xref: /openbmc/linux/fs/xfs/xfs_log_cil.c (revision 0da85d1e)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 
34 /*
35  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
36  * recover, so we don't allow failure here. Also, we allocate in a context that
37  * we don't want to be issuing transactions from, so we need to tell the
38  * allocation code this as well.
39  *
40  * We don't reserve any space for the ticket - we are going to steal whatever
41  * space we require from transactions as they commit. To ensure we reserve all
42  * the space required, we need to set the current reservation of the ticket to
43  * zero so that we know to steal the initial transaction overhead from the
44  * first transaction commit.
45  */
46 static struct xlog_ticket *
47 xlog_cil_ticket_alloc(
48 	struct xlog	*log)
49 {
50 	struct xlog_ticket *tic;
51 
52 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
53 				KM_SLEEP|KM_NOFS);
54 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
55 
56 	/*
57 	 * set the current reservation to zero so we know to steal the basic
58 	 * transaction overhead reservation from the first transaction commit.
59 	 */
60 	tic->t_curr_res = 0;
61 	return tic;
62 }
63 
64 /*
65  * After the first stage of log recovery is done, we know where the head and
66  * tail of the log are. We need this log initialisation done before we can
67  * initialise the first CIL checkpoint context.
68  *
69  * Here we allocate a log ticket to track space usage during a CIL push.  This
70  * ticket is passed to xlog_write() directly so that we don't slowly leak log
71  * space by failing to account for space used by log headers and additional
72  * region headers for split regions.
73  */
74 void
75 xlog_cil_init_post_recovery(
76 	struct xlog	*log)
77 {
78 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
79 	log->l_cilp->xc_ctx->sequence = 1;
80 }
81 
82 /*
83  * Prepare the log item for insertion into the CIL. Calculate the difference in
84  * log space and vectors it will consume, and if it is a new item pin it as
85  * well.
86  */
87 STATIC void
88 xfs_cil_prepare_item(
89 	struct xlog		*log,
90 	struct xfs_log_vec	*lv,
91 	struct xfs_log_vec	*old_lv,
92 	int			*diff_len,
93 	int			*diff_iovecs)
94 {
95 	/* Account for the new LV being passed in */
96 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
97 		*diff_len += lv->lv_bytes;
98 		*diff_iovecs += lv->lv_niovecs;
99 	}
100 
101 	/*
102 	 * If there is no old LV, this is the first time we've seen the item in
103 	 * this CIL context and so we need to pin it. If we are replacing the
104 	 * old_lv, then remove the space it accounts for and free it.
105 	 */
106 	if (!old_lv)
107 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
108 	else if (old_lv != lv) {
109 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
110 
111 		*diff_len -= old_lv->lv_bytes;
112 		*diff_iovecs -= old_lv->lv_niovecs;
113 		kmem_free(old_lv);
114 	}
115 
116 	/* attach new log vector to log item */
117 	lv->lv_item->li_lv = lv;
118 
119 	/*
120 	 * If this is the first time the item is being committed to the
121 	 * CIL, store the sequence number on the log item so we can
122 	 * tell in future commits whether this is the first checkpoint
123 	 * the item is being committed into.
124 	 */
125 	if (!lv->lv_item->li_seq)
126 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
127 }
128 
129 /*
130  * Format log item into a flat buffers
131  *
132  * For delayed logging, we need to hold a formatted buffer containing all the
133  * changes on the log item. This enables us to relog the item in memory and
134  * write it out asynchronously without needing to relock the object that was
135  * modified at the time it gets written into the iclog.
136  *
137  * This function builds a vector for the changes in each log item in the
138  * transaction. It then works out the length of the buffer needed for each log
139  * item, allocates them and formats the vector for the item into the buffer.
140  * The buffer is then attached to the log item are then inserted into the
141  * Committed Item List for tracking until the next checkpoint is written out.
142  *
143  * We don't set up region headers during this process; we simply copy the
144  * regions into the flat buffer. We can do this because we still have to do a
145  * formatting step to write the regions into the iclog buffer.  Writing the
146  * ophdrs during the iclog write means that we can support splitting large
147  * regions across iclog boundares without needing a change in the format of the
148  * item/region encapsulation.
