xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_trace.h"
34 
35 struct workqueue_struct *xfs_discard_wq;
36 
37 /*
38  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
39  * recover, so we don't allow failure here. Also, we allocate in a context that
40  * we don't want to be issuing transactions from, so we need to tell the
41  * allocation code this as well.
42  *
43  * We don't reserve any space for the ticket - we are going to steal whatever
44  * space we require from transactions as they commit. To ensure we reserve all
45  * the space required, we need to set the current reservation of the ticket to
46  * zero so that we know to steal the initial transaction overhead from the
47  * first transaction commit.
48  */
49 static struct xlog_ticket *
50 xlog_cil_ticket_alloc(
51 	struct xlog	*log)
52 {
53 	struct xlog_ticket *tic;
54 
55 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
56 				KM_SLEEP|KM_NOFS);
57 
58 	/*
59 	 * set the current reservation to zero so we know to steal the basic
60 	 * transaction overhead reservation from the first transaction commit.
61 	 */
62 	tic->t_curr_res = 0;
63 	return tic;
64 }
65 
66 /*
67  * After the first stage of log recovery is done, we know where the head and
68  * tail of the log are. We need this log initialisation done before we can
69  * initialise the first CIL checkpoint context.
70  *
71  * Here we allocate a log ticket to track space usage during a CIL push.  This
72  * ticket is passed to xlog_write() directly so that we don't slowly leak log
73  * space by failing to account for space used by log headers and additional
74  * region headers for split regions.
75  */
76 void
77 xlog_cil_init_post_recovery(
78 	struct xlog	*log)
79 {
80 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
81 	log->l_cilp->xc_ctx->sequence = 1;
82 }
83 
84 static inline int
85 xlog_cil_iovec_space(
86 	uint	niovecs)
87 {
88 	return round_up((sizeof(struct xfs_log_vec) +
89 					niovecs * sizeof(struct xfs_log_iovec)),
90 			sizeof(uint64_t));
91 }
92 
93 /*
94  * Allocate or pin log vector buffers for CIL insertion.
95  *
96  * The CIL currently uses disposable buffers for copying a snapshot of the
97  * modified items into the log during a push. The biggest problem with this is
98  * the requirement to allocate the disposable buffer during the commit if:
99  *	a) does not exist; or
100  *	b) it is too small
101  *
102  * If we do this allocation within xlog_cil_insert_format_items(), it is done
103  * under the xc_ctx_lock, which means that a CIL push cannot occur during
104  * the memory allocation. This means that we have a potential deadlock situation
105  * under low memory conditions when we have lots of dirty metadata pinned in
106  * the CIL and we need a CIL commit to occur to free memory.
107  *
108  * To avoid this, we need to move the memory allocation outside the
109  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
110  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
111  * vector buffers between the check and the formatting of the item into the
112  * log vector buffer within the xc_ctx_lock.
113  *
114  * Because the log vector buffer needs to be unchanged during the CIL push
115  * process, we cannot share the buffer between the transaction commit (which
116  * modifies the buffer) and the CIL push context that is writing the changes
117  * into the log. This means skipping preallocation of buffer space is
118  * unreliable, but we most definitely do not want to be allocating and freeing
119  * buffers unnecessarily during commits when overwrites can be done safely.
120  *
121  * The simplest solution to this problem is to allocate a shadow buffer when a
122  * log item is committed for the second time, and then to only use this buffer
123  * if necessary. The buffer can remain attached to the log item until such time
124  * it is needed, and this is the buffer that is reallocated to match the size of
125  * the incoming modification. Then during the formatting of the item we can swap
126  * the active buffer with the new one if we can't reuse the existing buffer. We
127  * don't free the old buffer as it may be reused on the next modification if
128  * it's size is right, otherwise we'll free and reallocate it at that point.
129  *
130  * This function builds a vector for the changes in each log item in the
131  * transaction. It then works out the length of the buffer needed for each log
132  * item, allocates them and attaches the vector to the log item in preparation
133  * for the formatting step which occurs under the xc_ctx_lock.
134  *
135  * While this means the memory footprint goes up, it avoids the repeated
136  * alloc/free pattern that repeated modifications of an item would otherwise
137  * cause, and hence minimises the CPU overhead of such behaviour.
138  */
139 static void
140 xlog_cil_alloc_shadow_bufs(
141 	struct xlog		*log,
142 	struct xfs_trans	*tp)
143 {
144 	struct xfs_log_item	*lip;
145 
146 	list_for_each_entry(lip, &tp->t_items, li_trans) {
147 		struct xfs_log_vec *lv;
148 		int	niovecs = 0;
149 		int	nbytes = 0;
150 		int	buf_size;
151 		bool	ordered = false;
152 
153 		/* Skip items which aren't dirty in this transaction. */
154 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
155 			continue;
156 
157 		/* get number of vecs and size of data to be stored */
158 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
159 
160 		/*
161 		 * Ordered items need to be tracked but we do not wish to write
162 		 * them. We need a logvec to track the object, but we do not
163 		 * need an iovec or buffer to be allocated for copying data.
