xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 23c2b932)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 
34 /*
35  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
36  * recover, so we don't allow failure here. Also, we allocate in a context that
37  * we don't want to be issuing transactions from, so we need to tell the
38  * allocation code this as well.
39  *
40  * We don't reserve any space for the ticket - we are going to steal whatever
41  * space we require from transactions as they commit. To ensure we reserve all
42  * the space required, we need to set the current reservation of the ticket to
43  * zero so that we know to steal the initial transaction overhead from the
44  * first transaction commit.
45  */
46 static struct xlog_ticket *
47 xlog_cil_ticket_alloc(
48 	struct xlog	*log)
49 {
50 	struct xlog_ticket *tic;
51 
52 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
53 				KM_SLEEP|KM_NOFS);
54 
55 	/*
56 	 * set the current reservation to zero so we know to steal the basic
57 	 * transaction overhead reservation from the first transaction commit.
58 	 */
59 	tic->t_curr_res = 0;
60 	return tic;
61 }
62 
63 /*
64  * After the first stage of log recovery is done, we know where the head and
65  * tail of the log are. We need this log initialisation done before we can
66  * initialise the first CIL checkpoint context.
67  *
68  * Here we allocate a log ticket to track space usage during a CIL push.  This
69  * ticket is passed to xlog_write() directly so that we don't slowly leak log
70  * space by failing to account for space used by log headers and additional
71  * region headers for split regions.
72  */
73 void
74 xlog_cil_init_post_recovery(
75 	struct xlog	*log)
76 {
77 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 	log->l_cilp->xc_ctx->sequence = 1;
79 }
80 
81 /*
82  * Prepare the log item for insertion into the CIL. Calculate the difference in
83  * log space and vectors it will consume, and if it is a new item pin it as
84  * well.
85  */
86 STATIC void
87 xfs_cil_prepare_item(
88 	struct xlog		*log,
89 	struct xfs_log_vec	*lv,
90 	struct xfs_log_vec	*old_lv,
91 	int			*diff_len,
92 	int			*diff_iovecs)
93 {
94 	/* Account for the new LV being passed in */
95 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
96 		*diff_len += lv->lv_bytes;
97 		*diff_iovecs += lv->lv_niovecs;
98 	}
99 
100 	/*
101 	 * If there is no old LV, this is the first time we've seen the item in
102 	 * this CIL context and so we need to pin it. If we are replacing the
103 	 * old_lv, then remove the space it accounts for and free it.
104 	 */
105 	if (!old_lv)
106 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
107 	else if (old_lv != lv) {
108 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
109 
110 		*diff_len -= old_lv->lv_bytes;
111 		*diff_iovecs -= old_lv->lv_niovecs;
112 		kmem_free(old_lv);
113 	}
114 
115 	/* attach new log vector to log item */
116 	lv->lv_item->li_lv = lv;
117 
118 	/*
119 	 * If this is the first time the item is being committed to the
120 	 * CIL, store the sequence number on the log item so we can
121 	 * tell in future commits whether this is the first checkpoint
122 	 * the item is being committed into.
123 	 */
124 	if (!lv->lv_item->li_seq)
125 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
126 }
127 
128 /*
129  * Format log item into a flat buffers
130  *
131  * For delayed logging, we need to hold a formatted buffer containing all the
132  * changes on the log item. This enables us to relog the item in memory and
133  * write it out asynchronously without needing to relock the object that was
134  * modified at the time it gets written into the iclog.
135  *
136  * This function builds a vector for the changes in each log item in the
137  * transaction. It then works out the length of the buffer needed for each log
138  * item, allocates them and formats the vector for the item into the buffer.
139  * The buffer is then attached to the log item are then inserted into the
140  * Committed Item List for tracking until the next checkpoint is written out.
141  *
142  * We don't set up region headers during this process; we simply copy the
143  * regions into the flat buffer. We can do this because we still have to do a
144  * formatting step to write the regions into the iclog buffer.  Writing the
145  * ophdrs during the iclog write means that we can support splitting large
146  * regions across iclog boundares without needing a change in the format of the
147  * item/region encapsulation.
148  *
149  * Hence what we need to do now is change the rewrite the vector array to point
150  * to the copied region inside the buffer we just allocated. This allows us to
151  * format the regions into the iclog as though they are being formatted
152  * directly out of the objects themselves.
