1 /* 2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write the Free Software Foundation, 15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 16 */ 17 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_trans_priv.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_alloc.h" 30 #include "xfs_extent_busy.h" 31 #include "xfs_discard.h" 32 33 /* 34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 35 * recover, so we don't allow failure here. Also, we allocate in a context that 36 * we don't want to be issuing transactions from, so we need to tell the 37 * allocation code this as well. 38 * 39 * We don't reserve any space for the ticket - we are going to steal whatever 40 * space we require from transactions as they commit. To ensure we reserve all 41 * the space required, we need to set the current reservation of the ticket to 42 * zero so that we know to steal the initial transaction overhead from the 43 * first transaction commit. 44 */ 45 static struct xlog_ticket * 46 xlog_cil_ticket_alloc( 47 struct xlog *log) 48 { 49 struct xlog_ticket *tic; 50 51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, 52 KM_SLEEP|KM_NOFS); 53 tic->t_trans_type = XFS_TRANS_CHECKPOINT; 54 55 /* 56 * set the current reservation to zero so we know to steal the basic 57 * transaction overhead reservation from the first transaction commit. 58 */ 59 tic->t_curr_res = 0; 60 return tic; 61 } 62 63 /* 64 * After the first stage of log recovery is done, we know where the head and 65 * tail of the log are. We need this log initialisation done before we can 66 * initialise the first CIL checkpoint context. 67 * 68 * Here we allocate a log ticket to track space usage during a CIL push. This 69 * ticket is passed to xlog_write() directly so that we don't slowly leak log 70 * space by failing to account for space used by log headers and additional 71 * region headers for split regions. 72 */ 73 void 74 xlog_cil_init_post_recovery( 75 struct xlog *log) 76 { 77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 78 log->l_cilp->xc_ctx->sequence = 1; 79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, 80 log->l_curr_block); 81 } 82 83 STATIC int 84 xlog_cil_lv_item_format( 85 struct xfs_log_item *lip, 86 struct xfs_log_vec *lv) 87 { 88 int index; 89 char *ptr; 90 91 /* format new vectors into array */ 92 lip->li_ops->iop_format(lip, lv->lv_iovecp); 93 94 /* copy data into existing array */ 95 ptr = lv->lv_buf; 96 for (index = 0; index < lv->lv_niovecs; index++) { 97 struct xfs_log_iovec *vec = &lv->lv_iovecp[index]; 98 99 memcpy(ptr, vec->i_addr, vec->i_len); 100 vec->i_addr = ptr; 101 ptr += vec->i_len; 102 } 103 104 /* 105 * some size calculations for log vectors over-estimate, so the caller 106 * doesn't know the amount of space actually used by the item. Return 107 * the byte count to the caller so they can check and store it 108 * appropriately. 109 */ 110 return ptr - lv->lv_buf; 111 } 112 113 /* 114 * Prepare the log item for insertion into the CIL. Calculate the difference in 115 * log space and vectors it will consume, and if it is a new item pin it as 116 * well. 117 */ 118 STATIC void 119 xfs_cil_prepare_item( 120 struct xlog *log, 121 struct xfs_log_vec *lv, 122 struct xfs_log_vec *old_lv, 123 int *diff_len, 124 int *diff_iovecs) 125 { 126 /* Account for the new LV being passed in */ 127 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) { 128 *diff_len += lv->lv_buf_len; 129 *diff_iovecs += lv->lv_niovecs; 130 } 131 132 /* 133 * If there is no old LV, this is the first time we've seen the item in 134 * this CIL context and so we need to pin it. If we are replacing the 135 * old_lv, then remove the space it accounts for and free it. 136 */ 137 if (!old_lv) 138 lv->lv_item->li_ops->iop_pin(lv->lv_item); 139 else if (old_lv != lv) { 140 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 141 142 *diff_len -= old_lv->lv_buf_len; 143 *diff_iovecs -= old_lv->lv_niovecs; 144 kmem_free(old_lv); 145 } 146 147 /* attach new log vector to log item */ 148 lv->lv_item->li_lv = lv; 149 150 /* 151 * If this is the first time the item is being