xref: /openbmc/linux/fs/xfs/xfs_log.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_log_recover.h"
20 #include "xfs_inode.h"
21 #include "xfs_trace.h"
22 #include "xfs_fsops.h"
23 #include "xfs_cksum.h"
24 #include "xfs_sysfs.h"
25 #include "xfs_sb.h"
26 
27 kmem_zone_t	*xfs_log_ticket_zone;
28 
29 /* Local miscellaneous function prototypes */
30 STATIC int
31 xlog_commit_record(
32 	struct xlog		*log,
33 	struct xlog_ticket	*ticket,
34 	struct xlog_in_core	**iclog,
35 	xfs_lsn_t		*commitlsnp);
36 
37 STATIC struct xlog *
38 xlog_alloc_log(
39 	struct xfs_mount	*mp,
40 	struct xfs_buftarg	*log_target,
41 	xfs_daddr_t		blk_offset,
42 	int			num_bblks);
43 STATIC int
44 xlog_space_left(
45 	struct xlog		*log,
46 	atomic64_t		*head);
47 STATIC int
48 xlog_sync(
49 	struct xlog		*log,
50 	struct xlog_in_core	*iclog);
51 STATIC void
52 xlog_dealloc_log(
53 	struct xlog		*log);
54 
55 /* local state machine functions */
56 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
57 STATIC void
58 xlog_state_do_callback(
59 	struct xlog		*log,
60 	int			aborted,
61 	struct xlog_in_core	*iclog);
62 STATIC int
63 xlog_state_get_iclog_space(
64 	struct xlog		*log,
65 	int			len,
66 	struct xlog_in_core	**iclog,
67 	struct xlog_ticket	*ticket,
68 	int			*continued_write,
69 	int			*logoffsetp);
70 STATIC int
71 xlog_state_release_iclog(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog);
74 STATIC void
75 xlog_state_switch_iclogs(
76 	struct xlog		*log,
77 	struct xlog_in_core	*iclog,
78 	int			eventual_size);
79 STATIC void
80 xlog_state_want_sync(
81 	struct xlog		*log,
82 	struct xlog_in_core	*iclog);
83 
84 STATIC void
85 xlog_grant_push_ail(
86 	struct xlog		*log,
87 	int			need_bytes);
88 STATIC void
89 xlog_regrant_reserve_log_space(
90 	struct xlog		*log,
91 	struct xlog_ticket	*ticket);
92 STATIC void
93 xlog_ungrant_log_space(
94 	struct xlog		*log,
95 	struct xlog_ticket	*ticket);
96 
97 #if defined(DEBUG)
98 STATIC void
99 xlog_verify_dest_ptr(
100 	struct xlog		*log,
101 	void			*ptr);
102 STATIC void
103 xlog_verify_grant_tail(
104 	struct xlog *log);
105 STATIC void
106 xlog_verify_iclog(
107 	struct xlog		*log,
108 	struct xlog_in_core	*iclog,
109 	int			count,
110 	bool                    syncing);
111 STATIC void
112 xlog_verify_tail_lsn(
113 	struct xlog		*log,
114 	struct xlog_in_core	*iclog,
115 	xfs_lsn_t		tail_lsn);
116 #else
117 #define xlog_verify_dest_ptr(a,b)
118 #define xlog_verify_grant_tail(a)
119 #define xlog_verify_iclog(a,b,c,d)
120 #define xlog_verify_tail_lsn(a,b,c)
121 #endif
122 
123 STATIC int
124 xlog_iclogs_empty(
125 	struct xlog		*log);
126 
127 static void
128 xlog_grant_sub_space(
129 	struct xlog		*log,
130 	atomic64_t		*head,
131 	int			bytes)
132 {
133 	int64_t	head_val = atomic64_read(head);
134 	int64_t new, old;
135 
136 	do {
137 		int	cycle, space;
138 
139 		xlog_crack_grant_head_val(head_val, &cycle, &space);
140 
141 		space -= bytes;
142 		if (space < 0) {
143 			space += log->l_logsize;
144 			cycle--;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 static void
154 xlog_grant_add_space(
155 	struct xlog		*log,
156 	atomic64_t		*head,
157 	int			bytes)
158 {
159 	int64_t	head_val = atomic64_read(head);
160 	int64_t new, old;
161 
162 	do {
163 		int		tmp;
164 		int		cycle, space;
165 
166 		xlog_crack_grant_head_val(head_val, &cycle, &space);
167 
168 		tmp = log->l_logsize - space;
169 		if (tmp > bytes)
170 			space += bytes;
171 		else {
172 			space = bytes - tmp;
173 			cycle++;
174 		}
175 
176 		old = head_val;
177 		new = xlog_assign_grant_head_val(cycle, space);
178 		head_val = atomic64_cmpxchg(head, old, new);
179 	} while (head_val != old);
180 }
181 
182 STATIC void
183 xlog_grant_head_init(
184 	struct xlog_grant_head	*head)
185 {
186 	xlog_assign_grant_head(&head->grant, 1, 0);
187 	INIT_LIST_HEAD(&head->waiters);
188 	spin_lock_init(&head->lock);
189 }
190 
191 STATIC void
192 xlog_grant_head_wake_all(
193 	struct xlog_grant_head	*head)
194 {
195 	struct xlog_ticket	*tic;
196 
197 	spin_lock(&head->lock);
198 	list_for_each_entry(tic, &head->waiters, t_queue)
199 		wake_up_process(tic->t_task);
200 	spin_unlock(&head->lock);
201 }
202 
203 static inline int
204 xlog_ticket_reservation(
205 	struct xlog		*log,
206 	struct xlog_grant_head	*head,
207 	struct xlog_ticket	*tic)
208 {
209 	if (head == &log->l_write_head) {
210 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
211 		return tic->t_unit_res;
212 	} else {
213 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
214 			return tic->t_unit_res * tic->t_cnt;
215 		else
216 			return tic->t_unit_res;
217 	}
218 }
219 
220 STATIC bool
221 xlog_grant_head_wake(
222 	struct xlog		*log,
223 	struct xlog_grant_head	*head,
224 	int			*free_bytes)
225 {
226 	struct xlog_ticket	*tic;
227 	int			need_bytes;
228 
229 	list_for_each_entry(tic, &head->waiters, t_queue) {
230 		need_bytes = xlog_ticket_reservation(log, head, tic);
231 		if (*free_bytes < need_bytes)
232 			return false;
233 
234 		*free_bytes -= need_bytes;
235 		trace_xfs_log_grant_wake_up(log, tic);
236 		wake_up_process(tic->t_task);
237 	}
238 
239 	return true;
240 }
241 
242 STATIC int
243 xlog_grant_head_wait(
244 	struct xlog		*log,
245 	struct xlog_grant_head	*head,
246 	struct xlog_ticket	*tic,
247 	int			need_bytes) __releases(&head->lock)
248 					    __acquires(&head->lock)
249 {
250 	list_add_tail(&tic->t_queue, &head->waiters);
251 
252 	do {
253 		if (XLOG_FORCED_SHUTDOWN(log))
254 			goto shutdown;
255 		xlog_grant_push_ail(log, need_bytes);
256 
257 		__set_current_state(TASK_UNINTERRUPTIBLE);
258 		spin_unlock(&head->lock);
259 
260 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
261 
262 		trace_xfs_log_grant_sleep(log, tic);
263 		schedule();
264 		trace_xfs_log_grant_wake(log, tic);
265 
266 		spin_lock(&head->lock);
267 		if (XLOG_FORCED_SHUTDOWN(log))
268 			goto shutdown;
269 	} while (xlog_space_left(log, &head->grant) < need_bytes);
270 
271 	list_del_init(&tic->t_queue);
272 	return 0;
273 shutdown:
274 	list_del_init(&tic->t_queue);
275 	return -EIO;
276 }
277 
278 /*
279  * Atomically get the log space required for a log ticket.
280  *
281  * Once a ticket gets put onto head->waiters, it will only return after the
282  * needed reservation is satisfied.
283  *
284  * This function is structured so that it has a lock free fast path. This is
285  * necessary because every new transaction reservation will come through this
286  * path. Hence any lock will be globally hot if we take it unconditionally on
287  * every pass.
288  *
289  * As tickets are only ever moved on and off head->waiters under head->lock, we
290  * only need to take that lock if we are going to add the ticket to the queue
291  * and sleep. We can avoid taking the lock if the ticket was never added to
292  * head->waiters because the t_queue list head will be empty and we hold the
293  * only reference to it so it can safely be checked unlocked.
294  */
295 STATIC int
296 xlog_grant_head_check(
297 	struct xlog		*log,
298 	struct xlog_grant_head	*head,
299 	struct xlog_ticket	*tic,
300 	int			*need_bytes)
301 {
302 	int			free_bytes;
303 	int			error = 0;
304 
305 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
306 
307 	/*
308 	 * If there are other waiters on the queue then give them a chance at
309 	 * logspace before us.  Wake up the first waiters, if we do not wake
310 	 * up all the waiters then go to sleep waiting for more free space,
311 	 * otherwise try to get some space for this transaction.
312 	 */
313 	*need_bytes = xlog_ticket_reservation(log, head, tic);
314 	free_bytes = xlog_space_left(log, &head->grant);
315 	if (!list_empty_careful(&head->waiters)) {
316 		spin_lock(&head->lock);
317 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
318 		    free_bytes < *need_bytes) {
319 			error = xlog_grant_head_wait(log, head, tic,
320 						     *need_bytes);
321 		}
322 		spin_unlock(&head->lock);
323 	} else if (free_bytes < *need_bytes) {
324 		spin_lock(&head->lock);
325 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
326 		spin_unlock(&head->lock);
327 	}
328 
329 	return error;
330 }
331 
332 static void
333 xlog_tic_reset_res(xlog_ticket_t *tic)
334 {
335 	tic->t_res_num = 0;
336 	tic->t_res_arr_sum = 0;
337 	tic->t_res_num_ophdrs = 0;
338 }
339 
340 static void
341 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
342 {
343 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
344 		/* add to overflow and start again */
345 		tic->t_res_o_flow += tic->t_res_arr_sum;
346 		tic->t_res_num = 0;
347 		tic->t_res_arr_sum = 0;
348 	}
349 
350 	tic->t_res_arr[tic->t_res_num].r_len = len;
351 	tic->t_res_arr[tic->t_res_num].r_type = type;
352 	tic->t_res_arr_sum += len;
353 	tic->t_res_num++;
354 }
355 
356 /*
357  * Replenish the byte reservation required by moving the grant write head.
358  */
359 int
360 xfs_log_regrant(
361 	struct xfs_mount	*mp,
362 	struct xlog_ticket	*tic)
363 {
364 	struct xlog		*log = mp->m_log;
365 	int			need_bytes;
366 	int			error = 0;
367 
368 	if (XLOG_FORCED_SHUTDOWN(log))
369 		return -EIO;
370 
371 	XFS_STATS_INC(mp, xs_try_logspace);
372 
373 	/*
374 	 * This is a new transaction on the ticket, so we need to change the
375 	 * transaction ID so that the next transaction has a different TID in
376 	 * the log. Just add one to the existing tid so that we can see chains
377 	 * of rolling transactions in the log easily.
378 	 */
379 	tic->t_tid++;
380 
381 	xlog_grant_push_ail(log, tic->t_unit_res);
382 
383 	tic->t_curr_res = tic->t_unit_res;
384 	xlog_tic_reset_res(tic);
385 
386 	if (tic->t_cnt > 0)
387 		return 0;
388 
389 	trace_xfs_log_regrant(log, tic);
390 
391 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
392 				      &need_bytes);
393 	if (error)
394 		goto out_error;
395 
396 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
397 	trace_xfs_log_regrant_exit(log, tic);
398 	xlog_verify_grant_tail(log);
399 	return 0;
400 
401 out_error:
402 	/*
403 	 * If we are failing, make sure the ticket doesn't have any current
404 	 * reservations.  We don't want to add this back when the ticket/
405 	 * transaction gets cancelled.
406 	 */
407 	tic->t_curr_res = 0;
408 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
409 	return error;
410 }
411 
412 /*
413  * Reserve log space and return a ticket corresponding the reservation.
414  *
415  * Each reservation is going to reserve extra space for a log record header.
416  * When writes happen to the on-disk log, we don't subtract the length of the
417  * log record header from any reservation.  By wasting space in each
418  * reservation, we prevent over allocation problems.
419  */
420 int
421 xfs_log_reserve(
422 	struct xfs_mount	*mp,
423 	int		 	unit_bytes,
424 	int		 	cnt,
425 	struct xlog_ticket	**ticp,
426 	uint8_t		 	client,
427 	bool			permanent)
428 {
429 	struct xlog		*log = mp->m_log;
430 	struct xlog_ticket	*tic;
431 	int			need_bytes;
432 	int			error = 0;
433 
434 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
435 
436 	if (XLOG_FORCED_SHUTDOWN(log))
437 		return -EIO;
438 
439 	XFS_STATS_INC(mp, xs_try_logspace);
440 
441 	ASSERT(*ticp == NULL);
442 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
443 				KM_SLEEP | KM_MAYFAIL);
444 	if (!tic)
445 		return -ENOMEM;
446 
447 	*ticp = tic;
448 
449 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
450 					    : tic->t_unit_res);
451 
452 	trace_xfs_log_reserve(log, tic);
453 
454 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
455 				      &need_bytes);
456 	if (error)
457 		goto out_error;
458 
459 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
460 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
461 	trace_xfs_log_reserve_exit(log, tic);
462 	xlog_verify_grant_tail(log);
463 	return 0;
464 
465 out_error:
466 	/*
467 	 * If we are failing, make sure the ticket doesn't have any current
468 	 * reservations.  We don't want to add this back when the ticket/
469 	 * transaction gets cancelled.
470 	 */
471 	tic->t_curr_res = 0;
472 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
473 	return error;
474 }
475 
476 
477 /*
478  * NOTES:
479  *
480  *	1. currblock field gets updated at startup and after in-core logs
481  *		marked as with WANT_SYNC.
482  */
483 
484 /*
485  * This routine is called when a user of a log manager ticket is done with
486  * the reservation.  If the ticket was ever used, then a commit record for
487  * the associated transaction is written out as a log operation header with
488  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
489  * a given ticket.  If the ticket was one with a permanent reservation, then
490  * a few operations are done differently.  Permanent reservation tickets by
491  * default don't release the reservation.  They just commit the current
492  * transaction with the belief that the reservation is still needed.  A flag
493  * must be passed in before permanent reservations are actually released.
494  * When these type of tickets are not released, they need to be set into
495  * the inited state again.  By doing this, a start record will be written
496  * out when the next write occurs.
497  */
498 xfs_lsn_t
499 xfs_log_done(
500 	struct xfs_mount	*mp,
501 	struct xlog_ticket	*ticket,
502 	struct xlog_in_core	**iclog,
503 	bool			regrant)
504 {
505 	struct xlog		*log = mp->m_log;
506 	xfs_lsn_t		lsn = 0;
507 
508 	if (XLOG_FORCED_SHUTDOWN(log) ||
509 	    /*
510 	     * If nothing was ever written, don't write out commit record.
511 	     * If we get an error, just continue and give back the log ticket.
512 	     */
513 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
514 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
515 		lsn = (xfs_lsn_t) -1;
516 		regrant = false;
517 	}
518 
519 
520 	if (!regrant) {
521 		trace_xfs_log_done_nonperm(log, ticket);
522 
523 		/*
524 		 * Release ticket if not permanent reservation or a specific
525 		 * request has been made to release a permanent reservation.
526 		 */
527 		xlog_ungrant_log_space(log, ticket);
528 	} else {
529 		trace_xfs_log_done_perm(log, ticket);
530 
531 		xlog_regrant_reserve_log_space(log, ticket);
532 		/* If this ticket was a permanent reservation and we aren't
533 		 * trying to release it, reset the inited flags; so next time
534 		 * we write, a start record will be written out.
535 		 */
536 		ticket->t_flags |= XLOG_TIC_INITED;
537 	}
538 
539 	xfs_log_ticket_put(ticket);
540 	return lsn;
541 }
542 
543 /*
544  * Attaches a new iclog I/O completion callback routine during
545  * transaction commit.  If the log is in error state, a non-zero
546  * return code is handed back and the caller is responsible for
547  * executing the callback at an appropriate time.