153  */
154 static void
155 xlog_cil_insert_format_items(
156 	struct xlog		*log,
157 	struct xfs_trans	*tp,
158 	int			*diff_len,
159 	int			*diff_iovecs)
160 {
161 	struct xfs_log_item_desc *lidp;
162 
163 
164 	/* Bail out if we didn't find a log item.  */
165 	if (list_empty(&tp->t_items)) {
166 		ASSERT(0);
167 		return;
168 	}
169 
170 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
171 		struct xfs_log_item *lip = lidp->lid_item;
172 		struct xfs_log_vec *lv;
173 		struct xfs_log_vec *old_lv;
174 		int	niovecs = 0;
175 		int	nbytes = 0;
176 		int	buf_size;
177 		bool	ordered = false;
178 
179 		/* Skip items which aren't dirty in this transaction. */
180 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
181 			continue;
182 
183 		/* get number of vecs and size of data to be stored */
184 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
185 
186 		/* Skip items that do not have any vectors for writing */
187 		if (!niovecs)
188 			continue;
189 
190 		/*
191 		 * Ordered items need to be tracked but we do not wish to write
192 		 * them. We need a logvec to track the object, but we do not
193 		 * need an iovec or buffer to be allocated for copying data.
194 		 */
195 		if (niovecs == XFS_LOG_VEC_ORDERED) {
196 			ordered = true;
197 			niovecs = 0;
198 			nbytes = 0;
199 		}
200 
201 		/*
202 		 * We 64-bit align the length of each iovec so that the start
203 		 * of the next one is naturally aligned.  We'll need to
204 		 * account for that slack space here. Then round nbytes up
205 		 * to 64-bit alignment so that the initial buffer alignment is
206 		 * easy to calculate and verify.
207 		 */
208 		nbytes += niovecs * sizeof(uint64_t);
209 		nbytes = round_up(nbytes, sizeof(uint64_t));
210 
211 		/* grab the old item if it exists for reservation accounting */
212 		old_lv = lip->li_lv;
213 
214 		/*
215 		 * The data buffer needs to start 64-bit aligned, so round up
216 		 * that space to ensure we can align it appropriately and not
217 		 * overrun the buffer.
218 		 */
219 		buf_size = nbytes +
220 			   round_up((sizeof(struct xfs_log_vec) +
221 				     niovecs * sizeof(struct xfs_log_iovec)),
222 				    sizeof(uint64_t));
223 
224 		/* compare to existing item size */
225 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
226 			/* same or smaller, optimise common overwrite case */
227 			lv = lip->li_lv;
228 			lv->lv_next = NULL;
229 
230 			if (ordered)
231 				goto insert;
232 
233 			/*
234 			 * set the item up as though it is a new insertion so
235 			 * that the space reservation accounting is correct.
236 			 */
237 			*diff_iovecs -= lv->lv_niovecs;
238 			*diff_len -= lv->lv_bytes;
239 		} else {
240 			/* allocate new data chunk */
241 			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
242 			lv->lv_item = lip;
243 			lv->lv_size = buf_size;
244 			if (ordered) {
245 				/* track as an ordered logvec */
246 				ASSERT(lip->li_lv == NULL);
247 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
248 				goto insert;
249 			}
250 			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
251 		}
252 
253 		/* Ensure the lv is set up according to ->iop_size */
254 		lv->lv_niovecs = niovecs;
255 
256 		/* The allocated data region lies beyond the iovec region */
257 		lv->lv_buf_len = 0;
258 		lv->lv_bytes = 0;
259 		lv->lv_buf = (char *)lv + buf_size - nbytes;
260 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
261 
262 		lip->li_ops->iop_format(lip, lv);
263 insert:
264 		ASSERT(lv->lv_buf_len <= nbytes);
265 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
266 	}
267 }
268 
269 /*
270  * Insert the log items into the CIL and calculate the difference in space
271  * consumed by the item. Add the space to the checkpoint ticket and calculate
272  * if the change requires additional log metadata. If it does, take that space
273  * as well. Remove the amount of space we added to the checkpoint ticket from
274  * the current transaction ticket so that the accounting works out correctly.
