xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_error.h"
14 #include "xfs_alloc.h"
15 #include "xfs_extent_busy.h"
16 #include "xfs_discard.h"
17 #include "xfs_trans.h"
18 #include "xfs_trans_priv.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_trace.h"
22 
23 struct workqueue_struct *xfs_discard_wq;
24 
25 /*
26  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
27  * recover, so we don't allow failure here. Also, we allocate in a context that
28  * we don't want to be issuing transactions from, so we need to tell the
29  * allocation code this as well.
30  *
31  * We don't reserve any space for the ticket - we are going to steal whatever
32  * space we require from transactions as they commit. To ensure we reserve all
33  * the space required, we need to set the current reservation of the ticket to
34  * zero so that we know to steal the initial transaction overhead from the
35  * first transaction commit.
36  */
37 static struct xlog_ticket *
38 xlog_cil_ticket_alloc(
39 	struct xlog	*log)
40 {
41 	struct xlog_ticket *tic;
42 
43 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
44 				KM_SLEEP|KM_NOFS);
45 
46 	/*
47 	 * set the current reservation to zero so we know to steal the basic
48 	 * transaction overhead reservation from the first transaction commit.
49 	 */
50 	tic->t_curr_res = 0;
51 	return tic;
52 }
53 
54 /*
55  * After the first stage of log recovery is done, we know where the head and
56  * tail of the log are. We need this log initialisation done before we can
57  * initialise the first CIL checkpoint context.
58  *
59  * Here we allocate a log ticket to track space usage during a CIL push.  This
60  * ticket is passed to xlog_write() directly so that we don't slowly leak log
61  * space by failing to account for space used by log headers and additional
62  * region headers for split regions.
63  */
64 void
65 xlog_cil_init_post_recovery(
66 	struct xlog	*log)
67 {
68 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
69 	log->l_cilp->xc_ctx->sequence = 1;
70 }
71 
72 static inline int
73 xlog_cil_iovec_space(
74 	uint	niovecs)
75 {
76 	return round_up((sizeof(struct xfs_log_vec) +
77 					niovecs * sizeof(struct xfs_log_iovec)),
78 			sizeof(uint64_t));
79 }
80 
81 /*
82  * Allocate or pin log vector buffers for CIL insertion.
83  *
84  * The CIL currently uses disposable buffers for copying a snapshot of the
85  * modified items into the log during a push. The biggest problem with this is
86  * the requirement to allocate the disposable buffer during the commit if:
87  *	a) does not exist; or
88  *	b) it is too small
89  *
90  * If we do this allocation within xlog_cil_insert_format_items(), it is done
91  * under the xc_ctx_lock, which means that a CIL push cannot occur during
92  * the memory allocation. This means that we have a potential deadlock situation
93  * under low memory conditions when we have lots of dirty metadata pinned in
94  * the CIL and we need a CIL commit to occur to free memory.
95  *
96  * To avoid this, we need to move the memory allocation outside the
97  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
98  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
99  * vector buffers between the check and the formatting of the item into the
100  * log vector buffer within the xc_ctx_lock.
101  *
102  * Because the log vector buffer needs to be unchanged during the CIL push
103  * process, we cannot share the buffer between the transaction commit (which
104  * modifies the buffer) and the CIL push context that is writing the changes
105  * into the log. This means skipping preallocation of buffer space is
106  * unreliable, but we most definitely do not want to be allocating and freeing
107  * buffers unnecessarily during commits when overwrites can be done safely.
108  *
109  * The simplest solution to this problem is to allocate a shadow buffer when a
110  * log item is committed for the second time, and then to only use this buffer
111  * if necessary. The buffer can remain attached to the log item until such time
112  * it is needed, and this is the buffer that is reallocated to match the size of
113  * the incoming modification. Then during the formatting of the item we can swap
114  * the active buffer with the new one if we can't reuse the existing buffer. We
115  * don't free the old buffer as it may be reused on the next modification if
116  * it's size is right, otherwise we'll free and reallocate it at that point.
117  *
118  * This function builds a vector for the changes in each log item in the
119  * transaction. It then works out the length of the buffer needed for each log
120  * item, allocates them and attaches the vector to the log item in preparation
121  * for the formatting step which occurs under the xc_ctx_lock.
122  *
123  * While this means the memory footprint goes up, it avoids the repeated
124  * alloc/free pattern that repeated modifications of an item would otherwise
125  * cause, and hence minimises the CPU overhead of such behaviour.
126  */
127 static void
128 xlog_cil_alloc_shadow_bufs(
129 	struct xlog		*log,
130 	struct xfs_trans	*tp)
131 {
132 	struct xfs_log_item	*lip;
133 
134 	list_for_each_entry(lip, &tp->t_items, li_trans) {
135 		struct xfs_log_vec *lv;
136 		int	niovecs = 0;
137 		int	nbytes = 0;
138 		int	buf_size;
139 		bool	ordered = false;
140 
141 		/* Skip items which aren't dirty in this transaction. */
142 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
143 			continue;
144 
145 		/* get number of vecs and size of data to be stored */
146 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
147 
148 		/*
149 		 * Ordered items need to be tracked but we do not wish to write
150 		 * them. We need a logvec to track the object, but we do not
151 		 * need an iovec or buffer to be allocated for copying data.
