xref: /openbmc/linux/fs/xfs/xfs_log.c (revision e6c81cce)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	char			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	uint			flags)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 			flags |= XFS_LOG_REL_PERM_RESERV;
531 		}
532 	}
533 
534 
535 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
537 		trace_xfs_log_done_nonperm(log, ticket);
538 
539 		/*
540 		 * Release ticket if not permanent reservation or a specific
541 		 * request has been made to release a permanent reservation.
542 		 */
543 		xlog_ungrant_log_space(log, ticket);
544 		xfs_log_ticket_put(ticket);
545 	} else {
546 		trace_xfs_log_done_perm(log, ticket);
547 
548 		xlog_regrant_reserve_log_space(log, ticket);
549 		/* If this ticket was a permanent reservation and we aren't
550 		 * trying to release it, reset the inited flags; so next time
551 		 * we write, a start record will be written out.
552 		 */
553 		ticket->t_flags |= XLOG_TIC_INITED;
554 	}
555 
556 	return lsn;
557 }
558 
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567 	struct xfs_mount	*mp,
568 	struct xlog_in_core	*iclog,
569 	xfs_log_callback_t	*cb)
570 {
571 	int	abortflg;
572 
573 	spin_lock(&iclog->ic_callback_lock);
574 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 	if (!abortflg) {
576 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 		cb->cb_next = NULL;
579 		*(iclog->ic_callback_tail) = cb;
580 		iclog->ic_callback_tail = &(cb->cb_next);
581 	}
582 	spin_unlock(&iclog->ic_callback_lock);
583 	return abortflg;
584 }
585 
586 int
587 xfs_log_release_iclog(
588 	struct xfs_mount	*mp,
589 	struct xlog_in_core	*iclog)
590 {
591 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 		return -EIO;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * Mount a log filesystem
601  *
602  * mp		- ubiquitous xfs mount point structure
603  * log_target	- buftarg of on-disk log device
604  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks	- Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611 	xfs_mount_t	*mp,
612 	xfs_buftarg_t	*log_target,
613 	xfs_daddr_t	blk_offset,
614 	int		num_bblks)
615 {
616 	int		error = 0;
617 	int		min_logfsbs;
618 
619 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620 		xfs_notice(mp, "Mounting V%d Filesystem",
621 			   XFS_SB_VERSION_NUM(&mp->m_sb));
622 	} else {
623 		xfs_notice(mp,
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 			   XFS_SB_VERSION_NUM(&mp->m_sb));
626 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 	}
628 
629 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 	if (IS_ERR(mp->m_log)) {
631 		error = PTR_ERR(mp->m_log);
632 		goto out;
633 	}
634 
635 	/*
636 	 * Validate the given log space and drop a critical message via syslog
637 	 * if the log size is too small that would lead to some unexpected
638 	 * situations in transaction log space reservation stage.
639 	 *
640 	 * Note: we can't just reject the mount if the validation fails.  This
641 	 * would mean that people would have to downgrade their kernel just to
642 	 * remedy the situation as there is no way to grow the log (short of
643 	 * black magic surgery with xfs_db).
644 	 *
645 	 * We can, however, reject mounts for CRC format filesystems, as the
646 	 * mkfs binary being used to make the filesystem should never create a
647 	 * filesystem with a log that is too small.
648 	 */
649 	min_logfsbs = xfs_log_calc_minimum_size(mp);
650 
651 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too small, minimum size is %d blocks",
654 			 mp->m_sb.sb_logblocks, min_logfsbs);
655 		error = -EINVAL;
656 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 		xfs_warn(mp,
658 		"Log size %d blocks too large, maximum size is %lld blocks",
659 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 		error = -EINVAL;
661 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 		xfs_warn(mp,
663 		"log size %lld bytes too large, maximum size is %lld bytes",
664 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 			 XFS_MAX_LOG_BYTES);
666 		error = -EINVAL;
667 	}
668 	if (error) {
669 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 			ASSERT(0);
672 			goto out_free_log;
673 		}
674 		xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677 	}
678 
679 	/*
680 	 * Initialize the AIL now we have a log.
681 	 */
682 	error = xfs_trans_ail_init(mp);
683 	if (error) {
684 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 		goto out_free_log;
686 	}
687 	mp->m_log->l_ailp = mp->m_ail;
688 
689 	/*
690 	 * skip log recovery on a norecovery mount.  pretend it all
691 	 * just worked.
692 	 */
693 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695 
696 		if (readonly)
697 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
698 
699 		error = xlog_recover(mp->m_log);
700 
701 		if (readonly)
702 			mp->m_flags |= XFS_MOUNT_RDONLY;
703 		if (error) {
704 			xfs_warn(mp, "log mount/recovery failed: error %d",
705 				error);
706 			goto out_destroy_ail;
707 		}
708 	}
709 
710 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
711 			       "log");
712 	if (error)
713 		goto out_destroy_ail;
714 
715 	/* Normal transactions can now occur */
716 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
717 
718 	/*
719 	 * Now the log has been fully initialised and we know were our
720 	 * space grant counters are, we can initialise the permanent ticket
721 	 * needed for delayed logging to work.
722 	 */
723 	xlog_cil_init_post_recovery(mp->m_log);
724 
725 	return 0;
726 
727 out_destroy_ail:
728 	xfs_trans_ail_destroy(mp);
729 out_free_log:
730 	xlog_dealloc_log(mp->m_log);
731 out:
732 	return error;
733 }
734 
735 /*
736  * Finish the recovery of the file system.  This is separate from the
737  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
738  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
739  * here.
740  *
741  * If we finish recovery successfully, start the background log work. If we are
742  * not doing recovery, then we have a RO filesystem and we don't need to start
743  * it.
744  */
745 int
746 xfs_log_mount_finish(xfs_mount_t *mp)
747 {
748 	int	error = 0;
749 
750 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
751 		error = xlog_recover_finish(mp->m_log);
752 		if (!error)
753 			xfs_log_work_queue(mp);
754 	} else {
755 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
756 	}
757 
758 
759 	return error;
760 }
761 
762 /*
763  * Final log writes as part of unmount.
764  *
765  * Mark the filesystem clean as unmount happens.  Note that during relocation
766  * this routine needs to be executed as part of source-bag while the
767  * deallocation must not be done until source-end.
768  */
769 
770 /*
771  * Unmount record used to have a string "Unmount filesystem--" in the
772  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
773  * We just write the magic number now since that particular field isn't
774  * currently architecture converted and "Unmount" is a bit foo.
775  * As far as I know, there weren't any dependencies on the old behaviour.
776  */
777 
778 int
779 xfs_log_unmount_write(xfs_mount_t *mp)
780 {
781 	struct xlog	 *log = mp->m_log;
782 	xlog_in_core_t	 *iclog;
783 #ifdef DEBUG
784 	xlog_in_core_t	 *first_iclog;
785 #endif
786 	xlog_ticket_t	*tic = NULL;
787 	xfs_lsn_t	 lsn;
788 	int		 error;
789 
790 	/*
791 	 * Don't write out unmount record on read-only mounts.
792 	 * Or, if we are doing a forced umount (typically because of IO errors).
793 	 */
794 	if (mp->m_flags & XFS_MOUNT_RDONLY)
795 		return 0;
796 
797 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
798 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
799 
800 #ifdef DEBUG
801 	first_iclog = iclog = log->l_iclog;
802 	do {
803 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
804 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
805 			ASSERT(iclog->ic_offset == 0);
806 		}
807 		iclog = iclog->ic_next;
808 	} while (iclog != first_iclog);
809 #endif
810 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
811 		error = xfs_log_reserve(mp, 600, 1, &tic,
812 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
813 		if (!error) {
814 			/* the data section must be 32 bit size aligned */
815 			struct {
816 			    __uint16_t magic;
817 			    __uint16_t pad1;
818 			    __uint32_t pad2; /* may as well make it 64 bits */
819 			} magic = {
820 				.magic = XLOG_UNMOUNT_TYPE,
821 			};
822 			struct xfs_log_iovec reg = {
823 				.i_addr = &magic,
824 				.i_len = sizeof(magic),
825 				.i_type = XLOG_REG_TYPE_UNMOUNT,
826 			};
827 			struct xfs_log_vec vec = {
828 				.lv_niovecs = 1,
829 				.lv_iovecp = &reg,
830 			};
831 
832 			/* remove inited flag, and account for space used */
833 			tic->t_flags = 0;
834 			tic->t_curr_res -= sizeof(magic);
835 			error = xlog_write(log, &vec, tic, &lsn,
836 					   NULL, XLOG_UNMOUNT_TRANS);
837 			/*
838 			 * At this point, we're umounting anyway,
839 			 * so there's no point in transitioning log state
840 			 * to IOERROR. Just continue...
841 			 */
842 		}
843 
844 		if (error)
845 			xfs_alert(mp, "%s: unmount record failed", __func__);
846 
847 
848 		spin_lock(&log->l_icloglock);
849 		iclog = log->l_iclog;
850 		atomic_inc(&iclog->ic_refcnt);
851 		xlog_state_want_sync(log, iclog);
852 		spin_unlock(&log->l_icloglock);
853 		error = xlog_state_release_iclog(log, iclog);
854 
855 		spin_lock(&log->l_icloglock);
856 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
857 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
858 			if (!XLOG_FORCED_SHUTDOWN(log)) {
859 				xlog_wait(&iclog->ic_force_wait,
860 							&log->l_icloglock);
861 			} else {
862 				spin_unlock(&log->l_icloglock);
863 			}
864 		} else {
865 			spin_unlock(&log->l_icloglock);
866 		}
867 		if (tic) {
868 			trace_xfs_log_umount_write(log, tic);
869 			xlog_ungrant_log_space(log, tic);
870 			xfs_log_ticket_put(tic);
871 		}
872 	} else {
873 		/*
874 		 * We're already in forced_shutdown mode, couldn't
875 		 * even attempt to write out the unmount transaction.
876 		 *
877 		 * Go through the motions of sync'ing and releasing
878 		 * the iclog, even though no I/O will actually happen,
879 		 * we need to wait for other log I/Os that may already
880 		 * be in progress.  Do this as a separate section of
881 		 * code so we'll know if we ever get stuck here that
882 		 * we're in this odd situation of trying to unmount
883 		 * a file system that went into forced_shutdown as
884 		 * the result of an unmount..
885 		 */
886 		spin_lock(&log->l_icloglock);
887 		iclog = log->l_iclog;
888 		atomic_inc(&iclog->ic_refcnt);
889 
890 		xlog_state_want_sync(log, iclog);
891 		spin_unlock(&log->l_icloglock);
892 		error =  xlog_state_release_iclog(log, iclog);
893 
894 		spin_lock(&log->l_icloglock);
895 
896 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
897 			|| iclog->ic_state == XLOG_STATE_DIRTY
898 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
899 
900 				xlog_wait(&iclog->ic_force_wait,
901 							&log->l_icloglock);
902 		} else {
903 			spin_unlock(&log->l_icloglock);
904 		}
905 	}
906 
907 	return error;
908 }	/* xfs_log_unmount_write */
909 
910 /*
911  * Empty the log for unmount/freeze.
912  *
913  * To do this, we first need to shut down the background log work so it is not
914  * trying to cover the log as we clean up. We then need to unpin all objects in
915  * the log so we can then flush them out. Once they have completed their IO and
916  * run the callbacks removing themselves from the AIL, we can write the unmount
917  * record.
918  */
919 void
920 xfs_log_quiesce(
921 	struct xfs_mount	*mp)
922 {
923 	cancel_delayed_work_sync(&mp->m_log->l_work);
924 	xfs_log_force(mp, XFS_LOG_SYNC);
925 
926 	/*
927 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
928 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
929 	 * xfs_buf_iowait() cannot be used because it was pushed with the
930 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
931 	 * the IO to complete.
932 	 */
933 	xfs_ail_push_all_sync(mp->m_ail);
934 	xfs_wait_buftarg(mp->m_ddev_targp);
935 	xfs_buf_lock(mp->m_sb_bp);
936 	xfs_buf_unlock(mp->m_sb_bp);
937 
938 	xfs_log_unmount_write(mp);
939 }
940 
941 /*
942  * Shut down and release the AIL and Log.
943  *
944  * During unmount, we need to ensure we flush all the dirty metadata objects
945  * from the AIL so that the log is empty before we write the unmount record to
946  * the log. Once this is done, we can tear down the AIL and the log.
947  */
948 void
949 xfs_log_unmount(
950 	struct xfs_mount	*mp)
951 {
952 	xfs_log_quiesce(mp);
953 
954 	xfs_trans_ail_destroy(mp);
955 
956 	xfs_sysfs_del(&mp->m_log->l_kobj);
957 
958 	xlog_dealloc_log(mp->m_log);
959 }
960 
961 void
962 xfs_log_item_init(
963 	struct xfs_mount	*mp,
964 	struct xfs_log_item	*item,
965 	int			type,
966 	const struct xfs_item_ops *ops)
967 {
968 	item->li_mountp = mp;
969 	item->li_ailp = mp->m_ail;
970 	item->li_type = type;
971 	item->li_ops = ops;
972 	item->li_lv = NULL;
973 
974 	INIT_LIST_HEAD(&item->li_ail);
975 	INIT_LIST_HEAD(&item->li_cil);
976 }
977 
978 /*
979  * Wake up processes waiting for log space after we have moved the log tail.
980  */
981 void
982 xfs_log_space_wake(
983 	struct xfs_mount	*mp)
984 {
985 	struct xlog		*log = mp->m_log;
986 	int			free_bytes;
987 
988 	if (XLOG_FORCED_SHUTDOWN(log))
989 		return;
990 
991 	if (!list_empty_careful(&log->l_write_head.waiters)) {
992 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993 
994 		spin_lock(&log->l_write_head.lock);
995 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
996 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
997 		spin_unlock(&log->l_write_head.lock);
998 	}
999 
1000 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1001 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1002 
1003 		spin_lock(&log->l_reserve_head.lock);
1004 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1005 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1006 		spin_unlock(&log->l_reserve_head.lock);
1007 	}
1008 }
1009 
1010 /*
1011  * Determine if we have a transaction that has gone to disk that needs to be
1012  * covered. To begin the transition to the idle state firstly the log needs to
1013  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1014  * we start attempting to cover the log.