275  */
276 static void
277 xlog_cil_insert_items(
278 	struct xlog		*log,
279 	struct xfs_trans	*tp)
280 {
281 	struct xfs_cil		*cil = log->l_cilp;
282 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
283 	struct xfs_log_item_desc *lidp;
284 	int			len = 0;
285 	int			diff_iovecs = 0;
286 	int			iclog_space;
287 
288 	ASSERT(tp);
289 
290 	/*
291 	 * We can do this safely because the context can't checkpoint until we
292 	 * are done so it doesn't matter exactly how we update the CIL.
293 	 */
294 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
295 
296 	/*
297 	 * Now (re-)position everything modified at the tail of the CIL.
298 	 * We do this here so we only need to take the CIL lock once during
299 	 * the transaction commit.
300 	 */
301 	spin_lock(&cil->xc_cil_lock);
302 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
303 		struct xfs_log_item	*lip = lidp->lid_item;
304 
305 		/* Skip items which aren't dirty in this transaction. */
306 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
307 			continue;
308 
309 		/*
310 		 * Only move the item if it isn't already at the tail. This is
311 		 * to prevent a transient list_empty() state when reinserting
312 		 * an item that is already the only item in the CIL.
313 		 */
314 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
315 			list_move_tail(&lip->li_cil, &cil->xc_cil);
316 	}
317 
318 	/* account for space used by new iovec headers  */
319 	len += diff_iovecs * sizeof(xlog_op_header_t);
320 	ctx->nvecs += diff_iovecs;
321 
322 	/* attach the transaction to the CIL if it has any busy extents */
323 	if (!list_empty(&tp->t_busy))
324 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
325 
326 	/*
327 	 * Now transfer enough transaction reservation to the context ticket
328 	 * for the checkpoint. The context ticket is special - the unit
329 	 * reservation has to grow as well as the current reservation as we
330 	 * steal from tickets so we can correctly determine the space used
331 	 * during the transaction commit.
332 	 */
333 	if (ctx->ticket->t_curr_res == 0) {
334 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
335 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
336 	}
337 
338 	/* do we need space for more log record headers? */
339 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
340 	if (len > 0 && (ctx->space_used / iclog_space !=
341 				(ctx->space_used + len) / iclog_space)) {
342 		int hdrs;
343 
344 		hdrs = (len + iclog_space - 1) / iclog_space;
345 		/* need to take into account split region headers, too */
346 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
347 		ctx->ticket->t_unit_res += hdrs;
348 		ctx->ticket->t_curr_res += hdrs;
349 		tp->t_ticket->t_curr_res -= hdrs;
350 		ASSERT(tp->t_ticket->t_curr_res >= len);
351 	}
352 	tp->t_ticket->t_curr_res -= len;
353 	ctx->space_used += len;
354 
355 	spin_unlock(&cil->xc_cil_lock);
356 }
357 
358 static void
359 xlog_cil_free_logvec(
360 	struct xfs_log_vec	*log_vector)
361 {
362 	struct xfs_log_vec	*lv;
363 
364 	for (lv = log_vector; lv; ) {
365 		struct xfs_log_vec *next = lv->lv_next;
366 		kmem_free(lv);
367 		lv = next;
368 	}
369 }
370 
371 /*
372  * Mark all items committed and clear busy extents. We free the log vector
373  * chains in a separate pass so that we unpin the log items as quickly as
374  * possible.
375  */
376 static void
377 xlog_cil_committed(
378 	void	*args,
379 	int	abort)
380 {
381 	struct xfs_cil_ctx	*ctx = args;
382 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
383 
384 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
385 					ctx->start_lsn, abort);
386 
387 	xfs_extent_busy_sort(&ctx->busy_extents);
388 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
389 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
390 
391 	/*
392 	 * If we are aborting the commit, wake up anyone waiting on the
393 	 * committing list.  If we don't, then a shutdown we can leave processes
394 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
395 	 * will never happen because we aborted it.