548  */
549 int
550 xfs_log_notify(
551 	struct xlog_in_core	*iclog,
552 	xfs_log_callback_t	*cb)
553 {
554 	int	abortflg;
555 
556 	spin_lock(&iclog->ic_callback_lock);
557 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
558 	if (!abortflg) {
559 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
560 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
561 		cb->cb_next = NULL;
562 		*(iclog->ic_callback_tail) = cb;
563 		iclog->ic_callback_tail = &(cb->cb_next);
564 	}
565 	spin_unlock(&iclog->ic_callback_lock);
566 	return abortflg;
567 }
568 
569 int
570 xfs_log_release_iclog(
571 	struct xfs_mount	*mp,
572 	struct xlog_in_core	*iclog)
573 {
574 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
575 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
576 		return -EIO;
577 	}
578 
579 	return 0;
580 }
581 
582 /*
583  * Mount a log filesystem
584  *
585  * mp		- ubiquitous xfs mount point structure
586  * log_target	- buftarg of on-disk log device
587  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
588  * num_bblocks	- Number of BBSIZE blocks in on-disk log
589  *
590  * Return error or zero.
591  */
592 int
593 xfs_log_mount(
594 	xfs_mount_t	*mp,
595 	xfs_buftarg_t	*log_target,
596 	xfs_daddr_t	blk_offset,
597 	int		num_bblks)
598 {
599 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
600 	int		error = 0;
601 	int		min_logfsbs;
602 
603 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
604 		xfs_notice(mp, "Mounting V%d Filesystem",
605 			   XFS_SB_VERSION_NUM(&mp->m_sb));
606 	} else {
607 		xfs_notice(mp,
608 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
609 			   XFS_SB_VERSION_NUM(&mp->m_sb));
610 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
611 	}
612 
613 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
614 	if (IS_ERR(mp->m_log)) {
615 		error = PTR_ERR(mp->m_log);
616 		goto out;
617 	}
618 
619 	/*
620 	 * Validate the given log space and drop a critical message via syslog
621 	 * if the log size is too small that would lead to some unexpected
622 	 * situations in transaction log space reservation stage.
623 	 *
624 	 * Note: we can't just reject the mount if the validation fails.  This
625 	 * would mean that people would have to downgrade their kernel just to
626 	 * remedy the situation as there is no way to grow the log (short of
627 	 * black magic surgery with xfs_db).
628 	 *
629 	 * We can, however, reject mounts for CRC format filesystems, as the
630 	 * mkfs binary being used to make the filesystem should never create a
631 	 * filesystem with a log that is too small.
632 	 */
633 	min_logfsbs = xfs_log_calc_minimum_size(mp);
634 
635 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
636 		xfs_warn(mp,
637 		"Log size %d blocks too small, minimum size is %d blocks",
638 			 mp->m_sb.sb_logblocks, min_logfsbs);
639 		error = -EINVAL;
640 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
641 		xfs_warn(mp,
642 		"Log size %d blocks too large, maximum size is %lld blocks",
643 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
644 		error = -EINVAL;
645 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
646 		xfs_warn(mp,
647 		"log size %lld bytes too large, maximum size is %lld bytes",
648 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
649 			 XFS_MAX_LOG_BYTES);
650 		error = -EINVAL;
651 	} else if (mp->m_sb.sb_logsunit > 1 &&
652 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
653 		xfs_warn(mp,
654 		"log stripe unit %u bytes must be a multiple of block size",
655 			 mp->m_sb.sb_logsunit);
656 		error = -EINVAL;
657 		fatal = true;
658 	}
659 	if (error) {
660 		/*
661 		 * Log check errors are always fatal on v5; or whenever bad
662 		 * metadata leads to a crash.
663 		 */
664 		if (fatal) {
665 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 			ASSERT(0);
667 			goto out_free_log;
668 		}
669 		xfs_crit(mp, "Log size out of supported range.");
670 		xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 	}
673 
674 	/*
675 	 * Initialize the AIL now we have a log.
676 	 */
677 	error = xfs_trans_ail_init(mp);
678 	if (error) {
679 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 		goto out_free_log;
681 	}
682 	mp->m_log->l_ailp = mp->m_ail;
683 
684 	/*
685 	 * skip log recovery on a norecovery mount.  pretend it all
686 	 * just worked.
687 	 */
688 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690 
691 		if (readonly)
692 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
693 
694 		error = xlog_recover(mp->m_log);
695 
696 		if (readonly)
697 			mp->m_flags |= XFS_MOUNT_RDONLY;
698 		if (error) {
699 			xfs_warn(mp, "log mount/recovery failed: error %d",
700 				error);
701 			xlog_recover_cancel(mp->m_log);
702 			goto out_destroy_ail;
703 		}
704 	}
705 
706 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 			       "log");
708 	if (error)
709 		goto out_destroy_ail;
710 
711 	/* Normal transactions can now occur */
712 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713 
714 	/*
715 	 * Now the log has been fully initialised and we know were our
716 	 * space grant counters are, we can initialise the permanent ticket
717 	 * needed for delayed logging to work.
718 	 */
719 	xlog_cil_init_post_recovery(mp->m_log);
720 
721 	return 0;
722 
723 out_destroy_ail:
724 	xfs_trans_ail_destroy(mp);
725 out_free_log:
726 	xlog_dealloc_log(mp->m_log);
727 out:
728 	return error;
729 }
730 
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743 	struct xfs_mount	*mp)
744 {
745 	int	error = 0;
746 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
748 
749 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 		return 0;
752 	} else if (readonly) {
753 		/* Allow unlinked processing to proceed */
754 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
755 	}
756 
757 	/*
758 	 * During the second phase of log recovery, we need iget and
759 	 * iput to behave like they do for an active filesystem.
760 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
761 	 * of inodes before we're done replaying log items on those
762 	 * inodes.  Turn it off immediately after recovery finishes
763 	 * so that we don't leak the quota inodes if subsequent mount
764 	 * activities fail.
765 	 *
766 	 * We let all inodes involved in redo item processing end up on
767 	 * the LRU instead of being evicted immediately so that if we do
768 	 * something to an unlinked inode, the irele won't cause
769 	 * premature truncation and freeing of the inode, which results
770 	 * in log recovery failure.  We have to evict the unreferenced
771 	 * lru inodes after clearing SB_ACTIVE because we don't
772 	 * otherwise clean up the lru if there's a subsequent failure in
773 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
774 	 * else (e.g. quotacheck) references the inodes before the
775 	 * mount failure occurs.
776 	 */
777 	mp->m_super->s_flags |= SB_ACTIVE;
778 	error = xlog_recover_finish(mp->m_log);
779 	if (!error)
780 		xfs_log_work_queue(mp);
781 	mp->m_super->s_flags &= ~SB_ACTIVE;
782 	evict_inodes(mp->m_super);
783 
784 	/*
785 	 * Drain the buffer LRU after log recovery. This is required for v4
786 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
787 	 * but we do it unconditionally to make sure we're always in a clean
788 	 * cache state after mount.
789 	 *
790 	 * Don't push in the error case because the AIL may have pending intents
791 	 * that aren't removed until recovery is cancelled.
792 	 */
793 	if (!error && recovered) {
794 		xfs_log_force(mp, XFS_LOG_SYNC);
795 		xfs_ail_push_all_sync(mp->m_ail);
796 	}
797 	xfs_wait_buftarg(mp->m_ddev_targp);
798 
799 	if (readonly)
800 		mp->m_flags |= XFS_MOUNT_RDONLY;
801 
802 	return error;
803 }
804 
805 /*
806  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
807  * the log.
808  */
809 int
810 xfs_log_mount_cancel(
811 	struct xfs_mount	*mp)
812 {
813 	int			error;
814 
815 	error = xlog_recover_cancel(mp->m_log);
816 	xfs_log_unmount(mp);
817 
818 	return error;
819 }
820 
821 /*
822  * Final log writes as part of unmount.
823  *
824  * Mark the filesystem clean as unmount happens.  Note that during relocation
825  * this routine needs to be executed as part of source-bag while the
826  * deallocation must not be done until source-end.
827  */
828 
829 /*
830  * Unmount record used to have a string "Unmount filesystem--" in the
831  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
832  * We just write the magic number now since that particular field isn't
833  * currently architecture converted and "Unmount" is a bit foo.
834  * As far as I know, there weren't any dependencies on the old behaviour.
835  */
836 
837 static int
838 xfs_log_unmount_write(xfs_mount_t *mp)
839 {
840 	struct xlog	 *log = mp->m_log;
841 	xlog_in_core_t	 *iclog;
842 #ifdef DEBUG
843 	xlog_in_core_t	 *first_iclog;
844 #endif
845 	xlog_ticket_t	*tic = NULL;
846 	xfs_lsn_t	 lsn;
847 	int		 error;
848 
849 	/*
850 	 * Don't write out unmount record on norecovery mounts or ro devices.
851 	 * Or, if we are doing a forced umount (typically because of IO errors).
852 	 */
853 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
854 	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
855 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
856 		return 0;
857 	}
858 
859 	error = xfs_log_force(mp, XFS_LOG_SYNC);
860 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
861 
862 #ifdef DEBUG
863 	first_iclog = iclog = log->l_iclog;
864 	do {
865 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
866 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
867 			ASSERT(iclog->ic_offset == 0);
868 		}
869 		iclog = iclog->ic_next;
870 	} while (iclog != first_iclog);
871 #endif
872 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
873 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
874 		if (!error) {
875 			/* the data section must be 32 bit size aligned */
876 			struct {
877 			    uint16_t magic;
878 			    uint16_t pad1;
879 			    uint32_t pad2; /* may as well make it 64 bits */
880 			} magic = {
881 				.magic = XLOG_UNMOUNT_TYPE,
882 			};
883 			struct xfs_log_iovec reg = {
884 				.i_addr = &magic,
885 				.i_len = sizeof(magic),
886 				.i_type = XLOG_REG_TYPE_UNMOUNT,
887 			};
888 			struct xfs_log_vec vec = {
889 				.lv_niovecs = 1,
890 				.lv_iovecp = &reg,
891 			};
892 
893 			/* remove inited flag, and account for space used */
894 			tic->t_flags = 0;
895 			tic->t_curr_res -= sizeof(magic);
896 			error = xlog_write(log, &vec, tic, &lsn,
897 					   NULL, XLOG_UNMOUNT_TRANS);
898 			/*
899 			 * At this point, we're umounting anyway,
900 			 * so there's no point in transitioning log state
901 			 * to IOERROR. Just continue...
902 			 */
903 		}
904 
905 		if (error)
906 			xfs_alert(mp, "%s: unmount record failed", __func__);
907 
908 
909 		spin_lock(&log->l_icloglock);
910 		iclog = log->l_iclog;
911 		atomic_inc(&iclog->ic_refcnt);
912 		xlog_state_want_sync(log, iclog);
913 		spin_unlock(&log->l_icloglock);
914 		error = xlog_state_release_iclog(log, iclog);
915 
916 		spin_lock(&log->l_icloglock);
917 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
918 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
919 			if (!XLOG_FORCED_SHUTDOWN(log)) {
920 				xlog_wait(&iclog->ic_force_wait,
921 							&log->l_icloglock);
922 			} else {
923 				spin_unlock(&log->l_icloglock);
924 			}
925 		} else {
926 			spin_unlock(&log->l_icloglock);
927 		}
928 		if (tic) {
929 			trace_xfs_log_umount_write(log, tic);
930 			xlog_ungrant_log_space(log, tic);
931 			xfs_log_ticket_put(tic);
932 		}
933 	} else {
934 		/*
935 		 * We're already in forced_shutdown mode, couldn't
936 		 * even attempt to write out the unmount transaction.
937 		 *
938 		 * Go through the motions of sync'ing and releasing
939 		 * the iclog, even though no I/O will actually happen,
940 		 * we need to wait for other log I/Os that may already
941 		 * be in progress.  Do this as a separate section of
942 		 * code so we'll know if we ever get stuck here that
943 		 * we're in this odd situation of trying to unmount
944 		 * a file system that went into forced_shutdown as
945 		 * the result of an unmount..
946 		 */
947 		spin_lock(&log->l_icloglock);
948 		iclog = log->l_iclog;
949 		atomic_inc(&iclog->ic_refcnt);
950 
951 		xlog_state_want_sync(log, iclog);
952 		spin_unlock(&log->l_icloglock);
953 		error =  xlog_state_release_iclog(log, iclog);
954 
955 		spin_lock(&log->l_icloglock);
956 
957 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
958 			|| iclog->ic_state == XLOG_STATE_DIRTY
959 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
960 
961 				xlog_wait(&iclog->ic_force_wait,
962 							&log->l_icloglock);
963 		} else {
964 			spin_unlock(&log->l_icloglock);
965 		}
966 	}
967 
968 	return error;
969 }	/* xfs_log_unmount_write */
970 
971 /*
972  * Empty the log for unmount/freeze.
973  *
974  * To do this, we first need to shut down the background log work so it is not
975  * trying to cover the log as we clean up. We then need to unpin all objects in
976  * the log so we can then flush them out. Once they have completed their IO and
977  * run the callbacks removing themselves from the AIL, we can write the unmount
978  * record.
979  */
980 void
981 xfs_log_quiesce(
982 	struct xfs_mount	*mp)
983 {
984 	cancel_delayed_work_sync(&mp->m_log->l_work);
985 	xfs_log_force(mp, XFS_LOG_SYNC);
986 
987 	/*
988 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
989 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
990 	 * xfs_buf_iowait() cannot be used because it was pushed with the
991 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
992 	 * the IO to complete.
993 	 */
994 	xfs_ail_push_all_sync(mp->m_ail);
995 	xfs_wait_buftarg(mp->m_ddev_targp);
996 	xfs_buf_lock(mp->m_sb_bp);
997 	xfs_buf_unlock(mp->m_sb_bp);
998 
999 	xfs_log_unmount_write(mp);
1000 }
1001 
1002 /*
1003  * Shut down and release the AIL and Log.
1004  *
1005  * During unmount, we need to ensure we flush all the dirty metadata objects
1006  * from the AIL so that the log is empty before we write the unmount record to
1007  * the log. Once this is done, we can tear down the AIL and the log.
1008  */
1009 void
1010 xfs_log_unmount(
1011 	struct xfs_mount	*mp)
1012 {
1013 	xfs_log_quiesce(mp);
1014 
1015 	xfs_trans_ail_destroy(mp);
1016 
1017 	xfs_sysfs_del(&mp->m_log->l_kobj);
1018 
1019 	xlog_dealloc_log(mp->m_log);
1020 }
1021 
1022 void
1023 xfs_log_item_init(
1024 	struct xfs_mount	*mp,
1025 	struct xfs_log_item	*item,
1026 	int			type,
1027 	const struct xfs_item_ops *ops)
1028 {
1029 	item->li_mountp = mp;
1030 	item->li_ailp = mp->m_ail;
1031 	item->li_type = type;
1032 	item->li_ops = ops;
1033 	item->li_lv = NULL;
1034 
1035 	INIT_LIST_HEAD(&item->li_ail);
1036 	INIT_LIST_HEAD(&item->li_cil);
1037 	INIT_LIST_HEAD(&item->li_bio_list);
1038 	INIT_LIST_HEAD(&item->li_trans);
1039 }
1040 
1041 /*
1042  * Wake up processes waiting for log space after we have moved the log tail.
1043  */
1044 void
1045 xfs_log_space_wake(
1046 	struct xfs_mount	*mp)
1047 {
1048 	struct xlog		*log = mp->m_log;
1049 	int			free_bytes;
1050 
1051 	if (XLOG_FORCED_SHUTDOWN(log))
1052 		return;
1053 
1054 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1055 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1056 
1057 		spin_lock(&log->l_write_head.lock);
1058 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1059 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1060 		spin_unlock(&log->l_write_head.lock);
1061 	}
1062 
1063 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1064 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1065 
1066 		spin_lock(&log->l_reserve_head.lock);
1067 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1068 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1069 		spin_unlock(&log->l_reserve_head.lock);
1070 	}
1071 }
1072 
1073 /*
1074  * Determine if we have a transaction that has gone to disk that needs to be
1075  * covered. To begin the transition to the idle state firstly the log needs to
1076  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1077  * we start attempting to cover the log.
1078  *
1079  * Only if we are then in a state where covering is needed, the caller is
1080  * informed that dummy transactions are required to move the log into the idle
1081  * state.