1015  *
1016  * Only if we are then in a state where covering is needed, the caller is
1017  * informed that dummy transactions are required to move the log into the idle
1018  * state.
1019  *
1020  * If there are any items in the AIl or CIL, then we do not want to attempt to
1021  * cover the log as we may be in a situation where there isn't log space
1022  * available to run a dummy transaction and this can lead to deadlocks when the
1023  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1024  * there's no point in running a dummy transaction at this point because we
1025  * can't start trying to idle the log until both the CIL and AIL are empty.
1026  */
1027 int
1028 xfs_log_need_covered(xfs_mount_t *mp)
1029 {
1030 	struct xlog	*log = mp->m_log;
1031 	int		needed = 0;
1032 
1033 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1034 		return 0;
1035 
1036 	if (!xlog_cil_empty(log))
1037 		return 0;
1038 
1039 	spin_lock(&log->l_icloglock);
1040 	switch (log->l_covered_state) {
1041 	case XLOG_STATE_COVER_DONE:
1042 	case XLOG_STATE_COVER_DONE2:
1043 	case XLOG_STATE_COVER_IDLE:
1044 		break;
1045 	case XLOG_STATE_COVER_NEED:
1046 	case XLOG_STATE_COVER_NEED2:
1047 		if (xfs_ail_min_lsn(log->l_ailp))
1048 			break;
1049 		if (!xlog_iclogs_empty(log))
1050 			break;
1051 
1052 		needed = 1;
1053 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1054 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1055 		else
1056 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1057 		break;
1058 	default:
1059 		needed = 1;
1060 		break;
1061 	}
1062 	spin_unlock(&log->l_icloglock);
1063 	return needed;
1064 }
1065 
1066 /*
1067  * We may be holding the log iclog lock upon entering this routine.
1068  */
1069 xfs_lsn_t
1070 xlog_assign_tail_lsn_locked(
1071 	struct xfs_mount	*mp)
1072 {
1073 	struct xlog		*log = mp->m_log;
1074 	struct xfs_log_item	*lip;
1075 	xfs_lsn_t		tail_lsn;
1076 
1077 	assert_spin_locked(&mp->m_ail->xa_lock);
1078 
1079 	/*
1080 	 * To make sure we always have a valid LSN for the log tail we keep
1081 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1082 	 * and use that when the AIL was empty.
1083 	 */
1084 	lip = xfs_ail_min(mp->m_ail);
1085 	if (lip)
1086 		tail_lsn = lip->li_lsn;
1087 	else
1088 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1089 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1090 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1091 	return tail_lsn;
1092 }
1093 
1094 xfs_lsn_t
1095 xlog_assign_tail_lsn(
1096 	struct xfs_mount	*mp)
1097 {
1098 	xfs_lsn_t		tail_lsn;
1099 
1100 	spin_lock(&mp->m_ail->xa_lock);
1101 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1102 	spin_unlock(&mp->m_ail->xa_lock);
1103 
1104 	return tail_lsn;
1105 }
1106 
1107 /*
1108  * Return the space in the log between the tail and the head.  The head
1109  * is passed in the cycle/bytes formal parms.  In the special case where
1110  * the reserve head has wrapped passed the tail, this calculation is no
1111  * longer valid.  In this case, just return 0 which means there is no space
1112  * in the log.  This works for all places where this function is called
1113  * with the reserve head.  Of course, if the write head were to ever
1114  * wrap the tail, we should blow up.  Rather than catch this case here,
1115  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1116  *
1117  * This code also handles the case where the reservation head is behind
1118  * the tail.  The details of this case are described below, but the end
1119  * result is that we return the size of the log as the amount of space left.
1120  */
1121 STATIC int
1122 xlog_space_left(
1123 	struct xlog	*log,
1124 	atomic64_t	*head)
1125 {
1126 	int		free_bytes;
1127 	int		tail_bytes;
1128 	int		tail_cycle;
1129 	int		head_cycle;
1130 	int		head_bytes;
1131 
1132 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1133 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1134 	tail_bytes = BBTOB(tail_bytes);
1135 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1136 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1137 	else if (tail_cycle + 1 < head_cycle)
1138 		return 0;
1139 	else if (tail_cycle < head_cycle) {
1140 		ASSERT(tail_cycle == (head_cycle - 1));
1141 		free_bytes = tail_bytes - head_bytes;
1142 	} else {
1143 		/*
1144 		 * The reservation head is behind the tail.
1145 		 * In this case we just want to return the size of the
1146 		 * log as the amount of space left.
1147 		 */
1148 		xfs_alert(log->l_mp,
1149 			"xlog_space_left: head behind tail\n"
1150 			"  tail_cycle = %d, tail_bytes = %d\n"
1151 			"  GH   cycle = %d, GH   bytes = %d",
1152 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1153 		ASSERT(0);
1154 		free_bytes = log->l_logsize;
1155 	}
1156 	return free_bytes;
1157 }
1158 
1159 
1160 /*
1161  * Log function which is called when an io completes.
1162  *
1163  * The log manager needs its own routine, in order to control what
1164  * happens with the buffer after the write completes.
1165  */
1166 void
1167 xlog_iodone(xfs_buf_t *bp)
1168 {
1169 	struct xlog_in_core	*iclog = bp->b_fspriv;
1170 	struct xlog		*l = iclog->ic_log;
1171 	int			aborted = 0;
1172 
1173 	/*
1174 	 * Race to shutdown the filesystem if we see an error.
1175 	 */
1176 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1177 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1178 		xfs_buf_ioerror_alert(bp, __func__);
1179 		xfs_buf_stale(bp);
1180 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1181 		/*
1182 		 * This flag will be propagated to the trans-committed
1183 		 * callback routines to let them know that the log-commit
1184 		 * didn't succeed.
1185 		 */
1186 		aborted = XFS_LI_ABORTED;
1187 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1188 		aborted = XFS_LI_ABORTED;
1189 	}
1190 
1191 	/* log I/O is always issued ASYNC */
1192 	ASSERT(XFS_BUF_ISASYNC(bp));
1193 	xlog_state_done_syncing(iclog, aborted);
1194 
1195 	/*
1196 	 * drop the buffer lock now that we are done. Nothing references
1197 	 * the buffer after this, so an unmount waiting on this lock can now
1198 	 * tear it down safely. As such, it is unsafe to reference the buffer
1199 	 * (bp) after the unlock as we could race with it being freed.
1200 	 */
1201 	xfs_buf_unlock(bp);
1202 }
1203 
1204 /*
1205  * Return size of each in-core log record buffer.
1206  *
1207  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1208  *
1209  * If the filesystem blocksize is too large, we may need to choose a
1210  * larger size since the directory code currently logs entire blocks.
1211  */
1212 
1213 STATIC void
1214 xlog_get_iclog_buffer_size(
1215 	struct xfs_mount	*mp,
1216 	struct xlog		*log)
1217 {
1218 	int size;
1219 	int xhdrs;
1220 
1221 	if (mp->m_logbufs <= 0)
1222 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1223 	else
1224 		log->l_iclog_bufs = mp->m_logbufs;
1225 
1226 	/*
1227 	 * Buffer size passed in from mount system call.
1228 	 */
1229 	if (mp->m_logbsize > 0) {
1230 		size = log->l_iclog_size = mp->m_logbsize;
1231 		log->l_iclog_size_log = 0;
1232 		while (size != 1) {
1233 			log->l_iclog_size_log++;
1234 			size >>= 1;
1235 		}
1236 
1237 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1238 			/* # headers = size / 32k
1239 			 * one header holds cycles from 32k of data
1240 			 */
1241 
1242 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1243 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1244 				xhdrs++;
1245 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1246 			log->l_iclog_heads = xhdrs;
1247 		} else {
1248 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1249 			log->l_iclog_hsize = BBSIZE;
1250 			log->l_iclog_heads = 1;
1251 		}
1252 		goto done;
1253 	}
1254 
1255 	/* All machines use 32kB buffers by default. */
1256 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1257 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1258 
1259 	/* the default log size is 16k or 32k which is one header sector */
1260 	log->l_iclog_hsize = BBSIZE;
1261 	log->l_iclog_heads = 1;
1262 
1263 done:
1264 	/* are we being asked to make the sizes selected above visible? */
1265 	if (mp->m_logbufs == 0)
1266 		mp->m_logbufs = log->l_iclog_bufs;
1267 	if (mp->m_logbsize == 0)
1268 		mp->m_logbsize = log->l_iclog_size;
1269 }	/* xlog_get_iclog_buffer_size */
1270 
1271 
1272 void
1273 xfs_log_work_queue(
1274 	struct xfs_mount        *mp)
1275 {
1276 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1277 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1278 }
1279 
1280 /*
1281  * Every sync period we need to unpin all items in the AIL and push them to
1282  * disk. If there is nothing dirty, then we might need to cover the log to
1283  * indicate that the filesystem is idle.
1284  */
1285 void
1286 xfs_log_worker(
1287 	struct work_struct	*work)
1288 {
1289 	struct xlog		*log = container_of(to_delayed_work(work),
1290 						struct xlog, l_work);
1291 	struct xfs_mount	*mp = log->l_mp;
1292 
1293 	/* dgc: errors ignored - not fatal and nowhere to report them */
1294 	if (xfs_log_need_covered(mp)) {
1295 		/*
1296 		 * Dump a transaction into the log that contains no real change.
1297 		 * This is needed to stamp the current tail LSN into the log
1298 		 * during the covering operation.
1299 		 *
1300 		 * We cannot use an inode here for this - that will push dirty
1301 		 * state back up into the VFS and then periodic inode flushing
1302 		 * will prevent log covering from making progress. Hence we
1303 		 * synchronously log the superblock instead to ensure the
1304 		 * superblock is immediately unpinned and can be written back.
1305 		 */
1306 		xfs_sync_sb(mp, true);
1307 	} else
1308 		xfs_log_force(mp, 0);
1309 
1310 	/* start pushing all the metadata that is currently dirty */
1311 	xfs_ail_push_all(mp->m_ail);
1312 
1313 	/* queue us up again */
1314 	xfs_log_work_queue(mp);
1315 }
1316 
1317 /*
1318  * This routine initializes some of the log structure for a given mount point.
1319  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1320  * some other stuff may be filled in too.
1321  */
1322 STATIC struct xlog *
1323 xlog_alloc_log(
1324 	struct xfs_mount	*mp,
1325 	struct xfs_buftarg	*log_target,
1326 	xfs_daddr_t		blk_offset,
1327 	int			num_bblks)
1328 {
1329 	struct xlog		*log;
1330 	xlog_rec_header_t	*head;
1331 	xlog_in_core_t		**iclogp;
1332 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1333 	xfs_buf_t		*bp;
1334 	int			i;
1335 	int			error = -ENOMEM;
1336 	uint			log2_size = 0;
1337 
1338 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1339 	if (!log) {
1340 		xfs_warn(mp, "Log allocation failed: No memory!");
1341 		goto out;
1342 	}
1343 
1344 	log->l_mp	   = mp;
1345 	log->l_targ	   = log_target;
1346 	log->l_logsize     = BBTOB(num_bblks);
1347 	log->l_logBBstart  = blk_offset;
1348 	log->l_logBBsize   = num_bblks;
1349 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1350 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1351 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1352 
1353 	log->l_prev_block  = -1;
1354 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1356 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1357 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1358 
1359 	xlog_grant_head_init(&log->l_reserve_head);
1360 	xlog_grant_head_init(&log->l_write_head);
1361 
1362 	error = -EFSCORRUPTED;
1363 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1364 	        log2_size = mp->m_sb.sb_logsectlog;
1365 		if (log2_size < BBSHIFT) {
1366 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1367 				log2_size, BBSHIFT);
1368 			goto out_free_log;
1369 		}
1370 
1371 	        log2_size -= BBSHIFT;
1372 		if (log2_size > mp->m_sectbb_log) {
1373 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1374 				log2_size, mp->m_sectbb_log);
1375 			goto out_free_log;
1376 		}
1377 
1378 		/* for larger sector sizes, must have v2 or external log */
1379 		if (log2_size && log->l_logBBstart > 0 &&
1380 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1381 			xfs_warn(mp,
1382 		"log sector size (0x%x) invalid for configuration.",
1383 				log2_size);
1384 			goto out_free_log;
1385 		}
1386 	}
1387 	log->l_sectBBsize = 1 << log2_size;
1388 
1389 	xlog_get_iclog_buffer_size(mp, log);
1390 
1391 	/*
1392 	 * Use a NULL block for the extra log buffer used during splits so that
1393 	 * it will trigger errors if we ever try to do IO on it without first
1394 	 * having set it up properly.
1395 	 */
1396 	error = -ENOMEM;
1397 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1398 			   BTOBB(log->l_iclog_size), 0);
1399 	if (!bp)
1400 		goto out_free_log;
1401 
1402 	/*
1403 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1404 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1405 	 * when appropriately.
1406 	 */
1407 	ASSERT(xfs_buf_islocked(bp));
1408 	xfs_buf_unlock(bp);
1409 
1410 	/* use high priority wq for log I/O completion */
1411 	bp->b_ioend_wq = mp->m_log_workqueue;
1412 	bp->b_iodone = xlog_iodone;
1413 	log->l_xbuf = bp;
1414 
1415 	spin_lock_init(&log->l_icloglock);
1416 	init_waitqueue_head(&log->l_flush_wait);
1417 
1418 	iclogp = &log->l_iclog;
1419 	/*
1420 	 * The amount of memory to allocate for the iclog structure is
1421 	 * rather funky due to the way the structure is defined.  It is
1422 	 * done this way so that we can use different sizes for machines
1423 	 * with different amounts of memory.  See the definition of
1424 	 * xlog_in_core_t in xfs_log_priv.h for details.
