xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_shared.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_alloc.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_discard.h"
30 #include "xfs_trans.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 
35 /*
36  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37  * recover, so we don't allow failure here. Also, we allocate in a context that
38  * we don't want to be issuing transactions from, so we need to tell the
39  * allocation code this as well.
40  *
41  * We don't reserve any space for the ticket - we are going to steal whatever
42  * space we require from transactions as they commit. To ensure we reserve all
43  * the space required, we need to set the current reservation of the ticket to
44  * zero so that we know to steal the initial transaction overhead from the
45  * first transaction commit.
46  */
47 static struct xlog_ticket *
48 xlog_cil_ticket_alloc(
49 	struct xlog	*log)
50 {
51 	struct xlog_ticket *tic;
52 
53 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54 				KM_SLEEP|KM_NOFS);
55 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56 
57 	/*
58 	 * set the current reservation to zero so we know to steal the basic
59 	 * transaction overhead reservation from the first transaction commit.
60 	 */
61 	tic->t_curr_res = 0;
62 	return tic;
63 }
64 
65 /*
66  * After the first stage of log recovery is done, we know where the head and
67  * tail of the log are. We need this log initialisation done before we can
68  * initialise the first CIL checkpoint context.
69  *
70  * Here we allocate a log ticket to track space usage during a CIL push.  This
71  * ticket is passed to xlog_write() directly so that we don't slowly leak log
72  * space by failing to account for space used by log headers and additional
73  * region headers for split regions.
74  */
75 void
76 xlog_cil_init_post_recovery(
77 	struct xlog	*log)
78 {
79 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80 	log->l_cilp->xc_ctx->sequence = 1;
81 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
82 								log->l_curr_block);
83 }
84 
85 STATIC int
86 xlog_cil_lv_item_format(
87 	struct xfs_log_item	*lip,
88 	struct xfs_log_vec	*lv)
89 {
90 	int	index;
91 	char	*ptr;
92 
93 	/* format new vectors into array */
94 	lip->li_ops->iop_format(lip, lv->lv_iovecp);
95 
96 	/* copy data into existing array */
97 	ptr = lv->lv_buf;
98 	for (index = 0; index < lv->lv_niovecs; index++) {
99 		struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
100 
101 		memcpy(ptr, vec->i_addr, vec->i_len);
102 		vec->i_addr = ptr;
103 		ptr += vec->i_len;
104 	}
105 
106 	/*
107 	 * some size calculations for log vectors over-estimate, so the caller
108 	 * doesn't know the amount of space actually used by the item. Return
109 	 * the byte count to the caller so they can check and store it
110 	 * appropriately.
111 	 */
112 	return ptr - lv->lv_buf;
113 }
114 
115 /*
116  * Prepare the log item for insertion into the CIL. Calculate the difference in
117  * log space and vectors it will consume, and if it is a new item pin it as
118  * well.
119  */
120 STATIC void
121 xfs_cil_prepare_item(
122 	struct xlog		*log,
123 	struct xfs_log_vec	*lv,
124 	struct xfs_log_vec	*old_lv,
125 	int			*diff_len,
126 	int			*diff_iovecs)
127 {
128 	/* Account for the new LV being passed in */
129 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
130 		*diff_len += lv->lv_buf_len;
131 		*diff_iovecs += lv->lv_niovecs;
132 	}
133 
134 	/*
135 	 * If there is no old LV, this is the first time we've seen the item in
136 	 * this CIL context and so we need to pin it. If we are replacing the
137 	 * old_lv, then remove the space it accounts for and free it.
138 	 */
139 	if (!old_lv)
140 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
141 	else if (old_lv != lv) {
142 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
143 
144 		*diff_len -= old_lv->lv_buf_len;
145 		*diff_iovecs -= old_lv->lv_niovecs;
146 		kmem_free(old_lv);
147 	}
148 
149 	/* attach new log vector to log item */
150 	lv->lv_item->li_lv = lv;
151 
152 	/*
153 	 * If this is the first time the item is being committed to the
154 	 * CIL, store the sequence number on the log item so we can
155 	 * tell in future commits whether this is the first checkpoint
156 	 * the item is being committed into.
157 	 */
158 	if (!lv->lv_item->li_seq)
159 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
160 }
161 
162 /*
163  * Format log item into a flat buffers
164  *
165  * For delayed logging, we need to hold a formatted buffer containing all the
166  * changes on the log item. This enables us to relog the item in memory and
167  * write it out asynchronously without needing to relock the object that was
168  * modified at the time it gets written into the iclog.