149  *
150  * Hence what we need to do now is change the rewrite the vector array to point
151  * to the copied region inside the buffer we just allocated. This allows us to
152  * format the regions into the iclog as though they are being formatted
153  * directly out of the objects themselves.
154  */
155 static void
156 xlog_cil_insert_format_items(
157 	struct xlog		*log,
158 	struct xfs_trans	*tp,
159 	int			*diff_len,
160 	int			*diff_iovecs)
161 {
162 	struct xfs_log_item_desc *lidp;
163 
164 
165 	/* Bail out if we didn't find a log item.  */
166 	if (list_empty(&tp->t_items)) {
167 		ASSERT(0);
168 		return;
169 	}
170 
171 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
172 		struct xfs_log_item *lip = lidp->lid_item;
173 		struct xfs_log_vec *lv;
174 		struct xfs_log_vec *old_lv;
175 		int	niovecs = 0;
176 		int	nbytes = 0;
177 		int	buf_size;
178 		bool	ordered = false;
179 
180 		/* Skip items which aren't dirty in this transaction. */
181 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
182 			continue;
183 
184 		/* get number of vecs and size of data to be stored */
185 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
186 
187 		/* Skip items that do not have any vectors for writing */
188 		if (!niovecs)
189 			continue;
190 
191 		/*
192 		 * Ordered items need to be tracked but we do not wish to write
193 		 * them. We need a logvec to track the object, but we do not
194 		 * need an iovec or buffer to be allocated for copying data.
195 		 */
196 		if (niovecs == XFS_LOG_VEC_ORDERED) {
197 			ordered = true;
198 			niovecs = 0;
199 			nbytes = 0;
200 		}
201 
202 		/*
203 		 * We 64-bit align the length of each iovec so that the start
204 		 * of the next one is naturally aligned.  We'll need to
205 		 * account for that slack space here. Then round nbytes up
206 		 * to 64-bit alignment so that the initial buffer alignment is
207 		 * easy to calculate and verify.
208 		 */
209 		nbytes += niovecs * sizeof(uint64_t);
210 		nbytes = round_up(nbytes, sizeof(uint64_t));
211 
212 		/* grab the old item if it exists for reservation accounting */
213 		old_lv = lip->li_lv;
214 
215 		/*
216 		 * The data buffer needs to start 64-bit aligned, so round up
217 		 * that space to ensure we can align it appropriately and not
218 		 * overrun the buffer.
219 		 */
220 		buf_size = nbytes +
221 			   round_up((sizeof(struct xfs_log_vec) +
222 				     niovecs * sizeof(struct xfs_log_iovec)),
223 				    sizeof(uint64_t));
224 
225 		/* compare to existing item size */
226 		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
227 			/* same or smaller, optimise common overwrite case */
228 			lv = lip->li_lv;
229 			lv->lv_next = NULL;
230 
231 			if (ordered)
232 				goto insert;
233 
234 			/*
235 			 * set the item up as though it is a new insertion so
236 			 * that the space reservation accounting is correct.
237 			 */
238 			*diff_iovecs -= lv->lv_niovecs;
239 			*diff_len -= lv->lv_bytes;
240 		} else {
241 			/* allocate new data chunk */
242 			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
243 			lv->lv_item = lip;
244 			lv->lv_size = buf_size;
245 			if (ordered) {
246 				/* track as an ordered logvec */
247 				ASSERT(lip->li_lv == NULL);
248 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
249 				goto insert;
250 			}
251 			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
252 		}
253 
254 		/* Ensure the lv is set up according to ->iop_size */
255 		lv->lv_niovecs = niovecs;
256 
257 		/* The allocated data region lies beyond the iovec region */
258 		lv->lv_buf_len = 0;
259 		lv->lv_bytes = 0;
260 		lv->lv_buf = (char *)lv + buf_size - nbytes;
261 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
262 
263 		lip->li_ops->iop_format(lip, lv);
264 insert:
265 		ASSERT(lv->lv_buf_len <= nbytes);
266 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
267 	}
268 }
269 
270 /*
271  * Insert the log items into the CIL and calculate the difference in space
272  * consumed by the item. Add the space to the checkpoint ticket and calculate
273  * if the change requires additional log metadata. If it does, take that space
274  * as well. Remove the amount of space we added to the checkpoint ticket from
275  * the current transaction ticket so that the accounting works out correctly.