committed to the 152 * CIL, store the sequence number on the log item so we can 153 * tell in future commits whether this is the first checkpoint 154 * the item is being committed into. 155 */ 156 if (!lv->lv_item->li_seq) 157 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 158 } 159 160 /* 161 * Format log item into a flat buffers 162 * 163 * For delayed logging, we need to hold a formatted buffer containing all the 164 * changes on the log item. This enables us to relog the item in memory and 165 * write it out asynchronously without needing to relock the object that was 166 * modified at the time it gets written into the iclog. 167 * 168 * This function builds a vector for the changes in each log item in the 169 * transaction. It then works out the length of the buffer needed for each log 170 * item, allocates them and formats the vector for the item into the buffer. 171 * The buffer is then attached to the log item are then inserted into the 172 * Committed Item List for tracking until the next checkpoint is written out. 173 * 174 * We don't set up region headers during this process; we simply copy the 175 * regions into the flat buffer. We can do this because we still have to do a 176 * formatting step to write the regions into the iclog buffer. Writing the 177 * ophdrs during the iclog write means that we can support splitting large 178 * regions across iclog boundares without needing a change in the format of the 179 * item/region encapsulation. 180 * 181 * Hence what we need to do now is change the rewrite the vector array to point 182 * to the copied region inside the buffer we just allocated. This allows us to 183 * format the regions into the iclog as though they are being formatted 184 * directly out of the objects themselves. 185 */ 186 static void 187 xlog_cil_insert_format_items( 188 struct xlog *log, 189 struct xfs_trans *tp, 190 int *diff_len, 191 int *diff_iovecs) 192 { 193 struct xfs_log_item_desc *lidp; 194 195 196 /* Bail out if we didn't find a log item. */ 197 if (list_empty(&tp->t_items)) { 198 ASSERT(0); 199 return; 200 } 201 202 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 203 struct xfs_log_item *lip = lidp->lid_item; 204 struct xfs_log_vec *lv; 205 struct xfs_log_vec *old_lv; 206 int niovecs = 0; 207 int nbytes = 0; 208 int buf_size; 209 bool ordered = false; 210 211 /* Skip items which aren't dirty in this transaction. */ 212 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 213 continue; 214 215 /* get number of vecs and size of data to be stored */ 216 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 217 218 /* Skip items that do not have any vectors for writing */ 219 if (!niovecs) 220 continue; 221 222 /* 223 * Ordered items need to be tracked but we do not wish to write 224 * them. We need a logvec to track the object, but we do not 225 * need an iovec or buffer to be allocated for copying data. 226 */ 227 if (niovecs == XFS_LOG_VEC_ORDERED) { 228 ordered = true; 229 niovecs = 0; 230 nbytes = 0; 231 } 232 233 /* grab the old item if it exists for reservation accounting */ 234 old_lv = lip->li_lv; 235 236 /* calc buffer size */ 237 buf_size = sizeof(struct xfs_log_vec) + nbytes + 238 niovecs * sizeof(struct xfs_log_iovec); 239 240 /* compare to existing item size */ 241 if (lip->li_lv && buf_size <= lip->li_lv->lv_size) { 242 /* same or smaller, optimise common overwrite case */ 243 lv = lip->li_lv; 244 lv->lv_next = NULL; 245 246 if (ordered) 247 goto insert; 248 249 /* 250 * set the item up as though it is a new insertion so 251 * that the space reservation accounting is correct. 