164 		 */
165 		if (niovecs == XFS_LOG_VEC_ORDERED) {
166 			ordered = true;
167 			niovecs = 0;
168 			nbytes = 0;
169 		}
170 
171 		/*
172 		 * We 64-bit align the length of each iovec so that the start
173 		 * of the next one is naturally aligned.  We'll need to
174 		 * account for that slack space here. Then round nbytes up
175 		 * to 64-bit alignment so that the initial buffer alignment is
176 		 * easy to calculate and verify.
177 		 */
178 		nbytes += niovecs * sizeof(uint64_t);
179 		nbytes = round_up(nbytes, sizeof(uint64_t));
180 
181 		/*
182 		 * The data buffer needs to start 64-bit aligned, so round up
183 		 * that space to ensure we can align it appropriately and not
184 		 * overrun the buffer.
185 		 */
186 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
187 
188 		/*
189 		 * if we have no shadow buffer, or it is too small, we need to
190 		 * reallocate it.
191 		 */
192 		if (!lip->li_lv_shadow ||
193 		    buf_size > lip->li_lv_shadow->lv_size) {
194 
195 			/*
196 			 * We free and allocate here as a realloc would copy
197 			 * unecessary data. We don't use kmem_zalloc() for the
198 			 * same reason - we don't need to zero the data area in
199 			 * the buffer, only the log vector header and the iovec
200 			 * storage.
201 			 */
202 			kmem_free(lip->li_lv_shadow);
203 
204 			lv = kmem_alloc_large(buf_size, KM_SLEEP | KM_NOFS);
205 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
206 
207 			lv->lv_item = lip;
208 			lv->lv_size = buf_size;
209 			if (ordered)
210 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
211 			else
212 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
213 			lip->li_lv_shadow = lv;
214 		} else {
215 			/* same or smaller, optimise common overwrite case */
216 			lv = lip->li_lv_shadow;
217 			if (ordered)
218 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
219 			else
220 				lv->lv_buf_len = 0;
221 			lv->lv_bytes = 0;
222 			lv->lv_next = NULL;
223 		}
224 
225 		/* Ensure the lv is set up according to ->iop_size */
226 		lv->lv_niovecs = niovecs;
227 
228 		/* The allocated data region lies beyond the iovec region */
229 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
230 	}
231 
232 }
233 
234 /*
235  * Prepare the log item for insertion into the CIL. Calculate the difference in
236  * log space and vectors it will consume, and if it is a new item pin it as
237  * well.
238  */
239 STATIC void
240 xfs_cil_prepare_item(
241 	struct xlog		*log,
242 	struct xfs_log_vec	*lv,
243 	struct xfs_log_vec	*old_lv,
244 	int			*diff_len,
245 	int			*diff_iovecs)
246 {
247 	/* Account for the new LV being passed in */
248 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
249 		*diff_len += lv->lv_bytes;
250 		*diff_iovecs += lv->lv_niovecs;
251 	}
252 
253 	/*
254 	 * If there is no old LV, this is the first time we've seen the item in
255 	 * this CIL context and so we need to pin it. If we are replacing the
256 	 * old_lv, then remove the space it accounts for and make it the shadow
257 	 * buffer for later freeing. In both cases we are now switching to the
258 	 * shadow buffer, so update the the pointer to it appropriately.
259 	 */
260 	if (!old_lv) {
261 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
262 		lv->lv_item->li_lv_shadow = NULL;
263 	} else if (old_lv != lv) {
264 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
265 
266 		*diff_len -= old_lv->lv_bytes;
267 		*diff_iovecs -= old_lv->lv_niovecs;
268 		lv->lv_item->li_lv_shadow = old_lv;
269 	}
270 
271 	/* attach new log vector to log item */
272 	lv->lv_item->li_lv = lv;
273 
274 	/*
275 	 * If this is the first time the item is being committed to the
276 	 * CIL, store the sequence number on the log item so we can
277 	 * tell in future commits whether this is the first checkpoint
278 	 * the item is being committed into.
279 	 */
280 	if (!lv->lv_item->li_seq)
281 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
282 }
283 
284 /*
285  * Format log item into a flat buffers
286  *
287  * For delayed logging, we need to hold a formatted buffer containing all the
288  * changes on the log item. This enables us to relog the item in memory and
289  * write it out asynchronously without needing to relock the object that was
290  * modified at the time it gets written into the iclog.
291  *
292  * This function takes the prepared log vectors attached to each log item, and
293  * formats the changes into the log vector buffer. The buffer it uses is
294  * dependent on the current state of the vector in the CIL - the shadow lv is
295  * guaranteed to be large enough for the current modification, but we will only
296  * use that if we can't reuse the existing lv. If we can't reuse the existing
297  * lv, then simple swap it out for the shadow lv. We don't free it - that is
298  * done lazily either by th enext modification or the freeing of the log item.
299  *
300  * We don't set up region headers during this process; we simply copy the
301  * regions into the flat buffer. We can do this because we still have to do a
302  * formatting step to write the regions into the iclog buffer.  Writing the
303  * ophdrs during the iclog write means that we can support splitting large
304  * regions across iclog boundares without needing a change in the format of the
305  * item/region encapsulation.
306  *
307  * Hence what we need to do now is change the rewrite the vector array to point
308  * to the copied region inside the buffer we just allocated. This allows us to
309  * format the regions into the iclog as though they are being formatted
310  * directly out of the objects themselves.