276  */
277 static void
278 xlog_cil_insert_items(
279 	struct xlog		*log,
280 	struct xfs_trans	*tp)
281 {
282 	struct xfs_cil		*cil = log->l_cilp;
283 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
284 	struct xfs_log_item_desc *lidp;
285 	int			len = 0;
286 	int			diff_iovecs = 0;
287 	int			iclog_space;
288 
289 	ASSERT(tp);
290 
291 	/*
292 	 * We can do this safely because the context can't checkpoint until we
293 	 * are done so it doesn't matter exactly how we update the CIL.
294 	 */
295 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
296 
297 	/*
298 	 * Now (re-)position everything modified at the tail of the CIL.
299 	 * We do this here so we only need to take the CIL lock once during
300 	 * the transaction commit.
301 	 */
302 	spin_lock(&cil->xc_cil_lock);
303 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
304 		struct xfs_log_item	*lip = lidp->lid_item;
305 
306 		/* Skip items which aren't dirty in this transaction. */
307 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
308 			continue;
309 
310 		list_move_tail(&lip->li_cil, &cil->xc_cil);
311 	}
312 
313 	/* account for space used by new iovec headers  */
314 	len += diff_iovecs * sizeof(xlog_op_header_t);
315 	ctx->nvecs += diff_iovecs;
316 
317 	/* attach the transaction to the CIL if it has any busy extents */
318 	if (!list_empty(&tp->t_busy))
319 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
320 
321 	/*
322 	 * Now transfer enough transaction reservation to the context ticket
323 	 * for the checkpoint. The context ticket is special - the unit
324 	 * reservation has to grow as well as the current reservation as we
325 	 * steal from tickets so we can correctly determine the space used
326 	 * during the transaction commit.
327 	 */
328 	if (ctx->ticket->t_curr_res == 0) {
329 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
330 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
331 	}
332 
333 	/* do we need space for more log record headers? */
334 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
335 	if (len > 0 && (ctx->space_used / iclog_space !=
336 				(ctx->space_used + len) / iclog_space)) {
337 		int hdrs;
338 
339 		hdrs = (len + iclog_space - 1) / iclog_space;
340 		/* need to take into account split region headers, too */
341 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
342 		ctx->ticket->t_unit_res += hdrs;
343 		ctx->ticket->t_curr_res += hdrs;
344 		tp->t_ticket->t_curr_res -= hdrs;
345 		ASSERT(tp->t_ticket->t_curr_res >= len);
346 	}
347 	tp->t_ticket->t_curr_res -= len;
348 	ctx->space_used += len;
349 
350 	spin_unlock(&cil->xc_cil_lock);
351 }
352 
353 static void
354 xlog_cil_free_logvec(
355 	struct xfs_log_vec	*log_vector)
356 {
357 	struct xfs_log_vec	*lv;
358 
359 	for (lv = log_vector; lv; ) {
360 		struct xfs_log_vec *next = lv->lv_next;
361 		kmem_free(lv);
362 		lv = next;
363 	}
364 }
365 
366 /*
367  * Mark all items committed and clear busy extents. We free the log vector
368  * chains in a separate pass so that we unpin the log items as quickly as
369  * possible.
370  */
371 static void
372 xlog_cil_committed(
373 	void	*args,
374 	int	abort)
375 {
376 	struct xfs_cil_ctx	*ctx = args;
377 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
378 
379 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
380 					ctx->start_lsn, abort);
381 
382 	xfs_extent_busy_sort(&ctx->busy_extents);
383 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
384 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
385 
386 	/*
387 	 * If we are aborting the commit, wake up anyone waiting on the
388 	 * committing list.  If we don't, then a shutdown we can leave processes
389 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
390 	 * will never happen because we aborted it.
391 	 */
392 	spin_lock(&ctx->cil->xc_push_lock);
393 	if (abort)
394 		wake_up_all(&ctx->cil->xc_commit_wait);
395 	list_del(&ctx->committing);
396 	spin_unlock(&ctx->cil->xc_push_lock);
397 
398 	xlog_cil_free_logvec(ctx->lv_chain);
399 
400 	if (!list_empty(&ctx->busy_extents)) {
401 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
402 
403 		xfs_discard_extents(mp, &ctx->busy_extents);
404 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
405 	}
406 
407 	kmem_free(ctx);
408 }
409 
410 /*
411  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
412  * is a background flush and so we can chose to ignore it. Otherwise, if the
413  * current sequence is the same as @push_seq we need to do a flush. If
414  * @push_seq is less than the current sequence, then it has already been
415  * flushed and we don't need to do anything - the caller will wait for it to
416  * complete if necessary.