1425 	 */
1426 	ASSERT(log->l_iclog_size >= 4096);
1427 	for (i=0; i < log->l_iclog_bufs; i++) {
1428 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1429 		if (!*iclogp)
1430 			goto out_free_iclog;
1431 
1432 		iclog = *iclogp;
1433 		iclog->ic_prev = prev_iclog;
1434 		prev_iclog = iclog;
1435 
1436 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1437 						BTOBB(log->l_iclog_size), 0);
1438 		if (!bp)
1439 			goto out_free_iclog;
1440 
1441 		ASSERT(xfs_buf_islocked(bp));
1442 		xfs_buf_unlock(bp);
1443 
1444 		/* use high priority wq for log I/O completion */
1445 		bp->b_ioend_wq = mp->m_log_workqueue;
1446 		bp->b_iodone = xlog_iodone;
1447 		iclog->ic_bp = bp;
1448 		iclog->ic_data = bp->b_addr;
1449 #ifdef DEBUG
1450 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1451 #endif
1452 		head = &iclog->ic_header;
1453 		memset(head, 0, sizeof(xlog_rec_header_t));
1454 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455 		head->h_version = cpu_to_be32(
1456 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457 		head->h_size = cpu_to_be32(log->l_iclog_size);
1458 		/* new fields */
1459 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1460 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461 
1462 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1463 		iclog->ic_state = XLOG_STATE_ACTIVE;
1464 		iclog->ic_log = log;
1465 		atomic_set(&iclog->ic_refcnt, 0);
1466 		spin_lock_init(&iclog->ic_callback_lock);
1467 		iclog->ic_callback_tail = &(iclog->ic_callback);
1468 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469 
1470 		init_waitqueue_head(&iclog->ic_force_wait);
1471 		init_waitqueue_head(&iclog->ic_write_wait);
1472 
1473 		iclogp = &iclog->ic_next;
1474 	}
1475 	*iclogp = log->l_iclog;			/* complete ring */
1476 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1477 
1478 	error = xlog_cil_init(log);
1479 	if (error)
1480 		goto out_free_iclog;
1481 	return log;
1482 
1483 out_free_iclog:
1484 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1485 		prev_iclog = iclog->ic_next;
1486 		if (iclog->ic_bp)
1487 			xfs_buf_free(iclog->ic_bp);
1488 		kmem_free(iclog);
1489 	}
1490 	spinlock_destroy(&log->l_icloglock);
1491 	xfs_buf_free(log->l_xbuf);
1492 out_free_log:
1493 	kmem_free(log);
1494 out:
1495 	return ERR_PTR(error);
1496 }	/* xlog_alloc_log */
1497 
1498 
1499 /*
1500  * Write out the commit record of a transaction associated with the given
1501  * ticket.  Return the lsn of the commit record.
1502  */
1503 STATIC int
1504 xlog_commit_record(
1505 	struct xlog		*log,
1506 	struct xlog_ticket	*ticket,
1507 	struct xlog_in_core	**iclog,
1508 	xfs_lsn_t		*commitlsnp)
1509 {
1510 	struct xfs_mount *mp = log->l_mp;
1511 	int	error;
1512 	struct xfs_log_iovec reg = {
1513 		.i_addr = NULL,
1514 		.i_len = 0,
1515 		.i_type = XLOG_REG_TYPE_COMMIT,
1516 	};
1517 	struct xfs_log_vec vec = {
1518 		.lv_niovecs = 1,
1519 		.lv_iovecp = &reg,
1520 	};
1521 
1522 	ASSERT_ALWAYS(iclog);
1523 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1524 					XLOG_COMMIT_TRANS);
1525 	if (error)
1526 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1527 	return error;
1528 }
1529 
1530 /*
1531  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1532  * log space.  This code pushes on the lsn which would supposedly free up
1533  * the 25% which we want to leave free.  We may need to adopt a policy which
1534  * pushes on an lsn which is further along in the log once we reach the high
1535  * water mark.  In this manner, we would be creating a low water mark.
1536  */
1537 STATIC void
1538 xlog_grant_push_ail(
1539 	struct xlog	*log,
1540 	int		need_bytes)
1541 {
1542 	xfs_lsn_t	threshold_lsn = 0;
1543 	xfs_lsn_t	last_sync_lsn;
1544 	int		free_blocks;
1545 	int		free_bytes;
1546 	int		threshold_block;
1547 	int		threshold_cycle;
1548 	int		free_threshold;
1549 
1550 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1551 
1552 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1553 	free_blocks = BTOBBT(free_bytes);
1554 
1555 	/*
1556 	 * Set the threshold for the minimum number of free blocks in the
1557 	 * log to the maximum of what the caller needs, one quarter of the
1558 	 * log, and 256 blocks.
1559 	 */
1560 	free_threshold = BTOBB(need_bytes);
1561 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1562 	free_threshold = MAX(free_threshold, 256);
1563 	if (free_blocks >= free_threshold)
1564 		return;
1565 
1566 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1567 						&threshold_block);
1568 	threshold_block += free_threshold;
1569 	if (threshold_block >= log->l_logBBsize) {
1570 		threshold_block -= log->l_logBBsize;
1571 		threshold_cycle += 1;
1572 	}
1573 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1574 					threshold_block);
1575 	/*
1576 	 * Don't pass in an lsn greater than the lsn of the last
1577 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1578 	 * so that it doesn't change between the compare and the set.
1579 	 */
1580 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1581 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1582 		threshold_lsn = last_sync_lsn;
1583 
1584 	/*
1585 	 * Get the transaction layer to kick the dirty buffers out to
1586 	 * disk asynchronously. No point in trying to do this if
1587 	 * the filesystem is shutting down.
1588 	 */
1589 	if (!XLOG_FORCED_SHUTDOWN(log))
1590 		xfs_ail_push(log->l_ailp, threshold_lsn);
1591 }
1592 
1593 /*
1594  * Stamp cycle number in every block
1595  */
1596 STATIC void
1597 xlog_pack_data(
1598 	struct xlog		*log,
1599 	struct xlog_in_core	*iclog,
1600 	int			roundoff)
1601 {
1602 	int			i, j, k;
1603 	int			size = iclog->ic_offset + roundoff;
1604 	__be32			cycle_lsn;
1605 	xfs_caddr_t		dp;
1606 
1607 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1608 
1609 	dp = iclog->ic_datap;
1610 	for (i = 0; i < BTOBB(size); i++) {
1611 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1612 			break;
1613 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1614 		*(__be32 *)dp = cycle_lsn;
1615 		dp += BBSIZE;
1616 	}
1617 
1618 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1619 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1620 
1621 		for ( ; i < BTOBB(size); i++) {
1622 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1623 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1624 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1625 			*(__be32 *)dp = cycle_lsn;
1626 			dp += BBSIZE;
1627 		}
1628 
1629 		for (i = 1; i < log->l_iclog_heads; i++)
1630 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1631 	}
1632 }
1633 
1634 /*
1635  * Calculate the checksum for a log buffer.
1636  *
1637  * This is a little more complicated than it should be because the various
1638  * headers and the actual data are non-contiguous.
1639  */
1640 __le32
1641 xlog_cksum(
1642 	struct xlog		*log,
1643 	struct xlog_rec_header	*rhead,
1644 	char			*dp,
1645 	int			size)
1646 {
1647 	__uint32_t		crc;
1648 
1649 	/* first generate the crc for the record header ... */
1650 	crc = xfs_start_cksum((char *)rhead,
1651 			      sizeof(struct xlog_rec_header),
1652 			      offsetof(struct xlog_rec_header, h_crc));
1653 
1654 	/* ... then for additional cycle data for v2 logs ... */
1655 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1656 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1657 		int		i;
1658 
1659 		for (i = 1; i < log->l_iclog_heads; i++) {
1660 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1661 				     sizeof(struct xlog_rec_ext_header));
1662 		}
1663 	}
1664 
1665 	/* ... and finally for the payload */
1666 	crc = crc32c(crc, dp, size);
1667 
1668 	return xfs_end_cksum(crc);
1669 }
1670 
1671 /*
1672  * The bdstrat callback function for log bufs. This gives us a central
1673  * place to trap bufs in case we get hit by a log I/O error and need to
1674  * shutdown. Actually, in practice, even when we didn't get a log error,
1675  * we transition the iclogs to IOERROR state *after* flushing all existing
1676  * iclogs to disk. This is because we don't want anymore new transactions to be
1677  * started or completed afterwards.
1678  *
1679  * We lock the iclogbufs here so that we can serialise against IO completion
1680  * during unmount. We might be processing a shutdown triggered during unmount,
1681  * and that can occur asynchronously to the unmount thread, and hence we need to
1682  * ensure that completes before tearing down the iclogbufs. Hence we need to
1683  * hold the buffer lock across the log IO to acheive that.
1684  */
1685 STATIC int
1686 xlog_bdstrat(
1687 	struct xfs_buf		*bp)
1688 {
1689 	struct xlog_in_core	*iclog = bp->b_fspriv;
1690 
1691 	xfs_buf_lock(bp);
1692 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1693 		xfs_buf_ioerror(bp, -EIO);
1694 		xfs_buf_stale(bp);
1695 		xfs_buf_ioend(bp);
1696 		/*
1697 		 * It would seem logical to return EIO here, but we rely on
1698 		 * the log state machine to propagate I/O errors instead of
1699 		 * doing it here. Similarly, IO completion will unlock the
1700 		 * buffer, so we don't do it here.
1701 		 */
1702 		return 0;
1703 	}
1704 
1705 	xfs_buf_submit(bp);
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1711  * fashion.  Previously, we should have moved the current iclog
1712  * ptr in the log to point to the next available iclog.  This allows further
1713  * write to continue while this code syncs out an iclog ready to go.
1714  * Before an in-core log can be written out, the data section must be scanned
1715  * to save away the 1st word of each BBSIZE block into the header.  We replace
1716  * it with the current cycle count.  Each BBSIZE block is tagged with the
1717  * cycle count because there in an implicit assumption that drives will
1718  * guarantee that entire 512 byte blocks get written at once.  In other words,
1719  * we can't have part of a 512 byte block written and part not written.  By
1720  * tagging each block, we will know which blocks are valid when recovering
1721  * after an unclean shutdown.
1722  *
1723  * This routine is single threaded on the iclog.  No other thread can be in
1724  * this routine with the same iclog.  Changing contents of iclog can there-
1725  * fore be done without grabbing the state machine lock.  Updating the global
1726  * log will require grabbing the lock though.
1727  *
1728  * The entire log manager uses a logical block numbering scheme.  Only
1729  * log_sync (and then only bwrite()) know about the fact that the log may
1730  * not start with block zero on a given device.  The log block start offset
1731  * is added immediately before calling bwrite().
1732  */
1733 
1734 STATIC int
1735 xlog_sync(
1736 	struct xlog		*log,
1737 	struct xlog_in_core	*iclog)
1738 {
1739 	xfs_buf_t	*bp;
1740 	int		i;
1741 	uint		count;		/* byte count of bwrite */
1742 	uint		count_init;	/* initial count before roundup */
1743 	int		roundoff;       /* roundoff to BB or stripe */
1744 	int		split = 0;	/* split write into two regions */
1745 	int		error;
1746 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1747 	int		size;
1748 
1749 	XFS_STATS_INC(xs_log_writes);
1750 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1751 
1752 	/* Add for LR header */
1753 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1754 
1755 	/* Round out the log write size */
1756 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1757 		/* we have a v2 stripe unit to use */
1758 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1759 	} else {
1760 		count = BBTOB(BTOBB(count_init));
1761 	}
1762 	roundoff = count - count_init;
1763 	ASSERT(roundoff >= 0);
1764 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1765                 roundoff < log->l_mp->m_sb.sb_logsunit)
1766 		||
1767 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1768 		 roundoff < BBTOB(1)));
1769 
1770 	/* move grant heads by roundoff in sync */
1771 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1772 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1773 
1774 	/* put cycle number in every block */
1775 	xlog_pack_data(log, iclog, roundoff);
1776 
1777 	/* real byte length */
1778 	size = iclog->ic_offset;
1779 	if (v2)
1780 		size += roundoff;
1781 	iclog->ic_header.h_len = cpu_to_be32(size);
1782 
1783 	bp = iclog->ic_bp;
1784 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1785 
1786 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1787 
1788 	/* Do we need to split this write into 2 parts? */
1789 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1790 		char		*dptr;
1791 
1792 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1793 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1794 		iclog->ic_bwritecnt = 2;
1795 
1796 		/*
1797 		 * Bump the cycle numbers at the start of each block in the
1798 		 * part of the iclog that ends up in the buffer that gets
1799 		 * written to the start of the log.
1800 		 *
1801 		 * Watch out for the header magic number case, though.
1802 		 */
1803 		dptr = (char *)&iclog->ic_header + count;
1804 		for (i = 0; i < split; i += BBSIZE) {
1805 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1806 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1807 				cycle++;
1808 			*(__be32 *)dptr = cpu_to_be32(cycle);
1809 
1810 			dptr += BBSIZE;
1811 		}
1812 	} else {
1813 		iclog->ic_bwritecnt = 1;
1814 	}
1815 
1816 	/* calculcate the checksum */
1817 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1818 					    iclog->ic_datap, size);
1819 
1820 	bp->b_io_length = BTOBB(count);
1821 	bp->b_fspriv = iclog;
1822 	XFS_BUF_ZEROFLAGS(bp);
1823 	XFS_BUF_ASYNC(bp);
1824 	bp->b_flags |= XBF_SYNCIO;
1825 
1826 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1827 		bp->b_flags |= XBF_FUA;
1828 
1829 		/*
1830 		 * Flush the data device before flushing the log to make
1831 		 * sure all meta data written back from the AIL actually made
1832 		 * it to disk before stamping the new log tail LSN into the
1833 		 * log buffer.  For an external log we need to issue the
1834 		 * flush explicitly, and unfortunately synchronously here;
1835 		 * for an internal log we can simply use the block layer
1836 		 * state machine for preflushes.
