xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision a234ca0f)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_alloc.h"
32 
33 /*
34  * Perform initial CIL structure initialisation. If the CIL is not
35  * enabled in this filesystem, ensure the log->l_cilp is null so
36  * we can check this conditional to determine if we are doing delayed
37  * logging or not.
38  */
39 int
40 xlog_cil_init(
41 	struct log	*log)
42 {
43 	struct xfs_cil	*cil;
44 	struct xfs_cil_ctx *ctx;
45 
46 	log->l_cilp = NULL;
47 	if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG))
48 		return 0;
49 
50 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
51 	if (!cil)
52 		return ENOMEM;
53 
54 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
55 	if (!ctx) {
56 		kmem_free(cil);
57 		return ENOMEM;
58 	}
59 
60 	INIT_LIST_HEAD(&cil->xc_cil);
61 	INIT_LIST_HEAD(&cil->xc_committing);
62 	spin_lock_init(&cil->xc_cil_lock);
63 	init_rwsem(&cil->xc_ctx_lock);
64 	sv_init(&cil->xc_commit_wait, SV_DEFAULT, "cilwait");
65 
66 	INIT_LIST_HEAD(&ctx->committing);
67 	INIT_LIST_HEAD(&ctx->busy_extents);
68 	ctx->sequence = 1;
69 	ctx->cil = cil;
70 	cil->xc_ctx = ctx;
71 
72 	cil->xc_log = log;
73 	log->l_cilp = cil;
74 	return 0;
75 }
76 
77 void
78 xlog_cil_destroy(
79 	struct log	*log)
80 {
81 	if (!log->l_cilp)
82 		return;
83 
84 	if (log->l_cilp->xc_ctx) {
85 		if (log->l_cilp->xc_ctx->ticket)
86 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
87 		kmem_free(log->l_cilp->xc_ctx);
88 	}
89 
90 	ASSERT(list_empty(&log->l_cilp->xc_cil));
91 	kmem_free(log->l_cilp);
92 }
93 
94 /*
95  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
96  * recover, so we don't allow failure here. Also, we allocate in a context that
97  * we don't want to be issuing transactions from, so we need to tell the
98  * allocation code this as well.
99  *
100  * We don't reserve any space for the ticket - we are going to steal whatever
101  * space we require from transactions as they commit. To ensure we reserve all
102  * the space required, we need to set the current reservation of the ticket to
103  * zero so that we know to steal the initial transaction overhead from the
104  * first transaction commit.
105  */
106 static struct xlog_ticket *
107 xlog_cil_ticket_alloc(
108 	struct log	*log)
109 {
110 	struct xlog_ticket *tic;
111 
112 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
113 				KM_SLEEP|KM_NOFS);
114 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
115 
116 	/*
117 	 * set the current reservation to zero so we know to steal the basic
118 	 * transaction overhead reservation from the first transaction commit.
119 	 */
120 	tic->t_curr_res = 0;
121 	return tic;
122 }
123 
124 /*
125  * After the first stage of log recovery is done, we know where the head and
126  * tail of the log are. We need this log initialisation done before we can
127  * initialise the first CIL checkpoint context.
128  *
129  * Here we allocate a log ticket to track space usage during a CIL push.  This
130  * ticket is passed to xlog_write() directly so that we don't slowly leak log
131  * space by failing to account for space used by log headers and additional
132  * region headers for split regions.
133  */
134 void
135 xlog_cil_init_post_recovery(
136 	struct log	*log)
137 {
138 	if (!log->l_cilp)
139 		return;
140 
141 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
142 	log->l_cilp->xc_ctx->sequence = 1;
143 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
144 								log->l_curr_block);
145 }
146 
147 /*
148  * Insert the log item into the CIL and calculate the difference in space
149  * consumed by the item. Add the space to the checkpoint ticket and calculate
150  * if the change requires additional log metadata. If it does, take that space
151  * as well. Remove the amount of space we addded to the checkpoint ticket from
152  * the current transaction ticket so that the accounting works out correctly.
153  *
154  * If this is the first time the item is being placed into the CIL in this
155  * context, pin it so it can't be written to disk until the CIL is flushed to
156  * the iclog and the iclog written to disk.