417  *
418  * @push_seq is a value rather than a flag because that allows us to do an
419  * unlocked check of the sequence number for a match. Hence we can allows log
420  * forces to run racily and not issue pushes for the same sequence twice. If we
421  * get a race between multiple pushes for the same sequence they will block on
422  * the first one and then abort, hence avoiding needless pushes.
423  */
424 STATIC int
425 xlog_cil_push(
426 	struct xlog		*log)
427 {
428 	struct xfs_cil		*cil = log->l_cilp;
429 	struct xfs_log_vec	*lv;
430 	struct xfs_cil_ctx	*ctx;
431 	struct xfs_cil_ctx	*new_ctx;
432 	struct xlog_in_core	*commit_iclog;
433 	struct xlog_ticket	*tic;
434 	int			num_iovecs;
435 	int			error = 0;
436 	struct xfs_trans_header thdr;
437 	struct xfs_log_iovec	lhdr;
438 	struct xfs_log_vec	lvhdr = { NULL };
439 	xfs_lsn_t		commit_lsn;
440 	xfs_lsn_t		push_seq;
441 
442 	if (!cil)
443 		return 0;
444 
445 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
446 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
447 
448 	down_write(&cil->xc_ctx_lock);
449 	ctx = cil->xc_ctx;
450 
451 	spin_lock(&cil->xc_push_lock);
452 	push_seq = cil->xc_push_seq;
453 	ASSERT(push_seq <= ctx->sequence);
454 
455 	/*
456 	 * Check if we've anything to push. If there is nothing, then we don't
457 	 * move on to a new sequence number and so we have to be able to push
458 	 * this sequence again later.
459 	 */
460 	if (list_empty(&cil->xc_cil)) {
461 		cil->xc_push_seq = 0;
462 		spin_unlock(&cil->xc_push_lock);
463 		goto out_skip;
464 	}
465 
466 
467 	/* check for a previously pushed seqeunce */
468 	if (push_seq < cil->xc_ctx->sequence) {
469 		spin_unlock(&cil->xc_push_lock);
470 		goto out_skip;
471 	}
472 
473 	/*
474 	 * We are now going to push this context, so add it to the committing
475 	 * list before we do anything else. This ensures that anyone waiting on
476 	 * this push can easily detect the difference between a "push in
477 	 * progress" and "CIL is empty, nothing to do".
478 	 *
479 	 * IOWs, a wait loop can now check for:
480 	 *	the current sequence not being found on the committing list;
481 	 *	an empty CIL; and
482 	 *	an unchanged sequence number
483 	 * to detect a push that had nothing to do and therefore does not need
484 	 * waiting on. If the CIL is not empty, we get put on the committing
485 	 * list before emptying the CIL and bumping the sequence number. Hence
486 	 * an empty CIL and an unchanged sequence number means we jumped out
487 	 * above after doing nothing.
488 	 *
489 	 * Hence the waiter will either find the commit sequence on the
490 	 * committing list or the sequence number will be unchanged and the CIL
491 	 * still dirty. In that latter case, the push has not yet started, and
492 	 * so the waiter will have to continue trying to check the CIL
493 	 * committing list until it is found. In extreme cases of delay, the
494 	 * sequence may fully commit between the attempts the wait makes to wait
495 	 * on the commit sequence.
496 	 */
497 	list_add(&ctx->committing, &cil->xc_committing);
498 	spin_unlock(&cil->xc_push_lock);
499 
500 	/*
501 	 * pull all the log vectors off the items in the CIL, and
502 	 * remove the items from the CIL. We don't need the CIL lock
503 	 * here because it's only needed on the transaction commit
504 	 * side which is currently locked out by the flush lock.