252 */ 253 *diff_iovecs -= lv->lv_niovecs; 254 *diff_len -= lv->lv_buf_len; 255 256 /* Ensure the lv is set up according to ->iop_size */ 257 lv->lv_niovecs = niovecs; 258 lv->lv_buf = (char *)lv + buf_size - nbytes; 259 260 lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv); 261 goto insert; 262 } 263 264 /* allocate new data chunk */ 265 lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS); 266 lv->lv_item = lip; 267 lv->lv_size = buf_size; 268 lv->lv_niovecs = niovecs; 269 if (ordered) { 270 /* track as an ordered logvec */ 271 ASSERT(lip->li_lv == NULL); 272 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 273 goto insert; 274 } 275 276 /* The allocated iovec region lies beyond the log vector. */ 277 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 278 279 /* The allocated data region lies beyond the iovec region */ 280 lv->lv_buf = (char *)lv + buf_size - nbytes; 281 282 lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv); 283 insert: 284 ASSERT(lv->lv_buf_len <= nbytes); 285 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs); 286 } 287 } 288 289 /* 290 * Insert the log items into the CIL and calculate the difference in space 291 * consumed by the item. Add the space to the checkpoint ticket and calculate 292 * if the change requires additional log metadata. If it does, take that space 293 * as well. Remove the amount of space we added to the checkpoint ticket from 294 * the current transaction ticket so that the accounting works out correctly. 295 */ 296 static void 297 xlog_cil_insert_items( 298 struct xlog *log, 299 struct xfs_trans *tp) 300 { 301 struct xfs_cil *cil = log->l_cilp; 302 struct xfs_cil_ctx *ctx = cil->xc_ctx; 303 struct xfs_log_item_desc *lidp; 304 int len = 0; 305 int diff_iovecs = 0; 306 int iclog_space; 307 308 ASSERT(tp); 309 310 /* 311 * We can do this safely because the context can't checkpoint until we 312 * are done so it doesn't matter exactly how we update the CIL. 313 */ 314 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs); 315 316 /* 317 * Now (re-)position everything modified at the tail of the CIL. 318 * We do this here so we only need to take the CIL lock once during 319 * the transaction commit. 320 */ 321 spin_lock(&cil->xc_cil_lock); 322 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 323 struct xfs_log_item *lip = lidp->lid_item; 324 325 /* Skip items which aren't dirty in this transaction. */ 326 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 327 continue; 328 329 list_move_tail(&lip->li_cil, &cil->xc_cil); 330 } 331 332 /* account for space used by new iovec headers */ 333 len += diff_iovecs * sizeof(xlog_op_header_t); 334 ctx->nvecs += diff_iovecs; 335 336 /* attach the transaction to the CIL if it has any busy extents */ 337 if (!list_empty(&tp->t_busy)) 338 list_splice_init(&tp->t_busy, &ctx->busy_extents); 339 340 /* 341 * Now transfer enough transaction reservation to the context ticket 342 * for the checkpoint. The context ticket is special - the unit 343 * reservation has to grow as well as the current reservation as we 344 * steal from tickets so we can correctly determine the space used 345 * during the transaction commit. 346 */ 347 if (ctx->ticket->t_curr_res == 0) { 348 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; 349 tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res; 350 } 351 352 /* do we need space for more log record headers? */ 353 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 354 if (len > 0 && (ctx->space_used / iclog_space != 355 (ctx->space_used + len) / iclog_space)) { 356 int hdrs; 357 358 hdrs = (len + iclog_space - 1) / iclog_space; 359 /* need to take into account split region headers, too */ 360 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 361 ctx->ticket->t_unit_res += hdrs; 362 ctx->ticket->t_curr_res += hdrs; 363 tp->t_ticket->t_curr_res -= hdrs; 364 ASSERT(tp->t_ticket->t_curr_res >= len); 365 } 366 tp->t_ticket->t_curr_res -= len; 367 ctx->space_used += len; 368 369 spin_unlock(&cil->xc_cil_lock); 370 } 371 372 static void 373 xlog_cil_free_logvec( 374 struct xfs_log_vec *log_vector) 375 { 376 struct xfs_log_vec *lv; 377 378 for (lv = log_vector; lv; ) { 379 struct xfs_log_vec *next = lv->lv_next; 380 kmem_free(lv); 381 lv = next; 382 } 383 } 384 385 /* 386 * Mark all items committed and clear busy extents. We free the log vector 387 * chains in a separate pass so that we unpin the log items as quickly as 388 * possible. 