xref: /openbmc/linux/fs/xfs/xfs_log.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog,
51 	bool			aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	int			len,
56 	struct xlog_in_core	**iclog,
57 	struct xlog_ticket	*ticket,
58 	int			*continued_write,
59 	int			*logoffsetp);
60 STATIC void
61 xlog_state_switch_iclogs(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog,
64 	int			eventual_size);
65 STATIC void
66 xlog_state_want_sync(
67 	struct xlog		*log,
68 	struct xlog_in_core	*iclog);
69 
70 STATIC void
71 xlog_grant_push_ail(
72 	struct xlog		*log,
73 	int			need_bytes);
74 STATIC void
75 xlog_regrant_reserve_log_space(
76 	struct xlog		*log,
77 	struct xlog_ticket	*ticket);
78 STATIC void
79 xlog_ungrant_log_space(
80 	struct xlog		*log,
81 	struct xlog_ticket	*ticket);
82 STATIC void
83 xlog_sync(
84 	struct xlog		*log,
85 	struct xlog_in_core	*iclog);
86 #if defined(DEBUG)
87 STATIC void
88 xlog_verify_dest_ptr(
89 	struct xlog		*log,
90 	void			*ptr);
91 STATIC void
92 xlog_verify_grant_tail(
93 	struct xlog *log);
94 STATIC void
95 xlog_verify_iclog(
96 	struct xlog		*log,
97 	struct xlog_in_core	*iclog,
98 	int			count);
99 STATIC void
100 xlog_verify_tail_lsn(
101 	struct xlog		*log,
102 	struct xlog_in_core	*iclog,
103 	xfs_lsn_t		tail_lsn);
104 #else
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
109 #endif
110 
111 STATIC int
112 xlog_iclogs_empty(
113 	struct xlog		*log);
114 
115 static void
116 xlog_grant_sub_space(
117 	struct xlog		*log,
118 	atomic64_t		*head,
119 	int			bytes)
120 {
121 	int64_t	head_val = atomic64_read(head);
122 	int64_t new, old;
123 
124 	do {
125 		int	cycle, space;
126 
127 		xlog_crack_grant_head_val(head_val, &cycle, &space);
128 
129 		space -= bytes;
130 		if (space < 0) {
131 			space += log->l_logsize;
132 			cycle--;
133 		}
134 
135 		old = head_val;
136 		new = xlog_assign_grant_head_val(cycle, space);
137 		head_val = atomic64_cmpxchg(head, old, new);
138 	} while (head_val != old);
139 }
140 
141 static void
142 xlog_grant_add_space(
143 	struct xlog		*log,
144 	atomic64_t		*head,
145 	int			bytes)
146 {
147 	int64_t	head_val = atomic64_read(head);
148 	int64_t new, old;
149 
150 	do {
151 		int		tmp;
152 		int		cycle, space;
153 
154 		xlog_crack_grant_head_val(head_val, &cycle, &space);
155 
156 		tmp = log->l_logsize - space;
157 		if (tmp > bytes)
158 			space += bytes;
159 		else {
160 			space = bytes - tmp;
161 			cycle++;
162 		}
163 
164 		old = head_val;
165 		new = xlog_assign_grant_head_val(cycle, space);
166 		head_val = atomic64_cmpxchg(head, old, new);
167 	} while (head_val != old);
168 }
169 
170 STATIC void
171 xlog_grant_head_init(
172 	struct xlog_grant_head	*head)
173 {
174 	xlog_assign_grant_head(&head->grant, 1, 0);
175 	INIT_LIST_HEAD(&head->waiters);
176 	spin_lock_init(&head->lock);
177 }
178 
179 STATIC void
180 xlog_grant_head_wake_all(
181 	struct xlog_grant_head	*head)
182 {
183 	struct xlog_ticket	*tic;
184 
185 	spin_lock(&head->lock);
186 	list_for_each_entry(tic, &head->waiters, t_queue)
187 		wake_up_process(tic->t_task);
188 	spin_unlock(&head->lock);
189 }
190 
191 static inline int
192 xlog_ticket_reservation(
193 	struct xlog		*log,
194 	struct xlog_grant_head	*head,
195 	struct xlog_ticket	*tic)
196 {
197 	if (head == &log->l_write_head) {
198 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
199 		return tic->t_unit_res;
200 	} else {
201 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
202 			return tic->t_unit_res * tic->t_cnt;
203 		else
204 			return tic->t_unit_res;
205 	}
206 }
207 
208 STATIC bool
209 xlog_grant_head_wake(
210 	struct xlog		*log,
211 	struct xlog_grant_head	*head,
212 	int			*free_bytes)
213 {
214 	struct xlog_ticket	*tic;
215 	int			need_bytes;
216 	bool			woken_task = false;
217 
218 	list_for_each_entry(tic, &head->waiters, t_queue) {
219 
220 		/*
221 		 * There is a chance that the size of the CIL checkpoints in
222 		 * progress at the last AIL push target calculation resulted in
223 		 * limiting the target to the log head (l_last_sync_lsn) at the
224 		 * time. This may not reflect where the log head is now as the
225 		 * CIL checkpoints may have completed.
226 		 *
227 		 * Hence when we are woken here, it may be that the head of the
228 		 * log that has moved rather than the tail. As the tail didn't
229 		 * move, there still won't be space available for the
230 		 * reservation we require.  However, if the AIL has already
231 		 * pushed to the target defined by the old log head location, we
232 		 * will hang here waiting for something else to update the AIL
233 		 * push target.
234 		 *
235 		 * Therefore, if there isn't space to wake the first waiter on
236 		 * the grant head, we need to push the AIL again to ensure the
237 		 * target reflects both the current log tail and log head
238 		 * position before we wait for the tail to move again.
239 		 */
240 
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes) {
243 			if (!woken_task)
244 				xlog_grant_push_ail(log, need_bytes);
245 			return false;
246 		}
247 
248 		*free_bytes -= need_bytes;
249 		trace_xfs_log_grant_wake_up(log, tic);
250 		wake_up_process(tic->t_task);
251 		woken_task = true;
252 	}
253 
254 	return true;
255 }
256 
257 STATIC int
258 xlog_grant_head_wait(
259 	struct xlog		*log,
260 	struct xlog_grant_head	*head,
261 	struct xlog_ticket	*tic,
262 	int			need_bytes) __releases(&head->lock)
263 					    __acquires(&head->lock)
264 {
265 	list_add_tail(&tic->t_queue, &head->waiters);
266 
267 	do {
268 		if (XLOG_FORCED_SHUTDOWN(log))
269 			goto shutdown;
270 		xlog_grant_push_ail(log, need_bytes);
271 
272 		__set_current_state(TASK_UNINTERRUPTIBLE);
273 		spin_unlock(&head->lock);
274 
275 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
276 
277 		trace_xfs_log_grant_sleep(log, tic);
278 		schedule();
279 		trace_xfs_log_grant_wake(log, tic);
280 
281 		spin_lock(&head->lock);
282 		if (XLOG_FORCED_SHUTDOWN(log))
283 			goto shutdown;
284 	} while (xlog_space_left(log, &head->grant) < need_bytes);
285 
286 	list_del_init(&tic->t_queue);
287 	return 0;
288 shutdown:
289 	list_del_init(&tic->t_queue);
290 	return -EIO;
291 }
292 
293 /*
294  * Atomically get the log space required for a log ticket.
295  *
296  * Once a ticket gets put onto head->waiters, it will only return after the
297  * needed reservation is satisfied.
298  *
299  * This function is structured so that it has a lock free fast path. This is
300  * necessary because every new transaction reservation will come through this
301  * path. Hence any lock will be globally hot if we take it unconditionally on
302  * every pass.
303  *
304  * As tickets are only ever moved on and off head->waiters under head->lock, we
305  * only need to take that lock if we are going to add the ticket to the queue
306  * and sleep. We can avoid taking the lock if the ticket was never added to
307  * head->waiters because the t_queue list head will be empty and we hold the
308  * only reference to it so it can safely be checked unlocked.
309  */
310 STATIC int
311 xlog_grant_head_check(
312 	struct xlog		*log,
313 	struct xlog_grant_head	*head,
314 	struct xlog_ticket	*tic,
315 	int			*need_bytes)
316 {
317 	int			free_bytes;
318 	int			error = 0;
319 
320 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
321 
322 	/*
323 	 * If there are other waiters on the queue then give them a chance at
324 	 * logspace before us.  Wake up the first waiters, if we do not wake
325 	 * up all the waiters then go to sleep waiting for more free space,
326 	 * otherwise try to get some space for this transaction.
327 	 */
328 	*need_bytes = xlog_ticket_reservation(log, head, tic);
329 	free_bytes = xlog_space_left(log, &head->grant);
330 	if (!list_empty_careful(&head->waiters)) {
331 		spin_lock(&head->lock);
332 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
333 		    free_bytes < *need_bytes) {
334 			error = xlog_grant_head_wait(log, head, tic,
335 						     *need_bytes);
336 		}
337 		spin_unlock(&head->lock);
338 	} else if (free_bytes < *need_bytes) {
339 		spin_lock(&head->lock);
340 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
341 		spin_unlock(&head->lock);
342 	}
343 
344 	return error;
345 }
346 
347 static void
348 xlog_tic_reset_res(xlog_ticket_t *tic)
349 {
350 	tic->t_res_num = 0;
351 	tic->t_res_arr_sum = 0;
352 	tic->t_res_num_ophdrs = 0;
353 }
354 
355 static void
356 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
357 {
358 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
359 		/* add to overflow and start again */
360 		tic->t_res_o_flow += tic->t_res_arr_sum;
361 		tic->t_res_num = 0;
362 		tic->t_res_arr_sum = 0;
363 	}
364 
365 	tic->t_res_arr[tic->t_res_num].r_len = len;
366 	tic->t_res_arr[tic->t_res_num].r_type = type;
367 	tic->t_res_arr_sum += len;
368 	tic->t_res_num++;
369 }
370 
371 /*
372  * Replenish the byte reservation required by moving the grant write head.
373  */
374 int
375 xfs_log_regrant(
376 	struct xfs_mount	*mp,
377 	struct xlog_ticket	*tic)
378 {
379 	struct xlog		*log = mp->m_log;
380 	int			need_bytes;
381 	int			error = 0;
382 
383 	if (XLOG_FORCED_SHUTDOWN(log))
384 		return -EIO;
385 
386 	XFS_STATS_INC(mp, xs_try_logspace);
387 
388 	/*
389 	 * This is a new transaction on the ticket, so we need to change the
390 	 * transaction ID so that the next transaction has a different TID in
391 	 * the log. Just add one to the existing tid so that we can see chains
392 	 * of rolling transactions in the log easily.
393 	 */
394 	tic->t_tid++;
395 
396 	xlog_grant_push_ail(log, tic->t_unit_res);
397 
398 	tic->t_curr_res = tic->t_unit_res;
399 	xlog_tic_reset_res(tic);
400 
401 	if (tic->t_cnt > 0)
402 		return 0;
403 
404 	trace_xfs_log_regrant(log, tic);
405 
406 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
407 				      &need_bytes);
408 	if (error)
409 		goto out_error;
410 
411 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
412 	trace_xfs_log_regrant_exit(log, tic);
413 	xlog_verify_grant_tail(log);
414 	return 0;
415 
416 out_error:
417 	/*
418 	 * If we are failing, make sure the ticket doesn't have any current
419 	 * reservations.  We don't want to add this back when the ticket/
420 	 * transaction gets cancelled.
421 	 */
422 	tic->t_curr_res = 0;
423 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
424 	return error;
425 }
426 
427 /*
428  * Reserve log space and return a ticket corresponding to the reservation.
429  *
430  * Each reservation is going to reserve extra space for a log record header.
431  * When writes happen to the on-disk log, we don't subtract the length of the
432  * log record header from any reservation.  By wasting space in each
433  * reservation, we prevent over allocation problems.
434  */
435 int
436 xfs_log_reserve(
437 	struct xfs_mount	*mp,
438 	int		 	unit_bytes,
439 	int		 	cnt,
440 	struct xlog_ticket	**ticp,
441 	uint8_t		 	client,
442 	bool			permanent)
443 {
444 	struct xlog		*log = mp->m_log;
445 	struct xlog_ticket	*tic;
446 	int			need_bytes;
447 	int			error = 0;
448 
449 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
450 
451 	if (XLOG_FORCED_SHUTDOWN(log))
452 		return -EIO;
453 
454 	XFS_STATS_INC(mp, xs_try_logspace);
455 
456 	ASSERT(*ticp == NULL);
457 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
458 	*ticp = tic;
459 
460 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 					    : tic->t_unit_res);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	bool			regrant)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		regrant = false;
528 	}
529 
530 
531 	if (!regrant) {
532 		trace_xfs_log_done_nonperm(log, ticket);
533 
534 		/*
535 		 * Release ticket if not permanent reservation or a specific
536 		 * request has been made to release a permanent reservation.
537 		 */
538 		xlog_ungrant_log_space(log, ticket);
539 	} else {
540 		trace_xfs_log_done_perm(log, ticket);
541 
542 		xlog_regrant_reserve_log_space(log, ticket);
543 		/* If this ticket was a permanent reservation and we aren't
544 		 * trying to release it, reset the inited flags; so next time
545 		 * we write, a start record will be written out.
546 		 */
547 		ticket->t_flags |= XLOG_TIC_INITED;
548 	}
549 
550 	xfs_log_ticket_put(ticket);
551 	return lsn;
552 }
553 
554 static bool
555 __xlog_state_release_iclog(
556 	struct xlog		*log,
557 	struct xlog_in_core	*iclog)
558 {
559 	lockdep_assert_held(&log->l_icloglock);
560 
561 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
562 		/* update tail before writing to iclog */
563 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
564 
565 		iclog->ic_state = XLOG_STATE_SYNCING;
566 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
567 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
568 		/* cycle incremented when incrementing curr_block */
569 		return true;
570 	}
571 
572 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
573 	return false;
574 }
575 
576 /*
577  * Flush iclog to disk if this is the last reference to the given iclog and the
578  * it is in the WANT_SYNC state.
579  */
580 static int
581 xlog_state_release_iclog(
582 	struct xlog		*log,
583 	struct xlog_in_core	*iclog)
584 {
585 	lockdep_assert_held(&log->l_icloglock);
586 
587 	if (iclog->ic_state == XLOG_STATE_IOERROR)
588 		return -EIO;
589 
590 	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
591 	    __xlog_state_release_iclog(log, iclog)) {
592 		spin_unlock(&log->l_icloglock);
593 		xlog_sync(log, iclog);
594 		spin_lock(&log->l_icloglock);
595 	}
596 
597 	return 0;
598 }
599 
600 int
601 xfs_log_release_iclog(
602 	struct xfs_mount        *mp,
603 	struct xlog_in_core	*iclog)
604 {
605 	struct xlog		*log = mp->m_log;
606 	bool			sync;
607 
608 	if (iclog->ic_state == XLOG_STATE_IOERROR) {
609 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
610 		return -EIO;
611 	}
612 
613 	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
614 		sync = __xlog_state_release_iclog(log, iclog);
615 		spin_unlock(&log->l_icloglock);
616 		if (sync)
617 			xlog_sync(log, iclog);
618 	}
619 	return 0;
620 }
621 
622 /*
623  * Mount a log filesystem
624  *
625  * mp		- ubiquitous xfs mount point structure
626  * log_target	- buftarg of on-disk log device
627  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
628  * num_bblocks	- Number of BBSIZE blocks in on-disk log
629  *
630  * Return error or zero.
