1 /* 2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write the Free Software Foundation, 15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 16 */ 17 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log_format.h" 21 #include "xfs_shared.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_error.h" 27 #include "xfs_alloc.h" 28 #include "xfs_extent_busy.h" 29 #include "xfs_discard.h" 30 #include "xfs_trans.h" 31 #include "xfs_trans_priv.h" 32 #include "xfs_log.h" 33 #include "xfs_log_priv.h" 34 35 /* 36 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 37 * recover, so we don't allow failure here. Also, we allocate in a context that 38 * we don't want to be issuing transactions from, so we need to tell the 39 * allocation code this as well. 40 * 41 * We don't reserve any space for the ticket - we are going to steal whatever 42 * space we require from transactions as they commit. To ensure we reserve all 43 * the space required, we need to set the current reservation of the ticket to 44 * zero so that we know to steal the initial transaction overhead from the 45 * first transaction commit. 46 */ 47 static struct xlog_ticket * 48 xlog_cil_ticket_alloc( 49 struct xlog *log) 50 { 51 struct xlog_ticket *tic; 52 53 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, 54 KM_SLEEP|KM_NOFS); 55 tic->t_trans_type = XFS_TRANS_CHECKPOINT; 56 57 /* 58 * set the current reservation to zero so we know to steal the basic 59 * transaction overhead reservation from the first transaction commit. 60 */ 61 tic->t_curr_res = 0; 62 return tic; 63 } 64 65 /* 66 * After the first stage of log recovery is done, we know where the head and 67 * tail of the log are. We need this log initialisation done before we can 68 * initialise the first CIL checkpoint context. 69 * 70 * Here we allocate a log ticket to track space usage during a CIL push. This 71 * ticket is passed to xlog_write() directly so that we don't slowly leak log 72 * space by failing to account for space used by log headers and additional 73 * region headers for split regions. 74 */ 75 void 76 xlog_cil_init_post_recovery( 77 struct xlog *log) 78 { 79 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 80 log->l_cilp->xc_ctx->sequence = 1; 81 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, 82 log->l_curr_block); 83 } 84 85 /* 86 * Prepare the log item for insertion into the CIL. Calculate the difference in 87 * log space and vectors it will consume, and if it is a new item pin it as 88 * well. 89 */ 90 STATIC void 91 xfs_cil_prepare_item( 92 struct xlog *log, 93 struct xfs_log_vec *lv, 94 struct xfs_log_vec *old_lv, 95 int *diff_len, 96 int *diff_iovecs) 97 { 98 /* Account for the new LV being passed in */ 99 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) { 100 *diff_len += lv->lv_buf_len; 101 *diff_iovecs += lv->lv_niovecs; 102 } 103 104 /* 105 * If there is no old LV, this is the first time we've seen the item in 106 * this CIL context and so we need to pin it. If we are replacing the 107 * old_lv, then remove the space it accounts for and free it. 108 */ 109 if (!old_lv) 110 lv->lv_item->li_ops->iop_pin(lv->lv_item); 111 else if (old_lv != lv) { 112 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 113 114 *diff_len -= old_lv->lv_buf_len; 115 *diff_iovecs -= old_lv->lv_niovecs; 116 kmem_free(old_lv); 117 } 118 119 /* attach new log vector to log item */ 120 lv->lv_item->li_lv = lv; 121 122 /* 123 * If this is the first time the item is being committed to the 124 * CIL, store the sequence number on the log item so we can 125 * tell in future commits whether this is the first checkpoint 126 * the item is being committed into. 127 */ 128 if (!lv->lv_item->li_seq) 129 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 130 } 131 132 /* 133 * Format log item into a flat buffers 134 * 135 * For delayed logging, we need to hold a formatted buffer containing all the 136 * changes on the log item. This enables us to relog the item in memory and 137 * write it out asynchronously without needing to relock the object that was 138 * modified at the time it gets written into the iclog. 