xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 275876e2)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_shared.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_alloc.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_discard.h"
30 #include "xfs_trans.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 
35 /*
36  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37  * recover, so we don't allow failure here. Also, we allocate in a context that
38  * we don't want to be issuing transactions from, so we need to tell the
39  * allocation code this as well.
40  *
41  * We don't reserve any space for the ticket - we are going to steal whatever
42  * space we require from transactions as they commit. To ensure we reserve all
43  * the space required, we need to set the current reservation of the ticket to
44  * zero so that we know to steal the initial transaction overhead from the
45  * first transaction commit.
46  */
47 static struct xlog_ticket *
48 xlog_cil_ticket_alloc(
49 	struct xlog	*log)
50 {
51 	struct xlog_ticket *tic;
52 
53 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54 				KM_SLEEP|KM_NOFS);
55 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56 
57 	/*
58 	 * set the current reservation to zero so we know to steal the basic
59 	 * transaction overhead reservation from the first transaction commit.
60 	 */
61 	tic->t_curr_res = 0;
62 	return tic;
63 }
64 
65 /*
66  * After the first stage of log recovery is done, we know where the head and
67  * tail of the log are. We need this log initialisation done before we can
68  * initialise the first CIL checkpoint context.
69  *
70  * Here we allocate a log ticket to track space usage during a CIL push.  This
71  * ticket is passed to xlog_write() directly so that we don't slowly leak log
72  * space by failing to account for space used by log headers and additional
73  * region headers for split regions.
74  */
75 void
76 xlog_cil_init_post_recovery(
77 	struct xlog	*log)
78 {
79 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80 	log->l_cilp->xc_ctx->sequence = 1;
81 }
82 
83 /*
84  * Prepare the log item for insertion into the CIL. Calculate the difference in
85  * log space and vectors it will consume, and if it is a new item pin it as
86  * well.
87  */
88 STATIC void
89 xfs_cil_prepare_item(
90 	struct xlog		*log,
91 	struct xfs_log_vec	*lv,
92 	struct xfs_log_vec	*old_lv,
93 	int			*diff_len,
94 	int			*diff_iovecs)
95 {
96 	/* Account for the new LV being passed in */
97 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
98 		*diff_len += lv->lv_bytes;
99 		*diff_iovecs += lv->lv_niovecs;
100 	}
101 
102 	/*
103 	 * If there is no old LV, this is the first time we've seen the item in
104 	 * this CIL context and so we need to pin it. If we are replacing the
105 	 * old_lv, then remove the space it accounts for and free it.
106 	 */
107 	if (!old_lv)
108 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
109 	else if (old_lv != lv) {
110 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
111 
112 		*diff_len -= old_lv->lv_bytes;
113 		*diff_iovecs -= old_lv->lv_niovecs;
114 		kmem_free(old_lv);
115 	}
116 
117 	/* attach new log vector to log item */
118 	lv->lv_item->li_lv = lv;
119 
120 	/*
121 	 * If this is the first time the item is being committed to the
122 	 * CIL, store the sequence number on the log item so we can
123 	 * tell in future commits whether this is the first checkpoint
124 	 * the item is being committed into.
125 	 */
126 	if (!lv->lv_item->li_seq)
127 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
128 }
129 
130 /*
131  * Format log item into a flat buffers
132  *
133  * For delayed logging, we need to hold a formatted buffer containing all the
134  * changes on the log item. This enables us to relog the item in memory and
135  * write it out asynchronously without needing to relock the object that was
136  * modified at the time it gets written into the iclog.
137  *
138  * This function builds a vector for the changes in each log item in the
139  * transaction. It then works out the length of the buffer needed for each log
140  * item, allocates them and formats the vector for the item into the buffer.
141  * The buffer is then attached to the log item are then inserted into the
142  * Committed Item List for tracking until the next checkpoint is written out.
143  *
144  * We don't set up region headers during this process; we simply copy the
145  * regions into the flat buffer. We can do this because we still have to do a
146  * formatting step to write the regions into the iclog buffer.  Writing the
147  * ophdrs during the iclog write means that we can support splitting large
148  * regions across iclog boundares without needing a change in the format of the
149  * item/region encapsulation.
