xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 82e6fdd6)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_trace.h"
34 
35 struct workqueue_struct *xfs_discard_wq;
36 
37 /*
38  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
39  * recover, so we don't allow failure here. Also, we allocate in a context that
40  * we don't want to be issuing transactions from, so we need to tell the
41  * allocation code this as well.
42  *
43  * We don't reserve any space for the ticket - we are going to steal whatever
44  * space we require from transactions as they commit. To ensure we reserve all
45  * the space required, we need to set the current reservation of the ticket to
46  * zero so that we know to steal the initial transaction overhead from the
47  * first transaction commit.
48  */
49 static struct xlog_ticket *
50 xlog_cil_ticket_alloc(
51 	struct xlog	*log)
52 {
53 	struct xlog_ticket *tic;
54 
55 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
56 				KM_SLEEP|KM_NOFS);
57 
58 	/*
59 	 * set the current reservation to zero so we know to steal the basic
60 	 * transaction overhead reservation from the first transaction commit.
61 	 */
62 	tic->t_curr_res = 0;
63 	return tic;
64 }
65 
66 /*
67  * After the first stage of log recovery is done, we know where the head and
68  * tail of the log are. We need this log initialisation done before we can
69  * initialise the first CIL checkpoint context.
70  *
71  * Here we allocate a log ticket to track space usage during a CIL push.  This
72  * ticket is passed to xlog_write() directly so that we don't slowly leak log
73  * space by failing to account for space used by log headers and additional
74  * region headers for split regions.
75  */
76 void
77 xlog_cil_init_post_recovery(
78 	struct xlog	*log)
79 {
80 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
81 	log->l_cilp->xc_ctx->sequence = 1;
82 }
83 
84 static inline int
85 xlog_cil_iovec_space(
86 	uint	niovecs)
87 {
88 	return round_up((sizeof(struct xfs_log_vec) +
89 					niovecs * sizeof(struct xfs_log_iovec)),
90 			sizeof(uint64_t));
91 }
92 
93 /*
94  * Allocate or pin log vector buffers for CIL insertion.
95  *
96  * The CIL currently uses disposable buffers for copying a snapshot of the
97  * modified items into the log during a push. The biggest problem with this is
98  * the requirement to allocate the disposable buffer during the commit if:
99  *	a) does not exist; or
100  *	b) it is too small
101  *
102  * If we do this allocation within xlog_cil_insert_format_items(), it is done
103  * under the xc_ctx_lock, which means that a CIL push cannot occur during
104  * the memory allocation. This means that we have a potential deadlock situation
105  * under low memory conditions when we have lots of dirty metadata pinned in
106  * the CIL and we need a CIL commit to occur to free memory.
107  *
108  * To avoid this, we need to move the memory allocation outside the
109  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
110  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
111  * vector buffers between the check and the formatting of the item into the
112  * log vector buffer within the xc_ctx_lock.
113  *
114  * Because the log vector buffer needs to be unchanged during the CIL push
115  * process, we cannot share the buffer between the transaction commit (which
116  * modifies the buffer) and the CIL push context that is writing the changes
117  * into the log. This means skipping preallocation of buffer space is
118  * unreliable, but we most definitely do not want to be allocating and freeing
119  * buffers unnecessarily during commits when overwrites can be done safely.
120  *
121  * The simplest solution to this problem is to allocate a shadow buffer when a
122  * log item is committed for the second time, and then to only use this buffer
123  * if necessary. The buffer can remain attached to the log item until such time
124  * it is needed, and this is the buffer that is reallocated to match the size of
125  * the incoming modification. Then during the formatting of the item we can swap
126  * the active buffer with the new one if we can't reuse the existing buffer. We
127  * don't free the old buffer as it may be reused on the next modification if
128  * it's size is right, otherwise we'll free and reallocate it at that point.
129  *
130  * This function builds a vector for the changes in each log item in the
131  * transaction. It then works out the length of the buffer needed for each log
132  * item, allocates them and attaches the vector to the log item in preparation
133  * for the formatting step which occurs under the xc_ctx_lock.
134  *
135  * While this means the memory footprint goes up, it avoids the repeated
136  * alloc/free pattern that repeated modifications of an item would otherwise
137  * cause, and hence minimises the CPU overhead of such behaviour.
138  */
139 static void
140 xlog_cil_alloc_shadow_bufs(
141 	struct xlog		*log,
142 	struct xfs_trans	*tp)
143 {
144 	struct xfs_log_item_desc *lidp;
145 
146 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
147 		struct xfs_log_item *lip = lidp->lid_item;
148 		struct xfs_log_vec *lv;
149 		int	niovecs = 0;
150 		int	nbytes = 0;
151 		int	buf_size;
152 		bool	ordered = false;
153 
154 		/* Skip items which aren't dirty in this transaction. */
155 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
156 			continue;
157 
158 		/* get number of vecs and size of data to be stored */
159 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
160 
161 		/*
162 		 * Ordered items need to be tracked but we do not wish to write
163 		 * them. We need a logvec to track the object, but we do not
164 		 * need an iovec or buffer to be allocated for copying data.