139 * 140 * This function builds a vector for the changes in each log item in the 141 * transaction. It then works out the length of the buffer needed for each log 142 * item, allocates them and formats the vector for the item into the buffer. 143 * The buffer is then attached to the log item are then inserted into the 144 * Committed Item List for tracking until the next checkpoint is written out. 145 * 146 * We don't set up region headers during this process; we simply copy the 147 * regions into the flat buffer. We can do this because we still have to do a 148 * formatting step to write the regions into the iclog buffer. Writing the 149 * ophdrs during the iclog write means that we can support splitting large 150 * regions across iclog boundares without needing a change in the format of the 151 * item/region encapsulation. 152 * 153 * Hence what we need to do now is change the rewrite the vector array to point 154 * to the copied region inside the buffer we just allocated. This allows us to 155 * format the regions into the iclog as though they are being formatted 156 * directly out of the objects themselves. 157 */ 158 static void 159 xlog_cil_insert_format_items( 160 struct xlog *log, 161 struct xfs_trans *tp, 162 int *diff_len, 163 int *diff_iovecs) 164 { 165 struct xfs_log_item_desc *lidp; 166 167 168 /* Bail out if we didn't find a log item. */ 169 if (list_empty(&tp->t_items)) { 170 ASSERT(0); 171 return; 172 } 173 174 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 175 struct xfs_log_item *lip = lidp->lid_item; 176 struct xfs_log_vec *lv; 177 struct xfs_log_vec *old_lv; 178 int niovecs = 0; 179 int nbytes = 0; 180 int buf_size; 181 bool ordered = false; 182 183 /* Skip items which aren't dirty in this transaction. */ 184 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 185 continue; 186 187 /* get number of vecs and size of data to be stored */ 188 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 189 190 /* Skip items that do not have any vectors for writing */ 191 if (!niovecs) 192 continue; 193 194 /* 195 * Ordered items need to be tracked but we do not wish to write 196 * them. We need a logvec to track the object, but we do not 197 * need an iovec or buffer to be allocated for copying data. 198 */ 199 if (niovecs == XFS_LOG_VEC_ORDERED) { 200 ordered = true; 201 niovecs = 0; 202 nbytes = 0; 203 } 204 205 /* 206 * We 64-bit align the length of each iovec so that the start 207 * of the next one is naturally aligned. We'll need to 208 * account for that slack space here. Then round nbytes up 209 * to 64-bit alignment so that the initial buffer alignment is 210 * easy to calculate and verify. 211 */ 212 nbytes += niovecs * sizeof(uint64_t); 213 nbytes = round_up(nbytes, sizeof(uint64_t)); 214 215 /* grab the old item if it exists for reservation accounting */ 216 old_lv = lip->li_lv; 217 218 /* 219 * The data buffer needs to start 64-bit aligned, so round up 220 * that space to ensure we can align it appropriately and not 221 * overrun the buffer. 222 */ 223 buf_size = nbytes + 224 round_up((sizeof(struct xfs_log_vec) + 225 niovecs * sizeof(struct xfs_log_iovec)), 226 sizeof(uint64_t)); 227 228 /* compare to existing item size */ 229 if (lip->li_lv && buf_size <= lip->li_lv->lv_size) { 230 /* same or smaller, optimise common overwrite case */ 231 lv = lip->li_lv; 232 lv->lv_next = NULL; 233 234 if (ordered) 235 goto insert; 236 237 /* 238 * set the item up as though it is a new insertion so 239 * that the space reservation accounting is correct. 