389 */ 390 static void 391 xlog_cil_committed( 392 void *args, 393 int abort) 394 { 395 struct xfs_cil_ctx *ctx = args; 396 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 397 398 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, 399 ctx->start_lsn, abort); 400 401 xfs_extent_busy_sort(&ctx->busy_extents); 402 xfs_extent_busy_clear(mp, &ctx->busy_extents, 403 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort); 404 405 spin_lock(&ctx->cil->xc_push_lock); 406 list_del(&ctx->committing); 407 spin_unlock(&ctx->cil->xc_push_lock); 408 409 xlog_cil_free_logvec(ctx->lv_chain); 410 411 if (!list_empty(&ctx->busy_extents)) { 412 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD); 413 414 xfs_discard_extents(mp, &ctx->busy_extents); 415 xfs_extent_busy_clear(mp, &ctx->busy_extents, false); 416 } 417 418 kmem_free(ctx); 419 } 420 421 /* 422 * Push the Committed Item List to the log. If @push_seq flag is zero, then it 423 * is a background flush and so we can chose to ignore it. Otherwise, if the 424 * current sequence is the same as @push_seq we need to do a flush. If 425 * @push_seq is less than the current sequence, then it has already been 426 * flushed and we don't need to do anything - the caller will wait for it to 427 * complete if necessary. 428 * 429 * @push_seq is a value rather than a flag because that allows us to do an 430 * unlocked check of the sequence number for a match. Hence we can allows log 431 * forces to run racily and not issue pushes for the same sequence twice. If we 432 * get a race between multiple pushes for the same sequence they will block on 433 * the first one and then abort, hence avoiding needless pushes. 434 */ 435 STATIC int 436 xlog_cil_push( 437 struct xlog *log) 438 { 439 struct xfs_cil *cil = log->l_cilp; 440 struct xfs_log_vec *lv; 441 struct xfs_cil_ctx *ctx; 442 struct xfs_cil_ctx *new_ctx; 443 struct xlog_in_core *commit_iclog; 444 struct xlog_ticket *tic; 445 int num_iovecs; 446 int error = 0; 447 struct xfs_trans_header thdr; 448 struct xfs_log_iovec lhdr; 449 struct xfs_log_vec lvhdr = { NULL }; 450 xfs_lsn_t commit_lsn; 451 xfs_lsn_t push_seq; 452 453 if (!cil) 454 return 0; 455 456 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); 457 new_ctx->ticket = xlog_cil_ticket_alloc(log); 458 459 down_write(&cil->xc_ctx_lock); 460 ctx = cil->xc_ctx; 461 462 spin_lock(&cil->xc_push_lock); 463 push_seq = cil->xc_push_seq; 464 ASSERT(push_seq <= ctx->sequence); 465 466 /* 467 * Check if we've anything to push. If there is nothing, then we don't 468 * move on to a new sequence number and so we have to be able to push 469 * this sequence again later. 470 */ 471 if (list_empty(&cil->xc_cil)) { 472 cil->xc_push_seq = 0; 473 spin_unlock(&cil->xc_push_lock); 474 goto out_skip; 475 } 476 spin_unlock(&cil->xc_push_lock); 477 478 479 /* check for a previously pushed seqeunce */ 480 if (push_seq < cil->xc_ctx->sequence) 481 goto out_skip; 482 483 /* 484 * pull all the log vectors off the items in the CIL, and 485 * remove the items from the CIL. We don't need the CIL lock 486 * here because it's only needed on the transaction commit 487 * side which is currently locked out by the flush lock. 488 */ 489 lv = NULL; 490 num_iovecs = 0; 491 while (!list_empty(&cil->xc_cil)) { 492 struct xfs_log_item *item; 493 494 item = list_first_entry(&cil->xc_cil, 495 struct xfs_log_item, li_cil); 496 list_del_init(&item->li_cil); 497 if (!ctx->lv_chain) 498 ctx->lv_chain = item->li_lv; 499 else 500 lv->lv_next = item->li_lv; 501 lv = item->li_lv; 502 item->li_lv = NULL; 503 num_iovecs += lv->lv_niovecs; 504 } 505 506 /* 507 * initialise the new context and attach it to the CIL. Then attach 508 * the current context to the CIL committing lsit so it can be found 509 * during log forces to extract the commit lsn of the sequence that 510 * needs to be forced. 511 */ 512 INIT_LIST_HEAD(&new_ctx->committing); 513 INIT_LIST_HEAD(&new_ctx->busy_extents); 514 new_ctx->sequence = ctx->sequence + 1; 515 new_ctx->cil = cil; 516 cil->xc_ctx = new_ctx; 517 518 /* 519 * mirror the new sequence into the cil structure so that we can do 520 * unlocked checks against the current sequence in log forces without 521 * risking deferencing a freed context pointer. 