165 		 */
166 		if (niovecs == XFS_LOG_VEC_ORDERED) {
167 			ordered = true;
168 			niovecs = 0;
169 			nbytes = 0;
170 		}
171 
172 		/*
173 		 * We 64-bit align the length of each iovec so that the start
174 		 * of the next one is naturally aligned.  We'll need to
175 		 * account for that slack space here. Then round nbytes up
176 		 * to 64-bit alignment so that the initial buffer alignment is
177 		 * easy to calculate and verify.
178 		 */
179 		nbytes += niovecs * sizeof(uint64_t);
180 		nbytes = round_up(nbytes, sizeof(uint64_t));
181 
182 		/*
183 		 * The data buffer needs to start 64-bit aligned, so round up
184 		 * that space to ensure we can align it appropriately and not
185 		 * overrun the buffer.
186 		 */
187 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
188 
189 		/*
190 		 * if we have no shadow buffer, or it is too small, we need to
191 		 * reallocate it.
192 		 */
193 		if (!lip->li_lv_shadow ||
194 		    buf_size > lip->li_lv_shadow->lv_size) {
195 
196 			/*
197 			 * We free and allocate here as a realloc would copy
198 			 * unecessary data. We don't use kmem_zalloc() for the
199 			 * same reason - we don't need to zero the data area in
200 			 * the buffer, only the log vector header and the iovec
201 			 * storage.
202 			 */
203 			kmem_free(lip->li_lv_shadow);
204 
205 			lv = kmem_alloc(buf_size, KM_SLEEP|KM_NOFS);
206 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
207 
208 			lv->lv_item = lip;
209 			lv->lv_size = buf_size;
210 			if (ordered)
211 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
212 			else
213 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
214 			lip->li_lv_shadow = lv;
215 		} else {
216 			/* same or smaller, optimise common overwrite case */
217 			lv = lip->li_lv_shadow;
218 			if (ordered)
219 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
220 			else
221 				lv->lv_buf_len = 0;
222 			lv->lv_bytes = 0;
223 			lv->lv_next = NULL;
224 		}
225 
226 		/* Ensure the lv is set up according to ->iop_size */
227 		lv->lv_niovecs = niovecs;
228 
229 		/* The allocated data region lies beyond the iovec region */
230 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
231 	}
232 
233 }
234 
235 /*
236  * Prepare the log item for insertion into the CIL. Calculate the difference in
237  * log space and vectors it will consume, and if it is a new item pin it as
238  * well.
239  */
240 STATIC void
241 xfs_cil_prepare_item(
242 	struct xlog		*log,
243 	struct xfs_log_vec	*lv,
244 	struct xfs_log_vec	*old_lv,
245 	int			*diff_len,
246 	int			*diff_iovecs)
247 {
248 	/* Account for the new LV being passed in */
249 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
250 		*diff_len += lv->lv_bytes;
251 		*diff_iovecs += lv->lv_niovecs;
252 	}
253 
254 	/*
255 	 * If there is no old LV, this is the first time we've seen the item in
256 	 * this CIL context and so we need to pin it. If we are replacing the
257 	 * old_lv, then remove the space it accounts for and make it the shadow
258 	 * buffer for later freeing. In both cases we are now switching to the
259 	 * shadow buffer, so update the the pointer to it appropriately.
260 	 */
261 	if (!old_lv) {
262 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
263 		lv->lv_item->li_lv_shadow = NULL;
264 	} else if (old_lv != lv) {
265 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
266 
267 		*diff_len -= old_lv->lv_bytes;
268 		*diff_iovecs -= old_lv->lv_niovecs;
269 		lv->lv_item->li_lv_shadow = old_lv;
270 	}
271 
272 	/* attach new log vector to log item */
273 	lv->lv_item->li_lv = lv;
274 
275 	/*
276 	 * If this is the first time the item is being committed to the
277 	 * CIL, store the sequence number on the log item so we can
278 	 * tell in future commits whether this is the first checkpoint
279 	 * the item is being committed into.
280 	 */
281 	if (!lv->lv_item->li_seq)
282 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
283 }
284 
285 /*
286  * Format log item into a flat buffers
287  *
288  * For delayed logging, we need to hold a formatted buffer containing all the
289  * changes on the log item. This enables us to relog the item in memory and
290  * write it out asynchronously without needing to relock the object that was
291  * modified at the time it gets written into the iclog.
292  *
293  * This function takes the prepared log vectors attached to each log item, and
294  * formats the changes into the log vector buffer. The buffer it uses is
295  * dependent on the current state of the vector in the CIL - the shadow lv is
296  * guaranteed to be large enough for the current modification, but we will only
297  * use that if we can't reuse the existing lv. If we can't reuse the existing
298  * lv, then simple swap it out for the shadow lv. We don't free it - that is
299  * done lazily either by th enext modification or the freeing of the log item.
300  *
301  * We don't set up region headers during this process; we simply copy the
302  * regions into the flat buffer. We can do this because we still have to do a
303  * formatting step to write the regions into the iclog buffer.  Writing the
304  * ophdrs during the iclog write means that we can support splitting large
305  * regions across iclog boundares without needing a change in the format of the
306  * item/region encapsulation.
307  *
308  * Hence what we need to do now is change the rewrite the vector array to point
309  * to the copied region inside the buffer we just allocated. This allows us to
310  * format the regions into the iclog as though they are being formatted
311  * directly out of the objects themselves.