1837 		 */
1838 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1839 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1840 		else
1841 			bp->b_flags |= XBF_FLUSH;
1842 	}
1843 
1844 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1845 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1846 
1847 	xlog_verify_iclog(log, iclog, count, true);
1848 
1849 	/* account for log which doesn't start at block #0 */
1850 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1851 	/*
1852 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1853 	 * is shutting down.
1854 	 */
1855 	XFS_BUF_WRITE(bp);
1856 
1857 	error = xlog_bdstrat(bp);
1858 	if (error) {
1859 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1860 		return error;
1861 	}
1862 	if (split) {
1863 		bp = iclog->ic_log->l_xbuf;
1864 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1865 		xfs_buf_associate_memory(bp,
1866 				(char *)&iclog->ic_header + count, split);
1867 		bp->b_fspriv = iclog;
1868 		XFS_BUF_ZEROFLAGS(bp);
1869 		XFS_BUF_ASYNC(bp);
1870 		bp->b_flags |= XBF_SYNCIO;
1871 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1872 			bp->b_flags |= XBF_FUA;
1873 
1874 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1875 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1876 
1877 		/* account for internal log which doesn't start at block #0 */
1878 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1879 		XFS_BUF_WRITE(bp);
1880 		error = xlog_bdstrat(bp);
1881 		if (error) {
1882 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1883 			return error;
1884 		}
1885 	}
1886 	return 0;
1887 }	/* xlog_sync */
1888 
1889 /*
1890  * Deallocate a log structure
1891  */
1892 STATIC void
1893 xlog_dealloc_log(
1894 	struct xlog	*log)
1895 {
1896 	xlog_in_core_t	*iclog, *next_iclog;
1897 	int		i;
1898 
1899 	xlog_cil_destroy(log);
1900 
1901 	/*
1902 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1903 	 * is done before we tear down these buffers.
1904 	 */
1905 	iclog = log->l_iclog;
1906 	for (i = 0; i < log->l_iclog_bufs; i++) {
1907 		xfs_buf_lock(iclog->ic_bp);
1908 		xfs_buf_unlock(iclog->ic_bp);
1909 		iclog = iclog->ic_next;
1910 	}
1911 
1912 	/*
1913 	 * Always need to ensure that the extra buffer does not point to memory
1914 	 * owned by another log buffer before we free it. Also, cycle the lock
1915 	 * first to ensure we've completed IO on it.
1916 	 */
1917 	xfs_buf_lock(log->l_xbuf);
1918 	xfs_buf_unlock(log->l_xbuf);
1919 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1920 	xfs_buf_free(log->l_xbuf);
1921 
1922 	iclog = log->l_iclog;
1923 	for (i = 0; i < log->l_iclog_bufs; i++) {
1924 		xfs_buf_free(iclog->ic_bp);
1925 		next_iclog = iclog->ic_next;
1926 		kmem_free(iclog);
1927 		iclog = next_iclog;
1928 	}
1929 	spinlock_destroy(&log->l_icloglock);
1930 
1931 	log->l_mp->m_log = NULL;
1932 	kmem_free(log);
1933 }	/* xlog_dealloc_log */
1934 
1935 /*
1936  * Update counters atomically now that memcpy is done.
1937  */
1938 /* ARGSUSED */
1939 static inline void
1940 xlog_state_finish_copy(
1941 	struct xlog		*log,
1942 	struct xlog_in_core	*iclog,
1943 	int			record_cnt,
1944 	int			copy_bytes)
1945 {
1946 	spin_lock(&log->l_icloglock);
1947 
1948 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1949 	iclog->ic_offset += copy_bytes;
1950 
1951 	spin_unlock(&log->l_icloglock);
1952 }	/* xlog_state_finish_copy */
1953 
1954 
1955 
1956 
1957 /*
1958  * print out info relating to regions written which consume
1959  * the reservation
1960  */
1961 void
1962 xlog_print_tic_res(
1963 	struct xfs_mount	*mp,
1964 	struct xlog_ticket	*ticket)
1965 {
1966 	uint i;
1967 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1968 
1969 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1970 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1971 	    "bformat",
1972 	    "bchunk",
1973 	    "efi_format",
1974 	    "efd_format",
1975 	    "iformat",
1976 	    "icore",
1977 	    "iext",
1978 	    "ibroot",
1979 	    "ilocal",
1980 	    "iattr_ext",
1981 	    "iattr_broot",
1982 	    "iattr_local",
1983 	    "qformat",
1984 	    "dquot",
1985 	    "quotaoff",
1986 	    "LR header",
1987 	    "unmount",
1988 	    "commit",
1989 	    "trans header"
1990 	};
1991 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1992 	    "SETATTR_NOT_SIZE",
1993 	    "SETATTR_SIZE",
1994 	    "INACTIVE",
1995 	    "CREATE",
1996 	    "CREATE_TRUNC",
1997 	    "TRUNCATE_FILE",
1998 	    "REMOVE",
1999 	    "LINK",
2000 	    "RENAME",
2001 	    "MKDIR",
2002 	    "RMDIR",
2003 	    "SYMLINK",
2004 	    "SET_DMATTRS",
2005 	    "GROWFS",
2006 	    "STRAT_WRITE",
2007 	    "DIOSTRAT",
2008 	    "WRITE_SYNC",
2009 	    "WRITEID",
2010 	    "ADDAFORK",
2011 	    "ATTRINVAL",
2012 	    "ATRUNCATE",
2013 	    "ATTR_SET",
2014 	    "ATTR_RM",
2015 	    "ATTR_FLAG",
2016 	    "CLEAR_AGI_BUCKET",
2017 	    "QM_SBCHANGE",
2018 	    "DUMMY1",
2019 	    "DUMMY2",
2020 	    "QM_QUOTAOFF",
2021 	    "QM_DQALLOC",
2022 	    "QM_SETQLIM",
2023 	    "QM_DQCLUSTER",
2024 	    "QM_QINOCREATE",
2025 	    "QM_QUOTAOFF_END",
2026 	    "SB_UNIT",
2027 	    "FSYNC_TS",
2028 	    "GROWFSRT_ALLOC",
2029 	    "GROWFSRT_ZERO",
2030 	    "GROWFSRT_FREE",
2031 	    "SWAPEXT"
2032 	};
2033 
2034 	xfs_warn(mp,
2035 		"xlog_write: reservation summary:\n"
2036 		"  trans type  = %s (%u)\n"
2037 		"  unit res    = %d bytes\n"
2038 		"  current res = %d bytes\n"
2039 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2040 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2041 		"  ophdr + reg = %u bytes\n"
2042 		"  num regions = %u",
2043 		((ticket->t_trans_type <= 0 ||
2044 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2045 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2046 		ticket->t_trans_type,
2047 		ticket->t_unit_res,
2048 		ticket->t_curr_res,
2049 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2050 		ticket->t_res_num_ophdrs, ophdr_spc,
2051 		ticket->t_res_arr_sum +
2052 		ticket->t_res_o_flow + ophdr_spc,
2053 		ticket->t_res_num);
2054 
2055 	for (i = 0; i < ticket->t_res_num; i++) {
2056 		uint r_type = ticket->t_res_arr[i].r_type;
2057 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2058 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2059 			    "bad-rtype" : res_type_str[r_type-1]),
2060 			    ticket->t_res_arr[i].r_len);
2061 	}
2062 
2063 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2064 		"xlog_write: reservation ran out. Need to up reservation");
2065 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2066 }
2067 
2068 /*
2069  * Calculate the potential space needed by the log vector.  Each region gets
2070  * its own xlog_op_header_t and may need to be double word aligned.
2071  */
2072 static int
2073 xlog_write_calc_vec_length(
2074 	struct xlog_ticket	*ticket,
2075 	struct xfs_log_vec	*log_vector)
2076 {
2077 	struct xfs_log_vec	*lv;
2078 	int			headers = 0;
2079 	int			len = 0;
2080 	int			i;
2081 
2082 	/* acct for start rec of xact */
2083 	if (ticket->t_flags & XLOG_TIC_INITED)
2084 		headers++;
2085 
2086 	for (lv = log_vector; lv; lv = lv->lv_next) {
2087 		/* we don't write ordered log vectors */
2088 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2089 			continue;
2090 
2091 		headers += lv->lv_niovecs;
2092 
2093 		for (i = 0; i < lv->lv_niovecs; i++) {
2094 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2095 
2096 			len += vecp->i_len;
2097 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2098 		}
2099 	}
2100 
2101 	ticket->t_res_num_ophdrs += headers;
2102 	len += headers * sizeof(struct xlog_op_header);
2103 
2104 	return len;
2105 }
2106 
2107 /*
2108  * If first write for transaction, insert start record  We can't be trying to
2109  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2110  */
2111 static int
2112 xlog_write_start_rec(
2113 	struct xlog_op_header	*ophdr,
2114 	struct xlog_ticket	*ticket)
2115 {
2116 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2117 		return 0;
2118 
2119 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2120 	ophdr->oh_clientid = ticket->t_clientid;
2121 	ophdr->oh_len = 0;
2122 	ophdr->oh_flags = XLOG_START_TRANS;
2123 	ophdr->oh_res2 = 0;
2124 
2125 	ticket->t_flags &= ~XLOG_TIC_INITED;
2126 
2127 	return sizeof(struct xlog_op_header);
2128 }
2129 
2130 static xlog_op_header_t *
2131 xlog_write_setup_ophdr(
2132 	struct xlog		*log,
2133 	struct xlog_op_header	*ophdr,
2134 	struct xlog_ticket	*ticket,
2135 	uint			flags)
2136 {
2137 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2138 	ophdr->oh_clientid = ticket->t_clientid;
2139 	ophdr->oh_res2 = 0;
2140 
2141 	/* are we copying a commit or unmount record? */
2142 	ophdr->oh_flags = flags;
2143 
2144 	/*
2145 	 * We've seen logs corrupted with bad transaction client ids.  This
2146 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2147 	 * and shut down the filesystem.
2148 	 */
2149 	switch (ophdr->oh_clientid)  {
2150 	case XFS_TRANSACTION:
2151 	case XFS_VOLUME:
2152 	case XFS_LOG:
2153 		break;
2154 	default:
2155 		xfs_warn(log->l_mp,
2156 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2157 			ophdr->oh_clientid, ticket);
2158 		return NULL;
2159 	}
2160 
2161 	return ophdr;
2162 }
2163 
2164 /*
2165  * Set up the parameters of the region copy into the log. This has
2166  * to handle region write split across multiple log buffers - this
2167  * state is kept external to this function so that this code can
2168  * be written in an obvious, self documenting manner.
2169  */
2170 static int
2171 xlog_write_setup_copy(
2172 	struct xlog_ticket	*ticket,
2173 	struct xlog_op_header	*ophdr,
2174 	int			space_available,
2175 	int			space_required,
2176 	int			*copy_off,
2177 	int			*copy_len,
2178 	int			*last_was_partial_copy,
2179 	int			*bytes_consumed)
2180 {
2181 	int			still_to_copy;
2182 
2183 	still_to_copy = space_required - *bytes_consumed;
2184 	*copy_off = *bytes_consumed;
2185 
2186 	if (still_to_copy <= space_available) {
2187 		/* write of region completes here */
2188 		*copy_len = still_to_copy;
2189 		ophdr->oh_len = cpu_to_be32(*copy_len);
2190 		if (*last_was_partial_copy)
2191 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2192 		*last_was_partial_copy = 0;
2193 		*bytes_consumed = 0;
2194 		return 0;
2195 	}
2196 
2197 	/* partial write of region, needs extra log op header reservation */
2198 	*copy_len = space_available;
2199 	ophdr->oh_len = cpu_to_be32(*copy_len);
2200 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2201 	if (*last_was_partial_copy)
2202 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2203 	*bytes_consumed += *copy_len;
2204 	(*last_was_partial_copy)++;
2205 
2206 	/* account for new log op header */
2207 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2208 	ticket->t_res_num_ophdrs++;
2209 
2210 	return sizeof(struct xlog_op_header);
2211 }
2212 
2213 static int
2214 xlog_write_copy_finish(
2215 	struct xlog		*log,
2216 	struct xlog_in_core	*iclog,
2217 	uint			flags,
2218 	int			*record_cnt,
2219 	int			*data_cnt,
2220 	int			*partial_copy,
2221 	int			*partial_copy_len,
2222 	int			log_offset,
2223 	struct xlog_in_core	**commit_iclog)
2224 {
2225 	if (*partial_copy) {
2226 		/*
2227 		 * This iclog has already been marked WANT_SYNC by
2228 		 * xlog_state_get_iclog_space.
2229 		 */
2230 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2231 		*record_cnt = 0;
2232 		*data_cnt = 0;
2233 		return xlog_state_release_iclog(log, iclog);
2234 	}
2235 
2236 	*partial_copy = 0;
2237 	*partial_copy_len = 0;
2238 
2239 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2240 		/* no more space in this iclog - push it. */
2241 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2242 		*record_cnt = 0;
2243 		*data_cnt = 0;
2244 
2245 		spin_lock(&log->l_icloglock);
2246 		xlog_state_want_sync(log, iclog);
2247 		spin_unlock(&log->l_icloglock);
2248 
2249 		if (!commit_iclog)
2250 			return xlog_state_release_iclog(log, iclog);
2251 		ASSERT(flags & XLOG_COMMIT_TRANS);
2252 		*commit_iclog = iclog;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Write some region out to in-core log
2260  *
2261  * This will be called when writing externally provided regions or when
2262  * writing out a commit record for a given transaction.
2263  *
2264  * General algorithm:
2265  *	1. Find total length of this write.  This may include adding to the
2266  *		lengths passed in.
2267  *	2. Check whether we violate the tickets reservation.