631  */
632 int
633 xfs_log_mount(
634 	xfs_mount_t	*mp,
635 	xfs_buftarg_t	*log_target,
636 	xfs_daddr_t	blk_offset,
637 	int		num_bblks)
638 {
639 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
640 	int		error = 0;
641 	int		min_logfsbs;
642 
643 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
644 		xfs_notice(mp, "Mounting V%d Filesystem",
645 			   XFS_SB_VERSION_NUM(&mp->m_sb));
646 	} else {
647 		xfs_notice(mp,
648 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
649 			   XFS_SB_VERSION_NUM(&mp->m_sb));
650 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
651 	}
652 
653 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
654 	if (IS_ERR(mp->m_log)) {
655 		error = PTR_ERR(mp->m_log);
656 		goto out;
657 	}
658 
659 	/*
660 	 * Validate the given log space and drop a critical message via syslog
661 	 * if the log size is too small that would lead to some unexpected
662 	 * situations in transaction log space reservation stage.
663 	 *
664 	 * Note: we can't just reject the mount if the validation fails.  This
665 	 * would mean that people would have to downgrade their kernel just to
666 	 * remedy the situation as there is no way to grow the log (short of
667 	 * black magic surgery with xfs_db).
668 	 *
669 	 * We can, however, reject mounts for CRC format filesystems, as the
670 	 * mkfs binary being used to make the filesystem should never create a
671 	 * filesystem with a log that is too small.
672 	 */
673 	min_logfsbs = xfs_log_calc_minimum_size(mp);
674 
675 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
676 		xfs_warn(mp,
677 		"Log size %d blocks too small, minimum size is %d blocks",
678 			 mp->m_sb.sb_logblocks, min_logfsbs);
679 		error = -EINVAL;
680 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
681 		xfs_warn(mp,
682 		"Log size %d blocks too large, maximum size is %lld blocks",
683 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
684 		error = -EINVAL;
685 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
686 		xfs_warn(mp,
687 		"log size %lld bytes too large, maximum size is %lld bytes",
688 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
689 			 XFS_MAX_LOG_BYTES);
690 		error = -EINVAL;
691 	} else if (mp->m_sb.sb_logsunit > 1 &&
692 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
693 		xfs_warn(mp,
694 		"log stripe unit %u bytes must be a multiple of block size",
695 			 mp->m_sb.sb_logsunit);
696 		error = -EINVAL;
697 		fatal = true;
698 	}
699 	if (error) {
700 		/*
701 		 * Log check errors are always fatal on v5; or whenever bad
702 		 * metadata leads to a crash.
703 		 */
704 		if (fatal) {
705 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
706 			ASSERT(0);
707 			goto out_free_log;
708 		}
709 		xfs_crit(mp, "Log size out of supported range.");
710 		xfs_crit(mp,
711 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
712 	}
713 
714 	/*
715 	 * Initialize the AIL now we have a log.
716 	 */
717 	error = xfs_trans_ail_init(mp);
718 	if (error) {
719 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
720 		goto out_free_log;
721 	}
722 	mp->m_log->l_ailp = mp->m_ail;
723 
724 	/*
725 	 * skip log recovery on a norecovery mount.  pretend it all
726 	 * just worked.
727 	 */
728 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
729 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
730 
731 		if (readonly)
732 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
733 
734 		error = xlog_recover(mp->m_log);
735 
736 		if (readonly)
737 			mp->m_flags |= XFS_MOUNT_RDONLY;
738 		if (error) {
739 			xfs_warn(mp, "log mount/recovery failed: error %d",
740 				error);
741 			xlog_recover_cancel(mp->m_log);
742 			goto out_destroy_ail;
743 		}
744 	}
745 
746 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
747 			       "log");
748 	if (error)
749 		goto out_destroy_ail;
750 
751 	/* Normal transactions can now occur */
752 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
753 
754 	/*
755 	 * Now the log has been fully initialised and we know were our
756 	 * space grant counters are, we can initialise the permanent ticket
757 	 * needed for delayed logging to work.
758 	 */
759 	xlog_cil_init_post_recovery(mp->m_log);
760 
761 	return 0;
762 
763 out_destroy_ail:
764 	xfs_trans_ail_destroy(mp);
765 out_free_log:
766 	xlog_dealloc_log(mp->m_log);
767 out:
768 	return error;
769 }
770 
771 /*
772  * Finish the recovery of the file system.  This is separate from the
773  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
774  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
775  * here.
776  *
777  * If we finish recovery successfully, start the background log work. If we are
778  * not doing recovery, then we have a RO filesystem and we don't need to start
779  * it.
780  */
781 int
782 xfs_log_mount_finish(
783 	struct xfs_mount	*mp)
784 {
785 	int	error = 0;
786 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
787 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
788 
789 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
790 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
791 		return 0;
792 	} else if (readonly) {
793 		/* Allow unlinked processing to proceed */
794 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
795 	}
796 
797 	/*
798 	 * During the second phase of log recovery, we need iget and
799 	 * iput to behave like they do for an active filesystem.
800 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
801 	 * of inodes before we're done replaying log items on those
802 	 * inodes.  Turn it off immediately after recovery finishes
803 	 * so that we don't leak the quota inodes if subsequent mount
804 	 * activities fail.
805 	 *
806 	 * We let all inodes involved in redo item processing end up on
807 	 * the LRU instead of being evicted immediately so that if we do
808 	 * something to an unlinked inode, the irele won't cause
809 	 * premature truncation and freeing of the inode, which results
810 	 * in log recovery failure.  We have to evict the unreferenced
811 	 * lru inodes after clearing SB_ACTIVE because we don't
812 	 * otherwise clean up the lru if there's a subsequent failure in
813 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
814 	 * else (e.g. quotacheck) references the inodes before the
815 	 * mount failure occurs.
816 	 */
817 	mp->m_super->s_flags |= SB_ACTIVE;
818 	error = xlog_recover_finish(mp->m_log);
819 	if (!error)
820 		xfs_log_work_queue(mp);
821 	mp->m_super->s_flags &= ~SB_ACTIVE;
822 	evict_inodes(mp->m_super);
823 
824 	/*
825 	 * Drain the buffer LRU after log recovery. This is required for v4
826 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
827 	 * but we do it unconditionally to make sure we're always in a clean
828 	 * cache state after mount.
829 	 *
830 	 * Don't push in the error case because the AIL may have pending intents
831 	 * that aren't removed until recovery is cancelled.
832 	 */
833 	if (!error && recovered) {
834 		xfs_log_force(mp, XFS_LOG_SYNC);
835 		xfs_ail_push_all_sync(mp->m_ail);
836 	}
837 	xfs_wait_buftarg(mp->m_ddev_targp);
838 
839 	if (readonly)
840 		mp->m_flags |= XFS_MOUNT_RDONLY;
841 
842 	return error;
843 }
844 
845 /*
846  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
847  * the log.
848  */
849 void
850 xfs_log_mount_cancel(
851 	struct xfs_mount	*mp)
852 {
853 	xlog_recover_cancel(mp->m_log);
854 	xfs_log_unmount(mp);
855 }
856 
857 /*
858  * Final log writes as part of unmount.
859  *
860  * Mark the filesystem clean as unmount happens.  Note that during relocation
861  * this routine needs to be executed as part of source-bag while the
862  * deallocation must not be done until source-end.
863  */
864 
865 /* Actually write the unmount record to disk. */
866 static void
867 xfs_log_write_unmount_record(
868 	struct xfs_mount	*mp)
869 {
870 	/* the data section must be 32 bit size aligned */
871 	struct xfs_unmount_log_format magic = {
872 		.magic = XLOG_UNMOUNT_TYPE,
873 	};
874 	struct xfs_log_iovec reg = {
875 		.i_addr = &magic,
876 		.i_len = sizeof(magic),
877 		.i_type = XLOG_REG_TYPE_UNMOUNT,
878 	};
879 	struct xfs_log_vec vec = {
880 		.lv_niovecs = 1,
881 		.lv_iovecp = &reg,
882 	};
883 	struct xlog		*log = mp->m_log;
884 	struct xlog_in_core	*iclog;
885 	struct xlog_ticket	*tic = NULL;
886 	xfs_lsn_t		lsn;
887 	uint			flags = XLOG_UNMOUNT_TRANS;
888 	int			error;
889 
890 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
891 	if (error)
892 		goto out_err;
893 
894 	/*
895 	 * If we think the summary counters are bad, clear the unmount header
896 	 * flag in the unmount record so that the summary counters will be
897 	 * recalculated during log recovery at next mount.  Refer to
898 	 * xlog_check_unmount_rec for more details.
899 	 */
900 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
901 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
902 		xfs_alert(mp, "%s: will fix summary counters at next mount",
903 				__func__);
904 		flags &= ~XLOG_UNMOUNT_TRANS;
905 	}
906 
907 	/* remove inited flag, and account for space used */
908 	tic->t_flags = 0;
909 	tic->t_curr_res -= sizeof(magic);
910 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
911 	/*
912 	 * At this point, we're umounting anyway, so there's no point in
913 	 * transitioning log state to IOERROR. Just continue...
914 	 */
915 out_err:
916 	if (error)
917 		xfs_alert(mp, "%s: unmount record failed", __func__);
918 
919 	spin_lock(&log->l_icloglock);
920 	iclog = log->l_iclog;
921 	atomic_inc(&iclog->ic_refcnt);
922 	xlog_state_want_sync(log, iclog);
923 	error = xlog_state_release_iclog(log, iclog);
924 	switch (iclog->ic_state) {
925 	default:
926 		if (!XLOG_FORCED_SHUTDOWN(log)) {
927 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
928 			break;
929 		}
930 		/* fall through */
931 	case XLOG_STATE_ACTIVE:
932 	case XLOG_STATE_DIRTY:
933 		spin_unlock(&log->l_icloglock);
934 		break;
935 	}
936 
937 	if (tic) {
938 		trace_xfs_log_umount_write(log, tic);
939 		xlog_ungrant_log_space(log, tic);
940 		xfs_log_ticket_put(tic);
941 	}
942 }
943 
944 /*
945  * Unmount record used to have a string "Unmount filesystem--" in the
946  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947  * We just write the magic number now since that particular field isn't
948  * currently architecture converted and "Unmount" is a bit foo.
949  * As far as I know, there weren't any dependencies on the old behaviour.
950  */
951 
952 static int
953 xfs_log_unmount_write(xfs_mount_t *mp)
954 {
955 	struct xlog	 *log = mp->m_log;
956 	xlog_in_core_t	 *iclog;
957 #ifdef DEBUG
958 	xlog_in_core_t	 *first_iclog;
959 #endif
960 	int		 error;
961 
962 	/*
963 	 * Don't write out unmount record on norecovery mounts or ro devices.
964 	 * Or, if we are doing a forced umount (typically because of IO errors).
965 	 */
966 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
967 	    xfs_readonly_buftarg(log->l_targ)) {
968 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
969 		return 0;
970 	}
971 
972 	error = xfs_log_force(mp, XFS_LOG_SYNC);
973 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
974 
975 #ifdef DEBUG
976 	first_iclog = iclog = log->l_iclog;
977 	do {
978 		if (iclog->ic_state != XLOG_STATE_IOERROR) {
979 			ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
980 			ASSERT(iclog->ic_offset == 0);
981 		}
982 		iclog = iclog->ic_next;
983 	} while (iclog != first_iclog);
984 #endif
985 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
986 		xfs_log_write_unmount_record(mp);
987 	} else {
988 		/*
989 		 * We're already in forced_shutdown mode, couldn't
990 		 * even attempt to write out the unmount transaction.
991 		 *
992 		 * Go through the motions of sync'ing and releasing
993 		 * the iclog, even though no I/O will actually happen,
994 		 * we need to wait for other log I/Os that may already
995 		 * be in progress.  Do this as a separate section of
996 		 * code so we'll know if we ever get stuck here that
997 		 * we're in this odd situation of trying to unmount
998 		 * a file system that went into forced_shutdown as
999 		 * the result of an unmount..
1000 		 */
1001 		spin_lock(&log->l_icloglock);
1002 		iclog = log->l_iclog;
1003 		atomic_inc(&iclog->ic_refcnt);
1004 		xlog_state_want_sync(log, iclog);
1005 		error =  xlog_state_release_iclog(log, iclog);
1006 		switch (iclog->ic_state) {
1007 		case XLOG_STATE_ACTIVE:
1008 		case XLOG_STATE_DIRTY:
1009 		case XLOG_STATE_IOERROR:
1010 			spin_unlock(&log->l_icloglock);
1011 			break;
1012 		default:
1013 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1014 			break;
1015 		}
1016 	}
1017 
1018 	return error;
1019 }	/* xfs_log_unmount_write */
1020 
1021 /*
1022  * Empty the log for unmount/freeze.
1023  *
1024  * To do this, we first need to shut down the background log work so it is not
1025  * trying to cover the log as we clean up. We then need to unpin all objects in
1026  * the log so we can then flush them out. Once they have completed their IO and
1027  * run the callbacks removing themselves from the AIL, we can write the unmount
1028  * record.
1029  */
1030 void
1031 xfs_log_quiesce(
1032 	struct xfs_mount	*mp)
1033 {
1034 	cancel_delayed_work_sync(&mp->m_log->l_work);
1035 	xfs_log_force(mp, XFS_LOG_SYNC);
1036 
1037 	/*
1038 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1039 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1040 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1041 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1042 	 * the IO to complete.
1043 	 */
1044 	xfs_ail_push_all_sync(mp->m_ail);
1045 	xfs_wait_buftarg(mp->m_ddev_targp);
1046 	xfs_buf_lock(mp->m_sb_bp);
1047 	xfs_buf_unlock(mp->m_sb_bp);
1048 
1049 	xfs_log_unmount_write(mp);
1050 }
1051 
1052 /*
1053  * Shut down and release the AIL and Log.
1054  *
1055  * During unmount, we need to ensure we flush all the dirty metadata objects
1056  * from the AIL so that the log is empty before we write the unmount record to
1057  * the log. Once this is done, we can tear down the AIL and the log.
1058  */
1059 void
1060 xfs_log_unmount(
1061 	struct xfs_mount	*mp)
1062 {
1063 	xfs_log_quiesce(mp);
1064 
1065 	xfs_trans_ail_destroy(mp);
1066 
1067 	xfs_sysfs_del(&mp->m_log->l_kobj);
1068 
1069 	xlog_dealloc_log(mp->m_log);
1070 }
1071 
1072 void
1073 xfs_log_item_init(
1074 	struct xfs_mount	*mp,
1075 	struct xfs_log_item	*item,
1076 	int			type,
1077 	const struct xfs_item_ops *ops)
1078 {
1079 	item->li_mountp = mp;
1080 	item->li_ailp = mp->m_ail;
1081 	item->li_type = type;
1082 	item->li_ops = ops;
1083 	item->li_lv = NULL;
1084 
1085 	INIT_LIST_HEAD(&item->li_ail);
1086 	INIT_LIST_HEAD(&item->li_cil);
1087 	INIT_LIST_HEAD(&item->li_bio_list);
1088 	INIT_LIST_HEAD(&item->li_trans);
1089 }
1090 
1091 /*
1092  * Wake up processes waiting for log space after we have moved the log tail.
1093  */
1094 void
1095 xfs_log_space_wake(
1096 	struct xfs_mount	*mp)
1097 {
1098 	struct xlog		*log = mp->m_log;
1099 	int			free_bytes;
1100 
1101 	if (XLOG_FORCED_SHUTDOWN(log))
1102 		return;
1103 
1104 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1105 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1106 
1107 		spin_lock(&log->l_write_head.lock);
1108 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1109 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1110 		spin_unlock(&log->l_write_head.lock);
1111 	}
1112 
1113 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1114 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1115 
1116 		spin_lock(&log->l_reserve_head.lock);
1117 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1118 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1119 		spin_unlock(&log->l_reserve_head.lock);
1120 	}
1121 }
1122 
1123 /*
1124  * Determine if we have a transaction that has gone to disk that needs to be
1125  * covered. To begin the transition to the idle state firstly the log needs to
1126  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1127  * we start attempting to cover the log.