312  */
313 static void
314 xlog_cil_insert_format_items(
315 	struct xlog		*log,
316 	struct xfs_trans	*tp,
317 	int			*diff_len,
318 	int			*diff_iovecs)
319 {
320 	struct xfs_log_item_desc *lidp;
321 
322 
323 	/* Bail out if we didn't find a log item.  */
324 	if (list_empty(&tp->t_items)) {
325 		ASSERT(0);
326 		return;
327 	}
328 
329 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
330 		struct xfs_log_item *lip = lidp->lid_item;
331 		struct xfs_log_vec *lv;
332 		struct xfs_log_vec *old_lv = NULL;
333 		struct xfs_log_vec *shadow;
334 		bool	ordered = false;
335 
336 		/* Skip items which aren't dirty in this transaction. */
337 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
338 			continue;
339 
340 		/*
341 		 * The formatting size information is already attached to
342 		 * the shadow lv on the log item.
343 		 */
344 		shadow = lip->li_lv_shadow;
345 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
346 			ordered = true;
347 
348 		/* Skip items that do not have any vectors for writing */
349 		if (!shadow->lv_niovecs && !ordered)
350 			continue;
351 
352 		/* compare to existing item size */
353 		old_lv = lip->li_lv;
354 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
355 			/* same or smaller, optimise common overwrite case */
356 			lv = lip->li_lv;
357 			lv->lv_next = NULL;
358 
359 			if (ordered)
360 				goto insert;
361 
362 			/*
363 			 * set the item up as though it is a new insertion so
364 			 * that the space reservation accounting is correct.
365 			 */
366 			*diff_iovecs -= lv->lv_niovecs;
367 			*diff_len -= lv->lv_bytes;
368 
369 			/* Ensure the lv is set up according to ->iop_size */
370 			lv->lv_niovecs = shadow->lv_niovecs;
371 
372 			/* reset the lv buffer information for new formatting */
373 			lv->lv_buf_len = 0;
374 			lv->lv_bytes = 0;
375 			lv->lv_buf = (char *)lv +
376 					xlog_cil_iovec_space(lv->lv_niovecs);
377 		} else {
378 			/* switch to shadow buffer! */
379 			lv = shadow;
380 			lv->lv_item = lip;
381 			if (ordered) {
382 				/* track as an ordered logvec */
383 				ASSERT(lip->li_lv == NULL);
384 				goto insert;
385 			}
386 		}
387 
388 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
389 		lip->li_ops->iop_format(lip, lv);
390 insert:
391 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
392 	}
393 }
394 
395 /*
396  * Insert the log items into the CIL and calculate the difference in space
397  * consumed by the item. Add the space to the checkpoint ticket and calculate
398  * if the change requires additional log metadata. If it does, take that space
399  * as well. Remove the amount of space we added to the checkpoint ticket from
400  * the current transaction ticket so that the accounting works out correctly.
401  */
402 static void
403 xlog_cil_insert_items(
404 	struct xlog		*log,
405 	struct xfs_trans	*tp)
406 {
407 	struct xfs_cil		*cil = log->l_cilp;
408 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
409 	struct xfs_log_item_desc *lidp;
410 	int			len = 0;
411 	int			diff_iovecs = 0;
412 	int			iclog_space;
413 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
414 
415 	ASSERT(tp);
416 
417 	/*
418 	 * We can do this safely because the context can't checkpoint until we
419 	 * are done so it doesn't matter exactly how we update the CIL.
420 	 */
421 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
422 
423 	spin_lock(&cil->xc_cil_lock);
424 
425 	/* account for space used by new iovec headers  */
426 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
427 	len += iovhdr_res;
428 	ctx->nvecs += diff_iovecs;
429 
430 	/* attach the transaction to the CIL if it has any busy extents */
431 	if (!list_empty(&tp->t_busy))
432 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
433 
434 	/*
435 	 * Now transfer enough transaction reservation to the context ticket
436 	 * for the checkpoint. The context ticket is special - the unit
437 	 * reservation has to grow as well as the current reservation as we
438 	 * steal from tickets so we can correctly determine the space used
439 	 * during the transaction commit.
440 	 */
441 	if (ctx->ticket->t_curr_res == 0) {
442 		ctx_res = ctx->ticket->t_unit_res;
443 		ctx->ticket->t_curr_res = ctx_res;
444 		tp->t_ticket->t_curr_res -= ctx_res;
445 	}
446 
447 	/* do we need space for more log record headers? */
448 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
449 	if (len > 0 && (ctx->space_used / iclog_space !=
450 				(ctx->space_used + len) / iclog_space)) {
451 		split_res = (len + iclog_space - 1) / iclog_space;
452 		/* need to take into account split region headers, too */
453 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
454 		ctx->ticket->t_unit_res += split_res;
455 		ctx->ticket->t_curr_res += split_res;
456 		tp->t_ticket->t_curr_res -= split_res;
457 		ASSERT(tp->t_ticket->t_curr_res >= len);
458 	}
459 	tp->t_ticket->t_curr_res -= len;
460 	ctx->space_used += len;
461 
462 	/*
463 	 * If we've overrun the reservation, dump the tx details before we move
464 	 * the log items. Shutdown is imminent...
