xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision a10c9ede)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, 0);
41 
42 	/*
43 	 * set the current reservation to zero so we know to steal the basic
44 	 * transaction overhead reservation from the first transaction commit.
45 	 */
46 	tic->t_curr_res = 0;
47 	return tic;
48 }
49 
50 /*
51  * Check if the current log item was first committed in this sequence.
52  * We can't rely on just the log item being in the CIL, we have to check
53  * the recorded commit sequence number.
54  *
55  * Note: for this to be used in a non-racy manner, it has to be called with
56  * CIL flushing locked out. As a result, it should only be used during the
57  * transaction commit process when deciding what to format into the item.
58  */
59 static bool
60 xlog_item_in_current_chkpt(
61 	struct xfs_cil		*cil,
62 	struct xfs_log_item	*lip)
63 {
64 	if (list_empty(&lip->li_cil))
65 		return false;
66 
67 	/*
68 	 * li_seq is written on the first commit of a log item to record the
69 	 * first checkpoint it is written to. Hence if it is different to the
70 	 * current sequence, we're in a new checkpoint.
71 	 */
72 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
73 }
74 
75 bool
76 xfs_log_item_in_current_chkpt(
77 	struct xfs_log_item *lip)
78 {
79 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
80 }
81 
82 /*
83  * Unavoidable forward declaration - xlog_cil_push_work() calls
84  * xlog_cil_ctx_alloc() itself.
85  */
86 static void xlog_cil_push_work(struct work_struct *work);
87 
88 static struct xfs_cil_ctx *
89 xlog_cil_ctx_alloc(void)
90 {
91 	struct xfs_cil_ctx	*ctx;
92 
93 	ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
94 	INIT_LIST_HEAD(&ctx->committing);
95 	INIT_LIST_HEAD(&ctx->busy_extents);
96 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
97 	return ctx;
98 }
99 
100 static void
101 xlog_cil_ctx_switch(
102 	struct xfs_cil		*cil,
103 	struct xfs_cil_ctx	*ctx)
104 {
105 	ctx->sequence = ++cil->xc_current_sequence;
106 	ctx->cil = cil;
107 	cil->xc_ctx = ctx;
108 }
109 
110 /*
111  * After the first stage of log recovery is done, we know where the head and
112  * tail of the log are. We need this log initialisation done before we can
113  * initialise the first CIL checkpoint context.
114  *
115  * Here we allocate a log ticket to track space usage during a CIL push.  This
116  * ticket is passed to xlog_write() directly so that we don't slowly leak log
117  * space by failing to account for space used by log headers and additional
118  * region headers for split regions.
119  */
120 void
121 xlog_cil_init_post_recovery(
122 	struct xlog	*log)
123 {
124 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
125 	log->l_cilp->xc_ctx->sequence = 1;
126 }
127 
128 static inline int
129 xlog_cil_iovec_space(
130 	uint	niovecs)
131 {
132 	return round_up((sizeof(struct xfs_log_vec) +
133 					niovecs * sizeof(struct xfs_log_iovec)),
134 			sizeof(uint64_t));
135 }
136 
137 /*
138  * Allocate or pin log vector buffers for CIL insertion.
139  *
140  * The CIL currently uses disposable buffers for copying a snapshot of the
141  * modified items into the log during a push. The biggest problem with this is
142  * the requirement to allocate the disposable buffer during the commit if:
143  *	a) does not exist; or
144  *	b) it is too small
145  *
146  * If we do this allocation within xlog_cil_insert_format_items(), it is done
147  * under the xc_ctx_lock, which means that a CIL push cannot occur during
148  * the memory allocation. This means that we have a potential deadlock situation
149  * under low memory conditions when we have lots of dirty metadata pinned in
150  * the CIL and we need a CIL commit to occur to free memory.
151  *
152  * To avoid this, we need to move the memory allocation outside the
153  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
154  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
155  * vector buffers between the check and the formatting of the item into the
156  * log vector buffer within the xc_ctx_lock.
157  *
158  * Because the log vector buffer needs to be unchanged during the CIL push
159  * process, we cannot share the buffer between the transaction commit (which
160  * modifies the buffer) and the CIL push context that is writing the changes
161  * into the log. This means skipping preallocation of buffer space is
162  * unreliable, but we most definitely do not want to be allocating and freeing
163  * buffers unnecessarily during commits when overwrites can be done safely.
164  *
165  * The simplest solution to this problem is to allocate a shadow buffer when a
166  * log item is committed for the second time, and then to only use this buffer
167  * if necessary. The buffer can remain attached to the log item until such time
168  * it is needed, and this is the buffer that is reallocated to match the size of
169  * the incoming modification. Then during the formatting of the item we can swap
170  * the active buffer with the new one if we can't reuse the existing buffer. We
171  * don't free the old buffer as it may be reused on the next modification if
172  * it's size is right, otherwise we'll free and reallocate it at that point.
173  *
174  * This function builds a vector for the changes in each log item in the
175  * transaction. It then works out the length of the buffer needed for each log
176  * item, allocates them and attaches the vector to the log item in preparation
177  * for the formatting step which occurs under the xc_ctx_lock.
178  *
179  * While this means the memory footprint goes up, it avoids the repeated
180  * alloc/free pattern that repeated modifications of an item would otherwise
181  * cause, and hence minimises the CPU overhead of such behaviour.
182  */
183 static void
184 xlog_cil_alloc_shadow_bufs(
185 	struct xlog		*log,
186 	struct xfs_trans	*tp)
187 {
188 	struct xfs_log_item	*lip;
189 
190 	list_for_each_entry(lip, &tp->t_items, li_trans) {
191 		struct xfs_log_vec *lv;
192 		int	niovecs = 0;
193 		int	nbytes = 0;
194 		int	buf_size;
195 		bool	ordered = false;
196 
197 		/* Skip items which aren't dirty in this transaction. */
198 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
199 			continue;
200 
201 		/* get number of vecs and size of data to be stored */
202 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
203 
204 		/*
205 		 * Ordered items need to be tracked but we do not wish to write
206 		 * them. We need a logvec to track the object, but we do not
207 		 * need an iovec or buffer to be allocated for copying data.
208 		 */
209 		if (niovecs == XFS_LOG_VEC_ORDERED) {
210 			ordered = true;
211 			niovecs = 0;
212 			nbytes = 0;
213 		}
214 
215 		/*
216 		 * We 64-bit align the length of each iovec so that the start of
217 		 * the next one is naturally aligned.  We'll need to account for
218 		 * that slack space here.
219 		 *
220 		 * We also add the xlog_op_header to each region when
221 		 * formatting, but that's not accounted to the size of the item
222 		 * at this point. Hence we'll need an addition number of bytes
223 		 * for each vector to hold an opheader.
224 		 *
225 		 * Then round nbytes up to 64-bit alignment so that the initial
226 		 * buffer alignment is easy to calculate and verify.
227 		 */
228 		nbytes += niovecs *
229 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
230 		nbytes = round_up(nbytes, sizeof(uint64_t));
231 
232 		/*
233 		 * The data buffer needs to start 64-bit aligned, so round up
234 		 * that space to ensure we can align it appropriately and not
235 		 * overrun the buffer.