311  */
312 static void
313 xlog_cil_insert_format_items(
314 	struct xlog		*log,
315 	struct xfs_trans	*tp,
316 	int			*diff_len,
317 	int			*diff_iovecs)
318 {
319 	struct xfs_log_item	*lip;
320 
321 
322 	/* Bail out if we didn't find a log item.  */
323 	if (list_empty(&tp->t_items)) {
324 		ASSERT(0);
325 		return;
326 	}
327 
328 	list_for_each_entry(lip, &tp->t_items, li_trans) {
329 		struct xfs_log_vec *lv;
330 		struct xfs_log_vec *old_lv = NULL;
331 		struct xfs_log_vec *shadow;
332 		bool	ordered = false;
333 
334 		/* Skip items which aren't dirty in this transaction. */
335 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
336 			continue;
337 
338 		/*
339 		 * The formatting size information is already attached to
340 		 * the shadow lv on the log item.
341 		 */
342 		shadow = lip->li_lv_shadow;
343 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
344 			ordered = true;
345 
346 		/* Skip items that do not have any vectors for writing */
347 		if (!shadow->lv_niovecs && !ordered)
348 			continue;
349 
350 		/* compare to existing item size */
351 		old_lv = lip->li_lv;
352 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
353 			/* same or smaller, optimise common overwrite case */
354 			lv = lip->li_lv;
355 			lv->lv_next = NULL;
356 
357 			if (ordered)
358 				goto insert;
359 
360 			/*
361 			 * set the item up as though it is a new insertion so
362 			 * that the space reservation accounting is correct.
363 			 */
364 			*diff_iovecs -= lv->lv_niovecs;
365 			*diff_len -= lv->lv_bytes;
366 
367 			/* Ensure the lv is set up according to ->iop_size */
368 			lv->lv_niovecs = shadow->lv_niovecs;
369 
370 			/* reset the lv buffer information for new formatting */
371 			lv->lv_buf_len = 0;
372 			lv->lv_bytes = 0;
373 			lv->lv_buf = (char *)lv +
374 					xlog_cil_iovec_space(lv->lv_niovecs);
375 		} else {
376 			/* switch to shadow buffer! */
377 			lv = shadow;
378 			lv->lv_item = lip;
379 			if (ordered) {
380 				/* track as an ordered logvec */
381 				ASSERT(lip->li_lv == NULL);
382 				goto insert;
383 			}
384 		}
385 
386 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
387 		lip->li_ops->iop_format(lip, lv);
388 insert:
389 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
390 	}
391 }
392 
393 /*
394  * Insert the log items into the CIL and calculate the difference in space
395  * consumed by the item. Add the space to the checkpoint ticket and calculate
396  * if the change requires additional log metadata. If it does, take that space
397  * as well. Remove the amount of space we added to the checkpoint ticket from
398  * the current transaction ticket so that the accounting works out correctly.
399  */
400 static void
401 xlog_cil_insert_items(
402 	struct xlog		*log,
403 	struct xfs_trans	*tp)
404 {
405 	struct xfs_cil		*cil = log->l_cilp;
406 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
407 	struct xfs_log_item	*lip;
408 	int			len = 0;
409 	int			diff_iovecs = 0;
410 	int			iclog_space;
411 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
412 
413 	ASSERT(tp);
414 
415 	/*
416 	 * We can do this safely because the context can't checkpoint until we
417 	 * are done so it doesn't matter exactly how we update the CIL.
418 	 */
419 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
420 
421 	spin_lock(&cil->xc_cil_lock);
422 
423 	/* account for space used by new iovec headers  */
424 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
425 	len += iovhdr_res;
426 	ctx->nvecs += diff_iovecs;
427 
428 	/* attach the transaction to the CIL if it has any busy extents */
429 	if (!list_empty(&tp->t_busy))
430 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
431 
432 	/*
433 	 * Now transfer enough transaction reservation to the context ticket
434 	 * for the checkpoint. The context ticket is special - the unit
435 	 * reservation has to grow as well as the current reservation as we
436 	 * steal from tickets so we can correctly determine the space used
437 	 * during the transaction commit.
438 	 */
439 	if (ctx->ticket->t_curr_res == 0) {
440 		ctx_res = ctx->ticket->t_unit_res;
441 		ctx->ticket->t_curr_res = ctx_res;
442 		tp->t_ticket->t_curr_res -= ctx_res;
443 	}
444 
445 	/* do we need space for more log record headers? */
446 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
447 	if (len > 0 && (ctx->space_used / iclog_space !=
448 				(ctx->space_used + len) / iclog_space)) {
449 		split_res = (len + iclog_space - 1) / iclog_space;
450 		/* need to take into account split region headers, too */
451 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
452 		ctx->ticket->t_unit_res += split_res;
453 		ctx->ticket->t_curr_res += split_res;
454 		tp->t_ticket->t_curr_res -= split_res;
455 		ASSERT(tp->t_ticket->t_curr_res >= len);
456 	}
457 	tp->t_ticket->t_curr_res -= len;
458 	ctx->space_used += len;
459 
460 	/*
461 	 * If we've overrun the reservation, dump the tx details before we move
462 	 * the log items. Shutdown is imminent...