465 	 */
466 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
467 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
468 		xfs_warn(log->l_mp,
469 			 "  log items: %d bytes (iov hdrs: %d bytes)",
470 			 len, iovhdr_res);
471 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
472 			 split_res);
473 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
474 		xlog_print_trans(tp);
475 	}
476 
477 	/*
478 	 * Now (re-)position everything modified at the tail of the CIL.
479 	 * We do this here so we only need to take the CIL lock once during
480 	 * the transaction commit.
481 	 */
482 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
483 		struct xfs_log_item	*lip = lidp->lid_item;
484 
485 		/* Skip items which aren't dirty in this transaction. */
486 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
487 			continue;
488 
489 		/*
490 		 * Only move the item if it isn't already at the tail. This is
491 		 * to prevent a transient list_empty() state when reinserting
492 		 * an item that is already the only item in the CIL.
493 		 */
494 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
495 			list_move_tail(&lip->li_cil, &cil->xc_cil);
496 	}
497 
498 	spin_unlock(&cil->xc_cil_lock);
499 
500 	if (tp->t_ticket->t_curr_res < 0)
501 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
502 }
503 
504 static void
505 xlog_cil_free_logvec(
506 	struct xfs_log_vec	*log_vector)
507 {
508 	struct xfs_log_vec	*lv;
509 
510 	for (lv = log_vector; lv; ) {
511 		struct xfs_log_vec *next = lv->lv_next;
512 		kmem_free(lv);
513 		lv = next;
514 	}
515 }
516 
517 static void
518 xlog_discard_endio_work(
519 	struct work_struct	*work)
520 {
521 	struct xfs_cil_ctx	*ctx =
522 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
523 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
524 
525 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
526 	kmem_free(ctx);
527 }
528 
529 /*
530  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
531  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
532  * get the execution delayed up to 30 seconds for weird reasons.
533  */
534 static void
535 xlog_discard_endio(
536 	struct bio		*bio)
537 {
538 	struct xfs_cil_ctx	*ctx = bio->bi_private;
539 
540 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
541 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
542 	bio_put(bio);
543 }
544 
545 static void
546 xlog_discard_busy_extents(
547 	struct xfs_mount	*mp,
548 	struct xfs_cil_ctx	*ctx)
549 {
550 	struct list_head	*list = &ctx->busy_extents;
551 	struct xfs_extent_busy	*busyp;
552 	struct bio		*bio = NULL;
553 	struct blk_plug		plug;
554 	int			error = 0;
555 
556 	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
557 
558 	blk_start_plug(&plug);
559 	list_for_each_entry(busyp, list, list) {
560 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
561 					 busyp->length);
562 
563 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
564 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
565 				XFS_FSB_TO_BB(mp, busyp->length),
566 				GFP_NOFS, 0, &bio);
567 		if (error && error != -EOPNOTSUPP) {
568 			xfs_info(mp,
569 	 "discard failed for extent [0x%llx,%u], error %d",
570 				 (unsigned long long)busyp->bno,
571 				 busyp->length,
572 				 error);
573 			break;
574 		}
575 	}
576 
577 	if (bio) {
578 		bio->bi_private = ctx;
579 		bio->bi_end_io = xlog_discard_endio;
580 		submit_bio(bio);
581 	} else {
582 		xlog_discard_endio_work(&ctx->discard_endio_work);
583 	}
584 	blk_finish_plug(&plug);
585 }
586 
587 /*
588  * Mark all items committed and clear busy extents. We free the log vector
589  * chains in a separate pass so that we unpin the log items as quickly as
590  * possible.
591  */
592 static void
593 xlog_cil_committed(
594 	void	*args,
595 	int	abort)
596 {
597 	struct xfs_cil_ctx	*ctx = args;
598 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
599 
600 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
601 					ctx->start_lsn, abort);
602 
603 	xfs_extent_busy_sort(&ctx->busy_extents);
604 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
605 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
606 
607 	/*
608 	 * If we are aborting the commit, wake up anyone waiting on the
609 	 * committing list.  If we don't, then a shutdown we can leave processes
610 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
611 	 * will never happen because we aborted it.
612 	 */
613 	spin_lock(&ctx->cil->xc_push_lock);
614 	if (abort)
615 		wake_up_all(&ctx->cil->xc_commit_wait);
616 	list_del(&ctx->committing);
617 	spin_unlock(&ctx->cil->xc_push_lock);
618 
619 	xlog_cil_free_logvec(ctx->lv_chain);
620 
621 	if (!list_empty(&ctx->busy_extents))
622 		xlog_discard_busy_extents(mp, ctx);
623 	else
624 		kmem_free(ctx);
625 }
626 
627 /*
628  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
629  * is a background flush and so we can chose to ignore it. Otherwise, if the
630  * current sequence is the same as @push_seq we need to do a flush. If
631  * @push_seq is less than the current sequence, then it has already been
632  * flushed and we don't need to do anything - the caller will wait for it to
633  * complete if necessary.
634  *
635  * @push_seq is a value rather than a flag because that allows us to do an
636  * unlocked check of the sequence number for a match. Hence we can allows log
637  * forces to run racily and not issue pushes for the same sequence twice. If we
638  * get a race between multiple pushes for the same sequence they will block on
639  * the first one and then abort, hence avoiding needless pushes.