240 */ 241 *diff_iovecs -= lv->lv_niovecs; 242 *diff_len -= lv->lv_buf_len; 243 } else { 244 /* allocate new data chunk */ 245 lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS); 246 lv->lv_item = lip; 247 lv->lv_size = buf_size; 248 if (ordered) { 249 /* track as an ordered logvec */ 250 ASSERT(lip->li_lv == NULL); 251 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 252 goto insert; 253 } 254 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 255 } 256 257 /* Ensure the lv is set up according to ->iop_size */ 258 lv->lv_niovecs = niovecs; 259 260 /* The allocated data region lies beyond the iovec region */ 261 lv->lv_buf_len = 0; 262 lv->lv_buf = (char *)lv + buf_size - nbytes; 263 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 264 265 lip->li_ops->iop_format(lip, lv); 266 insert: 267 ASSERT(lv->lv_buf_len <= nbytes); 268 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs); 269 } 270 } 271 272 /* 273 * Insert the log items into the CIL and calculate the difference in space 274 * consumed by the item. Add the space to the checkpoint ticket and calculate 275 * if the change requires additional log metadata. If it does, take that space 276 * as well. Remove the amount of space we added to the checkpoint ticket from 277 * the current transaction ticket so that the accounting works out correctly. 278 */ 279 static void 280 xlog_cil_insert_items( 281 struct xlog *log, 282 struct xfs_trans *tp) 283 { 284 struct xfs_cil *cil = log->l_cilp; 285 struct xfs_cil_ctx *ctx = cil->xc_ctx; 286 struct xfs_log_item_desc *lidp; 287 int len = 0; 288 int diff_iovecs = 0; 289 int iclog_space; 290 291 ASSERT(tp); 292 293 /* 294 * We can do this safely because the context can't checkpoint until we 295 * are done so it doesn't matter exactly how we update the CIL. 296 */ 297 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs); 298 299 /* 300 * Now (re-)position everything modified at the tail of the CIL. 301 * We do this here so we only need to take the CIL lock once during 302 * the transaction commit. 303 */ 304 spin_lock(&cil->xc_cil_lock); 305 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 306 struct xfs_log_item *lip = lidp->lid_item; 307 308 /* Skip items which aren't dirty in this transaction. */ 309 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 310 continue; 311 312 list_move_tail(&lip->li_cil, &cil->xc_cil); 313 } 314 315 /* account for space used by new iovec headers */ 316 len += diff_iovecs * sizeof(xlog_op_header_t); 317 ctx->nvecs += diff_iovecs; 318 319 /* attach the transaction to the CIL if it has any busy extents */ 320 if (!list_empty(&tp->t_busy)) 321 list_splice_init(&tp->t_busy, &ctx->busy_extents); 322 323 /* 324 * Now transfer enough transaction reservation to the context ticket 325 * for the checkpoint. The context ticket is special - the unit 326 * reservation has to grow as well as the current reservation as we 327 * steal from tickets so we can correctly determine the space used 328 * during the transaction commit. 329 */ 330 if (ctx->ticket->t_curr_res == 0) { 331 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; 332 tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res; 333 } 334 335 /* do we need space for more log record headers? */ 336 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 337 if (len > 0 && (ctx->space_used / iclog_space != 338 (ctx->space_used + len) / iclog_space)) { 339 int hdrs; 340 341 hdrs = (len + iclog_space - 1) / iclog_space; 342 /* need to take into account split region headers, too */ 343 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 344 ctx->ticket->t_unit_res += hdrs; 345 ctx->ticket->t_curr_res += hdrs; 346 tp->t_ticket->t_curr_res -= hdrs; 347 ASSERT(tp->t_ticket->t_curr_res >= len); 348 } 349 tp->t_ticket->t_curr_res -= len; 350 ctx->space_used += len; 351 352 spin_unlock(&cil->xc_cil_lock); 353 } 354 355 static void 356 xlog_cil_free_logvec( 357 struct xfs_log_vec *log_vector) 358 { 359 struct xfs_log_vec *lv; 360 361 for (lv = log_vector; lv; ) { 362 struct xfs_log_vec *next = lv->lv_next; 363 kmem_free(lv); 364 lv = next; 365 } 366 } 367 368 /* 369 * Mark all items committed and clear busy extents. We free the log vector 370 * chains in a separate pass so that we unpin the log items as quickly as 371 * possible. 372 */ 373 static void 374 xlog_cil_committed( 375 void *args, 376 int abort) 377 { 378 struct xfs_cil_ctx *ctx = args; 379 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 380 381 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, 382 ctx->start_lsn, abort); 383 384 xfs_extent_busy_sort(&ctx->busy_extents); 385 xfs_extent_busy_clear(mp, &ctx->busy_extents, 386 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort); 387 388 spin_lock(&ctx->cil->xc_push_lock); 389 list_del(&ctx->committing); 390 spin_unlock(&ctx->cil->xc_push_lock); 391 392 xlog_cil_free_logvec(ctx->lv_chain); 393 394 if (!list_empty(&ctx->busy_extents)) { 395 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD); 396 397 xfs_discard_extents(mp, &ctx->busy_extents); 398 xfs_extent_busy_clear(mp, &ctx->busy_extents, false); 399 } 400 401 kmem_free(ctx); 402 } 403 404 /* 405 * Push the Committed Item List to the log. If @push_seq flag is zero, then it 406 * is a background flush and so we can chose to ignore it. Otherwise, if the 407 * current sequence is the same as @push_seq we need to do a flush. If 408 * @push_seq is less than the current sequence, then it has already been 409 * flushed and we don't need to do anything - the caller will wait for it to 410 * complete if necessary. 411 * 412 * @push_seq is a value rather than a flag because that allows us to do an 413 * unlocked check of the sequence number for a match. Hence we can allows log 414 * forces to run racily and not issue pushes for the same sequence twice. If we 415 * get a race between multiple pushes for the same sequence they will block on 416 * the first one and then abort, hence avoiding needless pushes. 417 */ 418 STATIC int 419 xlog_cil_push( 420 struct xlog *log) 421 { 422 struct xfs_cil *cil = log->l_cilp; 423 struct xfs_log_vec *lv; 424 struct xfs_cil_ctx *ctx; 425 struct xfs_cil_ctx *new_ctx; 426 struct xlog_in_core *commit_iclog; 427 struct xlog_ticket *tic; 428 int num_iovecs; 429 int error = 0; 430 struct xfs_trans_header thdr; 431 struct xfs_log_iovec lhdr; 432 struct xfs_log_vec lvhdr = { NULL }; 433 xfs_lsn_t commit_lsn; 434 xfs_lsn_t push_seq; 435 436 if (!cil) 437 return 0; 438 439 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); 440 new_ctx->ticket = xlog_cil_ticket_alloc(log); 441 442 down_write(&cil->xc_ctx_lock); 443 ctx = cil->xc_ctx; 444 445 spin_lock(&cil->xc_push_lock); 446 push_seq = cil->xc_push_seq; 447 ASSERT(push_seq <= ctx->sequence); 448 449 /* 450 * Check if we've anything to push. If there is nothing, then we don't 451 * move on to a new sequence number and so we have to be able to push 452 * this sequence again later. 