152 		 */
153 		if (niovecs == XFS_LOG_VEC_ORDERED) {
154 			ordered = true;
155 			niovecs = 0;
156 			nbytes = 0;
157 		}
158 
159 		/*
160 		 * We 64-bit align the length of each iovec so that the start
161 		 * of the next one is naturally aligned.  We'll need to
162 		 * account for that slack space here. Then round nbytes up
163 		 * to 64-bit alignment so that the initial buffer alignment is
164 		 * easy to calculate and verify.
165 		 */
166 		nbytes += niovecs * sizeof(uint64_t);
167 		nbytes = round_up(nbytes, sizeof(uint64_t));
168 
169 		/*
170 		 * The data buffer needs to start 64-bit aligned, so round up
171 		 * that space to ensure we can align it appropriately and not
172 		 * overrun the buffer.
173 		 */
174 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
175 
176 		/*
177 		 * if we have no shadow buffer, or it is too small, we need to
178 		 * reallocate it.
179 		 */
180 		if (!lip->li_lv_shadow ||
181 		    buf_size > lip->li_lv_shadow->lv_size) {
182 
183 			/*
184 			 * We free and allocate here as a realloc would copy
185 			 * unecessary data. We don't use kmem_zalloc() for the
186 			 * same reason - we don't need to zero the data area in
187 			 * the buffer, only the log vector header and the iovec
188 			 * storage.
189 			 */
190 			kmem_free(lip->li_lv_shadow);
191 
192 			lv = kmem_alloc_large(buf_size, KM_SLEEP | KM_NOFS);
193 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
194 
195 			lv->lv_item = lip;
196 			lv->lv_size = buf_size;
197 			if (ordered)
198 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
199 			else
200 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
201 			lip->li_lv_shadow = lv;
202 		} else {
203 			/* same or smaller, optimise common overwrite case */
204 			lv = lip->li_lv_shadow;
205 			if (ordered)
206 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
207 			else
208 				lv->lv_buf_len = 0;
209 			lv->lv_bytes = 0;
210 			lv->lv_next = NULL;
211 		}
212 
213 		/* Ensure the lv is set up according to ->iop_size */
214 		lv->lv_niovecs = niovecs;
215 
216 		/* The allocated data region lies beyond the iovec region */
217 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
218 	}
219 
220 }
221 
222 /*
223  * Prepare the log item for insertion into the CIL. Calculate the difference in
224  * log space and vectors it will consume, and if it is a new item pin it as
225  * well.
226  */
227 STATIC void
228 xfs_cil_prepare_item(
229 	struct xlog		*log,
230 	struct xfs_log_vec	*lv,
231 	struct xfs_log_vec	*old_lv,
232 	int			*diff_len,
233 	int			*diff_iovecs)
234 {
235 	/* Account for the new LV being passed in */
236 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
237 		*diff_len += lv->lv_bytes;
238 		*diff_iovecs += lv->lv_niovecs;
239 	}
240 
241 	/*
242 	 * If there is no old LV, this is the first time we've seen the item in
243 	 * this CIL context and so we need to pin it. If we are replacing the
244 	 * old_lv, then remove the space it accounts for and make it the shadow
245 	 * buffer for later freeing. In both cases we are now switching to the
246 	 * shadow buffer, so update the the pointer to it appropriately.
247 	 */
248 	if (!old_lv) {
249 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
250 		lv->lv_item->li_lv_shadow = NULL;
251 	} else if (old_lv != lv) {
252 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
253 
254 		*diff_len -= old_lv->lv_bytes;
255 		*diff_iovecs -= old_lv->lv_niovecs;
256 		lv->lv_item->li_lv_shadow = old_lv;
257 	}
258 
259 	/* attach new log vector to log item */
260 	lv->lv_item->li_lv = lv;
261 
262 	/*
263 	 * If this is the first time the item is being committed to the
264 	 * CIL, store the sequence number on the log item so we can
265 	 * tell in future commits whether this is the first checkpoint
266 	 * the item is being committed into.
267 	 */
268 	if (!lv->lv_item->li_seq)
269 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
270 }
271 
272 /*
273  * Format log item into a flat buffers
274  *
275  * For delayed logging, we need to hold a formatted buffer containing all the
276  * changes on the log item. This enables us to relog the item in memory and
277  * write it out asynchronously without needing to relock the object that was
278  * modified at the time it gets written into the iclog.
279  *
280  * This function takes the prepared log vectors attached to each log item, and
281  * formats the changes into the log vector buffer. The buffer it uses is
282  * dependent on the current state of the vector in the CIL - the shadow lv is
283  * guaranteed to be large enough for the current modification, but we will only
284  * use that if we can't reuse the existing lv. If we can't reuse the existing
285  * lv, then simple swap it out for the shadow lv. We don't free it - that is
286  * done lazily either by th enext modification or the freeing of the log item.
287  *
288  * We don't set up region headers during this process; we simply copy the
289  * regions into the flat buffer. We can do this because we still have to do a
290  * formatting step to write the regions into the iclog buffer.  Writing the
291  * ophdrs during the iclog write means that we can support splitting large
292  * regions across iclog boundares without needing a change in the format of the
293  * item/region encapsulation.
294  *
295  * Hence what we need to do now is change the rewrite the vector array to point
296  * to the copied region inside the buffer we just allocated. This allows us to
297  * format the regions into the iclog as though they are being formatted
298  * directly out of the objects themselves.