2268  *	3. While writing to this iclog
2269  *	    A. Reserve as much space in this iclog as can get
2270  *	    B. If this is first write, save away start lsn
2271  *	    C. While writing this region:
2272  *		1. If first write of transaction, write start record
2273  *		2. Write log operation header (header per region)
2274  *		3. Find out if we can fit entire region into this iclog
2275  *		4. Potentially, verify destination memcpy ptr
2276  *		5. Memcpy (partial) region
2277  *		6. If partial copy, release iclog; otherwise, continue
2278  *			copying more regions into current iclog
2279  *	4. Mark want sync bit (in simulation mode)
2280  *	5. Release iclog for potential flush to on-disk log.
2281  *
2282  * ERRORS:
2283  * 1.	Panic if reservation is overrun.  This should never happen since
2284  *	reservation amounts are generated internal to the filesystem.
2285  * NOTES:
2286  * 1. Tickets are single threaded data structures.
2287  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2288  *	syncing routine.  When a single log_write region needs to span
2289  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2290  *	on all log operation writes which don't contain the end of the
2291  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2292  *	operation which contains the end of the continued log_write region.
2293  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2294  *	we don't really know exactly how much space will be used.  As a result,
2295  *	we don't update ic_offset until the end when we know exactly how many
2296  *	bytes have been written out.
2297  */
2298 int
2299 xlog_write(
2300 	struct xlog		*log,
2301 	struct xfs_log_vec	*log_vector,
2302 	struct xlog_ticket	*ticket,
2303 	xfs_lsn_t		*start_lsn,
2304 	struct xlog_in_core	**commit_iclog,
2305 	uint			flags)
2306 {
2307 	struct xlog_in_core	*iclog = NULL;
2308 	struct xfs_log_iovec	*vecp;
2309 	struct xfs_log_vec	*lv;
2310 	int			len;
2311 	int			index;
2312 	int			partial_copy = 0;
2313 	int			partial_copy_len = 0;
2314 	int			contwr = 0;
2315 	int			record_cnt = 0;
2316 	int			data_cnt = 0;
2317 	int			error;
2318 
2319 	*start_lsn = 0;
2320 
2321 	len = xlog_write_calc_vec_length(ticket, log_vector);
2322 
2323 	/*
2324 	 * Region headers and bytes are already accounted for.
2325 	 * We only need to take into account start records and
2326 	 * split regions in this function.
2327 	 */
2328 	if (ticket->t_flags & XLOG_TIC_INITED)
2329 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330 
2331 	/*
2332 	 * Commit record headers need to be accounted for. These
2333 	 * come in as separate writes so are easy to detect.
2334 	 */
2335 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2336 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2337 
2338 	if (ticket->t_curr_res < 0)
2339 		xlog_print_tic_res(log->l_mp, ticket);
2340 
2341 	index = 0;
2342 	lv = log_vector;
2343 	vecp = lv->lv_iovecp;
2344 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2345 		void		*ptr;
2346 		int		log_offset;
2347 
2348 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2349 						   &contwr, &log_offset);
2350 		if (error)
2351 			return error;
2352 
2353 		ASSERT(log_offset <= iclog->ic_size - 1);
2354 		ptr = iclog->ic_datap + log_offset;
2355 
2356 		/* start_lsn is the first lsn written to. That's all we need. */
2357 		if (!*start_lsn)
2358 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2359 
2360 		/*
2361 		 * This loop writes out as many regions as can fit in the amount
2362 		 * of space which was allocated by xlog_state_get_iclog_space().
2363 		 */
2364 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365 			struct xfs_log_iovec	*reg;
2366 			struct xlog_op_header	*ophdr;
2367 			int			start_rec_copy;
2368 			int			copy_len;
2369 			int			copy_off;
2370 			bool			ordered = false;
2371 
2372 			/* ordered log vectors have no regions to write */
2373 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2374 				ASSERT(lv->lv_niovecs == 0);
2375 				ordered = true;
2376 				goto next_lv;
2377 			}
2378 
2379 			reg = &vecp[index];
2380 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2381 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2382 
2383 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2384 			if (start_rec_copy) {
2385 				record_cnt++;
2386 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2387 						   start_rec_copy);
2388 			}
2389 
2390 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2391 			if (!ophdr)
2392 				return -EIO;
2393 
2394 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2395 					   sizeof(struct xlog_op_header));
2396 
2397 			len += xlog_write_setup_copy(ticket, ophdr,
2398 						     iclog->ic_size-log_offset,
2399 						     reg->i_len,
2400 						     &copy_off, &copy_len,
2401 						     &partial_copy,
2402 						     &partial_copy_len);
2403 			xlog_verify_dest_ptr(log, ptr);
2404 
2405 			/* copy region */
2406 			ASSERT(copy_len >= 0);
2407 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2408 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2409 
2410 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2411 			record_cnt++;
2412 			data_cnt += contwr ? copy_len : 0;
2413 
2414 			error = xlog_write_copy_finish(log, iclog, flags,
2415 						       &record_cnt, &data_cnt,
2416 						       &partial_copy,
2417 						       &partial_copy_len,
2418 						       log_offset,
2419 						       commit_iclog);
2420 			if (error)
2421 				return error;
2422 
2423 			/*
2424 			 * if we had a partial copy, we need to get more iclog
2425 			 * space but we don't want to increment the region
2426 			 * index because there is still more is this region to
2427 			 * write.
2428 			 *
2429 			 * If we completed writing this region, and we flushed
2430 			 * the iclog (indicated by resetting of the record
2431 			 * count), then we also need to get more log space. If
2432 			 * this was the last record, though, we are done and
2433 			 * can just return.
2434 			 */
2435 			if (partial_copy)
2436 				break;
2437 
2438 			if (++index == lv->lv_niovecs) {
2439 next_lv:
2440 				lv = lv->lv_next;
2441 				index = 0;
2442 				if (lv)
2443 					vecp = lv->lv_iovecp;
2444 			}
2445 			if (record_cnt == 0 && ordered == false) {
2446 				if (!lv)
2447 					return 0;
2448 				break;
2449 			}
2450 		}
2451 	}
2452 
2453 	ASSERT(len == 0);
2454 
2455 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2456 	if (!commit_iclog)
2457 		return xlog_state_release_iclog(log, iclog);
2458 
2459 	ASSERT(flags & XLOG_COMMIT_TRANS);
2460 	*commit_iclog = iclog;
2461 	return 0;
2462 }
2463 
2464 
2465 /*****************************************************************************
2466  *
2467  *		State Machine functions
2468  *
2469  *****************************************************************************
2470  */
2471 
2472 /* Clean iclogs starting from the head.  This ordering must be
2473  * maintained, so an iclog doesn't become ACTIVE beyond one that
2474  * is SYNCING.  This is also required to maintain the notion that we use
2475  * a ordered wait queue to hold off would be writers to the log when every
2476  * iclog is trying to sync to disk.
2477  *
2478  * State Change: DIRTY -> ACTIVE
2479  */
2480 STATIC void
2481 xlog_state_clean_log(
2482 	struct xlog *log)
2483 {
2484 	xlog_in_core_t	*iclog;
2485 	int changed = 0;
2486 
2487 	iclog = log->l_iclog;
2488 	do {
2489 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2490 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2491 			iclog->ic_offset       = 0;
2492 			ASSERT(iclog->ic_callback == NULL);
2493 			/*
2494 			 * If the number of ops in this iclog indicate it just
2495 			 * contains the dummy transaction, we can
2496 			 * change state into IDLE (the second time around).
2497 			 * Otherwise we should change the state into
2498 			 * NEED a dummy.
2499 			 * We don't need to cover the dummy.
2500 			 */
2501 			if (!changed &&
2502 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2503 			   		XLOG_COVER_OPS)) {
2504 				changed = 1;
2505 			} else {
2506 				/*
2507 				 * We have two dirty iclogs so start over
2508 				 * This could also be num of ops indicates
2509 				 * this is not the dummy going out.
2510 				 */
2511 				changed = 2;
2512 			}
2513 			iclog->ic_header.h_num_logops = 0;
2514 			memset(iclog->ic_header.h_cycle_data, 0,
2515 			      sizeof(iclog->ic_header.h_cycle_data));
2516 			iclog->ic_header.h_lsn = 0;
2517 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2518 			/* do nothing */;
2519 		else
2520 			break;	/* stop cleaning */
2521 		iclog = iclog->ic_next;
2522 	} while (iclog != log->l_iclog);
2523 
2524 	/* log is locked when we are called */
2525 	/*
2526 	 * Change state for the dummy log recording.
2527 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2528 	 * we are done writing the dummy record.
2529 	 * If we are done with the second dummy recored (DONE2), then
2530 	 * we go to IDLE.
2531 	 */
2532 	if (changed) {
2533 		switch (log->l_covered_state) {
2534 		case XLOG_STATE_COVER_IDLE:
2535 		case XLOG_STATE_COVER_NEED:
2536 		case XLOG_STATE_COVER_NEED2:
2537 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2538 			break;
2539 
2540 		case XLOG_STATE_COVER_DONE:
2541 			if (changed == 1)
2542 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2543 			else
2544 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2545 			break;
2546 
2547 		case XLOG_STATE_COVER_DONE2:
2548 			if (changed == 1)
2549 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2550 			else
2551 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2552 			break;
2553 
2554 		default:
2555 			ASSERT(0);
2556 		}
2557 	}
2558 }	/* xlog_state_clean_log */
2559 
2560 STATIC xfs_lsn_t
2561 xlog_get_lowest_lsn(
2562 	struct xlog	*log)
2563 {
2564 	xlog_in_core_t  *lsn_log;
2565 	xfs_lsn_t	lowest_lsn, lsn;
2566 
2567 	lsn_log = log->l_iclog;
2568 	lowest_lsn = 0;
2569 	do {
2570 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2571 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2572 		if ((lsn && !lowest_lsn) ||
2573 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2574 			lowest_lsn = lsn;
2575 		}
2576 	    }
2577 	    lsn_log = lsn_log->ic_next;
2578 	} while (lsn_log != log->l_iclog);
2579 	return lowest_lsn;
2580 }
2581 
2582 
2583 STATIC void
2584 xlog_state_do_callback(
2585 	struct xlog		*log,
2586 	int			aborted,
2587 	struct xlog_in_core	*ciclog)
2588 {
2589 	xlog_in_core_t	   *iclog;
2590 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2591 						 * processed all iclogs once */
2592 	xfs_log_callback_t *cb, *cb_next;
2593 	int		   flushcnt = 0;
2594 	xfs_lsn_t	   lowest_lsn;
2595 	int		   ioerrors;	/* counter: iclogs with errors */
2596 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2597 	int		   funcdidcallbacks; /* flag: function did callbacks */
2598 	int		   repeats;	/* for issuing console warnings if
2599 					 * looping too many times */
2600 	int		   wake = 0;
2601 
2602 	spin_lock(&log->l_icloglock);
2603 	first_iclog = iclog = log->l_iclog;
2604 	ioerrors = 0;
2605 	funcdidcallbacks = 0;
2606 	repeats = 0;
2607 
2608 	do {
2609 		/*
2610 		 * Scan all iclogs starting with the one pointed to by the
2611 		 * log.  Reset this starting point each time the log is
2612 		 * unlocked (during callbacks).
2613 		 *
2614 		 * Keep looping through iclogs until one full pass is made
2615 		 * without running any callbacks.
2616 		 */
2617 		first_iclog = log->l_iclog;
2618 		iclog = log->l_iclog;
2619 		loopdidcallbacks = 0;
2620 		repeats++;
2621 
2622 		do {
2623 
2624 			/* skip all iclogs in the ACTIVE & DIRTY states */
2625 			if (iclog->ic_state &
2626 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2627 				iclog = iclog->ic_next;
2628 				continue;
2629 			}
2630 
2631 			/*
2632 			 * Between marking a filesystem SHUTDOWN and stopping
2633 			 * the log, we do flush all iclogs to disk (if there
2634 			 * wasn't a log I/O error). So, we do want things to
2635 			 * go smoothly in case of just a SHUTDOWN  w/o a
2636 			 * LOG_IO_ERROR.
2637 			 */
2638 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2639 				/*
2640 				 * Can only perform callbacks in order.  Since
2641 				 * this iclog is not in the DONE_SYNC/
2642 				 * DO_CALLBACK state, we skip the rest and
2643 				 * just try to clean up.  If we set our iclog
2644 				 * to DO_CALLBACK, we will not process it when
2645 				 * we retry since a previous iclog is in the
2646 				 * CALLBACK and the state cannot change since
2647 				 * we are holding the l_icloglock.
2648 				 */
2649 				if (!(iclog->ic_state &
2650 					(XLOG_STATE_DONE_SYNC |
2651 						 XLOG_STATE_DO_CALLBACK))) {
2652 					if (ciclog && (ciclog->ic_state ==
2653 							XLOG_STATE_DONE_SYNC)) {
2654 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2655 					}
2656 					break;
2657 				}
2658 				/*
2659 				 * We now have an iclog that is in either the
2660 				 * DO_CALLBACK or DONE_SYNC states. The other
2661 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2662 				 * caught by the above if and are going to
2663 				 * clean (i.e. we aren't doing their callbacks)
2664 				 * see the above if.
2665 				 */
2666 
2667 				/*
2668 				 * We will do one more check here to see if we
2669 				 * have chased our tail around.
2670 				 */
2671 
2672 				lowest_lsn = xlog_get_lowest_lsn(log);
2673 				if (lowest_lsn &&
2674 				    XFS_LSN_CMP(lowest_lsn,
2675 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2676 					iclog = iclog->ic_next;
2677 					continue; /* Leave this iclog for
2678 						   * another thread */
2679 				}
2680 
2681 				iclog->ic_state = XLOG_STATE_CALLBACK;
2682 
2683 
2684 				/*
2685 				 * Completion of a iclog IO does not imply that
2686 				 * a transaction has completed, as transactions
2687 				 * can be large enough to span many iclogs. We
2688 				 * cannot change the tail of the log half way
2689 				 * through a transaction as this may be the only
2690 				 * transaction in the log and moving th etail to
2691 				 * point to the middle of it will prevent
2692 				 * recovery from finding the start of the
2693 				 * transaction. Hence we should only update the
2694 				 * last_sync_lsn if this iclog contains
2695 				 * transaction completion callbacks on it.