463 	 */
464 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
465 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
466 		xfs_warn(log->l_mp,
467 			 "  log items: %d bytes (iov hdrs: %d bytes)",
468 			 len, iovhdr_res);
469 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
470 			 split_res);
471 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
472 		xlog_print_trans(tp);
473 	}
474 
475 	/*
476 	 * Now (re-)position everything modified at the tail of the CIL.
477 	 * We do this here so we only need to take the CIL lock once during
478 	 * the transaction commit.
479 	 */
480 	list_for_each_entry(lip, &tp->t_items, li_trans) {
481 
482 		/* Skip items which aren't dirty in this transaction. */
483 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
484 			continue;
485 
486 		/*
487 		 * Only move the item if it isn't already at the tail. This is
488 		 * to prevent a transient list_empty() state when reinserting
489 		 * an item that is already the only item in the CIL.
490 		 */
491 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
492 			list_move_tail(&lip->li_cil, &cil->xc_cil);
493 	}
494 
495 	spin_unlock(&cil->xc_cil_lock);
496 
497 	if (tp->t_ticket->t_curr_res < 0)
498 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
499 }
500 
501 static void
502 xlog_cil_free_logvec(
503 	struct xfs_log_vec	*log_vector)
504 {
505 	struct xfs_log_vec	*lv;
506 
507 	for (lv = log_vector; lv; ) {
508 		struct xfs_log_vec *next = lv->lv_next;
509 		kmem_free(lv);
510 		lv = next;
511 	}
512 }
513 
514 static void
515 xlog_discard_endio_work(
516 	struct work_struct	*work)
517 {
518 	struct xfs_cil_ctx	*ctx =
519 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
520 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
521 
522 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
523 	kmem_free(ctx);
524 }
525 
526 /*
527  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
528  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
529  * get the execution delayed up to 30 seconds for weird reasons.
530  */
531 static void
532 xlog_discard_endio(
533 	struct bio		*bio)
534 {
535 	struct xfs_cil_ctx	*ctx = bio->bi_private;
536 
537 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
538 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
539 	bio_put(bio);
540 }
541 
542 static void
543 xlog_discard_busy_extents(
544 	struct xfs_mount	*mp,
545 	struct xfs_cil_ctx	*ctx)
546 {
547 	struct list_head	*list = &ctx->busy_extents;
548 	struct xfs_extent_busy	*busyp;
549 	struct bio		*bio = NULL;
550 	struct blk_plug		plug;
551 	int			error = 0;
552 
553 	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
554 
555 	blk_start_plug(&plug);
556 	list_for_each_entry(busyp, list, list) {
557 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
558 					 busyp->length);
559 
560 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
561 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
562 				XFS_FSB_TO_BB(mp, busyp->length),
563 				GFP_NOFS, 0, &bio);
564 		if (error && error != -EOPNOTSUPP) {
565 			xfs_info(mp,
566 	 "discard failed for extent [0x%llx,%u], error %d",
567 				 (unsigned long long)busyp->bno,
568 				 busyp->length,
569 				 error);
570 			break;
571 		}
572 	}
573 
574 	if (bio) {
575 		bio->bi_private = ctx;
576 		bio->bi_end_io = xlog_discard_endio;
577 		submit_bio(bio);
578 	} else {
579 		xlog_discard_endio_work(&ctx->discard_endio_work);
580 	}
581 	blk_finish_plug(&plug);
582 }
583 
584 /*
585  * Mark all items committed and clear busy extents. We free the log vector
586  * chains in a separate pass so that we unpin the log items as quickly as
587  * possible.
588  */
589 static void
590 xlog_cil_committed(
591 	void	*args,
592 	int	abort)
593 {
594 	struct xfs_cil_ctx	*ctx = args;
595 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
596 
597 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
598 					ctx->start_lsn, abort);
599 
600 	xfs_extent_busy_sort(&ctx->busy_extents);
601 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
602 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
603 
604 	/*
605 	 * If we are aborting the commit, wake up anyone waiting on the
606 	 * committing list.  If we don't, then a shutdown we can leave processes
607 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
608 	 * will never happen because we aborted it.
609 	 */
610 	spin_lock(&ctx->cil->xc_push_lock);
611 	if (abort)
612 		wake_up_all(&ctx->cil->xc_commit_wait);
613 	list_del(&ctx->committing);
614 	spin_unlock(&ctx->cil->xc_push_lock);
615 
616 	xlog_cil_free_logvec(ctx->lv_chain);
617 
618 	if (!list_empty(&ctx->busy_extents))
619 		xlog_discard_busy_extents(mp, ctx);
620 	else
621 		kmem_free(ctx);
622 }
623 
624 /*
625  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
626  * is a background flush and so we can chose to ignore it. Otherwise, if the
627  * current sequence is the same as @push_seq we need to do a flush. If
628  * @push_seq is less than the current sequence, then it has already been
629  * flushed and we don't need to do anything - the caller will wait for it to
630  * complete if necessary.
631  *
632  * @push_seq is a value rather than a flag because that allows us to do an
633  * unlocked check of the sequence number for a match. Hence we can allows log
634  * forces to run racily and not issue pushes for the same sequence twice. If we
635  * get a race between multiple pushes for the same sequence they will block on
636  * the first one and then abort, hence avoiding needless pushes.