236 		 */
237 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
238 
239 		/*
240 		 * if we have no shadow buffer, or it is too small, we need to
241 		 * reallocate it.
242 		 */
243 		if (!lip->li_lv_shadow ||
244 		    buf_size > lip->li_lv_shadow->lv_size) {
245 			/*
246 			 * We free and allocate here as a realloc would copy
247 			 * unnecessary data. We don't use kvzalloc() for the
248 			 * same reason - we don't need to zero the data area in
249 			 * the buffer, only the log vector header and the iovec
250 			 * storage.
251 			 */
252 			kmem_free(lip->li_lv_shadow);
253 			lv = xlog_kvmalloc(buf_size);
254 
255 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
256 
257 			lv->lv_item = lip;
258 			lv->lv_size = buf_size;
259 			if (ordered)
260 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
261 			else
262 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
263 			lip->li_lv_shadow = lv;
264 		} else {
265 			/* same or smaller, optimise common overwrite case */
266 			lv = lip->li_lv_shadow;
267 			if (ordered)
268 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
269 			else
270 				lv->lv_buf_len = 0;
271 			lv->lv_bytes = 0;
272 			lv->lv_next = NULL;
273 		}
274 
275 		/* Ensure the lv is set up according to ->iop_size */
276 		lv->lv_niovecs = niovecs;
277 
278 		/* The allocated data region lies beyond the iovec region */
279 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
280 	}
281 
282 }
283 
284 /*
285  * Prepare the log item for insertion into the CIL. Calculate the difference in
286  * log space it will consume, and if it is a new item pin it as well.
287  */
288 STATIC void
289 xfs_cil_prepare_item(
290 	struct xlog		*log,
291 	struct xfs_log_vec	*lv,
292 	struct xfs_log_vec	*old_lv,
293 	int			*diff_len)
294 {
295 	/* Account for the new LV being passed in */
296 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
297 		*diff_len += lv->lv_bytes;
298 
299 	/*
300 	 * If there is no old LV, this is the first time we've seen the item in
301 	 * this CIL context and so we need to pin it. If we are replacing the
302 	 * old_lv, then remove the space it accounts for and make it the shadow
303 	 * buffer for later freeing. In both cases we are now switching to the
304 	 * shadow buffer, so update the pointer to it appropriately.
305 	 */
306 	if (!old_lv) {
307 		if (lv->lv_item->li_ops->iop_pin)
308 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
309 		lv->lv_item->li_lv_shadow = NULL;
310 	} else if (old_lv != lv) {
311 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
312 
313 		*diff_len -= old_lv->lv_bytes;
314 		lv->lv_item->li_lv_shadow = old_lv;
315 	}
316 
317 	/* attach new log vector to log item */
318 	lv->lv_item->li_lv = lv;
319 
320 	/*
321 	 * If this is the first time the item is being committed to the
322 	 * CIL, store the sequence number on the log item so we can
323 	 * tell in future commits whether this is the first checkpoint
324 	 * the item is being committed into.
325 	 */
326 	if (!lv->lv_item->li_seq)
327 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
328 }
329 
330 /*
331  * Format log item into a flat buffers
332  *
333  * For delayed logging, we need to hold a formatted buffer containing all the
334  * changes on the log item. This enables us to relog the item in memory and
335  * write it out asynchronously without needing to relock the object that was
336  * modified at the time it gets written into the iclog.
337  *
338  * This function takes the prepared log vectors attached to each log item, and
339  * formats the changes into the log vector buffer. The buffer it uses is
340  * dependent on the current state of the vector in the CIL - the shadow lv is
341  * guaranteed to be large enough for the current modification, but we will only
342  * use that if we can't reuse the existing lv. If we can't reuse the existing
343  * lv, then simple swap it out for the shadow lv. We don't free it - that is
344  * done lazily either by th enext modification or the freeing of the log item.
345  *
346  * We don't set up region headers during this process; we simply copy the
347  * regions into the flat buffer. We can do this because we still have to do a
348  * formatting step to write the regions into the iclog buffer.  Writing the
349  * ophdrs during the iclog write means that we can support splitting large
350  * regions across iclog boundares without needing a change in the format of the
351  * item/region encapsulation.
352  *
353  * Hence what we need to do now is change the rewrite the vector array to point
354  * to the copied region inside the buffer we just allocated. This allows us to
355  * format the regions into the iclog as though they are being formatted
356  * directly out of the objects themselves.
357  */
358 static void
359 xlog_cil_insert_format_items(
360 	struct xlog		*log,
361 	struct xfs_trans	*tp,
362 	int			*diff_len)
363 {
364 	struct xfs_log_item	*lip;
365 
366 	/* Bail out if we didn't find a log item.  */
367 	if (list_empty(&tp->t_items)) {
368 		ASSERT(0);
369 		return;
370 	}
371 
372 	list_for_each_entry(lip, &tp->t_items, li_trans) {
373 		struct xfs_log_vec *lv;
374 		struct xfs_log_vec *old_lv = NULL;
375 		struct xfs_log_vec *shadow;
376 		bool	ordered = false;
377 
378 		/* Skip items which aren't dirty in this transaction. */
379 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
380 			continue;
381 
382 		/*
383 		 * The formatting size information is already attached to
384 		 * the shadow lv on the log item.
385 		 */
386 		shadow = lip->li_lv_shadow;
387 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
388 			ordered = true;
389 
390 		/* Skip items that do not have any vectors for writing */
391 		if (!shadow->lv_niovecs && !ordered)
392 			continue;
393 
394 		/* compare to existing item size */
395 		old_lv = lip->li_lv;
396 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
397 			/* same or smaller, optimise common overwrite case */
398 			lv = lip->li_lv;
399 			lv->lv_next = NULL;
400 
401 			if (ordered)
402 				goto insert;
403 
404 			/*
405 			 * set the item up as though it is a new insertion so
406 			 * that the space reservation accounting is correct.
407 			 */
408 			*diff_len -= lv->lv_bytes;
409 
410 			/* Ensure the lv is set up according to ->iop_size */
411 			lv->lv_niovecs = shadow->lv_niovecs;
412 
413 			/* reset the lv buffer information for new formatting */
414 			lv->lv_buf_len = 0;
415 			lv->lv_bytes = 0;
416 			lv->lv_buf = (char *)lv +
417 					xlog_cil_iovec_space(lv->lv_niovecs);
418 		} else {
419 			/* switch to shadow buffer! */
420 			lv = shadow;
421 			lv->lv_item = lip;
422 			if (ordered) {
423 				/* track as an ordered logvec */
424 				ASSERT(lip->li_lv == NULL);
425 				goto insert;
426 			}
427 		}
428 
429 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
430 		lip->li_ops->iop_format(lip, lv);
431 insert:
432 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
433 	}
434 }
435 
436 /*
437  * Insert the log items into the CIL and calculate the difference in space
438  * consumed by the item. Add the space to the checkpoint ticket and calculate
439  * if the change requires additional log metadata. If it does, take that space
440  * as well. Remove the amount of space we added to the checkpoint ticket from
441  * the current transaction ticket so that the accounting works out correctly.