157  */
158 static void
159 xlog_cil_insert(
160 	struct log		*log,
161 	struct xlog_ticket	*ticket,
162 	struct xfs_log_item	*item,
163 	struct xfs_log_vec	*lv)
164 {
165 	struct xfs_cil		*cil = log->l_cilp;
166 	struct xfs_log_vec	*old = lv->lv_item->li_lv;
167 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
168 	int			len;
169 	int			diff_iovecs;
170 	int			iclog_space;
171 
172 	if (old) {
173 		/* existing lv on log item, space used is a delta */
174 		ASSERT(!list_empty(&item->li_cil));
175 		ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
176 
177 		len = lv->lv_buf_len - old->lv_buf_len;
178 		diff_iovecs = lv->lv_niovecs - old->lv_niovecs;
179 		kmem_free(old->lv_buf);
180 		kmem_free(old);
181 	} else {
182 		/* new lv, must pin the log item */
183 		ASSERT(!lv->lv_item->li_lv);
184 		ASSERT(list_empty(&item->li_cil));
185 
186 		len = lv->lv_buf_len;
187 		diff_iovecs = lv->lv_niovecs;
188 		IOP_PIN(lv->lv_item);
189 
190 	}
191 	len += diff_iovecs * sizeof(xlog_op_header_t);
192 
193 	/* attach new log vector to log item */
194 	lv->lv_item->li_lv = lv;
195 
196 	spin_lock(&cil->xc_cil_lock);
197 	list_move_tail(&item->li_cil, &cil->xc_cil);
198 	ctx->nvecs += diff_iovecs;
199 
200 	/*
201 	 * If this is the first time the item is being committed to the CIL,
202 	 * store the sequence number on the log item so we can tell
203 	 * in future commits whether this is the first checkpoint the item is
204 	 * being committed into.
205 	 */
206 	if (!item->li_seq)
207 		item->li_seq = ctx->sequence;
208 
209 	/*
210 	 * Now transfer enough transaction reservation to the context ticket
211 	 * for the checkpoint. The context ticket is special - the unit
212 	 * reservation has to grow as well as the current reservation as we
213 	 * steal from tickets so we can correctly determine the space used
214 	 * during the transaction commit.
215 	 */
216 	if (ctx->ticket->t_curr_res == 0) {
217 		/* first commit in checkpoint, steal the header reservation */
218 		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
219 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
220 		ticket->t_curr_res -= ctx->ticket->t_unit_res;
221 	}
222 
223 	/* do we need space for more log record headers? */
224 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
225 	if (len > 0 && (ctx->space_used / iclog_space !=
226 				(ctx->space_used + len) / iclog_space)) {
227 		int hdrs;
228 
229 		hdrs = (len + iclog_space - 1) / iclog_space;
230 		/* need to take into account split region headers, too */
231 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
232 		ctx->ticket->t_unit_res += hdrs;
233 		ctx->ticket->t_curr_res += hdrs;
234 		ticket->t_curr_res -= hdrs;
235 		ASSERT(ticket->t_curr_res >= len);
236 	}
237 	ticket->t_curr_res -= len;
238 	ctx->space_used += len;
239 
240 	spin_unlock(&cil->xc_cil_lock);
241 }
242 
243 /*
244  * Format log item into a flat buffers
245  *
246  * For delayed logging, we need to hold a formatted buffer containing all the
247  * changes on the log item. This enables us to relog the item in memory and
248  * write it out asynchronously without needing to relock the object that was
249  * modified at the time it gets written into the iclog.
250  *
251  * This function builds a vector for the changes in each log item in the
252  * transaction. It then works out the length of the buffer needed for each log
253  * item, allocates them and formats the vector for the item into the buffer.
254  * The buffer is then attached to the log item are then inserted into the
255  * Committed Item List for tracking until the next checkpoint is written out.
256  *
257  * We don't set up region headers during this process; we simply copy the
258  * regions into the flat buffer. We can do this because we still have to do a
259  * formatting step to write the regions into the iclog buffer.  Writing the
260  * ophdrs during the iclog write means that we can support splitting large
261  * regions across iclog boundares without needing a change in the format of the
262  * item/region encapsulation.