169  *
170  * This function builds a vector for the changes in each log item in the
171  * transaction. It then works out the length of the buffer needed for each log
172  * item, allocates them and formats the vector for the item into the buffer.
173  * The buffer is then attached to the log item are then inserted into the
174  * Committed Item List for tracking until the next checkpoint is written out.
175  *
176  * We don't set up region headers during this process; we simply copy the
177  * regions into the flat buffer. We can do this because we still have to do a
178  * formatting step to write the regions into the iclog buffer.  Writing the
179  * ophdrs during the iclog write means that we can support splitting large
180  * regions across iclog boundares without needing a change in the format of the
181  * item/region encapsulation.
182  *
183  * Hence what we need to do now is change the rewrite the vector array to point
184  * to the copied region inside the buffer we just allocated. This allows us to
185  * format the regions into the iclog as though they are being formatted
186  * directly out of the objects themselves.
187  */
188 static void
189 xlog_cil_insert_format_items(
190 	struct xlog		*log,
191 	struct xfs_trans	*tp,
192 	int			*diff_len,
193 	int			*diff_iovecs)
194 {
195 	struct xfs_log_item_desc *lidp;
196 
197 
198 	/* Bail out if we didn't find a log item.  */
199 	if (list_empty(&tp->t_items)) {
200 		ASSERT(0);
201 		return;
202 	}
203 
204 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
205 		struct xfs_log_item *lip = lidp->lid_item;
206 		struct xfs_log_vec *lv;
207 		struct xfs_log_vec *old_lv;
208 		int	niovecs = 0;
209 		int	nbytes = 0;
210 		int	buf_size;
211 		bool	ordered = false;
212 
213 		/* Skip items which aren't dirty in this transaction. */
214 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
215 			continue;
216 
217 		/* get number of vecs and size of data to be stored */
218 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
219 
220 		/* Skip items that do not have any vectors for writing */
221 		if (!niovecs)
222 			continue;
223 
224 		/*
225 		 * Ordered items need to be tracked but we do not wish to write
226 		 * them. We need a logvec to track the object, but we do not
227 		 * need an iovec or buffer to be allocated for copying data.
228 		 */
229 		if (niovecs == XFS_LOG_VEC_ORDERED) {
230 			ordered = true;
231 			niovecs = 0;
232 			nbytes = 0;
233 		}
234 
235 		/* grab the old item if it exists for reservation accounting */
236 		old_lv = lip->li_lv;
237 
238 		/* calc buffer size */
239 		buf_size = sizeof(struct xfs_log_vec) + nbytes +
240 				niovecs * sizeof(struct xfs_log_iovec);
241 
242 		/* compare to existing item size */
243 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
244 			/* same or smaller, optimise common overwrite case */
245 			lv = lip->li_lv;
246 			lv->lv_next = NULL;
247 
248 			if (ordered)
249 				goto insert;
250 
251 			/*
252 			 * set the item up as though it is a new insertion so
253 			 * that the space reservation accounting is correct.
254 			 */
255 			*diff_iovecs -= lv->lv_niovecs;
256 			*diff_len -= lv->lv_buf_len;
257 
258 			/* Ensure the lv is set up according to ->iop_size */
259 			lv->lv_niovecs = niovecs;
260 			lv->lv_buf = (char *)lv + buf_size - nbytes;
261 
262 			lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv);
263 			goto insert;
264 		}
265 
266 		/* allocate new data chunk */
267 		lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
268 		lv->lv_item = lip;
269 		lv->lv_size = buf_size;
270 		lv->lv_niovecs = niovecs;
271 		if (ordered) {
272 			/* track as an ordered logvec */
273 			ASSERT(lip->li_lv == NULL);
274 			lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
275 			goto insert;
276 		}
277 
278 		/* The allocated iovec region lies beyond the log vector. */
279 		lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
280 
281 		/* The allocated data region lies beyond the iovec region */
282 		lv->lv_buf = (char *)lv + buf_size - nbytes;
283 
284 		lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv);
285 insert:
286 		ASSERT(lv->lv_buf_len <= nbytes);
287 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
288 	}
289 }
290 
291 /*
292  * Insert the log items into the CIL and calculate the difference in space
293  * consumed by the item. Add the space to the checkpoint ticket and calculate
294  * if the change requires additional log metadata. If it does, take that space
295  * as well. Remove the amount of space we added to the checkpoint ticket from
296  * the current transaction ticket so that the accounting works out correctly.