2696 				 *
2697 				 * We have to do this before we drop the
2698 				 * icloglock to ensure we are the only one that
2699 				 * can update it.
2700 				 */
2701 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2702 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2703 				if (iclog->ic_callback)
2704 					atomic64_set(&log->l_last_sync_lsn,
2705 						be64_to_cpu(iclog->ic_header.h_lsn));
2706 
2707 			} else
2708 				ioerrors++;
2709 
2710 			spin_unlock(&log->l_icloglock);
2711 
2712 			/*
2713 			 * Keep processing entries in the callback list until
2714 			 * we come around and it is empty.  We need to
2715 			 * atomically see that the list is empty and change the
2716 			 * state to DIRTY so that we don't miss any more
2717 			 * callbacks being added.
2718 			 */
2719 			spin_lock(&iclog->ic_callback_lock);
2720 			cb = iclog->ic_callback;
2721 			while (cb) {
2722 				iclog->ic_callback_tail = &(iclog->ic_callback);
2723 				iclog->ic_callback = NULL;
2724 				spin_unlock(&iclog->ic_callback_lock);
2725 
2726 				/* perform callbacks in the order given */
2727 				for (; cb; cb = cb_next) {
2728 					cb_next = cb->cb_next;
2729 					cb->cb_func(cb->cb_arg, aborted);
2730 				}
2731 				spin_lock(&iclog->ic_callback_lock);
2732 				cb = iclog->ic_callback;
2733 			}
2734 
2735 			loopdidcallbacks++;
2736 			funcdidcallbacks++;
2737 
2738 			spin_lock(&log->l_icloglock);
2739 			ASSERT(iclog->ic_callback == NULL);
2740 			spin_unlock(&iclog->ic_callback_lock);
2741 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2742 				iclog->ic_state = XLOG_STATE_DIRTY;
2743 
2744 			/*
2745 			 * Transition from DIRTY to ACTIVE if applicable.
2746 			 * NOP if STATE_IOERROR.
2747 			 */
2748 			xlog_state_clean_log(log);
2749 
2750 			/* wake up threads waiting in xfs_log_force() */
2751 			wake_up_all(&iclog->ic_force_wait);
2752 
2753 			iclog = iclog->ic_next;
2754 		} while (first_iclog != iclog);
2755 
2756 		if (repeats > 5000) {
2757 			flushcnt += repeats;
2758 			repeats = 0;
2759 			xfs_warn(log->l_mp,
2760 				"%s: possible infinite loop (%d iterations)",
2761 				__func__, flushcnt);
2762 		}
2763 	} while (!ioerrors && loopdidcallbacks);
2764 
2765 	/*
2766 	 * make one last gasp attempt to see if iclogs are being left in
2767 	 * limbo..
2768 	 */
2769 #ifdef DEBUG
2770 	if (funcdidcallbacks) {
2771 		first_iclog = iclog = log->l_iclog;
2772 		do {
2773 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2774 			/*
2775 			 * Terminate the loop if iclogs are found in states
2776 			 * which will cause other threads to clean up iclogs.
2777 			 *
2778 			 * SYNCING - i/o completion will go through logs
2779 			 * DONE_SYNC - interrupt thread should be waiting for
2780 			 *              l_icloglock
2781 			 * IOERROR - give up hope all ye who enter here
2782 			 */
2783 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2784 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2785 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2786 			    iclog->ic_state == XLOG_STATE_IOERROR )
2787 				break;
2788 			iclog = iclog->ic_next;
2789 		} while (first_iclog != iclog);
2790 	}
2791 #endif
2792 
2793 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2794 		wake = 1;
2795 	spin_unlock(&log->l_icloglock);
2796 
2797 	if (wake)
2798 		wake_up_all(&log->l_flush_wait);
2799 }
2800 
2801 
2802 /*
2803  * Finish transitioning this iclog to the dirty state.
2804  *
2805  * Make sure that we completely execute this routine only when this is
2806  * the last call to the iclog.  There is a good chance that iclog flushes,
2807  * when we reach the end of the physical log, get turned into 2 separate
2808  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2809  * routine.  By using the reference count bwritecnt, we guarantee that only
2810  * the second completion goes through.
2811  *
2812  * Callbacks could take time, so they are done outside the scope of the
2813  * global state machine log lock.
2814  */
2815 STATIC void
2816 xlog_state_done_syncing(
2817 	xlog_in_core_t	*iclog,
2818 	int		aborted)
2819 {
2820 	struct xlog	   *log = iclog->ic_log;
2821 
2822 	spin_lock(&log->l_icloglock);
2823 
2824 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2825 	       iclog->ic_state == XLOG_STATE_IOERROR);
2826 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2827 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2828 
2829 
2830 	/*
2831 	 * If we got an error, either on the first buffer, or in the case of
2832 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2833 	 * and none should ever be attempted to be written to disk
2834 	 * again.
2835 	 */
2836 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2837 		if (--iclog->ic_bwritecnt == 1) {
2838 			spin_unlock(&log->l_icloglock);
2839 			return;
2840 		}
2841 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2842 	}
2843 
2844 	/*
2845 	 * Someone could be sleeping prior to writing out the next
2846 	 * iclog buffer, we wake them all, one will get to do the
2847 	 * I/O, the others get to wait for the result.
2848 	 */
2849 	wake_up_all(&iclog->ic_write_wait);
2850 	spin_unlock(&log->l_icloglock);
2851 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2852 }	/* xlog_state_done_syncing */
2853 
2854 
2855 /*
2856  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2857  * sleep.  We wait on the flush queue on the head iclog as that should be
2858  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2859  * we will wait here and all new writes will sleep until a sync completes.
2860  *
2861  * The in-core logs are used in a circular fashion. They are not used
2862  * out-of-order even when an iclog past the head is free.
2863  *
2864  * return:
2865  *	* log_offset where xlog_write() can start writing into the in-core
2866  *		log's data space.
2867  *	* in-core log pointer to which xlog_write() should write.
2868  *	* boolean indicating this is a continued write to an in-core log.
2869  *		If this is the last write, then the in-core log's offset field
2870  *		needs to be incremented, depending on the amount of data which
2871  *		is copied.
2872  */
2873 STATIC int
2874 xlog_state_get_iclog_space(
2875 	struct xlog		*log,
2876 	int			len,
2877 	struct xlog_in_core	**iclogp,
2878 	struct xlog_ticket	*ticket,
2879 	int			*continued_write,
2880 	int			*logoffsetp)
2881 {
2882 	int		  log_offset;
2883 	xlog_rec_header_t *head;
2884 	xlog_in_core_t	  *iclog;
2885 	int		  error;
2886 
2887 restart:
2888 	spin_lock(&log->l_icloglock);
2889 	if (XLOG_FORCED_SHUTDOWN(log)) {
2890 		spin_unlock(&log->l_icloglock);
2891 		return -EIO;
2892 	}
2893 
2894 	iclog = log->l_iclog;
2895 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2896 		XFS_STATS_INC(xs_log_noiclogs);
2897 
2898 		/* Wait for log writes to have flushed */
2899 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2900 		goto restart;
2901 	}
2902 
2903 	head = &iclog->ic_header;
2904 
2905 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2906 	log_offset = iclog->ic_offset;
2907 
2908 	/* On the 1st write to an iclog, figure out lsn.  This works
2909 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2910 	 * committing to.  If the offset is set, that's how many blocks
2911 	 * must be written.
2912 	 */
2913 	if (log_offset == 0) {
2914 		ticket->t_curr_res -= log->l_iclog_hsize;
2915 		xlog_tic_add_region(ticket,
2916 				    log->l_iclog_hsize,
2917 				    XLOG_REG_TYPE_LRHEADER);
2918 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2919 		head->h_lsn = cpu_to_be64(
2920 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2921 		ASSERT(log->l_curr_block >= 0);
2922 	}
2923 
2924 	/* If there is enough room to write everything, then do it.  Otherwise,
2925 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2926 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2927 	 * until you know exactly how many bytes get copied.  Therefore, wait
2928 	 * until later to update ic_offset.
2929 	 *
2930 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2931 	 * can fit into remaining data section.
2932 	 */
2933 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2934 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2935 
2936 		/*
2937 		 * If I'm the only one writing to this iclog, sync it to disk.
2938 		 * We need to do an atomic compare and decrement here to avoid
2939 		 * racing with concurrent atomic_dec_and_lock() calls in
2940 		 * xlog_state_release_iclog() when there is more than one
2941 		 * reference to the iclog.
2942 		 */
2943 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2944 			/* we are the only one */
2945 			spin_unlock(&log->l_icloglock);
2946 			error = xlog_state_release_iclog(log, iclog);
2947 			if (error)
2948 				return error;
2949 		} else {
2950 			spin_unlock(&log->l_icloglock);
2951 		}
2952 		goto restart;
2953 	}
2954 
2955 	/* Do we have enough room to write the full amount in the remainder
2956 	 * of this iclog?  Or must we continue a write on the next iclog and
2957 	 * mark this iclog as completely taken?  In the case where we switch
2958 	 * iclogs (to mark it taken), this particular iclog will release/sync
2959 	 * to disk in xlog_write().
2960 	 */
2961 	if (len <= iclog->ic_size - iclog->ic_offset) {
2962 		*continued_write = 0;
2963 		iclog->ic_offset += len;
2964 	} else {
2965 		*continued_write = 1;
2966 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967 	}
2968 	*iclogp = iclog;
2969 
2970 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2971 	spin_unlock(&log->l_icloglock);
2972 
2973 	*logoffsetp = log_offset;
2974 	return 0;
2975 }	/* xlog_state_get_iclog_space */
2976 
2977 /* The first cnt-1 times through here we don't need to
2978  * move the grant write head because the permanent
2979  * reservation has reserved cnt times the unit amount.
2980  * Release part of current permanent unit reservation and
2981  * reset current reservation to be one units worth.  Also
2982  * move grant reservation head forward.
2983  */
2984 STATIC void
2985 xlog_regrant_reserve_log_space(
2986 	struct xlog		*log,
2987 	struct xlog_ticket	*ticket)
2988 {
2989 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2990 
2991 	if (ticket->t_cnt > 0)
2992 		ticket->t_cnt--;
2993 
2994 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995 					ticket->t_curr_res);
2996 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2997 					ticket->t_curr_res);
2998 	ticket->t_curr_res = ticket->t_unit_res;
2999 	xlog_tic_reset_res(ticket);
3000 
3001 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3002 
3003 	/* just return if we still have some of the pre-reserved space */
3004 	if (ticket->t_cnt > 0)
3005 		return;
3006 
3007 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3008 					ticket->t_unit_res);
3009 
3010 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3011 
3012 	ticket->t_curr_res = ticket->t_unit_res;
3013 	xlog_tic_reset_res(ticket);
3014 }	/* xlog_regrant_reserve_log_space */
3015 
3016 
3017 /*
3018  * Give back the space left from a reservation.
3019  *
3020  * All the information we need to make a correct determination of space left
3021  * is present.  For non-permanent reservations, things are quite easy.  The
3022  * count should have been decremented to zero.  We only need to deal with the
3023  * space remaining in the current reservation part of the ticket.  If the
3024  * ticket contains a permanent reservation, there may be left over space which
3025  * needs to be released.  A count of N means that N-1 refills of the current
3026  * reservation can be done before we need to ask for more space.  The first
3027  * one goes to fill up the first current reservation.  Once we run out of
3028  * space, the count will stay at zero and the only space remaining will be
3029  * in the current reservation field.
3030  */
3031 STATIC void
3032 xlog_ungrant_log_space(
3033 	struct xlog		*log,
3034 	struct xlog_ticket	*ticket)
3035 {
3036 	int	bytes;
3037 
3038 	if (ticket->t_cnt > 0)
3039 		ticket->t_cnt--;
3040 
3041 	trace_xfs_log_ungrant_enter(log, ticket);
3042 	trace_xfs_log_ungrant_sub(log, ticket);
3043 
3044 	/*
3045 	 * If this is a permanent reservation ticket, we may be able to free
3046 	 * up more space based on the remaining count.
3047 	 */
3048 	bytes = ticket->t_curr_res;
3049 	if (ticket->t_cnt > 0) {
3050 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051 		bytes += ticket->t_unit_res*ticket->t_cnt;
3052 	}
3053 
3054 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056 
3057 	trace_xfs_log_ungrant_exit(log, ticket);
3058 
3059 	xfs_log_space_wake(log->l_mp);
3060 }
3061 
3062 /*
3063  * Flush iclog to disk if this is the last reference to the given iclog and
3064  * the WANT_SYNC bit is set.
3065  *
3066  * When this function is entered, the iclog is not necessarily in the
3067  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3068  *
3069  *
3070  */
3071 STATIC int
3072 xlog_state_release_iclog(
3073 	struct xlog		*log,
3074 	struct xlog_in_core	*iclog)
3075 {
3076 	int		sync = 0;	/* do we sync? */
3077 
3078 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3079 		return -EIO;
3080 
3081 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3082 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3083 		return 0;
3084 
3085 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3086 		spin_unlock(&log->l_icloglock);
3087 		return -EIO;
3088 	}
3089 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3090 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3091 
3092 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3093 		/* update tail before writing to iclog */
3094 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3095 		sync++;
3096 		iclog->ic_state = XLOG_STATE_SYNCING;
3097 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3098 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3099 		/* cycle incremented when incrementing curr_block */
3100 	}
3101 	spin_unlock(&log->l_icloglock);
3102 
3103 	/*
3104 	 * We let the log lock go, so it's possible that we hit a log I/O
3105 	 * error or some other SHUTDOWN condition that marks the iclog
3106 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3107 	 * this iclog has consistent data, so we ignore IOERROR
3108 	 * flags after this point.
3109 	 */
3110 	if (sync)
3111 		return xlog_sync(log, iclog);
3112 	return 0;
3113 }	/* xlog_state_release_iclog */
3114 
3115 
3116 /*
3117  * This routine will mark the current iclog in the ring as WANT_SYNC
3118  * and move the current iclog pointer to the next iclog in the ring.