150  *
151  * Hence what we need to do now is change the rewrite the vector array to point
152  * to the copied region inside the buffer we just allocated. This allows us to
153  * format the regions into the iclog as though they are being formatted
154  * directly out of the objects themselves.
155  */
156 static void
157 xlog_cil_insert_format_items(
158 	struct xlog		*log,
159 	struct xfs_trans	*tp,
160 	int			*diff_len,
161 	int			*diff_iovecs)
162 {
163 	struct xfs_log_item_desc *lidp;
164 
165 
166 	/* Bail out if we didn't find a log item.  */
167 	if (list_empty(&tp->t_items)) {
168 		ASSERT(0);
169 		return;
170 	}
171 
172 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
173 		struct xfs_log_item *lip = lidp->lid_item;
174 		struct xfs_log_vec *lv;
175 		struct xfs_log_vec *old_lv;
176 		int	niovecs = 0;
177 		int	nbytes = 0;
178 		int	buf_size;
179 		bool	ordered = false;
180 
181 		/* Skip items which aren't dirty in this transaction. */
182 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
183 			continue;
184 
185 		/* get number of vecs and size of data to be stored */
186 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
187 
188 		/* Skip items that do not have any vectors for writing */
189 		if (!niovecs)
190 			continue;
191 
192 		/*
193 		 * Ordered items need to be tracked but we do not wish to write
194 		 * them. We need a logvec to track the object, but we do not
195 		 * need an iovec or buffer to be allocated for copying data.
196 		 */
197 		if (niovecs == XFS_LOG_VEC_ORDERED) {
198 			ordered = true;
199 			niovecs = 0;
200 			nbytes = 0;
201 		}
202 
203 		/*
204 		 * We 64-bit align the length of each iovec so that the start
205 		 * of the next one is naturally aligned.  We'll need to
206 		 * account for that slack space here. Then round nbytes up
207 		 * to 64-bit alignment so that the initial buffer alignment is
208 		 * easy to calculate and verify.
209 		 */
210 		nbytes += niovecs * sizeof(uint64_t);
211 		nbytes = round_up(nbytes, sizeof(uint64_t));
212 
213 		/* grab the old item if it exists for reservation accounting */
214 		old_lv = lip->li_lv;
215 
216 		/*
217 		 * The data buffer needs to start 64-bit aligned, so round up
218 		 * that space to ensure we can align it appropriately and not
219 		 * overrun the buffer.
220 		 */
221 		buf_size = nbytes +
222 			   round_up((sizeof(struct xfs_log_vec) +
223 				     niovecs * sizeof(struct xfs_log_iovec)),
224 				    sizeof(uint64_t));
225 
226 		/* compare to existing item size */
227 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
228 			/* same or smaller, optimise common overwrite case */
229 			lv = lip->li_lv;
230 			lv->lv_next = NULL;
231 
232 			if (ordered)
233 				goto insert;
234 
235 			/*
236 			 * set the item up as though it is a new insertion so
237 			 * that the space reservation accounting is correct.
238 			 */
239 			*diff_iovecs -= lv->lv_niovecs;
240 			*diff_len -= lv->lv_bytes;
241 		} else {
242 			/* allocate new data chunk */
243 			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
244 			lv->lv_item = lip;
245 			lv->lv_size = buf_size;
246 			if (ordered) {
247 				/* track as an ordered logvec */
248 				ASSERT(lip->li_lv == NULL);
249 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
250 				goto insert;
251 			}
252 			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
253 		}
254 
255 		/* Ensure the lv is set up according to ->iop_size */
256 		lv->lv_niovecs = niovecs;
257 
258 		/* The allocated data region lies beyond the iovec region */
259 		lv->lv_buf_len = 0;
260 		lv->lv_bytes = 0;
261 		lv->lv_buf = (char *)lv + buf_size - nbytes;
262 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
263 
264 		lip->li_ops->iop_format(lip, lv);
265 insert:
266 		ASSERT(lv->lv_buf_len <= nbytes);
267 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
268 	}
269 }
270 
271 /*
272  * Insert the log items into the CIL and calculate the difference in space
273  * consumed by the item. Add the space to the checkpoint ticket and calculate
274  * if the change requires additional log metadata. If it does, take that space
275  * as well. Remove the amount of space we added to the checkpoint ticket from
276  * the current transaction ticket so that the accounting works out correctly.