297  */
298 static void
299 xlog_cil_insert_items(
300 	struct xlog		*log,
301 	struct xfs_trans	*tp)
302 {
303 	struct xfs_cil		*cil = log->l_cilp;
304 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
305 	struct xfs_log_item_desc *lidp;
306 	int			len = 0;
307 	int			diff_iovecs = 0;
308 	int			iclog_space;
309 
310 	ASSERT(tp);
311 
312 	/*
313 	 * We can do this safely because the context can't checkpoint until we
314 	 * are done so it doesn't matter exactly how we update the CIL.
315 	 */
316 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
317 
318 	/*
319 	 * Now (re-)position everything modified at the tail of the CIL.
320 	 * We do this here so we only need to take the CIL lock once during
321 	 * the transaction commit.
322 	 */
323 	spin_lock(&cil->xc_cil_lock);
324 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
325 		struct xfs_log_item	*lip = lidp->lid_item;
326 
327 		/* Skip items which aren't dirty in this transaction. */
328 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
329 			continue;
330 
331 		list_move_tail(&lip->li_cil, &cil->xc_cil);
332 	}
333 
334 	/* account for space used by new iovec headers  */
335 	len += diff_iovecs * sizeof(xlog_op_header_t);
336 	ctx->nvecs += diff_iovecs;
337 
338 	/* attach the transaction to the CIL if it has any busy extents */
339 	if (!list_empty(&tp->t_busy))
340 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
341 
342 	/*
343 	 * Now transfer enough transaction reservation to the context ticket
344 	 * for the checkpoint. The context ticket is special - the unit
345 	 * reservation has to grow as well as the current reservation as we
346 	 * steal from tickets so we can correctly determine the space used
347 	 * during the transaction commit.
348 	 */
349 	if (ctx->ticket->t_curr_res == 0) {
350 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
351 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
352 	}
353 
354 	/* do we need space for more log record headers? */
355 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
356 	if (len > 0 && (ctx->space_used / iclog_space !=
357 				(ctx->space_used + len) / iclog_space)) {
358 		int hdrs;
359 
360 		hdrs = (len + iclog_space - 1) / iclog_space;
361 		/* need to take into account split region headers, too */
362 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
363 		ctx->ticket->t_unit_res += hdrs;
364 		ctx->ticket->t_curr_res += hdrs;
365 		tp->t_ticket->t_curr_res -= hdrs;
366 		ASSERT(tp->t_ticket->t_curr_res >= len);
367 	}
368 	tp->t_ticket->t_curr_res -= len;
369 	ctx->space_used += len;
370 
371 	spin_unlock(&cil->xc_cil_lock);
372 }
373 
374 static void
375 xlog_cil_free_logvec(
376 	struct xfs_log_vec	*log_vector)
377 {
378 	struct xfs_log_vec	*lv;
379 
380 	for (lv = log_vector; lv; ) {
381 		struct xfs_log_vec *next = lv->lv_next;
382 		kmem_free(lv);
383 		lv = next;
384 	}
385 }
386 
387 /*
388  * Mark all items committed and clear busy extents. We free the log vector
389  * chains in a separate pass so that we unpin the log items as quickly as
390  * possible.
391  */
392 static void
393 xlog_cil_committed(
394 	void	*args,
395 	int	abort)
396 {
397 	struct xfs_cil_ctx	*ctx = args;
398 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
399 
400 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
401 					ctx->start_lsn, abort);
402 
403 	xfs_extent_busy_sort(&ctx->busy_extents);
404 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
405 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
406 
407 	spin_lock(&ctx->cil->xc_push_lock);
408 	list_del(&ctx->committing);
409 	spin_unlock(&ctx->cil->xc_push_lock);
410 
411 	xlog_cil_free_logvec(ctx->lv_chain);
412 
413 	if (!list_empty(&ctx->busy_extents)) {
414 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
415 
416 		xfs_discard_extents(mp, &ctx->busy_extents);
417 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
418 	}
419 
420 	kmem_free(ctx);
421 }
422 
423 /*
424  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
425  * is a background flush and so we can chose to ignore it. Otherwise, if the
426  * current sequence is the same as @push_seq we need to do a flush. If
427  * @push_seq is less than the current sequence, then it has already been
428  * flushed and we don't need to do anything - the caller will wait for it to
429  * complete if necessary.