1082  *
1083  * If there are any items in the AIl or CIL, then we do not want to attempt to
1084  * cover the log as we may be in a situation where there isn't log space
1085  * available to run a dummy transaction and this can lead to deadlocks when the
1086  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1087  * there's no point in running a dummy transaction at this point because we
1088  * can't start trying to idle the log until both the CIL and AIL are empty.
1089  */
1090 static int
1091 xfs_log_need_covered(xfs_mount_t *mp)
1092 {
1093 	struct xlog	*log = mp->m_log;
1094 	int		needed = 0;
1095 
1096 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1097 		return 0;
1098 
1099 	if (!xlog_cil_empty(log))
1100 		return 0;
1101 
1102 	spin_lock(&log->l_icloglock);
1103 	switch (log->l_covered_state) {
1104 	case XLOG_STATE_COVER_DONE:
1105 	case XLOG_STATE_COVER_DONE2:
1106 	case XLOG_STATE_COVER_IDLE:
1107 		break;
1108 	case XLOG_STATE_COVER_NEED:
1109 	case XLOG_STATE_COVER_NEED2:
1110 		if (xfs_ail_min_lsn(log->l_ailp))
1111 			break;
1112 		if (!xlog_iclogs_empty(log))
1113 			break;
1114 
1115 		needed = 1;
1116 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1117 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1118 		else
1119 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1120 		break;
1121 	default:
1122 		needed = 1;
1123 		break;
1124 	}
1125 	spin_unlock(&log->l_icloglock);
1126 	return needed;
1127 }
1128 
1129 /*
1130  * We may be holding the log iclog lock upon entering this routine.
1131  */
1132 xfs_lsn_t
1133 xlog_assign_tail_lsn_locked(
1134 	struct xfs_mount	*mp)
1135 {
1136 	struct xlog		*log = mp->m_log;
1137 	struct xfs_log_item	*lip;
1138 	xfs_lsn_t		tail_lsn;
1139 
1140 	assert_spin_locked(&mp->m_ail->ail_lock);
1141 
1142 	/*
1143 	 * To make sure we always have a valid LSN for the log tail we keep
1144 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1145 	 * and use that when the AIL was empty.
1146 	 */
1147 	lip = xfs_ail_min(mp->m_ail);
1148 	if (lip)
1149 		tail_lsn = lip->li_lsn;
1150 	else
1151 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1152 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1153 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1154 	return tail_lsn;
1155 }
1156 
1157 xfs_lsn_t
1158 xlog_assign_tail_lsn(
1159 	struct xfs_mount	*mp)
1160 {
1161 	xfs_lsn_t		tail_lsn;
1162 
1163 	spin_lock(&mp->m_ail->ail_lock);
1164 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1165 	spin_unlock(&mp->m_ail->ail_lock);
1166 
1167 	return tail_lsn;
1168 }
1169 
1170 /*
1171  * Return the space in the log between the tail and the head.  The head
1172  * is passed in the cycle/bytes formal parms.  In the special case where
1173  * the reserve head has wrapped passed the tail, this calculation is no
1174  * longer valid.  In this case, just return 0 which means there is no space
1175  * in the log.  This works for all places where this function is called
1176  * with the reserve head.  Of course, if the write head were to ever
1177  * wrap the tail, we should blow up.  Rather than catch this case here,
1178  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1179  *
1180  * This code also handles the case where the reservation head is behind
1181  * the tail.  The details of this case are described below, but the end
1182  * result is that we return the size of the log as the amount of space left.
1183  */
1184 STATIC int
1185 xlog_space_left(
1186 	struct xlog	*log,
1187 	atomic64_t	*head)
1188 {
1189 	int		free_bytes;
1190 	int		tail_bytes;
1191 	int		tail_cycle;
1192 	int		head_cycle;
1193 	int		head_bytes;
1194 
1195 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1196 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1197 	tail_bytes = BBTOB(tail_bytes);
1198 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1199 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1200 	else if (tail_cycle + 1 < head_cycle)
1201 		return 0;
1202 	else if (tail_cycle < head_cycle) {
1203 		ASSERT(tail_cycle == (head_cycle - 1));
1204 		free_bytes = tail_bytes - head_bytes;
1205 	} else {
1206 		/*
1207 		 * The reservation head is behind the tail.
1208 		 * In this case we just want to return the size of the
1209 		 * log as the amount of space left.
1210 		 */
1211 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1212 		xfs_alert(log->l_mp,
1213 			  "  tail_cycle = %d, tail_bytes = %d",
1214 			  tail_cycle, tail_bytes);
1215 		xfs_alert(log->l_mp,
1216 			  "  GH   cycle = %d, GH   bytes = %d",
1217 			  head_cycle, head_bytes);
1218 		ASSERT(0);
1219 		free_bytes = log->l_logsize;
1220 	}
1221 	return free_bytes;
1222 }
1223 
1224 
1225 /*
1226  * Log function which is called when an io completes.
1227  *
1228  * The log manager needs its own routine, in order to control what
1229  * happens with the buffer after the write completes.
1230  */
1231 static void
1232 xlog_iodone(xfs_buf_t *bp)
1233 {
1234 	struct xlog_in_core	*iclog = bp->b_log_item;
1235 	struct xlog		*l = iclog->ic_log;
1236 	int			aborted = 0;
1237 
1238 	/*
1239 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1240 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1241 	 * CRC errors into log recovery.
1242 	 */
1243 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1244 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1245 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1246 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1247 
1248 		xfs_buf_ioerror_alert(bp, __func__);
1249 		xfs_buf_stale(bp);
1250 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251 		/*
1252 		 * This flag will be propagated to the trans-committed
1253 		 * callback routines to let them know that the log-commit
1254 		 * didn't succeed.
1255 		 */
1256 		aborted = XFS_LI_ABORTED;
1257 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258 		aborted = XFS_LI_ABORTED;
1259 	}
1260 
1261 	/* log I/O is always issued ASYNC */
1262 	ASSERT(bp->b_flags & XBF_ASYNC);
1263 	xlog_state_done_syncing(iclog, aborted);
1264 
1265 	/*
1266 	 * drop the buffer lock now that we are done. Nothing references
1267 	 * the buffer after this, so an unmount waiting on this lock can now
1268 	 * tear it down safely. As such, it is unsafe to reference the buffer
1269 	 * (bp) after the unlock as we could race with it being freed.
1270 	 */
1271 	xfs_buf_unlock(bp);
1272 }
1273 
1274 /*
1275  * Return size of each in-core log record buffer.
1276  *
1277  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1278  *
1279  * If the filesystem blocksize is too large, we may need to choose a
1280  * larger size since the directory code currently logs entire blocks.
1281  */
1282 
1283 STATIC void
1284 xlog_get_iclog_buffer_size(
1285 	struct xfs_mount	*mp,
1286 	struct xlog		*log)
1287 {
1288 	int size;
1289 	int xhdrs;
1290 
1291 	if (mp->m_logbufs <= 0)
1292 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1293 	else
1294 		log->l_iclog_bufs = mp->m_logbufs;
1295 
1296 	/*
1297 	 * Buffer size passed in from mount system call.
1298 	 */
1299 	if (mp->m_logbsize > 0) {
1300 		size = log->l_iclog_size = mp->m_logbsize;
1301 		log->l_iclog_size_log = 0;
1302 		while (size != 1) {
1303 			log->l_iclog_size_log++;
1304 			size >>= 1;
1305 		}
1306 
1307 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1308 			/* # headers = size / 32k
1309 			 * one header holds cycles from 32k of data
1310 			 */
1311 
1312 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1313 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1314 				xhdrs++;
1315 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1316 			log->l_iclog_heads = xhdrs;
1317 		} else {
1318 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1319 			log->l_iclog_hsize = BBSIZE;
1320 			log->l_iclog_heads = 1;
1321 		}
1322 		goto done;
1323 	}
1324 
1325 	/* All machines use 32kB buffers by default. */
1326 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1327 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1328 
1329 	/* the default log size is 16k or 32k which is one header sector */
1330 	log->l_iclog_hsize = BBSIZE;
1331 	log->l_iclog_heads = 1;
1332 
1333 done:
1334 	/* are we being asked to make the sizes selected above visible? */
1335 	if (mp->m_logbufs == 0)
1336 		mp->m_logbufs = log->l_iclog_bufs;
1337 	if (mp->m_logbsize == 0)
1338 		mp->m_logbsize = log->l_iclog_size;
1339 }	/* xlog_get_iclog_buffer_size */
1340 
1341 
1342 void
1343 xfs_log_work_queue(
1344 	struct xfs_mount        *mp)
1345 {
1346 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1347 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1348 }
1349 
1350 /*
1351  * Every sync period we need to unpin all items in the AIL and push them to
1352  * disk. If there is nothing dirty, then we might need to cover the log to
1353  * indicate that the filesystem is idle.
1354  */
1355 static void
1356 xfs_log_worker(
1357 	struct work_struct	*work)
1358 {
1359 	struct xlog		*log = container_of(to_delayed_work(work),
1360 						struct xlog, l_work);
1361 	struct xfs_mount	*mp = log->l_mp;
1362 
1363 	/* dgc: errors ignored - not fatal and nowhere to report them */
1364 	if (xfs_log_need_covered(mp)) {
1365 		/*
1366 		 * Dump a transaction into the log that contains no real change.
1367 		 * This is needed to stamp the current tail LSN into the log
1368 		 * during the covering operation.
1369 		 *
1370 		 * We cannot use an inode here for this - that will push dirty
1371 		 * state back up into the VFS and then periodic inode flushing
1372 		 * will prevent log covering from making progress. Hence we
1373 		 * synchronously log the superblock instead to ensure the
1374 		 * superblock is immediately unpinned and can be written back.
1375 		 */
1376 		xfs_sync_sb(mp, true);
1377 	} else
1378 		xfs_log_force(mp, 0);
1379 
1380 	/* start pushing all the metadata that is currently dirty */
1381 	xfs_ail_push_all(mp->m_ail);
1382 
1383 	/* queue us up again */
1384 	xfs_log_work_queue(mp);
1385 }
1386 
1387 /*
1388  * This routine initializes some of the log structure for a given mount point.
1389  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1390  * some other stuff may be filled in too.
1391  */
1392 STATIC struct xlog *
1393 xlog_alloc_log(
1394 	struct xfs_mount	*mp,
1395 	struct xfs_buftarg	*log_target,
1396 	xfs_daddr_t		blk_offset,
1397 	int			num_bblks)
1398 {
1399 	struct xlog		*log;
1400 	xlog_rec_header_t	*head;
1401 	xlog_in_core_t		**iclogp;
1402 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1403 	xfs_buf_t		*bp;
1404 	int			i;
1405 	int			error = -ENOMEM;
1406 	uint			log2_size = 0;
1407 
1408 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1409 	if (!log) {
1410 		xfs_warn(mp, "Log allocation failed: No memory!");
1411 		goto out;
1412 	}
1413 
1414 	log->l_mp	   = mp;
1415 	log->l_targ	   = log_target;
1416 	log->l_logsize     = BBTOB(num_bblks);
1417 	log->l_logBBstart  = blk_offset;
1418 	log->l_logBBsize   = num_bblks;
1419 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1420 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1421 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1422 
1423 	log->l_prev_block  = -1;
1424 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1425 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1426 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1427 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1428 
1429 	xlog_grant_head_init(&log->l_reserve_head);
1430 	xlog_grant_head_init(&log->l_write_head);
1431 
1432 	error = -EFSCORRUPTED;
1433 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1434 	        log2_size = mp->m_sb.sb_logsectlog;
1435 		if (log2_size < BBSHIFT) {
1436 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1437 				log2_size, BBSHIFT);
1438 			goto out_free_log;
1439 		}
1440 
1441 	        log2_size -= BBSHIFT;
1442 		if (log2_size > mp->m_sectbb_log) {
1443 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1444 				log2_size, mp->m_sectbb_log);
1445 			goto out_free_log;
1446 		}
1447 
1448 		/* for larger sector sizes, must have v2 or external log */
1449 		if (log2_size && log->l_logBBstart > 0 &&
1450 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1451 			xfs_warn(mp,
1452 		"log sector size (0x%x) invalid for configuration.",
1453 				log2_size);
1454 			goto out_free_log;
1455 		}
1456 	}
1457 	log->l_sectBBsize = 1 << log2_size;
1458 
1459 	xlog_get_iclog_buffer_size(mp, log);
1460 
1461 	/*
1462 	 * Use a NULL block for the extra log buffer used during splits so that
1463 	 * it will trigger errors if we ever try to do IO on it without first
1464 	 * having set it up properly.
1465 	 */
1466 	error = -ENOMEM;
1467 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1468 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1469 	if (!bp)
1470 		goto out_free_log;
1471 
1472 	/*
1473 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1474 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1475 	 * when appropriately.
1476 	 */
1477 	ASSERT(xfs_buf_islocked(bp));
1478 	xfs_buf_unlock(bp);
1479 
1480 	/* use high priority wq for log I/O completion */
1481 	bp->b_ioend_wq = mp->m_log_workqueue;
1482 	bp->b_iodone = xlog_iodone;
1483 	log->l_xbuf = bp;
1484 
1485 	spin_lock_init(&log->l_icloglock);
1486 	init_waitqueue_head(&log->l_flush_wait);
1487 
1488 	iclogp = &log->l_iclog;
1489 	/*
1490 	 * The amount of memory to allocate for the iclog structure is
1491 	 * rather funky due to the way the structure is defined.  It is
1492 	 * done this way so that we can use different sizes for machines
1493 	 * with different amounts of memory.  See the definition of
1494 	 * xlog_in_core_t in xfs_log_priv.h for details.
1495 	 */
1496 	ASSERT(log->l_iclog_size >= 4096);
1497 	for (i=0; i < log->l_iclog_bufs; i++) {
1498 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1499 		if (!*iclogp)
1500 			goto out_free_iclog;
1501 
1502 		iclog = *iclogp;
1503 		iclog->ic_prev = prev_iclog;
1504 		prev_iclog = iclog;
1505 
1506 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1507 					  BTOBB(log->l_iclog_size),
1508 					  XBF_NO_IOACCT);
1509 		if (!bp)
1510 			goto out_free_iclog;
1511 
1512 		ASSERT(xfs_buf_islocked(bp));
1513 		xfs_buf_unlock(bp);
1514 
1515 		/* use high priority wq for log I/O completion */
1516 		bp->b_ioend_wq = mp->m_log_workqueue;
1517 		bp->b_iodone = xlog_iodone;
1518 		iclog->ic_bp = bp;
1519 		iclog->ic_data = bp->b_addr;
1520 #ifdef DEBUG
1521 		log->l_iclog_bak[i] = &iclog->ic_header;
1522 #endif
1523 		head = &iclog->ic_header;
1524 		memset(head, 0, sizeof(xlog_rec_header_t));
1525 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1526 		head->h_version = cpu_to_be32(
1527 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1528 		head->h_size = cpu_to_be32(log->l_iclog_size);
1529 		/* new fields */
1530 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1531 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1532 
1533 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1534 		iclog->ic_state = XLOG_STATE_ACTIVE;
1535 		iclog->ic_log = log;
1536 		atomic_set(&iclog->ic_refcnt, 0);
1537 		spin_lock_init(&iclog->ic_callback_lock);
1538 		iclog->ic_callback_tail = &(iclog->ic_callback);
1539 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1540 
1541 		init_waitqueue_head(&iclog->ic_force_wait);
1542 		init_waitqueue_head(&iclog->ic_write_wait);
1543 
1544 		iclogp = &iclog->ic_next;
1545 	}
1546 	*iclogp = log->l_iclog;			/* complete ring */
1547 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1548 
1549 	error = xlog_cil_init(log);
1550 	if (error)
1551 		goto out_free_iclog;
1552 	return log;
1553 
1554 out_free_iclog:
1555 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1556 		prev_iclog = iclog->ic_next;
1557 		if (iclog->ic_bp)
1558 			xfs_buf_free(iclog->ic_bp);
1559 		kmem_free(iclog);
1560 	}
1561 	spinlock_destroy(&log->l_icloglock);
1562 	xfs_buf_free(log->l_xbuf);
1563 out_free_log:
1564 	kmem_free(log);
1565 out:
1566 	return ERR_PTR(error);
1567 }	/* xlog_alloc_log */
1568 
1569 
1570 /*
1571  * Write out the commit record of a transaction associated with the given
1572  * ticket.  Return the lsn of the commit record.