277  */
278 static void
279 xlog_cil_insert_items(
280 	struct xlog		*log,
281 	struct xfs_trans	*tp)
282 {
283 	struct xfs_cil		*cil = log->l_cilp;
284 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
285 	struct xfs_log_item_desc *lidp;
286 	int			len = 0;
287 	int			diff_iovecs = 0;
288 	int			iclog_space;
289 
290 	ASSERT(tp);
291 
292 	/*
293 	 * We can do this safely because the context can't checkpoint until we
294 	 * are done so it doesn't matter exactly how we update the CIL.
295 	 */
296 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
297 
298 	/*
299 	 * Now (re-)position everything modified at the tail of the CIL.
300 	 * We do this here so we only need to take the CIL lock once during
301 	 * the transaction commit.
302 	 */
303 	spin_lock(&cil->xc_cil_lock);
304 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
305 		struct xfs_log_item	*lip = lidp->lid_item;
306 
307 		/* Skip items which aren't dirty in this transaction. */
308 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
309 			continue;
310 
311 		list_move_tail(&lip->li_cil, &cil->xc_cil);
312 	}
313 
314 	/* account for space used by new iovec headers  */
315 	len += diff_iovecs * sizeof(xlog_op_header_t);
316 	ctx->nvecs += diff_iovecs;
317 
318 	/* attach the transaction to the CIL if it has any busy extents */
319 	if (!list_empty(&tp->t_busy))
320 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
321 
322 	/*
323 	 * Now transfer enough transaction reservation to the context ticket
324 	 * for the checkpoint. The context ticket is special - the unit
325 	 * reservation has to grow as well as the current reservation as we
326 	 * steal from tickets so we can correctly determine the space used
327 	 * during the transaction commit.
328 	 */
329 	if (ctx->ticket->t_curr_res == 0) {
330 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
331 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
332 	}
333 
334 	/* do we need space for more log record headers? */
335 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
336 	if (len > 0 && (ctx->space_used / iclog_space !=
337 				(ctx->space_used + len) / iclog_space)) {
338 		int hdrs;
339 
340 		hdrs = (len + iclog_space - 1) / iclog_space;
341 		/* need to take into account split region headers, too */
342 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
343 		ctx->ticket->t_unit_res += hdrs;
344 		ctx->ticket->t_curr_res += hdrs;
345 		tp->t_ticket->t_curr_res -= hdrs;
346 		ASSERT(tp->t_ticket->t_curr_res >= len);
347 	}
348 	tp->t_ticket->t_curr_res -= len;
349 	ctx->space_used += len;
350 
351 	spin_unlock(&cil->xc_cil_lock);
352 }
353 
354 static void
355 xlog_cil_free_logvec(
356 	struct xfs_log_vec	*log_vector)
357 {
358 	struct xfs_log_vec	*lv;
359 
360 	for (lv = log_vector; lv; ) {
361 		struct xfs_log_vec *next = lv->lv_next;
362 		kmem_free(lv);
363 		lv = next;
364 	}
365 }
366 
367 /*
368  * Mark all items committed and clear busy extents. We free the log vector
369  * chains in a separate pass so that we unpin the log items as quickly as
370  * possible.
371  */
372 static void
373 xlog_cil_committed(
374 	void	*args,
375 	int	abort)
376 {
377 	struct xfs_cil_ctx	*ctx = args;
378 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
379 
380 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
381 					ctx->start_lsn, abort);
382 
383 	xfs_extent_busy_sort(&ctx->busy_extents);
384 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
385 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
386 
387 	/*
388 	 * If we are aborting the commit, wake up anyone waiting on the
389 	 * committing list.  If we don't, then a shutdown we can leave processes
390 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
391 	 * will never happen because we aborted it.