263  *
264  * Hence what we need to do now is change the rewrite the vector array to point
265  * to the copied region inside the buffer we just allocated. This allows us to
266  * format the regions into the iclog as though they are being formatted
267  * directly out of the objects themselves.
268  */
269 static void
270 xlog_cil_format_items(
271 	struct log		*log,
272 	struct xfs_log_vec	*log_vector,
273 	struct xlog_ticket	*ticket,
274 	xfs_lsn_t		*start_lsn)
275 {
276 	struct xfs_log_vec *lv;
277 
278 	if (start_lsn)
279 		*start_lsn = log->l_cilp->xc_ctx->sequence;
280 
281 	ASSERT(log_vector);
282 	for (lv = log_vector; lv; lv = lv->lv_next) {
283 		void	*ptr;
284 		int	index;
285 		int	len = 0;
286 
287 		/* build the vector array and calculate it's length */
288 		IOP_FORMAT(lv->lv_item, lv->lv_iovecp);
289 		for (index = 0; index < lv->lv_niovecs; index++)
290 			len += lv->lv_iovecp[index].i_len;
291 
292 		lv->lv_buf_len = len;
293 		lv->lv_buf = kmem_zalloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS);
294 		ptr = lv->lv_buf;
295 
296 		for (index = 0; index < lv->lv_niovecs; index++) {
297 			struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
298 
299 			memcpy(ptr, vec->i_addr, vec->i_len);
300 			vec->i_addr = ptr;
301 			ptr += vec->i_len;
302 		}
303 		ASSERT(ptr == lv->lv_buf + lv->lv_buf_len);
304 
305 		xlog_cil_insert(log, ticket, lv->lv_item, lv);
306 	}
307 }
308 
309 static void
310 xlog_cil_free_logvec(
311 	struct xfs_log_vec	*log_vector)
312 {
313 	struct xfs_log_vec	*lv;
314 
315 	for (lv = log_vector; lv; ) {
316 		struct xfs_log_vec *next = lv->lv_next;
317 		kmem_free(lv->lv_buf);
318 		kmem_free(lv);
319 		lv = next;
320 	}
321 }
322 
323 /*
324  * Commit a transaction with the given vector to the Committed Item List.
325  *
326  * To do this, we need to format the item, pin it in memory if required and
327  * account for the space used by the transaction. Once we have done that we
328  * need to release the unused reservation for the transaction, attach the
329  * transaction to the checkpoint context so we carry the busy extents through
330  * to checkpoint completion, and then unlock all the items in the transaction.
331  *
332  * For more specific information about the order of operations in
333  * xfs_log_commit_cil() please refer to the comments in
334  * xfs_trans_commit_iclog().
335  *
336  * Called with the context lock already held in read mode to lock out
337  * background commit, returns without it held once background commits are
338  * allowed again.
339  */
340 int
341 xfs_log_commit_cil(
342 	struct xfs_mount	*mp,
343 	struct xfs_trans	*tp,
344 	struct xfs_log_vec	*log_vector,
345 	xfs_lsn_t		*commit_lsn,
346 	int			flags)
347 {
348 	struct log		*log = mp->m_log;
349 	int			log_flags = 0;
350 	int			push = 0;
351 
352 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
353 		log_flags = XFS_LOG_REL_PERM_RESERV;
354 
355 	if (XLOG_FORCED_SHUTDOWN(log)) {
356 		xlog_cil_free_logvec(log_vector);
357 		return XFS_ERROR(EIO);
358 	}
359 
360 	/* lock out background commit */
361 	down_read(&log->l_cilp->xc_ctx_lock);
362 	xlog_cil_format_items(log, log_vector, tp->t_ticket, commit_lsn);
363 
364 	/* check we didn't blow the reservation */
365 	if (tp->t_ticket->t_curr_res < 0)
366 		xlog_print_tic_res(log->l_mp, tp->t_ticket);
367 
368 	/* attach the transaction to the CIL if it has any busy extents */
369 	if (!list_empty(&tp->t_busy)) {
370 		spin_lock(&log->l_cilp->xc_cil_lock);
371 		list_splice_init(&tp->t_busy,
372 					&log->l_cilp->xc_ctx->busy_extents);
373 		spin_unlock(&log->l_cilp->xc_cil_lock);
374 	}
375 
376 	tp->t_commit_lsn = *commit_lsn;
377 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
378 	xfs_trans_unreserve_and_mod_sb(tp);
379 
380 	/* check for background commit before unlock */
381 	if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
382 		push = 1;
383 	up_read(&log->l_cilp->xc_ctx_lock);
384 
385 	/*
386 	 * We need to push CIL every so often so we don't cache more than we
387 	 * can fit in the log. The limit really is that a checkpoint can't be
388 	 * more than half the log (the current checkpoint is not allowed to
389 	 * overwrite the previous checkpoint), but commit latency and memory
390 	 * usage limit this to a smaller size in most cases.
