
876 	 * first checkpoint it is written to. Hence if it is different to the
877 	 * current sequence, we're in a new checkpoint.
878 	 */
879 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
880 		return false;
881 	return true;
882 }
883 
884 /*
885  * Perform initial CIL structure initialisation.
886  */
887 int
888 xlog_cil_init(
889 	struct xlog	*log)
890 {
891 	struct xfs_cil	*cil;
892 	struct xfs_cil_ctx *ctx;
893 
894 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
895 	if (!cil)
896 		return ENOMEM;
897 
898 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
899 	if (!ctx) {
900 		kmem_free(cil);
901 		return ENOMEM;
902 	}
903 
904 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
905 	INIT_LIST_HEAD(&cil->xc_cil);
906 	INIT_LIST_HEAD(&cil->xc_committing);
907 	spin_lock_init(&cil->xc_cil_lock);
908 	spin_lock_init(&cil->xc_push_lock);
909 	init_rwsem(&cil->xc_ctx_lock);
910 	init_waitqueue_head(&cil->xc_commit_wait);
911 
912 	INIT_LIST_HEAD(&ctx->committing);
913 	INIT_LIST_HEAD(&ctx->busy_extents);
914 	ctx->sequence = 1;
915 	ctx->cil = cil;
916 	cil->xc_ctx = ctx;
917 	cil->xc_current_sequence = ctx->sequence;
918 
919 	cil->xc_log = log;
920 	log->l_cilp = cil;
921 	return 0;
922 }
923 
924 void
925 xlog_cil_destroy(
926 	struct xlog	*log)
927 {
928 	if (log->l_cilp->xc_ctx) {
929 		if (log->l_cilp->xc_ctx->ticket)
930 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
931 		kmem_free(log->l_cilp->xc_ctx);
932 	}
933 
934 	ASSERT(list_empty(&log->l_cilp->xc_cil));
935 	kmem_free(log->l_cilp);
936 }
937 
938