299  */
300 static void
301 xlog_cil_insert_format_items(
302 	struct xlog		*log,
303 	struct xfs_trans	*tp,
304 	int			*diff_len,
305 	int			*diff_iovecs)
306 {
307 	struct xfs_log_item	*lip;
308 
309 
310 	/* Bail out if we didn't find a log item.  */
311 	if (list_empty(&tp->t_items)) {
312 		ASSERT(0);
313 		return;
314 	}
315 
316 	list_for_each_entry(lip, &tp->t_items, li_trans) {
317 		struct xfs_log_vec *lv;
318 		struct xfs_log_vec *old_lv = NULL;
319 		struct xfs_log_vec *shadow;
320 		bool	ordered = false;
321 
322 		/* Skip items which aren't dirty in this transaction. */
323 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
324 			continue;
325 
326 		/*
327 		 * The formatting size information is already attached to
328 		 * the shadow lv on the log item.
329 		 */
330 		shadow = lip->li_lv_shadow;
331 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
332 			ordered = true;
333 
334 		/* Skip items that do not have any vectors for writing */
335 		if (!shadow->lv_niovecs && !ordered)
336 			continue;
337 
338 		/* compare to existing item size */
339 		old_lv = lip->li_lv;
340 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
341 			/* same or smaller, optimise common overwrite case */
342 			lv = lip->li_lv;
343 			lv->lv_next = NULL;
344 
345 			if (ordered)
346 				goto insert;
347 
348 			/*
349 			 * set the item up as though it is a new insertion so
350 			 * that the space reservation accounting is correct.
351 			 */
352 			*diff_iovecs -= lv->lv_niovecs;
353 			*diff_len -= lv->lv_bytes;
354 
355 			/* Ensure the lv is set up according to ->iop_size */
356 			lv->lv_niovecs = shadow->lv_niovecs;
357 
358 			/* reset the lv buffer information for new formatting */
359 			lv->lv_buf_len = 0;
360 			lv->lv_bytes = 0;
361 			lv->lv_buf = (char *)lv +
362 					xlog_cil_iovec_space(lv->lv_niovecs);
363 		} else {
364 			/* switch to shadow buffer! */
365 			lv = shadow;
366 			lv->lv_item = lip;
367 			if (ordered) {
368 				/* track as an ordered logvec */
369 				ASSERT(lip->li_lv == NULL);
370 				goto insert;
371 			}
372 		}
373 
374 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
375 		lip->li_ops->iop_format(lip, lv);
376 insert:
377 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
378 	}
379 }
380 
381 /*
382  * Insert the log items into the CIL and calculate the difference in space
383  * consumed by the item. Add the space to the checkpoint ticket and calculate
384  * if the change requires additional log metadata. If it does, take that space
385  * as well. Remove the amount of space we added to the checkpoint ticket from
386  * the current transaction ticket so that the accounting works out correctly.
387  */
388 static void
389 xlog_cil_insert_items(
390 	struct xlog		*log,
391 	struct xfs_trans	*tp)
392 {
393 	struct xfs_cil		*cil = log->l_cilp;
394 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
395 	struct xfs_log_item	*lip;
396 	int			len = 0;
397 	int			diff_iovecs = 0;
398 	int			iclog_space;
399 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
400 
401 	ASSERT(tp);
402 
403 	/*
404 	 * We can do this safely because the context can't checkpoint until we
405 	 * are done so it doesn't matter exactly how we update the CIL.
406 	 */
407 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
408 
409 	spin_lock(&cil->xc_cil_lock);
410 
411 	/* account for space used by new iovec headers  */
412 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
413 	len += iovhdr_res;
414 	ctx->nvecs += diff_iovecs;
415 
416 	/* attach the transaction to the CIL if it has any busy extents */
417 	if (!list_empty(&tp->t_busy))
418 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
419 
420 	/*
421 	 * Now transfer enough transaction reservation to the context ticket
422 	 * for the checkpoint. The context ticket is special - the unit
423 	 * reservation has to grow as well as the current reservation as we
424 	 * steal from tickets so we can correctly determine the space used
425 	 * during the transaction commit.
426 	 */
427 	if (ctx->ticket->t_curr_res == 0) {
428 		ctx_res = ctx->ticket->t_unit_res;
429 		ctx->ticket->t_curr_res = ctx_res;
430 		tp->t_ticket->t_curr_res -= ctx_res;
431 	}
432 
433 	/* do we need space for more log record headers? */
434 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
435 	if (len > 0 && (ctx->space_used / iclog_space !=
436 				(ctx->space_used + len) / iclog_space)) {
437 		split_res = (len + iclog_space - 1) / iclog_space;
438 		/* need to take into account split region headers, too */
439 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
440 		ctx->ticket->t_unit_res += split_res;
441 		ctx->ticket->t_curr_res += split_res;
442 		tp->t_ticket->t_curr_res -= split_res;
443 		ASSERT(tp->t_ticket->t_curr_res >= len);
444 	}
445 	tp->t_ticket->t_curr_res -= len;
446 	ctx->space_used += len;
447 
448 	/*
449 	 * If we've overrun the reservation, dump the tx details before we move
450 	 * the log items. Shutdown is imminent...