391 	 */
392 	if (push)
393 		xlog_cil_push(log, 0);
394 	return 0;
395 }
396 
397 /*
398  * Mark all items committed and clear busy extents. We free the log vector
399  * chains in a separate pass so that we unpin the log items as quickly as
400  * possible.
401  */
402 static void
403 xlog_cil_committed(
404 	void	*args,
405 	int	abort)
406 {
407 	struct xfs_cil_ctx	*ctx = args;
408 	struct xfs_log_vec	*lv;
409 	int			abortflag = abort ? XFS_LI_ABORTED : 0;
410 	struct xfs_busy_extent	*busyp, *n;
411 
412 	/* unpin all the log items */
413 	for (lv = ctx->lv_chain; lv; lv = lv->lv_next ) {
414 		xfs_trans_item_committed(lv->lv_item, ctx->start_lsn,
415 							abortflag);
416 	}
417 
418 	list_for_each_entry_safe(busyp, n, &ctx->busy_extents, list)
419 		xfs_alloc_busy_clear(ctx->cil->xc_log->l_mp, busyp);
420 
421 	spin_lock(&ctx->cil->xc_cil_lock);
422 	list_del(&ctx->committing);
423 	spin_unlock(&ctx->cil->xc_cil_lock);
424 
425 	xlog_cil_free_logvec(ctx->lv_chain);
426 	kmem_free(ctx);
427 }
428 
429 /*
430  * Push the Committed Item List to the log. If the push_now flag is not set,
431  * then it is a background flush and so we can chose to ignore it.
432  */
433 int
434 xlog_cil_push(
435 	struct log		*log,
436 	int			push_now)
437 {
438 	struct xfs_cil		*cil = log->l_cilp;
439 	struct xfs_log_vec	*lv;
440 	struct xfs_cil_ctx	*ctx;
441 	struct xfs_cil_ctx	*new_ctx;
442 	struct xlog_in_core	*commit_iclog;
443 	struct xlog_ticket	*tic;
444 	int			num_lv;
445 	int			num_iovecs;
446 	int			len;
447 	int			error = 0;
448 	struct xfs_trans_header thdr;
449 	struct xfs_log_iovec	lhdr;
450 	struct xfs_log_vec	lvhdr = { NULL };
451 	xfs_lsn_t		commit_lsn;
452 
453 	if (!cil)
454 		return 0;
455 
456 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
457 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
458 
459 	/* lock out transaction commit, but don't block on background push */
460 	if (!down_write_trylock(&cil->xc_ctx_lock)) {
461 		if (!push_now)
462 			goto out_free_ticket;
463 		down_write(&cil->xc_ctx_lock);
464 	}
465 	ctx = cil->xc_ctx;
466 
467 	/* check if we've anything to push */
468 	if (list_empty(&cil->xc_cil))
469 		goto out_skip;
470 
471 	/* check for spurious background flush */
472 	if (!push_now && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
473 		goto out_skip;
474 
475 	/*
476 	 * pull all the log vectors off the items in the CIL, and
477 	 * remove the items from the CIL. We don't need the CIL lock
478 	 * here because it's only needed on the transaction commit
479 	 * side which is currently locked out by the flush lock.