505 	 */
506 	lv = NULL;
507 	num_iovecs = 0;
508 	while (!list_empty(&cil->xc_cil)) {
509 		struct xfs_log_item	*item;
510 
511 		item = list_first_entry(&cil->xc_cil,
512 					struct xfs_log_item, li_cil);
513 		list_del_init(&item->li_cil);
514 		if (!ctx->lv_chain)
515 			ctx->lv_chain = item->li_lv;
516 		else
517 			lv->lv_next = item->li_lv;
518 		lv = item->li_lv;
519 		item->li_lv = NULL;
520 		num_iovecs += lv->lv_niovecs;
521 	}
522 
523 	/*
524 	 * initialise the new context and attach it to the CIL. Then attach
525 	 * the current context to the CIL committing lsit so it can be found
526 	 * during log forces to extract the commit lsn of the sequence that
527 	 * needs to be forced.
528 	 */
529 	INIT_LIST_HEAD(&new_ctx->committing);
530 	INIT_LIST_HEAD(&new_ctx->busy_extents);
531 	new_ctx->sequence = ctx->sequence + 1;
532 	new_ctx->cil = cil;
533 	cil->xc_ctx = new_ctx;
534 
535 	/*
536 	 * The switch is now done, so we can drop the context lock and move out
537 	 * of a shared context. We can't just go straight to the commit record,
538 	 * though - we need to synchronise with previous and future commits so
539 	 * that the commit records are correctly ordered in the log to ensure
540 	 * that we process items during log IO completion in the correct order.
541 	 *
542 	 * For example, if we get an EFI in one checkpoint and the EFD in the
543 	 * next (e.g. due to log forces), we do not want the checkpoint with
544 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
545 	 * we must strictly order the commit records of the checkpoints so
546 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
547 	 * correct order; and b) the checkpoints are replayed in correct order
548 	 * in log recovery.
549 	 *
550 	 * Hence we need to add this context to the committing context list so
551 	 * that higher sequences will wait for us to write out a commit record
552 	 * before they do.
553 	 *
554 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
555 	 * structure atomically with the addition of this sequence to the
556 	 * committing list. This also ensures that we can do unlocked checks
557 	 * against the current sequence in log forces without risking
558 	 * deferencing a freed context pointer.
559 	 */
560 	spin_lock(&cil->xc_push_lock);
561 	cil->xc_current_sequence = new_ctx->sequence;
562 	spin_unlock(&cil->xc_push_lock);
563 	up_write(&cil->xc_ctx_lock);
564 
565 	/*
566 	 * Build a checkpoint transaction header and write it to the log to
567 	 * begin the transaction. We need to account for the space used by the
568 	 * transaction header here as it is not accounted for in xlog_write().
569 	 *
570 	 * The LSN we need to pass to the log items on transaction commit is
571 	 * the LSN reported by the first log vector write. If we use the commit
572 	 * record lsn then we can move the tail beyond the grant write head.
573 	 */
574 	tic = ctx->ticket;
575 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
576 	thdr.th_type = XFS_TRANS_CHECKPOINT;
577 	thdr.th_tid = tic->t_tid;
578 	thdr.th_num_items = num_iovecs;
579 	lhdr.i_addr = &thdr;
580 	lhdr.i_len = sizeof(xfs_trans_header_t);
581 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
582 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
583 
584 	lvhdr.lv_niovecs = 1;
585 	lvhdr.lv_iovecp = &lhdr;
586 	lvhdr.lv_next = ctx->lv_chain;
587 
588 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
589 	if (error)
590 		goto out_abort_free_ticket;
591 
592 	/*
593 	 * now that we've written the checkpoint into the log, strictly
594 	 * order the commit records so replay will get them in the right order.
595 	 */
596 restart:
597 	spin_lock(&cil->xc_push_lock);
598 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
599 		/*
600 		 * Avoid getting stuck in this loop because we were woken by the
601 		 * shutdown, but then went back to sleep once already in the
602 		 * shutdown state.
603 		 */
604 		if (XLOG_FORCED_SHUTDOWN(log)) {
605 			spin_unlock(&cil->xc_push_lock);
606 			goto out_abort_free_ticket;
607 		}
608 
609 		/*
610 		 * Higher sequences will wait for this one so skip them.
611 		 * Don't wait for our own sequence, either.
612 		 */
613 		if (new_ctx->sequence >= ctx->sequence)
614 			continue;
615 		if (!new_ctx->commit_lsn) {
616 			/*
617 			 * It is still being pushed! Wait for the push to
618 			 * complete, then start again from the beginning.