1128  *
1129  * Only if we are then in a state where covering is needed, the caller is
1130  * informed that dummy transactions are required to move the log into the idle
1131  * state.
1132  *
1133  * If there are any items in the AIl or CIL, then we do not want to attempt to
1134  * cover the log as we may be in a situation where there isn't log space
1135  * available to run a dummy transaction and this can lead to deadlocks when the
1136  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1137  * there's no point in running a dummy transaction at this point because we
1138  * can't start trying to idle the log until both the CIL and AIL are empty.
1139  */
1140 static int
1141 xfs_log_need_covered(xfs_mount_t *mp)
1142 {
1143 	struct xlog	*log = mp->m_log;
1144 	int		needed = 0;
1145 
1146 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1147 		return 0;
1148 
1149 	if (!xlog_cil_empty(log))
1150 		return 0;
1151 
1152 	spin_lock(&log->l_icloglock);
1153 	switch (log->l_covered_state) {
1154 	case XLOG_STATE_COVER_DONE:
1155 	case XLOG_STATE_COVER_DONE2:
1156 	case XLOG_STATE_COVER_IDLE:
1157 		break;
1158 	case XLOG_STATE_COVER_NEED:
1159 	case XLOG_STATE_COVER_NEED2:
1160 		if (xfs_ail_min_lsn(log->l_ailp))
1161 			break;
1162 		if (!xlog_iclogs_empty(log))
1163 			break;
1164 
1165 		needed = 1;
1166 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1167 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1168 		else
1169 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1170 		break;
1171 	default:
1172 		needed = 1;
1173 		break;
1174 	}
1175 	spin_unlock(&log->l_icloglock);
1176 	return needed;
1177 }
1178 
1179 /*
1180  * We may be holding the log iclog lock upon entering this routine.
1181  */
1182 xfs_lsn_t
1183 xlog_assign_tail_lsn_locked(
1184 	struct xfs_mount	*mp)
1185 {
1186 	struct xlog		*log = mp->m_log;
1187 	struct xfs_log_item	*lip;
1188 	xfs_lsn_t		tail_lsn;
1189 
1190 	assert_spin_locked(&mp->m_ail->ail_lock);
1191 
1192 	/*
1193 	 * To make sure we always have a valid LSN for the log tail we keep
1194 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1195 	 * and use that when the AIL was empty.
1196 	 */
1197 	lip = xfs_ail_min(mp->m_ail);
1198 	if (lip)
1199 		tail_lsn = lip->li_lsn;
1200 	else
1201 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1202 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1203 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1204 	return tail_lsn;
1205 }
1206 
1207 xfs_lsn_t
1208 xlog_assign_tail_lsn(
1209 	struct xfs_mount	*mp)
1210 {
1211 	xfs_lsn_t		tail_lsn;
1212 
1213 	spin_lock(&mp->m_ail->ail_lock);
1214 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1215 	spin_unlock(&mp->m_ail->ail_lock);
1216 
1217 	return tail_lsn;
1218 }
1219 
1220 /*
1221  * Return the space in the log between the tail and the head.  The head
1222  * is passed in the cycle/bytes formal parms.  In the special case where
1223  * the reserve head has wrapped passed the tail, this calculation is no
1224  * longer valid.  In this case, just return 0 which means there is no space
1225  * in the log.  This works for all places where this function is called
1226  * with the reserve head.  Of course, if the write head were to ever
1227  * wrap the tail, we should blow up.  Rather than catch this case here,
1228  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1229  *
1230  * This code also handles the case where the reservation head is behind
1231  * the tail.  The details of this case are described below, but the end
1232  * result is that we return the size of the log as the amount of space left.
1233  */
1234 STATIC int
1235 xlog_space_left(
1236 	struct xlog	*log,
1237 	atomic64_t	*head)
1238 {
1239 	int		free_bytes;
1240 	int		tail_bytes;
1241 	int		tail_cycle;
1242 	int		head_cycle;
1243 	int		head_bytes;
1244 
1245 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1246 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1247 	tail_bytes = BBTOB(tail_bytes);
1248 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1249 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1250 	else if (tail_cycle + 1 < head_cycle)
1251 		return 0;
1252 	else if (tail_cycle < head_cycle) {
1253 		ASSERT(tail_cycle == (head_cycle - 1));
1254 		free_bytes = tail_bytes - head_bytes;
1255 	} else {
1256 		/*
1257 		 * The reservation head is behind the tail.
1258 		 * In this case we just want to return the size of the
1259 		 * log as the amount of space left.
1260 		 */
1261 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1262 		xfs_alert(log->l_mp,
1263 			  "  tail_cycle = %d, tail_bytes = %d",
1264 			  tail_cycle, tail_bytes);
1265 		xfs_alert(log->l_mp,
1266 			  "  GH   cycle = %d, GH   bytes = %d",
1267 			  head_cycle, head_bytes);
1268 		ASSERT(0);
1269 		free_bytes = log->l_logsize;
1270 	}
1271 	return free_bytes;
1272 }
1273 
1274 
1275 static void
1276 xlog_ioend_work(
1277 	struct work_struct	*work)
1278 {
1279 	struct xlog_in_core     *iclog =
1280 		container_of(work, struct xlog_in_core, ic_end_io_work);
1281 	struct xlog		*log = iclog->ic_log;
1282 	bool			aborted = false;
1283 	int			error;
1284 
1285 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1286 #ifdef DEBUG
1287 	/* treat writes with injected CRC errors as failed */
1288 	if (iclog->ic_fail_crc)
1289 		error = -EIO;
1290 #endif
1291 
1292 	/*
1293 	 * Race to shutdown the filesystem if we see an error.
1294 	 */
1295 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1296 		xfs_alert(log->l_mp, "log I/O error %d", error);
1297 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1298 		/*
1299 		 * This flag will be propagated to the trans-committed
1300 		 * callback routines to let them know that the log-commit
1301 		 * didn't succeed.
1302 		 */
1303 		aborted = true;
1304 	} else if (iclog->ic_state == XLOG_STATE_IOERROR) {
1305 		aborted = true;
1306 	}
1307 
1308 	xlog_state_done_syncing(iclog, aborted);
1309 	bio_uninit(&iclog->ic_bio);
1310 
1311 	/*
1312 	 * Drop the lock to signal that we are done. Nothing references the
1313 	 * iclog after this, so an unmount waiting on this lock can now tear it
1314 	 * down safely. As such, it is unsafe to reference the iclog after the
1315 	 * unlock as we could race with it being freed.
1316 	 */
1317 	up(&iclog->ic_sema);
1318 }
1319 
1320 /*
1321  * Return size of each in-core log record buffer.
1322  *
1323  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1324  *
1325  * If the filesystem blocksize is too large, we may need to choose a
1326  * larger size since the directory code currently logs entire blocks.
1327  */
1328 STATIC void
1329 xlog_get_iclog_buffer_size(
1330 	struct xfs_mount	*mp,
1331 	struct xlog		*log)
1332 {
1333 	if (mp->m_logbufs <= 0)
1334 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1335 	if (mp->m_logbsize <= 0)
1336 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1337 
1338 	log->l_iclog_bufs = mp->m_logbufs;
1339 	log->l_iclog_size = mp->m_logbsize;
1340 
1341 	/*
1342 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1343 	 */
1344 	log->l_iclog_heads =
1345 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1346 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1347 }
1348 
1349 void
1350 xfs_log_work_queue(
1351 	struct xfs_mount        *mp)
1352 {
1353 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1354 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1355 }
1356 
1357 /*
1358  * Every sync period we need to unpin all items in the AIL and push them to
1359  * disk. If there is nothing dirty, then we might need to cover the log to
1360  * indicate that the filesystem is idle.
1361  */
1362 static void
1363 xfs_log_worker(
1364 	struct work_struct	*work)
1365 {
1366 	struct xlog		*log = container_of(to_delayed_work(work),
1367 						struct xlog, l_work);
1368 	struct xfs_mount	*mp = log->l_mp;
1369 
1370 	/* dgc: errors ignored - not fatal and nowhere to report them */
1371 	if (xfs_log_need_covered(mp)) {
1372 		/*
1373 		 * Dump a transaction into the log that contains no real change.
1374 		 * This is needed to stamp the current tail LSN into the log
1375 		 * during the covering operation.
1376 		 *
1377 		 * We cannot use an inode here for this - that will push dirty
1378 		 * state back up into the VFS and then periodic inode flushing
1379 		 * will prevent log covering from making progress. Hence we
1380 		 * synchronously log the superblock instead to ensure the
1381 		 * superblock is immediately unpinned and can be written back.
1382 		 */
1383 		xfs_sync_sb(mp, true);
1384 	} else
1385 		xfs_log_force(mp, 0);
1386 
1387 	/* start pushing all the metadata that is currently dirty */
1388 	xfs_ail_push_all(mp->m_ail);
1389 
1390 	/* queue us up again */
1391 	xfs_log_work_queue(mp);
1392 }
1393 
1394 /*
1395  * This routine initializes some of the log structure for a given mount point.
1396  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1397  * some other stuff may be filled in too.
1398  */
1399 STATIC struct xlog *
1400 xlog_alloc_log(
1401 	struct xfs_mount	*mp,
1402 	struct xfs_buftarg	*log_target,
1403 	xfs_daddr_t		blk_offset,
1404 	int			num_bblks)
1405 {
1406 	struct xlog		*log;
1407 	xlog_rec_header_t	*head;
1408 	xlog_in_core_t		**iclogp;
1409 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1410 	int			i;
1411 	int			error = -ENOMEM;
1412 	uint			log2_size = 0;
1413 
1414 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1415 	if (!log) {
1416 		xfs_warn(mp, "Log allocation failed: No memory!");
1417 		goto out;
1418 	}
1419 
1420 	log->l_mp	   = mp;
1421 	log->l_targ	   = log_target;
1422 	log->l_logsize     = BBTOB(num_bblks);
1423 	log->l_logBBstart  = blk_offset;
1424 	log->l_logBBsize   = num_bblks;
1425 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1426 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1427 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1428 
1429 	log->l_prev_block  = -1;
1430 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1431 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1432 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1433 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1434 
1435 	xlog_grant_head_init(&log->l_reserve_head);
1436 	xlog_grant_head_init(&log->l_write_head);
1437 
1438 	error = -EFSCORRUPTED;
1439 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1440 	        log2_size = mp->m_sb.sb_logsectlog;
1441 		if (log2_size < BBSHIFT) {
1442 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1443 				log2_size, BBSHIFT);
1444 			goto out_free_log;
1445 		}
1446 
1447 	        log2_size -= BBSHIFT;
1448 		if (log2_size > mp->m_sectbb_log) {
1449 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1450 				log2_size, mp->m_sectbb_log);
1451 			goto out_free_log;
1452 		}
1453 
1454 		/* for larger sector sizes, must have v2 or external log */
1455 		if (log2_size && log->l_logBBstart > 0 &&
1456 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1457 			xfs_warn(mp,
1458 		"log sector size (0x%x) invalid for configuration.",
1459 				log2_size);
1460 			goto out_free_log;
1461 		}
1462 	}
1463 	log->l_sectBBsize = 1 << log2_size;
1464 
1465 	xlog_get_iclog_buffer_size(mp, log);
1466 
1467 	spin_lock_init(&log->l_icloglock);
1468 	init_waitqueue_head(&log->l_flush_wait);
1469 
1470 	iclogp = &log->l_iclog;
1471 	/*
1472 	 * The amount of memory to allocate for the iclog structure is
1473 	 * rather funky due to the way the structure is defined.  It is
1474 	 * done this way so that we can use different sizes for machines
1475 	 * with different amounts of memory.  See the definition of
1476 	 * xlog_in_core_t in xfs_log_priv.h for details.
1477 	 */
1478 	ASSERT(log->l_iclog_size >= 4096);
1479 	for (i = 0; i < log->l_iclog_bufs; i++) {
1480 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1481 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1482 				sizeof(struct bio_vec);
1483 
1484 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1485 		if (!iclog)
1486 			goto out_free_iclog;
1487 
1488 		*iclogp = iclog;
1489 		iclog->ic_prev = prev_iclog;
1490 		prev_iclog = iclog;
1491 
1492 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1493 						KM_MAYFAIL | KM_ZERO);
1494 		if (!iclog->ic_data)
1495 			goto out_free_iclog;
1496 #ifdef DEBUG
1497 		log->l_iclog_bak[i] = &iclog->ic_header;
1498 #endif
1499 		head = &iclog->ic_header;
1500 		memset(head, 0, sizeof(xlog_rec_header_t));
1501 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1502 		head->h_version = cpu_to_be32(
1503 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1504 		head->h_size = cpu_to_be32(log->l_iclog_size);
1505 		/* new fields */
1506 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1507 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1508 
1509 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1510 		iclog->ic_state = XLOG_STATE_ACTIVE;
1511 		iclog->ic_log = log;
1512 		atomic_set(&iclog->ic_refcnt, 0);
1513 		spin_lock_init(&iclog->ic_callback_lock);
1514 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1515 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1516 
1517 		init_waitqueue_head(&iclog->ic_force_wait);
1518 		init_waitqueue_head(&iclog->ic_write_wait);
1519 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1520 		sema_init(&iclog->ic_sema, 1);
1521 
1522 		iclogp = &iclog->ic_next;
1523 	}
1524 	*iclogp = log->l_iclog;			/* complete ring */
1525 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1526 
1527 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1528 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1529 			mp->m_super->s_id);
1530 	if (!log->l_ioend_workqueue)
1531 		goto out_free_iclog;
1532 
1533 	error = xlog_cil_init(log);
1534 	if (error)
1535 		goto out_destroy_workqueue;
1536 	return log;
1537 
1538 out_destroy_workqueue:
1539 	destroy_workqueue(log->l_ioend_workqueue);
1540 out_free_iclog:
1541 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1542 		prev_iclog = iclog->ic_next;
1543 		kmem_free(iclog->ic_data);
1544 		kmem_free(iclog);
1545 		if (prev_iclog == log->l_iclog)
1546 			break;
1547 	}
1548 out_free_log:
1549 	kmem_free(log);
1550 out:
1551 	return ERR_PTR(error);
1552 }	/* xlog_alloc_log */
1553 
1554 
1555 /*
1556  * Write out the commit record of a transaction associated with the given
1557  * ticket.  Return the lsn of the commit record.
1558  */
1559 STATIC int
1560 xlog_commit_record(
1561 	struct xlog		*log,
1562 	struct xlog_ticket	*ticket,
1563 	struct xlog_in_core	**iclog,
1564 	xfs_lsn_t		*commitlsnp)
1565 {
1566 	struct xfs_mount *mp = log->l_mp;
1567 	int	error;
1568 	struct xfs_log_iovec reg = {
1569 		.i_addr = NULL,
1570 		.i_len = 0,
1571 		.i_type = XLOG_REG_TYPE_COMMIT,
1572 	};
1573 	struct xfs_log_vec vec = {
1574 		.lv_niovecs = 1,
1575 		.lv_iovecp = &reg,
1576 	};
1577 
1578 	ASSERT_ALWAYS(iclog);
1579 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1580 					XLOG_COMMIT_TRANS);
1581 	if (error)
1582 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1583 	return error;
1584 }
1585 
1586 /*
1587  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588  * log space.  This code pushes on the lsn which would supposedly free up
1589  * the 25% which we want to leave free.  We may need to adopt a policy which
1590  * pushes on an lsn which is further along in the log once we reach the high
1591  * water mark.  In this manner, we would be creating a low water mark.