442  */
443 static void
444 xlog_cil_insert_items(
445 	struct xlog		*log,
446 	struct xfs_trans	*tp,
447 	uint32_t		released_space)
448 {
449 	struct xfs_cil		*cil = log->l_cilp;
450 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
451 	struct xfs_log_item	*lip;
452 	int			len = 0;
453 	int			iclog_space;
454 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
455 
456 	ASSERT(tp);
457 
458 	/*
459 	 * We can do this safely because the context can't checkpoint until we
460 	 * are done so it doesn't matter exactly how we update the CIL.
461 	 */
462 	xlog_cil_insert_format_items(log, tp, &len);
463 
464 	spin_lock(&cil->xc_cil_lock);
465 
466 	/* attach the transaction to the CIL if it has any busy extents */
467 	if (!list_empty(&tp->t_busy))
468 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
469 
470 	/*
471 	 * Now transfer enough transaction reservation to the context ticket
472 	 * for the checkpoint. The context ticket is special - the unit
473 	 * reservation has to grow as well as the current reservation as we
474 	 * steal from tickets so we can correctly determine the space used
475 	 * during the transaction commit.
476 	 */
477 	if (ctx->ticket->t_curr_res == 0) {
478 		ctx_res = ctx->ticket->t_unit_res;
479 		ctx->ticket->t_curr_res = ctx_res;
480 		tp->t_ticket->t_curr_res -= ctx_res;
481 	}
482 
483 	/* do we need space for more log record headers? */
484 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
485 	if (len > 0 && (ctx->space_used / iclog_space !=
486 				(ctx->space_used + len) / iclog_space)) {
487 		split_res = (len + iclog_space - 1) / iclog_space;
488 		/* need to take into account split region headers, too */
489 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
490 		ctx->ticket->t_unit_res += split_res;
491 		ctx->ticket->t_curr_res += split_res;
492 		tp->t_ticket->t_curr_res -= split_res;
493 		ASSERT(tp->t_ticket->t_curr_res >= len);
494 	}
495 	tp->t_ticket->t_curr_res -= len;
496 	tp->t_ticket->t_curr_res += released_space;
497 	ctx->space_used += len;
498 	ctx->space_used -= released_space;
499 
500 	/*
501 	 * If we've overrun the reservation, dump the tx details before we move
502 	 * the log items. Shutdown is imminent...
503 	 */
504 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
505 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
506 		xfs_warn(log->l_mp,
507 			 "  log items: %d bytes (iov hdrs: %d bytes)",
508 			 len, iovhdr_res);
509 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
510 			 split_res);
511 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
512 		xlog_print_trans(tp);
513 	}
514 
515 	/*
516 	 * Now (re-)position everything modified at the tail of the CIL.
517 	 * We do this here so we only need to take the CIL lock once during
518 	 * the transaction commit.
519 	 */
520 	list_for_each_entry(lip, &tp->t_items, li_trans) {
521 
522 		/* Skip items which aren't dirty in this transaction. */
523 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
524 			continue;
525 
526 		/*
527 		 * Only move the item if it isn't already at the tail. This is
528 		 * to prevent a transient list_empty() state when reinserting
529 		 * an item that is already the only item in the CIL.
530 		 */
531 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
532 			list_move_tail(&lip->li_cil, &cil->xc_cil);
533 	}
534 
535 	spin_unlock(&cil->xc_cil_lock);
536 
537 	if (tp->t_ticket->t_curr_res < 0)
538 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
539 }
540 
541 static void
542 xlog_cil_free_logvec(
543 	struct xfs_log_vec	*log_vector)
544 {
545 	struct xfs_log_vec	*lv;
546 
547 	for (lv = log_vector; lv; ) {
548 		struct xfs_log_vec *next = lv->lv_next;
549 		kmem_free(lv);
550 		lv = next;
551 	}
552 }
553 
554 static void
555 xlog_discard_endio_work(
556 	struct work_struct	*work)
557 {
558 	struct xfs_cil_ctx	*ctx =
559 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
560 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
561 
562 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
563 	kmem_free(ctx);
564 }
565 
566 /*
567  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
568  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
569  * get the execution delayed up to 30 seconds for weird reasons.
570  */
571 static void
572 xlog_discard_endio(
573 	struct bio		*bio)
574 {
575 	struct xfs_cil_ctx	*ctx = bio->bi_private;
576 
577 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
578 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
579 	bio_put(bio);
580 }
581 
582 static void
583 xlog_discard_busy_extents(
584 	struct xfs_mount	*mp,
585 	struct xfs_cil_ctx	*ctx)
586 {
587 	struct list_head	*list = &ctx->busy_extents;
588 	struct xfs_extent_busy	*busyp;
589 	struct bio		*bio = NULL;
590 	struct blk_plug		plug;
591 	int			error = 0;
592 
593 	ASSERT(xfs_has_discard(mp));
594 
595 	blk_start_plug(&plug);
596 	list_for_each_entry(busyp, list, list) {
597 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
598 					 busyp->length);
599 
600 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
601 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
602 				XFS_FSB_TO_BB(mp, busyp->length),
603 				GFP_NOFS, &bio);
604 		if (error && error != -EOPNOTSUPP) {
605 			xfs_info(mp,
606 	 "discard failed for extent [0x%llx,%u], error %d",
607 				 (unsigned long long)busyp->bno,
608 				 busyp->length,
609 				 error);
610 			break;
611 		}
612 	}
613 
614 	if (bio) {
615 		bio->bi_private = ctx;
616 		bio->bi_end_io = xlog_discard_endio;
617 		submit_bio(bio);
618 	} else {
619 		xlog_discard_endio_work(&ctx->discard_endio_work);
620 	}
621 	blk_finish_plug(&plug);
622 }
623 
624 /*
625  * Mark all items committed and clear busy extents. We free the log vector
626  * chains in a separate pass so that we unpin the log items as quickly as
627  * possible.
628  */
629 static void
630 xlog_cil_committed(
631 	struct xfs_cil_ctx	*ctx)
632 {
633 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
634 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
635 
636 	/*
637 	 * If the I/O failed, we're aborting the commit and already shutdown.
638 	 * Wake any commit waiters before aborting the log items so we don't
639 	 * block async log pushers on callbacks. Async log pushers explicitly do
640 	 * not wait on log force completion because they may be holding locks
641 	 * required to unpin items.
642 	 */
643 	if (abort) {
644 		spin_lock(&ctx->cil->xc_push_lock);
645 		wake_up_all(&ctx->cil->xc_start_wait);
646 		wake_up_all(&ctx->cil->xc_commit_wait);
647 		spin_unlock(&ctx->cil->xc_push_lock);
648 	}
649 
650 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
651 					ctx->start_lsn, abort);
652 
653 	xfs_extent_busy_sort(&ctx->busy_extents);
654 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
655 			      xfs_has_discard(mp) && !abort);
656 
657 	spin_lock(&ctx->cil->xc_push_lock);
658 	list_del(&ctx->committing);
659 	spin_unlock(&ctx->cil->xc_push_lock);
660 
661 	xlog_cil_free_logvec(ctx->lv_chain);
662 
663 	if (!list_empty(&ctx->busy_extents))
664 		xlog_discard_busy_extents(mp, ctx);
665 	else
666 		kmem_free(ctx);
667 }
668 
669 void
670 xlog_cil_process_committed(
671 	struct list_head	*list)
672 {
673 	struct xfs_cil_ctx	*ctx;
674 
675 	while ((ctx = list_first_entry_or_null(list,
676 			struct xfs_cil_ctx, iclog_entry))) {
677 		list_del(&ctx->iclog_entry);
678 		xlog_cil_committed(ctx);
679 	}
680 }
681 
682 /*
683 * Record the LSN of the iclog we were just granted space to start writing into.