396 	 */
397 	spin_lock(&ctx->cil->xc_push_lock);
398 	if (abort)
399 		wake_up_all(&ctx->cil->xc_commit_wait);
400 	list_del(&ctx->committing);
401 	spin_unlock(&ctx->cil->xc_push_lock);
402 
403 	xlog_cil_free_logvec(ctx->lv_chain);
404 
405 	if (!list_empty(&ctx->busy_extents)) {
406 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
407 
408 		xfs_discard_extents(mp, &ctx->busy_extents);
409 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
410 	}
411 
412 	kmem_free(ctx);
413 }
414 
415 /*
416  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
417  * is a background flush and so we can chose to ignore it. Otherwise, if the
418  * current sequence is the same as @push_seq we need to do a flush. If
419  * @push_seq is less than the current sequence, then it has already been
420  * flushed and we don't need to do anything - the caller will wait for it to
421  * complete if necessary.
422  *
423  * @push_seq is a value rather than a flag because that allows us to do an
424  * unlocked check of the sequence number for a match. Hence we can allows log
425  * forces to run racily and not issue pushes for the same sequence twice. If we
426  * get a race between multiple pushes for the same sequence they will block on
427  * the first one and then abort, hence avoiding needless pushes.
428  */
429 STATIC int
430 xlog_cil_push(
431 	struct xlog		*log)
432 {
433 	struct xfs_cil		*cil = log->l_cilp;
434 	struct xfs_log_vec	*lv;
435 	struct xfs_cil_ctx	*ctx;
436 	struct xfs_cil_ctx	*new_ctx;
437 	struct xlog_in_core	*commit_iclog;
438 	struct xlog_ticket	*tic;
439 	int			num_iovecs;
440 	int			error = 0;
441 	struct xfs_trans_header thdr;
442 	struct xfs_log_iovec	lhdr;
443 	struct xfs_log_vec	lvhdr = { NULL };
444 	xfs_lsn_t		commit_lsn;
445 	xfs_lsn_t		push_seq;
446 
447 	if (!cil)
448 		return 0;
449 
450 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
451 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
452 
453 	down_write(&cil->xc_ctx_lock);
454 	ctx = cil->xc_ctx;
455 
456 	spin_lock(&cil->xc_push_lock);
457 	push_seq = cil->xc_push_seq;
458 	ASSERT(push_seq <= ctx->sequence);
459 
460 	/*
461 	 * Check if we've anything to push. If there is nothing, then we don't
462 	 * move on to a new sequence number and so we have to be able to push
463 	 * this sequence again later.
464 	 */
465 	if (list_empty(&cil->xc_cil)) {
466 		cil->xc_push_seq = 0;
467 		spin_unlock(&cil->xc_push_lock);
468 		goto out_skip;
469 	}
470 
471 
472 	/* check for a previously pushed seqeunce */
473 	if (push_seq < cil->xc_ctx->sequence) {
474 		spin_unlock(&cil->xc_push_lock);
475 		goto out_skip;
476 	}
477 
478 	/*
479 	 * We are now going to push this context, so add it to the committing
480 	 * list before we do anything else. This ensures that anyone waiting on
481 	 * this push can easily detect the difference between a "push in
482 	 * progress" and "CIL is empty, nothing to do".
483 	 *
484 	 * IOWs, a wait loop can now check for:
485 	 *	the current sequence not being found on the committing list;
486 	 *	an empty CIL; and
487 	 *	an unchanged sequence number
488 	 * to detect a push that had nothing to do and therefore does not need
489 	 * waiting on. If the CIL is not empty, we get put on the committing
490 	 * list before emptying the CIL and bumping the sequence number. Hence
491 	 * an empty CIL and an unchanged sequence number means we jumped out
492 	 * above after doing nothing.
493 	 *
494 	 * Hence the waiter will either find the commit sequence on the
495 	 * committing list or the sequence number will be unchanged and the CIL
496 	 * still dirty. In that latter case, the push has not yet started, and
497 	 * so the waiter will have to continue trying to check the CIL
498 	 * committing list until it is found. In extreme cases of delay, the
499 	 * sequence may fully commit between the attempts the wait makes to wait
500 	 * on the commit sequence.
501 	 */
502 	list_add(&ctx->committing, &cil->xc_committing);
503 	spin_unlock(&cil->xc_push_lock);
504 
505 	/*
506 	 * pull all the log vectors off the items in the CIL, and
507 	 * remove the items from the CIL. We don't need the CIL lock
508 	 * here because it's only needed on the transaction commit
509 	 * side which is currently locked out by the flush lock.