1573  */
1574 STATIC int
1575 xlog_commit_record(
1576 	struct xlog		*log,
1577 	struct xlog_ticket	*ticket,
1578 	struct xlog_in_core	**iclog,
1579 	xfs_lsn_t		*commitlsnp)
1580 {
1581 	struct xfs_mount *mp = log->l_mp;
1582 	int	error;
1583 	struct xfs_log_iovec reg = {
1584 		.i_addr = NULL,
1585 		.i_len = 0,
1586 		.i_type = XLOG_REG_TYPE_COMMIT,
1587 	};
1588 	struct xfs_log_vec vec = {
1589 		.lv_niovecs = 1,
1590 		.lv_iovecp = &reg,
1591 	};
1592 
1593 	ASSERT_ALWAYS(iclog);
1594 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1595 					XLOG_COMMIT_TRANS);
1596 	if (error)
1597 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1598 	return error;
1599 }
1600 
1601 /*
1602  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1603  * log space.  This code pushes on the lsn which would supposedly free up
1604  * the 25% which we want to leave free.  We may need to adopt a policy which
1605  * pushes on an lsn which is further along in the log once we reach the high
1606  * water mark.  In this manner, we would be creating a low water mark.
1607  */
1608 STATIC void
1609 xlog_grant_push_ail(
1610 	struct xlog	*log,
1611 	int		need_bytes)
1612 {
1613 	xfs_lsn_t	threshold_lsn = 0;
1614 	xfs_lsn_t	last_sync_lsn;
1615 	int		free_blocks;
1616 	int		free_bytes;
1617 	int		threshold_block;
1618 	int		threshold_cycle;
1619 	int		free_threshold;
1620 
1621 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1622 
1623 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1624 	free_blocks = BTOBBT(free_bytes);
1625 
1626 	/*
1627 	 * Set the threshold for the minimum number of free blocks in the
1628 	 * log to the maximum of what the caller needs, one quarter of the
1629 	 * log, and 256 blocks.
1630 	 */
1631 	free_threshold = BTOBB(need_bytes);
1632 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1633 	free_threshold = max(free_threshold, 256);
1634 	if (free_blocks >= free_threshold)
1635 		return;
1636 
1637 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1638 						&threshold_block);
1639 	threshold_block += free_threshold;
1640 	if (threshold_block >= log->l_logBBsize) {
1641 		threshold_block -= log->l_logBBsize;
1642 		threshold_cycle += 1;
1643 	}
1644 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1645 					threshold_block);
1646 	/*
1647 	 * Don't pass in an lsn greater than the lsn of the last
1648 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1649 	 * so that it doesn't change between the compare and the set.
1650 	 */
1651 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1652 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1653 		threshold_lsn = last_sync_lsn;
1654 
1655 	/*
1656 	 * Get the transaction layer to kick the dirty buffers out to
1657 	 * disk asynchronously. No point in trying to do this if
1658 	 * the filesystem is shutting down.
1659 	 */
1660 	if (!XLOG_FORCED_SHUTDOWN(log))
1661 		xfs_ail_push(log->l_ailp, threshold_lsn);
1662 }
1663 
1664 /*
1665  * Stamp cycle number in every block
1666  */
1667 STATIC void
1668 xlog_pack_data(
1669 	struct xlog		*log,
1670 	struct xlog_in_core	*iclog,
1671 	int			roundoff)
1672 {
1673 	int			i, j, k;
1674 	int			size = iclog->ic_offset + roundoff;
1675 	__be32			cycle_lsn;
1676 	char			*dp;
1677 
1678 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1679 
1680 	dp = iclog->ic_datap;
1681 	for (i = 0; i < BTOBB(size); i++) {
1682 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1683 			break;
1684 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1685 		*(__be32 *)dp = cycle_lsn;
1686 		dp += BBSIZE;
1687 	}
1688 
1689 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1690 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1691 
1692 		for ( ; i < BTOBB(size); i++) {
1693 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1694 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1695 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1696 			*(__be32 *)dp = cycle_lsn;
1697 			dp += BBSIZE;
1698 		}
1699 
1700 		for (i = 1; i < log->l_iclog_heads; i++)
1701 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1702 	}
1703 }
1704 
1705 /*
1706  * Calculate the checksum for a log buffer.
1707  *
1708  * This is a little more complicated than it should be because the various
1709  * headers and the actual data are non-contiguous.
1710  */
1711 __le32
1712 xlog_cksum(
1713 	struct xlog		*log,
1714 	struct xlog_rec_header	*rhead,
1715 	char			*dp,
1716 	int			size)
1717 {
1718 	uint32_t		crc;
1719 
1720 	/* first generate the crc for the record header ... */
1721 	crc = xfs_start_cksum_update((char *)rhead,
1722 			      sizeof(struct xlog_rec_header),
1723 			      offsetof(struct xlog_rec_header, h_crc));
1724 
1725 	/* ... then for additional cycle data for v2 logs ... */
1726 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1727 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1728 		int		i;
1729 		int		xheads;
1730 
1731 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1732 		if (size % XLOG_HEADER_CYCLE_SIZE)
1733 			xheads++;
1734 
1735 		for (i = 1; i < xheads; i++) {
1736 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1737 				     sizeof(struct xlog_rec_ext_header));
1738 		}
1739 	}
1740 
1741 	/* ... and finally for the payload */
1742 	crc = crc32c(crc, dp, size);
1743 
1744 	return xfs_end_cksum(crc);
1745 }
1746 
1747 /*
1748  * The bdstrat callback function for log bufs. This gives us a central
1749  * place to trap bufs in case we get hit by a log I/O error and need to
1750  * shutdown. Actually, in practice, even when we didn't get a log error,
1751  * we transition the iclogs to IOERROR state *after* flushing all existing
1752  * iclogs to disk. This is because we don't want anymore new transactions to be
1753  * started or completed afterwards.
1754  *
1755  * We lock the iclogbufs here so that we can serialise against IO completion
1756  * during unmount. We might be processing a shutdown triggered during unmount,
1757  * and that can occur asynchronously to the unmount thread, and hence we need to
1758  * ensure that completes before tearing down the iclogbufs. Hence we need to
1759  * hold the buffer lock across the log IO to acheive that.
1760  */
1761 STATIC int
1762 xlog_bdstrat(
1763 	struct xfs_buf		*bp)
1764 {
1765 	struct xlog_in_core	*iclog = bp->b_log_item;
1766 
1767 	xfs_buf_lock(bp);
1768 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1769 		xfs_buf_ioerror(bp, -EIO);
1770 		xfs_buf_stale(bp);
1771 		xfs_buf_ioend(bp);
1772 		/*
1773 		 * It would seem logical to return EIO here, but we rely on
1774 		 * the log state machine to propagate I/O errors instead of
1775 		 * doing it here. Similarly, IO completion will unlock the
1776 		 * buffer, so we don't do it here.
1777 		 */
1778 		return 0;
1779 	}
1780 
1781 	xfs_buf_submit(bp);
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1787  * fashion.  Previously, we should have moved the current iclog
1788  * ptr in the log to point to the next available iclog.  This allows further
1789  * write to continue while this code syncs out an iclog ready to go.
1790  * Before an in-core log can be written out, the data section must be scanned
1791  * to save away the 1st word of each BBSIZE block into the header.  We replace
1792  * it with the current cycle count.  Each BBSIZE block is tagged with the
1793  * cycle count because there in an implicit assumption that drives will
1794  * guarantee that entire 512 byte blocks get written at once.  In other words,
1795  * we can't have part of a 512 byte block written and part not written.  By
1796  * tagging each block, we will know which blocks are valid when recovering
1797  * after an unclean shutdown.
1798  *
1799  * This routine is single threaded on the iclog.  No other thread can be in
1800  * this routine with the same iclog.  Changing contents of iclog can there-
1801  * fore be done without grabbing the state machine lock.  Updating the global
1802  * log will require grabbing the lock though.
1803  *
1804  * The entire log manager uses a logical block numbering scheme.  Only
1805  * log_sync (and then only bwrite()) know about the fact that the log may
1806  * not start with block zero on a given device.  The log block start offset
1807  * is added immediately before calling bwrite().
1808  */
1809 
1810 STATIC int
1811 xlog_sync(
1812 	struct xlog		*log,
1813 	struct xlog_in_core	*iclog)
1814 {
1815 	xfs_buf_t	*bp;
1816 	int		i;
1817 	uint		count;		/* byte count of bwrite */
1818 	uint		count_init;	/* initial count before roundup */
1819 	int		roundoff;       /* roundoff to BB or stripe */
1820 	int		split = 0;	/* split write into two regions */
1821 	int		error;
1822 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1823 	int		size;
1824 
1825 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1826 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1827 
1828 	/* Add for LR header */
1829 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1830 
1831 	/* Round out the log write size */
1832 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1833 		/* we have a v2 stripe unit to use */
1834 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1835 	} else {
1836 		count = BBTOB(BTOBB(count_init));
1837 	}
1838 	roundoff = count - count_init;
1839 	ASSERT(roundoff >= 0);
1840 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1841                 roundoff < log->l_mp->m_sb.sb_logsunit)
1842 		||
1843 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1844 		 roundoff < BBTOB(1)));
1845 
1846 	/* move grant heads by roundoff in sync */
1847 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1848 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1849 
1850 	/* put cycle number in every block */
1851 	xlog_pack_data(log, iclog, roundoff);
1852 
1853 	/* real byte length */
1854 	size = iclog->ic_offset;
1855 	if (v2)
1856 		size += roundoff;
1857 	iclog->ic_header.h_len = cpu_to_be32(size);
1858 
1859 	bp = iclog->ic_bp;
1860 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1861 
1862 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1863 
1864 	/* Do we need to split this write into 2 parts? */
1865 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1866 		char		*dptr;
1867 
1868 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1869 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1870 		iclog->ic_bwritecnt = 2;
1871 
1872 		/*
1873 		 * Bump the cycle numbers at the start of each block in the
1874 		 * part of the iclog that ends up in the buffer that gets
1875 		 * written to the start of the log.
1876 		 *
1877 		 * Watch out for the header magic number case, though.
1878 		 */
1879 		dptr = (char *)&iclog->ic_header + count;
1880 		for (i = 0; i < split; i += BBSIZE) {
1881 			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1882 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1883 				cycle++;
1884 			*(__be32 *)dptr = cpu_to_be32(cycle);
1885 
1886 			dptr += BBSIZE;
1887 		}
1888 	} else {
1889 		iclog->ic_bwritecnt = 1;
1890 	}
1891 
1892 	/* calculcate the checksum */
1893 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1894 					    iclog->ic_datap, size);
1895 	/*
1896 	 * Intentionally corrupt the log record CRC based on the error injection
1897 	 * frequency, if defined. This facilitates testing log recovery in the
1898 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1899 	 * write on I/O completion and shutdown the fs. The subsequent mount
1900 	 * detects the bad CRC and attempts to recover.
1901 	 */
1902 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1903 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1904 		iclog->ic_state |= XLOG_STATE_IOABORT;
1905 		xfs_warn(log->l_mp,
1906 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1907 			 be64_to_cpu(iclog->ic_header.h_lsn));
1908 	}
1909 
1910 	bp->b_io_length = BTOBB(count);
1911 	bp->b_log_item = iclog;
1912 	bp->b_flags &= ~XBF_FLUSH;
1913 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1914 
1915 	/*
1916 	 * Flush the data device before flushing the log to make sure all meta
1917 	 * data written back from the AIL actually made it to disk before
1918 	 * stamping the new log tail LSN into the log buffer.  For an external
1919 	 * log we need to issue the flush explicitly, and unfortunately
1920 	 * synchronously here; for an internal log we can simply use the block
1921 	 * layer state machine for preflushes.
1922 	 */
1923 	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1924 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1925 	else
1926 		bp->b_flags |= XBF_FLUSH;
1927 
1928 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1929 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1930 
1931 	xlog_verify_iclog(log, iclog, count, true);
1932 
1933 	/* account for log which doesn't start at block #0 */
1934 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1935 
1936 	/*
1937 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1938 	 * is shutting down.
1939 	 */
1940 	error = xlog_bdstrat(bp);
1941 	if (error) {
1942 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1943 		return error;
1944 	}
1945 	if (split) {
1946 		bp = iclog->ic_log->l_xbuf;
1947 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1948 		xfs_buf_associate_memory(bp,
1949 				(char *)&iclog->ic_header + count, split);
1950 		bp->b_log_item = iclog;
1951 		bp->b_flags &= ~XBF_FLUSH;
1952 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1953 
1954 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1955 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1956 
1957 		/* account for internal log which doesn't start at block #0 */
1958 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1959 		error = xlog_bdstrat(bp);
1960 		if (error) {
1961 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1962 			return error;
1963 		}
1964 	}
1965 	return 0;
1966 }	/* xlog_sync */
1967 
1968 /*
1969  * Deallocate a log structure
1970  */
1971 STATIC void
1972 xlog_dealloc_log(
1973 	struct xlog	*log)
1974 {
1975 	xlog_in_core_t	*iclog, *next_iclog;
1976 	int		i;
1977 
1978 	xlog_cil_destroy(log);
1979 
1980 	/*
1981 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1982 	 * is done before we tear down these buffers.
1983 	 */
1984 	iclog = log->l_iclog;
1985 	for (i = 0; i < log->l_iclog_bufs; i++) {
1986 		xfs_buf_lock(iclog->ic_bp);
1987 		xfs_buf_unlock(iclog->ic_bp);
1988 		iclog = iclog->ic_next;
1989 	}
1990 
1991 	/*
1992 	 * Always need to ensure that the extra buffer does not point to memory
1993 	 * owned by another log buffer before we free it. Also, cycle the lock
1994 	 * first to ensure we've completed IO on it.
1995 	 */
1996 	xfs_buf_lock(log->l_xbuf);
1997 	xfs_buf_unlock(log->l_xbuf);
1998 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1999 	xfs_buf_free(log->l_xbuf);
2000 
2001 	iclog = log->l_iclog;
2002 	for (i = 0; i < log->l_iclog_bufs; i++) {
2003 		xfs_buf_free(iclog->ic_bp);
2004 		next_iclog = iclog->ic_next;
2005 		kmem_free(iclog);
2006 		iclog = next_iclog;
2007 	}
2008 	spinlock_destroy(&log->l_icloglock);
2009 
2010 	log->l_mp->m_log = NULL;
2011 	kmem_free(log);
2012 }	/* xlog_dealloc_log */
2013 
2014 /*
2015  * Update counters atomically now that memcpy is done.
2016  */
2017 /* ARGSUSED */
2018 static inline void
2019 xlog_state_finish_copy(
2020 	struct xlog		*log,
2021 	struct xlog_in_core	*iclog,
2022 	int			record_cnt,
2023 	int			copy_bytes)
2024 {
2025 	spin_lock(&log->l_icloglock);
2026 
2027 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2028 	iclog->ic_offset += copy_bytes;
2029 
2030 	spin_unlock(&log->l_icloglock);
2031 }	/* xlog_state_finish_copy */
2032 
2033 
2034 
2035 
2036 /*
2037  * print out info relating to regions written which consume
2038  * the reservation
2039  */
2040 void
2041 xlog_print_tic_res(
2042 	struct xfs_mount	*mp,
2043 	struct xlog_ticket	*ticket)
2044 {
2045 	uint i;
2046 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2047 
2048 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2049 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2050 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2051 	    REG_TYPE_STR(BFORMAT, "bformat"),
2052 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2053 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2054 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2055 	    REG_TYPE_STR(IFORMAT, "iformat"),
2056 	    REG_TYPE_STR(ICORE, "icore"),
2057 	    REG_TYPE_STR(IEXT, "iext"),
2058 	    REG_TYPE_STR(IBROOT, "ibroot"),
2059 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2060 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2061 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2062 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2063 	    REG_TYPE_STR(QFORMAT, "qformat"),
2064 	    REG_TYPE_STR(DQUOT, "dquot"),
2065 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2066 	    REG_TYPE_STR(LRHEADER, "LR header"),
2067 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2068 	    REG_TYPE_STR(COMMIT, "commit"),
2069 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2070 	    REG_TYPE_STR(ICREATE, "inode create")
2071 	};
2072 #undef REG_TYPE_STR
2073 
2074 	xfs_warn(mp, "ticket reservation summary:");
2075 	xfs_warn(mp, "  unit res    = %d bytes",
2076 		 ticket->t_unit_res);
2077 	xfs_warn(mp, "  current res = %d bytes",
2078 		 ticket->t_curr_res);
2079 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2080 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2081 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2082 		 ticket->t_res_num_ophdrs, ophdr_spc);
2083 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2084 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2085 	xfs_warn(mp, "  num regions = %u",
2086 		 ticket->t_res_num);
2087 
2088 	for (i = 0; i < ticket->t_res_num; i++) {
2089 		uint r_type = ticket->t_res_arr[i].r_type;
2090 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2091 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2092 			    "bad-rtype" : res_type_str[r_type]),
2093 			    ticket->t_res_arr[i].r_len);
2094 	}
2095 }
2096 
2097 /*
2098  * Print a summary of the transaction.