1592  */
1593 STATIC void
1594 xlog_grant_push_ail(
1595 	struct xlog	*log,
1596 	int		need_bytes)
1597 {
1598 	xfs_lsn_t	threshold_lsn = 0;
1599 	xfs_lsn_t	last_sync_lsn;
1600 	int		free_blocks;
1601 	int		free_bytes;
1602 	int		threshold_block;
1603 	int		threshold_cycle;
1604 	int		free_threshold;
1605 
1606 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1607 
1608 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1609 	free_blocks = BTOBBT(free_bytes);
1610 
1611 	/*
1612 	 * Set the threshold for the minimum number of free blocks in the
1613 	 * log to the maximum of what the caller needs, one quarter of the
1614 	 * log, and 256 blocks.
1615 	 */
1616 	free_threshold = BTOBB(need_bytes);
1617 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1618 	free_threshold = max(free_threshold, 256);
1619 	if (free_blocks >= free_threshold)
1620 		return;
1621 
1622 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1623 						&threshold_block);
1624 	threshold_block += free_threshold;
1625 	if (threshold_block >= log->l_logBBsize) {
1626 		threshold_block -= log->l_logBBsize;
1627 		threshold_cycle += 1;
1628 	}
1629 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1630 					threshold_block);
1631 	/*
1632 	 * Don't pass in an lsn greater than the lsn of the last
1633 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1634 	 * so that it doesn't change between the compare and the set.
1635 	 */
1636 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1637 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1638 		threshold_lsn = last_sync_lsn;
1639 
1640 	/*
1641 	 * Get the transaction layer to kick the dirty buffers out to
1642 	 * disk asynchronously. No point in trying to do this if
1643 	 * the filesystem is shutting down.
1644 	 */
1645 	if (!XLOG_FORCED_SHUTDOWN(log))
1646 		xfs_ail_push(log->l_ailp, threshold_lsn);
1647 }
1648 
1649 /*
1650  * Stamp cycle number in every block
1651  */
1652 STATIC void
1653 xlog_pack_data(
1654 	struct xlog		*log,
1655 	struct xlog_in_core	*iclog,
1656 	int			roundoff)
1657 {
1658 	int			i, j, k;
1659 	int			size = iclog->ic_offset + roundoff;
1660 	__be32			cycle_lsn;
1661 	char			*dp;
1662 
1663 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1664 
1665 	dp = iclog->ic_datap;
1666 	for (i = 0; i < BTOBB(size); i++) {
1667 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1668 			break;
1669 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1670 		*(__be32 *)dp = cycle_lsn;
1671 		dp += BBSIZE;
1672 	}
1673 
1674 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1676 
1677 		for ( ; i < BTOBB(size); i++) {
1678 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1680 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1681 			*(__be32 *)dp = cycle_lsn;
1682 			dp += BBSIZE;
1683 		}
1684 
1685 		for (i = 1; i < log->l_iclog_heads; i++)
1686 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1687 	}
1688 }
1689 
1690 /*
1691  * Calculate the checksum for a log buffer.
1692  *
1693  * This is a little more complicated than it should be because the various
1694  * headers and the actual data are non-contiguous.
1695  */
1696 __le32
1697 xlog_cksum(
1698 	struct xlog		*log,
1699 	struct xlog_rec_header	*rhead,
1700 	char			*dp,
1701 	int			size)
1702 {
1703 	uint32_t		crc;
1704 
1705 	/* first generate the crc for the record header ... */
1706 	crc = xfs_start_cksum_update((char *)rhead,
1707 			      sizeof(struct xlog_rec_header),
1708 			      offsetof(struct xlog_rec_header, h_crc));
1709 
1710 	/* ... then for additional cycle data for v2 logs ... */
1711 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1712 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1713 		int		i;
1714 		int		xheads;
1715 
1716 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1717 		if (size % XLOG_HEADER_CYCLE_SIZE)
1718 			xheads++;
1719 
1720 		for (i = 1; i < xheads; i++) {
1721 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1722 				     sizeof(struct xlog_rec_ext_header));
1723 		}
1724 	}
1725 
1726 	/* ... and finally for the payload */
1727 	crc = crc32c(crc, dp, size);
1728 
1729 	return xfs_end_cksum(crc);
1730 }
1731 
1732 static void
1733 xlog_bio_end_io(
1734 	struct bio		*bio)
1735 {
1736 	struct xlog_in_core	*iclog = bio->bi_private;
1737 
1738 	queue_work(iclog->ic_log->l_ioend_workqueue,
1739 		   &iclog->ic_end_io_work);
1740 }
1741 
1742 static void
1743 xlog_map_iclog_data(
1744 	struct bio		*bio,
1745 	void			*data,
1746 	size_t			count)
1747 {
1748 	do {
1749 		struct page	*page = kmem_to_page(data);
1750 		unsigned int	off = offset_in_page(data);
1751 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1752 
1753 		WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1754 
1755 		data += len;
1756 		count -= len;
1757 	} while (count);
1758 }
1759 
1760 STATIC void
1761 xlog_write_iclog(
1762 	struct xlog		*log,
1763 	struct xlog_in_core	*iclog,
1764 	uint64_t		bno,
1765 	unsigned int		count,
1766 	bool			need_flush)
1767 {
1768 	ASSERT(bno < log->l_logBBsize);
1769 
1770 	/*
1771 	 * We lock the iclogbufs here so that we can serialise against I/O
1772 	 * completion during unmount.  We might be processing a shutdown
1773 	 * triggered during unmount, and that can occur asynchronously to the
1774 	 * unmount thread, and hence we need to ensure that completes before
1775 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1776 	 * across the log IO to archieve that.
1777 	 */
1778 	down(&iclog->ic_sema);
1779 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1780 		/*
1781 		 * It would seem logical to return EIO here, but we rely on
1782 		 * the log state machine to propagate I/O errors instead of
1783 		 * doing it here.  We kick of the state machine and unlock
1784 		 * the buffer manually, the code needs to be kept in sync
1785 		 * with the I/O completion path.
1786 		 */
1787 		xlog_state_done_syncing(iclog, true);
1788 		up(&iclog->ic_sema);
1789 		return;
1790 	}
1791 
1792 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1793 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1794 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1795 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1796 	iclog->ic_bio.bi_private = iclog;
1797 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1798 	if (need_flush)
1799 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1800 
1801 	xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
1802 	if (is_vmalloc_addr(iclog->ic_data))
1803 		flush_kernel_vmap_range(iclog->ic_data, count);
1804 
1805 	/*
1806 	 * If this log buffer would straddle the end of the log we will have
1807 	 * to split it up into two bios, so that we can continue at the start.
1808 	 */
1809 	if (bno + BTOBB(count) > log->l_logBBsize) {
1810 		struct bio *split;
1811 
1812 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1813 				  GFP_NOIO, &fs_bio_set);
1814 		bio_chain(split, &iclog->ic_bio);
1815 		submit_bio(split);
1816 
1817 		/* restart at logical offset zero for the remainder */
1818 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1819 	}
1820 
1821 	submit_bio(&iclog->ic_bio);
1822 }
1823 
1824 /*
1825  * We need to bump cycle number for the part of the iclog that is
1826  * written to the start of the log. Watch out for the header magic
1827  * number case, though.
1828  */
1829 static void
1830 xlog_split_iclog(
1831 	struct xlog		*log,
1832 	void			*data,
1833 	uint64_t		bno,
1834 	unsigned int		count)
1835 {
1836 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1837 	unsigned int		i;
1838 
1839 	for (i = split_offset; i < count; i += BBSIZE) {
1840 		uint32_t cycle = get_unaligned_be32(data + i);
1841 
1842 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1843 			cycle++;
1844 		put_unaligned_be32(cycle, data + i);
1845 	}
1846 }
1847 
1848 static int
1849 xlog_calc_iclog_size(
1850 	struct xlog		*log,
1851 	struct xlog_in_core	*iclog,
1852 	uint32_t		*roundoff)
1853 {
1854 	uint32_t		count_init, count;
1855 	bool			use_lsunit;
1856 
1857 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1858 			log->l_mp->m_sb.sb_logsunit > 1;
1859 
1860 	/* Add for LR header */
1861 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1862 
1863 	/* Round out the log write size */
1864 	if (use_lsunit) {
1865 		/* we have a v2 stripe unit to use */
1866 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1867 	} else {
1868 		count = BBTOB(BTOBB(count_init));
1869 	}
1870 
1871 	ASSERT(count >= count_init);
1872 	*roundoff = count - count_init;
1873 
1874 	if (use_lsunit)
1875 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1876 	else
1877 		ASSERT(*roundoff < BBTOB(1));
1878 	return count;
1879 }
1880 
1881 /*
1882  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1883  * fashion.  Previously, we should have moved the current iclog
1884  * ptr in the log to point to the next available iclog.  This allows further
1885  * write to continue while this code syncs out an iclog ready to go.
1886  * Before an in-core log can be written out, the data section must be scanned
1887  * to save away the 1st word of each BBSIZE block into the header.  We replace
1888  * it with the current cycle count.  Each BBSIZE block is tagged with the
1889  * cycle count because there in an implicit assumption that drives will
1890  * guarantee that entire 512 byte blocks get written at once.  In other words,
1891  * we can't have part of a 512 byte block written and part not written.  By
1892  * tagging each block, we will know which blocks are valid when recovering
1893  * after an unclean shutdown.
1894  *
1895  * This routine is single threaded on the iclog.  No other thread can be in
1896  * this routine with the same iclog.  Changing contents of iclog can there-
1897  * fore be done without grabbing the state machine lock.  Updating the global
1898  * log will require grabbing the lock though.
1899  *
1900  * The entire log manager uses a logical block numbering scheme.  Only
1901  * xlog_write_iclog knows about the fact that the log may not start with
1902  * block zero on a given device.
1903  */
1904 STATIC void
1905 xlog_sync(
1906 	struct xlog		*log,
1907 	struct xlog_in_core	*iclog)
1908 {
1909 	unsigned int		count;		/* byte count of bwrite */
1910 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1911 	uint64_t		bno;
1912 	unsigned int		size;
1913 	bool			need_flush = true, split = false;
1914 
1915 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1916 
1917 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1918 
1919 	/* move grant heads by roundoff in sync */
1920 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1921 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1922 
1923 	/* put cycle number in every block */
1924 	xlog_pack_data(log, iclog, roundoff);
1925 
1926 	/* real byte length */
1927 	size = iclog->ic_offset;
1928 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1929 		size += roundoff;
1930 	iclog->ic_header.h_len = cpu_to_be32(size);
1931 
1932 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1933 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1934 
1935 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1936 
1937 	/* Do we need to split this write into 2 parts? */
1938 	if (bno + BTOBB(count) > log->l_logBBsize) {
1939 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1940 		split = true;
1941 	}
1942 
1943 	/* calculcate the checksum */
1944 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1945 					    iclog->ic_datap, size);
1946 	/*
1947 	 * Intentionally corrupt the log record CRC based on the error injection
1948 	 * frequency, if defined. This facilitates testing log recovery in the
1949 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1950 	 * write on I/O completion and shutdown the fs. The subsequent mount
1951 	 * detects the bad CRC and attempts to recover.
1952 	 */
1953 #ifdef DEBUG
1954 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1955 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1956 		iclog->ic_fail_crc = true;
1957 		xfs_warn(log->l_mp,
1958 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1959 			 be64_to_cpu(iclog->ic_header.h_lsn));
1960 	}
1961 #endif
1962 
1963 	/*
1964 	 * Flush the data device before flushing the log to make sure all meta
1965 	 * data written back from the AIL actually made it to disk before
1966 	 * stamping the new log tail LSN into the log buffer.  For an external
1967 	 * log we need to issue the flush explicitly, and unfortunately
1968 	 * synchronously here; for an internal log we can simply use the block
1969 	 * layer state machine for preflushes.
1970 	 */
1971 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1972 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1973 		need_flush = false;
1974 	}
1975 
1976 	xlog_verify_iclog(log, iclog, count);
1977 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1978 }
1979 
1980 /*
1981  * Deallocate a log structure
1982  */
1983 STATIC void
1984 xlog_dealloc_log(
1985 	struct xlog	*log)
1986 {
1987 	xlog_in_core_t	*iclog, *next_iclog;
1988 	int		i;
1989 
1990 	xlog_cil_destroy(log);
1991 
1992 	/*
1993 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 	 * is done before we tear down these buffers.
1995 	 */
1996 	iclog = log->l_iclog;
1997 	for (i = 0; i < log->l_iclog_bufs; i++) {
1998 		down(&iclog->ic_sema);
1999 		up(&iclog->ic_sema);
2000 		iclog = iclog->ic_next;
2001 	}
2002 
2003 	iclog = log->l_iclog;
2004 	for (i = 0; i < log->l_iclog_bufs; i++) {
2005 		next_iclog = iclog->ic_next;
2006 		kmem_free(iclog->ic_data);
2007 		kmem_free(iclog);
2008 		iclog = next_iclog;
2009 	}
2010 
2011 	log->l_mp->m_log = NULL;
2012 	destroy_workqueue(log->l_ioend_workqueue);
2013 	kmem_free(log);
2014 }	/* xlog_dealloc_log */
2015 
2016 /*
2017  * Update counters atomically now that memcpy is done.
2018  */
2019 static inline void
2020 xlog_state_finish_copy(
2021 	struct xlog		*log,
2022 	struct xlog_in_core	*iclog,
2023 	int			record_cnt,
2024 	int			copy_bytes)
2025 {
2026 	lockdep_assert_held(&log->l_icloglock);
2027 
2028 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2029 	iclog->ic_offset += copy_bytes;
2030 }
2031 
2032 /*
2033  * print out info relating to regions written which consume
2034  * the reservation
2035  */
2036 void
2037 xlog_print_tic_res(
2038 	struct xfs_mount	*mp,
2039 	struct xlog_ticket	*ticket)
2040 {
2041 	uint i;
2042 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2043 
2044 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2046 	static char *res_type_str[] = {
2047 	    REG_TYPE_STR(BFORMAT, "bformat"),
2048 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2049 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2050 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2051 	    REG_TYPE_STR(IFORMAT, "iformat"),
2052 	    REG_TYPE_STR(ICORE, "icore"),
2053 	    REG_TYPE_STR(IEXT, "iext"),
2054 	    REG_TYPE_STR(IBROOT, "ibroot"),
2055 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2056 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2057 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2058 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2059 	    REG_TYPE_STR(QFORMAT, "qformat"),
2060 	    REG_TYPE_STR(DQUOT, "dquot"),
2061 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2062 	    REG_TYPE_STR(LRHEADER, "LR header"),
2063 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2064 	    REG_TYPE_STR(COMMIT, "commit"),
2065 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2066 	    REG_TYPE_STR(ICREATE, "inode create"),
2067 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2068 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2069 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2070 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2071 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2072 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2073 	};
2074 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2075 #undef REG_TYPE_STR
2076 
2077 	xfs_warn(mp, "ticket reservation summary:");
2078 	xfs_warn(mp, "  unit res    = %d bytes",
2079 		 ticket->t_unit_res);
2080 	xfs_warn(mp, "  current res = %d bytes",
2081 		 ticket->t_curr_res);
2082 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2083 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2084 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2085 		 ticket->t_res_num_ophdrs, ophdr_spc);
2086 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2087 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2088 	xfs_warn(mp, "  num regions = %u",
2089 		 ticket->t_res_num);
2090 
2091 	for (i = 0; i < ticket->t_res_num; i++) {
2092 		uint r_type = ticket->t_res_arr[i].r_type;
2093 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2094 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2095 			    "bad-rtype" : res_type_str[r_type]),
2096 			    ticket->t_res_arr[i].r_len);
2097 	}
2098 }
2099 
2100 /*
2101  * Print a summary of the transaction.