510 	 */
511 	lv = NULL;
512 	num_iovecs = 0;
513 	while (!list_empty(&cil->xc_cil)) {
514 		struct xfs_log_item	*item;
515 
516 		item = list_first_entry(&cil->xc_cil,
517 					struct xfs_log_item, li_cil);
518 		list_del_init(&item->li_cil);
519 		if (!ctx->lv_chain)
520 			ctx->lv_chain = item->li_lv;
521 		else
522 			lv->lv_next = item->li_lv;
523 		lv = item->li_lv;
524 		item->li_lv = NULL;
525 		num_iovecs += lv->lv_niovecs;
526 	}
527 
528 	/*
529 	 * initialise the new context and attach it to the CIL. Then attach
530 	 * the current context to the CIL committing lsit so it can be found
531 	 * during log forces to extract the commit lsn of the sequence that
532 	 * needs to be forced.
533 	 */
534 	INIT_LIST_HEAD(&new_ctx->committing);
535 	INIT_LIST_HEAD(&new_ctx->busy_extents);
536 	new_ctx->sequence = ctx->sequence + 1;
537 	new_ctx->cil = cil;
538 	cil->xc_ctx = new_ctx;
539 
540 	/*
541 	 * The switch is now done, so we can drop the context lock and move out
542 	 * of a shared context. We can't just go straight to the commit record,
543 	 * though - we need to synchronise with previous and future commits so
544 	 * that the commit records are correctly ordered in the log to ensure
545 	 * that we process items during log IO completion in the correct order.
546 	 *
547 	 * For example, if we get an EFI in one checkpoint and the EFD in the
548 	 * next (e.g. due to log forces), we do not want the checkpoint with
549 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
550 	 * we must strictly order the commit records of the checkpoints so
551 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
552 	 * correct order; and b) the checkpoints are replayed in correct order
553 	 * in log recovery.
554 	 *
555 	 * Hence we need to add this context to the committing context list so
556 	 * that higher sequences will wait for us to write out a commit record
557 	 * before they do.
558 	 *
559 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
560 	 * structure atomically with the addition of this sequence to the
561 	 * committing list. This also ensures that we can do unlocked checks
562 	 * against the current sequence in log forces without risking
563 	 * deferencing a freed context pointer.
564 	 */
565 	spin_lock(&cil->xc_push_lock);
566 	cil->xc_current_sequence = new_ctx->sequence;
567 	spin_unlock(&cil->xc_push_lock);
568 	up_write(&cil->xc_ctx_lock);
569 
570 	/*
571 	 * Build a checkpoint transaction header and write it to the log to
572 	 * begin the transaction. We need to account for the space used by the
573 	 * transaction header here as it is not accounted for in xlog_write().
574 	 *
575 	 * The LSN we need to pass to the log items on transaction commit is
576 	 * the LSN reported by the first log vector write. If we use the commit
577 	 * record lsn then we can move the tail beyond the grant write head.
578 	 */
579 	tic = ctx->ticket;
580 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
581 	thdr.th_type = XFS_TRANS_CHECKPOINT;
582 	thdr.th_tid = tic->t_tid;
583 	thdr.th_num_items = num_iovecs;
584 	lhdr.i_addr = &thdr;
585 	lhdr.i_len = sizeof(xfs_trans_header_t);
586 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
587 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
588 
589 	lvhdr.lv_niovecs = 1;
590 	lvhdr.lv_iovecp = &lhdr;
591 	lvhdr.lv_next = ctx->lv_chain;
592 
593 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
594 	if (error)
595 		goto out_abort_free_ticket;
596 
597 	/*
598 	 * now that we've written the checkpoint into the log, strictly
599 	 * order the commit records so replay will get them in the right order.
600 	 */
601 restart:
602 	spin_lock(&cil->xc_push_lock);
603 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
604 		/*
605 		 * Avoid getting stuck in this loop because we were woken by the
606 		 * shutdown, but then went back to sleep once already in the
607 		 * shutdown state.
608 		 */
609 		if (XLOG_FORCED_SHUTDOWN(log)) {
610 			spin_unlock(&cil->xc_push_lock);
611 			goto out_abort_free_ticket;
612 		}
613 
614 		/*
615 		 * Higher sequences will wait for this one so skip them.
616 		 * Don't wait for our own sequence, either.