3119  * When this routine is called from xlog_state_get_iclog_space(), the
3120  * exact size of the iclog has not yet been determined.  All we know is
3121  * that every data block.  We have run out of space in this log record.
3122  */
3123 STATIC void
3124 xlog_state_switch_iclogs(
3125 	struct xlog		*log,
3126 	struct xlog_in_core	*iclog,
3127 	int			eventual_size)
3128 {
3129 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3130 	if (!eventual_size)
3131 		eventual_size = iclog->ic_offset;
3132 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3133 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3134 	log->l_prev_block = log->l_curr_block;
3135 	log->l_prev_cycle = log->l_curr_cycle;
3136 
3137 	/* roll log?: ic_offset changed later */
3138 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3139 
3140 	/* Round up to next log-sunit */
3141 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3142 	    log->l_mp->m_sb.sb_logsunit > 1) {
3143 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3144 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3145 	}
3146 
3147 	if (log->l_curr_block >= log->l_logBBsize) {
3148 		log->l_curr_cycle++;
3149 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150 			log->l_curr_cycle++;
3151 		log->l_curr_block -= log->l_logBBsize;
3152 		ASSERT(log->l_curr_block >= 0);
3153 	}
3154 	ASSERT(iclog == log->l_iclog);
3155 	log->l_iclog = iclog->ic_next;
3156 }	/* xlog_state_switch_iclogs */
3157 
3158 /*
3159  * Write out all data in the in-core log as of this exact moment in time.
3160  *
3161  * Data may be written to the in-core log during this call.  However,
3162  * we don't guarantee this data will be written out.  A change from past
3163  * implementation means this routine will *not* write out zero length LRs.
3164  *
3165  * Basically, we try and perform an intelligent scan of the in-core logs.
3166  * If we determine there is no flushable data, we just return.  There is no
3167  * flushable data if:
3168  *
3169  *	1. the current iclog is active and has no data; the previous iclog
3170  *		is in the active or dirty state.
3171  *	2. the current iclog is drity, and the previous iclog is in the
3172  *		active or dirty state.
3173  *
3174  * We may sleep if:
3175  *
3176  *	1. the current iclog is not in the active nor dirty state.
3177  *	2. the current iclog dirty, and the previous iclog is not in the
3178  *		active nor dirty state.
3179  *	3. the current iclog is active, and there is another thread writing
3180  *		to this particular iclog.
3181  *	4. a) the current iclog is active and has no other writers
3182  *	   b) when we return from flushing out this iclog, it is still
3183  *		not in the active nor dirty state.
3184  */
3185 int
3186 _xfs_log_force(
3187 	struct xfs_mount	*mp,
3188 	uint			flags,
3189 	int			*log_flushed)
3190 {
3191 	struct xlog		*log = mp->m_log;
3192 	struct xlog_in_core	*iclog;
3193 	xfs_lsn_t		lsn;
3194 
3195 	XFS_STATS_INC(xs_log_force);
3196 
3197 	xlog_cil_force(log);
3198 
3199 	spin_lock(&log->l_icloglock);
3200 
3201 	iclog = log->l_iclog;
3202 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3203 		spin_unlock(&log->l_icloglock);
3204 		return -EIO;
3205 	}
3206 
3207 	/* If the head iclog is not active nor dirty, we just attach
3208 	 * ourselves to the head and go to sleep.
3209 	 */
3210 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3211 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3212 		/*
3213 		 * If the head is dirty or (active and empty), then
3214 		 * we need to look at the previous iclog.  If the previous
3215 		 * iclog is active or dirty we are done.  There is nothing
3216 		 * to sync out.  Otherwise, we attach ourselves to the
3217 		 * previous iclog and go to sleep.
3218 		 */
3219 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3220 		    (atomic_read(&iclog->ic_refcnt) == 0
3221 		     && iclog->ic_offset == 0)) {
3222 			iclog = iclog->ic_prev;
3223 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3224 			    iclog->ic_state == XLOG_STATE_DIRTY)
3225 				goto no_sleep;
3226 			else
3227 				goto maybe_sleep;
3228 		} else {
3229 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3230 				/* We are the only one with access to this
3231 				 * iclog.  Flush it out now.  There should
3232 				 * be a roundoff of zero to show that someone
3233 				 * has already taken care of the roundoff from
3234 				 * the previous sync.
3235 				 */
3236 				atomic_inc(&iclog->ic_refcnt);
3237 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3238 				xlog_state_switch_iclogs(log, iclog, 0);
3239 				spin_unlock(&log->l_icloglock);
3240 
3241 				if (xlog_state_release_iclog(log, iclog))
3242 					return -EIO;
3243 
3244 				if (log_flushed)
3245 					*log_flushed = 1;
3246 				spin_lock(&log->l_icloglock);
3247 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3248 				    iclog->ic_state != XLOG_STATE_DIRTY)
3249 					goto maybe_sleep;
3250 				else
3251 					goto no_sleep;
3252 			} else {
3253 				/* Someone else is writing to this iclog.
3254 				 * Use its call to flush out the data.  However,
3255 				 * the other thread may not force out this LR,
3256 				 * so we mark it WANT_SYNC.
3257 				 */
3258 				xlog_state_switch_iclogs(log, iclog, 0);
3259 				goto maybe_sleep;
3260 			}
3261 		}
3262 	}
3263 
3264 	/* By the time we come around again, the iclog could've been filled
3265 	 * which would give it another lsn.  If we have a new lsn, just
3266 	 * return because the relevant data has been flushed.
3267 	 */
3268 maybe_sleep:
3269 	if (flags & XFS_LOG_SYNC) {
3270 		/*
3271 		 * We must check if we're shutting down here, before
3272 		 * we wait, while we're holding the l_icloglock.
3273 		 * Then we check again after waking up, in case our
3274 		 * sleep was disturbed by a bad news.
3275 		 */
3276 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3277 			spin_unlock(&log->l_icloglock);
3278 			return -EIO;
3279 		}
3280 		XFS_STATS_INC(xs_log_force_sleep);
3281 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3282 		/*
3283 		 * No need to grab the log lock here since we're
3284 		 * only deciding whether or not to return EIO
3285 		 * and the memory read should be atomic.
3286 		 */
3287 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3288 			return -EIO;
3289 		if (log_flushed)
3290 			*log_flushed = 1;
3291 	} else {
3292 
3293 no_sleep:
3294 		spin_unlock(&log->l_icloglock);
3295 	}
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3301  * about errors or whether the log was flushed or not. This is the normal
3302  * interface to use when trying to unpin items or move the log forward.
3303  */
3304 void
3305 xfs_log_force(
3306 	xfs_mount_t	*mp,
3307 	uint		flags)
3308 {
3309 	int	error;
3310 
3311 	trace_xfs_log_force(mp, 0);
3312 	error = _xfs_log_force(mp, flags, NULL);
3313 	if (error)
3314 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3315 }
3316 
3317 /*
3318  * Force the in-core log to disk for a specific LSN.
3319  *
3320  * Find in-core log with lsn.
3321  *	If it is in the DIRTY state, just return.
3322  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3323  *		state and go to sleep or return.
3324  *	If it is in any other state, go to sleep or return.
3325  *
3326  * Synchronous forces are implemented with a signal variable. All callers
3327  * to force a given lsn to disk will wait on a the sv attached to the
3328  * specific in-core log.  When given in-core log finally completes its
3329  * write to disk, that thread will wake up all threads waiting on the
3330  * sv.
3331  */
3332 int
3333 _xfs_log_force_lsn(
3334 	struct xfs_mount	*mp,
3335 	xfs_lsn_t		lsn,
3336 	uint			flags,
3337 	int			*log_flushed)
3338 {
3339 	struct xlog		*log = mp->m_log;
3340 	struct xlog_in_core	*iclog;
3341 	int			already_slept = 0;
3342 
3343 	ASSERT(lsn != 0);
3344 
3345 	XFS_STATS_INC(xs_log_force);
3346 
3347 	lsn = xlog_cil_force_lsn(log, lsn);
3348 	if (lsn == NULLCOMMITLSN)
3349 		return 0;
3350 
3351 try_again:
3352 	spin_lock(&log->l_icloglock);
3353 	iclog = log->l_iclog;
3354 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355 		spin_unlock(&log->l_icloglock);
3356 		return -EIO;
3357 	}
3358 
3359 	do {
3360 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3361 			iclog = iclog->ic_next;
3362 			continue;
3363 		}
3364 
3365 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3366 			spin_unlock(&log->l_icloglock);
3367 			return 0;
3368 		}
3369 
3370 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3371 			/*
3372 			 * We sleep here if we haven't already slept (e.g.
3373 			 * this is the first time we've looked at the correct
3374 			 * iclog buf) and the buffer before us is going to
3375 			 * be sync'ed. The reason for this is that if we
3376 			 * are doing sync transactions here, by waiting for
3377 			 * the previous I/O to complete, we can allow a few
3378 			 * more transactions into this iclog before we close
3379 			 * it down.
3380 			 *
3381 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3382 			 * up the refcnt so we can release the log (which
3383 			 * drops the ref count).  The state switch keeps new
3384 			 * transaction commits from using this buffer.  When
3385 			 * the current commits finish writing into the buffer,
3386 			 * the refcount will drop to zero and the buffer will
3387 			 * go out then.
3388 			 */
3389 			if (!already_slept &&
3390 			    (iclog->ic_prev->ic_state &
3391 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3392 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3393 
3394 				XFS_STATS_INC(xs_log_force_sleep);
3395 
3396 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3397 							&log->l_icloglock);
3398 				if (log_flushed)
3399 					*log_flushed = 1;
3400 				already_slept = 1;
3401 				goto try_again;
3402 			}
3403 			atomic_inc(&iclog->ic_refcnt);
3404 			xlog_state_switch_iclogs(log, iclog, 0);
3405 			spin_unlock(&log->l_icloglock);
3406 			if (xlog_state_release_iclog(log, iclog))
3407 				return -EIO;
3408 			if (log_flushed)
3409 				*log_flushed = 1;
3410 			spin_lock(&log->l_icloglock);
3411 		}
3412 
3413 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3414 		    !(iclog->ic_state &
3415 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3416 			/*
3417 			 * Don't wait on completion if we know that we've
3418 			 * gotten a log write error.
3419 			 */
3420 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3421 				spin_unlock(&log->l_icloglock);
3422 				return -EIO;
3423 			}
3424 			XFS_STATS_INC(xs_log_force_sleep);
3425 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3426 			/*
3427 			 * No need to grab the log lock here since we're
3428 			 * only deciding whether or not to return EIO
3429 			 * and the memory read should be atomic.
3430 			 */
3431 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3432 				return -EIO;
3433 
3434 			if (log_flushed)
3435 				*log_flushed = 1;
3436 		} else {		/* just return */
3437 			spin_unlock(&log->l_icloglock);
3438 		}
3439 
3440 		return 0;
3441 	} while (iclog != log->l_iclog);
3442 
3443 	spin_unlock(&log->l_icloglock);
3444 	return 0;
3445 }
3446 
3447 /*
3448  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3449  * about errors or whether the log was flushed or not. This is the normal
3450  * interface to use when trying to unpin items or move the log forward.
3451  */
3452 void
3453 xfs_log_force_lsn(
3454 	xfs_mount_t	*mp,
3455 	xfs_lsn_t	lsn,
3456 	uint		flags)
3457 {
3458 	int	error;
3459 
3460 	trace_xfs_log_force(mp, lsn);
3461 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3462 	if (error)
3463 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3464 }
3465 
3466 /*
3467  * Called when we want to mark the current iclog as being ready to sync to
3468  * disk.
3469  */
3470 STATIC void
3471 xlog_state_want_sync(
3472 	struct xlog		*log,
3473 	struct xlog_in_core	*iclog)
3474 {
3475 	assert_spin_locked(&log->l_icloglock);
3476 
3477 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3478 		xlog_state_switch_iclogs(log, iclog, 0);
3479 	} else {
3480 		ASSERT(iclog->ic_state &
3481 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3482 	}
3483 }
3484 
3485 
3486 /*****************************************************************************
3487  *
3488  *		TICKET functions
3489  *
3490  *****************************************************************************
3491  */
3492 
3493 /*
3494  * Free a used ticket when its refcount falls to zero.
3495  */
3496 void
3497 xfs_log_ticket_put(
3498 	xlog_ticket_t	*ticket)
3499 {
3500 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3501 	if (atomic_dec_and_test(&ticket->t_ref))
3502 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3503 }
3504 
3505 xlog_ticket_t *
3506 xfs_log_ticket_get(
3507 	xlog_ticket_t	*ticket)
3508 {
3509 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3510 	atomic_inc(&ticket->t_ref);
3511 	return ticket;
3512 }
3513 
3514 /*
3515  * Figure out the total log space unit (in bytes) that would be
3516  * required for a log ticket.
3517  */
3518 int
3519 xfs_log_calc_unit_res(
3520 	struct xfs_mount	*mp,
3521 	int			unit_bytes)
3522 {
3523 	struct xlog		*log = mp->m_log;
3524 	int			iclog_space;
3525 	uint			num_headers;
3526 
3527 	/*
3528 	 * Permanent reservations have up to 'cnt'-1 active log operations
3529 	 * in the log.  A unit in this case is the amount of space for one
3530 	 * of these log operations.  Normal reservations have a cnt of 1
3531 	 * and their unit amount is the total amount of space required.
3532 	 *
3533 	 * The following lines of code account for non-transaction data
3534 	 * which occupy space in the on-disk log.
3535 	 *
3536 	 * Normal form of a transaction is:
3537 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3538 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3539 	 *
3540 	 * We need to account for all the leadup data and trailer data
3541 	 * around the transaction data.
3542 	 * And then we need to account for the worst case in terms of using
3543 	 * more space.
3544 	 * The worst case will happen if:
3545 	 * - the placement of the transaction happens to be such that the
3546 	 *   roundoff is at its maximum
3547 	 * - the transaction data is synced before the commit record is synced
3548 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3549 	 *   Therefore the commit record is in its own Log Record.