640  */
641 STATIC int
642 xlog_cil_push(
643 	struct xlog		*log)
644 {
645 	struct xfs_cil		*cil = log->l_cilp;
646 	struct xfs_log_vec	*lv;
647 	struct xfs_cil_ctx	*ctx;
648 	struct xfs_cil_ctx	*new_ctx;
649 	struct xlog_in_core	*commit_iclog;
650 	struct xlog_ticket	*tic;
651 	int			num_iovecs;
652 	int			error = 0;
653 	struct xfs_trans_header thdr;
654 	struct xfs_log_iovec	lhdr;
655 	struct xfs_log_vec	lvhdr = { NULL };
656 	xfs_lsn_t		commit_lsn;
657 	xfs_lsn_t		push_seq;
658 
659 	if (!cil)
660 		return 0;
661 
662 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
663 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
664 
665 	down_write(&cil->xc_ctx_lock);
666 	ctx = cil->xc_ctx;
667 
668 	spin_lock(&cil->xc_push_lock);
669 	push_seq = cil->xc_push_seq;
670 	ASSERT(push_seq <= ctx->sequence);
671 
672 	/*
673 	 * Check if we've anything to push. If there is nothing, then we don't
674 	 * move on to a new sequence number and so we have to be able to push
675 	 * this sequence again later.
676 	 */
677 	if (list_empty(&cil->xc_cil)) {
678 		cil->xc_push_seq = 0;
679 		spin_unlock(&cil->xc_push_lock);
680 		goto out_skip;
681 	}
682 
683 
684 	/* check for a previously pushed seqeunce */
685 	if (push_seq < cil->xc_ctx->sequence) {
686 		spin_unlock(&cil->xc_push_lock);
687 		goto out_skip;
688 	}
689 
690 	/*
691 	 * We are now going to push this context, so add it to the committing
692 	 * list before we do anything else. This ensures that anyone waiting on
693 	 * this push can easily detect the difference between a "push in
694 	 * progress" and "CIL is empty, nothing to do".
695 	 *
696 	 * IOWs, a wait loop can now check for:
697 	 *	the current sequence not being found on the committing list;
698 	 *	an empty CIL; and
699 	 *	an unchanged sequence number
700 	 * to detect a push that had nothing to do and therefore does not need
701 	 * waiting on. If the CIL is not empty, we get put on the committing
702 	 * list before emptying the CIL and bumping the sequence number. Hence
703 	 * an empty CIL and an unchanged sequence number means we jumped out
704 	 * above after doing nothing.
705 	 *
706 	 * Hence the waiter will either find the commit sequence on the
707 	 * committing list or the sequence number will be unchanged and the CIL
708 	 * still dirty. In that latter case, the push has not yet started, and
709 	 * so the waiter will have to continue trying to check the CIL
710 	 * committing list until it is found. In extreme cases of delay, the
711 	 * sequence may fully commit between the attempts the wait makes to wait
712 	 * on the commit sequence.
713 	 */
714 	list_add(&ctx->committing, &cil->xc_committing);
715 	spin_unlock(&cil->xc_push_lock);
716 
717 	/*
718 	 * pull all the log vectors off the items in the CIL, and
719 	 * remove the items from the CIL. We don't need the CIL lock
720 	 * here because it's only needed on the transaction commit
721 	 * side which is currently locked out by the flush lock.
722 	 */
723 	lv = NULL;
724 	num_iovecs = 0;
725 	while (!list_empty(&cil->xc_cil)) {
726 		struct xfs_log_item	*item;
727 
728 		item = list_first_entry(&cil->xc_cil,
729 					struct xfs_log_item, li_cil);
730 		list_del_init(&item->li_cil);
731 		if (!ctx->lv_chain)
732 			ctx->lv_chain = item->li_lv;
733 		else
734 			lv->lv_next = item->li_lv;
735 		lv = item->li_lv;
736 		item->li_lv = NULL;
737 		num_iovecs += lv->lv_niovecs;
738 	}
739 
740 	/*
741 	 * initialise the new context and attach it to the CIL. Then attach
742 	 * the current context to the CIL committing lsit so it can be found
743 	 * during log forces to extract the commit lsn of the sequence that
744 	 * needs to be forced.
745 	 */
746 	INIT_LIST_HEAD(&new_ctx->committing);
747 	INIT_LIST_HEAD(&new_ctx->busy_extents);
748 	new_ctx->sequence = ctx->sequence + 1;
749 	new_ctx->cil = cil;
750 	cil->xc_ctx = new_ctx;
751 
752 	/*
753 	 * The switch is now done, so we can drop the context lock and move out
754 	 * of a shared context. We can't just go straight to the commit record,
755 	 * though - we need to synchronise with previous and future commits so
756 	 * that the commit records are correctly ordered in the log to ensure
757 	 * that we process items during log IO completion in the correct order.
758 	 *
759 	 * For example, if we get an EFI in one checkpoint and the EFD in the
760 	 * next (e.g. due to log forces), we do not want the checkpoint with
761 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
762 	 * we must strictly order the commit records of the checkpoints so
763 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
764 	 * correct order; and b) the checkpoints are replayed in correct order
765 	 * in log recovery.