451 	 */
452 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
453 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
454 		xfs_warn(log->l_mp,
455 			 "  log items: %d bytes (iov hdrs: %d bytes)",
456 			 len, iovhdr_res);
457 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
458 			 split_res);
459 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
460 		xlog_print_trans(tp);
461 	}
462 
463 	/*
464 	 * Now (re-)position everything modified at the tail of the CIL.
465 	 * We do this here so we only need to take the CIL lock once during
466 	 * the transaction commit.
467 	 */
468 	list_for_each_entry(lip, &tp->t_items, li_trans) {
469 
470 		/* Skip items which aren't dirty in this transaction. */
471 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
472 			continue;
473 
474 		/*
475 		 * Only move the item if it isn't already at the tail. This is
476 		 * to prevent a transient list_empty() state when reinserting
477 		 * an item that is already the only item in the CIL.
478 		 */
479 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
480 			list_move_tail(&lip->li_cil, &cil->xc_cil);
481 	}
482 
483 	spin_unlock(&cil->xc_cil_lock);
484 
485 	if (tp->t_ticket->t_curr_res < 0)
486 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
487 }
488 
489 static void
490 xlog_cil_free_logvec(
491 	struct xfs_log_vec	*log_vector)
492 {
493 	struct xfs_log_vec	*lv;
494 
495 	for (lv = log_vector; lv; ) {
496 		struct xfs_log_vec *next = lv->lv_next;
497 		kmem_free(lv);
498 		lv = next;
499 	}
500 }
501 
502 static void
503 xlog_discard_endio_work(
504 	struct work_struct	*work)
505 {
506 	struct xfs_cil_ctx	*ctx =
507 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
508 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
509 
510 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
511 	kmem_free(ctx);
512 }
513 
514 /*
515  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
516  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
517  * get the execution delayed up to 30 seconds for weird reasons.
518  */
519 static void
520 xlog_discard_endio(
521 	struct bio		*bio)
522 {
523 	struct xfs_cil_ctx	*ctx = bio->bi_private;
524 
525 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
526 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
527 	bio_put(bio);
528 }
529 
530 static void
531 xlog_discard_busy_extents(
532 	struct xfs_mount	*mp,
533 	struct xfs_cil_ctx	*ctx)
534 {
535 	struct list_head	*list = &ctx->busy_extents;
536 	struct xfs_extent_busy	*busyp;
537 	struct bio		*bio = NULL;
538 	struct blk_plug		plug;
539 	int			error = 0;
540 
541 	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
542 
543 	blk_start_plug(&plug);
544 	list_for_each_entry(busyp, list, list) {
545 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
546 					 busyp->length);
547 
548 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
549 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
550 				XFS_FSB_TO_BB(mp, busyp->length),
551 				GFP_NOFS, 0, &bio);
552 		if (error && error != -EOPNOTSUPP) {
553 			xfs_info(mp,
554 	 "discard failed for extent [0x%llx,%u], error %d",
555 				 (unsigned long long)busyp->bno,
556 				 busyp->length,
557 				 error);
558 			break;
559 		}
560 	}
561 
562 	if (bio) {
563 		bio->bi_private = ctx;
564 		bio->bi_end_io = xlog_discard_endio;
565 		submit_bio(bio);
566 	} else {
567 		xlog_discard_endio_work(&ctx->discard_endio_work);
568 	}
569 	blk_finish_plug(&plug);
570 }
571 
572 /*
573  * Mark all items committed and clear busy extents. We free the log vector
574  * chains in a separate pass so that we unpin the log items as quickly as
575  * possible.
576  */
577 static void
578 xlog_cil_committed(
579 	void	*args,
580 	int	abort)
581 {
582 	struct xfs_cil_ctx	*ctx = args;
583 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
584 
585 	/*
586 	 * If the I/O failed, we're aborting the commit and already shutdown.
587 	 * Wake any commit waiters before aborting the log items so we don't
588 	 * block async log pushers on callbacks. Async log pushers explicitly do
589 	 * not wait on log force completion because they may be holding locks
590 	 * required to unpin items.
591 	 */
592 	if (abort) {
593 		spin_lock(&ctx->cil->xc_push_lock);
594 		wake_up_all(&ctx->cil->xc_commit_wait);
595 		spin_unlock(&ctx->cil->xc_push_lock);
596 	}
597 
598 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
599 					ctx->start_lsn, abort);
600 
601 	xfs_extent_busy_sort(&ctx->busy_extents);
602 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
603 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
604 
605 	spin_lock(&ctx->cil->xc_push_lock);
606 	list_del(&ctx->committing);
607 	spin_unlock(&ctx->cil->xc_push_lock);
608 
609 	xlog_cil_free_logvec(ctx->lv_chain);
610 
611 	if (!list_empty(&ctx->busy_extents))
612 		xlog_discard_busy_extents(mp, ctx);
613 	else
614 		kmem_free(ctx);
615 }
616 
617 /*
618  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
619  * is a background flush and so we can chose to ignore it. Otherwise, if the
620  * current sequence is the same as @push_seq we need to do a flush. If
621  * @push_seq is less than the current sequence, then it has already been
622  * flushed and we don't need to do anything - the caller will wait for it to
623  * complete if necessary.