2102  */
2103 void
2104 xlog_print_trans(
2105 	struct xfs_trans	*tp)
2106 {
2107 	struct xfs_mount	*mp = tp->t_mountp;
2108 	struct xfs_log_item	*lip;
2109 
2110 	/* dump core transaction and ticket info */
2111 	xfs_warn(mp, "transaction summary:");
2112 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2113 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2114 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2115 
2116 	xlog_print_tic_res(mp, tp->t_ticket);
2117 
2118 	/* dump each log item */
2119 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2120 		struct xfs_log_vec	*lv = lip->li_lv;
2121 		struct xfs_log_iovec	*vec;
2122 		int			i;
2123 
2124 		xfs_warn(mp, "log item: ");
2125 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2126 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2127 		if (!lv)
2128 			continue;
2129 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2130 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2131 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2132 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2133 
2134 		/* dump each iovec for the log item */
2135 		vec = lv->lv_iovecp;
2136 		for (i = 0; i < lv->lv_niovecs; i++) {
2137 			int dumplen = min(vec->i_len, 32);
2138 
2139 			xfs_warn(mp, "  iovec[%d]", i);
2140 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2141 			xfs_warn(mp, "    len	= %d", vec->i_len);
2142 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2143 			xfs_hex_dump(vec->i_addr, dumplen);
2144 
2145 			vec++;
2146 		}
2147 	}
2148 }
2149 
2150 /*
2151  * Calculate the potential space needed by the log vector.  Each region gets
2152  * its own xlog_op_header_t and may need to be double word aligned.
2153  */
2154 static int
2155 xlog_write_calc_vec_length(
2156 	struct xlog_ticket	*ticket,
2157 	struct xfs_log_vec	*log_vector)
2158 {
2159 	struct xfs_log_vec	*lv;
2160 	int			headers = 0;
2161 	int			len = 0;
2162 	int			i;
2163 
2164 	/* acct for start rec of xact */
2165 	if (ticket->t_flags & XLOG_TIC_INITED)
2166 		headers++;
2167 
2168 	for (lv = log_vector; lv; lv = lv->lv_next) {
2169 		/* we don't write ordered log vectors */
2170 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2171 			continue;
2172 
2173 		headers += lv->lv_niovecs;
2174 
2175 		for (i = 0; i < lv->lv_niovecs; i++) {
2176 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2177 
2178 			len += vecp->i_len;
2179 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2180 		}
2181 	}
2182 
2183 	ticket->t_res_num_ophdrs += headers;
2184 	len += headers * sizeof(struct xlog_op_header);
2185 
2186 	return len;
2187 }
2188 
2189 /*
2190  * If first write for transaction, insert start record  We can't be trying to
2191  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2192  */
2193 static int
2194 xlog_write_start_rec(
2195 	struct xlog_op_header	*ophdr,
2196 	struct xlog_ticket	*ticket)
2197 {
2198 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2199 		return 0;
2200 
2201 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2202 	ophdr->oh_clientid = ticket->t_clientid;
2203 	ophdr->oh_len = 0;
2204 	ophdr->oh_flags = XLOG_START_TRANS;
2205 	ophdr->oh_res2 = 0;
2206 
2207 	ticket->t_flags &= ~XLOG_TIC_INITED;
2208 
2209 	return sizeof(struct xlog_op_header);
2210 }
2211 
2212 static xlog_op_header_t *
2213 xlog_write_setup_ophdr(
2214 	struct xlog		*log,
2215 	struct xlog_op_header	*ophdr,
2216 	struct xlog_ticket	*ticket,
2217 	uint			flags)
2218 {
2219 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2220 	ophdr->oh_clientid = ticket->t_clientid;
2221 	ophdr->oh_res2 = 0;
2222 
2223 	/* are we copying a commit or unmount record? */
2224 	ophdr->oh_flags = flags;
2225 
2226 	/*
2227 	 * We've seen logs corrupted with bad transaction client ids.  This
2228 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2229 	 * and shut down the filesystem.
2230 	 */
2231 	switch (ophdr->oh_clientid)  {
2232 	case XFS_TRANSACTION:
2233 	case XFS_VOLUME:
2234 	case XFS_LOG:
2235 		break;
2236 	default:
2237 		xfs_warn(log->l_mp,
2238 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2239 			ophdr->oh_clientid, ticket);
2240 		return NULL;
2241 	}
2242 
2243 	return ophdr;
2244 }
2245 
2246 /*
2247  * Set up the parameters of the region copy into the log. This has
2248  * to handle region write split across multiple log buffers - this
2249  * state is kept external to this function so that this code can
2250  * be written in an obvious, self documenting manner.
2251  */
2252 static int
2253 xlog_write_setup_copy(
2254 	struct xlog_ticket	*ticket,
2255 	struct xlog_op_header	*ophdr,
2256 	int			space_available,
2257 	int			space_required,
2258 	int			*copy_off,
2259 	int			*copy_len,
2260 	int			*last_was_partial_copy,
2261 	int			*bytes_consumed)
2262 {
2263 	int			still_to_copy;
2264 
2265 	still_to_copy = space_required - *bytes_consumed;
2266 	*copy_off = *bytes_consumed;
2267 
2268 	if (still_to_copy <= space_available) {
2269 		/* write of region completes here */
2270 		*copy_len = still_to_copy;
2271 		ophdr->oh_len = cpu_to_be32(*copy_len);
2272 		if (*last_was_partial_copy)
2273 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2274 		*last_was_partial_copy = 0;
2275 		*bytes_consumed = 0;
2276 		return 0;
2277 	}
2278 
2279 	/* partial write of region, needs extra log op header reservation */
2280 	*copy_len = space_available;
2281 	ophdr->oh_len = cpu_to_be32(*copy_len);
2282 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2283 	if (*last_was_partial_copy)
2284 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2285 	*bytes_consumed += *copy_len;
2286 	(*last_was_partial_copy)++;
2287 
2288 	/* account for new log op header */
2289 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2290 	ticket->t_res_num_ophdrs++;
2291 
2292 	return sizeof(struct xlog_op_header);
2293 }
2294 
2295 static int
2296 xlog_write_copy_finish(
2297 	struct xlog		*log,
2298 	struct xlog_in_core	*iclog,
2299 	uint			flags,
2300 	int			*record_cnt,
2301 	int			*data_cnt,
2302 	int			*partial_copy,
2303 	int			*partial_copy_len,
2304 	int			log_offset,
2305 	struct xlog_in_core	**commit_iclog)
2306 {
2307 	int			error;
2308 
2309 	if (*partial_copy) {
2310 		/*
2311 		 * This iclog has already been marked WANT_SYNC by
2312 		 * xlog_state_get_iclog_space.
2313 		 */
2314 		spin_lock(&log->l_icloglock);
2315 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2316 		*record_cnt = 0;
2317 		*data_cnt = 0;
2318 		goto release_iclog;
2319 	}
2320 
2321 	*partial_copy = 0;
2322 	*partial_copy_len = 0;
2323 
2324 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2325 		/* no more space in this iclog - push it. */
2326 		spin_lock(&log->l_icloglock);
2327 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2328 		*record_cnt = 0;
2329 		*data_cnt = 0;
2330 
2331 		xlog_state_want_sync(log, iclog);
2332 		if (!commit_iclog)
2333 			goto release_iclog;
2334 		spin_unlock(&log->l_icloglock);
2335 		ASSERT(flags & XLOG_COMMIT_TRANS);
2336 		*commit_iclog = iclog;
2337 	}
2338 
2339 	return 0;
2340 
2341 release_iclog:
2342 	error = xlog_state_release_iclog(log, iclog);
2343 	spin_unlock(&log->l_icloglock);
2344 	return error;
2345 }
2346 
2347 /*
2348  * Write some region out to in-core log
2349  *
2350  * This will be called when writing externally provided regions or when
2351  * writing out a commit record for a given transaction.
2352  *
2353  * General algorithm:
2354  *	1. Find total length of this write.  This may include adding to the
2355  *		lengths passed in.
2356  *	2. Check whether we violate the tickets reservation.
2357  *	3. While writing to this iclog
2358  *	    A. Reserve as much space in this iclog as can get
2359  *	    B. If this is first write, save away start lsn
2360  *	    C. While writing this region:
2361  *		1. If first write of transaction, write start record
2362  *		2. Write log operation header (header per region)
2363  *		3. Find out if we can fit entire region into this iclog
2364  *		4. Potentially, verify destination memcpy ptr
2365  *		5. Memcpy (partial) region
2366  *		6. If partial copy, release iclog; otherwise, continue
2367  *			copying more regions into current iclog
2368  *	4. Mark want sync bit (in simulation mode)
2369  *	5. Release iclog for potential flush to on-disk log.
2370  *
2371  * ERRORS:
2372  * 1.	Panic if reservation is overrun.  This should never happen since
2373  *	reservation amounts are generated internal to the filesystem.
2374  * NOTES:
2375  * 1. Tickets are single threaded data structures.
2376  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377  *	syncing routine.  When a single log_write region needs to span
2378  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379  *	on all log operation writes which don't contain the end of the
2380  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2381  *	operation which contains the end of the continued log_write region.
2382  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383  *	we don't really know exactly how much space will be used.  As a result,
2384  *	we don't update ic_offset until the end when we know exactly how many
2385  *	bytes have been written out.
2386  */
2387 int
2388 xlog_write(
2389 	struct xlog		*log,
2390 	struct xfs_log_vec	*log_vector,
2391 	struct xlog_ticket	*ticket,
2392 	xfs_lsn_t		*start_lsn,
2393 	struct xlog_in_core	**commit_iclog,
2394 	uint			flags)
2395 {
2396 	struct xlog_in_core	*iclog = NULL;
2397 	struct xfs_log_iovec	*vecp;
2398 	struct xfs_log_vec	*lv;
2399 	int			len;
2400 	int			index;
2401 	int			partial_copy = 0;
2402 	int			partial_copy_len = 0;
2403 	int			contwr = 0;
2404 	int			record_cnt = 0;
2405 	int			data_cnt = 0;
2406 	int			error = 0;
2407 
2408 	*start_lsn = 0;
2409 
2410 	len = xlog_write_calc_vec_length(ticket, log_vector);
2411 
2412 	/*
2413 	 * Region headers and bytes are already accounted for.
2414 	 * We only need to take into account start records and
2415 	 * split regions in this function.
2416 	 */
2417 	if (ticket->t_flags & XLOG_TIC_INITED)
2418 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2419 
2420 	/*
2421 	 * Commit record headers need to be accounted for. These
2422 	 * come in as separate writes so are easy to detect.
2423 	 */
2424 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2425 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2426 
2427 	if (ticket->t_curr_res < 0) {
2428 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2429 		     "ctx ticket reservation ran out. Need to up reservation");
2430 		xlog_print_tic_res(log->l_mp, ticket);
2431 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2432 	}
2433 
2434 	index = 0;
2435 	lv = log_vector;
2436 	vecp = lv->lv_iovecp;
2437 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2438 		void		*ptr;
2439 		int		log_offset;
2440 
2441 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2442 						   &contwr, &log_offset);
2443 		if (error)
2444 			return error;
2445 
2446 		ASSERT(log_offset <= iclog->ic_size - 1);
2447 		ptr = iclog->ic_datap + log_offset;
2448 
2449 		/* start_lsn is the first lsn written to. That's all we need. */
2450 		if (!*start_lsn)
2451 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2452 
2453 		/*
2454 		 * This loop writes out as many regions as can fit in the amount
2455 		 * of space which was allocated by xlog_state_get_iclog_space().
2456 		 */
2457 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2458 			struct xfs_log_iovec	*reg;
2459 			struct xlog_op_header	*ophdr;
2460 			int			start_rec_copy;
2461 			int			copy_len;
2462 			int			copy_off;
2463 			bool			ordered = false;
2464 
2465 			/* ordered log vectors have no regions to write */
2466 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2467 				ASSERT(lv->lv_niovecs == 0);
2468 				ordered = true;
2469 				goto next_lv;
2470 			}
2471 
2472 			reg = &vecp[index];
2473 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2474 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2475 
2476 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2477 			if (start_rec_copy) {
2478 				record_cnt++;
2479 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2480 						   start_rec_copy);
2481 			}
2482 
2483 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2484 			if (!ophdr)
2485 				return -EIO;
2486 
2487 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488 					   sizeof(struct xlog_op_header));
2489 
2490 			len += xlog_write_setup_copy(ticket, ophdr,
2491 						     iclog->ic_size-log_offset,
2492 						     reg->i_len,
2493 						     &copy_off, &copy_len,
2494 						     &partial_copy,
2495 						     &partial_copy_len);
2496 			xlog_verify_dest_ptr(log, ptr);
2497 
2498 			/*
2499 			 * Copy region.
2500 			 *
2501 			 * Unmount records just log an opheader, so can have
2502 			 * empty payloads with no data region to copy. Hence we
2503 			 * only copy the payload if the vector says it has data
2504 			 * to copy.
2505 			 */
2506 			ASSERT(copy_len >= 0);
2507 			if (copy_len > 0) {
2508 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510 						   copy_len);
2511 			}
2512 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2513 			record_cnt++;
2514 			data_cnt += contwr ? copy_len : 0;
2515 
2516 			error = xlog_write_copy_finish(log, iclog, flags,
2517 						       &record_cnt, &data_cnt,
2518 						       &partial_copy,
2519 						       &partial_copy_len,
2520 						       log_offset,
2521 						       commit_iclog);
2522 			if (error)
2523 				return error;
2524 
2525 			/*
2526 			 * if we had a partial copy, we need to get more iclog
2527 			 * space but we don't want to increment the region
2528 			 * index because there is still more is this region to
2529 			 * write.
2530 			 *
2531 			 * If we completed writing this region, and we flushed
2532 			 * the iclog (indicated by resetting of the record
2533 			 * count), then we also need to get more log space. If
2534 			 * this was the last record, though, we are done and
2535 			 * can just return.
2536 			 */
2537 			if (partial_copy)
2538 				break;
2539 
2540 			if (++index == lv->lv_niovecs) {
2541 next_lv:
2542 				lv = lv->lv_next;
2543 				index = 0;
2544 				if (lv)
2545 					vecp = lv->lv_iovecp;
2546 			}
2547 			if (record_cnt == 0 && !ordered) {
2548 				if (!lv)
2549 					return 0;
2550 				break;
2551 			}
2552 		}
2553 	}
2554 
2555 	ASSERT(len == 0);
2556 
2557 	spin_lock(&log->l_icloglock);
2558 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2559 	if (commit_iclog) {
2560 		ASSERT(flags & XLOG_COMMIT_TRANS);
2561 		*commit_iclog = iclog;
2562 	} else {
2563 		error = xlog_state_release_iclog(log, iclog);
2564 	}
2565 	spin_unlock(&log->l_icloglock);
2566 
2567 	return error;
2568 }
2569 
2570 
2571 /*****************************************************************************
2572  *
2573  *		State Machine functions
2574  *
2575  *****************************************************************************
2576  */
2577 
2578 /*
2579  * An iclog has just finished IO completion processing, so we need to update
2580  * the iclog state and propagate that up into the overall log state. Hence we
2581  * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2582  * starting from the head, and then wake up any threads that are waiting for the
2583  * iclog to be marked clean.