637  */
638 STATIC int
639 xlog_cil_push(
640 	struct xlog		*log)
641 {
642 	struct xfs_cil		*cil = log->l_cilp;
643 	struct xfs_log_vec	*lv;
644 	struct xfs_cil_ctx	*ctx;
645 	struct xfs_cil_ctx	*new_ctx;
646 	struct xlog_in_core	*commit_iclog;
647 	struct xlog_ticket	*tic;
648 	int			num_iovecs;
649 	int			error = 0;
650 	struct xfs_trans_header thdr;
651 	struct xfs_log_iovec	lhdr;
652 	struct xfs_log_vec	lvhdr = { NULL };
653 	xfs_lsn_t		commit_lsn;
654 	xfs_lsn_t		push_seq;
655 
656 	if (!cil)
657 		return 0;
658 
659 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
660 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
661 
662 	down_write(&cil->xc_ctx_lock);
663 	ctx = cil->xc_ctx;
664 
665 	spin_lock(&cil->xc_push_lock);
666 	push_seq = cil->xc_push_seq;
667 	ASSERT(push_seq <= ctx->sequence);
668 
669 	/*
670 	 * Check if we've anything to push. If there is nothing, then we don't
671 	 * move on to a new sequence number and so we have to be able to push
672 	 * this sequence again later.
673 	 */
674 	if (list_empty(&cil->xc_cil)) {
675 		cil->xc_push_seq = 0;
676 		spin_unlock(&cil->xc_push_lock);
677 		goto out_skip;
678 	}
679 
680 
681 	/* check for a previously pushed seqeunce */
682 	if (push_seq < cil->xc_ctx->sequence) {
683 		spin_unlock(&cil->xc_push_lock);
684 		goto out_skip;
685 	}
686 
687 	/*
688 	 * We are now going to push this context, so add it to the committing
689 	 * list before we do anything else. This ensures that anyone waiting on
690 	 * this push can easily detect the difference between a "push in
691 	 * progress" and "CIL is empty, nothing to do".
692 	 *
693 	 * IOWs, a wait loop can now check for:
694 	 *	the current sequence not being found on the committing list;
695 	 *	an empty CIL; and
696 	 *	an unchanged sequence number
697 	 * to detect a push that had nothing to do and therefore does not need
698 	 * waiting on. If the CIL is not empty, we get put on the committing
699 	 * list before emptying the CIL and bumping the sequence number. Hence
700 	 * an empty CIL and an unchanged sequence number means we jumped out
701 	 * above after doing nothing.
702 	 *
703 	 * Hence the waiter will either find the commit sequence on the
704 	 * committing list or the sequence number will be unchanged and the CIL
705 	 * still dirty. In that latter case, the push has not yet started, and
706 	 * so the waiter will have to continue trying to check the CIL
707 	 * committing list until it is found. In extreme cases of delay, the
708 	 * sequence may fully commit between the attempts the wait makes to wait
709 	 * on the commit sequence.
710 	 */
711 	list_add(&ctx->committing, &cil->xc_committing);
712 	spin_unlock(&cil->xc_push_lock);
713 
714 	/*
715 	 * pull all the log vectors off the items in the CIL, and
716 	 * remove the items from the CIL. We don't need the CIL lock
717 	 * here because it's only needed on the transaction commit
718 	 * side which is currently locked out by the flush lock.
719 	 */
720 	lv = NULL;
721 	num_iovecs = 0;
722 	while (!list_empty(&cil->xc_cil)) {
723 		struct xfs_log_item	*item;
724 
725 		item = list_first_entry(&cil->xc_cil,
726 					struct xfs_log_item, li_cil);
727 		list_del_init(&item->li_cil);
728 		if (!ctx->lv_chain)
729 			ctx->lv_chain = item->li_lv;
730 		else
731 			lv->lv_next = item->li_lv;
732 		lv = item->li_lv;
733 		item->li_lv = NULL;
734 		num_iovecs += lv->lv_niovecs;
735 	}
736 
737 	/*
738 	 * initialise the new context and attach it to the CIL. Then attach
739 	 * the current context to the CIL committing lsit so it can be found
740 	 * during log forces to extract the commit lsn of the sequence that
741 	 * needs to be forced.
742 	 */
743 	INIT_LIST_HEAD(&new_ctx->committing);
744 	INIT_LIST_HEAD(&new_ctx->busy_extents);
745 	new_ctx->sequence = ctx->sequence + 1;
746 	new_ctx->cil = cil;
747 	cil->xc_ctx = new_ctx;
748 
749 	/*
750 	 * The switch is now done, so we can drop the context lock and move out
751 	 * of a shared context. We can't just go straight to the commit record,
752 	 * though - we need to synchronise with previous and future commits so
753 	 * that the commit records are correctly ordered in the log to ensure
754 	 * that we process items during log IO completion in the correct order.
755 	 *
756 	 * For example, if we get an EFI in one checkpoint and the EFD in the
757 	 * next (e.g. due to log forces), we do not want the checkpoint with
758 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
759 	 * we must strictly order the commit records of the checkpoints so
760 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
761 	 * correct order; and b) the checkpoints are replayed in correct order
762 	 * in log recovery.
763 	 *
764 	 * Hence we need to add this context to the committing context list so
765 	 * that higher sequences will wait for us to write out a commit record
766 	 * before they do.