480 	 */
481 	lv = NULL;
482 	num_lv = 0;
483 	num_iovecs = 0;
484 	len = 0;
485 	while (!list_empty(&cil->xc_cil)) {
486 		struct xfs_log_item	*item;
487 		int			i;
488 
489 		item = list_first_entry(&cil->xc_cil,
490 					struct xfs_log_item, li_cil);
491 		list_del_init(&item->li_cil);
492 		if (!ctx->lv_chain)
493 			ctx->lv_chain = item->li_lv;
494 		else
495 			lv->lv_next = item->li_lv;
496 		lv = item->li_lv;
497 		item->li_lv = NULL;
498 
499 		num_lv++;
500 		num_iovecs += lv->lv_niovecs;
501 		for (i = 0; i < lv->lv_niovecs; i++)
502 			len += lv->lv_iovecp[i].i_len;
503 	}
504 
505 	/*
506 	 * initialise the new context and attach it to the CIL. Then attach
507 	 * the current context to the CIL committing lsit so it can be found
508 	 * during log forces to extract the commit lsn of the sequence that
509 	 * needs to be forced.
510 	 */
511 	INIT_LIST_HEAD(&new_ctx->committing);
512 	INIT_LIST_HEAD(&new_ctx->busy_extents);
513 	new_ctx->sequence = ctx->sequence + 1;
514 	new_ctx->cil = cil;
515 	cil->xc_ctx = new_ctx;
516 
517 	/*
518 	 * The switch is now done, so we can drop the context lock and move out
519 	 * of a shared context. We can't just go straight to the commit record,
520 	 * though - we need to synchronise with previous and future commits so
521 	 * that the commit records are correctly ordered in the log to ensure
522 	 * that we process items during log IO completion in the correct order.
523 	 *
524 	 * For example, if we get an EFI in one checkpoint and the EFD in the
525 	 * next (e.g. due to log forces), we do not want the checkpoint with
526 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
527 	 * we must strictly order the commit records of the checkpoints so
528 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
529 	 * correct order; and b) the checkpoints are replayed in correct order
530 	 * in log recovery.
531 	 *
532 	 * Hence we need to add this context to the committing context list so
533 	 * that higher sequences will wait for us to write out a commit record
534 	 * before they do.
535 	 */
536 	spin_lock(&cil->xc_cil_lock);
537 	list_add(&ctx->committing, &cil->xc_committing);
538 	spin_unlock(&cil->xc_cil_lock);
539 	up_write(&cil->xc_ctx_lock);
540 
541 	/*
542 	 * Build a checkpoint transaction header and write it to the log to
543 	 * begin the transaction. We need to account for the space used by the
544 	 * transaction header here as it is not accounted for in xlog_write().
545 	 *
546 	 * The LSN we need to pass to the log items on transaction commit is
547 	 * the LSN reported by the first log vector write. If we use the commit
548 	 * record lsn then we can move the tail beyond the grant write head.
549 	 */
550 	tic = ctx->ticket;
551 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
552 	thdr.th_type = XFS_TRANS_CHECKPOINT;
553 	thdr.th_tid = tic->t_tid;
554 	thdr.th_num_items = num_iovecs;
555 	lhdr.i_addr = &thdr;
556 	lhdr.i_len = sizeof(xfs_trans_header_t);
557 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
558 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
559 
560 	lvhdr.lv_niovecs = 1;
561 	lvhdr.lv_iovecp = &lhdr;
562 	lvhdr.lv_next = ctx->lv_chain;
563 
564 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
565 	if (error)
566 		goto out_abort;
567 
568 	/*
569 	 * now that we've written the checkpoint into the log, strictly
570 	 * order the commit records so replay will get them in the right order.
571 	 */
572 restart:
573 	spin_lock(&cil->xc_cil_lock);
574 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
575 		/*
576 		 * Higher sequences will wait for this one so skip them.
577 		 * Don't wait for own own sequence, either.
578 		 */
579 		if (new_ctx->sequence >= ctx->sequence)
580 			continue;
581 		if (!new_ctx->commit_lsn) {
582 			/*
583 			 * It is still being pushed! Wait for the push to
584 			 * complete, then start again from the beginning.
585 			 */
586 			sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
587 			goto restart;
588 		}
589 	}
590 	spin_unlock(&cil->xc_cil_lock);
591 
592 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
593 	if (error || commit_lsn == -1)
594 		goto out_abort;
595 
596 	/* attach all the transactions w/ busy extents to iclog */
597 	ctx->log_cb.cb_func = xlog_cil_committed;
598 	ctx->log_cb.cb_arg = ctx;
599 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
600 	if (error)
601 		goto out_abort;
602 
603 	/*
604 	 * now the checkpoint commit is complete and we've attached the
605 	 * callbacks to the iclog we can assign the commit LSN to the context
606 	 * and wake up anyone who is waiting for the commit to complete.