624  *
625  * @push_seq is a value rather than a flag because that allows us to do an
626  * unlocked check of the sequence number for a match. Hence we can allows log
627  * forces to run racily and not issue pushes for the same sequence twice. If we
628  * get a race between multiple pushes for the same sequence they will block on
629  * the first one and then abort, hence avoiding needless pushes.
630  */
631 STATIC int
632 xlog_cil_push(
633 	struct xlog		*log)
634 {
635 	struct xfs_cil		*cil = log->l_cilp;
636 	struct xfs_log_vec	*lv;
637 	struct xfs_cil_ctx	*ctx;
638 	struct xfs_cil_ctx	*new_ctx;
639 	struct xlog_in_core	*commit_iclog;
640 	struct xlog_ticket	*tic;
641 	int			num_iovecs;
642 	int			error = 0;
643 	struct xfs_trans_header thdr;
644 	struct xfs_log_iovec	lhdr;
645 	struct xfs_log_vec	lvhdr = { NULL };
646 	xfs_lsn_t		commit_lsn;
647 	xfs_lsn_t		push_seq;
648 
649 	if (!cil)
650 		return 0;
651 
652 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
653 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
654 
655 	down_write(&cil->xc_ctx_lock);
656 	ctx = cil->xc_ctx;
657 
658 	spin_lock(&cil->xc_push_lock);
659 	push_seq = cil->xc_push_seq;
660 	ASSERT(push_seq <= ctx->sequence);
661 
662 	/*
663 	 * Check if we've anything to push. If there is nothing, then we don't
664 	 * move on to a new sequence number and so we have to be able to push
665 	 * this sequence again later.
666 	 */
667 	if (list_empty(&cil->xc_cil)) {
668 		cil->xc_push_seq = 0;
669 		spin_unlock(&cil->xc_push_lock);
670 		goto out_skip;
671 	}
672 
673 
674 	/* check for a previously pushed seqeunce */
675 	if (push_seq < cil->xc_ctx->sequence) {
676 		spin_unlock(&cil->xc_push_lock);
677 		goto out_skip;
678 	}
679 
680 	/*
681 	 * We are now going to push this context, so add it to the committing
682 	 * list before we do anything else. This ensures that anyone waiting on
683 	 * this push can easily detect the difference between a "push in
684 	 * progress" and "CIL is empty, nothing to do".
685 	 *
686 	 * IOWs, a wait loop can now check for:
687 	 *	the current sequence not being found on the committing list;
688 	 *	an empty CIL; and
689 	 *	an unchanged sequence number
690 	 * to detect a push that had nothing to do and therefore does not need
691 	 * waiting on. If the CIL is not empty, we get put on the committing
692 	 * list before emptying the CIL and bumping the sequence number. Hence
693 	 * an empty CIL and an unchanged sequence number means we jumped out
694 	 * above after doing nothing.
695 	 *
696 	 * Hence the waiter will either find the commit sequence on the
697 	 * committing list or the sequence number will be unchanged and the CIL
698 	 * still dirty. In that latter case, the push has not yet started, and
699 	 * so the waiter will have to continue trying to check the CIL
700 	 * committing list until it is found. In extreme cases of delay, the
701 	 * sequence may fully commit between the attempts the wait makes to wait
702 	 * on the commit sequence.
703 	 */
704 	list_add(&ctx->committing, &cil->xc_committing);
705 	spin_unlock(&cil->xc_push_lock);
706 
707 	/*
708 	 * pull all the log vectors off the items in the CIL, and
709 	 * remove the items from the CIL. We don't need the CIL lock
710 	 * here because it's only needed on the transaction commit
711 	 * side which is currently locked out by the flush lock.
712 	 */
713 	lv = NULL;
714 	num_iovecs = 0;
715 	while (!list_empty(&cil->xc_cil)) {
716 		struct xfs_log_item	*item;
717 
718 		item = list_first_entry(&cil->xc_cil,
719 					struct xfs_log_item, li_cil);
720 		list_del_init(&item->li_cil);
721 		if (!ctx->lv_chain)
722 			ctx->lv_chain = item->li_lv;
723 		else
724 			lv->lv_next = item->li_lv;
725 		lv = item->li_lv;
726 		item->li_lv = NULL;
727 		num_iovecs += lv->lv_niovecs;
728 	}
729 
730 	/*
731 	 * initialise the new context and attach it to the CIL. Then attach
732 	 * the current context to the CIL committing lsit so it can be found
733 	 * during log forces to extract the commit lsn of the sequence that
734 	 * needs to be forced.
735 	 */
736 	INIT_LIST_HEAD(&new_ctx->committing);
737 	INIT_LIST_HEAD(&new_ctx->busy_extents);
738 	new_ctx->sequence = ctx->sequence + 1;
739 	new_ctx->cil = cil;
740 	cil->xc_ctx = new_ctx;
741 
742 	/*
743 	 * The switch is now done, so we can drop the context lock and move out
744 	 * of a shared context. We can't just go straight to the commit record,
745 	 * though - we need to synchronise with previous and future commits so
746 	 * that the commit records are correctly ordered in the log to ensure
747 	 * that we process items during log IO completion in the correct order.
748 	 *
749 	 * For example, if we get an EFI in one checkpoint and the EFD in the
750 	 * next (e.g. due to log forces), we do not want the checkpoint with
751 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
752 	 * we must strictly order the commit records of the checkpoints so
753 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
754 	 * correct order; and b) the checkpoints are replayed in correct order
755 	 * in log recovery.