2099  */
2100 void
2101 xlog_print_trans(
2102 	struct xfs_trans	*tp)
2103 {
2104 	struct xfs_mount	*mp = tp->t_mountp;
2105 	struct xfs_log_item	*lip;
2106 
2107 	/* dump core transaction and ticket info */
2108 	xfs_warn(mp, "transaction summary:");
2109 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2110 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2111 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2112 
2113 	xlog_print_tic_res(mp, tp->t_ticket);
2114 
2115 	/* dump each log item */
2116 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2117 		struct xfs_log_vec	*lv = lip->li_lv;
2118 		struct xfs_log_iovec	*vec;
2119 		int			i;
2120 
2121 		xfs_warn(mp, "log item: ");
2122 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2123 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2124 		if (!lv)
2125 			continue;
2126 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2127 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2128 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2129 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2130 
2131 		/* dump each iovec for the log item */
2132 		vec = lv->lv_iovecp;
2133 		for (i = 0; i < lv->lv_niovecs; i++) {
2134 			int dumplen = min(vec->i_len, 32);
2135 
2136 			xfs_warn(mp, "  iovec[%d]", i);
2137 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2138 			xfs_warn(mp, "    len	= %d", vec->i_len);
2139 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2140 			xfs_hex_dump(vec->i_addr, dumplen);
2141 
2142 			vec++;
2143 		}
2144 	}
2145 }
2146 
2147 /*
2148  * Calculate the potential space needed by the log vector.  Each region gets
2149  * its own xlog_op_header_t and may need to be double word aligned.
2150  */
2151 static int
2152 xlog_write_calc_vec_length(
2153 	struct xlog_ticket	*ticket,
2154 	struct xfs_log_vec	*log_vector)
2155 {
2156 	struct xfs_log_vec	*lv;
2157 	int			headers = 0;
2158 	int			len = 0;
2159 	int			i;
2160 
2161 	/* acct for start rec of xact */
2162 	if (ticket->t_flags & XLOG_TIC_INITED)
2163 		headers++;
2164 
2165 	for (lv = log_vector; lv; lv = lv->lv_next) {
2166 		/* we don't write ordered log vectors */
2167 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2168 			continue;
2169 
2170 		headers += lv->lv_niovecs;
2171 
2172 		for (i = 0; i < lv->lv_niovecs; i++) {
2173 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2174 
2175 			len += vecp->i_len;
2176 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2177 		}
2178 	}
2179 
2180 	ticket->t_res_num_ophdrs += headers;
2181 	len += headers * sizeof(struct xlog_op_header);
2182 
2183 	return len;
2184 }
2185 
2186 /*
2187  * If first write for transaction, insert start record  We can't be trying to
2188  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2189  */
2190 static int
2191 xlog_write_start_rec(
2192 	struct xlog_op_header	*ophdr,
2193 	struct xlog_ticket	*ticket)
2194 {
2195 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2196 		return 0;
2197 
2198 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2199 	ophdr->oh_clientid = ticket->t_clientid;
2200 	ophdr->oh_len = 0;
2201 	ophdr->oh_flags = XLOG_START_TRANS;
2202 	ophdr->oh_res2 = 0;
2203 
2204 	ticket->t_flags &= ~XLOG_TIC_INITED;
2205 
2206 	return sizeof(struct xlog_op_header);
2207 }
2208 
2209 static xlog_op_header_t *
2210 xlog_write_setup_ophdr(
2211 	struct xlog		*log,
2212 	struct xlog_op_header	*ophdr,
2213 	struct xlog_ticket	*ticket,
2214 	uint			flags)
2215 {
2216 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2217 	ophdr->oh_clientid = ticket->t_clientid;
2218 	ophdr->oh_res2 = 0;
2219 
2220 	/* are we copying a commit or unmount record? */
2221 	ophdr->oh_flags = flags;
2222 
2223 	/*
2224 	 * We've seen logs corrupted with bad transaction client ids.  This
2225 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2226 	 * and shut down the filesystem.
2227 	 */
2228 	switch (ophdr->oh_clientid)  {
2229 	case XFS_TRANSACTION:
2230 	case XFS_VOLUME:
2231 	case XFS_LOG:
2232 		break;
2233 	default:
2234 		xfs_warn(log->l_mp,
2235 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2236 			ophdr->oh_clientid, ticket);
2237 		return NULL;
2238 	}
2239 
2240 	return ophdr;
2241 }
2242 
2243 /*
2244  * Set up the parameters of the region copy into the log. This has
2245  * to handle region write split across multiple log buffers - this
2246  * state is kept external to this function so that this code can
2247  * be written in an obvious, self documenting manner.
2248  */
2249 static int
2250 xlog_write_setup_copy(
2251 	struct xlog_ticket	*ticket,
2252 	struct xlog_op_header	*ophdr,
2253 	int			space_available,
2254 	int			space_required,
2255 	int			*copy_off,
2256 	int			*copy_len,
2257 	int			*last_was_partial_copy,
2258 	int			*bytes_consumed)
2259 {
2260 	int			still_to_copy;
2261 
2262 	still_to_copy = space_required - *bytes_consumed;
2263 	*copy_off = *bytes_consumed;
2264 
2265 	if (still_to_copy <= space_available) {
2266 		/* write of region completes here */
2267 		*copy_len = still_to_copy;
2268 		ophdr->oh_len = cpu_to_be32(*copy_len);
2269 		if (*last_was_partial_copy)
2270 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2271 		*last_was_partial_copy = 0;
2272 		*bytes_consumed = 0;
2273 		return 0;
2274 	}
2275 
2276 	/* partial write of region, needs extra log op header reservation */
2277 	*copy_len = space_available;
2278 	ophdr->oh_len = cpu_to_be32(*copy_len);
2279 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2280 	if (*last_was_partial_copy)
2281 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2282 	*bytes_consumed += *copy_len;
2283 	(*last_was_partial_copy)++;
2284 
2285 	/* account for new log op header */
2286 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2287 	ticket->t_res_num_ophdrs++;
2288 
2289 	return sizeof(struct xlog_op_header);
2290 }
2291 
2292 static int
2293 xlog_write_copy_finish(
2294 	struct xlog		*log,
2295 	struct xlog_in_core	*iclog,
2296 	uint			flags,
2297 	int			*record_cnt,
2298 	int			*data_cnt,
2299 	int			*partial_copy,
2300 	int			*partial_copy_len,
2301 	int			log_offset,
2302 	struct xlog_in_core	**commit_iclog)
2303 {
2304 	if (*partial_copy) {
2305 		/*
2306 		 * This iclog has already been marked WANT_SYNC by
2307 		 * xlog_state_get_iclog_space.
2308 		 */
2309 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2310 		*record_cnt = 0;
2311 		*data_cnt = 0;
2312 		return xlog_state_release_iclog(log, iclog);
2313 	}
2314 
2315 	*partial_copy = 0;
2316 	*partial_copy_len = 0;
2317 
2318 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2319 		/* no more space in this iclog - push it. */
2320 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2321 		*record_cnt = 0;
2322 		*data_cnt = 0;
2323 
2324 		spin_lock(&log->l_icloglock);
2325 		xlog_state_want_sync(log, iclog);
2326 		spin_unlock(&log->l_icloglock);
2327 
2328 		if (!commit_iclog)
2329 			return xlog_state_release_iclog(log, iclog);
2330 		ASSERT(flags & XLOG_COMMIT_TRANS);
2331 		*commit_iclog = iclog;
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 /*
2338  * Write some region out to in-core log
2339  *
2340  * This will be called when writing externally provided regions or when
2341  * writing out a commit record for a given transaction.
2342  *
2343  * General algorithm:
2344  *	1. Find total length of this write.  This may include adding to the
2345  *		lengths passed in.
2346  *	2. Check whether we violate the tickets reservation.
2347  *	3. While writing to this iclog
2348  *	    A. Reserve as much space in this iclog as can get
2349  *	    B. If this is first write, save away start lsn
2350  *	    C. While writing this region:
2351  *		1. If first write of transaction, write start record
2352  *		2. Write log operation header (header per region)
2353  *		3. Find out if we can fit entire region into this iclog
2354  *		4. Potentially, verify destination memcpy ptr
2355  *		5. Memcpy (partial) region
2356  *		6. If partial copy, release iclog; otherwise, continue
2357  *			copying more regions into current iclog
2358  *	4. Mark want sync bit (in simulation mode)
2359  *	5. Release iclog for potential flush to on-disk log.
2360  *
2361  * ERRORS:
2362  * 1.	Panic if reservation is overrun.  This should never happen since
2363  *	reservation amounts are generated internal to the filesystem.
2364  * NOTES:
2365  * 1. Tickets are single threaded data structures.
2366  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2367  *	syncing routine.  When a single log_write region needs to span
2368  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2369  *	on all log operation writes which don't contain the end of the
2370  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2371  *	operation which contains the end of the continued log_write region.
2372  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2373  *	we don't really know exactly how much space will be used.  As a result,
2374  *	we don't update ic_offset until the end when we know exactly how many
2375  *	bytes have been written out.
2376  */
2377 int
2378 xlog_write(
2379 	struct xlog		*log,
2380 	struct xfs_log_vec	*log_vector,
2381 	struct xlog_ticket	*ticket,
2382 	xfs_lsn_t		*start_lsn,
2383 	struct xlog_in_core	**commit_iclog,
2384 	uint			flags)
2385 {
2386 	struct xlog_in_core	*iclog = NULL;
2387 	struct xfs_log_iovec	*vecp;
2388 	struct xfs_log_vec	*lv;
2389 	int			len;
2390 	int			index;
2391 	int			partial_copy = 0;
2392 	int			partial_copy_len = 0;
2393 	int			contwr = 0;
2394 	int			record_cnt = 0;
2395 	int			data_cnt = 0;
2396 	int			error;
2397 
2398 	*start_lsn = 0;
2399 
2400 	len = xlog_write_calc_vec_length(ticket, log_vector);
2401 
2402 	/*
2403 	 * Region headers and bytes are already accounted for.
2404 	 * We only need to take into account start records and
2405 	 * split regions in this function.
2406 	 */
2407 	if (ticket->t_flags & XLOG_TIC_INITED)
2408 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2409 
2410 	/*
2411 	 * Commit record headers need to be accounted for. These
2412 	 * come in as separate writes so are easy to detect.
2413 	 */
2414 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2415 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2416 
2417 	if (ticket->t_curr_res < 0) {
2418 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2419 		     "ctx ticket reservation ran out. Need to up reservation");
2420 		xlog_print_tic_res(log->l_mp, ticket);
2421 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2422 	}
2423 
2424 	index = 0;
2425 	lv = log_vector;
2426 	vecp = lv->lv_iovecp;
2427 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2428 		void		*ptr;
2429 		int		log_offset;
2430 
2431 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2432 						   &contwr, &log_offset);
2433 		if (error)
2434 			return error;
2435 
2436 		ASSERT(log_offset <= iclog->ic_size - 1);
2437 		ptr = iclog->ic_datap + log_offset;
2438 
2439 		/* start_lsn is the first lsn written to. That's all we need. */
2440 		if (!*start_lsn)
2441 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2442 
2443 		/*
2444 		 * This loop writes out as many regions as can fit in the amount
2445 		 * of space which was allocated by xlog_state_get_iclog_space().
2446 		 */
2447 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2448 			struct xfs_log_iovec	*reg;
2449 			struct xlog_op_header	*ophdr;
2450 			int			start_rec_copy;
2451 			int			copy_len;
2452 			int			copy_off;
2453 			bool			ordered = false;
2454 
2455 			/* ordered log vectors have no regions to write */
2456 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2457 				ASSERT(lv->lv_niovecs == 0);
2458 				ordered = true;
2459 				goto next_lv;
2460 			}
2461 
2462 			reg = &vecp[index];
2463 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2464 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2465 
2466 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2467 			if (start_rec_copy) {
2468 				record_cnt++;
2469 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2470 						   start_rec_copy);
2471 			}
2472 
2473 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2474 			if (!ophdr)
2475 				return -EIO;
2476 
2477 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478 					   sizeof(struct xlog_op_header));
2479 
2480 			len += xlog_write_setup_copy(ticket, ophdr,
2481 						     iclog->ic_size-log_offset,
2482 						     reg->i_len,
2483 						     &copy_off, &copy_len,
2484 						     &partial_copy,
2485 						     &partial_copy_len);
2486 			xlog_verify_dest_ptr(log, ptr);
2487 
2488 			/*
2489 			 * Copy region.
2490 			 *
2491 			 * Unmount records just log an opheader, so can have
2492 			 * empty payloads with no data region to copy. Hence we
2493 			 * only copy the payload if the vector says it has data
2494 			 * to copy.
2495 			 */
2496 			ASSERT(copy_len >= 0);
2497 			if (copy_len > 0) {
2498 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2499 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2500 						   copy_len);
2501 			}
2502 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2503 			record_cnt++;
2504 			data_cnt += contwr ? copy_len : 0;
2505 
2506 			error = xlog_write_copy_finish(log, iclog, flags,
2507 						       &record_cnt, &data_cnt,
2508 						       &partial_copy,
2509 						       &partial_copy_len,
2510 						       log_offset,
2511 						       commit_iclog);
2512 			if (error)
2513 				return error;
2514 
2515 			/*
2516 			 * if we had a partial copy, we need to get more iclog
2517 			 * space but we don't want to increment the region
2518 			 * index because there is still more is this region to
2519 			 * write.
2520 			 *
2521 			 * If we completed writing this region, and we flushed
2522 			 * the iclog (indicated by resetting of the record
2523 			 * count), then we also need to get more log space. If
2524 			 * this was the last record, though, we are done and
2525 			 * can just return.
2526 			 */
2527 			if (partial_copy)
2528 				break;
2529 
2530 			if (++index == lv->lv_niovecs) {
2531 next_lv:
2532 				lv = lv->lv_next;
2533 				index = 0;
2534 				if (lv)
2535 					vecp = lv->lv_iovecp;
2536 			}
2537 			if (record_cnt == 0 && !ordered) {
2538 				if (!lv)
2539 					return 0;
2540 				break;
2541 			}
2542 		}
2543 	}
2544 
2545 	ASSERT(len == 0);
2546 
2547 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2548 	if (!commit_iclog)
2549 		return xlog_state_release_iclog(log, iclog);
2550 
2551 	ASSERT(flags & XLOG_COMMIT_TRANS);
2552 	*commit_iclog = iclog;
2553 	return 0;
2554 }
2555 
2556 
2557 /*****************************************************************************
2558  *
2559  *		State Machine functions
2560  *
2561  *****************************************************************************
2562  */
2563 
2564 /* Clean iclogs starting from the head.  This ordering must be
2565  * maintained, so an iclog doesn't become ACTIVE beyond one that
2566  * is SYNCING.  This is also required to maintain the notion that we use
2567  * a ordered wait queue to hold off would be writers to the log when every
2568  * iclog is trying to sync to disk.
2569  *
2570  * State Change: DIRTY -> ACTIVE
2571  */
2572 STATIC void
2573 xlog_state_clean_log(
2574 	struct xlog *log)
2575 {
2576 	xlog_in_core_t	*iclog;
2577 	int changed = 0;
2578 
2579 	iclog = log->l_iclog;
2580 	do {
2581 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2582 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2583 			iclog->ic_offset       = 0;
2584 			ASSERT(iclog->ic_callback == NULL);
2585 			/*
2586 			 * If the number of ops in this iclog indicate it just
2587 			 * contains the dummy transaction, we can
2588 			 * change state into IDLE (the second time around).