617 		 */
618 		if (new_ctx->sequence >= ctx->sequence)
619 			continue;
620 		if (!new_ctx->commit_lsn) {
621 			/*
622 			 * It is still being pushed! Wait for the push to
623 			 * complete, then start again from the beginning.
624 			 */
625 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
626 			goto restart;
627 		}
628 	}
629 	spin_unlock(&cil->xc_push_lock);
630 
631 	/* xfs_log_done always frees the ticket on error. */
632 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
633 	if (commit_lsn == -1)
634 		goto out_abort;
635 
636 	/* attach all the transactions w/ busy extents to iclog */
637 	ctx->log_cb.cb_func = xlog_cil_committed;
638 	ctx->log_cb.cb_arg = ctx;
639 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
640 	if (error)
641 		goto out_abort;
642 
643 	/*
644 	 * now the checkpoint commit is complete and we've attached the
645 	 * callbacks to the iclog we can assign the commit LSN to the context
646 	 * and wake up anyone who is waiting for the commit to complete.
647 	 */
648 	spin_lock(&cil->xc_push_lock);
649 	ctx->commit_lsn = commit_lsn;
650 	wake_up_all(&cil->xc_commit_wait);
651 	spin_unlock(&cil->xc_push_lock);
652 
653 	/* release the hounds! */
654 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
655 
656 out_skip:
657 	up_write(&cil->xc_ctx_lock);
658 	xfs_log_ticket_put(new_ctx->ticket);
659 	kmem_free(new_ctx);
660 	return 0;
661 
662 out_abort_free_ticket:
663 	xfs_log_ticket_put(tic);
664 out_abort:
665 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
666 	return -EIO;
667 }
668 
669 static void
670 xlog_cil_push_work(
671 	struct work_struct	*work)
672 {
673 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
674 							xc_push_work);
675 	xlog_cil_push(cil->xc_log);
676 }
677 
678 /*
679  * We need to push CIL every so often so we don't cache more than we can fit in
680  * the log. The limit really is that a checkpoint can't be more than half the
681  * log (the current checkpoint is not allowed to overwrite the previous
682  * checkpoint), but commit latency and memory usage limit this to a smaller
683  * size.
684  */
685 static void
686 xlog_cil_push_background(
687 	struct xlog	*log)
688 {
689 	struct xfs_cil	*cil = log->l_cilp;
690 
691 	/*
692 	 * The cil won't be empty because we are called while holding the
693 	 * context lock so whatever we added to the CIL will still be there
694 	 */
695 	ASSERT(!list_empty(&cil->xc_cil));
696 
697 	/*
698 	 * don't do a background push if we haven't used up all the
699 	 * space available yet.
700 	 */
701 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
702 		return;
703 
704 	spin_lock(&cil->xc_push_lock);
705 	if (cil->xc_push_seq < cil->xc_current_sequence) {
706 		cil->xc_push_seq = cil->xc_current_sequence;
707 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
708 	}
709 	spin_unlock(&cil->xc_push_lock);
710 
711 }
712 
713 /*
714  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
715  * number that is passed. When it returns, the work will be queued for
716  * @push_seq, but it won't be completed. The caller is expected to do any
717  * waiting for push_seq to complete if it is required.
718  */
719 static void
720 xlog_cil_push_now(
721 	struct xlog	*log,
722 	xfs_lsn_t	push_seq)
723 {
724 	struct xfs_cil	*cil = log->l_cilp;
725 
726 	if (!cil)
727 		return;
728 
729 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
730 
731 	/* start on any pending background push to minimise wait time on it */
732 	flush_work(&cil->xc_push_work);
733 
734 	/*
735 	 * If the CIL is empty or we've already pushed the sequence then
736 	 * there's no work we need to do.
737 	 */
738 	spin_lock(&cil->xc_push_lock);
739 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
740 		spin_unlock(&cil->xc_push_lock);
741 		return;
742 	}
743 
744 	cil->xc_push_seq = push_seq;
745 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
746 	spin_unlock(&cil->xc_push_lock);
747 }
748 
749 bool
750 xlog_cil_empty(
751 	struct xlog	*log)
752 {
753 	struct xfs_cil	*cil = log->l_cilp;
754 	bool		empty = false;
755 
756 	spin_lock(&cil->xc_push_lock);
757 	if (list_empty(&cil->xc_cil))
758 		empty = true;
759 	spin_unlock(&cil->xc_push_lock);
760 	return empty;
761 }
762 
763 /*
764  * Commit a transaction with the given vector to the Committed Item List.