766 	 *
767 	 * Hence we need to add this context to the committing context list so
768 	 * that higher sequences will wait for us to write out a commit record
769 	 * before they do.
770 	 *
771 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
772 	 * structure atomically with the addition of this sequence to the
773 	 * committing list. This also ensures that we can do unlocked checks
774 	 * against the current sequence in log forces without risking
775 	 * deferencing a freed context pointer.
776 	 */
777 	spin_lock(&cil->xc_push_lock);
778 	cil->xc_current_sequence = new_ctx->sequence;
779 	spin_unlock(&cil->xc_push_lock);
780 	up_write(&cil->xc_ctx_lock);
781 
782 	/*
783 	 * Build a checkpoint transaction header and write it to the log to
784 	 * begin the transaction. We need to account for the space used by the
785 	 * transaction header here as it is not accounted for in xlog_write().
786 	 *
787 	 * The LSN we need to pass to the log items on transaction commit is
788 	 * the LSN reported by the first log vector write. If we use the commit
789 	 * record lsn then we can move the tail beyond the grant write head.
790 	 */
791 	tic = ctx->ticket;
792 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
793 	thdr.th_type = XFS_TRANS_CHECKPOINT;
794 	thdr.th_tid = tic->t_tid;
795 	thdr.th_num_items = num_iovecs;
796 	lhdr.i_addr = &thdr;
797 	lhdr.i_len = sizeof(xfs_trans_header_t);
798 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
799 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
800 
801 	lvhdr.lv_niovecs = 1;
802 	lvhdr.lv_iovecp = &lhdr;
803 	lvhdr.lv_next = ctx->lv_chain;
804 
805 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
806 	if (error)
807 		goto out_abort_free_ticket;
808 
809 	/*
810 	 * now that we've written the checkpoint into the log, strictly
811 	 * order the commit records so replay will get them in the right order.
812 	 */
813 restart:
814 	spin_lock(&cil->xc_push_lock);
815 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
816 		/*
817 		 * Avoid getting stuck in this loop because we were woken by the
818 		 * shutdown, but then went back to sleep once already in the
819 		 * shutdown state.
820 		 */
821 		if (XLOG_FORCED_SHUTDOWN(log)) {
822 			spin_unlock(&cil->xc_push_lock);
823 			goto out_abort_free_ticket;
824 		}
825 
826 		/*
827 		 * Higher sequences will wait for this one so skip them.
828 		 * Don't wait for our own sequence, either.
829 		 */
830 		if (new_ctx->sequence >= ctx->sequence)
831 			continue;
832 		if (!new_ctx->commit_lsn) {
833 			/*
834 			 * It is still being pushed! Wait for the push to
835 			 * complete, then start again from the beginning.
836 			 */
837 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
838 			goto restart;
839 		}
840 	}
841 	spin_unlock(&cil->xc_push_lock);
842 
843 	/* xfs_log_done always frees the ticket on error. */
844 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
845 	if (commit_lsn == -1)
846 		goto out_abort;
847 
848 	/* attach all the transactions w/ busy extents to iclog */
849 	ctx->log_cb.cb_func = xlog_cil_committed;
850 	ctx->log_cb.cb_arg = ctx;
851 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
852 	if (error)
853 		goto out_abort;
854 
855 	/*
856 	 * now the checkpoint commit is complete and we've attached the
857 	 * callbacks to the iclog we can assign the commit LSN to the context
858 	 * and wake up anyone who is waiting for the commit to complete.
859 	 */
860 	spin_lock(&cil->xc_push_lock);
861 	ctx->commit_lsn = commit_lsn;
862 	wake_up_all(&cil->xc_commit_wait);
863 	spin_unlock(&cil->xc_push_lock);
864 
865 	/* release the hounds! */
866 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
867 
868 out_skip:
869 	up_write(&cil->xc_ctx_lock);
870 	xfs_log_ticket_put(new_ctx->ticket);
871 	kmem_free(new_ctx);
872 	return 0;
873 
874 out_abort_free_ticket:
875 	xfs_log_ticket_put(tic);
876 out_abort:
877 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
878 	return -EIO;
879 }
880 
881 static void
882 xlog_cil_push_work(
883 	struct work_struct	*work)
884 {
885 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
886 							xc_push_work);
887 	xlog_cil_push(cil->xc_log);
888 }
889 
890 /*
891  * We need to push CIL every so often so we don't cache more than we can fit in
892  * the log. The limit really is that a checkpoint can't be more than half the
893  * log (the current checkpoint is not allowed to overwrite the previous
894  * checkpoint), but commit latency and memory usage limit this to a smaller
895  * size.
896  */
897 static void
898 xlog_cil_push_background(
899 	struct xlog	*log)
900 {
901 	struct xfs_cil	*cil = log->l_cilp;
902 
903 	/*
904 	 * The cil won't be empty because we are called while holding the
905 	 * context lock so whatever we added to the CIL will still be there
906 	 */
907 	ASSERT(!list_empty(&cil->xc_cil));
908 
909 	/*
910 	 * don't do a background push if we haven't used up all the
911 	 * space available yet.