2589 			 * Otherwise we should change the state into
2590 			 * NEED a dummy.
2591 			 * We don't need to cover the dummy.
2592 			 */
2593 			if (!changed &&
2594 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2595 			   		XLOG_COVER_OPS)) {
2596 				changed = 1;
2597 			} else {
2598 				/*
2599 				 * We have two dirty iclogs so start over
2600 				 * This could also be num of ops indicates
2601 				 * this is not the dummy going out.
2602 				 */
2603 				changed = 2;
2604 			}
2605 			iclog->ic_header.h_num_logops = 0;
2606 			memset(iclog->ic_header.h_cycle_data, 0,
2607 			      sizeof(iclog->ic_header.h_cycle_data));
2608 			iclog->ic_header.h_lsn = 0;
2609 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2610 			/* do nothing */;
2611 		else
2612 			break;	/* stop cleaning */
2613 		iclog = iclog->ic_next;
2614 	} while (iclog != log->l_iclog);
2615 
2616 	/* log is locked when we are called */
2617 	/*
2618 	 * Change state for the dummy log recording.
2619 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2620 	 * we are done writing the dummy record.
2621 	 * If we are done with the second dummy recored (DONE2), then
2622 	 * we go to IDLE.
2623 	 */
2624 	if (changed) {
2625 		switch (log->l_covered_state) {
2626 		case XLOG_STATE_COVER_IDLE:
2627 		case XLOG_STATE_COVER_NEED:
2628 		case XLOG_STATE_COVER_NEED2:
2629 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2630 			break;
2631 
2632 		case XLOG_STATE_COVER_DONE:
2633 			if (changed == 1)
2634 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2635 			else
2636 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2637 			break;
2638 
2639 		case XLOG_STATE_COVER_DONE2:
2640 			if (changed == 1)
2641 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2642 			else
2643 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2644 			break;
2645 
2646 		default:
2647 			ASSERT(0);
2648 		}
2649 	}
2650 }	/* xlog_state_clean_log */
2651 
2652 STATIC xfs_lsn_t
2653 xlog_get_lowest_lsn(
2654 	struct xlog	*log)
2655 {
2656 	xlog_in_core_t  *lsn_log;
2657 	xfs_lsn_t	lowest_lsn, lsn;
2658 
2659 	lsn_log = log->l_iclog;
2660 	lowest_lsn = 0;
2661 	do {
2662 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2663 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2664 		if ((lsn && !lowest_lsn) ||
2665 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2666 			lowest_lsn = lsn;
2667 		}
2668 	    }
2669 	    lsn_log = lsn_log->ic_next;
2670 	} while (lsn_log != log->l_iclog);
2671 	return lowest_lsn;
2672 }
2673 
2674 
2675 STATIC void
2676 xlog_state_do_callback(
2677 	struct xlog		*log,
2678 	int			aborted,
2679 	struct xlog_in_core	*ciclog)
2680 {
2681 	xlog_in_core_t	   *iclog;
2682 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2683 						 * processed all iclogs once */
2684 	xfs_log_callback_t *cb, *cb_next;
2685 	int		   flushcnt = 0;
2686 	xfs_lsn_t	   lowest_lsn;
2687 	int		   ioerrors;	/* counter: iclogs with errors */
2688 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2689 	int		   funcdidcallbacks; /* flag: function did callbacks */
2690 	int		   repeats;	/* for issuing console warnings if
2691 					 * looping too many times */
2692 	int		   wake = 0;
2693 
2694 	spin_lock(&log->l_icloglock);
2695 	first_iclog = iclog = log->l_iclog;
2696 	ioerrors = 0;
2697 	funcdidcallbacks = 0;
2698 	repeats = 0;
2699 
2700 	do {
2701 		/*
2702 		 * Scan all iclogs starting with the one pointed to by the
2703 		 * log.  Reset this starting point each time the log is
2704 		 * unlocked (during callbacks).
2705 		 *
2706 		 * Keep looping through iclogs until one full pass is made
2707 		 * without running any callbacks.
2708 		 */
2709 		first_iclog = log->l_iclog;
2710 		iclog = log->l_iclog;
2711 		loopdidcallbacks = 0;
2712 		repeats++;
2713 
2714 		do {
2715 
2716 			/* skip all iclogs in the ACTIVE & DIRTY states */
2717 			if (iclog->ic_state &
2718 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2719 				iclog = iclog->ic_next;
2720 				continue;
2721 			}
2722 
2723 			/*
2724 			 * Between marking a filesystem SHUTDOWN and stopping
2725 			 * the log, we do flush all iclogs to disk (if there
2726 			 * wasn't a log I/O error). So, we do want things to
2727 			 * go smoothly in case of just a SHUTDOWN  w/o a
2728 			 * LOG_IO_ERROR.
2729 			 */
2730 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2731 				/*
2732 				 * Can only perform callbacks in order.  Since
2733 				 * this iclog is not in the DONE_SYNC/
2734 				 * DO_CALLBACK state, we skip the rest and
2735 				 * just try to clean up.  If we set our iclog
2736 				 * to DO_CALLBACK, we will not process it when
2737 				 * we retry since a previous iclog is in the
2738 				 * CALLBACK and the state cannot change since
2739 				 * we are holding the l_icloglock.
2740 				 */
2741 				if (!(iclog->ic_state &
2742 					(XLOG_STATE_DONE_SYNC |
2743 						 XLOG_STATE_DO_CALLBACK))) {
2744 					if (ciclog && (ciclog->ic_state ==
2745 							XLOG_STATE_DONE_SYNC)) {
2746 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2747 					}
2748 					break;
2749 				}
2750 				/*
2751 				 * We now have an iclog that is in either the
2752 				 * DO_CALLBACK or DONE_SYNC states. The other
2753 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2754 				 * caught by the above if and are going to
2755 				 * clean (i.e. we aren't doing their callbacks)
2756 				 * see the above if.
2757 				 */
2758 
2759 				/*
2760 				 * We will do one more check here to see if we
2761 				 * have chased our tail around.
2762 				 */
2763 
2764 				lowest_lsn = xlog_get_lowest_lsn(log);
2765 				if (lowest_lsn &&
2766 				    XFS_LSN_CMP(lowest_lsn,
2767 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2768 					iclog = iclog->ic_next;
2769 					continue; /* Leave this iclog for
2770 						   * another thread */
2771 				}
2772 
2773 				iclog->ic_state = XLOG_STATE_CALLBACK;
2774 
2775 
2776 				/*
2777 				 * Completion of a iclog IO does not imply that
2778 				 * a transaction has completed, as transactions
2779 				 * can be large enough to span many iclogs. We
2780 				 * cannot change the tail of the log half way
2781 				 * through a transaction as this may be the only
2782 				 * transaction in the log and moving th etail to
2783 				 * point to the middle of it will prevent
2784 				 * recovery from finding the start of the
2785 				 * transaction. Hence we should only update the
2786 				 * last_sync_lsn if this iclog contains
2787 				 * transaction completion callbacks on it.
2788 				 *
2789 				 * We have to do this before we drop the
2790 				 * icloglock to ensure we are the only one that
2791 				 * can update it.
2792 				 */
2793 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2794 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2795 				if (iclog->ic_callback)
2796 					atomic64_set(&log->l_last_sync_lsn,
2797 						be64_to_cpu(iclog->ic_header.h_lsn));
2798 
2799 			} else
2800 				ioerrors++;
2801 
2802 			spin_unlock(&log->l_icloglock);
2803 
2804 			/*
2805 			 * Keep processing entries in the callback list until
2806 			 * we come around and it is empty.  We need to
2807 			 * atomically see that the list is empty and change the
2808 			 * state to DIRTY so that we don't miss any more
2809 			 * callbacks being added.
2810 			 */
2811 			spin_lock(&iclog->ic_callback_lock);
2812 			cb = iclog->ic_callback;
2813 			while (cb) {
2814 				iclog->ic_callback_tail = &(iclog->ic_callback);
2815 				iclog->ic_callback = NULL;
2816 				spin_unlock(&iclog->ic_callback_lock);
2817 
2818 				/* perform callbacks in the order given */
2819 				for (; cb; cb = cb_next) {
2820 					cb_next = cb->cb_next;
2821 					cb->cb_func(cb->cb_arg, aborted);
2822 				}
2823 				spin_lock(&iclog->ic_callback_lock);
2824 				cb = iclog->ic_callback;
2825 			}
2826 
2827 			loopdidcallbacks++;
2828 			funcdidcallbacks++;
2829 
2830 			spin_lock(&log->l_icloglock);
2831 			ASSERT(iclog->ic_callback == NULL);
2832 			spin_unlock(&iclog->ic_callback_lock);
2833 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2834 				iclog->ic_state = XLOG_STATE_DIRTY;
2835 
2836 			/*
2837 			 * Transition from DIRTY to ACTIVE if applicable.
2838 			 * NOP if STATE_IOERROR.
2839 			 */
2840 			xlog_state_clean_log(log);
2841 
2842 			/* wake up threads waiting in xfs_log_force() */
2843 			wake_up_all(&iclog->ic_force_wait);
2844 
2845 			iclog = iclog->ic_next;
2846 		} while (first_iclog != iclog);
2847 
2848 		if (repeats > 5000) {
2849 			flushcnt += repeats;
2850 			repeats = 0;
2851 			xfs_warn(log->l_mp,
2852 				"%s: possible infinite loop (%d iterations)",
2853 				__func__, flushcnt);
2854 		}
2855 	} while (!ioerrors && loopdidcallbacks);
2856 
2857 #ifdef DEBUG
2858 	/*
2859 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2860 	 * If the above loop finds an iclog earlier than the current iclog and
2861 	 * in one of the syncing states, the current iclog is put into
2862 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2863 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2864 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2865 	 * states.
2866 	 *
2867 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2868 	 * for ic_state == SYNCING.
2869 	 */
2870 	if (funcdidcallbacks) {
2871 		first_iclog = iclog = log->l_iclog;
2872 		do {
2873 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2874 			/*
2875 			 * Terminate the loop if iclogs are found in states
2876 			 * which will cause other threads to clean up iclogs.
2877 			 *
2878 			 * SYNCING - i/o completion will go through logs
2879 			 * DONE_SYNC - interrupt thread should be waiting for
2880 			 *              l_icloglock
2881 			 * IOERROR - give up hope all ye who enter here
2882 			 */
2883 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2884 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2885 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2886 			    iclog->ic_state == XLOG_STATE_IOERROR )
2887 				break;
2888 			iclog = iclog->ic_next;
2889 		} while (first_iclog != iclog);
2890 	}
2891 #endif
2892 
2893 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2894 		wake = 1;
2895 	spin_unlock(&log->l_icloglock);
2896 
2897 	if (wake)
2898 		wake_up_all(&log->l_flush_wait);
2899 }
2900 
2901 
2902 /*
2903  * Finish transitioning this iclog to the dirty state.
2904  *
2905  * Make sure that we completely execute this routine only when this is
2906  * the last call to the iclog.  There is a good chance that iclog flushes,
2907  * when we reach the end of the physical log, get turned into 2 separate
2908  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2909  * routine.  By using the reference count bwritecnt, we guarantee that only
2910  * the second completion goes through.
2911  *
2912  * Callbacks could take time, so they are done outside the scope of the
2913  * global state machine log lock.
2914  */
2915 STATIC void
2916 xlog_state_done_syncing(
2917 	xlog_in_core_t	*iclog,
2918 	int		aborted)
2919 {
2920 	struct xlog	   *log = iclog->ic_log;
2921 
2922 	spin_lock(&log->l_icloglock);
2923 
2924 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2925 	       iclog->ic_state == XLOG_STATE_IOERROR);
2926 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2927 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2928 
2929 
2930 	/*
2931 	 * If we got an error, either on the first buffer, or in the case of
2932 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2933 	 * and none should ever be attempted to be written to disk
2934 	 * again.
2935 	 */
2936 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2937 		if (--iclog->ic_bwritecnt == 1) {
2938 			spin_unlock(&log->l_icloglock);
2939 			return;
2940 		}
2941 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2942 	}
2943 
2944 	/*
2945 	 * Someone could be sleeping prior to writing out the next
2946 	 * iclog buffer, we wake them all, one will get to do the
2947 	 * I/O, the others get to wait for the result.
2948 	 */
2949 	wake_up_all(&iclog->ic_write_wait);
2950 	spin_unlock(&log->l_icloglock);
2951 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2952 }	/* xlog_state_done_syncing */
2953 
2954 
2955 /*
2956  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2957  * sleep.  We wait on the flush queue on the head iclog as that should be
2958  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2959  * we will wait here and all new writes will sleep until a sync completes.
2960  *
2961  * The in-core logs are used in a circular fashion. They are not used
2962  * out-of-order even when an iclog past the head is free.
2963  *
2964  * return:
2965  *	* log_offset where xlog_write() can start writing into the in-core
2966  *		log's data space.
2967  *	* in-core log pointer to which xlog_write() should write.
2968  *	* boolean indicating this is a continued write to an in-core log.
2969  *		If this is the last write, then the in-core log's offset field
2970  *		needs to be incremented, depending on the amount of data which
2971  *		is copied.
2972  */
2973 STATIC int
2974 xlog_state_get_iclog_space(
2975 	struct xlog		*log,
2976 	int			len,
2977 	struct xlog_in_core	**iclogp,
2978 	struct xlog_ticket	*ticket,
2979 	int			*continued_write,
2980 	int			*logoffsetp)
2981 {
2982 	int		  log_offset;
2983 	xlog_rec_header_t *head;
2984 	xlog_in_core_t	  *iclog;
2985 	int		  error;
2986 
2987 restart:
2988 	spin_lock(&log->l_icloglock);
2989 	if (XLOG_FORCED_SHUTDOWN(log)) {
2990 		spin_unlock(&log->l_icloglock);
2991 		return -EIO;
2992 	}
2993 
2994 	iclog = log->l_iclog;
2995 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2996 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2997 
2998 		/* Wait for log writes to have flushed */
2999 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3000 		goto restart;
3001 	}
3002 
3003 	head = &iclog->ic_header;
3004 
3005 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3006 	log_offset = iclog->ic_offset;
3007 
3008 	/* On the 1st write to an iclog, figure out lsn.  This works
3009 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3010 	 * committing to.  If the offset is set, that's how many blocks
3011 	 * must be written.
3012 	 */
3013 	if (log_offset == 0) {
3014 		ticket->t_curr_res -= log->l_iclog_hsize;
3015 		xlog_tic_add_region(ticket,
3016 				    log->l_iclog_hsize,
3017 				    XLOG_REG_TYPE_LRHEADER);
3018 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3019 		head->h_lsn = cpu_to_be64(
3020 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3021 		ASSERT(log->l_curr_block >= 0);
3022 	}
3023 
3024 	/* If there is enough room to write everything, then do it.  Otherwise,
3025 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3026 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3027 	 * until you know exactly how many bytes get copied.  Therefore, wait
3028 	 * until later to update ic_offset.
3029 	 *
3030 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3031 	 * can fit into remaining data section.
3032 	 */
3033 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3034 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3035 
3036 		/*
3037 		 * If I'm the only one writing to this iclog, sync it to disk.
3038 		 * We need to do an atomic compare and decrement here to avoid
3039 		 * racing with concurrent atomic_dec_and_lock() calls in
3040 		 * xlog_state_release_iclog() when there is more than one
3041 		 * reference to the iclog.
3042 		 */
3043 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3044 			/* we are the only one */
3045 			spin_unlock(&log->l_icloglock);
3046 			error = xlog_state_release_iclog(log, iclog);
3047 			if (error)
3048 				return error;
3049 		} else {
3050 			spin_unlock(&log->l_icloglock);
3051 		}
3052 		goto restart;
3053 	}
3054 
3055 	/* Do we have enough room to write the full amount in the remainder
3056 	 * of this iclog?  Or must we continue a write on the next iclog and
3057 	 * mark this iclog as completely taken?  In the case where we switch
3058 	 * iclogs (to mark it taken), this particular iclog will release/sync
3059 	 * to disk in xlog_write().