392 	 */
393 	spin_lock(&ctx->cil->xc_push_lock);
394 	if (abort)
395 		wake_up_all(&ctx->cil->xc_commit_wait);
396 	list_del(&ctx->committing);
397 	spin_unlock(&ctx->cil->xc_push_lock);
398 
399 	xlog_cil_free_logvec(ctx->lv_chain);
400 
401 	if (!list_empty(&ctx->busy_extents)) {
402 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
403 
404 		xfs_discard_extents(mp, &ctx->busy_extents);
405 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
406 	}
407 
408 	kmem_free(ctx);
409 }
410 
411 /*
412  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
413  * is a background flush and so we can chose to ignore it. Otherwise, if the
414  * current sequence is the same as @push_seq we need to do a flush. If
415  * @push_seq is less than the current sequence, then it has already been
416  * flushed and we don't need to do anything - the caller will wait for it to
417  * complete if necessary.
418  *
419  * @push_seq is a value rather than a flag because that allows us to do an
420  * unlocked check of the sequence number for a match. Hence we can allows log
421  * forces to run racily and not issue pushes for the same sequence twice. If we
422  * get a race between multiple pushes for the same sequence they will block on
423  * the first one and then abort, hence avoiding needless pushes.
424  */
425 STATIC int
426 xlog_cil_push(
427 	struct xlog		*log)
428 {
429 	struct xfs_cil		*cil = log->l_cilp;
430 	struct xfs_log_vec	*lv;
431 	struct xfs_cil_ctx	*ctx;
432 	struct xfs_cil_ctx	*new_ctx;
433 	struct xlog_in_core	*commit_iclog;
434 	struct xlog_ticket	*tic;
435 	int			num_iovecs;
436 	int			error = 0;
437 	struct xfs_trans_header thdr;
438 	struct xfs_log_iovec	lhdr;
439 	struct xfs_log_vec	lvhdr = { NULL };
440 	xfs_lsn_t		commit_lsn;
441 	xfs_lsn_t		push_seq;
442 
443 	if (!cil)
444 		return 0;
445 
446 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
447 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
448 
449 	down_write(&cil->xc_ctx_lock);
450 	ctx = cil->xc_ctx;
451 
452 	spin_lock(&cil->xc_push_lock);
453 	push_seq = cil->xc_push_seq;
454 	ASSERT(push_seq <= ctx->sequence);
455 
456 	/*
457 	 * Check if we've anything to push. If there is nothing, then we don't
458 	 * move on to a new sequence number and so we have to be able to push
459 	 * this sequence again later.
460 	 */
461 	if (list_empty(&cil->xc_cil)) {
462 		cil->xc_push_seq = 0;
463 		spin_unlock(&cil->xc_push_lock);
464 		goto out_skip;
465 	}
466 	spin_unlock(&cil->xc_push_lock);
467 
468 
469 	/* check for a previously pushed seqeunce */
470 	if (push_seq < cil->xc_ctx->sequence)
471 		goto out_skip;
472 
473 	/*
474 	 * pull all the log vectors off the items in the CIL, and
475 	 * remove the items from the CIL. We don't need the CIL lock
476 	 * here because it's only needed on the transaction commit
477 	 * side which is currently locked out by the flush lock.
478 	 */
479 	lv = NULL;
480 	num_iovecs = 0;
481 	while (!list_empty(&cil->xc_cil)) {
482 		struct xfs_log_item	*item;
483 
484 		item = list_first_entry(&cil->xc_cil,
485 					struct xfs_log_item, li_cil);
486 		list_del_init(&item->li_cil);
487 		if (!ctx->lv_chain)
488 			ctx->lv_chain = item->li_lv;
489 		else
490 			lv->lv_next = item->li_lv;
491 		lv = item->li_lv;
492 		item->li_lv = NULL;
493 		num_iovecs += lv->lv_niovecs;
494 	}
495 
496 	/*
497 	 * initialise the new context and attach it to the CIL. Then attach
498 	 * the current context to the CIL committing lsit so it can be found
499 	 * during log forces to extract the commit lsn of the sequence that
500 	 * needs to be forced.