912 	 */
913 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
914 		return;
915 
916 	spin_lock(&cil->xc_push_lock);
917 	if (cil->xc_push_seq < cil->xc_current_sequence) {
918 		cil->xc_push_seq = cil->xc_current_sequence;
919 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
920 	}
921 	spin_unlock(&cil->xc_push_lock);
922 
923 }
924 
925 /*
926  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
927  * number that is passed. When it returns, the work will be queued for
928  * @push_seq, but it won't be completed. The caller is expected to do any
929  * waiting for push_seq to complete if it is required.
930  */
931 static void
932 xlog_cil_push_now(
933 	struct xlog	*log,
934 	xfs_lsn_t	push_seq)
935 {
936 	struct xfs_cil	*cil = log->l_cilp;
937 
938 	if (!cil)
939 		return;
940 
941 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
942 
943 	/* start on any pending background push to minimise wait time on it */
944 	flush_work(&cil->xc_push_work);
945 
946 	/*
947 	 * If the CIL is empty or we've already pushed the sequence then
948 	 * there's no work we need to do.
949 	 */
950 	spin_lock(&cil->xc_push_lock);
951 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
952 		spin_unlock(&cil->xc_push_lock);
953 		return;
954 	}
955 
956 	cil->xc_push_seq = push_seq;
957 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
958 	spin_unlock(&cil->xc_push_lock);
959 }
960 
961 bool
962 xlog_cil_empty(
963 	struct xlog	*log)
964 {
965 	struct xfs_cil	*cil = log->l_cilp;
966 	bool		empty = false;
967 
968 	spin_lock(&cil->xc_push_lock);
969 	if (list_empty(&cil->xc_cil))
970 		empty = true;
971 	spin_unlock(&cil->xc_push_lock);
972 	return empty;
973 }
974 
975 /*
976  * Commit a transaction with the given vector to the Committed Item List.
977  *
978  * To do this, we need to format the item, pin it in memory if required and
979  * account for the space used by the transaction. Once we have done that we
980  * need to release the unused reservation for the transaction, attach the
981  * transaction to the checkpoint context so we carry the busy extents through
982  * to checkpoint completion, and then unlock all the items in the transaction.
983  *
984  * Called with the context lock already held in read mode to lock out
985  * background commit, returns without it held once background commits are
986  * allowed again.
987  */
988 void
989 xfs_log_commit_cil(
990 	struct xfs_mount	*mp,
991 	struct xfs_trans	*tp,
992 	xfs_lsn_t		*commit_lsn,
993 	bool			regrant)
994 {
995 	struct xlog		*log = mp->m_log;
996 	struct xfs_cil		*cil = log->l_cilp;
997 	xfs_lsn_t		xc_commit_lsn;
998 
999 	/*
1000 	 * Do all necessary memory allocation before we lock the CIL.
1001 	 * This ensures the allocation does not deadlock with a CIL
1002 	 * push in memory reclaim (e.g. from kswapd).
1003 	 */
1004 	xlog_cil_alloc_shadow_bufs(log, tp);
1005 
1006 	/* lock out background commit */
1007 	down_read(&cil->xc_ctx_lock);
1008 
1009 	xlog_cil_insert_items(log, tp);
1010 
1011 	xc_commit_lsn = cil->xc_ctx->sequence;
1012 	if (commit_lsn)
1013 		*commit_lsn = xc_commit_lsn;
1014 
1015 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1016 	xfs_trans_unreserve_and_mod_sb(tp);
1017 
1018 	/*
1019 	 * Once all the items of the transaction have been copied to the CIL,
1020 	 * the items can be unlocked and freed.
1021 	 *
1022 	 * This needs to be done before we drop the CIL context lock because we
1023 	 * have to update state in the log items and unlock them before they go
1024 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1025 	 * we can run checkpoint completion before we've updated and unlocked
1026 	 * the log items. This affects (at least) processing of stale buffers,
1027 	 * inodes and EFIs.
1028 	 */
1029 	xfs_trans_free_items(tp, xc_commit_lsn, false);
1030 
1031 	xlog_cil_push_background(log);
1032 
1033 	up_read(&cil->xc_ctx_lock);
1034 }
1035 
1036 /*
1037  * Conditionally push the CIL based on the sequence passed in.
1038  *
1039  * We only need to push if we haven't already pushed the sequence
1040  * number given. Hence the only time we will trigger a push here is
1041  * if the push sequence is the same as the current context.
1042  *
1043  * We return the current commit lsn to allow the callers to determine if a
1044  * iclog flush is necessary following this call.
1045  */
1046 xfs_lsn_t
1047 xlog_cil_force_lsn(
1048 	struct xlog	*log,
1049 	xfs_lsn_t	sequence)
1050 {
1051 	struct xfs_cil		*cil = log->l_cilp;
1052 	struct xfs_cil_ctx	*ctx;
1053 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1054 
1055 	ASSERT(sequence <= cil->xc_current_sequence);
1056 
1057 	/*
1058 	 * check to see if we need to force out the current context.
1059 	 * xlog_cil_push() handles racing pushes for the same sequence,
1060 	 * so no need to deal with it here.
1061 	 */
1062 restart:
1063 	xlog_cil_push_now(log, sequence);
1064 
1065 	/*
1066 	 * See if we can find a previous sequence still committing.
1067 	 * We need to wait for all previous sequence commits to complete
1068 	 * before allowing the force of push_seq to go ahead. Hence block
1069 	 * on commits for those as well.