453 */ 454 if (list_empty(&cil->xc_cil)) { 455 cil->xc_push_seq = 0; 456 spin_unlock(&cil->xc_push_lock); 457 goto out_skip; 458 } 459 spin_unlock(&cil->xc_push_lock); 460 461 462 /* check for a previously pushed seqeunce */ 463 if (push_seq < cil->xc_ctx->sequence) 464 goto out_skip; 465 466 /* 467 * pull all the log vectors off the items in the CIL, and 468 * remove the items from the CIL. We don't need the CIL lock 469 * here because it's only needed on the transaction commit 470 * side which is currently locked out by the flush lock. 471 */ 472 lv = NULL; 473 num_iovecs = 0; 474 while (!list_empty(&cil->xc_cil)) { 475 struct xfs_log_item *item; 476 477 item = list_first_entry(&cil->xc_cil, 478 struct xfs_log_item, li_cil); 479 list_del_init(&item->li_cil); 480 if (!ctx->lv_chain) 481 ctx->lv_chain = item->li_lv; 482 else 483 lv->lv_next = item->li_lv; 484 lv = item->li_lv; 485 item->li_lv = NULL; 486 num_iovecs += lv->lv_niovecs; 487 } 488 489 /* 490 * initialise the new context and attach it to the CIL. Then attach 491 * the current context to the CIL committing lsit so it can be found 492 * during log forces to extract the commit lsn of the sequence that 493 * needs to be forced. 494 */ 495 INIT_LIST_HEAD(&new_ctx->committing); 496 INIT_LIST_HEAD(&new_ctx->busy_extents); 497 new_ctx->sequence = ctx->sequence + 1; 498 new_ctx->cil = cil; 499 cil->xc_ctx = new_ctx; 500 501 /* 502 * The switch is now done, so we can drop the context lock and move out 503 * of a shared context. We can't just go straight to the commit record, 504 * though - we need to synchronise with previous and future commits so 505 * that the commit records are correctly ordered in the log to ensure 506 * that we process items during log IO completion in the correct order. 507 * 508 * For example, if we get an EFI in one checkpoint and the EFD in the 509 * next (e.g. due to log forces), we do not want the checkpoint with 510 * the EFD to be committed before the checkpoint with the EFI. Hence 511 * we must strictly order the commit records of the checkpoints so 512 * that: a) the checkpoint callbacks are attached to the iclogs in the 513 * correct order; and b) the checkpoints are replayed in correct order 514 * in log recovery. 515 * 516 * Hence we need to add this context to the committing context list so 517 * that higher sequences will wait for us to write out a commit record 518 * before they do. 519 * 520 * xfs_log_force_lsn requires us to mirror the new sequence into the cil 521 * structure atomically with the addition of this sequence to the 522 * committing list. This also ensures that we can do unlocked checks 523 * against the current sequence in log forces without risking 524 * deferencing a freed context pointer. 525 */ 526 spin_lock(&cil->xc_push_lock); 527 cil->xc_current_sequence = new_ctx->sequence; 528 list_add(&ctx->committing, &cil->xc_committing); 529 spin_unlock(&cil->xc_push_lock); 530 up_write(&cil->xc_ctx_lock); 531 532 /* 533 * Build a checkpoint transaction header and write it to the log to 534 * begin the transaction. We need to account for the space used by the 535 * transaction header here as it is not accounted for in xlog_write(). 536 * 537 * The LSN we need to pass to the log items on transaction commit is 538 * the LSN reported by the first log vector write. If we use the commit 539 * record lsn then we can move the tail beyond the grant write head. 540 */ 541 tic = ctx->ticket; 542 thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 543 thdr.th_type = XFS_TRANS_CHECKPOINT; 544 thdr.th_tid = tic->t_tid; 545 thdr.th_num_items = num_iovecs; 546 lhdr.i_addr = &thdr; 547 lhdr.i_len = sizeof(xfs_trans_header_t); 548 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; 549 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); 550 551 lvhdr.lv_niovecs = 1; 552 lvhdr.lv_iovecp = &lhdr; 553 lvhdr.lv_next = ctx->lv_chain; 554 555 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); 556 if (error) 557 goto out_abort_free_ticket; 558 559 /* 560 * now that we've written the checkpoint into the log, strictly 561 * order the commit records so replay will get them in the right order. 