2584  *
2585  * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2586  * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2587  * maintain the notion that we use a ordered wait queue to hold off would be
2588  * writers to the log when every iclog is trying to sync to disk.
2589  *
2590  * Caller must hold the icloglock before calling us.
2591  *
2592  * State Change: !IOERROR -> DIRTY -> ACTIVE
2593  */
2594 STATIC void
2595 xlog_state_clean_iclog(
2596 	struct xlog		*log,
2597 	struct xlog_in_core	*dirty_iclog)
2598 {
2599 	struct xlog_in_core	*iclog;
2600 	int			changed = 0;
2601 
2602 	/* Prepare the completed iclog. */
2603 	if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
2604 		dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2605 
2606 	/* Walk all the iclogs to update the ordered active state. */
2607 	iclog = log->l_iclog;
2608 	do {
2609 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2610 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2611 			iclog->ic_offset       = 0;
2612 			ASSERT(list_empty_careful(&iclog->ic_callbacks));
2613 			/*
2614 			 * If the number of ops in this iclog indicate it just
2615 			 * contains the dummy transaction, we can
2616 			 * change state into IDLE (the second time around).
2617 			 * Otherwise we should change the state into
2618 			 * NEED a dummy.
2619 			 * We don't need to cover the dummy.
2620 			 */
2621 			if (!changed &&
2622 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2623 			   		XLOG_COVER_OPS)) {
2624 				changed = 1;
2625 			} else {
2626 				/*
2627 				 * We have two dirty iclogs so start over
2628 				 * This could also be num of ops indicates
2629 				 * this is not the dummy going out.
2630 				 */
2631 				changed = 2;
2632 			}
2633 			iclog->ic_header.h_num_logops = 0;
2634 			memset(iclog->ic_header.h_cycle_data, 0,
2635 			      sizeof(iclog->ic_header.h_cycle_data));
2636 			iclog->ic_header.h_lsn = 0;
2637 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2638 			/* do nothing */;
2639 		else
2640 			break;	/* stop cleaning */
2641 		iclog = iclog->ic_next;
2642 	} while (iclog != log->l_iclog);
2643 
2644 
2645 	/*
2646 	 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2647 	 * to be cleaned.
2648 	 */
2649 	wake_up_all(&dirty_iclog->ic_force_wait);
2650 
2651 	/*
2652 	 * Change state for the dummy log recording.
2653 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2654 	 * we are done writing the dummy record.
2655 	 * If we are done with the second dummy recored (DONE2), then
2656 	 * we go to IDLE.
2657 	 */
2658 	if (changed) {
2659 		switch (log->l_covered_state) {
2660 		case XLOG_STATE_COVER_IDLE:
2661 		case XLOG_STATE_COVER_NEED:
2662 		case XLOG_STATE_COVER_NEED2:
2663 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2664 			break;
2665 
2666 		case XLOG_STATE_COVER_DONE:
2667 			if (changed == 1)
2668 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2669 			else
2670 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2671 			break;
2672 
2673 		case XLOG_STATE_COVER_DONE2:
2674 			if (changed == 1)
2675 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2676 			else
2677 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2678 			break;
2679 
2680 		default:
2681 			ASSERT(0);
2682 		}
2683 	}
2684 }
2685 
2686 STATIC xfs_lsn_t
2687 xlog_get_lowest_lsn(
2688 	struct xlog		*log)
2689 {
2690 	struct xlog_in_core	*iclog = log->l_iclog;
2691 	xfs_lsn_t		lowest_lsn = 0, lsn;
2692 
2693 	do {
2694 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2695 		    iclog->ic_state == XLOG_STATE_DIRTY)
2696 			continue;
2697 
2698 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2699 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2700 			lowest_lsn = lsn;
2701 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2702 
2703 	return lowest_lsn;
2704 }
2705 
2706 /*
2707  * Completion of a iclog IO does not imply that a transaction has completed, as
2708  * transactions can be large enough to span many iclogs. We cannot change the
2709  * tail of the log half way through a transaction as this may be the only
2710  * transaction in the log and moving the tail to point to the middle of it
2711  * will prevent recovery from finding the start of the transaction. Hence we
2712  * should only update the last_sync_lsn if this iclog contains transaction
2713  * completion callbacks on it.
2714  *
2715  * We have to do this before we drop the icloglock to ensure we are the only one
2716  * that can update it.
2717  *
2718  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2719  * the reservation grant head pushing. This is due to the fact that the push
2720  * target is bound by the current last_sync_lsn value. Hence if we have a large
2721  * amount of log space bound up in this committing transaction then the
2722  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2723  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2724  * should push the AIL to ensure the push target (and hence the grant head) is
2725  * no longer bound by the old log head location and can move forwards and make
2726  * progress again.
2727  */
2728 static void
2729 xlog_state_set_callback(
2730 	struct xlog		*log,
2731 	struct xlog_in_core	*iclog,
2732 	xfs_lsn_t		header_lsn)
2733 {
2734 	iclog->ic_state = XLOG_STATE_CALLBACK;
2735 
2736 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737 			   header_lsn) <= 0);
2738 
2739 	if (list_empty_careful(&iclog->ic_callbacks))
2740 		return;
2741 
2742 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743 	xlog_grant_push_ail(log, 0);
2744 }
2745 
2746 /*
2747  * Return true if we need to stop processing, false to continue to the next
2748  * iclog. The caller will need to run callbacks if the iclog is returned in the
2749  * XLOG_STATE_CALLBACK state.
2750  */
2751 static bool
2752 xlog_state_iodone_process_iclog(
2753 	struct xlog		*log,
2754 	struct xlog_in_core	*iclog,
2755 	bool			*ioerror)
2756 {
2757 	xfs_lsn_t		lowest_lsn;
2758 	xfs_lsn_t		header_lsn;
2759 
2760 	switch (iclog->ic_state) {
2761 	case XLOG_STATE_ACTIVE:
2762 	case XLOG_STATE_DIRTY:
2763 		/*
2764 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2765 		 */
2766 		return false;
2767 	case XLOG_STATE_IOERROR:
2768 		/*
2769 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2770 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2771 		 * error). So, we do want things to go smoothly in case of just
2772 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2773 		 */
2774 		*ioerror = true;
2775 		return false;
2776 	case XLOG_STATE_DONE_SYNC:
2777 		/*
2778 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2779 		 * one more check here to see if we have chased our tail around.
2780 		 * If this is not the lowest lsn iclog, then we will leave it
2781 		 * for another completion to process.
2782 		 */
2783 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784 		lowest_lsn = xlog_get_lowest_lsn(log);
2785 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786 			return false;
2787 		xlog_state_set_callback(log, iclog, header_lsn);
2788 		return false;
2789 	default:
2790 		/*
2791 		 * Can only perform callbacks in order.  Since this iclog is not
2792 		 * in the DONE_SYNC state, we skip the rest and just try to
2793 		 * clean up.
2794 		 */
2795 		return true;
2796 	}
2797 }
2798 
2799 /*
2800  * Keep processing entries in the iclog callback list until we come around and
2801  * it is empty.  We need to atomically see that the list is empty and change the
2802  * state to DIRTY so that we don't miss any more callbacks being added.
2803  *
2804  * This function is called with the icloglock held and returns with it held. We
2805  * drop it while running callbacks, however, as holding it over thousands of
2806  * callbacks is unnecessary and causes excessive contention if we do.
2807  */
2808 static void
2809 xlog_state_do_iclog_callbacks(
2810 	struct xlog		*log,
2811 	struct xlog_in_core	*iclog,
2812 	bool			aborted)
2813 		__releases(&log->l_icloglock)
2814 		__acquires(&log->l_icloglock)
2815 {
2816 	spin_unlock(&log->l_icloglock);
2817 	spin_lock(&iclog->ic_callback_lock);
2818 	while (!list_empty(&iclog->ic_callbacks)) {
2819 		LIST_HEAD(tmp);
2820 
2821 		list_splice_init(&iclog->ic_callbacks, &tmp);
2822 
2823 		spin_unlock(&iclog->ic_callback_lock);
2824 		xlog_cil_process_committed(&tmp, aborted);
2825 		spin_lock(&iclog->ic_callback_lock);
2826 	}
2827 
2828 	/*
2829 	 * Pick up the icloglock while still holding the callback lock so we
2830 	 * serialise against anyone trying to add more callbacks to this iclog
2831 	 * now we've finished processing.
2832 	 */
2833 	spin_lock(&log->l_icloglock);
2834 	spin_unlock(&iclog->ic_callback_lock);
2835 }
2836 
2837 STATIC void
2838 xlog_state_do_callback(
2839 	struct xlog		*log,
2840 	bool			aborted)
2841 {
2842 	struct xlog_in_core	*iclog;
2843 	struct xlog_in_core	*first_iclog;
2844 	bool			cycled_icloglock;
2845 	bool			ioerror;
2846 	int			flushcnt = 0;
2847 	int			repeats = 0;
2848 
2849 	spin_lock(&log->l_icloglock);
2850 	do {
2851 		/*
2852 		 * Scan all iclogs starting with the one pointed to by the
2853 		 * log.  Reset this starting point each time the log is
2854 		 * unlocked (during callbacks).
2855 		 *
2856 		 * Keep looping through iclogs until one full pass is made
2857 		 * without running any callbacks.
2858 		 */
2859 		first_iclog = log->l_iclog;
2860 		iclog = log->l_iclog;
2861 		cycled_icloglock = false;
2862 		ioerror = false;
2863 		repeats++;
2864 
2865 		do {
2866 			if (xlog_state_iodone_process_iclog(log, iclog,
2867 							&ioerror))
2868 				break;
2869 
2870 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2871 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2872 				iclog = iclog->ic_next;
2873 				continue;
2874 			}
2875 
2876 			/*
2877 			 * Running callbacks will drop the icloglock which means
2878 			 * we'll have to run at least one more complete loop.
2879 			 */
2880 			cycled_icloglock = true;
2881 			xlog_state_do_iclog_callbacks(log, iclog, aborted);
2882 
2883 			xlog_state_clean_iclog(log, iclog);
2884 			iclog = iclog->ic_next;
2885 		} while (first_iclog != iclog);
2886 
2887 		if (repeats > 5000) {
2888 			flushcnt += repeats;
2889 			repeats = 0;
2890 			xfs_warn(log->l_mp,
2891 				"%s: possible infinite loop (%d iterations)",
2892 				__func__, flushcnt);
2893 		}
2894 	} while (!ioerror && cycled_icloglock);
2895 
2896 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2897 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2898 		wake_up_all(&log->l_flush_wait);
2899 
2900 	spin_unlock(&log->l_icloglock);
2901 }
2902 
2903 
2904 /*
2905  * Finish transitioning this iclog to the dirty state.
2906  *
2907  * Make sure that we completely execute this routine only when this is
2908  * the last call to the iclog.  There is a good chance that iclog flushes,
2909  * when we reach the end of the physical log, get turned into 2 separate
2910  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2911  * routine.  By using the reference count bwritecnt, we guarantee that only
2912  * the second completion goes through.
2913  *
2914  * Callbacks could take time, so they are done outside the scope of the
2915  * global state machine log lock.
2916  */
2917 STATIC void
2918 xlog_state_done_syncing(
2919 	struct xlog_in_core	*iclog,
2920 	bool			aborted)
2921 {
2922 	struct xlog		*log = iclog->ic_log;
2923 
2924 	spin_lock(&log->l_icloglock);
2925 
2926 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2927 
2928 	/*
2929 	 * If we got an error, either on the first buffer, or in the case of
2930 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2931 	 * and none should ever be attempted to be written to disk
2932 	 * again.
2933 	 */
2934 	if (iclog->ic_state == XLOG_STATE_SYNCING)
2935 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2936 	else
2937 		ASSERT(iclog->ic_state == XLOG_STATE_IOERROR);
2938 
2939 	/*
2940 	 * Someone could be sleeping prior to writing out the next
2941 	 * iclog buffer, we wake them all, one will get to do the
2942 	 * I/O, the others get to wait for the result.
2943 	 */
2944 	wake_up_all(&iclog->ic_write_wait);
2945 	spin_unlock(&log->l_icloglock);
2946 	xlog_state_do_callback(log, aborted);	/* also cleans log */
2947 }	/* xlog_state_done_syncing */
2948 
2949 
2950 /*
2951  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2952  * sleep.  We wait on the flush queue on the head iclog as that should be
2953  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2954  * we will wait here and all new writes will sleep until a sync completes.
2955  *
2956  * The in-core logs are used in a circular fashion. They are not used
2957  * out-of-order even when an iclog past the head is free.
2958  *
2959  * return:
2960  *	* log_offset where xlog_write() can start writing into the in-core
2961  *		log's data space.
2962  *	* in-core log pointer to which xlog_write() should write.
2963  *	* boolean indicating this is a continued write to an in-core log.
2964  *		If this is the last write, then the in-core log's offset field
2965  *		needs to be incremented, depending on the amount of data which
2966  *		is copied.
2967  */
2968 STATIC int
2969 xlog_state_get_iclog_space(
2970 	struct xlog		*log,
2971 	int			len,
2972 	struct xlog_in_core	**iclogp,
2973 	struct xlog_ticket	*ticket,
2974 	int			*continued_write,
2975 	int			*logoffsetp)
2976 {
2977 	int		  log_offset;
2978 	xlog_rec_header_t *head;
2979 	xlog_in_core_t	  *iclog;
2980 
2981 restart:
2982 	spin_lock(&log->l_icloglock);
2983 	if (XLOG_FORCED_SHUTDOWN(log)) {
2984 		spin_unlock(&log->l_icloglock);
2985 		return -EIO;
2986 	}
2987 
2988 	iclog = log->l_iclog;
2989 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2990 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2991 
2992 		/* Wait for log writes to have flushed */
2993 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2994 		goto restart;
2995 	}
2996 
2997 	head = &iclog->ic_header;
2998 
2999 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3000 	log_offset = iclog->ic_offset;
3001 
3002 	/* On the 1st write to an iclog, figure out lsn.  This works
3003 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3004 	 * committing to.  If the offset is set, that's how many blocks
3005 	 * must be written.
3006 	 */
3007 	if (log_offset == 0) {
3008 		ticket->t_curr_res -= log->l_iclog_hsize;
3009 		xlog_tic_add_region(ticket,
3010 				    log->l_iclog_hsize,
3011 				    XLOG_REG_TYPE_LRHEADER);
3012 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3013 		head->h_lsn = cpu_to_be64(
3014 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3015 		ASSERT(log->l_curr_block >= 0);
3016 	}
3017 
3018 	/* If there is enough room to write everything, then do it.  Otherwise,
3019 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3020 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3021 	 * until you know exactly how many bytes get copied.  Therefore, wait
3022 	 * until later to update ic_offset.
3023 	 *
3024 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3025 	 * can fit into remaining data section.
3026 	 */
3027 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3028 		int		error = 0;
3029 
3030 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3031 
3032 		/*
3033 		 * If we are the only one writing to this iclog, sync it to
3034 		 * disk.  We need to do an atomic compare and decrement here to
3035 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3036 		 * xlog_state_release_iclog() when there is more than one
3037 		 * reference to the iclog.
3038 		 */
3039 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3040 			error = xlog_state_release_iclog(log, iclog);
3041 		spin_unlock(&log->l_icloglock);
3042 		if (error)
3043 			return error;
3044 		goto restart;
3045 	}
3046 
3047 	/* Do we have enough room to write the full amount in the remainder
3048 	 * of this iclog?  Or must we continue a write on the next iclog and
3049 	 * mark this iclog as completely taken?  In the case where we switch
3050 	 * iclogs (to mark it taken), this particular iclog will release/sync
3051 	 * to disk in xlog_write().