756 	 *
757 	 * Hence we need to add this context to the committing context list so
758 	 * that higher sequences will wait for us to write out a commit record
759 	 * before they do.
760 	 *
761 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
762 	 * structure atomically with the addition of this sequence to the
763 	 * committing list. This also ensures that we can do unlocked checks
764 	 * against the current sequence in log forces without risking
765 	 * deferencing a freed context pointer.
766 	 */
767 	spin_lock(&cil->xc_push_lock);
768 	cil->xc_current_sequence = new_ctx->sequence;
769 	spin_unlock(&cil->xc_push_lock);
770 	up_write(&cil->xc_ctx_lock);
771 
772 	/*
773 	 * Build a checkpoint transaction header and write it to the log to
774 	 * begin the transaction. We need to account for the space used by the
775 	 * transaction header here as it is not accounted for in xlog_write().
776 	 *
777 	 * The LSN we need to pass to the log items on transaction commit is
778 	 * the LSN reported by the first log vector write. If we use the commit
779 	 * record lsn then we can move the tail beyond the grant write head.
780 	 */
781 	tic = ctx->ticket;
782 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
783 	thdr.th_type = XFS_TRANS_CHECKPOINT;
784 	thdr.th_tid = tic->t_tid;
785 	thdr.th_num_items = num_iovecs;
786 	lhdr.i_addr = &thdr;
787 	lhdr.i_len = sizeof(xfs_trans_header_t);
788 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
789 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
790 
791 	lvhdr.lv_niovecs = 1;
792 	lvhdr.lv_iovecp = &lhdr;
793 	lvhdr.lv_next = ctx->lv_chain;
794 
795 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
796 	if (error)
797 		goto out_abort_free_ticket;
798 
799 	/*
800 	 * now that we've written the checkpoint into the log, strictly
801 	 * order the commit records so replay will get them in the right order.
802 	 */
803 restart:
804 	spin_lock(&cil->xc_push_lock);
805 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
806 		/*
807 		 * Avoid getting stuck in this loop because we were woken by the
808 		 * shutdown, but then went back to sleep once already in the
809 		 * shutdown state.
810 		 */
811 		if (XLOG_FORCED_SHUTDOWN(log)) {
812 			spin_unlock(&cil->xc_push_lock);
813 			goto out_abort_free_ticket;
814 		}
815 
816 		/*
817 		 * Higher sequences will wait for this one so skip them.
818 		 * Don't wait for our own sequence, either.
819 		 */
820 		if (new_ctx->sequence >= ctx->sequence)
821 			continue;
822 		if (!new_ctx->commit_lsn) {
823 			/*
824 			 * It is still being pushed! Wait for the push to
825 			 * complete, then start again from the beginning.
826 			 */
827 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
828 			goto restart;
829 		}
830 	}
831 	spin_unlock(&cil->xc_push_lock);
832 
833 	/* xfs_log_done always frees the ticket on error. */
834 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
835 	if (commit_lsn == -1)
836 		goto out_abort;
837 
838 	/* attach all the transactions w/ busy extents to iclog */
839 	ctx->log_cb.cb_func = xlog_cil_committed;
840 	ctx->log_cb.cb_arg = ctx;
841 	error = xfs_log_notify(commit_iclog, &ctx->log_cb);
842 	if (error)
843 		goto out_abort;
844 
845 	/*
846 	 * now the checkpoint commit is complete and we've attached the
847 	 * callbacks to the iclog we can assign the commit LSN to the context
848 	 * and wake up anyone who is waiting for the commit to complete.
849 	 */
850 	spin_lock(&cil->xc_push_lock);
851 	ctx->commit_lsn = commit_lsn;
852 	wake_up_all(&cil->xc_commit_wait);
853 	spin_unlock(&cil->xc_push_lock);
854 
855 	/* release the hounds! */
856 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
857 
858 out_skip:
859 	up_write(&cil->xc_ctx_lock);
860 	xfs_log_ticket_put(new_ctx->ticket);
861 	kmem_free(new_ctx);
862 	return 0;
863 
864 out_abort_free_ticket:
865 	xfs_log_ticket_put(tic);
866 out_abort:
867 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
868 	return -EIO;
869 }
870 
871 static void
872 xlog_cil_push_work(
873 	struct work_struct	*work)
874 {
875 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
876 							xc_push_work);
877 	xlog_cil_push(cil->xc_log);
878 }
879 
880 /*
881  * We need to push CIL every so often so we don't cache more than we can fit in
882  * the log. The limit really is that a checkpoint can't be more than half the
883  * log (the current checkpoint is not allowed to overwrite the previous
884  * checkpoint), but commit latency and memory usage limit this to a smaller
885  * size.
886  */
887 static void
888 xlog_cil_push_background(
889 	struct xlog	*log)
890 {
891 	struct xfs_cil	*cil = log->l_cilp;
892 
893 	/*
894 	 * The cil won't be empty because we are called while holding the
895 	 * context lock so whatever we added to the CIL will still be there
896 	 */
897 	ASSERT(!list_empty(&cil->xc_cil));
898 
899 	/*
900 	 * don't do a background push if we haven't used up all the
901 	 * space available yet.