767 	 *
768 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
769 	 * structure atomically with the addition of this sequence to the
770 	 * committing list. This also ensures that we can do unlocked checks
771 	 * against the current sequence in log forces without risking
772 	 * deferencing a freed context pointer.
773 	 */
774 	spin_lock(&cil->xc_push_lock);
775 	cil->xc_current_sequence = new_ctx->sequence;
776 	spin_unlock(&cil->xc_push_lock);
777 	up_write(&cil->xc_ctx_lock);
778 
779 	/*
780 	 * Build a checkpoint transaction header and write it to the log to
781 	 * begin the transaction. We need to account for the space used by the
782 	 * transaction header here as it is not accounted for in xlog_write().
783 	 *
784 	 * The LSN we need to pass to the log items on transaction commit is
785 	 * the LSN reported by the first log vector write. If we use the commit
786 	 * record lsn then we can move the tail beyond the grant write head.
787 	 */
788 	tic = ctx->ticket;
789 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
790 	thdr.th_type = XFS_TRANS_CHECKPOINT;
791 	thdr.th_tid = tic->t_tid;
792 	thdr.th_num_items = num_iovecs;
793 	lhdr.i_addr = &thdr;
794 	lhdr.i_len = sizeof(xfs_trans_header_t);
795 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
796 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
797 
798 	lvhdr.lv_niovecs = 1;
799 	lvhdr.lv_iovecp = &lhdr;
800 	lvhdr.lv_next = ctx->lv_chain;
801 
802 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
803 	if (error)
804 		goto out_abort_free_ticket;
805 
806 	/*
807 	 * now that we've written the checkpoint into the log, strictly
808 	 * order the commit records so replay will get them in the right order.
809 	 */
810 restart:
811 	spin_lock(&cil->xc_push_lock);
812 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
813 		/*
814 		 * Avoid getting stuck in this loop because we were woken by the
815 		 * shutdown, but then went back to sleep once already in the
816 		 * shutdown state.
817 		 */
818 		if (XLOG_FORCED_SHUTDOWN(log)) {
819 			spin_unlock(&cil->xc_push_lock);
820 			goto out_abort_free_ticket;
821 		}
822 
823 		/*
824 		 * Higher sequences will wait for this one so skip them.
825 		 * Don't wait for our own sequence, either.
826 		 */
827 		if (new_ctx->sequence >= ctx->sequence)
828 			continue;
829 		if (!new_ctx->commit_lsn) {
830 			/*
831 			 * It is still being pushed! Wait for the push to
832 			 * complete, then start again from the beginning.
833 			 */
834 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
835 			goto restart;
836 		}
837 	}
838 	spin_unlock(&cil->xc_push_lock);
839 
840 	/* xfs_log_done always frees the ticket on error. */
841 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
842 	if (commit_lsn == -1)
843 		goto out_abort;
844 
845 	/* attach all the transactions w/ busy extents to iclog */
846 	ctx->log_cb.cb_func = xlog_cil_committed;
847 	ctx->log_cb.cb_arg = ctx;
848 	error = xfs_log_notify(commit_iclog, &ctx->log_cb);
849 	if (error)
850 		goto out_abort;
851 
852 	/*
853 	 * now the checkpoint commit is complete and we've attached the
854 	 * callbacks to the iclog we can assign the commit LSN to the context
855 	 * and wake up anyone who is waiting for the commit to complete.
856 	 */
857 	spin_lock(&cil->xc_push_lock);
858 	ctx->commit_lsn = commit_lsn;
859 	wake_up_all(&cil->xc_commit_wait);
860 	spin_unlock(&cil->xc_push_lock);
861 
862 	/* release the hounds! */
863 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
864 
865 out_skip:
866 	up_write(&cil->xc_ctx_lock);
867 	xfs_log_ticket_put(new_ctx->ticket);
868 	kmem_free(new_ctx);
869 	return 0;
870 
871 out_abort_free_ticket:
872 	xfs_log_ticket_put(tic);
873 out_abort:
874 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
875 	return -EIO;
876 }
877 
878 static void
879 xlog_cil_push_work(
880 	struct work_struct	*work)
881 {
882 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
883 							xc_push_work);
884 	xlog_cil_push(cil->xc_log);
885 }
886 
887 /*
888  * We need to push CIL every so often so we don't cache more than we can fit in
889  * the log. The limit really is that a checkpoint can't be more than half the
890  * log (the current checkpoint is not allowed to overwrite the previous
891  * checkpoint), but commit latency and memory usage limit this to a smaller
892  * size.
893  */
894 static void
895 xlog_cil_push_background(
896 	struct xlog	*log)
897 {
898 	struct xfs_cil	*cil = log->l_cilp;
899 
900 	/*
901 	 * The cil won't be empty because we are called while holding the
902 	 * context lock so whatever we added to the CIL will still be there
903 	 */
904 	ASSERT(!list_empty(&cil->xc_cil));
905 
906 	/*
907 	 * don't do a background push if we haven't used up all the
908 	 * space available yet.