619 			 */
620 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
621 			goto restart;
622 		}
623 	}
624 	spin_unlock(&cil->xc_push_lock);
625 
626 	/* xfs_log_done always frees the ticket on error. */
627 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
628 	if (commit_lsn == -1)
629 		goto out_abort;
630 
631 	/* attach all the transactions w/ busy extents to iclog */
632 	ctx->log_cb.cb_func = xlog_cil_committed;
633 	ctx->log_cb.cb_arg = ctx;
634 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
635 	if (error)
636 		goto out_abort;
637 
638 	/*
639 	 * now the checkpoint commit is complete and we've attached the
640 	 * callbacks to the iclog we can assign the commit LSN to the context
641 	 * and wake up anyone who is waiting for the commit to complete.
642 	 */
643 	spin_lock(&cil->xc_push_lock);
644 	ctx->commit_lsn = commit_lsn;
645 	wake_up_all(&cil->xc_commit_wait);
646 	spin_unlock(&cil->xc_push_lock);
647 
648 	/* release the hounds! */
649 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
650 
651 out_skip:
652 	up_write(&cil->xc_ctx_lock);
653 	xfs_log_ticket_put(new_ctx->ticket);
654 	kmem_free(new_ctx);
655 	return 0;
656 
657 out_abort_free_ticket:
658 	xfs_log_ticket_put(tic);
659 out_abort:
660 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
661 	return -EIO;
662 }
663 
664 static void
665 xlog_cil_push_work(
666 	struct work_struct	*work)
667 {
668 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
669 							xc_push_work);
670 	xlog_cil_push(cil->xc_log);
671 }
672 
673 /*
674  * We need to push CIL every so often so we don't cache more than we can fit in
675  * the log. The limit really is that a checkpoint can't be more than half the
676  * log (the current checkpoint is not allowed to overwrite the previous
677  * checkpoint), but commit latency and memory usage limit this to a smaller
678  * size.
679  */
680 static void
681 xlog_cil_push_background(
682 	struct xlog	*log)
683 {
684 	struct xfs_cil	*cil = log->l_cilp;
685 
686 	/*
687 	 * The cil won't be empty because we are called while holding the
688 	 * context lock so whatever we added to the CIL will still be there
689 	 */
690 	ASSERT(!list_empty(&cil->xc_cil));
691 
692 	/*
693 	 * don't do a background push if we haven't used up all the
694 	 * space available yet.
695 	 */
696 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
697 		return;
698 
699 	spin_lock(&cil->xc_push_lock);
700 	if (cil->xc_push_seq < cil->xc_current_sequence) {
701 		cil->xc_push_seq = cil->xc_current_sequence;
702 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
703 	}
704 	spin_unlock(&cil->xc_push_lock);
705 
706 }
707 
708 /*
709  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
710  * number that is passed. When it returns, the work will be queued for
711  * @push_seq, but it won't be completed. The caller is expected to do any
712  * waiting for push_seq to complete if it is required.
713  */
714 static void
715 xlog_cil_push_now(
716 	struct xlog	*log,
717 	xfs_lsn_t	push_seq)
718 {
719 	struct xfs_cil	*cil = log->l_cilp;
720 
721 	if (!cil)
722 		return;
723 
724 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
725 
726 	/* start on any pending background push to minimise wait time on it */
727 	flush_work(&cil->xc_push_work);
728 
729 	/*
730 	 * If the CIL is empty or we've already pushed the sequence then
731 	 * there's no work we need to do.
732 	 */
733 	spin_lock(&cil->xc_push_lock);
734 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
735 		spin_unlock(&cil->xc_push_lock);
736 		return;
737 	}
738 
739 	cil->xc_push_seq = push_seq;
740 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
741 	spin_unlock(&cil->xc_push_lock);
742 }
743 
744 bool
745 xlog_cil_empty(
746 	struct xlog	*log)
747 {
748 	struct xfs_cil	*cil = log->l_cilp;
749 	bool		empty = false;
750 
751 	spin_lock(&cil->xc_push_lock);
752 	if (list_empty(&cil->xc_cil))
753 		empty = true;
754 	spin_unlock(&cil->xc_push_lock);
755 	return empty;
756 }
757 
758 /*
759  * Commit a transaction with the given vector to the Committed Item List.