902 	 */
903 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
904 		return;
905 
906 	spin_lock(&cil->xc_push_lock);
907 	if (cil->xc_push_seq < cil->xc_current_sequence) {
908 		cil->xc_push_seq = cil->xc_current_sequence;
909 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
910 	}
911 	spin_unlock(&cil->xc_push_lock);
912 
913 }
914 
915 /*
916  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
917  * number that is passed. When it returns, the work will be queued for
918  * @push_seq, but it won't be completed. The caller is expected to do any
919  * waiting for push_seq to complete if it is required.
920  */
921 static void
922 xlog_cil_push_now(
923 	struct xlog	*log,
924 	xfs_lsn_t	push_seq)
925 {
926 	struct xfs_cil	*cil = log->l_cilp;
927 
928 	if (!cil)
929 		return;
930 
931 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
932 
933 	/* start on any pending background push to minimise wait time on it */
934 	flush_work(&cil->xc_push_work);
935 
936 	/*
937 	 * If the CIL is empty or we've already pushed the sequence then
938 	 * there's no work we need to do.
939 	 */
940 	spin_lock(&cil->xc_push_lock);
941 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
942 		spin_unlock(&cil->xc_push_lock);
943 		return;
944 	}
945 
946 	cil->xc_push_seq = push_seq;
947 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
948 	spin_unlock(&cil->xc_push_lock);
949 }
950 
951 bool
952 xlog_cil_empty(
953 	struct xlog	*log)
954 {
955 	struct xfs_cil	*cil = log->l_cilp;
956 	bool		empty = false;
957 
958 	spin_lock(&cil->xc_push_lock);
959 	if (list_empty(&cil->xc_cil))
960 		empty = true;
961 	spin_unlock(&cil->xc_push_lock);
962 	return empty;
963 }
964 
965 /*
966  * Commit a transaction with the given vector to the Committed Item List.
967  *
968  * To do this, we need to format the item, pin it in memory if required and
969  * account for the space used by the transaction. Once we have done that we
970  * need to release the unused reservation for the transaction, attach the
971  * transaction to the checkpoint context so we carry the busy extents through
972  * to checkpoint completion, and then unlock all the items in the transaction.
973  *
974  * Called with the context lock already held in read mode to lock out
975  * background commit, returns without it held once background commits are
976  * allowed again.
977  */
978 void
979 xfs_log_commit_cil(
980 	struct xfs_mount	*mp,
981 	struct xfs_trans	*tp,
982 	xfs_lsn_t		*commit_lsn,
983 	bool			regrant)
984 {
985 	struct xlog		*log = mp->m_log;
986 	struct xfs_cil		*cil = log->l_cilp;
987 	xfs_lsn_t		xc_commit_lsn;
988 
989 	/*
990 	 * Do all necessary memory allocation before we lock the CIL.
991 	 * This ensures the allocation does not deadlock with a CIL
992 	 * push in memory reclaim (e.g. from kswapd).
993 	 */
994 	xlog_cil_alloc_shadow_bufs(log, tp);
995 
996 	/* lock out background commit */
997 	down_read(&cil->xc_ctx_lock);
998 
999 	xlog_cil_insert_items(log, tp);
1000 
1001 	xc_commit_lsn = cil->xc_ctx->sequence;
1002 	if (commit_lsn)
1003 		*commit_lsn = xc_commit_lsn;
1004 
1005 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1006 	tp->t_ticket = NULL;
1007 	xfs_trans_unreserve_and_mod_sb(tp);
1008 
1009 	/*
1010 	 * Once all the items of the transaction have been copied to the CIL,
1011 	 * the items can be unlocked and freed.
1012 	 *
1013 	 * This needs to be done before we drop the CIL context lock because we
1014 	 * have to update state in the log items and unlock them before they go
1015 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1016 	 * we can run checkpoint completion before we've updated and unlocked
1017 	 * the log items. This affects (at least) processing of stale buffers,
1018 	 * inodes and EFIs.
1019 	 */
1020 	xfs_trans_free_items(tp, xc_commit_lsn, false);
1021 
1022 	xlog_cil_push_background(log);
1023 
1024 	up_read(&cil->xc_ctx_lock);
1025 }
1026 
1027 /*
1028  * Conditionally push the CIL based on the sequence passed in.
1029  *
1030  * We only need to push if we haven't already pushed the sequence
1031  * number given. Hence the only time we will trigger a push here is
1032  * if the push sequence is the same as the current context.
1033  *
1034  * We return the current commit lsn to allow the callers to determine if a
1035  * iclog flush is necessary following this call.
1036  */
1037 xfs_lsn_t
1038 xlog_cil_force_lsn(
1039 	struct xlog	*log,
1040 	xfs_lsn_t	sequence)
1041 {
1042 	struct xfs_cil		*cil = log->l_cilp;
1043 	struct xfs_cil_ctx	*ctx;
1044 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1045 
1046 	ASSERT(sequence <= cil->xc_current_sequence);
1047 
1048 	/*
1049 	 * check to see if we need to force out the current context.
1050 	 * xlog_cil_push() handles racing pushes for the same sequence,
1051 	 * so no need to deal with it here.
1052 	 */
1053 restart:
1054 	xlog_cil_push_now(log, sequence);
1055 
1056 	/*
1057 	 * See if we can find a previous sequence still committing.