501 	 */
502 	INIT_LIST_HEAD(&new_ctx->committing);
503 	INIT_LIST_HEAD(&new_ctx->busy_extents);
504 	new_ctx->sequence = ctx->sequence + 1;
505 	new_ctx->cil = cil;
506 	cil->xc_ctx = new_ctx;
507 
508 	/*
509 	 * The switch is now done, so we can drop the context lock and move out
510 	 * of a shared context. We can't just go straight to the commit record,
511 	 * though - we need to synchronise with previous and future commits so
512 	 * that the commit records are correctly ordered in the log to ensure
513 	 * that we process items during log IO completion in the correct order.
514 	 *
515 	 * For example, if we get an EFI in one checkpoint and the EFD in the
516 	 * next (e.g. due to log forces), we do not want the checkpoint with
517 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
518 	 * we must strictly order the commit records of the checkpoints so
519 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
520 	 * correct order; and b) the checkpoints are replayed in correct order
521 	 * in log recovery.
522 	 *
523 	 * Hence we need to add this context to the committing context list so
524 	 * that higher sequences will wait for us to write out a commit record
525 	 * before they do.
526 	 *
527 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
528 	 * structure atomically with the addition of this sequence to the
529 	 * committing list. This also ensures that we can do unlocked checks
530 	 * against the current sequence in log forces without risking
531 	 * deferencing a freed context pointer.
532 	 */
533 	spin_lock(&cil->xc_push_lock);
534 	cil->xc_current_sequence = new_ctx->sequence;
535 	list_add(&ctx->committing, &cil->xc_committing);
536 	spin_unlock(&cil->xc_push_lock);
537 	up_write(&cil->xc_ctx_lock);
538 
539 	/*
540 	 * Build a checkpoint transaction header and write it to the log to
541 	 * begin the transaction. We need to account for the space used by the
542 	 * transaction header here as it is not accounted for in xlog_write().
543 	 *
544 	 * The LSN we need to pass to the log items on transaction commit is
545 	 * the LSN reported by the first log vector write. If we use the commit
546 	 * record lsn then we can move the tail beyond the grant write head.
547 	 */
548 	tic = ctx->ticket;
549 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
550 	thdr.th_type = XFS_TRANS_CHECKPOINT;
551 	thdr.th_tid = tic->t_tid;
552 	thdr.th_num_items = num_iovecs;
553 	lhdr.i_addr = &thdr;
554 	lhdr.i_len = sizeof(xfs_trans_header_t);
555 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
556 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
557 
558 	lvhdr.lv_niovecs = 1;
559 	lvhdr.lv_iovecp = &lhdr;
560 	lvhdr.lv_next = ctx->lv_chain;
561 
562 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
563 	if (error)
564 		goto out_abort_free_ticket;
565 
566 	/*
567 	 * now that we've written the checkpoint into the log, strictly
568 	 * order the commit records so replay will get them in the right order.
569 	 */
570 restart:
571 	spin_lock(&cil->xc_push_lock);
572 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
573 		/*
574 		 * Avoid getting stuck in this loop because we were woken by the
575 		 * shutdown, but then went back to sleep once already in the
576 		 * shutdown state.
577 		 */
578 		if (XLOG_FORCED_SHUTDOWN(log)) {
579 			spin_unlock(&cil->xc_push_lock);
580 			goto out_abort_free_ticket;
581 		}
582 
583 		/*
584 		 * Higher sequences will wait for this one so skip them.
585 		 * Don't wait for our own sequence, either.
586 		 */
587 		if (new_ctx->sequence >= ctx->sequence)
588 			continue;
589 		if (!new_ctx->commit_lsn) {
590 			/*
591 			 * It is still being pushed! Wait for the push to
592 			 * complete, then start again from the beginning.