760  *
761  * To do this, we need to format the item, pin it in memory if required and
762  * account for the space used by the transaction. Once we have done that we
763  * need to release the unused reservation for the transaction, attach the
764  * transaction to the checkpoint context so we carry the busy extents through
765  * to checkpoint completion, and then unlock all the items in the transaction.
766  *
767  * Called with the context lock already held in read mode to lock out
768  * background commit, returns without it held once background commits are
769  * allowed again.
770  */
771 void
772 xfs_log_commit_cil(
773 	struct xfs_mount	*mp,
774 	struct xfs_trans	*tp,
775 	xfs_lsn_t		*commit_lsn,
776 	int			flags)
777 {
778 	struct xlog		*log = mp->m_log;
779 	struct xfs_cil		*cil = log->l_cilp;
780 	int			log_flags = 0;
781 
782 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
783 		log_flags = XFS_LOG_REL_PERM_RESERV;
784 
785 	/* lock out background commit */
786 	down_read(&cil->xc_ctx_lock);
787 
788 	xlog_cil_insert_items(log, tp);
789 
790 	/* check we didn't blow the reservation */
791 	if (tp->t_ticket->t_curr_res < 0)
792 		xlog_print_tic_res(mp, tp->t_ticket);
793 
794 	tp->t_commit_lsn = cil->xc_ctx->sequence;
795 	if (commit_lsn)
796 		*commit_lsn = tp->t_commit_lsn;
797 
798 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
799 	xfs_trans_unreserve_and_mod_sb(tp);
800 
801 	/*
802 	 * Once all the items of the transaction have been copied to the CIL,
803 	 * the items can be unlocked and freed.
804 	 *
805 	 * This needs to be done before we drop the CIL context lock because we
806 	 * have to update state in the log items and unlock them before they go
807 	 * to disk. If we don't, then the CIL checkpoint can race with us and
808 	 * we can run checkpoint completion before we've updated and unlocked
809 	 * the log items. This affects (at least) processing of stale buffers,
810 	 * inodes and EFIs.
811 	 */
812 	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
813 
814 	xlog_cil_push_background(log);
815 
816 	up_read(&cil->xc_ctx_lock);
817 }
818 
819 /*
820  * Conditionally push the CIL based on the sequence passed in.
821  *
822  * We only need to push if we haven't already pushed the sequence
823  * number given. Hence the only time we will trigger a push here is
824  * if the push sequence is the same as the current context.
825  *
826  * We return the current commit lsn to allow the callers to determine if a
827  * iclog flush is necessary following this call.
828  */
829 xfs_lsn_t
830 xlog_cil_force_lsn(
831 	struct xlog	*log,
832 	xfs_lsn_t	sequence)
833 {
834 	struct xfs_cil		*cil = log->l_cilp;
835 	struct xfs_cil_ctx	*ctx;
836 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
837 
838 	ASSERT(sequence <= cil->xc_current_sequence);
839 
840 	/*
841 	 * check to see if we need to force out the current context.
842 	 * xlog_cil_push() handles racing pushes for the same sequence,
843 	 * so no need to deal with it here.
844 	 */
845 restart:
846 	xlog_cil_push_now(log, sequence);
847 
848 	/*
849 	 * See if we can find a previous sequence still committing.
850 	 * We need to wait for all previous sequence commits to complete
851 	 * before allowing the force of push_seq to go ahead. Hence block
852 	 * on commits for those as well.
853 	 */
854 	spin_lock(&cil->xc_push_lock);
855 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
856 		/*
857 		 * Avoid getting stuck in this loop because we were woken by the
858 		 * shutdown, but then went back to sleep once already in the
859 		 * shutdown state.
860 		 */
861 		if (XLOG_FORCED_SHUTDOWN(log))
862 			goto out_shutdown;
863 		if (ctx->sequence > sequence)
864 			continue;
865 		if (!ctx->commit_lsn) {
866 			/*
867 			 * It is still being pushed! Wait for the push to
868 			 * complete, then start again from the beginning.