684 * If the context doesn't have a start_lsn recorded, then this iclog will
685 * contain the start record for the checkpoint. Otherwise this write contains
686 * the commit record for the checkpoint.
687 */
688 void
689 xlog_cil_set_ctx_write_state(
690 	struct xfs_cil_ctx	*ctx,
691 	struct xlog_in_core	*iclog)
692 {
693 	struct xfs_cil		*cil = ctx->cil;
694 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
695 
696 	ASSERT(!ctx->commit_lsn);
697 	if (!ctx->start_lsn) {
698 		spin_lock(&cil->xc_push_lock);
699 		/*
700 		 * The LSN we need to pass to the log items on transaction
701 		 * commit is the LSN reported by the first log vector write, not
702 		 * the commit lsn. If we use the commit record lsn then we can
703 		 * move the grant write head beyond the tail LSN and overwrite
704 		 * it.
705 		 */
706 		ctx->start_lsn = lsn;
707 		wake_up_all(&cil->xc_start_wait);
708 		spin_unlock(&cil->xc_push_lock);
709 
710 		/*
711 		 * Make sure the metadata we are about to overwrite in the log
712 		 * has been flushed to stable storage before this iclog is
713 		 * issued.
714 		 */
715 		spin_lock(&cil->xc_log->l_icloglock);
716 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
717 		spin_unlock(&cil->xc_log->l_icloglock);
718 		return;
719 	}
720 
721 	/*
722 	 * Take a reference to the iclog for the context so that we still hold
723 	 * it when xlog_write is done and has released it. This means the
724 	 * context controls when the iclog is released for IO.
725 	 */
726 	atomic_inc(&iclog->ic_refcnt);
727 
728 	/*
729 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
730 	 * iclog for an entire commit record, so we can attach the context
731 	 * callbacks now.  This needs to be done before we make the commit_lsn
732 	 * visible to waiters so that checkpoints with commit records in the
733 	 * same iclog order their IO completion callbacks in the same order that
734 	 * the commit records appear in the iclog.
735 	 */
736 	spin_lock(&cil->xc_log->l_icloglock);
737 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
738 	spin_unlock(&cil->xc_log->l_icloglock);
739 
740 	/*
741 	 * Now we can record the commit LSN and wake anyone waiting for this
742 	 * sequence to have the ordered commit record assigned to a physical
743 	 * location in the log.
744 	 */
745 	spin_lock(&cil->xc_push_lock);
746 	ctx->commit_iclog = iclog;
747 	ctx->commit_lsn = lsn;
748 	wake_up_all(&cil->xc_commit_wait);
749 	spin_unlock(&cil->xc_push_lock);
750 }
751 
752 
753 /*
754  * Ensure that the order of log writes follows checkpoint sequence order. This
755  * relies on the context LSN being zero until the log write has guaranteed the
756  * LSN that the log write will start at via xlog_state_get_iclog_space().
757  */
758 enum _record_type {
759 	_START_RECORD,
760 	_COMMIT_RECORD,
761 };
762 
763 static int
764 xlog_cil_order_write(
765 	struct xfs_cil		*cil,
766 	xfs_csn_t		sequence,
767 	enum _record_type	record)
768 {
769 	struct xfs_cil_ctx	*ctx;
770 
771 restart:
772 	spin_lock(&cil->xc_push_lock);
773 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
774 		/*
775 		 * Avoid getting stuck in this loop because we were woken by the
776 		 * shutdown, but then went back to sleep once already in the
777 		 * shutdown state.
778 		 */
779 		if (xlog_is_shutdown(cil->xc_log)) {
780 			spin_unlock(&cil->xc_push_lock);
781 			return -EIO;
782 		}
783 
784 		/*
785 		 * Higher sequences will wait for this one so skip them.
786 		 * Don't wait for our own sequence, either.
787 		 */
788 		if (ctx->sequence >= sequence)
789 			continue;
790 
791 		/* Wait until the LSN for the record has been recorded. */
792 		switch (record) {
793 		case _START_RECORD:
794 			if (!ctx->start_lsn) {
795 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
796 				goto restart;
797 			}
798 			break;
799 		case _COMMIT_RECORD:
800 			if (!ctx->commit_lsn) {
801 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
802 				goto restart;
803 			}
804 			break;
805 		}
806 	}
807 	spin_unlock(&cil->xc_push_lock);
808 	return 0;
809 }
810 
811 /*
812  * Write out the log vector change now attached to the CIL context. This will
813  * write a start record that needs to be strictly ordered in ascending CIL
814  * sequence order so that log recovery will always use in-order start LSNs when
815  * replaying checkpoints.
816  */
817 static int
818 xlog_cil_write_chain(
819 	struct xfs_cil_ctx	*ctx,
820 	struct xfs_log_vec	*chain,
821 	uint32_t		chain_len)
822 {
823 	struct xlog		*log = ctx->cil->xc_log;
824 	int			error;
825 
826 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
827 	if (error)
828 		return error;
829 	return xlog_write(log, ctx, chain, ctx->ticket, chain_len);
830 }
831 
832 /*
833  * Write out the commit record of a checkpoint transaction to close off a
834  * running log write. These commit records are strictly ordered in ascending CIL
835  * sequence order so that log recovery will always replay the checkpoints in the
836  * correct order.
837  */
838 static int
839 xlog_cil_write_commit_record(
840 	struct xfs_cil_ctx	*ctx)
841 {
842 	struct xlog		*log = ctx->cil->xc_log;
843 	struct xlog_op_header	ophdr = {
844 		.oh_clientid = XFS_TRANSACTION,
845 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
846 		.oh_flags = XLOG_COMMIT_TRANS,
847 	};
848 	struct xfs_log_iovec	reg = {
849 		.i_addr = &ophdr,
850 		.i_len = sizeof(struct xlog_op_header),
851 		.i_type = XLOG_REG_TYPE_COMMIT,
852 	};
853 	struct xfs_log_vec	vec = {
854 		.lv_niovecs = 1,
855 		.lv_iovecp = &reg,
856 	};
857 	int			error;
858 
859 	if (xlog_is_shutdown(log))
860 		return -EIO;
861 
862 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
863 	if (error)
864 		return error;
865 
866 	/* account for space used by record data */
867 	ctx->ticket->t_curr_res -= reg.i_len;
868 	error = xlog_write(log, ctx, &vec, ctx->ticket, reg.i_len);
869 	if (error)
870 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
871 	return error;
872 }
873 
874 struct xlog_cil_trans_hdr {
875 	struct xlog_op_header	oph[2];
876 	struct xfs_trans_header	thdr;
877 	struct xfs_log_iovec	lhdr[2];
878 };
879 
880 /*
881  * Build a checkpoint transaction header to begin the journal transaction.  We
882  * need to account for the space used by the transaction header here as it is
883  * not accounted for in xlog_write().