765  *
766  * To do this, we need to format the item, pin it in memory if required and
767  * account for the space used by the transaction. Once we have done that we
768  * need to release the unused reservation for the transaction, attach the
769  * transaction to the checkpoint context so we carry the busy extents through
770  * to checkpoint completion, and then unlock all the items in the transaction.
771  *
772  * Called with the context lock already held in read mode to lock out
773  * background commit, returns without it held once background commits are
774  * allowed again.
775  */
776 void
777 xfs_log_commit_cil(
778 	struct xfs_mount	*mp,
779 	struct xfs_trans	*tp,
780 	xfs_lsn_t		*commit_lsn,
781 	bool			regrant)
782 {
783 	struct xlog		*log = mp->m_log;
784 	struct xfs_cil		*cil = log->l_cilp;
785 
786 	/* lock out background commit */
787 	down_read(&cil->xc_ctx_lock);
788 
789 	xlog_cil_insert_items(log, tp);
790 
791 	/* check we didn't blow the reservation */
792 	if (tp->t_ticket->t_curr_res < 0)
793 		xlog_print_tic_res(mp, tp->t_ticket);
794 
795 	tp->t_commit_lsn = cil->xc_ctx->sequence;
796 	if (commit_lsn)
797 		*commit_lsn = tp->t_commit_lsn;
798 
799 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
800 	xfs_trans_unreserve_and_mod_sb(tp);
801 
802 	/*
803 	 * Once all the items of the transaction have been copied to the CIL,
804 	 * the items can be unlocked and freed.
805 	 *
806 	 * This needs to be done before we drop the CIL context lock because we
807 	 * have to update state in the log items and unlock them before they go
808 	 * to disk. If we don't, then the CIL checkpoint can race with us and
809 	 * we can run checkpoint completion before we've updated and unlocked
810 	 * the log items. This affects (at least) processing of stale buffers,
811 	 * inodes and EFIs.
812 	 */
813 	xfs_trans_free_items(tp, tp->t_commit_lsn, false);
814 
815 	xlog_cil_push_background(log);
816 
817 	up_read(&cil->xc_ctx_lock);
818 }
819 
820 /*
821  * Conditionally push the CIL based on the sequence passed in.
822  *
823  * We only need to push if we haven't already pushed the sequence
824  * number given. Hence the only time we will trigger a push here is
825  * if the push sequence is the same as the current context.
826  *
827  * We return the current commit lsn to allow the callers to determine if a
828  * iclog flush is necessary following this call.
829  */
830 xfs_lsn_t
831 xlog_cil_force_lsn(
832 	struct xlog	*log,
833 	xfs_lsn_t	sequence)
834 {
835 	struct xfs_cil		*cil = log->l_cilp;
836 	struct xfs_cil_ctx	*ctx;
837 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
838 
839 	ASSERT(sequence <= cil->xc_current_sequence);
840 
841 	/*
842 	 * check to see if we need to force out the current context.
843 	 * xlog_cil_push() handles racing pushes for the same sequence,
844 	 * so no need to deal with it here.
845 	 */
846 restart:
847 	xlog_cil_push_now(log, sequence);
848 
849 	/*
850 	 * See if we can find a previous sequence still committing.
851 	 * We need to wait for all previous sequence commits to complete
852 	 * before allowing the force of push_seq to go ahead. Hence block
853 	 * on commits for those as well.
854 	 */
855 	spin_lock(&cil->xc_push_lock);
856 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
857 		/*
858 		 * Avoid getting stuck in this loop because we were woken by the
859 		 * shutdown, but then went back to sleep once already in the
860 		 * shutdown state.
861 		 */
862 		if (XLOG_FORCED_SHUTDOWN(log))
863 			goto out_shutdown;
864 		if (ctx->sequence > sequence)
865 			continue;
866 		if (!ctx->commit_lsn) {
867 			/*
868 			 * It is still being pushed! Wait for the push to
869 			 * complete, then start again from the beginning.