3052 	 */
3053 	if (len <= iclog->ic_size - iclog->ic_offset) {
3054 		*continued_write = 0;
3055 		iclog->ic_offset += len;
3056 	} else {
3057 		*continued_write = 1;
3058 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3059 	}
3060 	*iclogp = iclog;
3061 
3062 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3063 	spin_unlock(&log->l_icloglock);
3064 
3065 	*logoffsetp = log_offset;
3066 	return 0;
3067 }	/* xlog_state_get_iclog_space */
3068 
3069 /* The first cnt-1 times through here we don't need to
3070  * move the grant write head because the permanent
3071  * reservation has reserved cnt times the unit amount.
3072  * Release part of current permanent unit reservation and
3073  * reset current reservation to be one units worth.  Also
3074  * move grant reservation head forward.
3075  */
3076 STATIC void
3077 xlog_regrant_reserve_log_space(
3078 	struct xlog		*log,
3079 	struct xlog_ticket	*ticket)
3080 {
3081 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3082 
3083 	if (ticket->t_cnt > 0)
3084 		ticket->t_cnt--;
3085 
3086 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3087 					ticket->t_curr_res);
3088 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3089 					ticket->t_curr_res);
3090 	ticket->t_curr_res = ticket->t_unit_res;
3091 	xlog_tic_reset_res(ticket);
3092 
3093 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3094 
3095 	/* just return if we still have some of the pre-reserved space */
3096 	if (ticket->t_cnt > 0)
3097 		return;
3098 
3099 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100 					ticket->t_unit_res);
3101 
3102 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3103 
3104 	ticket->t_curr_res = ticket->t_unit_res;
3105 	xlog_tic_reset_res(ticket);
3106 }	/* xlog_regrant_reserve_log_space */
3107 
3108 
3109 /*
3110  * Give back the space left from a reservation.
3111  *
3112  * All the information we need to make a correct determination of space left
3113  * is present.  For non-permanent reservations, things are quite easy.  The
3114  * count should have been decremented to zero.  We only need to deal with the
3115  * space remaining in the current reservation part of the ticket.  If the
3116  * ticket contains a permanent reservation, there may be left over space which
3117  * needs to be released.  A count of N means that N-1 refills of the current
3118  * reservation can be done before we need to ask for more space.  The first
3119  * one goes to fill up the first current reservation.  Once we run out of
3120  * space, the count will stay at zero and the only space remaining will be
3121  * in the current reservation field.
3122  */
3123 STATIC void
3124 xlog_ungrant_log_space(
3125 	struct xlog		*log,
3126 	struct xlog_ticket	*ticket)
3127 {
3128 	int	bytes;
3129 
3130 	if (ticket->t_cnt > 0)
3131 		ticket->t_cnt--;
3132 
3133 	trace_xfs_log_ungrant_enter(log, ticket);
3134 	trace_xfs_log_ungrant_sub(log, ticket);
3135 
3136 	/*
3137 	 * If this is a permanent reservation ticket, we may be able to free
3138 	 * up more space based on the remaining count.
3139 	 */
3140 	bytes = ticket->t_curr_res;
3141 	if (ticket->t_cnt > 0) {
3142 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3143 		bytes += ticket->t_unit_res*ticket->t_cnt;
3144 	}
3145 
3146 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3147 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3148 
3149 	trace_xfs_log_ungrant_exit(log, ticket);
3150 
3151 	xfs_log_space_wake(log->l_mp);
3152 }
3153 
3154 /*
3155  * This routine will mark the current iclog in the ring as WANT_SYNC
3156  * and move the current iclog pointer to the next iclog in the ring.
3157  * When this routine is called from xlog_state_get_iclog_space(), the
3158  * exact size of the iclog has not yet been determined.  All we know is
3159  * that every data block.  We have run out of space in this log record.
3160  */
3161 STATIC void
3162 xlog_state_switch_iclogs(
3163 	struct xlog		*log,
3164 	struct xlog_in_core	*iclog,
3165 	int			eventual_size)
3166 {
3167 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3168 	if (!eventual_size)
3169 		eventual_size = iclog->ic_offset;
3170 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3171 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3172 	log->l_prev_block = log->l_curr_block;
3173 	log->l_prev_cycle = log->l_curr_cycle;
3174 
3175 	/* roll log?: ic_offset changed later */
3176 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3177 
3178 	/* Round up to next log-sunit */
3179 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3180 	    log->l_mp->m_sb.sb_logsunit > 1) {
3181 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3182 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3183 	}
3184 
3185 	if (log->l_curr_block >= log->l_logBBsize) {
3186 		/*
3187 		 * Rewind the current block before the cycle is bumped to make
3188 		 * sure that the combined LSN never transiently moves forward
3189 		 * when the log wraps to the next cycle. This is to support the
3190 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3191 		 * other cases should acquire l_icloglock.
3192 		 */
3193 		log->l_curr_block -= log->l_logBBsize;
3194 		ASSERT(log->l_curr_block >= 0);
3195 		smp_wmb();
3196 		log->l_curr_cycle++;
3197 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3198 			log->l_curr_cycle++;
3199 	}
3200 	ASSERT(iclog == log->l_iclog);
3201 	log->l_iclog = iclog->ic_next;
3202 }	/* xlog_state_switch_iclogs */
3203 
3204 /*
3205  * Write out all data in the in-core log as of this exact moment in time.
3206  *
3207  * Data may be written to the in-core log during this call.  However,
3208  * we don't guarantee this data will be written out.  A change from past
3209  * implementation means this routine will *not* write out zero length LRs.
3210  *
3211  * Basically, we try and perform an intelligent scan of the in-core logs.
3212  * If we determine there is no flushable data, we just return.  There is no
3213  * flushable data if:
3214  *
3215  *	1. the current iclog is active and has no data; the previous iclog
3216  *		is in the active or dirty state.
3217  *	2. the current iclog is drity, and the previous iclog is in the
3218  *		active or dirty state.
3219  *
3220  * We may sleep if:
3221  *
3222  *	1. the current iclog is not in the active nor dirty state.
3223  *	2. the current iclog dirty, and the previous iclog is not in the
3224  *		active nor dirty state.
3225  *	3. the current iclog is active, and there is another thread writing
3226  *		to this particular iclog.
3227  *	4. a) the current iclog is active and has no other writers
3228  *	   b) when we return from flushing out this iclog, it is still
3229  *		not in the active nor dirty state.
3230  */
3231 int
3232 xfs_log_force(
3233 	struct xfs_mount	*mp,
3234 	uint			flags)
3235 {
3236 	struct xlog		*log = mp->m_log;
3237 	struct xlog_in_core	*iclog;
3238 	xfs_lsn_t		lsn;
3239 
3240 	XFS_STATS_INC(mp, xs_log_force);
3241 	trace_xfs_log_force(mp, 0, _RET_IP_);
3242 
3243 	xlog_cil_force(log);
3244 
3245 	spin_lock(&log->l_icloglock);
3246 	iclog = log->l_iclog;
3247 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3248 		goto out_error;
3249 
3250 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3251 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3252 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3253 		/*
3254 		 * If the head is dirty or (active and empty), then we need to
3255 		 * look at the previous iclog.
3256 		 *
3257 		 * If the previous iclog is active or dirty we are done.  There
3258 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3259 		 * previous iclog and go to sleep.
3260 		 */
3261 		iclog = iclog->ic_prev;
3262 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3263 		    iclog->ic_state == XLOG_STATE_DIRTY)
3264 			goto out_unlock;
3265 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3266 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3267 			/*
3268 			 * We are the only one with access to this iclog.
3269 			 *
3270 			 * Flush it out now.  There should be a roundoff of zero
3271 			 * to show that someone has already taken care of the
3272 			 * roundoff from the previous sync.
3273 			 */
3274 			atomic_inc(&iclog->ic_refcnt);
3275 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3276 			xlog_state_switch_iclogs(log, iclog, 0);
3277 			if (xlog_state_release_iclog(log, iclog))
3278 				goto out_error;
3279 
3280 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3281 			    iclog->ic_state == XLOG_STATE_DIRTY)
3282 				goto out_unlock;
3283 		} else {
3284 			/*
3285 			 * Someone else is writing to this iclog.
3286 			 *
3287 			 * Use its call to flush out the data.  However, the
3288 			 * other thread may not force out this LR, so we mark
3289 			 * it WANT_SYNC.
3290 			 */
3291 			xlog_state_switch_iclogs(log, iclog, 0);
3292 		}
3293 	} else {
3294 		/*
3295 		 * If the head iclog is not active nor dirty, we just attach
3296 		 * ourselves to the head and go to sleep if necessary.
3297 		 */
3298 		;
3299 	}
3300 
3301 	if (!(flags & XFS_LOG_SYNC))
3302 		goto out_unlock;
3303 
3304 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3305 		goto out_error;
3306 	XFS_STATS_INC(mp, xs_log_force_sleep);
3307 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3308 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3309 		return -EIO;
3310 	return 0;
3311 
3312 out_unlock:
3313 	spin_unlock(&log->l_icloglock);
3314 	return 0;
3315 out_error:
3316 	spin_unlock(&log->l_icloglock);
3317 	return -EIO;
3318 }
3319 
3320 static int
3321 __xfs_log_force_lsn(
3322 	struct xfs_mount	*mp,
3323 	xfs_lsn_t		lsn,
3324 	uint			flags,
3325 	int			*log_flushed,
3326 	bool			already_slept)
3327 {
3328 	struct xlog		*log = mp->m_log;
3329 	struct xlog_in_core	*iclog;
3330 
3331 	spin_lock(&log->l_icloglock);
3332 	iclog = log->l_iclog;
3333 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3334 		goto out_error;
3335 
3336 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3337 		iclog = iclog->ic_next;
3338 		if (iclog == log->l_iclog)
3339 			goto out_unlock;
3340 	}
3341 
3342 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3343 		goto out_unlock;
3344 
3345 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3346 		/*
3347 		 * We sleep here if we haven't already slept (e.g. this is the
3348 		 * first time we've looked at the correct iclog buf) and the
3349 		 * buffer before us is going to be sync'ed.  The reason for this
3350 		 * is that if we are doing sync transactions here, by waiting
3351 		 * for the previous I/O to complete, we can allow a few more
3352 		 * transactions into this iclog before we close it down.
3353 		 *
3354 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3355 		 * refcnt so we can release the log (which drops the ref count).
3356 		 * The state switch keeps new transaction commits from using
3357 		 * this buffer.  When the current commits finish writing into
3358 		 * the buffer, the refcount will drop to zero and the buffer
3359 		 * will go out then.
3360 		 */
3361 		if (!already_slept &&
3362 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3363 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3364 			XFS_STATS_INC(mp, xs_log_force_sleep);
3365 
3366 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3367 					&log->l_icloglock);
3368 			return -EAGAIN;
3369 		}
3370 		atomic_inc(&iclog->ic_refcnt);
3371 		xlog_state_switch_iclogs(log, iclog, 0);
3372 		if (xlog_state_release_iclog(log, iclog))
3373 			goto out_error;
3374 		if (log_flushed)
3375 			*log_flushed = 1;
3376 	}
3377 
3378 	if (!(flags & XFS_LOG_SYNC) ||
3379 	    (iclog->ic_state == XLOG_STATE_ACTIVE ||
3380 	     iclog->ic_state == XLOG_STATE_DIRTY))
3381 		goto out_unlock;
3382 
3383 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3384 		goto out_error;
3385 
3386 	XFS_STATS_INC(mp, xs_log_force_sleep);
3387 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3388 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3389 		return -EIO;
3390 	return 0;
3391 
3392 out_unlock:
3393 	spin_unlock(&log->l_icloglock);
3394 	return 0;
3395 out_error:
3396 	spin_unlock(&log->l_icloglock);
3397 	return -EIO;
3398 }
3399 
3400 /*
3401  * Force the in-core log to disk for a specific LSN.
3402  *
3403  * Find in-core log with lsn.
3404  *	If it is in the DIRTY state, just return.
3405  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3406  *		state and go to sleep or return.
3407  *	If it is in any other state, go to sleep or return.
3408  *
3409  * Synchronous forces are implemented with a wait queue.  All callers trying
3410  * to force a given lsn to disk must wait on the queue attached to the
3411  * specific in-core log.  When given in-core log finally completes its write
3412  * to disk, that thread will wake up all threads waiting on the queue.
3413  */
3414 int
3415 xfs_log_force_lsn(
3416 	struct xfs_mount	*mp,
3417 	xfs_lsn_t		lsn,
3418 	uint			flags,
3419 	int			*log_flushed)
3420 {
3421 	int			ret;
3422 	ASSERT(lsn != 0);
3423 
3424 	XFS_STATS_INC(mp, xs_log_force);
3425 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3426 
3427 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3428 	if (lsn == NULLCOMMITLSN)
3429 		return 0;
3430 
3431 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3432 	if (ret == -EAGAIN)
3433 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3434 	return ret;
3435 }
3436 
3437 /*
3438  * Called when we want to mark the current iclog as being ready to sync to
3439  * disk.
3440  */
3441 STATIC void
3442 xlog_state_want_sync(
3443 	struct xlog		*log,
3444 	struct xlog_in_core	*iclog)
3445 {
3446 	assert_spin_locked(&log->l_icloglock);
3447 
3448 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3449 		xlog_state_switch_iclogs(log, iclog, 0);
3450 	} else {
3451 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3452 		       iclog->ic_state == XLOG_STATE_IOERROR);
3453 	}
3454 }
3455 
3456 
3457 /*****************************************************************************
3458  *
3459  *		TICKET functions
3460  *
3461  *****************************************************************************
3462  */
3463 
3464 /*
3465  * Free a used ticket when its refcount falls to zero.
3466  */
3467 void
3468 xfs_log_ticket_put(
3469 	xlog_ticket_t	*ticket)
3470 {
3471 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3472 	if (atomic_dec_and_test(&ticket->t_ref))
3473 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3474 }
3475 
3476 xlog_ticket_t *
3477 xfs_log_ticket_get(
3478 	xlog_ticket_t	*ticket)
3479 {
3480 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 	atomic_inc(&ticket->t_ref);
3482 	return ticket;
3483 }
3484 
3485 /*
3486  * Figure out the total log space unit (in bytes) that would be
3487  * required for a log ticket.
3488  */
3489 int
3490 xfs_log_calc_unit_res(
3491 	struct xfs_mount	*mp,
3492 	int			unit_bytes)
3493 {
3494 	struct xlog		*log = mp->m_log;
3495 	int			iclog_space;
3496 	uint			num_headers;
3497 
3498 	/*
3499 	 * Permanent reservations have up to 'cnt'-1 active log operations
3500 	 * in the log.  A unit in this case is the amount of space for one
3501 	 * of these log operations.  Normal reservations have a cnt of 1
3502 	 * and their unit amount is the total amount of space required.
3503 	 *
3504 	 * The following lines of code account for non-transaction data
3505 	 * which occupy space in the on-disk log.
3506 	 *
3507 	 * Normal form of a transaction is:
3508 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3510 	 *
3511 	 * We need to account for all the leadup data and trailer data
3512 	 * around the transaction data.
3513 	 * And then we need to account for the worst case in terms of using
3514 	 * more space.
3515 	 * The worst case will happen if:
3516 	 * - the placement of the transaction happens to be such that the
3517 	 *   roundoff is at its maximum
3518 	 * - the transaction data is synced before the commit record is synced
3519 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 	 *   Therefore the commit record is in its own Log Record.
3521 	 *   This can happen as the commit record is called with its
3522 	 *   own region to xlog_write().
3523 	 *   This then means that in the worst case, roundoff can happen for
3524 	 *   the commit-rec as well.