522 */ 523 cil->xc_current_sequence = new_ctx->sequence; 524 525 /* 526 * The switch is now done, so we can drop the context lock and move out 527 * of a shared context. We can't just go straight to the commit record, 528 * though - we need to synchronise with previous and future commits so 529 * that the commit records are correctly ordered in the log to ensure 530 * that we process items during log IO completion in the correct order. 531 * 532 * For example, if we get an EFI in one checkpoint and the EFD in the 533 * next (e.g. due to log forces), we do not want the checkpoint with 534 * the EFD to be committed before the checkpoint with the EFI. Hence 535 * we must strictly order the commit records of the checkpoints so 536 * that: a) the checkpoint callbacks are attached to the iclogs in the 537 * correct order; and b) the checkpoints are replayed in correct order 538 * in log recovery. 539 * 540 * Hence we need to add this context to the committing context list so 541 * that higher sequences will wait for us to write out a commit record 542 * before they do. 543 */ 544 spin_lock(&cil->xc_push_lock); 545 list_add(&ctx->committing, &cil->xc_committing); 546 spin_unlock(&cil->xc_push_lock); 547 up_write(&cil->xc_ctx_lock); 548 549 /* 550 * Build a checkpoint transaction header and write it to the log to 551 * begin the transaction. We need to account for the space used by the 552 * transaction header here as it is not accounted for in xlog_write(). 553 * 554 * The LSN we need to pass to the log items on transaction commit is 555 * the LSN reported by the first log vector write. If we use the commit 556 * record lsn then we can move the tail beyond the grant write head. 557 */ 558 tic = ctx->ticket; 559 thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 560 thdr.th_type = XFS_TRANS_CHECKPOINT; 561 thdr.th_tid = tic->t_tid; 562 thdr.th_num_items = num_iovecs; 563 lhdr.i_addr = &thdr; 564 lhdr.i_len = sizeof(xfs_trans_header_t); 565 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; 566 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); 567 568 lvhdr.lv_niovecs = 1; 569 lvhdr.lv_iovecp = &lhdr; 570 lvhdr.lv_next = ctx->lv_chain; 571 572 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); 573 if (error) 574 goto out_abort_free_ticket; 575 576 /* 577 * now that we've written the checkpoint into the log, strictly 578 * order the commit records so replay will get them in the right order. 579 */ 580 restart: 581 spin_lock(&cil->xc_push_lock); 582 list_for_each_entry(new_ctx, &cil->xc_committing, committing) { 583 /* 584 * Higher sequences will wait for this one so skip them. 585 * Don't wait for own own sequence, either. 586 */ 587 if (new_ctx->sequence >= ctx->sequence) 588 continue; 589 if (!new_ctx->commit_lsn) { 590 /* 591 * It is still being pushed! Wait for the push to 592 * complete, then start again from the beginning. 593 */ 594 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 595 goto restart; 596 } 597 } 598 spin_unlock(&cil->xc_push_lock); 599 600 /* xfs_log_done always frees the ticket on error. */ 601 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); 602 if (commit_lsn == -1) 603 goto out_abort; 604 605 /* attach all the transactions w/ busy extents to iclog */ 606 ctx->log_cb.cb_func = xlog_cil_committed; 607 ctx->log_cb.cb_arg = ctx; 608 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); 609 if (error) 610 goto out_abort; 611 612 /* 613 * now the checkpoint commit is complete and we've attached the 614 * callbacks to the iclog we can assign the commit LSN to the context 615 * and wake up anyone who is waiting for the commit to complete. 