1058 	 * We need to wait for all previous sequence commits to complete
1059 	 * before allowing the force of push_seq to go ahead. Hence block
1060 	 * on commits for those as well.
1061 	 */
1062 	spin_lock(&cil->xc_push_lock);
1063 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1064 		/*
1065 		 * Avoid getting stuck in this loop because we were woken by the
1066 		 * shutdown, but then went back to sleep once already in the
1067 		 * shutdown state.
1068 		 */
1069 		if (XLOG_FORCED_SHUTDOWN(log))
1070 			goto out_shutdown;
1071 		if (ctx->sequence > sequence)
1072 			continue;
1073 		if (!ctx->commit_lsn) {
1074 			/*
1075 			 * It is still being pushed! Wait for the push to
1076 			 * complete, then start again from the beginning.
1077 			 */
1078 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1079 			goto restart;
1080 		}
1081 		if (ctx->sequence != sequence)
1082 			continue;
1083 		/* found it! */
1084 		commit_lsn = ctx->commit_lsn;
1085 	}
1086 
1087 	/*
1088 	 * The call to xlog_cil_push_now() executes the push in the background.
1089 	 * Hence by the time we have got here it our sequence may not have been
1090 	 * pushed yet. This is true if the current sequence still matches the
1091 	 * push sequence after the above wait loop and the CIL still contains
1092 	 * dirty objects. This is guaranteed by the push code first adding the
1093 	 * context to the committing list before emptying the CIL.
1094 	 *
1095 	 * Hence if we don't find the context in the committing list and the
1096 	 * current sequence number is unchanged then the CIL contents are
1097 	 * significant.  If the CIL is empty, if means there was nothing to push
1098 	 * and that means there is nothing to wait for. If the CIL is not empty,
1099 	 * it means we haven't yet started the push, because if it had started
1100 	 * we would have found the context on the committing list.
1101 	 */
1102 	if (sequence == cil->xc_current_sequence &&
1103 	    !list_empty(&cil->xc_cil)) {
1104 		spin_unlock(&cil->xc_push_lock);
1105 		goto restart;
1106 	}
1107 
1108 	spin_unlock(&cil->xc_push_lock);
1109 	return commit_lsn;
1110 
1111 	/*
1112 	 * We detected a shutdown in progress. We need to trigger the log force
1113 	 * to pass through it's iclog state machine error handling, even though
1114 	 * we are already in a shutdown state. Hence we can't return
1115 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1116 	 * LSN is already stable), so we return a zero LSN instead.
1117 	 */
1118 out_shutdown:
1119 	spin_unlock(&cil->xc_push_lock);
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Check if the current log item was first committed in this sequence.
1125  * We can't rely on just the log item being in the CIL, we have to check
1126  * the recorded commit sequence number.
1127  *
1128  * Note: for this to be used in a non-racy manner, it has to be called with
1129  * CIL flushing locked out. As a result, it should only be used during the
1130  * transaction commit process when deciding what to format into the item.
1131  */
1132 bool
1133 xfs_log_item_in_current_chkpt(
1134 	struct xfs_log_item *lip)
1135 {
1136 	struct xfs_cil_ctx *ctx;
1137 
1138 	if (list_empty(&lip->li_cil))
1139 		return false;
1140 
1141 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1142 
1143 	/*
1144 	 * li_seq is written on the first commit of a log item to record the
1145 	 * first checkpoint it is written to. Hence if it is different to the
1146 	 * current sequence, we're in a new checkpoint.
1147 	 */
1148 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1149 		return false;
1150 	return true;
1151 }
1152 
1153 /*
1154  * Perform initial CIL structure initialisation.
1155  */
1156 int
1157 xlog_cil_init(
1158 	struct xlog	*log)
1159 {
1160 	struct xfs_cil	*cil;
1161 	struct xfs_cil_ctx *ctx;
1162 
1163 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
1164 	if (!cil)
1165 		return -ENOMEM;
1166 
1167 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
1168 	if (!ctx) {
1169 		kmem_free(cil);
1170 		return -ENOMEM;
1171 	}
1172 
1173 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1174 	INIT_LIST_HEAD(&cil->xc_cil);
1175 	INIT_LIST_HEAD(&cil->xc_committing);
1176 	spin_lock_init(&cil->xc_cil_lock);
1177 	spin_lock_init(&cil->xc_push_lock);
1178 	init_rwsem(&cil->xc_ctx_lock);
1179 	init_waitqueue_head(&cil->xc_commit_wait);
1180 
1181 	INIT_LIST_HEAD(&ctx->committing);
1182 	INIT_LIST_HEAD(&ctx->busy_extents);
1183 	ctx->sequence = 1;
1184 	ctx->cil = cil;
1185 	cil->xc_ctx = ctx;
1186 	cil->xc_current_sequence = ctx->sequence;
1187 
1188 	cil->xc_log = log;
1189 	log->l_cilp = cil;
1190 	return 0;
1191 }
1192 
1193 void
1194 xlog_cil_destroy(
1195 	struct xlog	*log)
1196 {
1197 	if (log->l_cilp->xc_ctx) {
1198 		if (log->l_cilp->xc_ctx->ticket)
1199 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1200 		kmem_free(log->l_cilp->xc_ctx);
1201 	}
1202 
1203 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1204 	kmem_free(log->l_cilp);
1205 }
1206 
1207