3060 	 */
3061 	if (len <= iclog->ic_size - iclog->ic_offset) {
3062 		*continued_write = 0;
3063 		iclog->ic_offset += len;
3064 	} else {
3065 		*continued_write = 1;
3066 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3067 	}
3068 	*iclogp = iclog;
3069 
3070 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3071 	spin_unlock(&log->l_icloglock);
3072 
3073 	*logoffsetp = log_offset;
3074 	return 0;
3075 }	/* xlog_state_get_iclog_space */
3076 
3077 /* The first cnt-1 times through here we don't need to
3078  * move the grant write head because the permanent
3079  * reservation has reserved cnt times the unit amount.
3080  * Release part of current permanent unit reservation and
3081  * reset current reservation to be one units worth.  Also
3082  * move grant reservation head forward.
3083  */
3084 STATIC void
3085 xlog_regrant_reserve_log_space(
3086 	struct xlog		*log,
3087 	struct xlog_ticket	*ticket)
3088 {
3089 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3090 
3091 	if (ticket->t_cnt > 0)
3092 		ticket->t_cnt--;
3093 
3094 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3095 					ticket->t_curr_res);
3096 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3097 					ticket->t_curr_res);
3098 	ticket->t_curr_res = ticket->t_unit_res;
3099 	xlog_tic_reset_res(ticket);
3100 
3101 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3102 
3103 	/* just return if we still have some of the pre-reserved space */
3104 	if (ticket->t_cnt > 0)
3105 		return;
3106 
3107 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3108 					ticket->t_unit_res);
3109 
3110 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3111 
3112 	ticket->t_curr_res = ticket->t_unit_res;
3113 	xlog_tic_reset_res(ticket);
3114 }	/* xlog_regrant_reserve_log_space */
3115 
3116 
3117 /*
3118  * Give back the space left from a reservation.
3119  *
3120  * All the information we need to make a correct determination of space left
3121  * is present.  For non-permanent reservations, things are quite easy.  The
3122  * count should have been decremented to zero.  We only need to deal with the
3123  * space remaining in the current reservation part of the ticket.  If the
3124  * ticket contains a permanent reservation, there may be left over space which
3125  * needs to be released.  A count of N means that N-1 refills of the current
3126  * reservation can be done before we need to ask for more space.  The first
3127  * one goes to fill up the first current reservation.  Once we run out of
3128  * space, the count will stay at zero and the only space remaining will be
3129  * in the current reservation field.
3130  */
3131 STATIC void
3132 xlog_ungrant_log_space(
3133 	struct xlog		*log,
3134 	struct xlog_ticket	*ticket)
3135 {
3136 	int	bytes;
3137 
3138 	if (ticket->t_cnt > 0)
3139 		ticket->t_cnt--;
3140 
3141 	trace_xfs_log_ungrant_enter(log, ticket);
3142 	trace_xfs_log_ungrant_sub(log, ticket);
3143 
3144 	/*
3145 	 * If this is a permanent reservation ticket, we may be able to free
3146 	 * up more space based on the remaining count.
3147 	 */
3148 	bytes = ticket->t_curr_res;
3149 	if (ticket->t_cnt > 0) {
3150 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3151 		bytes += ticket->t_unit_res*ticket->t_cnt;
3152 	}
3153 
3154 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3155 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3156 
3157 	trace_xfs_log_ungrant_exit(log, ticket);
3158 
3159 	xfs_log_space_wake(log->l_mp);
3160 }
3161 
3162 /*
3163  * Flush iclog to disk if this is the last reference to the given iclog and
3164  * the WANT_SYNC bit is set.
3165  *
3166  * When this function is entered, the iclog is not necessarily in the
3167  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3168  *
3169  *
3170  */
3171 STATIC int
3172 xlog_state_release_iclog(
3173 	struct xlog		*log,
3174 	struct xlog_in_core	*iclog)
3175 {
3176 	int		sync = 0;	/* do we sync? */
3177 
3178 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3179 		return -EIO;
3180 
3181 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3182 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3183 		return 0;
3184 
3185 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3186 		spin_unlock(&log->l_icloglock);
3187 		return -EIO;
3188 	}
3189 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3190 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3191 
3192 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3193 		/* update tail before writing to iclog */
3194 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3195 		sync++;
3196 		iclog->ic_state = XLOG_STATE_SYNCING;
3197 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3198 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3199 		/* cycle incremented when incrementing curr_block */
3200 	}
3201 	spin_unlock(&log->l_icloglock);
3202 
3203 	/*
3204 	 * We let the log lock go, so it's possible that we hit a log I/O
3205 	 * error or some other SHUTDOWN condition that marks the iclog
3206 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3207 	 * this iclog has consistent data, so we ignore IOERROR
3208 	 * flags after this point.
3209 	 */
3210 	if (sync)
3211 		return xlog_sync(log, iclog);
3212 	return 0;
3213 }	/* xlog_state_release_iclog */
3214 
3215 
3216 /*
3217  * This routine will mark the current iclog in the ring as WANT_SYNC
3218  * and move the current iclog pointer to the next iclog in the ring.
3219  * When this routine is called from xlog_state_get_iclog_space(), the
3220  * exact size of the iclog has not yet been determined.  All we know is
3221  * that every data block.  We have run out of space in this log record.
3222  */
3223 STATIC void
3224 xlog_state_switch_iclogs(
3225 	struct xlog		*log,
3226 	struct xlog_in_core	*iclog,
3227 	int			eventual_size)
3228 {
3229 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3230 	if (!eventual_size)
3231 		eventual_size = iclog->ic_offset;
3232 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3233 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3234 	log->l_prev_block = log->l_curr_block;
3235 	log->l_prev_cycle = log->l_curr_cycle;
3236 
3237 	/* roll log?: ic_offset changed later */
3238 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3239 
3240 	/* Round up to next log-sunit */
3241 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3242 	    log->l_mp->m_sb.sb_logsunit > 1) {
3243 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3244 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3245 	}
3246 
3247 	if (log->l_curr_block >= log->l_logBBsize) {
3248 		/*
3249 		 * Rewind the current block before the cycle is bumped to make
3250 		 * sure that the combined LSN never transiently moves forward
3251 		 * when the log wraps to the next cycle. This is to support the
3252 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3253 		 * other cases should acquire l_icloglock.
3254 		 */
3255 		log->l_curr_block -= log->l_logBBsize;
3256 		ASSERT(log->l_curr_block >= 0);
3257 		smp_wmb();
3258 		log->l_curr_cycle++;
3259 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3260 			log->l_curr_cycle++;
3261 	}
3262 	ASSERT(iclog == log->l_iclog);
3263 	log->l_iclog = iclog->ic_next;
3264 }	/* xlog_state_switch_iclogs */
3265 
3266 /*
3267  * Write out all data in the in-core log as of this exact moment in time.
3268  *
3269  * Data may be written to the in-core log during this call.  However,
3270  * we don't guarantee this data will be written out.  A change from past
3271  * implementation means this routine will *not* write out zero length LRs.
3272  *
3273  * Basically, we try and perform an intelligent scan of the in-core logs.
3274  * If we determine there is no flushable data, we just return.  There is no
3275  * flushable data if:
3276  *
3277  *	1. the current iclog is active and has no data; the previous iclog
3278  *		is in the active or dirty state.
3279  *	2. the current iclog is drity, and the previous iclog is in the
3280  *		active or dirty state.
3281  *
3282  * We may sleep if:
3283  *
3284  *	1. the current iclog is not in the active nor dirty state.
3285  *	2. the current iclog dirty, and the previous iclog is not in the
3286  *		active nor dirty state.
3287  *	3. the current iclog is active, and there is another thread writing
3288  *		to this particular iclog.
3289  *	4. a) the current iclog is active and has no other writers
3290  *	   b) when we return from flushing out this iclog, it is still
3291  *		not in the active nor dirty state.
3292  */
3293 int
3294 xfs_log_force(
3295 	struct xfs_mount	*mp,
3296 	uint			flags)
3297 {
3298 	struct xlog		*log = mp->m_log;
3299 	struct xlog_in_core	*iclog;
3300 	xfs_lsn_t		lsn;
3301 
3302 	XFS_STATS_INC(mp, xs_log_force);
3303 	trace_xfs_log_force(mp, 0, _RET_IP_);
3304 
3305 	xlog_cil_force(log);
3306 
3307 	spin_lock(&log->l_icloglock);
3308 	iclog = log->l_iclog;
3309 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3310 		goto out_error;
3311 
3312 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3313 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3314 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3315 		/*
3316 		 * If the head is dirty or (active and empty), then we need to
3317 		 * look at the previous iclog.
3318 		 *
3319 		 * If the previous iclog is active or dirty we are done.  There
3320 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3321 		 * previous iclog and go to sleep.
3322 		 */
3323 		iclog = iclog->ic_prev;
3324 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3325 		    iclog->ic_state == XLOG_STATE_DIRTY)
3326 			goto out_unlock;
3327 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3328 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3329 			/*
3330 			 * We are the only one with access to this iclog.
3331 			 *
3332 			 * Flush it out now.  There should be a roundoff of zero
3333 			 * to show that someone has already taken care of the
3334 			 * roundoff from the previous sync.
3335 			 */
3336 			atomic_inc(&iclog->ic_refcnt);
3337 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3338 			xlog_state_switch_iclogs(log, iclog, 0);
3339 			spin_unlock(&log->l_icloglock);
3340 
3341 			if (xlog_state_release_iclog(log, iclog))
3342 				return -EIO;
3343 
3344 			spin_lock(&log->l_icloglock);
3345 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3346 			    iclog->ic_state == XLOG_STATE_DIRTY)
3347 				goto out_unlock;
3348 		} else {
3349 			/*
3350 			 * Someone else is writing to this iclog.
3351 			 *
3352 			 * Use its call to flush out the data.  However, the
3353 			 * other thread may not force out this LR, so we mark
3354 			 * it WANT_SYNC.
3355 			 */
3356 			xlog_state_switch_iclogs(log, iclog, 0);
3357 		}
3358 	} else {
3359 		/*
3360 		 * If the head iclog is not active nor dirty, we just attach
3361 		 * ourselves to the head and go to sleep if necessary.
3362 		 */
3363 		;
3364 	}
3365 
3366 	if (!(flags & XFS_LOG_SYNC))
3367 		goto out_unlock;
3368 
3369 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3370 		goto out_error;
3371 	XFS_STATS_INC(mp, xs_log_force_sleep);
3372 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3374 		return -EIO;
3375 	return 0;
3376 
3377 out_unlock:
3378 	spin_unlock(&log->l_icloglock);
3379 	return 0;
3380 out_error:
3381 	spin_unlock(&log->l_icloglock);
3382 	return -EIO;
3383 }
3384 
3385 static int
3386 __xfs_log_force_lsn(
3387 	struct xfs_mount	*mp,
3388 	xfs_lsn_t		lsn,
3389 	uint			flags,
3390 	int			*log_flushed,
3391 	bool			already_slept)
3392 {
3393 	struct xlog		*log = mp->m_log;
3394 	struct xlog_in_core	*iclog;
3395 
3396 	spin_lock(&log->l_icloglock);
3397 	iclog = log->l_iclog;
3398 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3399 		goto out_error;
3400 
3401 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3402 		iclog = iclog->ic_next;
3403 		if (iclog == log->l_iclog)
3404 			goto out_unlock;
3405 	}
3406 
3407 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3408 		goto out_unlock;
3409 
3410 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3411 		/*
3412 		 * We sleep here if we haven't already slept (e.g. this is the
3413 		 * first time we've looked at the correct iclog buf) and the
3414 		 * buffer before us is going to be sync'ed.  The reason for this
3415 		 * is that if we are doing sync transactions here, by waiting
3416 		 * for the previous I/O to complete, we can allow a few more
3417 		 * transactions into this iclog before we close it down.
3418 		 *
3419 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3420 		 * refcnt so we can release the log (which drops the ref count).
3421 		 * The state switch keeps new transaction commits from using
3422 		 * this buffer.  When the current commits finish writing into
3423 		 * the buffer, the refcount will drop to zero and the buffer
3424 		 * will go out then.
3425 		 */
3426 		if (!already_slept &&
3427 		    (iclog->ic_prev->ic_state &
3428 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3429 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3430 
3431 			XFS_STATS_INC(mp, xs_log_force_sleep);
3432 
3433 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3434 					&log->l_icloglock);
3435 			return -EAGAIN;
3436 		}
3437 		atomic_inc(&iclog->ic_refcnt);
3438 		xlog_state_switch_iclogs(log, iclog, 0);
3439 		spin_unlock(&log->l_icloglock);
3440 		if (xlog_state_release_iclog(log, iclog))
3441 			return -EIO;
3442 		if (log_flushed)
3443 			*log_flushed = 1;
3444 		spin_lock(&log->l_icloglock);
3445 	}
3446 
3447 	if (!(flags & XFS_LOG_SYNC) ||
3448 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3449 		goto out_unlock;
3450 
3451 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3452 		goto out_error;
3453 
3454 	XFS_STATS_INC(mp, xs_log_force_sleep);
3455 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3456 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3457 		return -EIO;
3458 	return 0;
3459 
3460 out_unlock:
3461 	spin_unlock(&log->l_icloglock);
3462 	return 0;
3463 out_error:
3464 	spin_unlock(&log->l_icloglock);
3465 	return -EIO;
3466 }
3467 
3468 /*
3469  * Force the in-core log to disk for a specific LSN.
3470  *
3471  * Find in-core log with lsn.
3472  *	If it is in the DIRTY state, just return.
3473  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3474  *		state and go to sleep or return.
3475  *	If it is in any other state, go to sleep or return.
3476  *
3477  * Synchronous forces are implemented with a wait queue.  All callers trying
3478  * to force a given lsn to disk must wait on the queue attached to the
3479  * specific in-core log.  When given in-core log finally completes its write
3480  * to disk, that thread will wake up all threads waiting on the queue.
3481  */
3482 int
3483 xfs_log_force_lsn(
3484 	struct xfs_mount	*mp,
3485 	xfs_lsn_t		lsn,
3486 	uint			flags,
3487 	int			*log_flushed)
3488 {
3489 	int			ret;
3490 	ASSERT(lsn != 0);
3491 
3492 	XFS_STATS_INC(mp, xs_log_force);
3493 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3494 
3495 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3496 	if (lsn == NULLCOMMITLSN)
3497 		return 0;
3498 
3499 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3500 	if (ret == -EAGAIN)
3501 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * Called when we want to mark the current iclog as being ready to sync to
3507  * disk.
3508  */
3509 STATIC void
3510 xlog_state_want_sync(
3511 	struct xlog		*log,
3512 	struct xlog_in_core	*iclog)
3513 {
3514 	assert_spin_locked(&log->l_icloglock);
3515 
3516 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3517 		xlog_state_switch_iclogs(log, iclog, 0);
3518 	} else {
3519 		ASSERT(iclog->ic_state &
3520 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3521 	}
3522 }
3523 
3524 
3525 /*****************************************************************************
3526  *
3527  *		TICKET functions
3528  *
3529  *****************************************************************************
3530  */
3531 
3532 /*
3533  * Free a used ticket when its refcount falls to zero.
3534  */
3535 void
3536 xfs_log_ticket_put(
3537 	xlog_ticket_t	*ticket)
3538 {
3539 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3540 	if (atomic_dec_and_test(&ticket->t_ref))
3541 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3542 }
3543 
3544 xlog_ticket_t *
3545 xfs_log_ticket_get(
3546 	xlog_ticket_t	*ticket)
3547 {
3548 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3549 	atomic_inc(&ticket->t_ref);
3550 	return ticket;
3551 }
3552 
3553 /*
3554  * Figure out the total log space unit (in bytes) that would be
3555  * required for a log ticket.
3556  */
3557 int
3558 xfs_log_calc_unit_res(
3559 	struct xfs_mount	*mp,
3560 	int			unit_bytes)
3561 {
3562 	struct xlog		*log = mp->m_log;
3563 	int			iclog_space;
3564 	uint			num_headers;
3565 
3566 	/*
3567 	 * Permanent reservations have up to 'cnt'-1 active log operations
3568 	 * in the log.  A unit in this case is the amount of space for one
3569 	 * of these log operations.  Normal reservations have a cnt of 1
3570 	 * and their unit amount is the total amount of space required.
3571 	 *
3572 	 * The following lines of code account for non-transaction data
3573 	 * which occupy space in the on-disk log.
3574 	 *
3575 	 * Normal form of a transaction is:
3576 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3577 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3578 	 *
3579 	 * We need to account for all the leadup data and trailer data
3580 	 * around the transaction data.