884  *
885  * This is the only place we write a transaction header, so we also build the
886  * log opheaders that indicate the start of a log transaction and wrap the
887  * transaction header. We keep the start record in it's own log vector rather
888  * than compacting them into a single region as this ends up making the logic
889  * in xlog_write() for handling empty opheaders for start, commit and unmount
890  * records much simpler.
891  */
892 static void
893 xlog_cil_build_trans_hdr(
894 	struct xfs_cil_ctx	*ctx,
895 	struct xlog_cil_trans_hdr *hdr,
896 	struct xfs_log_vec	*lvhdr,
897 	int			num_iovecs)
898 {
899 	struct xlog_ticket	*tic = ctx->ticket;
900 	__be32			tid = cpu_to_be32(tic->t_tid);
901 
902 	memset(hdr, 0, sizeof(*hdr));
903 
904 	/* Log start record */
905 	hdr->oph[0].oh_tid = tid;
906 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
907 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
908 
909 	/* log iovec region pointer */
910 	hdr->lhdr[0].i_addr = &hdr->oph[0];
911 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
912 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
913 
914 	/* log opheader */
915 	hdr->oph[1].oh_tid = tid;
916 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
917 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
918 
919 	/* transaction header in host byte order format */
920 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
921 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
922 	hdr->thdr.th_tid = tic->t_tid;
923 	hdr->thdr.th_num_items = num_iovecs;
924 
925 	/* log iovec region pointer */
926 	hdr->lhdr[1].i_addr = &hdr->oph[1];
927 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
928 				sizeof(struct xfs_trans_header);
929 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
930 
931 	lvhdr->lv_niovecs = 2;
932 	lvhdr->lv_iovecp = &hdr->lhdr[0];
933 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
934 	lvhdr->lv_next = ctx->lv_chain;
935 
936 	tic->t_curr_res -= lvhdr->lv_bytes;
937 }
938 
939 /*
940  * Pull all the log vectors off the items in the CIL, and remove the items from
941  * the CIL. We don't need the CIL lock here because it's only needed on the
942  * transaction commit side which is currently locked out by the flush lock.
943  *
944  * If a log item is marked with a whiteout, we do not need to write it to the
945  * journal and so we just move them to the whiteout list for the caller to
946  * dispose of appropriately.
947  */
948 static void
949 xlog_cil_build_lv_chain(
950 	struct xfs_cil		*cil,
951 	struct xfs_cil_ctx	*ctx,
952 	struct list_head	*whiteouts,
953 	uint32_t		*num_iovecs,
954 	uint32_t		*num_bytes)
955 {
956 	struct xfs_log_vec	*lv = NULL;
957 
958 	while (!list_empty(&cil->xc_cil)) {
959 		struct xfs_log_item	*item;
960 
961 		item = list_first_entry(&cil->xc_cil,
962 					struct xfs_log_item, li_cil);
963 
964 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
965 			list_move(&item->li_cil, whiteouts);
966 			trace_xfs_cil_whiteout_skip(item);
967 			continue;
968 		}
969 
970 		list_del_init(&item->li_cil);
971 		if (!ctx->lv_chain)
972 			ctx->lv_chain = item->li_lv;
973 		else
974 			lv->lv_next = item->li_lv;
975 		lv = item->li_lv;
976 		item->li_lv = NULL;
977 		*num_iovecs += lv->lv_niovecs;
978 
979 		/* we don't write ordered log vectors */
980 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
981 			*num_bytes += lv->lv_bytes;
982 	}
983 }
984 
985 static void
986 xlog_cil_cleanup_whiteouts(
987 	struct list_head	*whiteouts)
988 {
989 	while (!list_empty(whiteouts)) {
990 		struct xfs_log_item *item = list_first_entry(whiteouts,
991 						struct xfs_log_item, li_cil);
992 		list_del_init(&item->li_cil);
993 		trace_xfs_cil_whiteout_unpin(item);
994 		item->li_ops->iop_unpin(item, 1);
995 	}
996 }
997 
998 /*
999  * Push the Committed Item List to the log.
1000  *
1001  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1002  * xc_push_seq is less than the current sequence, then it has already been
1003  * flushed and we don't need to do anything - the caller will wait for it to
1004  * complete if necessary.
1005  *
1006  * xc_push_seq is checked unlocked against the sequence number for a match.
1007  * Hence we can allow log forces to run racily and not issue pushes for the
1008  * same sequence twice.  If we get a race between multiple pushes for the same
1009  * sequence they will block on the first one and then abort, hence avoiding
1010  * needless pushes.
1011  */
1012 static void
1013 xlog_cil_push_work(
1014 	struct work_struct	*work)
1015 {
1016 	struct xfs_cil_ctx	*ctx =
1017 		container_of(work, struct xfs_cil_ctx, push_work);
1018 	struct xfs_cil		*cil = ctx->cil;
1019 	struct xlog		*log = cil->xc_log;
1020 	struct xfs_cil_ctx	*new_ctx;
1021 	int			num_iovecs = 0;
1022 	int			num_bytes = 0;
1023 	int			error = 0;
1024 	struct xlog_cil_trans_hdr thdr;
1025 	struct xfs_log_vec	lvhdr = { NULL };
1026 	xfs_csn_t		push_seq;
1027 	bool			push_commit_stable;
1028 	LIST_HEAD		(whiteouts);
1029 
1030 	new_ctx = xlog_cil_ctx_alloc();
1031 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1032 
1033 	down_write(&cil->xc_ctx_lock);
1034 
1035 	spin_lock(&cil->xc_push_lock);
1036 	push_seq = cil->xc_push_seq;
1037 	ASSERT(push_seq <= ctx->sequence);
1038 	push_commit_stable = cil->xc_push_commit_stable;
1039 	cil->xc_push_commit_stable = false;
1040 
1041 	/*
1042 	 * As we are about to switch to a new, empty CIL context, we no longer
1043 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1044 	 * the hard push throttle may have caught so they can start committing
1045 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1046 	 * necessary for safely using the lockless waitqueue_active() check in
1047 	 * this context.
1048 	 */
1049 	if (waitqueue_active(&cil->xc_push_wait))
1050 		wake_up_all(&cil->xc_push_wait);
1051 
1052 	/*
1053 	 * Check if we've anything to push. If there is nothing, then we don't
1054 	 * move on to a new sequence number and so we have to be able to push
1055 	 * this sequence again later.
1056 	 */
1057 	if (list_empty(&cil->xc_cil)) {
1058 		cil->xc_push_seq = 0;
1059 		spin_unlock(&cil->xc_push_lock);
1060 		goto out_skip;
1061 	}
1062 
1063 
1064 	/* check for a previously pushed sequence */
1065 	if (push_seq < ctx->sequence) {
1066 		spin_unlock(&cil->xc_push_lock);
1067 		goto out_skip;
1068 	}
1069 
1070 	/*
1071 	 * We are now going to push this context, so add it to the committing
1072 	 * list before we do anything else. This ensures that anyone waiting on
1073 	 * this push can easily detect the difference between a "push in
1074 	 * progress" and "CIL is empty, nothing to do".