3525 	 *   The commit-rec is smaller than padding in this scenario and so it is
3526 	 *   not added separately.
3527 	 */
3528 
3529 	/* for trans header */
3530 	unit_bytes += sizeof(xlog_op_header_t);
3531 	unit_bytes += sizeof(xfs_trans_header_t);
3532 
3533 	/* for start-rec */
3534 	unit_bytes += sizeof(xlog_op_header_t);
3535 
3536 	/*
3537 	 * for LR headers - the space for data in an iclog is the size minus
3538 	 * the space used for the headers. If we use the iclog size, then we
3539 	 * undercalculate the number of headers required.
3540 	 *
3541 	 * Furthermore - the addition of op headers for split-recs might
3542 	 * increase the space required enough to require more log and op
3543 	 * headers, so take that into account too.
3544 	 *
3545 	 * IMPORTANT: This reservation makes the assumption that if this
3546 	 * transaction is the first in an iclog and hence has the LR headers
3547 	 * accounted to it, then the remaining space in the iclog is
3548 	 * exclusively for this transaction.  i.e. if the transaction is larger
3549 	 * than the iclog, it will be the only thing in that iclog.
3550 	 * Fundamentally, this means we must pass the entire log vector to
3551 	 * xlog_write to guarantee this.
3552 	 */
3553 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3554 	num_headers = howmany(unit_bytes, iclog_space);
3555 
3556 	/* for split-recs - ophdrs added when data split over LRs */
3557 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3558 
3559 	/* add extra header reservations if we overrun */
3560 	while (!num_headers ||
3561 	       howmany(unit_bytes, iclog_space) > num_headers) {
3562 		unit_bytes += sizeof(xlog_op_header_t);
3563 		num_headers++;
3564 	}
3565 	unit_bytes += log->l_iclog_hsize * num_headers;
3566 
3567 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3568 	unit_bytes += log->l_iclog_hsize;
3569 
3570 	/* for roundoff padding for transaction data and one for commit record */
3571 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3572 		/* log su roundoff */
3573 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3574 	} else {
3575 		/* BB roundoff */
3576 		unit_bytes += 2 * BBSIZE;
3577         }
3578 
3579 	return unit_bytes;
3580 }
3581 
3582 /*
3583  * Allocate and initialise a new log ticket.
3584  */
3585 struct xlog_ticket *
3586 xlog_ticket_alloc(
3587 	struct xlog		*log,
3588 	int			unit_bytes,
3589 	int			cnt,
3590 	char			client,
3591 	bool			permanent,
3592 	xfs_km_flags_t		alloc_flags)
3593 {
3594 	struct xlog_ticket	*tic;
3595 	int			unit_res;
3596 
3597 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3598 	if (!tic)
3599 		return NULL;
3600 
3601 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3602 
3603 	atomic_set(&tic->t_ref, 1);
3604 	tic->t_task		= current;
3605 	INIT_LIST_HEAD(&tic->t_queue);
3606 	tic->t_unit_res		= unit_res;
3607 	tic->t_curr_res		= unit_res;
3608 	tic->t_cnt		= cnt;
3609 	tic->t_ocnt		= cnt;
3610 	tic->t_tid		= prandom_u32();
3611 	tic->t_clientid		= client;
3612 	tic->t_flags		= XLOG_TIC_INITED;
3613 	if (permanent)
3614 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3615 
3616 	xlog_tic_reset_res(tic);
3617 
3618 	return tic;
3619 }
3620 
3621 
3622 /******************************************************************************
3623  *
3624  *		Log debug routines
3625  *
3626  ******************************************************************************
3627  */
3628 #if defined(DEBUG)
3629 /*
3630  * Make sure that the destination ptr is within the valid data region of
3631  * one of the iclogs.  This uses backup pointers stored in a different
3632  * part of the log in case we trash the log structure.
3633  */
3634 STATIC void
3635 xlog_verify_dest_ptr(
3636 	struct xlog	*log,
3637 	void		*ptr)
3638 {
3639 	int i;
3640 	int good_ptr = 0;
3641 
3642 	for (i = 0; i < log->l_iclog_bufs; i++) {
3643 		if (ptr >= log->l_iclog_bak[i] &&
3644 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3645 			good_ptr++;
3646 	}
3647 
3648 	if (!good_ptr)
3649 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3650 }
3651 
3652 /*
3653  * Check to make sure the grant write head didn't just over lap the tail.  If
3654  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3655  * the cycles differ by exactly one and check the byte count.
3656  *
3657  * This check is run unlocked, so can give false positives. Rather than assert
3658  * on failures, use a warn-once flag and a panic tag to allow the admin to
3659  * determine if they want to panic the machine when such an error occurs. For
3660  * debug kernels this will have the same effect as using an assert but, unlinke
3661  * an assert, it can be turned off at runtime.
3662  */
3663 STATIC void
3664 xlog_verify_grant_tail(
3665 	struct xlog	*log)
3666 {
3667 	int		tail_cycle, tail_blocks;
3668 	int		cycle, space;
3669 
3670 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3671 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3672 	if (tail_cycle != cycle) {
3673 		if (cycle - 1 != tail_cycle &&
3674 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3675 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3676 				"%s: cycle - 1 != tail_cycle", __func__);
3677 			log->l_flags |= XLOG_TAIL_WARN;
3678 		}
3679 
3680 		if (space > BBTOB(tail_blocks) &&
3681 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3682 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3683 				"%s: space > BBTOB(tail_blocks)", __func__);
3684 			log->l_flags |= XLOG_TAIL_WARN;
3685 		}
3686 	}
3687 }
3688 
3689 /* check if it will fit */
3690 STATIC void
3691 xlog_verify_tail_lsn(
3692 	struct xlog		*log,
3693 	struct xlog_in_core	*iclog,
3694 	xfs_lsn_t		tail_lsn)
3695 {
3696     int blocks;
3697 
3698     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3699 	blocks =
3700 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3701 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3702 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3703     } else {
3704 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3705 
3706 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3707 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3708 
3709 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3710 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3711 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3712     }
3713 }	/* xlog_verify_tail_lsn */
3714 
3715 /*
3716  * Perform a number of checks on the iclog before writing to disk.
3717  *
3718  * 1. Make sure the iclogs are still circular
3719  * 2. Make sure we have a good magic number
3720  * 3. Make sure we don't have magic numbers in the data
3721  * 4. Check fields of each log operation header for:
3722  *	A. Valid client identifier
3723  *	B. tid ptr value falls in valid ptr space (user space code)
3724  *	C. Length in log record header is correct according to the
3725  *		individual operation headers within record.
3726  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3727  *	log, check the preceding blocks of the physical log to make sure all
3728  *	the cycle numbers agree with the current cycle number.
3729  */
3730 STATIC void
3731 xlog_verify_iclog(
3732 	struct xlog		*log,
3733 	struct xlog_in_core	*iclog,
3734 	int			count)
3735 {
3736 	xlog_op_header_t	*ophead;
3737 	xlog_in_core_t		*icptr;
3738 	xlog_in_core_2_t	*xhdr;
3739 	void			*base_ptr, *ptr, *p;
3740 	ptrdiff_t		field_offset;
3741 	uint8_t			clientid;
3742 	int			len, i, j, k, op_len;
3743 	int			idx;
3744 
3745 	/* check validity of iclog pointers */
3746 	spin_lock(&log->l_icloglock);
3747 	icptr = log->l_iclog;
3748 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3749 		ASSERT(icptr);
3750 
3751 	if (icptr != log->l_iclog)
3752 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3753 	spin_unlock(&log->l_icloglock);
3754 
3755 	/* check log magic numbers */
3756 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3757 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3758 
3759 	base_ptr = ptr = &iclog->ic_header;
3760 	p = &iclog->ic_header;
3761 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3762 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3763 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3764 				__func__);
3765 	}
3766 
3767 	/* check fields */
3768 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3769 	base_ptr = ptr = iclog->ic_datap;
3770 	ophead = ptr;
3771 	xhdr = iclog->ic_data;
3772 	for (i = 0; i < len; i++) {
3773 		ophead = ptr;
3774 
3775 		/* clientid is only 1 byte */
3776 		p = &ophead->oh_clientid;
3777 		field_offset = p - base_ptr;
3778 		if (field_offset & 0x1ff) {
3779 			clientid = ophead->oh_clientid;
3780 		} else {
3781 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3782 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3783 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3784 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3785 				clientid = xlog_get_client_id(
3786 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3787 			} else {
3788 				clientid = xlog_get_client_id(
3789 					iclog->ic_header.h_cycle_data[idx]);
3790 			}
3791 		}
3792 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3793 			xfs_warn(log->l_mp,
3794 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3795 				__func__, clientid, ophead,
3796 				(unsigned long)field_offset);
3797 
3798 		/* check length */
3799 		p = &ophead->oh_len;
3800 		field_offset = p - base_ptr;
3801 		if (field_offset & 0x1ff) {
3802 			op_len = be32_to_cpu(ophead->oh_len);
3803 		} else {
3804 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3805 				    (uintptr_t)iclog->ic_datap);
3806 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3807 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3808 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3809 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3810 			} else {
3811 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3812 			}
3813 		}
3814 		ptr += sizeof(xlog_op_header_t) + op_len;
3815 	}
3816 }	/* xlog_verify_iclog */
3817 #endif
3818 
3819 /*
3820  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3821  */
3822 STATIC int
3823 xlog_state_ioerror(
3824 	struct xlog	*log)
3825 {
3826 	xlog_in_core_t	*iclog, *ic;
3827 
3828 	iclog = log->l_iclog;
3829 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3830 		/*
3831 		 * Mark all the incore logs IOERROR.
3832 		 * From now on, no log flushes will result.
3833 		 */
3834 		ic = iclog;
3835 		do {
3836 			ic->ic_state = XLOG_STATE_IOERROR;
3837 			ic = ic->ic_next;
3838 		} while (ic != iclog);
3839 		return 0;
3840 	}
3841 	/*
3842 	 * Return non-zero, if state transition has already happened.
3843 	 */
3844 	return 1;
3845 }
3846 
3847 /*
3848  * This is called from xfs_force_shutdown, when we're forcibly
3849  * shutting down the filesystem, typically because of an IO error.
3850  * Our main objectives here are to make sure that:
3851  *	a. if !logerror, flush the logs to disk. Anything modified
3852  *	   after this is ignored.
3853  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3854  *	   parties to find out, 'atomically'.
3855  *	c. those who're sleeping on log reservations, pinned objects and
3856  *	    other resources get woken up, and be told the bad news.
3857  *	d. nothing new gets queued up after (b) and (c) are done.
3858  *
3859  * Note: for the !logerror case we need to flush the regions held in memory out
3860  * to disk first. This needs to be done before the log is marked as shutdown,
3861  * otherwise the iclog writes will fail.
3862  */
3863 int
3864 xfs_log_force_umount(
3865 	struct xfs_mount	*mp,
3866 	int			logerror)
3867 {
3868 	struct xlog	*log;
3869 	int		retval;
3870 
3871 	log = mp->m_log;
3872 
3873 	/*
3874 	 * If this happens during log recovery, don't worry about
3875 	 * locking; the log isn't open for business yet.
3876 	 */
3877 	if (!log ||
3878 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3879 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3880 		if (mp->m_sb_bp)
3881 			mp->m_sb_bp->b_flags |= XBF_DONE;
3882 		return 0;
3883 	}
3884 
3885 	/*
3886 	 * Somebody could've already done the hard work for us.
3887 	 * No need to get locks for this.
3888 	 */
3889 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3890 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3891 		return 1;
3892 	}
3893 
3894 	/*
3895 	 * Flush all the completed transactions to disk before marking the log
3896 	 * being shut down. We need to do it in this order to ensure that
3897 	 * completed operations are safely on disk before we shut down, and that
3898 	 * we don't have to issue any buffer IO after the shutdown flags are set
3899 	 * to guarantee this.
3900 	 */
3901 	if (!logerror)
3902 		xfs_log_force(mp, XFS_LOG_SYNC);
3903 
3904 	/*
3905 	 * mark the filesystem and the as in a shutdown state and wake
3906 	 * everybody up to tell them the bad news.
3907 	 */
3908 	spin_lock(&log->l_icloglock);
3909 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3910 	if (mp->m_sb_bp)
3911 		mp->m_sb_bp->b_flags |= XBF_DONE;
3912 
3913 	/*
3914 	 * Mark the log and the iclogs with IO error flags to prevent any
3915 	 * further log IO from being issued or completed.
3916 	 */
3917 	log->l_flags |= XLOG_IO_ERROR;
3918 	retval = xlog_state_ioerror(log);
3919 	spin_unlock(&log->l_icloglock);
3920 
3921 	/*
3922 	 * We don't want anybody waiting for log reservations after this. That
3923 	 * means we have to wake up everybody queued up on reserveq as well as
3924 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3925 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3926 	 * action is protected by the grant locks.
3927 	 */
3928 	xlog_grant_head_wake_all(&log->l_reserve_head);
3929 	xlog_grant_head_wake_all(&log->l_write_head);
3930 
3931 	/*
3932 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3933 	 * as if the log writes were completed. The abort handling in the log
3934 	 * item committed callback functions will do this again under lock to
3935 	 * avoid races.
3936 	 */
3937 	spin_lock(&log->l_cilp->xc_push_lock);
3938 	wake_up_all(&log->l_cilp->xc_commit_wait);
3939 	spin_unlock(&log->l_cilp->xc_push_lock);
3940 	xlog_state_do_callback(log, true);
3941 
3942 	/* return non-zero if log IOERROR transition had already happened */
3943 	return retval;
3944 }
3945 
3946 STATIC int
3947 xlog_iclogs_empty(
3948 	struct xlog	*log)
3949 {
3950 	xlog_in_core_t	*iclog;
3951 
3952 	iclog = log->l_iclog;
3953 	do {
3954 		/* endianness does not matter here, zero is zero in
3955 		 * any language.
3956 		 */
3957 		if (iclog->ic_header.h_num_logops)
3958 			return 0;
3959 		iclog = iclog->ic_next;
3960 	} while (iclog != log->l_iclog);
3961 	return 1;
3962 }
3963 
3964 /*
3965  * Verify that an LSN stamped into a piece of metadata is valid. This is
3966  * intended for use in read verifiers on v5 superblocks.
3967  */
3968 bool
3969 xfs_log_check_lsn(
3970 	struct xfs_mount	*mp,
3971 	xfs_lsn_t		lsn)
3972 {
3973 	struct xlog		*log = mp->m_log;
3974 	bool			valid;
3975 
3976 	/*
3977 	 * norecovery mode skips mount-time log processing and unconditionally
3978 	 * resets the in-core LSN. We can't validate in this mode, but
3979 	 * modifications are not allowed anyways so just return true.
3980 	 */
3981 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3982 		return true;
3983 
3984 	/*
3985 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3986 	 * handled by recovery and thus safe to ignore here.
3987 	 */
3988 	if (lsn == NULLCOMMITLSN)
3989 		return true;
3990 
3991 	valid = xlog_valid_lsn(mp->m_log, lsn);
3992 
3993 	/* warn the user about what's gone wrong before verifier failure */
3994 	if (!valid) {
3995 		spin_lock(&log->l_icloglock);
3996 		xfs_warn(mp,
3997 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3998 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3999 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4000 			 log->l_curr_cycle, log->l_curr_block);
4001 		spin_unlock(&log->l_icloglock);
4002 	}
4003 
4004 	return valid;
4005 }
4006 
4007 bool
4008 xfs_log_in_recovery(
4009 	struct xfs_mount	*mp)
4010 {
4011 	struct xlog		*log = mp->m_log;
4012 
4013 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
4014 }
4015