593 			 */
594 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
595 			goto restart;
596 		}
597 	}
598 	spin_unlock(&cil->xc_push_lock);
599 
600 	/* xfs_log_done always frees the ticket on error. */
601 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
602 	if (commit_lsn == -1)
603 		goto out_abort;
604 
605 	/* attach all the transactions w/ busy extents to iclog */
606 	ctx->log_cb.cb_func = xlog_cil_committed;
607 	ctx->log_cb.cb_arg = ctx;
608 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
609 	if (error)
610 		goto out_abort;
611 
612 	/*
613 	 * now the checkpoint commit is complete and we've attached the
614 	 * callbacks to the iclog we can assign the commit LSN to the context
615 	 * and wake up anyone who is waiting for the commit to complete.
616 	 */
617 	spin_lock(&cil->xc_push_lock);
618 	ctx->commit_lsn = commit_lsn;
619 	wake_up_all(&cil->xc_commit_wait);
620 	spin_unlock(&cil->xc_push_lock);
621 
622 	/* release the hounds! */
623 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
624 
625 out_skip:
626 	up_write(&cil->xc_ctx_lock);
627 	xfs_log_ticket_put(new_ctx->ticket);
628 	kmem_free(new_ctx);
629 	return 0;
630 
631 out_abort_free_ticket:
632 	xfs_log_ticket_put(tic);
633 out_abort:
634 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
635 	return -EIO;
636 }
637 
638 static void
639 xlog_cil_push_work(
640 	struct work_struct	*work)
641 {
642 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
643 							xc_push_work);
644 	xlog_cil_push(cil->xc_log);
645 }
646 
647 /*
648  * We need to push CIL every so often so we don't cache more than we can fit in
649  * the log. The limit really is that a checkpoint can't be more than half the
650  * log (the current checkpoint is not allowed to overwrite the previous
651  * checkpoint), but commit latency and memory usage limit this to a smaller
652  * size.
653  */
654 static void
655 xlog_cil_push_background(
656 	struct xlog	*log)
657 {
658 	struct xfs_cil	*cil = log->l_cilp;
659 
660 	/*
661 	 * The cil won't be empty because we are called while holding the
662 	 * context lock so whatever we added to the CIL will still be there
663 	 */
664 	ASSERT(!list_empty(&cil->xc_cil));
665 
666 	/*
667 	 * don't do a background push if we haven't used up all the
668 	 * space available yet.
669 	 */
670 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
671 		return;
672 
673 	spin_lock(&cil->xc_push_lock);
674 	if (cil->xc_push_seq < cil->xc_current_sequence) {
675 		cil->xc_push_seq = cil->xc_current_sequence;
676 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
677 	}
678 	spin_unlock(&cil->xc_push_lock);
679 
680 }
681 
682 /*
683  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
684  * number that is passed. When it returns, the work will be queued for
685  * @push_seq, but it won't be completed. The caller is expected to do any
686  * waiting for push_seq to complete if it is required.
687  */
688 static void
689 xlog_cil_push_now(
690 	struct xlog	*log,
691 	xfs_lsn_t	push_seq)
692 {
693 	struct xfs_cil	*cil = log->l_cilp;
694 
695 	if (!cil)
696 		return;
697 
698 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
699 
700 	/* start on any pending background push to minimise wait time on it */
701 	flush_work(&cil->xc_push_work);
702 
703 	/*
704 	 * If the CIL is empty or we've already pushed the sequence then
705 	 * there's no work we need to do.
706 	 */
707 	spin_lock(&cil->xc_push_lock);
708 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
709 		spin_unlock(&cil->xc_push_lock);
710 		return;
711 	}
712 
713 	cil->xc_push_seq = push_seq;
714 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
715 	spin_unlock(&cil->xc_push_lock);
716 }
717 
718 bool
719 xlog_cil_empty(
720 	struct xlog	*log)
721 {
722 	struct xfs_cil	*cil = log->l_cilp;
723 	bool		empty = false;
724 
725 	spin_lock(&cil->xc_push_lock);
726 	if (list_empty(&cil->xc_cil))
727 		empty = true;
728 	spin_unlock(&cil->xc_push_lock);
729 	return empty;
730 }
731 
732 /*
733  * Commit a transaction with the given vector to the Committed Item List.