607 	 */
608 	spin_lock(&cil->xc_cil_lock);
609 	ctx->commit_lsn = commit_lsn;
610 	sv_broadcast(&cil->xc_commit_wait);
611 	spin_unlock(&cil->xc_cil_lock);
612 
613 	/* release the hounds! */
614 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
615 
616 out_skip:
617 	up_write(&cil->xc_ctx_lock);
618 out_free_ticket:
619 	xfs_log_ticket_put(new_ctx->ticket);
620 	kmem_free(new_ctx);
621 	return 0;
622 
623 out_abort:
624 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
625 	return XFS_ERROR(EIO);
626 }
627 
628 /*
629  * Conditionally push the CIL based on the sequence passed in.
630  *
631  * We only need to push if we haven't already pushed the sequence
632  * number given. Hence the only time we will trigger a push here is
633  * if the push sequence is the same as the current context.
634  *
635  * We return the current commit lsn to allow the callers to determine if a
636  * iclog flush is necessary following this call.
637  *
638  * XXX: Initially, just push the CIL unconditionally and return whatever
639  * commit lsn is there. It'll be empty, so this is broken for now.
640  */
641 xfs_lsn_t
642 xlog_cil_push_lsn(
643 	struct log	*log,
644 	xfs_lsn_t	push_seq)
645 {
646 	struct xfs_cil		*cil = log->l_cilp;
647 	struct xfs_cil_ctx	*ctx;
648 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
649 
650 restart:
651 	down_write(&cil->xc_ctx_lock);
652 	ASSERT(push_seq <= cil->xc_ctx->sequence);
653 
654 	/* check to see if we need to force out the current context */
655 	if (push_seq == cil->xc_ctx->sequence) {
656 		up_write(&cil->xc_ctx_lock);
657 		xlog_cil_push(log, 1);
658 		goto restart;
659 	}
660 
661 	/*
662 	 * See if we can find a previous sequence still committing.
663 	 * We can drop the flush lock as soon as we have the cil lock
664 	 * because we are now only comparing contexts protected by
665 	 * the cil lock.
666 	 *
667 	 * We need to wait for all previous sequence commits to complete
668 	 * before allowing the force of push_seq to go ahead. Hence block
669 	 * on commits for those as well.
670 	 */
671 	spin_lock(&cil->xc_cil_lock);
672 	up_write(&cil->xc_ctx_lock);
673 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
674 		if (ctx->sequence > push_seq)
675 			continue;
676 		if (!ctx->commit_lsn) {
677 			/*
678 			 * It is still being pushed! Wait for the push to
679 			 * complete, then start again from the beginning.
680 			 */
681 			sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
682 			goto restart;
683 		}
684 		if (ctx->sequence != push_seq)
685 			continue;
686 		/* found it! */
687 		commit_lsn = ctx->commit_lsn;
688 	}
689 	spin_unlock(&cil->xc_cil_lock);
690 	return commit_lsn;
691 }
692 
693 /*
694  * Check if the current log item was first committed in this sequence.
695  * We can't rely on just the log item being in the CIL, we have to check
696  * the recorded commit sequence number.
697  *
698  * Note: for this to be used in a non-racy manner, it has to be called with
699  * CIL flushing locked out. As a result, it should only be used during the
700  * transaction commit process when deciding what to format into the item.
701  */
702 bool
703 xfs_log_item_in_current_chkpt(
704 	struct xfs_log_item *lip)
705 {
706 	struct xfs_cil_ctx *ctx;
707 
708 	if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG))
709 		return false;
710 	if (list_empty(&lip->li_cil))
711 		return false;
712 
713 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
714 
715 	/*
716 	 * li_seq is written on the first commit of a log item to record the
717 	 * first checkpoint it is written to. Hence if it is different to the
718 	 * current sequence, we're in a new checkpoint.
719 	 */
720 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
721 		return false;
722 	return true;
723 }
724