869 			 */
870 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
871 			goto restart;
872 		}
873 		if (ctx->sequence != sequence)
874 			continue;
875 		/* found it! */
876 		commit_lsn = ctx->commit_lsn;
877 	}
878 
879 	/*
880 	 * The call to xlog_cil_push_now() executes the push in the background.
881 	 * Hence by the time we have got here it our sequence may not have been
882 	 * pushed yet. This is true if the current sequence still matches the
883 	 * push sequence after the above wait loop and the CIL still contains
884 	 * dirty objects. This is guaranteed by the push code first adding the
885 	 * context to the committing list before emptying the CIL.
886 	 *
887 	 * Hence if we don't find the context in the committing list and the
888 	 * current sequence number is unchanged then the CIL contents are
889 	 * significant.  If the CIL is empty, if means there was nothing to push
890 	 * and that means there is nothing to wait for. If the CIL is not empty,
891 	 * it means we haven't yet started the push, because if it had started
892 	 * we would have found the context on the committing list.
893 	 */
894 	if (sequence == cil->xc_current_sequence &&
895 	    !list_empty(&cil->xc_cil)) {
896 		spin_unlock(&cil->xc_push_lock);
897 		goto restart;
898 	}
899 
900 	spin_unlock(&cil->xc_push_lock);
901 	return commit_lsn;
902 
903 	/*
904 	 * We detected a shutdown in progress. We need to trigger the log force
905 	 * to pass through it's iclog state machine error handling, even though
906 	 * we are already in a shutdown state. Hence we can't return
907 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
908 	 * LSN is already stable), so we return a zero LSN instead.
909 	 */
910 out_shutdown:
911 	spin_unlock(&cil->xc_push_lock);
912 	return 0;
913 }
914 
915 /*
916  * Check if the current log item was first committed in this sequence.
917  * We can't rely on just the log item being in the CIL, we have to check
918  * the recorded commit sequence number.
919  *
920  * Note: for this to be used in a non-racy manner, it has to be called with
921  * CIL flushing locked out. As a result, it should only be used during the
922  * transaction commit process when deciding what to format into the item.
923  */
924 bool
925 xfs_log_item_in_current_chkpt(
926 	struct xfs_log_item *lip)
927 {
928 	struct xfs_cil_ctx *ctx;
929 
930 	if (list_empty(&lip->li_cil))
931 		return false;
932 
933 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
934 
935 	/*
936 	 * li_seq is written on the first commit of a log item to record the
937 	 * first checkpoint it is written to. Hence if it is different to the
938 	 * current sequence, we're in a new checkpoint.
939 	 */
940 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
941 		return false;
942 	return true;
943 }
944 
945 /*
946  * Perform initial CIL structure initialisation.
947  */
948 int
949 xlog_cil_init(
950 	struct xlog	*log)
951 {
952 	struct xfs_cil	*cil;
953 	struct xfs_cil_ctx *ctx;
954 
955 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
956 	if (!cil)
957 		return -ENOMEM;
958 
959 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
960 	if (!ctx) {
961 		kmem_free(cil);
962 		return -ENOMEM;
963 	}
964 
965 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
966 	INIT_LIST_HEAD(&cil->xc_cil);
967 	INIT_LIST_HEAD(&cil->xc_committing);
968 	spin_lock_init(&cil->xc_cil_lock);
969 	spin_lock_init(&cil->xc_push_lock);
970 	init_rwsem(&cil->xc_ctx_lock);
971 	init_waitqueue_head(&cil->xc_commit_wait);
972 
973 	INIT_LIST_HEAD(&ctx->committing);
974 	INIT_LIST_HEAD(&ctx->busy_extents);
975 	ctx->sequence = 1;
976 	ctx->cil = cil;
977 	cil->xc_ctx = ctx;
978 	cil->xc_current_sequence = ctx->sequence;
979 
980 	cil->xc_log = log;
981 	log->l_cilp = cil;
982 	return 0;
983 }
984 
985 void
986 xlog_cil_destroy(
987 	struct xlog	*log)
988 {
989 	if (log->l_cilp->xc_ctx) {
990 		if (log->l_cilp->xc_ctx->ticket)
991 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
992 		kmem_free(log->l_cilp->xc_ctx);
993 	}
994 
995 	ASSERT(list_empty(&log->l_cilp->xc_cil));
996 	kmem_free(log->l_cilp);
997 }
998 
999