1075 	 *
1076 	 * IOWs, a wait loop can now check for:
1077 	 *	the current sequence not being found on the committing list;
1078 	 *	an empty CIL; and
1079 	 *	an unchanged sequence number
1080 	 * to detect a push that had nothing to do and therefore does not need
1081 	 * waiting on. If the CIL is not empty, we get put on the committing
1082 	 * list before emptying the CIL and bumping the sequence number. Hence
1083 	 * an empty CIL and an unchanged sequence number means we jumped out
1084 	 * above after doing nothing.
1085 	 *
1086 	 * Hence the waiter will either find the commit sequence on the
1087 	 * committing list or the sequence number will be unchanged and the CIL
1088 	 * still dirty. In that latter case, the push has not yet started, and
1089 	 * so the waiter will have to continue trying to check the CIL
1090 	 * committing list until it is found. In extreme cases of delay, the
1091 	 * sequence may fully commit between the attempts the wait makes to wait
1092 	 * on the commit sequence.
1093 	 */
1094 	list_add(&ctx->committing, &cil->xc_committing);
1095 	spin_unlock(&cil->xc_push_lock);
1096 
1097 	xlog_cil_build_lv_chain(cil, ctx, &whiteouts, &num_iovecs, &num_bytes);
1098 
1099 	/*
1100 	 * Switch the contexts so we can drop the context lock and move out
1101 	 * of a shared context. We can't just go straight to the commit record,
1102 	 * though - we need to synchronise with previous and future commits so
1103 	 * that the commit records are correctly ordered in the log to ensure
1104 	 * that we process items during log IO completion in the correct order.
1105 	 *
1106 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1107 	 * next (e.g. due to log forces), we do not want the checkpoint with
1108 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1109 	 * we must strictly order the commit records of the checkpoints so
1110 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1111 	 * correct order; and b) the checkpoints are replayed in correct order
1112 	 * in log recovery.
1113 	 *
1114 	 * Hence we need to add this context to the committing context list so
1115 	 * that higher sequences will wait for us to write out a commit record
1116 	 * before they do.
1117 	 *
1118 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1119 	 * structure atomically with the addition of this sequence to the
1120 	 * committing list. This also ensures that we can do unlocked checks
1121 	 * against the current sequence in log forces without risking
1122 	 * deferencing a freed context pointer.
1123 	 */
1124 	spin_lock(&cil->xc_push_lock);
1125 	xlog_cil_ctx_switch(cil, new_ctx);
1126 	spin_unlock(&cil->xc_push_lock);
1127 	up_write(&cil->xc_ctx_lock);
1128 
1129 	/*
1130 	 * Build a checkpoint transaction header and write it to the log to
1131 	 * begin the transaction. We need to account for the space used by the
1132 	 * transaction header here as it is not accounted for in xlog_write().
1133 	 */
1134 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1135 	num_bytes += lvhdr.lv_bytes;
1136 
1137 	error = xlog_cil_write_chain(ctx, &lvhdr, num_bytes);
1138 	if (error)
1139 		goto out_abort_free_ticket;
1140 
1141 	error = xlog_cil_write_commit_record(ctx);
1142 	if (error)
1143 		goto out_abort_free_ticket;
1144 
1145 	xfs_log_ticket_ungrant(log, ctx->ticket);
1146 
1147 	/*
1148 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1149 	 * to complete before we submit the commit_iclog. We can't use state
1150 	 * checks for this - ACTIVE can be either a past completed iclog or a
1151 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1152 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1153 	 * In the latter case, if it's a future iclog and we wait on it, the we
1154 	 * will hang because it won't get processed through to ic_force_wait
1155 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1156 	 * iclog header lsn and compare it to the commit lsn to determine if we
1157 	 * need to wait on iclogs or not.
1158 	 */
1159 	spin_lock(&log->l_icloglock);
1160 	if (ctx->start_lsn != ctx->commit_lsn) {
1161 		xfs_lsn_t	plsn;
1162 
1163 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1164 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1165 			/*
1166 			 * Waiting on ic_force_wait orders the completion of
1167 			 * iclogs older than ic_prev. Hence we only need to wait
1168 			 * on the most recent older iclog here.
1169 			 */
1170 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1171 			spin_lock(&log->l_icloglock);
1172 		}
1173 
1174 		/*
1175 		 * We need to issue a pre-flush so that the ordering for this
1176 		 * checkpoint is correctly preserved down to stable storage.
1177 		 */
1178 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1179 	}
1180 
1181 	/*
1182 	 * The commit iclog must be written to stable storage to guarantee
1183 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1184 	 * storage.
1185 	 *
1186 	 * If the push caller needs the commit to be immediately stable and the
1187 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1188 	 * will be written when released, switch it's state to WANT_SYNC right
1189 	 * now.
1190 	 */
1191 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1192 	if (push_commit_stable &&
1193 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1194 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1195 	xlog_state_release_iclog(log, ctx->commit_iclog);
1196 
1197 	/* Not safe to reference ctx now! */
1198 
1199 	spin_unlock(&log->l_icloglock);
1200 	xlog_cil_cleanup_whiteouts(&whiteouts);
1201 	return;
1202 
1203 out_skip:
1204 	up_write(&cil->xc_ctx_lock);
1205 	xfs_log_ticket_put(new_ctx->ticket);
1206 	kmem_free(new_ctx);
1207 	return;
1208 
1209 out_abort_free_ticket:
1210 	xfs_log_ticket_ungrant(log, ctx->ticket);
1211 	ASSERT(xlog_is_shutdown(log));
1212 	xlog_cil_cleanup_whiteouts(&whiteouts);
1213 	if (!ctx->commit_iclog) {
1214 		xlog_cil_committed(ctx);
1215 		return;
1216 	}
1217 	spin_lock(&log->l_icloglock);
1218 	xlog_state_release_iclog(log, ctx->commit_iclog);
1219 	/* Not safe to reference ctx now! */
1220 	spin_unlock(&log->l_icloglock);
1221 }
1222 
1223 /*
1224  * We need to push CIL every so often so we don't cache more than we can fit in
1225  * the log. The limit really is that a checkpoint can't be more than half the
1226  * log (the current checkpoint is not allowed to overwrite the previous
1227  * checkpoint), but commit latency and memory usage limit this to a smaller
1228  * size.
1229  */
1230 static void
1231 xlog_cil_push_background(
1232 	struct xlog	*log) __releases(cil->xc_ctx_lock)
1233 {
1234 	struct xfs_cil	*cil = log->l_cilp;
1235 
1236 	/*
1237 	 * The cil won't be empty because we are called while holding the
1238 	 * context lock so whatever we added to the CIL will still be there
1239 	 */
1240 	ASSERT(!list_empty(&cil->xc_cil));
1241 
1242 	/*
1243 	 * Don't do a background push if we haven't used up all the
1244 	 * space available yet.