430  *
431  * @push_seq is a value rather than a flag because that allows us to do an
432  * unlocked check of the sequence number for a match. Hence we can allows log
433  * forces to run racily and not issue pushes for the same sequence twice. If we
434  * get a race between multiple pushes for the same sequence they will block on
435  * the first one and then abort, hence avoiding needless pushes.
436  */
437 STATIC int
438 xlog_cil_push(
439 	struct xlog		*log)
440 {
441 	struct xfs_cil		*cil = log->l_cilp;
442 	struct xfs_log_vec	*lv;
443 	struct xfs_cil_ctx	*ctx;
444 	struct xfs_cil_ctx	*new_ctx;
445 	struct xlog_in_core	*commit_iclog;
446 	struct xlog_ticket	*tic;
447 	int			num_iovecs;
448 	int			error = 0;
449 	struct xfs_trans_header thdr;
450 	struct xfs_log_iovec	lhdr;
451 	struct xfs_log_vec	lvhdr = { NULL };
452 	xfs_lsn_t		commit_lsn;
453 	xfs_lsn_t		push_seq;
454 
455 	if (!cil)
456 		return 0;
457 
458 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
459 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
460 
461 	down_write(&cil->xc_ctx_lock);
462 	ctx = cil->xc_ctx;
463 
464 	spin_lock(&cil->xc_push_lock);
465 	push_seq = cil->xc_push_seq;
466 	ASSERT(push_seq <= ctx->sequence);
467 
468 	/*
469 	 * Check if we've anything to push. If there is nothing, then we don't
470 	 * move on to a new sequence number and so we have to be able to push
471 	 * this sequence again later.
472 	 */
473 	if (list_empty(&cil->xc_cil)) {
474 		cil->xc_push_seq = 0;
475 		spin_unlock(&cil->xc_push_lock);
476 		goto out_skip;
477 	}
478 	spin_unlock(&cil->xc_push_lock);
479 
480 
481 	/* check for a previously pushed seqeunce */
482 	if (push_seq < cil->xc_ctx->sequence)
483 		goto out_skip;
484 
485 	/*
486 	 * pull all the log vectors off the items in the CIL, and
487 	 * remove the items from the CIL. We don't need the CIL lock
488 	 * here because it's only needed on the transaction commit
489 	 * side which is currently locked out by the flush lock.
490 	 */
491 	lv = NULL;
492 	num_iovecs = 0;
493 	while (!list_empty(&cil->xc_cil)) {
494 		struct xfs_log_item	*item;
495 
496 		item = list_first_entry(&cil->xc_cil,
497 					struct xfs_log_item, li_cil);
498 		list_del_init(&item->li_cil);
499 		if (!ctx->lv_chain)
500 			ctx->lv_chain = item->li_lv;
501 		else
502 			lv->lv_next = item->li_lv;
503 		lv = item->li_lv;
504 		item->li_lv = NULL;
505 		num_iovecs += lv->lv_niovecs;
506 	}
507 
508 	/*
509 	 * initialise the new context and attach it to the CIL. Then attach
510 	 * the current context to the CIL committing lsit so it can be found
511 	 * during log forces to extract the commit lsn of the sequence that
512 	 * needs to be forced.
513 	 */
514 	INIT_LIST_HEAD(&new_ctx->committing);
515 	INIT_LIST_HEAD(&new_ctx->busy_extents);
516 	new_ctx->sequence = ctx->sequence + 1;
517 	new_ctx->cil = cil;
518 	cil->xc_ctx = new_ctx;
519 
520 	/*
521 	 * mirror the new sequence into the cil structure so that we can do
522 	 * unlocked checks against the current sequence in log forces without
523 	 * risking deferencing a freed context pointer.
524 	 */
525 	cil->xc_current_sequence = new_ctx->sequence;
526 
527 	/*
528 	 * The switch is now done, so we can drop the context lock and move out
529 	 * of a shared context. We can't just go straight to the commit record,
530 	 * though - we need to synchronise with previous and future commits so
531 	 * that the commit records are correctly ordered in the log to ensure
532 	 * that we process items during log IO completion in the correct order.