1070 	 */
1071 	spin_lock(&cil->xc_push_lock);
1072 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1073 		/*
1074 		 * Avoid getting stuck in this loop because we were woken by the
1075 		 * shutdown, but then went back to sleep once already in the
1076 		 * shutdown state.
1077 		 */
1078 		if (XLOG_FORCED_SHUTDOWN(log))
1079 			goto out_shutdown;
1080 		if (ctx->sequence > sequence)
1081 			continue;
1082 		if (!ctx->commit_lsn) {
1083 			/*
1084 			 * It is still being pushed! Wait for the push to
1085 			 * complete, then start again from the beginning.
1086 			 */
1087 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1088 			goto restart;
1089 		}
1090 		if (ctx->sequence != sequence)
1091 			continue;
1092 		/* found it! */
1093 		commit_lsn = ctx->commit_lsn;
1094 	}
1095 
1096 	/*
1097 	 * The call to xlog_cil_push_now() executes the push in the background.
1098 	 * Hence by the time we have got here it our sequence may not have been
1099 	 * pushed yet. This is true if the current sequence still matches the
1100 	 * push sequence after the above wait loop and the CIL still contains
1101 	 * dirty objects. This is guaranteed by the push code first adding the
1102 	 * context to the committing list before emptying the CIL.
1103 	 *
1104 	 * Hence if we don't find the context in the committing list and the
1105 	 * current sequence number is unchanged then the CIL contents are
1106 	 * significant.  If the CIL is empty, if means there was nothing to push
1107 	 * and that means there is nothing to wait for. If the CIL is not empty,
1108 	 * it means we haven't yet started the push, because if it had started
1109 	 * we would have found the context on the committing list.
1110 	 */
1111 	if (sequence == cil->xc_current_sequence &&
1112 	    !list_empty(&cil->xc_cil)) {
1113 		spin_unlock(&cil->xc_push_lock);
1114 		goto restart;
1115 	}
1116 
1117 	spin_unlock(&cil->xc_push_lock);
1118 	return commit_lsn;
1119 
1120 	/*
1121 	 * We detected a shutdown in progress. We need to trigger the log force
1122 	 * to pass through it's iclog state machine error handling, even though
1123 	 * we are already in a shutdown state. Hence we can't return
1124 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1125 	 * LSN is already stable), so we return a zero LSN instead.
1126 	 */
1127 out_shutdown:
1128 	spin_unlock(&cil->xc_push_lock);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * Check if the current log item was first committed in this sequence.
1134  * We can't rely on just the log item being in the CIL, we have to check
1135  * the recorded commit sequence number.
1136  *
1137  * Note: for this to be used in a non-racy manner, it has to be called with
1138  * CIL flushing locked out. As a result, it should only be used during the
1139  * transaction commit process when deciding what to format into the item.
1140  */
1141 bool
1142 xfs_log_item_in_current_chkpt(
1143 	struct xfs_log_item *lip)
1144 {
1145 	struct xfs_cil_ctx *ctx;
1146 
1147 	if (list_empty(&lip->li_cil))
1148 		return false;
1149 
1150 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1151 
1152 	/*
1153 	 * li_seq is written on the first commit of a log item to record the
1154 	 * first checkpoint it is written to. Hence if it is different to the
1155 	 * current sequence, we're in a new checkpoint.
1156 	 */
1157 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1158 		return false;
1159 	return true;
1160 }
1161 
1162 /*
1163  * Perform initial CIL structure initialisation.
1164  */
1165 int
1166 xlog_cil_init(
1167 	struct xlog	*log)
1168 {
1169 	struct xfs_cil	*cil;
1170 	struct xfs_cil_ctx *ctx;
1171 
1172 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
1173 	if (!cil)
1174 		return -ENOMEM;
1175 
1176 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
1177 	if (!ctx) {
1178 		kmem_free(cil);
1179 		return -ENOMEM;
1180 	}
1181 
1182 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1183 	INIT_LIST_HEAD(&cil->xc_cil);
1184 	INIT_LIST_HEAD(&cil->xc_committing);
1185 	spin_lock_init(&cil->xc_cil_lock);
1186 	spin_lock_init(&cil->xc_push_lock);
1187 	init_rwsem(&cil->xc_ctx_lock);
1188 	init_waitqueue_head(&cil->xc_commit_wait);
1189 
1190 	INIT_LIST_HEAD(&ctx->committing);
1191 	INIT_LIST_HEAD(&ctx->busy_extents);
1192 	ctx->sequence = 1;
1193 	ctx->cil = cil;
1194 	cil->xc_ctx = ctx;
1195 	cil->xc_current_sequence = ctx->sequence;
1196 
1197 	cil->xc_log = log;
1198 	log->l_cilp = cil;
1199 	return 0;
1200 }
1201 
1202 void
1203 xlog_cil_destroy(
1204 	struct xlog	*log)
1205 {
1206 	if (log->l_cilp->xc_ctx) {
1207 		if (log->l_cilp->xc_ctx->ticket)
1208 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1209 		kmem_free(log->l_cilp->xc_ctx);
1210 	}
1211 
1212 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1213 	kmem_free(log->l_cilp);
1214 }
1215 
1216