3581 	 * And then we need to account for the worst case in terms of using
3582 	 * more space.
3583 	 * The worst case will happen if:
3584 	 * - the placement of the transaction happens to be such that the
3585 	 *   roundoff is at its maximum
3586 	 * - the transaction data is synced before the commit record is synced
3587 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3588 	 *   Therefore the commit record is in its own Log Record.
3589 	 *   This can happen as the commit record is called with its
3590 	 *   own region to xlog_write().
3591 	 *   This then means that in the worst case, roundoff can happen for
3592 	 *   the commit-rec as well.
3593 	 *   The commit-rec is smaller than padding in this scenario and so it is
3594 	 *   not added separately.
3595 	 */
3596 
3597 	/* for trans header */
3598 	unit_bytes += sizeof(xlog_op_header_t);
3599 	unit_bytes += sizeof(xfs_trans_header_t);
3600 
3601 	/* for start-rec */
3602 	unit_bytes += sizeof(xlog_op_header_t);
3603 
3604 	/*
3605 	 * for LR headers - the space for data in an iclog is the size minus
3606 	 * the space used for the headers. If we use the iclog size, then we
3607 	 * undercalculate the number of headers required.
3608 	 *
3609 	 * Furthermore - the addition of op headers for split-recs might
3610 	 * increase the space required enough to require more log and op
3611 	 * headers, so take that into account too.
3612 	 *
3613 	 * IMPORTANT: This reservation makes the assumption that if this
3614 	 * transaction is the first in an iclog and hence has the LR headers
3615 	 * accounted to it, then the remaining space in the iclog is
3616 	 * exclusively for this transaction.  i.e. if the transaction is larger
3617 	 * than the iclog, it will be the only thing in that iclog.
3618 	 * Fundamentally, this means we must pass the entire log vector to
3619 	 * xlog_write to guarantee this.
3620 	 */
3621 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3622 	num_headers = howmany(unit_bytes, iclog_space);
3623 
3624 	/* for split-recs - ophdrs added when data split over LRs */
3625 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3626 
3627 	/* add extra header reservations if we overrun */
3628 	while (!num_headers ||
3629 	       howmany(unit_bytes, iclog_space) > num_headers) {
3630 		unit_bytes += sizeof(xlog_op_header_t);
3631 		num_headers++;
3632 	}
3633 	unit_bytes += log->l_iclog_hsize * num_headers;
3634 
3635 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3636 	unit_bytes += log->l_iclog_hsize;
3637 
3638 	/* for roundoff padding for transaction data and one for commit record */
3639 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3640 		/* log su roundoff */
3641 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3642 	} else {
3643 		/* BB roundoff */
3644 		unit_bytes += 2 * BBSIZE;
3645         }
3646 
3647 	return unit_bytes;
3648 }
3649 
3650 /*
3651  * Allocate and initialise a new log ticket.
3652  */
3653 struct xlog_ticket *
3654 xlog_ticket_alloc(
3655 	struct xlog		*log,
3656 	int			unit_bytes,
3657 	int			cnt,
3658 	char			client,
3659 	bool			permanent,
3660 	xfs_km_flags_t		alloc_flags)
3661 {
3662 	struct xlog_ticket	*tic;
3663 	int			unit_res;
3664 
3665 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3666 	if (!tic)
3667 		return NULL;
3668 
3669 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3670 
3671 	atomic_set(&tic->t_ref, 1);
3672 	tic->t_task		= current;
3673 	INIT_LIST_HEAD(&tic->t_queue);
3674 	tic->t_unit_res		= unit_res;
3675 	tic->t_curr_res		= unit_res;
3676 	tic->t_cnt		= cnt;
3677 	tic->t_ocnt		= cnt;
3678 	tic->t_tid		= prandom_u32();
3679 	tic->t_clientid		= client;
3680 	tic->t_flags		= XLOG_TIC_INITED;
3681 	if (permanent)
3682 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3683 
3684 	xlog_tic_reset_res(tic);
3685 
3686 	return tic;
3687 }
3688 
3689 
3690 /******************************************************************************
3691  *
3692  *		Log debug routines
3693  *
3694  ******************************************************************************
3695  */
3696 #if defined(DEBUG)
3697 /*
3698  * Make sure that the destination ptr is within the valid data region of
3699  * one of the iclogs.  This uses backup pointers stored in a different
3700  * part of the log in case we trash the log structure.
3701  */
3702 STATIC void
3703 xlog_verify_dest_ptr(
3704 	struct xlog	*log,
3705 	void		*ptr)
3706 {
3707 	int i;
3708 	int good_ptr = 0;
3709 
3710 	for (i = 0; i < log->l_iclog_bufs; i++) {
3711 		if (ptr >= log->l_iclog_bak[i] &&
3712 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3713 			good_ptr++;
3714 	}
3715 
3716 	if (!good_ptr)
3717 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3718 }
3719 
3720 /*
3721  * Check to make sure the grant write head didn't just over lap the tail.  If
3722  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3723  * the cycles differ by exactly one and check the byte count.
3724  *
3725  * This check is run unlocked, so can give false positives. Rather than assert
3726  * on failures, use a warn-once flag and a panic tag to allow the admin to
3727  * determine if they want to panic the machine when such an error occurs. For
3728  * debug kernels this will have the same effect as using an assert but, unlinke
3729  * an assert, it can be turned off at runtime.
3730  */
3731 STATIC void
3732 xlog_verify_grant_tail(
3733 	struct xlog	*log)
3734 {
3735 	int		tail_cycle, tail_blocks;
3736 	int		cycle, space;
3737 
3738 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3739 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3740 	if (tail_cycle != cycle) {
3741 		if (cycle - 1 != tail_cycle &&
3742 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3743 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3744 				"%s: cycle - 1 != tail_cycle", __func__);
3745 			log->l_flags |= XLOG_TAIL_WARN;
3746 		}
3747 
3748 		if (space > BBTOB(tail_blocks) &&
3749 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3750 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3751 				"%s: space > BBTOB(tail_blocks)", __func__);
3752 			log->l_flags |= XLOG_TAIL_WARN;
3753 		}
3754 	}
3755 }
3756 
3757 /* check if it will fit */
3758 STATIC void
3759 xlog_verify_tail_lsn(
3760 	struct xlog		*log,
3761 	struct xlog_in_core	*iclog,
3762 	xfs_lsn_t		tail_lsn)
3763 {
3764     int blocks;
3765 
3766     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3767 	blocks =
3768 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3769 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3770 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3771     } else {
3772 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3773 
3774 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3775 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3776 
3777 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3778 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3779 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3780     }
3781 }	/* xlog_verify_tail_lsn */
3782 
3783 /*
3784  * Perform a number of checks on the iclog before writing to disk.
3785  *
3786  * 1. Make sure the iclogs are still circular
3787  * 2. Make sure we have a good magic number
3788  * 3. Make sure we don't have magic numbers in the data
3789  * 4. Check fields of each log operation header for:
3790  *	A. Valid client identifier
3791  *	B. tid ptr value falls in valid ptr space (user space code)
3792  *	C. Length in log record header is correct according to the
3793  *		individual operation headers within record.
3794  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3795  *	log, check the preceding blocks of the physical log to make sure all
3796  *	the cycle numbers agree with the current cycle number.
3797  */
3798 STATIC void
3799 xlog_verify_iclog(
3800 	struct xlog		*log,
3801 	struct xlog_in_core	*iclog,
3802 	int			count,
3803 	bool                    syncing)
3804 {
3805 	xlog_op_header_t	*ophead;
3806 	xlog_in_core_t		*icptr;
3807 	xlog_in_core_2_t	*xhdr;
3808 	void			*base_ptr, *ptr, *p;
3809 	ptrdiff_t		field_offset;
3810 	uint8_t			clientid;
3811 	int			len, i, j, k, op_len;
3812 	int			idx;
3813 
3814 	/* check validity of iclog pointers */
3815 	spin_lock(&log->l_icloglock);
3816 	icptr = log->l_iclog;
3817 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3818 		ASSERT(icptr);
3819 
3820 	if (icptr != log->l_iclog)
3821 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3822 	spin_unlock(&log->l_icloglock);
3823 
3824 	/* check log magic numbers */
3825 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827 
3828 	base_ptr = ptr = &iclog->ic_header;
3829 	p = &iclog->ic_header;
3830 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3831 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3832 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3833 				__func__);
3834 	}
3835 
3836 	/* check fields */
3837 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3838 	base_ptr = ptr = iclog->ic_datap;
3839 	ophead = ptr;
3840 	xhdr = iclog->ic_data;
3841 	for (i = 0; i < len; i++) {
3842 		ophead = ptr;
3843 
3844 		/* clientid is only 1 byte */
3845 		p = &ophead->oh_clientid;
3846 		field_offset = p - base_ptr;
3847 		if (!syncing || (field_offset & 0x1ff)) {
3848 			clientid = ophead->oh_clientid;
3849 		} else {
3850 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3851 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3852 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3854 				clientid = xlog_get_client_id(
3855 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3856 			} else {
3857 				clientid = xlog_get_client_id(
3858 					iclog->ic_header.h_cycle_data[idx]);
3859 			}
3860 		}
3861 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3862 			xfs_warn(log->l_mp,
3863 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3864 				__func__, clientid, ophead,
3865 				(unsigned long)field_offset);
3866 
3867 		/* check length */
3868 		p = &ophead->oh_len;
3869 		field_offset = p - base_ptr;
3870 		if (!syncing || (field_offset & 0x1ff)) {
3871 			op_len = be32_to_cpu(ophead->oh_len);
3872 		} else {
3873 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3874 				    (uintptr_t)iclog->ic_datap);
3875 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3876 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3878 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3879 			} else {
3880 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3881 			}
3882 		}
3883 		ptr += sizeof(xlog_op_header_t) + op_len;
3884 	}
3885 }	/* xlog_verify_iclog */
3886 #endif
3887 
3888 /*
3889  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890  */
3891 STATIC int
3892 xlog_state_ioerror(
3893 	struct xlog	*log)
3894 {
3895 	xlog_in_core_t	*iclog, *ic;
3896 
3897 	iclog = log->l_iclog;
3898 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 		/*
3900 		 * Mark all the incore logs IOERROR.
3901 		 * From now on, no log flushes will result.
3902 		 */
3903 		ic = iclog;
3904 		do {
3905 			ic->ic_state = XLOG_STATE_IOERROR;
3906 			ic = ic->ic_next;
3907 		} while (ic != iclog);
3908 		return 0;
3909 	}
3910 	/*
3911 	 * Return non-zero, if state transition has already happened.
3912 	 */
3913 	return 1;
3914 }
3915 
3916 /*
3917  * This is called from xfs_force_shutdown, when we're forcibly
3918  * shutting down the filesystem, typically because of an IO error.
3919  * Our main objectives here are to make sure that:
3920  *	a. if !logerror, flush the logs to disk. Anything modified
3921  *	   after this is ignored.
3922  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3923  *	   parties to find out, 'atomically'.
3924  *	c. those who're sleeping on log reservations, pinned objects and
3925  *	    other resources get woken up, and be told the bad news.
3926  *	d. nothing new gets queued up after (b) and (c) are done.
3927  *
3928  * Note: for the !logerror case we need to flush the regions held in memory out
3929  * to disk first. This needs to be done before the log is marked as shutdown,
3930  * otherwise the iclog writes will fail.
3931  */
3932 int
3933 xfs_log_force_umount(
3934 	struct xfs_mount	*mp,
3935 	int			logerror)
3936 {
3937 	struct xlog	*log;
3938 	int		retval;
3939 
3940 	log = mp->m_log;
3941 
3942 	/*
3943 	 * If this happens during log recovery, don't worry about
3944 	 * locking; the log isn't open for business yet.
3945 	 */
3946 	if (!log ||
3947 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3948 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3949 		if (mp->m_sb_bp)
3950 			mp->m_sb_bp->b_flags |= XBF_DONE;
3951 		return 0;
3952 	}
3953 
3954 	/*
3955 	 * Somebody could've already done the hard work for us.
3956 	 * No need to get locks for this.
3957 	 */
3958 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3959 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3960 		return 1;
3961 	}
3962 
3963 	/*
3964 	 * Flush all the completed transactions to disk before marking the log
3965 	 * being shut down. We need to do it in this order to ensure that
3966 	 * completed operations are safely on disk before we shut down, and that
3967 	 * we don't have to issue any buffer IO after the shutdown flags are set
3968 	 * to guarantee this.
3969 	 */
3970 	if (!logerror)
3971 		xfs_log_force(mp, XFS_LOG_SYNC);
3972 
3973 	/*
3974 	 * mark the filesystem and the as in a shutdown state and wake
3975 	 * everybody up to tell them the bad news.
3976 	 */
3977 	spin_lock(&log->l_icloglock);
3978 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979 	if (mp->m_sb_bp)
3980 		mp->m_sb_bp->b_flags |= XBF_DONE;
3981 
3982 	/*
3983 	 * Mark the log and the iclogs with IO error flags to prevent any
3984 	 * further log IO from being issued or completed.
3985 	 */
3986 	log->l_flags |= XLOG_IO_ERROR;
3987 	retval = xlog_state_ioerror(log);
3988 	spin_unlock(&log->l_icloglock);
3989 
3990 	/*
3991 	 * We don't want anybody waiting for log reservations after this. That
3992 	 * means we have to wake up everybody queued up on reserveq as well as
3993 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3994 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3995 	 * action is protected by the grant locks.
3996 	 */
3997 	xlog_grant_head_wake_all(&log->l_reserve_head);
3998 	xlog_grant_head_wake_all(&log->l_write_head);
3999 
4000 	/*
4001 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4002 	 * as if the log writes were completed. The abort handling in the log
4003 	 * item committed callback functions will do this again under lock to
4004 	 * avoid races.
4005 	 */
4006 	wake_up_all(&log->l_cilp->xc_commit_wait);
4007 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4008 
4009 #ifdef XFSERRORDEBUG
4010 	{
4011 		xlog_in_core_t	*iclog;
4012 
4013 		spin_lock(&log->l_icloglock);
4014 		iclog = log->l_iclog;
4015 		do {
4016 			ASSERT(iclog->ic_callback == 0);
4017 			iclog = iclog->ic_next;
4018 		} while (iclog != log->l_iclog);
4019 		spin_unlock(&log->l_icloglock);
4020 	}
4021 #endif
4022 	/* return non-zero if log IOERROR transition had already happened */
4023 	return retval;
4024 }
4025 
4026 STATIC int
4027 xlog_iclogs_empty(
4028 	struct xlog	*log)
4029 {
4030 	xlog_in_core_t	*iclog;
4031 
4032 	iclog = log->l_iclog;
4033 	do {
4034 		/* endianness does not matter here, zero is zero in
4035 		 * any language.
4036 		 */
4037 		if (iclog->ic_header.h_num_logops)
4038 			return 0;
4039 		iclog = iclog->ic_next;
4040 	} while (iclog != log->l_iclog);
4041 	return 1;
4042 }
4043 
4044 /*
4045  * Verify that an LSN stamped into a piece of metadata is valid. This is
4046  * intended for use in read verifiers on v5 superblocks.
4047  */
4048 bool
4049 xfs_log_check_lsn(
4050 	struct xfs_mount	*mp,
4051 	xfs_lsn_t		lsn)
4052 {
4053 	struct xlog		*log = mp->m_log;
4054 	bool			valid;
4055 
4056 	/*
4057 	 * norecovery mode skips mount-time log processing and unconditionally
4058 	 * resets the in-core LSN. We can't validate in this mode, but
4059 	 * modifications are not allowed anyways so just return true.
4060 	 */
4061 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4062 		return true;
4063 
4064 	/*
4065 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4066 	 * handled by recovery and thus safe to ignore here.
4067 	 */
4068 	if (lsn == NULLCOMMITLSN)
4069 		return true;
4070 
4071 	valid = xlog_valid_lsn(mp->m_log, lsn);
4072 
4073 	/* warn the user about what's gone wrong before verifier failure */
4074 	if (!valid) {
4075 		spin_lock(&log->l_icloglock);
4076 		xfs_warn(mp,
4077 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4078 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4079 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4080 			 log->l_curr_cycle, log->l_curr_block);
4081 		spin_unlock(&log->l_icloglock);
4082 	}
4083 
4084 	return valid;
4085 }
4086