533 	 *
534 	 * For example, if we get an EFI in one checkpoint and the EFD in the
535 	 * next (e.g. due to log forces), we do not want the checkpoint with
536 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
537 	 * we must strictly order the commit records of the checkpoints so
538 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
539 	 * correct order; and b) the checkpoints are replayed in correct order
540 	 * in log recovery.
541 	 *
542 	 * Hence we need to add this context to the committing context list so
543 	 * that higher sequences will wait for us to write out a commit record
544 	 * before they do.
545 	 */
546 	spin_lock(&cil->xc_push_lock);
547 	list_add(&ctx->committing, &cil->xc_committing);
548 	spin_unlock(&cil->xc_push_lock);
549 	up_write(&cil->xc_ctx_lock);
550 
551 	/*
552 	 * Build a checkpoint transaction header and write it to the log to
553 	 * begin the transaction. We need to account for the space used by the
554 	 * transaction header here as it is not accounted for in xlog_write().
555 	 *
556 	 * The LSN we need to pass to the log items on transaction commit is
557 	 * the LSN reported by the first log vector write. If we use the commit
558 	 * record lsn then we can move the tail beyond the grant write head.
559 	 */
560 	tic = ctx->ticket;
561 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
562 	thdr.th_type = XFS_TRANS_CHECKPOINT;
563 	thdr.th_tid = tic->t_tid;
564 	thdr.th_num_items = num_iovecs;
565 	lhdr.i_addr = &thdr;
566 	lhdr.i_len = sizeof(xfs_trans_header_t);
567 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
568 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
569 
570 	lvhdr.lv_niovecs = 1;
571 	lvhdr.lv_iovecp = &lhdr;
572 	lvhdr.lv_next = ctx->lv_chain;
573 
574 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
575 	if (error)
576 		goto out_abort_free_ticket;
577 
578 	/*
579 	 * now that we've written the checkpoint into the log, strictly
580 	 * order the commit records so replay will get them in the right order.
581 	 */
582 restart:
583 	spin_lock(&cil->xc_push_lock);
584 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
585 		/*
586 		 * Higher sequences will wait for this one so skip them.
587 		 * Don't wait for own own sequence, either.
588 		 */
589 		if (new_ctx->sequence >= ctx->sequence)
590 			continue;
591 		if (!new_ctx->commit_lsn) {
592 			/*
593 			 * It is still being pushed! Wait for the push to
594 			 * complete, then start again from the beginning.
595 			 */
596 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
597 			goto restart;
598 		}
599 	}
600 	spin_unlock(&cil->xc_push_lock);
601 
602 	/* xfs_log_done always frees the ticket on error. */
603 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
604 	if (commit_lsn == -1)
605 		goto out_abort;
606 
607 	/* attach all the transactions w/ busy extents to iclog */
608 	ctx->log_cb.cb_func = xlog_cil_committed;
609 	ctx->log_cb.cb_arg = ctx;
610 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
611 	if (error)
612 		goto out_abort;
613 
614 	/*
615 	 * now the checkpoint commit is complete and we've attached the
616 	 * callbacks to the iclog we can assign the commit LSN to the context
617 	 * and wake up anyone who is waiting for the commit to complete.
618 	 */
619 	spin_lock(&cil->xc_push_lock);
620 	ctx->commit_lsn = commit_lsn;
621 	wake_up_all(&cil->xc_commit_wait);
622 	spin_unlock(&cil->xc_push_lock);
623 
624 	/* release the hounds! */
625 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
626 
627 out_skip:
628 	up_write(&cil->xc_ctx_lock);
629 	xfs_log_ticket_put(new_ctx->ticket);
630 	kmem_free(new_ctx);
631 	return 0;
632 
633 out_abort_free_ticket:
634 	xfs_log_ticket_put(tic);
635 out_abort:
636 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
637 	return XFS_ERROR(EIO);
638 }
639 
640 static void
641 xlog_cil_push_work(
642 	struct work_struct	*work)
643 {
644 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
645 							xc_push_work);
646 	xlog_cil_push(cil->xc_log);
647 }
648 
649 /*
650  * We need to push CIL every so often so we don't cache more than we can fit in
651  * the log. The limit really is that a checkpoint can't be more than half the
652  * log (the current checkpoint is not allowed to overwrite the previous
653  * checkpoint), but commit latency and memory usage limit this to a smaller
654  * size.