1245 	 */
1246 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1247 		up_read(&cil->xc_ctx_lock);
1248 		return;
1249 	}
1250 
1251 	spin_lock(&cil->xc_push_lock);
1252 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1253 		cil->xc_push_seq = cil->xc_current_sequence;
1254 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1255 	}
1256 
1257 	/*
1258 	 * Drop the context lock now, we can't hold that if we need to sleep
1259 	 * because we are over the blocking threshold. The push_lock is still
1260 	 * held, so blocking threshold sleep/wakeup is still correctly
1261 	 * serialised here.
1262 	 */
1263 	up_read(&cil->xc_ctx_lock);
1264 
1265 	/*
1266 	 * If we are well over the space limit, throttle the work that is being
1267 	 * done until the push work on this context has begun. Enforce the hard
1268 	 * throttle on all transaction commits once it has been activated, even
1269 	 * if the committing transactions have resulted in the space usage
1270 	 * dipping back down under the hard limit.
1271 	 *
1272 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1273 	 * using the lockless waitqueue_active() check in this context.
1274 	 */
1275 	if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1276 	    waitqueue_active(&cil->xc_push_wait)) {
1277 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1278 		ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1279 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1280 		return;
1281 	}
1282 
1283 	spin_unlock(&cil->xc_push_lock);
1284 
1285 }
1286 
1287 /*
1288  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1289  * number that is passed. When it returns, the work will be queued for
1290  * @push_seq, but it won't be completed.
1291  *
1292  * If the caller is performing a synchronous force, we will flush the workqueue
1293  * to get previously queued work moving to minimise the wait time they will
1294  * undergo waiting for all outstanding pushes to complete. The caller is
1295  * expected to do the required waiting for push_seq to complete.
1296  *
1297  * If the caller is performing an async push, we need to ensure that the
1298  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1299  * don't do this, then the commit record may remain sitting in memory in an
1300  * ACTIVE iclog. This then requires another full log force to push to disk,
1301  * which defeats the purpose of having an async, non-blocking CIL force
1302  * mechanism. Hence in this case we need to pass a flag to the push work to
1303  * indicate it needs to flush the commit record itself.
1304  */
1305 static void
1306 xlog_cil_push_now(
1307 	struct xlog	*log,
1308 	xfs_lsn_t	push_seq,
1309 	bool		async)
1310 {
1311 	struct xfs_cil	*cil = log->l_cilp;
1312 
1313 	if (!cil)
1314 		return;
1315 
1316 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1317 
1318 	/* start on any pending background push to minimise wait time on it */
1319 	if (!async)
1320 		flush_workqueue(cil->xc_push_wq);
1321 
1322 	spin_lock(&cil->xc_push_lock);
1323 
1324 	/*
1325 	 * If this is an async flush request, we always need to set the
1326 	 * xc_push_commit_stable flag even if something else has already queued
1327 	 * a push. The flush caller is asking for the CIL to be on stable
1328 	 * storage when the next push completes, so regardless of who has queued
1329 	 * the push, the flush requires stable semantics from it.
1330 	 */
1331 	cil->xc_push_commit_stable = async;
1332 
1333 	/*
1334 	 * If the CIL is empty or we've already pushed the sequence then
1335 	 * there's no more work that we need to do.
1336 	 */
1337 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1338 		spin_unlock(&cil->xc_push_lock);
1339 		return;
1340 	}
1341 
1342 	cil->xc_push_seq = push_seq;
1343 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1344 	spin_unlock(&cil->xc_push_lock);
1345 }
1346 
1347 bool
1348 xlog_cil_empty(
1349 	struct xlog	*log)
1350 {
1351 	struct xfs_cil	*cil = log->l_cilp;
1352 	bool		empty = false;
1353 
1354 	spin_lock(&cil->xc_push_lock);
1355 	if (list_empty(&cil->xc_cil))
1356 		empty = true;
1357 	spin_unlock(&cil->xc_push_lock);
1358 	return empty;
1359 }
1360 
1361 /*
1362  * If there are intent done items in this transaction and the related intent was
1363  * committed in the current (same) CIL checkpoint, we don't need to write either
1364  * the intent or intent done item to the journal as the change will be
1365  * journalled atomically within this checkpoint. As we cannot remove items from
1366  * the CIL here, mark the related intent with a whiteout so that the CIL push
1367  * can remove it rather than writing it to the journal. Then remove the intent
1368  * done item from the current transaction and release it so it doesn't get put
1369  * into the CIL at all.
1370  */
1371 static uint32_t
1372 xlog_cil_process_intents(
1373 	struct xfs_cil		*cil,
1374 	struct xfs_trans	*tp)
1375 {
1376 	struct xfs_log_item	*lip, *ilip, *next;
1377 	uint32_t		len = 0;
1378 
1379 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1380 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1381 			continue;
1382 
1383 		ilip = lip->li_ops->iop_intent(lip);
1384 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1385 			continue;
1386 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1387 		trace_xfs_cil_whiteout_mark(ilip);
1388 		len += ilip->li_lv->lv_bytes;
1389 		kmem_free(ilip->li_lv);
1390 		ilip->li_lv = NULL;
1391 
1392 		xfs_trans_del_item(lip);
1393 		lip->li_ops->iop_release(lip);
1394 	}
1395 	return len;
1396 }
1397 
1398 /*
1399  * Commit a transaction with the given vector to the Committed Item List.
1400  *
1401  * To do this, we need to format the item, pin it in memory if required and
1402  * account for the space used by the transaction. Once we have done that we
1403  * need to release the unused reservation for the transaction, attach the
1404  * transaction to the checkpoint context so we carry the busy extents through
1405  * to checkpoint completion, and then unlock all the items in the transaction.
1406  *
1407  * Called with the context lock already held in read mode to lock out
1408  * background commit, returns without it held once background commits are
1409  * allowed again.
1410  */
1411 void
1412 xlog_cil_commit(
1413 	struct xlog		*log,
1414 	struct xfs_trans	*tp,
1415 	xfs_csn_t		*commit_seq,
1416 	bool			regrant)
1417 {
1418 	struct xfs_cil		*cil = log->l_cilp;
1419 	struct xfs_log_item	*lip, *next;
1420 	uint32_t		released_space = 0;
1421 
1422 	/*
1423 	 * Do all necessary memory allocation before we lock the CIL.
1424 	 * This ensures the allocation does not deadlock with a CIL
1425 	 * push in memory reclaim (e.g. from kswapd).
1426 	 */
1427 	xlog_cil_alloc_shadow_bufs(log, tp);
1428 
1429 	/* lock out background commit */
1430 	down_read(&cil->xc_ctx_lock);
1431 
1432 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1433 		released_space = xlog_cil_process_intents(cil, tp);
1434 
1435 	xlog_cil_insert_items(log, tp, released_space);
1436 
1437 	if (regrant && !xlog_is_shutdown(log))
1438 		xfs_log_ticket_regrant(log, tp->t_ticket);
1439 	else
1440 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1441 	tp->t_ticket = NULL;
1442 	xfs_trans_unreserve_and_mod_sb(tp);
1443 
1444 	/*
1445 	 * Once all the items of the transaction have been copied to the CIL,
1446 	 * the items can be unlocked and possibly freed.