870 			 */
871 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
872 			goto restart;
873 		}
874 		if (ctx->sequence != sequence)
875 			continue;
876 		/* found it! */
877 		commit_lsn = ctx->commit_lsn;
878 	}
879 
880 	/*
881 	 * The call to xlog_cil_push_now() executes the push in the background.
882 	 * Hence by the time we have got here it our sequence may not have been
883 	 * pushed yet. This is true if the current sequence still matches the
884 	 * push sequence after the above wait loop and the CIL still contains
885 	 * dirty objects. This is guaranteed by the push code first adding the
886 	 * context to the committing list before emptying the CIL.
887 	 *
888 	 * Hence if we don't find the context in the committing list and the
889 	 * current sequence number is unchanged then the CIL contents are
890 	 * significant.  If the CIL is empty, if means there was nothing to push
891 	 * and that means there is nothing to wait for. If the CIL is not empty,
892 	 * it means we haven't yet started the push, because if it had started
893 	 * we would have found the context on the committing list.
894 	 */
895 	if (sequence == cil->xc_current_sequence &&
896 	    !list_empty(&cil->xc_cil)) {
897 		spin_unlock(&cil->xc_push_lock);
898 		goto restart;
899 	}
900 
901 	spin_unlock(&cil->xc_push_lock);
902 	return commit_lsn;
903 
904 	/*
905 	 * We detected a shutdown in progress. We need to trigger the log force
906 	 * to pass through it's iclog state machine error handling, even though
907 	 * we are already in a shutdown state. Hence we can't return
908 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
909 	 * LSN is already stable), so we return a zero LSN instead.
910 	 */
911 out_shutdown:
912 	spin_unlock(&cil->xc_push_lock);
913 	return 0;
914 }
915 
916 /*
917  * Check if the current log item was first committed in this sequence.
918  * We can't rely on just the log item being in the CIL, we have to check
919  * the recorded commit sequence number.
920  *
921  * Note: for this to be used in a non-racy manner, it has to be called with
922  * CIL flushing locked out. As a result, it should only be used during the
923  * transaction commit process when deciding what to format into the item.
924  */
925 bool
926 xfs_log_item_in_current_chkpt(
927 	struct xfs_log_item *lip)
928 {
929 	struct xfs_cil_ctx *ctx;
930 
931 	if (list_empty(&lip->li_cil))
932 		return false;
933 
934 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
935 
936 	/*
937 	 * li_seq is written on the first commit of a log item to record the
938 	 * first checkpoint it is written to. Hence if it is different to the
939 	 * current sequence, we're in a new checkpoint.
940 	 */
941 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
942 		return false;
943 	return true;
944 }
945 
946 /*
947  * Perform initial CIL structure initialisation.
948  */
949 int
950 xlog_cil_init(
951 	struct xlog	*log)
952 {
953 	struct xfs_cil	*cil;
954 	struct xfs_cil_ctx *ctx;
955 
956 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
957 	if (!cil)
958 		return -ENOMEM;
959 
960 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
961 	if (!ctx) {
962 		kmem_free(cil);
963 		return -ENOMEM;
964 	}
965 
966 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
967 	INIT_LIST_HEAD(&cil->xc_cil);
968 	INIT_LIST_HEAD(&cil->xc_committing);
969 	spin_lock_init(&cil->xc_cil_lock);
970 	spin_lock_init(&cil->xc_push_lock);
971 	init_rwsem(&cil->xc_ctx_lock);
972 	init_waitqueue_head(&cil->xc_commit_wait);
973 
974 	INIT_LIST_HEAD(&ctx->committing);
975 	INIT_LIST_HEAD(&ctx->busy_extents);
976 	ctx->sequence = 1;
977 	ctx->cil = cil;
978 	cil->xc_ctx = ctx;
979 	cil->xc_current_sequence = ctx->sequence;
980 
981 	cil->xc_log = log;
982 	log->l_cilp = cil;
983 	return 0;
984 }
985 
986 void
987 xlog_cil_destroy(
988 	struct xlog	*log)
989 {
990 	if (log->l_cilp->xc_ctx) {
991 		if (log->l_cilp->xc_ctx->ticket)
992 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
993 		kmem_free(log->l_cilp->xc_ctx);
994 	}
995 
996 	ASSERT(list_empty(&log->l_cilp->xc_cil));
997 	kmem_free(log->l_cilp);
998 }
999 
1000