655  */
656 static void
657 xlog_cil_push_background(
658 	struct xlog	*log)
659 {
660 	struct xfs_cil	*cil = log->l_cilp;
661 
662 	/*
663 	 * The cil won't be empty because we are called while holding the
664 	 * context lock so whatever we added to the CIL will still be there
665 	 */
666 	ASSERT(!list_empty(&cil->xc_cil));
667 
668 	/*
669 	 * don't do a background push if we haven't used up all the
670 	 * space available yet.
671 	 */
672 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
673 		return;
674 
675 	spin_lock(&cil->xc_push_lock);
676 	if (cil->xc_push_seq < cil->xc_current_sequence) {
677 		cil->xc_push_seq = cil->xc_current_sequence;
678 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
679 	}
680 	spin_unlock(&cil->xc_push_lock);
681 
682 }
683 
684 static void
685 xlog_cil_push_foreground(
686 	struct xlog	*log,
687 	xfs_lsn_t	push_seq)
688 {
689 	struct xfs_cil	*cil = log->l_cilp;
690 
691 	if (!cil)
692 		return;
693 
694 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
695 
696 	/* start on any pending background push to minimise wait time on it */
697 	flush_work(&cil->xc_push_work);
698 
699 	/*
700 	 * If the CIL is empty or we've already pushed the sequence then
701 	 * there's no work we need to do.
702 	 */
703 	spin_lock(&cil->xc_push_lock);
704 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
705 		spin_unlock(&cil->xc_push_lock);
706 		return;
707 	}
708 
709 	cil->xc_push_seq = push_seq;
710 	spin_unlock(&cil->xc_push_lock);
711 
712 	/* do the push now */
713 	xlog_cil_push(log);
714 }
715 
716 bool
717 xlog_cil_empty(
718 	struct xlog	*log)
719 {
720 	struct xfs_cil	*cil = log->l_cilp;
721 	bool		empty = false;
722 
723 	spin_lock(&cil->xc_push_lock);
724 	if (list_empty(&cil->xc_cil))
725 		empty = true;
726 	spin_unlock(&cil->xc_push_lock);
727 	return empty;
728 }
729 
730 /*
731  * Commit a transaction with the given vector to the Committed Item List.
732  *
733  * To do this, we need to format the item, pin it in memory if required and
734  * account for the space used by the transaction. Once we have done that we
735  * need to release the unused reservation for the transaction, attach the
736  * transaction to the checkpoint context so we carry the busy extents through
737  * to checkpoint completion, and then unlock all the items in the transaction.
738  *
739  * Called with the context lock already held in read mode to lock out
740  * background commit, returns without it held once background commits are
741  * allowed again.
742  */
743 int
744 xfs_log_commit_cil(
745 	struct xfs_mount	*mp,
746 	struct xfs_trans	*tp,
747 	xfs_lsn_t		*commit_lsn,
748 	int			flags)
749 {
750 	struct xlog		*log = mp->m_log;
751 	struct xfs_cil		*cil = log->l_cilp;
752 	int			log_flags = 0;
753 
754 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
755 		log_flags = XFS_LOG_REL_PERM_RESERV;
756 
757 	/* lock out background commit */
758 	down_read(&cil->xc_ctx_lock);
759 
760 	xlog_cil_insert_items(log, tp);
761 
762 	/* check we didn't blow the reservation */
763 	if (tp->t_ticket->t_curr_res < 0)
764 		xlog_print_tic_res(mp, tp->t_ticket);
765 
766 	tp->t_commit_lsn = cil->xc_ctx->sequence;
767 	if (commit_lsn)
768 		*commit_lsn = tp->t_commit_lsn;
769 
770 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
771 	xfs_trans_unreserve_and_mod_sb(tp);
772 
773 	/*
774 	 * Once all the items of the transaction have been copied to the CIL,
775 	 * the items can be unlocked and freed.
776 	 *
777 	 * This needs to be done before we drop the CIL context lock because we
778 	 * have to update state in the log items and unlock them before they go
779 	 * to disk. If we don't, then the CIL checkpoint can race with us and
780 	 * we can run checkpoint completion before we've updated and unlocked
781 	 * the log items. This affects (at least) processing of stale buffers,
782 	 * inodes and EFIs.
783 	 */
784 	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
785 
786 	xlog_cil_push_background(log);
787 
788 	up_read(&cil->xc_ctx_lock);
789 	return 0;
790 }
791 
792 /*
793  * Conditionally push the CIL based on the sequence passed in.