734  *
735  * To do this, we need to format the item, pin it in memory if required and
736  * account for the space used by the transaction. Once we have done that we
737  * need to release the unused reservation for the transaction, attach the
738  * transaction to the checkpoint context so we carry the busy extents through
739  * to checkpoint completion, and then unlock all the items in the transaction.
740  *
741  * Called with the context lock already held in read mode to lock out
742  * background commit, returns without it held once background commits are
743  * allowed again.
744  */
745 void
746 xfs_log_commit_cil(
747 	struct xfs_mount	*mp,
748 	struct xfs_trans	*tp,
749 	xfs_lsn_t		*commit_lsn,
750 	int			flags)
751 {
752 	struct xlog		*log = mp->m_log;
753 	struct xfs_cil		*cil = log->l_cilp;
754 	int			log_flags = 0;
755 
756 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
757 		log_flags = XFS_LOG_REL_PERM_RESERV;
758 
759 	/* lock out background commit */
760 	down_read(&cil->xc_ctx_lock);
761 
762 	xlog_cil_insert_items(log, tp);
763 
764 	/* check we didn't blow the reservation */
765 	if (tp->t_ticket->t_curr_res < 0)
766 		xlog_print_tic_res(mp, tp->t_ticket);
767 
768 	tp->t_commit_lsn = cil->xc_ctx->sequence;
769 	if (commit_lsn)
770 		*commit_lsn = tp->t_commit_lsn;
771 
772 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
773 	xfs_trans_unreserve_and_mod_sb(tp);
774 
775 	/*
776 	 * Once all the items of the transaction have been copied to the CIL,
777 	 * the items can be unlocked and freed.
778 	 *
779 	 * This needs to be done before we drop the CIL context lock because we
780 	 * have to update state in the log items and unlock them before they go
781 	 * to disk. If we don't, then the CIL checkpoint can race with us and
782 	 * we can run checkpoint completion before we've updated and unlocked
783 	 * the log items. This affects (at least) processing of stale buffers,
784 	 * inodes and EFIs.
785 	 */
786 	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
787 
788 	xlog_cil_push_background(log);
789 
790 	up_read(&cil->xc_ctx_lock);
791 }
792 
793 /*
794  * Conditionally push the CIL based on the sequence passed in.
795  *
796  * We only need to push if we haven't already pushed the sequence
797  * number given. Hence the only time we will trigger a push here is
798  * if the push sequence is the same as the current context.
799  *
800  * We return the current commit lsn to allow the callers to determine if a
801  * iclog flush is necessary following this call.
802  */
803 xfs_lsn_t
804 xlog_cil_force_lsn(
805 	struct xlog	*log,
806 	xfs_lsn_t	sequence)
807 {
808 	struct xfs_cil		*cil = log->l_cilp;
809 	struct xfs_cil_ctx	*ctx;
810 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
811 
812 	ASSERT(sequence <= cil->xc_current_sequence);
813 
814 	/*
815 	 * check to see if we need to force out the current context.
816 	 * xlog_cil_push() handles racing pushes for the same sequence,
817 	 * so no need to deal with it here.
818 	 */
819 restart:
820 	xlog_cil_push_now(log, sequence);
821 
822 	/*
823 	 * See if we can find a previous sequence still committing.
824 	 * We need to wait for all previous sequence commits to complete
825 	 * before allowing the force of push_seq to go ahead. Hence block
826 	 * on commits for those as well.
827 	 */
828 	spin_lock(&cil->xc_push_lock);
829 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
830 		/*
831 		 * Avoid getting stuck in this loop because we were woken by the
832 		 * shutdown, but then went back to sleep once already in the
833 		 * shutdown state.
834 		 */
835 		if (XLOG_FORCED_SHUTDOWN(log))
836 			goto out_shutdown;
837 		if (ctx->sequence > sequence)
838 			continue;
839 		if (!ctx->commit_lsn) {
840 			/*
841 			 * It is still being pushed! Wait for the push to
842 			 * complete, then start again from the beginning.
843 			 */
844 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
845 			goto restart;
846 		}
847 		if (ctx->sequence != sequence)
848 			continue;
849 		/* found it! */
850 		commit_lsn = ctx->commit_lsn;
851 	}
852 
853 	/*
854 	 * The call to xlog_cil_push_now() executes the push in the background.