909 	 */
910 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
911 		return;
912 
913 	spin_lock(&cil->xc_push_lock);
914 	if (cil->xc_push_seq < cil->xc_current_sequence) {
915 		cil->xc_push_seq = cil->xc_current_sequence;
916 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
917 	}
918 	spin_unlock(&cil->xc_push_lock);
919 
920 }
921 
922 /*
923  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
924  * number that is passed. When it returns, the work will be queued for
925  * @push_seq, but it won't be completed. The caller is expected to do any
926  * waiting for push_seq to complete if it is required.
927  */
928 static void
929 xlog_cil_push_now(
930 	struct xlog	*log,
931 	xfs_lsn_t	push_seq)
932 {
933 	struct xfs_cil	*cil = log->l_cilp;
934 
935 	if (!cil)
936 		return;
937 
938 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
939 
940 	/* start on any pending background push to minimise wait time on it */
941 	flush_work(&cil->xc_push_work);
942 
943 	/*
944 	 * If the CIL is empty or we've already pushed the sequence then
945 	 * there's no work we need to do.
946 	 */
947 	spin_lock(&cil->xc_push_lock);
948 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
949 		spin_unlock(&cil->xc_push_lock);
950 		return;
951 	}
952 
953 	cil->xc_push_seq = push_seq;
954 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
955 	spin_unlock(&cil->xc_push_lock);
956 }
957 
958 bool
959 xlog_cil_empty(
960 	struct xlog	*log)
961 {
962 	struct xfs_cil	*cil = log->l_cilp;
963 	bool		empty = false;
964 
965 	spin_lock(&cil->xc_push_lock);
966 	if (list_empty(&cil->xc_cil))
967 		empty = true;
968 	spin_unlock(&cil->xc_push_lock);
969 	return empty;
970 }
971 
972 /*
973  * Commit a transaction with the given vector to the Committed Item List.
974  *
975  * To do this, we need to format the item, pin it in memory if required and
976  * account for the space used by the transaction. Once we have done that we
977  * need to release the unused reservation for the transaction, attach the
978  * transaction to the checkpoint context so we carry the busy extents through
979  * to checkpoint completion, and then unlock all the items in the transaction.
980  *
981  * Called with the context lock already held in read mode to lock out
982  * background commit, returns without it held once background commits are
983  * allowed again.
984  */
985 void
986 xfs_log_commit_cil(
987 	struct xfs_mount	*mp,
988 	struct xfs_trans	*tp,
989 	xfs_lsn_t		*commit_lsn,
990 	bool			regrant)
991 {
992 	struct xlog		*log = mp->m_log;
993 	struct xfs_cil		*cil = log->l_cilp;
994 	xfs_lsn_t		xc_commit_lsn;
995 
996 	/*
997 	 * Do all necessary memory allocation before we lock the CIL.
998 	 * This ensures the allocation does not deadlock with a CIL
999 	 * push in memory reclaim (e.g. from kswapd).
1000 	 */
1001 	xlog_cil_alloc_shadow_bufs(log, tp);
1002 
1003 	/* lock out background commit */
1004 	down_read(&cil->xc_ctx_lock);
1005 
1006 	xlog_cil_insert_items(log, tp);
1007 
1008 	xc_commit_lsn = cil->xc_ctx->sequence;
1009 	if (commit_lsn)
1010 		*commit_lsn = xc_commit_lsn;
1011 
1012 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1013 	tp->t_ticket = NULL;
1014 	xfs_trans_unreserve_and_mod_sb(tp);
1015 
1016 	/*
1017 	 * Once all the items of the transaction have been copied to the CIL,
1018 	 * the items can be unlocked and freed.
1019 	 *
1020 	 * This needs to be done before we drop the CIL context lock because we
1021 	 * have to update state in the log items and unlock them before they go
1022 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1023 	 * we can run checkpoint completion before we've updated and unlocked
1024 	 * the log items. This affects (at least) processing of stale buffers,
1025 	 * inodes and EFIs.
1026 	 */
1027 	xfs_trans_free_items(tp, xc_commit_lsn, false);
1028 
1029 	xlog_cil_push_background(log);
1030 
1031 	up_read(&cil->xc_ctx_lock);
1032 }
1033 
1034 /*
1035  * Conditionally push the CIL based on the sequence passed in.
1036  *
1037  * We only need to push if we haven't already pushed the sequence
1038  * number given. Hence the only time we will trigger a push here is
1039  * if the push sequence is the same as the current context.
1040  *
1041  * We return the current commit lsn to allow the callers to determine if a
1042  * iclog flush is necessary following this call.
1043  */
1044 xfs_lsn_t
1045 xlog_cil_force_lsn(
1046 	struct xlog	*log,
1047 	xfs_lsn_t	sequence)
1048 {
1049 	struct xfs_cil		*cil = log->l_cilp;
1050 	struct xfs_cil_ctx	*ctx;
1051 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1052 
1053 	ASSERT(sequence <= cil->xc_current_sequence);
1054 
1055 	/*
1056 	 * check to see if we need to force out the current context.
1057 	 * xlog_cil_push() handles racing pushes for the same sequence,
1058 	 * so no need to deal with it here.
1059 	 */
1060 restart:
1061 	xlog_cil_push_now(log, sequence);
1062 
1063 	/*
1064 	 * See if we can find a previous sequence still committing.
1065 	 * We need to wait for all previous sequence commits to complete
1066 	 * before allowing the force of push_seq to go ahead. Hence block
1067 	 * on commits for those as well.