562 */ 563 restart: 564 spin_lock(&cil->xc_push_lock); 565 list_for_each_entry(new_ctx, &cil->xc_committing, committing) { 566 /* 567 * Higher sequences will wait for this one so skip them. 568 * Don't wait for own own sequence, either. 569 */ 570 if (new_ctx->sequence >= ctx->sequence) 571 continue; 572 if (!new_ctx->commit_lsn) { 573 /* 574 * It is still being pushed! Wait for the push to 575 * complete, then start again from the beginning. 576 */ 577 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 578 goto restart; 579 } 580 } 581 spin_unlock(&cil->xc_push_lock); 582 583 /* xfs_log_done always frees the ticket on error. */ 584 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); 585 if (commit_lsn == -1) 586 goto out_abort; 587 588 /* attach all the transactions w/ busy extents to iclog */ 589 ctx->log_cb.cb_func = xlog_cil_committed; 590 ctx->log_cb.cb_arg = ctx; 591 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); 592 if (error) 593 goto out_abort; 594 595 /* 596 * now the checkpoint commit is complete and we've attached the 597 * callbacks to the iclog we can assign the commit LSN to the context 598 * and wake up anyone who is waiting for the commit to complete. 599 */ 600 spin_lock(&cil->xc_push_lock); 601 ctx->commit_lsn = commit_lsn; 602 wake_up_all(&cil->xc_commit_wait); 603 spin_unlock(&cil->xc_push_lock); 604 605 /* release the hounds! */ 606 return xfs_log_release_iclog(log->l_mp, commit_iclog); 607 608 out_skip: 609 up_write(&cil->xc_ctx_lock); 610 xfs_log_ticket_put(new_ctx->ticket); 611 kmem_free(new_ctx); 612 return 0; 613 614 out_abort_free_ticket: 615 xfs_log_ticket_put(tic); 616 out_abort: 617 xlog_cil_committed(ctx, XFS_LI_ABORTED); 618 return XFS_ERROR(EIO); 619 } 620 621 static void 622 xlog_cil_push_work( 623 struct work_struct *work) 624 { 625 struct xfs_cil *cil = container_of(work, struct xfs_cil, 626 xc_push_work); 627 xlog_cil_push(cil->xc_log); 628 } 629 630 /* 631 * We need to push CIL every so often so we don't cache more than we can fit in 632 * the log. The limit really is that a checkpoint can't be more than half the 633 * log (the current checkpoint is not allowed to overwrite the previous 634 * checkpoint), but commit latency and memory usage limit this to a smaller 635 * size. 636 */ 637 static void 638 xlog_cil_push_background( 639 struct xlog *log) 640 { 641 struct xfs_cil *cil = log->l_cilp; 642 643 /* 644 * The cil won't be empty because we are called while holding the 645 * context lock so whatever we added to the CIL will still be there 646 */ 647 ASSERT(!list_empty(&cil->xc_cil)); 648 649 /* 650 * don't do a background push if we haven't used up all the 651 * space available yet. 652 */ 653 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) 654 return; 655 656 spin_lock(&cil->xc_push_lock); 657 if (cil->xc_push_seq < cil->xc_current_sequence) { 658 cil->xc_push_seq = cil->xc_current_sequence; 659 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work); 660 } 661 spin_unlock(&cil->xc_push_lock); 662 663 } 664 665 /* 666 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 667 * number that is passed. When it returns, the work will be queued for 668 * @push_seq, but it won't be completed. The caller is expected to do any 669 * waiting for push_seq to complete if it is required. 