1447 	 *
1448 	 * This needs to be done before we drop the CIL context lock because we
1449 	 * have to update state in the log items and unlock them before they go
1450 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1451 	 * we can run checkpoint completion before we've updated and unlocked
1452 	 * the log items. This affects (at least) processing of stale buffers,
1453 	 * inodes and EFIs.
1454 	 */
1455 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1456 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1457 		xfs_trans_del_item(lip);
1458 		if (lip->li_ops->iop_committing)
1459 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1460 	}
1461 	if (commit_seq)
1462 		*commit_seq = cil->xc_ctx->sequence;
1463 
1464 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1465 	xlog_cil_push_background(log);
1466 }
1467 
1468 /*
1469  * Flush the CIL to stable storage but don't wait for it to complete. This
1470  * requires the CIL push to ensure the commit record for the push hits the disk,
1471  * but otherwise is no different to a push done from a log force.
1472  */
1473 void
1474 xlog_cil_flush(
1475 	struct xlog	*log)
1476 {
1477 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1478 
1479 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1480 	xlog_cil_push_now(log, seq, true);
1481 
1482 	/*
1483 	 * If the CIL is empty, make sure that any previous checkpoint that may
1484 	 * still be in an active iclog is pushed to stable storage.
1485 	 */
1486 	if (list_empty(&log->l_cilp->xc_cil))
1487 		xfs_log_force(log->l_mp, 0);
1488 }
1489 
1490 /*
1491  * Conditionally push the CIL based on the sequence passed in.
1492  *
1493  * We only need to push if we haven't already pushed the sequence number given.
1494  * Hence the only time we will trigger a push here is if the push sequence is
1495  * the same as the current context.
1496  *
1497  * We return the current commit lsn to allow the callers to determine if a
1498  * iclog flush is necessary following this call.
1499  */
1500 xfs_lsn_t
1501 xlog_cil_force_seq(
1502 	struct xlog	*log,
1503 	xfs_csn_t	sequence)
1504 {
1505 	struct xfs_cil		*cil = log->l_cilp;
1506 	struct xfs_cil_ctx	*ctx;
1507 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1508 
1509 	ASSERT(sequence <= cil->xc_current_sequence);
1510 
1511 	if (!sequence)
1512 		sequence = cil->xc_current_sequence;
1513 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1514 
1515 	/*
1516 	 * check to see if we need to force out the current context.
1517 	 * xlog_cil_push() handles racing pushes for the same sequence,
1518 	 * so no need to deal with it here.
1519 	 */
1520 restart:
1521 	xlog_cil_push_now(log, sequence, false);
1522 
1523 	/*
1524 	 * See if we can find a previous sequence still committing.
1525 	 * We need to wait for all previous sequence commits to complete
1526 	 * before allowing the force of push_seq to go ahead. Hence block
1527 	 * on commits for those as well.
1528 	 */
1529 	spin_lock(&cil->xc_push_lock);
1530 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1531 		/*
1532 		 * Avoid getting stuck in this loop because we were woken by the
1533 		 * shutdown, but then went back to sleep once already in the
1534 		 * shutdown state.
1535 		 */
1536 		if (xlog_is_shutdown(log))
1537 			goto out_shutdown;
1538 		if (ctx->sequence > sequence)
1539 			continue;
1540 		if (!ctx->commit_lsn) {
1541 			/*
1542 			 * It is still being pushed! Wait for the push to
1543 			 * complete, then start again from the beginning.
1544 			 */
1545 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1546 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1547 			goto restart;
1548 		}
1549 		if (ctx->sequence != sequence)
1550 			continue;
1551 		/* found it! */
1552 		commit_lsn = ctx->commit_lsn;
1553 	}
1554 
1555 	/*
1556 	 * The call to xlog_cil_push_now() executes the push in the background.
1557 	 * Hence by the time we have got here it our sequence may not have been
1558 	 * pushed yet. This is true if the current sequence still matches the
1559 	 * push sequence after the above wait loop and the CIL still contains
1560 	 * dirty objects. This is guaranteed by the push code first adding the
1561 	 * context to the committing list before emptying the CIL.
1562 	 *
1563 	 * Hence if we don't find the context in the committing list and the
1564 	 * current sequence number is unchanged then the CIL contents are
1565 	 * significant.  If the CIL is empty, if means there was nothing to push
1566 	 * and that means there is nothing to wait for. If the CIL is not empty,
1567 	 * it means we haven't yet started the push, because if it had started
1568 	 * we would have found the context on the committing list.
1569 	 */
1570 	if (sequence == cil->xc_current_sequence &&
1571 	    !list_empty(&cil->xc_cil)) {
1572 		spin_unlock(&cil->xc_push_lock);
1573 		goto restart;
1574 	}
1575 
1576 	spin_unlock(&cil->xc_push_lock);
1577 	return commit_lsn;
1578 
1579 	/*
1580 	 * We detected a shutdown in progress. We need to trigger the log force
1581 	 * to pass through it's iclog state machine error handling, even though
1582 	 * we are already in a shutdown state. Hence we can't return
1583 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1584 	 * LSN is already stable), so we return a zero LSN instead.
1585 	 */
1586 out_shutdown:
1587 	spin_unlock(&cil->xc_push_lock);
1588 	return 0;
1589 }
1590 
1591 /*
1592  * Perform initial CIL structure initialisation.
1593  */
1594 int
1595 xlog_cil_init(
1596 	struct xlog	*log)
1597 {
1598 	struct xfs_cil	*cil;
1599 	struct xfs_cil_ctx *ctx;
1600 
1601 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1602 	if (!cil)
1603 		return -ENOMEM;
1604 	/*
1605 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1606 	 * concurrency the log spinlocks will be exposed to.
1607 	 */
1608 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1609 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1610 			4, log->l_mp->m_super->s_id);
1611 	if (!cil->xc_push_wq)
1612 		goto out_destroy_cil;
1613 
1614 	INIT_LIST_HEAD(&cil->xc_cil);
1615 	INIT_LIST_HEAD(&cil->xc_committing);
1616 	spin_lock_init(&cil->xc_cil_lock);
1617 	spin_lock_init(&cil->xc_push_lock);
1618 	init_waitqueue_head(&cil->xc_push_wait);
1619 	init_rwsem(&cil->xc_ctx_lock);
1620 	init_waitqueue_head(&cil->xc_start_wait);
1621 	init_waitqueue_head(&cil->xc_commit_wait);
1622 	cil->xc_log = log;
1623 	log->l_cilp = cil;
1624 
1625 	ctx = xlog_cil_ctx_alloc();
1626 	xlog_cil_ctx_switch(cil, ctx);
1627 
1628 	return 0;
1629 
1630 out_destroy_cil:
1631 	kmem_free(cil);
1632 	return -ENOMEM;
1633 }
1634 
1635 void
1636 xlog_cil_destroy(
1637 	struct xlog	*log)
1638 {
1639 	if (log->l_cilp->xc_ctx) {
1640 		if (log->l_cilp->xc_ctx->ticket)
1641 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1642 		kmem_free(log->l_cilp->xc_ctx);
1643 	}
1644 
1645 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1646 	destroy_workqueue(log->l_cilp->xc_push_wq);
1647 	kmem_free(log->l_cilp);
1648 }
1649 
1650