855 	 * Hence by the time we have got here it our sequence may not have been
856 	 * pushed yet. This is true if the current sequence still matches the
857 	 * push sequence after the above wait loop and the CIL still contains
858 	 * dirty objects.
859 	 *
860 	 * When the push occurs, it will empty the CIL and atomically increment
861 	 * the currect sequence past the push sequence and move it into the
862 	 * committing list. Of course, if the CIL is clean at the time of the
863 	 * push, it won't have pushed the CIL at all, so in that case we should
864 	 * try the push for this sequence again from the start just in case.
865 	 */
866 	if (sequence == cil->xc_current_sequence &&
867 	    !list_empty(&cil->xc_cil)) {
868 		spin_unlock(&cil->xc_push_lock);
869 		goto restart;
870 	}
871 
872 	spin_unlock(&cil->xc_push_lock);
873 	return commit_lsn;
874 
875 	/*
876 	 * We detected a shutdown in progress. We need to trigger the log force
877 	 * to pass through it's iclog state machine error handling, even though
878 	 * we are already in a shutdown state. Hence we can't return
879 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
880 	 * LSN is already stable), so we return a zero LSN instead.
881 	 */
882 out_shutdown:
883 	spin_unlock(&cil->xc_push_lock);
884 	return 0;
885 }
886 
887 /*
888  * Check if the current log item was first committed in this sequence.
889  * We can't rely on just the log item being in the CIL, we have to check
890  * the recorded commit sequence number.
891  *
892  * Note: for this to be used in a non-racy manner, it has to be called with
893  * CIL flushing locked out. As a result, it should only be used during the
894  * transaction commit process when deciding what to format into the item.
895  */
896 bool
897 xfs_log_item_in_current_chkpt(
898 	struct xfs_log_item *lip)
899 {
900 	struct xfs_cil_ctx *ctx;
901 
902 	if (list_empty(&lip->li_cil))
903 		return false;
904 
905 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
906 
907 	/*
908 	 * li_seq is written on the first commit of a log item to record the
909 	 * first checkpoint it is written to. Hence if it is different to the
910 	 * current sequence, we're in a new checkpoint.
911 	 */
912 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
913 		return false;
914 	return true;
915 }
916 
917 /*
918  * Perform initial CIL structure initialisation.
919  */
920 int
921 xlog_cil_init(
922 	struct xlog	*log)
923 {
924 	struct xfs_cil	*cil;
925 	struct xfs_cil_ctx *ctx;
926 
927 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
928 	if (!cil)
929 		return -ENOMEM;
930 
931 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
932 	if (!ctx) {
933 		kmem_free(cil);
934 		return -ENOMEM;
935 	}
936 
937 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
938 	INIT_LIST_HEAD(&cil->xc_cil);
939 	INIT_LIST_HEAD(&cil->xc_committing);
940 	spin_lock_init(&cil->xc_cil_lock);
941 	spin_lock_init(&cil->xc_push_lock);
942 	init_rwsem(&cil->xc_ctx_lock);
943 	init_waitqueue_head(&cil->xc_commit_wait);
944 
945 	INIT_LIST_HEAD(&ctx->committing);
946 	INIT_LIST_HEAD(&ctx->busy_extents);
947 	ctx->sequence = 1;
948 	ctx->cil = cil;
949 	cil->xc_ctx = ctx;
950 	cil->xc_current_sequence = ctx->sequence;
951 
952 	cil->xc_log = log;
953 	log->l_cilp = cil;
954 	return 0;
955 }
956 
957 void
958 xlog_cil_destroy(
959 	struct xlog	*log)
960 {
961 	if (log->l_cilp->xc_ctx) {
962 		if (log->l_cilp->xc_ctx->ticket)
963 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
964 		kmem_free(log->l_cilp->xc_ctx);
965 	}
966 
967 	ASSERT(list_empty(&log->l_cilp->xc_cil));
968 	kmem_free(log->l_cilp);
969 }
970 
971