670 */ 671 static void 672 xlog_cil_push_now( 673 struct xlog *log, 674 xfs_lsn_t push_seq) 675 { 676 struct xfs_cil *cil = log->l_cilp; 677 678 if (!cil) 679 return; 680 681 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 682 683 /* start on any pending background push to minimise wait time on it */ 684 flush_work(&cil->xc_push_work); 685 686 /* 687 * If the CIL is empty or we've already pushed the sequence then 688 * there's no work we need to do. 689 */ 690 spin_lock(&cil->xc_push_lock); 691 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { 692 spin_unlock(&cil->xc_push_lock); 693 return; 694 } 695 696 cil->xc_push_seq = push_seq; 697 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work); 698 spin_unlock(&cil->xc_push_lock); 699 } 700 701 bool 702 xlog_cil_empty( 703 struct xlog *log) 704 { 705 struct xfs_cil *cil = log->l_cilp; 706 bool empty = false; 707 708 spin_lock(&cil->xc_push_lock); 709 if (list_empty(&cil->xc_cil)) 710 empty = true; 711 spin_unlock(&cil->xc_push_lock); 712 return empty; 713 } 714 715 /* 716 * Commit a transaction with the given vector to the Committed Item List. 717 * 718 * To do this, we need to format the item, pin it in memory if required and 719 * account for the space used by the transaction. Once we have done that we 720 * need to release the unused reservation for the transaction, attach the 721 * transaction to the checkpoint context so we carry the busy extents through 722 * to checkpoint completion, and then unlock all the items in the transaction. 723 * 724 * Called with the context lock already held in read mode to lock out 725 * background commit, returns without it held once background commits are 726 * allowed again. 727 */ 728 void 729 xfs_log_commit_cil( 730 struct xfs_mount *mp, 731 struct xfs_trans *tp, 732 xfs_lsn_t *commit_lsn, 733 int flags) 734 { 735 struct xlog *log = mp->m_log; 736 struct xfs_cil *cil = log->l_cilp; 737 int log_flags = 0; 738 739 if (flags & XFS_TRANS_RELEASE_LOG_RES) 740 log_flags = XFS_LOG_REL_PERM_RESERV; 741 742 /* lock out background commit */ 743 down_read(&cil->xc_ctx_lock); 744 745 xlog_cil_insert_items(log, tp); 746 747 /* check we didn't blow the reservation */ 748 if (tp->t_ticket->t_curr_res < 0) 749 xlog_print_tic_res(mp, tp->t_ticket); 750 751 tp->t_commit_lsn = cil->xc_ctx->sequence; 752 if (commit_lsn) 753 *commit_lsn = tp->t_commit_lsn; 754 755 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 756 xfs_trans_unreserve_and_mod_sb(tp); 757 758 /* 759 * Once all the items of the transaction have been copied to the CIL, 760 * the items can be unlocked and freed. 761 * 762 * This needs to be done before we drop the CIL context lock because we 763 * have to update state in the log items and unlock them before they go 764 * to disk. If we don't, then the CIL checkpoint can race with us and 765 * we can run checkpoint completion before we've updated and unlocked 766 * the log items. This affects (at least) processing of stale buffers, 767 * inodes and EFIs. 768 */ 769 xfs_trans_free_items(tp, tp->t_commit_lsn, 0); 770 771 xlog_cil_push_background(log); 772 773 up_read(&cil->xc_ctx_lock); 774 } 775 776 /* 777 * Conditionally push the CIL based on the sequence passed in. 778 * 779 * We only need to push if we haven't already pushed the sequence 780 * number given. Hence the only time we will trigger a push here is 781 * if the push sequence is the same as the current context. 782 * 783 * We return the current commit lsn to allow the callers to determine if a 784 * iclog flush is necessary following this call. 785 */ 786 xfs_lsn_t 787 xlog_cil_force_lsn( 788 struct xlog *log, 789 xfs_lsn_t sequence) 790 { 791 struct xfs_cil *cil = log->l_cilp; 792 struct xfs_cil_ctx *ctx; 793 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 794 795 ASSERT(sequence <= cil->xc_current_sequence); 796 797 /* 798 * check to see if we need to force out the current context. 799 * xlog_cil_push() handles racing pushes for the same sequence, 800 * so no need to deal with it here. 801 */ 802 restart: 803 xlog_cil_push_now(log, sequence); 804 805 /* 806 * See if we can find a previous sequence still committing. 