616 */ 617 spin_lock(&cil->xc_push_lock); 618 ctx->commit_lsn = commit_lsn; 619 wake_up_all(&cil->xc_commit_wait); 620 spin_unlock(&cil->xc_push_lock); 621 622 /* release the hounds! */ 623 return xfs_log_release_iclog(log->l_mp, commit_iclog); 624 625 out_skip: 626 up_write(&cil->xc_ctx_lock); 627 xfs_log_ticket_put(new_ctx->ticket); 628 kmem_free(new_ctx); 629 return 0; 630 631 out_abort_free_ticket: 632 xfs_log_ticket_put(tic); 633 out_abort: 634 xlog_cil_committed(ctx, XFS_LI_ABORTED); 635 return XFS_ERROR(EIO); 636 } 637 638 static void 639 xlog_cil_push_work( 640 struct work_struct *work) 641 { 642 struct xfs_cil *cil = container_of(work, struct xfs_cil, 643 xc_push_work); 644 xlog_cil_push(cil->xc_log); 645 } 646 647 /* 648 * We need to push CIL every so often so we don't cache more than we can fit in 649 * the log. The limit really is that a checkpoint can't be more than half the 650 * log (the current checkpoint is not allowed to overwrite the previous 651 * checkpoint), but commit latency and memory usage limit this to a smaller 652 * size. 653 */ 654 static void 655 xlog_cil_push_background( 656 struct xlog *log) 657 { 658 struct xfs_cil *cil = log->l_cilp; 659 660 /* 661 * The cil won't be empty because we are called while holding the 662 * context lock so whatever we added to the CIL will still be there 663 */ 664 ASSERT(!list_empty(&cil->xc_cil)); 665 666 /* 667 * don't do a background push if we haven't used up all the 668 * space available yet. 669 */ 670 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) 671 return; 672 673 spin_lock(&cil->xc_push_lock); 674 if (cil->xc_push_seq < cil->xc_current_sequence) { 675 cil->xc_push_seq = cil->xc_current_sequence; 676 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work); 677 } 678 spin_unlock(&cil->xc_push_lock); 679 680 } 681 682 static void 683 xlog_cil_push_foreground( 684 struct xlog *log, 685 xfs_lsn_t push_seq) 686 { 687 struct xfs_cil *cil = log->l_cilp; 688 689 if (!cil) 690 return; 691 692 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 693 694 /* start on any pending background push to minimise wait time on it */ 695 flush_work(&cil->xc_push_work); 696 697 /* 698 * If the CIL is empty or we've already pushed the sequence then 699 * there's no work we need to do. 700 */ 701 spin_lock(&cil->xc_push_lock); 702 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { 703 spin_unlock(&cil->xc_push_lock); 704 return; 705 } 706 707 cil->xc_push_seq = push_seq; 708 spin_unlock(&cil->xc_push_lock); 709 710 /* do the push now */ 711 xlog_cil_push(log); 712 } 713 714 /* 715 * Commit a transaction with the given vector to the Committed Item List. 716 * 717 * To do this, we need to format the item, pin it in memory if required and 718 * account for the space used by the transaction. Once we have done that we 719 * need to release the unused reservation for the transaction, attach the 720 * transaction to the checkpoint context so we carry the busy extents through 721 * to checkpoint completion, and then unlock all the items in the transaction. 722 * 723 * Called with the context lock already held in read mode to lock out 724 * background commit, returns without it held once background commits are 725 * allowed again. 726 */ 727 int 728 xfs_log_commit_cil( 729 struct xfs_mount *mp, 730 struct xfs_trans *tp, 731 xfs_lsn_t *commit_lsn, 732 int flags) 733 { 734 struct xlog *log = mp->m_log; 735 struct xfs_cil *cil = log->l_cilp; 736 int log_flags = 0; 737 738 if (flags & XFS_TRANS_RELEASE_LOG_RES) 739 log_flags = XFS_LOG_REL_PERM_RESERV; 740 741 /* lock out background commit */ 742 down_read(&cil->xc_ctx_lock); 743 744 xlog_cil_insert_items(log, tp); 745 746 /* check we didn't blow the reservation */ 747 if (tp->t_ticket->t_curr_res < 0) 748 xlog_print_tic_res(mp, tp->t_ticket); 749 750 tp->t_commit_lsn = cil->xc_ctx->sequence; 751 if (commit_lsn) 752 *commit_lsn = tp->t_commit_lsn; 753 754 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 755 xfs_trans_unreserve_and_mod_sb(tp); 756 757 /* 758 * Once all the items of the transaction have been copied to the CIL, 759 * the items can be unlocked and freed. 760 * 761 * This needs to be done before we drop the CIL context lock because we 762 * have to update state in the log items and unlock them before they go 763 * to disk. If we don't, then the CIL checkpoint can race with us and 764 * we can run checkpoint completion before we've updated and unlocked 765 * the log items. This affects (at least) processing of stale buffers, 766 * inodes and EFIs. 767 */ 768 xfs_trans_free_items(tp, tp->t_commit_lsn, 0); 769 770 xlog_cil_push_background(log); 771 772 up_read(&cil->xc_ctx_lock); 773 return 0; 774 } 775 776 /* 777 * Conditionally push the CIL based on the sequence passed in. 778 * 779 * We only need to push if we haven't already pushed the sequence 780 * number given. Hence the only time we will trigger a push here is 781 * if the push sequence is the same as the current context. 