1068 	 */
1069 	spin_lock(&cil->xc_push_lock);
1070 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1071 		/*
1072 		 * Avoid getting stuck in this loop because we were woken by the
1073 		 * shutdown, but then went back to sleep once already in the
1074 		 * shutdown state.
1075 		 */
1076 		if (XLOG_FORCED_SHUTDOWN(log))
1077 			goto out_shutdown;
1078 		if (ctx->sequence > sequence)
1079 			continue;
1080 		if (!ctx->commit_lsn) {
1081 			/*
1082 			 * It is still being pushed! Wait for the push to
1083 			 * complete, then start again from the beginning.
1084 			 */
1085 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1086 			goto restart;
1087 		}
1088 		if (ctx->sequence != sequence)
1089 			continue;
1090 		/* found it! */
1091 		commit_lsn = ctx->commit_lsn;
1092 	}
1093 
1094 	/*
1095 	 * The call to xlog_cil_push_now() executes the push in the background.
1096 	 * Hence by the time we have got here it our sequence may not have been
1097 	 * pushed yet. This is true if the current sequence still matches the
1098 	 * push sequence after the above wait loop and the CIL still contains
1099 	 * dirty objects. This is guaranteed by the push code first adding the
1100 	 * context to the committing list before emptying the CIL.
1101 	 *
1102 	 * Hence if we don't find the context in the committing list and the
1103 	 * current sequence number is unchanged then the CIL contents are
1104 	 * significant.  If the CIL is empty, if means there was nothing to push
1105 	 * and that means there is nothing to wait for. If the CIL is not empty,
1106 	 * it means we haven't yet started the push, because if it had started
1107 	 * we would have found the context on the committing list.
1108 	 */
1109 	if (sequence == cil->xc_current_sequence &&
1110 	    !list_empty(&cil->xc_cil)) {
1111 		spin_unlock(&cil->xc_push_lock);
1112 		goto restart;
1113 	}
1114 
1115 	spin_unlock(&cil->xc_push_lock);
1116 	return commit_lsn;
1117 
1118 	/*
1119 	 * We detected a shutdown in progress. We need to trigger the log force
1120 	 * to pass through it's iclog state machine error handling, even though
1121 	 * we are already in a shutdown state. Hence we can't return
1122 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1123 	 * LSN is already stable), so we return a zero LSN instead.
1124 	 */
1125 out_shutdown:
1126 	spin_unlock(&cil->xc_push_lock);
1127 	return 0;
1128 }
1129 
1130 /*
1131  * Check if the current log item was first committed in this sequence.
1132  * We can't rely on just the log item being in the CIL, we have to check
1133  * the recorded commit sequence number.
1134  *
1135  * Note: for this to be used in a non-racy manner, it has to be called with
1136  * CIL flushing locked out. As a result, it should only be used during the
1137  * transaction commit process when deciding what to format into the item.
1138  */
1139 bool
1140 xfs_log_item_in_current_chkpt(
1141 	struct xfs_log_item *lip)
1142 {
1143 	struct xfs_cil_ctx *ctx;
1144 
1145 	if (list_empty(&lip->li_cil))
1146 		return false;
1147 
1148 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1149 
1150 	/*
1151 	 * li_seq is written on the first commit of a log item to record the
1152 	 * first checkpoint it is written to. Hence if it is different to the
1153 	 * current sequence, we're in a new checkpoint.
1154 	 */
1155 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1156 		return false;
1157 	return true;
1158 }
1159 
1160 /*
1161  * Perform initial CIL structure initialisation.
1162  */
1163 int
1164 xlog_cil_init(
1165 	struct xlog	*log)
1166 {
1167 	struct xfs_cil	*cil;
1168 	struct xfs_cil_ctx *ctx;
1169 
1170 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
1171 	if (!cil)
1172 		return -ENOMEM;
1173 
1174 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
1175 	if (!ctx) {
1176 		kmem_free(cil);
1177 		return -ENOMEM;
1178 	}
1179 
1180 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1181 	INIT_LIST_HEAD(&cil->xc_cil);
1182 	INIT_LIST_HEAD(&cil->xc_committing);
1183 	spin_lock_init(&cil->xc_cil_lock);
1184 	spin_lock_init(&cil->xc_push_lock);
1185 	init_rwsem(&cil->xc_ctx_lock);
1186 	init_waitqueue_head(&cil->xc_commit_wait);
1187 
1188 	INIT_LIST_HEAD(&ctx->committing);
1189 	INIT_LIST_HEAD(&ctx->busy_extents);
1190 	ctx->sequence = 1;
1191 	ctx->cil = cil;
1192 	cil->xc_ctx = ctx;
1193 	cil->xc_current_sequence = ctx->sequence;
1194 
1195 	cil->xc_log = log;
1196 	log->l_cilp = cil;
1197 	return 0;
1198 }
1199 
1200 void
1201 xlog_cil_destroy(
1202 	struct xlog	*log)
1203 {
1204 	if (log->l_cilp->xc_ctx) {
1205 		if (log->l_cilp->xc_ctx->ticket)
1206 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1207 		kmem_free(log->l_cilp->xc_ctx);
1208 	}
1209 
1210 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1211 	kmem_free(log->l_cilp);
1212 }
1213 
1214