807 * We need to wait for all previous sequence commits to complete 808 * before allowing the force of push_seq to go ahead. Hence block 809 * on commits for those as well. 810 */ 811 spin_lock(&cil->xc_push_lock); 812 list_for_each_entry(ctx, &cil->xc_committing, committing) { 813 if (ctx->sequence > sequence) 814 continue; 815 if (!ctx->commit_lsn) { 816 /* 817 * It is still being pushed! Wait for the push to 818 * complete, then start again from the beginning. 819 */ 820 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 821 goto restart; 822 } 823 if (ctx->sequence != sequence) 824 continue; 825 /* found it! */ 826 commit_lsn = ctx->commit_lsn; 827 } 828 829 /* 830 * The call to xlog_cil_push_now() executes the push in the background. 831 * Hence by the time we have got here it our sequence may not have been 832 * pushed yet. This is true if the current sequence still matches the 833 * push sequence after the above wait loop and the CIL still contains 834 * dirty objects. 835 * 836 * When the push occurs, it will empty the CIL and 837 * atomically increment the currect sequence past the push sequence and 838 * move it into the committing list. Of course, if the CIL is clean at 839 * the time of the push, it won't have pushed the CIL at all, so in that 840 * case we should try the push for this sequence again from the start 841 * just in case. 842 */ 843 844 if (sequence == cil->xc_current_sequence && 845 !list_empty(&cil->xc_cil)) { 846 spin_unlock(&cil->xc_push_lock); 847 goto restart; 848 } 849 850 spin_unlock(&cil->xc_push_lock); 851 return commit_lsn; 852 } 853 854 /* 855 * Check if the current log item was first committed in this sequence. 856 * We can't rely on just the log item being in the CIL, we have to check 857 * the recorded commit sequence number. 858 * 859 * Note: for this to be used in a non-racy manner, it has to be called with 860 * CIL flushing locked out. As a result, it should only be used during the 861 * transaction commit process when deciding what to format into the item. 862 */ 863 bool 864 xfs_log_item_in_current_chkpt( 865 struct xfs_log_item *lip) 866 { 867 struct xfs_cil_ctx *ctx; 868 869 if (list_empty(&lip->li_cil)) 870 return false; 871 872 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; 873 874 /* 875 * li_seq is written on the first commit of a log item to record the 876 * first checkpoint it is written to. Hence if it is different to the 877 * current sequence, we're in a new checkpoint. 878 */ 879 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) 880 return false; 881 return true; 882 } 883 884 /* 885 * Perform initial CIL structure initialisation. 886 */ 887 int 888 xlog_cil_init( 889 struct xlog *log) 890 { 891 struct xfs_cil *cil; 892 struct xfs_cil_ctx *ctx; 893 894 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); 895 if (!cil) 896 return ENOMEM; 897 898 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); 899 if (!ctx) { 900 kmem_free(cil); 901 return ENOMEM; 902 } 903 904 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work); 905 INIT_LIST_HEAD(&cil->xc_cil); 906 INIT_LIST_HEAD(&cil->xc_committing); 907 spin_lock_init(&cil->xc_cil_lock); 908 spin_lock_init(&cil->xc_push_lock); 909 init_rwsem(&cil->xc_ctx_lock); 910 init_waitqueue_head(&cil->xc_commit_wait); 911 912 INIT_LIST_HEAD(&ctx->committing); 913 INIT_LIST_HEAD(&ctx->busy_extents); 914 ctx->sequence = 1; 915 ctx->cil = cil; 916 cil->xc_ctx = ctx; 917 cil->xc_current_sequence = ctx->sequence; 918 919 cil->xc_log = log; 920 log->l_cilp = cil; 921 return 0; 922 } 923 924 void 925 xlog_cil_destroy( 926 struct xlog *log) 927 { 928 if (log->l_cilp->xc_ctx) { 929 if (log->l_cilp->xc_ctx->ticket) 930 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 931 kmem_free(log->l_cilp->xc_ctx); 932 } 933 934 ASSERT(list_empty(&log->l_cilp->xc_cil)); 935 kmem_free(log->l_cilp); 936 } 937 938