782 * 783 * We return the current commit lsn to allow the callers to determine if a 784 * iclog flush is necessary following this call. 785 */ 786 xfs_lsn_t 787 xlog_cil_force_lsn( 788 struct xlog *log, 789 xfs_lsn_t sequence) 790 { 791 struct xfs_cil *cil = log->l_cilp; 792 struct xfs_cil_ctx *ctx; 793 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 794 795 ASSERT(sequence <= cil->xc_current_sequence); 796 797 /* 798 * check to see if we need to force out the current context. 799 * xlog_cil_push() handles racing pushes for the same sequence, 800 * so no need to deal with it here. 801 */ 802 xlog_cil_push_foreground(log, sequence); 803 804 /* 805 * See if we can find a previous sequence still committing. 806 * We need to wait for all previous sequence commits to complete 807 * before allowing the force of push_seq to go ahead. Hence block 808 * on commits for those as well. 809 */ 810 restart: 811 spin_lock(&cil->xc_push_lock); 812 list_for_each_entry(ctx, &cil->xc_committing, committing) { 813 if (ctx->sequence > sequence) 814 continue; 815 if (!ctx->commit_lsn) { 816 /* 817 * It is still being pushed! Wait for the push to 818 * complete, then start again from the beginning. 819 */ 820 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 821 goto restart; 822 } 823 if (ctx->sequence != sequence) 824 continue; 825 /* found it! */ 826 commit_lsn = ctx->commit_lsn; 827 } 828 spin_unlock(&cil->xc_push_lock); 829 return commit_lsn; 830 } 831 832 /* 833 * Check if the current log item was first committed in this sequence. 834 * We can't rely on just the log item being in the CIL, we have to check 835 * the recorded commit sequence number. 836 * 837 * Note: for this to be used in a non-racy manner, it has to be called with 838 * CIL flushing locked out. As a result, it should only be used during the 839 * transaction commit process when deciding what to format into the item. 840 */ 841 bool 842 xfs_log_item_in_current_chkpt( 843 struct xfs_log_item *lip) 844 { 845 struct xfs_cil_ctx *ctx; 846 847 if (list_empty(&lip->li_cil)) 848 return false; 849 850 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; 851 852 /* 853 * li_seq is written on the first commit of a log item to record the 854 * first checkpoint it is written to. Hence if it is different to the 855 * current sequence, we're in a new checkpoint. 856 */ 857 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) 858 return false; 859 return true; 860 } 861 862 /* 863 * Perform initial CIL structure initialisation. 864 */ 865 int 866 xlog_cil_init( 867 struct xlog *log) 868 { 869 struct xfs_cil *cil; 870 struct xfs_cil_ctx *ctx; 871 872 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); 873 if (!cil) 874 return ENOMEM; 875 876 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); 877 if (!ctx) { 878 kmem_free(cil); 879 return ENOMEM; 880 } 881 882 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work); 883 INIT_LIST_HEAD(&cil->xc_cil); 884 INIT_LIST_HEAD(&cil->xc_committing); 885 spin_lock_init(&cil->xc_cil_lock); 886 spin_lock_init(&cil->xc_push_lock); 887 init_rwsem(&cil->xc_ctx_lock); 888 init_waitqueue_head(&cil->xc_commit_wait); 889 890 INIT_LIST_HEAD(&ctx->committing); 891 INIT_LIST_HEAD(&ctx->busy_extents); 892 ctx->sequence = 1; 893 ctx->cil = cil; 894 cil->xc_ctx = ctx; 895 cil->xc_current_sequence = ctx->sequence; 896 897 cil->xc_log = log; 898 log->l_cilp = cil; 899 return 0; 900 } 901 902 void 903 xlog_cil_destroy( 904 struct xlog *log) 905 { 906 if (log->l_cilp->xc_ctx) { 907 if (log->l_cilp->xc_ctx->ticket) 908 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 909 kmem_free(log->l_cilp->xc_ctx); 910 } 911 912 ASSERT(list_empty(&log->l_cilp->xc_cil)); 913 kmem_free(log->l_cilp); 914 } 915 916