794  *
795  * We only need to push if we haven't already pushed the sequence
796  * number given. Hence the only time we will trigger a push here is
797  * if the push sequence is the same as the current context.
798  *
799  * We return the current commit lsn to allow the callers to determine if a
800  * iclog flush is necessary following this call.
801  */
802 xfs_lsn_t
803 xlog_cil_force_lsn(
804 	struct xlog	*log,
805 	xfs_lsn_t	sequence)
806 {
807 	struct xfs_cil		*cil = log->l_cilp;
808 	struct xfs_cil_ctx	*ctx;
809 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
810 
811 	ASSERT(sequence <= cil->xc_current_sequence);
812 
813 	/*
814 	 * check to see if we need to force out the current context.
815 	 * xlog_cil_push() handles racing pushes for the same sequence,
816 	 * so no need to deal with it here.
817 	 */
818 	xlog_cil_push_foreground(log, sequence);
819 
820 	/*
821 	 * See if we can find a previous sequence still committing.
822 	 * We need to wait for all previous sequence commits to complete
823 	 * before allowing the force of push_seq to go ahead. Hence block
824 	 * on commits for those as well.
825 	 */
826 restart:
827 	spin_lock(&cil->xc_push_lock);
828 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
829 		if (ctx->sequence > sequence)
830 			continue;
831 		if (!ctx->commit_lsn) {
832 			/*
833 			 * It is still being pushed! Wait for the push to
834 			 * complete, then start again from the beginning.
835 			 */
836 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
837 			goto restart;
838 		}
839 		if (ctx->sequence != sequence)
840 			continue;
841 		/* found it! */
842 		commit_lsn = ctx->commit_lsn;
843 	}
844 	spin_unlock(&cil->xc_push_lock);
845 	return commit_lsn;
846 }
847 
848 /*
849  * Check if the current log item was first committed in this sequence.
850  * We can't rely on just the log item being in the CIL, we have to check
851  * the recorded commit sequence number.
852  *
853  * Note: for this to be used in a non-racy manner, it has to be called with
854  * CIL flushing locked out. As a result, it should only be used during the
855  * transaction commit process when deciding what to format into the item.
856  */
857 bool
858 xfs_log_item_in_current_chkpt(
859 	struct xfs_log_item *lip)
860 {
861 	struct xfs_cil_ctx *ctx;
862 
863 	if (list_empty(&lip->li_cil))
864 		return false;
865 
866 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
867 
868 	/*
869 	 * li_seq is written on the first commit of a log item to record the
870 	 * first checkpoint it is written to. Hence if it is different to the
871 	 * current sequence, we're in a new checkpoint.
872 	 */
873 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
874 		return false;
875 	return true;
876 }
877 
878 /*
879  * Perform initial CIL structure initialisation.
880  */
881 int
882 xlog_cil_init(
883 	struct xlog	*log)
884 {
885 	struct xfs_cil	*cil;
886 	struct xfs_cil_ctx *ctx;
887 
888 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
889 	if (!cil)
890 		return ENOMEM;
891 
892 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
893 	if (!ctx) {
894 		kmem_free(cil);
895 		return ENOMEM;
896 	}
897 
898 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
899 	INIT_LIST_HEAD(&cil->xc_cil);
900 	INIT_LIST_HEAD(&cil->xc_committing);
901 	spin_lock_init(&cil->xc_cil_lock);
902 	spin_lock_init(&cil->xc_push_lock);
903 	init_rwsem(&cil->xc_ctx_lock);
904 	init_waitqueue_head(&cil->xc_commit_wait);
905 
906 	INIT_LIST_HEAD(&ctx->committing);
907 	INIT_LIST_HEAD(&ctx->busy_extents);
908 	ctx->sequence = 1;
909 	ctx->cil = cil;
910 	cil->xc_ctx = ctx;
911 	cil->xc_current_sequence = ctx->sequence;
912 
913 	cil->xc_log = log;
914 	log->l_cilp = cil;
915 	return 0;
916 }
917 
918 void
919 xlog_cil_destroy(
920 	struct xlog	*log)
921 {
922 	if (log->l_cilp->xc_ctx) {
923 		if (log->l_cilp->xc_ctx->ticket)
924 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
925 		kmem_free(log->l_cilp->xc_ctx);
926 	}
927 
928 	ASSERT(list_empty(&log->l_cilp->xc_cil));
929 	kmem_free(log->l_cilp);
930 }
931 
932