3550 	 *   This can happen as the commit record is called with its
3551 	 *   own region to xlog_write().
3552 	 *   This then means that in the worst case, roundoff can happen for
3553 	 *   the commit-rec as well.
3554 	 *   The commit-rec is smaller than padding in this scenario and so it is
3555 	 *   not added separately.
3556 	 */
3557 
3558 	/* for trans header */
3559 	unit_bytes += sizeof(xlog_op_header_t);
3560 	unit_bytes += sizeof(xfs_trans_header_t);
3561 
3562 	/* for start-rec */
3563 	unit_bytes += sizeof(xlog_op_header_t);
3564 
3565 	/*
3566 	 * for LR headers - the space for data in an iclog is the size minus
3567 	 * the space used for the headers. If we use the iclog size, then we
3568 	 * undercalculate the number of headers required.
3569 	 *
3570 	 * Furthermore - the addition of op headers for split-recs might
3571 	 * increase the space required enough to require more log and op
3572 	 * headers, so take that into account too.
3573 	 *
3574 	 * IMPORTANT: This reservation makes the assumption that if this
3575 	 * transaction is the first in an iclog and hence has the LR headers
3576 	 * accounted to it, then the remaining space in the iclog is
3577 	 * exclusively for this transaction.  i.e. if the transaction is larger
3578 	 * than the iclog, it will be the only thing in that iclog.
3579 	 * Fundamentally, this means we must pass the entire log vector to
3580 	 * xlog_write to guarantee this.
3581 	 */
3582 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3583 	num_headers = howmany(unit_bytes, iclog_space);
3584 
3585 	/* for split-recs - ophdrs added when data split over LRs */
3586 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3587 
3588 	/* add extra header reservations if we overrun */
3589 	while (!num_headers ||
3590 	       howmany(unit_bytes, iclog_space) > num_headers) {
3591 		unit_bytes += sizeof(xlog_op_header_t);
3592 		num_headers++;
3593 	}
3594 	unit_bytes += log->l_iclog_hsize * num_headers;
3595 
3596 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3597 	unit_bytes += log->l_iclog_hsize;
3598 
3599 	/* for roundoff padding for transaction data and one for commit record */
3600 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3601 		/* log su roundoff */
3602 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3603 	} else {
3604 		/* BB roundoff */
3605 		unit_bytes += 2 * BBSIZE;
3606         }
3607 
3608 	return unit_bytes;
3609 }
3610 
3611 /*
3612  * Allocate and initialise a new log ticket.
3613  */
3614 struct xlog_ticket *
3615 xlog_ticket_alloc(
3616 	struct xlog		*log,
3617 	int			unit_bytes,
3618 	int			cnt,
3619 	char			client,
3620 	bool			permanent,
3621 	xfs_km_flags_t		alloc_flags)
3622 {
3623 	struct xlog_ticket	*tic;
3624 	int			unit_res;
3625 
3626 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3627 	if (!tic)
3628 		return NULL;
3629 
3630 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3631 
3632 	atomic_set(&tic->t_ref, 1);
3633 	tic->t_task		= current;
3634 	INIT_LIST_HEAD(&tic->t_queue);
3635 	tic->t_unit_res		= unit_res;
3636 	tic->t_curr_res		= unit_res;
3637 	tic->t_cnt		= cnt;
3638 	tic->t_ocnt		= cnt;
3639 	tic->t_tid		= prandom_u32();
3640 	tic->t_clientid		= client;
3641 	tic->t_flags		= XLOG_TIC_INITED;
3642 	tic->t_trans_type	= 0;
3643 	if (permanent)
3644 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3645 
3646 	xlog_tic_reset_res(tic);
3647 
3648 	return tic;
3649 }
3650 
3651 
3652 /******************************************************************************
3653  *
3654  *		Log debug routines
3655  *
3656  ******************************************************************************
3657  */
3658 #if defined(DEBUG)
3659 /*
3660  * Make sure that the destination ptr is within the valid data region of
3661  * one of the iclogs.  This uses backup pointers stored in a different
3662  * part of the log in case we trash the log structure.
3663  */
3664 void
3665 xlog_verify_dest_ptr(
3666 	struct xlog	*log,
3667 	char		*ptr)
3668 {
3669 	int i;
3670 	int good_ptr = 0;
3671 
3672 	for (i = 0; i < log->l_iclog_bufs; i++) {
3673 		if (ptr >= log->l_iclog_bak[i] &&
3674 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3675 			good_ptr++;
3676 	}
3677 
3678 	if (!good_ptr)
3679 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3680 }
3681 
3682 /*
3683  * Check to make sure the grant write head didn't just over lap the tail.  If
3684  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3685  * the cycles differ by exactly one and check the byte count.
3686  *
3687  * This check is run unlocked, so can give false positives. Rather than assert
3688  * on failures, use a warn-once flag and a panic tag to allow the admin to
3689  * determine if they want to panic the machine when such an error occurs. For
3690  * debug kernels this will have the same effect as using an assert but, unlinke
3691  * an assert, it can be turned off at runtime.
3692  */
3693 STATIC void
3694 xlog_verify_grant_tail(
3695 	struct xlog	*log)
3696 {
3697 	int		tail_cycle, tail_blocks;
3698 	int		cycle, space;
3699 
3700 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3701 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3702 	if (tail_cycle != cycle) {
3703 		if (cycle - 1 != tail_cycle &&
3704 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3705 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3706 				"%s: cycle - 1 != tail_cycle", __func__);
3707 			log->l_flags |= XLOG_TAIL_WARN;
3708 		}
3709 
3710 		if (space > BBTOB(tail_blocks) &&
3711 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3712 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3713 				"%s: space > BBTOB(tail_blocks)", __func__);
3714 			log->l_flags |= XLOG_TAIL_WARN;
3715 		}
3716 	}
3717 }
3718 
3719 /* check if it will fit */
3720 STATIC void
3721 xlog_verify_tail_lsn(
3722 	struct xlog		*log,
3723 	struct xlog_in_core	*iclog,
3724 	xfs_lsn_t		tail_lsn)
3725 {
3726     int blocks;
3727 
3728     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3729 	blocks =
3730 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3731 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3732 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3733     } else {
3734 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3735 
3736 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3737 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3738 
3739 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3740 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3741 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3742     }
3743 }	/* xlog_verify_tail_lsn */
3744 
3745 /*
3746  * Perform a number of checks on the iclog before writing to disk.
3747  *
3748  * 1. Make sure the iclogs are still circular
3749  * 2. Make sure we have a good magic number
3750  * 3. Make sure we don't have magic numbers in the data
3751  * 4. Check fields of each log operation header for:
3752  *	A. Valid client identifier
3753  *	B. tid ptr value falls in valid ptr space (user space code)
3754  *	C. Length in log record header is correct according to the
3755  *		individual operation headers within record.
3756  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3757  *	log, check the preceding blocks of the physical log to make sure all
3758  *	the cycle numbers agree with the current cycle number.
3759  */
3760 STATIC void
3761 xlog_verify_iclog(
3762 	struct xlog		*log,
3763 	struct xlog_in_core	*iclog,
3764 	int			count,
3765 	bool                    syncing)
3766 {
3767 	xlog_op_header_t	*ophead;
3768 	xlog_in_core_t		*icptr;
3769 	xlog_in_core_2_t	*xhdr;
3770 	xfs_caddr_t		ptr;
3771 	xfs_caddr_t		base_ptr;
3772 	__psint_t		field_offset;
3773 	__uint8_t		clientid;
3774 	int			len, i, j, k, op_len;
3775 	int			idx;
3776 
3777 	/* check validity of iclog pointers */
3778 	spin_lock(&log->l_icloglock);
3779 	icptr = log->l_iclog;
3780 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3781 		ASSERT(icptr);
3782 
3783 	if (icptr != log->l_iclog)
3784 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3785 	spin_unlock(&log->l_icloglock);
3786 
3787 	/* check log magic numbers */
3788 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3789 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3790 
3791 	ptr = (xfs_caddr_t) &iclog->ic_header;
3792 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3793 	     ptr += BBSIZE) {
3794 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3795 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3796 				__func__);
3797 	}
3798 
3799 	/* check fields */
3800 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3801 	ptr = iclog->ic_datap;
3802 	base_ptr = ptr;
3803 	ophead = (xlog_op_header_t *)ptr;
3804 	xhdr = iclog->ic_data;
3805 	for (i = 0; i < len; i++) {
3806 		ophead = (xlog_op_header_t *)ptr;
3807 
3808 		/* clientid is only 1 byte */
3809 		field_offset = (__psint_t)
3810 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3811 		if (!syncing || (field_offset & 0x1ff)) {
3812 			clientid = ophead->oh_clientid;
3813 		} else {
3814 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3815 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818 				clientid = xlog_get_client_id(
3819 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3820 			} else {
3821 				clientid = xlog_get_client_id(
3822 					iclog->ic_header.h_cycle_data[idx]);
3823 			}
3824 		}
3825 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826 			xfs_warn(log->l_mp,
3827 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3828 				__func__, clientid, ophead,
3829 				(unsigned long)field_offset);
3830 
3831 		/* check length */
3832 		field_offset = (__psint_t)
3833 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3834 		if (!syncing || (field_offset & 0x1ff)) {
3835 			op_len = be32_to_cpu(ophead->oh_len);
3836 		} else {
3837 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3838 				    (__psint_t)iclog->ic_datap);
3839 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843 			} else {
3844 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3845 			}
3846 		}
3847 		ptr += sizeof(xlog_op_header_t) + op_len;
3848 	}
3849 }	/* xlog_verify_iclog */
3850 #endif
3851 
3852 /*
3853  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3854  */
3855 STATIC int
3856 xlog_state_ioerror(
3857 	struct xlog	*log)
3858 {
3859 	xlog_in_core_t	*iclog, *ic;
3860 
3861 	iclog = log->l_iclog;
3862 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3863 		/*
3864 		 * Mark all the incore logs IOERROR.
3865 		 * From now on, no log flushes will result.
3866 		 */
3867 		ic = iclog;
3868 		do {
3869 			ic->ic_state = XLOG_STATE_IOERROR;
3870 			ic = ic->ic_next;
3871 		} while (ic != iclog);
3872 		return 0;
3873 	}
3874 	/*
3875 	 * Return non-zero, if state transition has already happened.
3876 	 */
3877 	return 1;
3878 }
3879 
3880 /*
3881  * This is called from xfs_force_shutdown, when we're forcibly
3882  * shutting down the filesystem, typically because of an IO error.
3883  * Our main objectives here are to make sure that:
3884  *	a. if !logerror, flush the logs to disk. Anything modified
3885  *	   after this is ignored.
3886  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3887  *	   parties to find out, 'atomically'.
3888  *	c. those who're sleeping on log reservations, pinned objects and
3889  *	    other resources get woken up, and be told the bad news.
3890  *	d. nothing new gets queued up after (b) and (c) are done.
3891  *
3892  * Note: for the !logerror case we need to flush the regions held in memory out
3893  * to disk first. This needs to be done before the log is marked as shutdown,
3894  * otherwise the iclog writes will fail.
3895  */
3896 int
3897 xfs_log_force_umount(
3898 	struct xfs_mount	*mp,
3899 	int			logerror)
3900 {
3901 	struct xlog	*log;
3902 	int		retval;
3903 
3904 	log = mp->m_log;
3905 
3906 	/*
3907 	 * If this happens during log recovery, don't worry about
3908 	 * locking; the log isn't open for business yet.
3909 	 */
3910 	if (!log ||
3911 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913 		if (mp->m_sb_bp)
3914 			XFS_BUF_DONE(mp->m_sb_bp);
3915 		return 0;
3916 	}
3917 
3918 	/*
3919 	 * Somebody could've already done the hard work for us.
3920 	 * No need to get locks for this.
3921 	 */
3922 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924 		return 1;
3925 	}
3926 
3927 	/*
3928 	 * Flush all the completed transactions to disk before marking the log
3929 	 * being shut down. We need to do it in this order to ensure that
3930 	 * completed operations are safely on disk before we shut down, and that
3931 	 * we don't have to issue any buffer IO after the shutdown flags are set
3932 	 * to guarantee this.
3933 	 */
3934 	if (!logerror)
3935 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3936 
3937 	/*
3938 	 * mark the filesystem and the as in a shutdown state and wake
3939 	 * everybody up to tell them the bad news.
3940 	 */
3941 	spin_lock(&log->l_icloglock);
3942 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943 	if (mp->m_sb_bp)
3944 		XFS_BUF_DONE(mp->m_sb_bp);
3945 
3946 	/*
3947 	 * Mark the log and the iclogs with IO error flags to prevent any
3948 	 * further log IO from being issued or completed.
3949 	 */
3950 	log->l_flags |= XLOG_IO_ERROR;
3951 	retval = xlog_state_ioerror(log);
3952 	spin_unlock(&log->l_icloglock);
3953 
3954 	/*
3955 	 * We don't want anybody waiting for log reservations after this. That
3956 	 * means we have to wake up everybody queued up on reserveq as well as
3957 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3958 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959 	 * action is protected by the grant locks.
3960 	 */
3961 	xlog_grant_head_wake_all(&log->l_reserve_head);
3962 	xlog_grant_head_wake_all(&log->l_write_head);
3963 
3964 	/*
3965 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966 	 * as if the log writes were completed. The abort handling in the log
3967 	 * item committed callback functions will do this again under lock to
3968 	 * avoid races.
3969 	 */
3970 	wake_up_all(&log->l_cilp->xc_commit_wait);
3971 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3972 
3973 #ifdef XFSERRORDEBUG
3974 	{
3975 		xlog_in_core_t	*iclog;
3976 
3977 		spin_lock(&log->l_icloglock);
3978 		iclog = log->l_iclog;
3979 		do {
3980 			ASSERT(iclog->ic_callback == 0);
3981 			iclog = iclog->ic_next;
3982 		} while (iclog != log->l_iclog);
3983 		spin_unlock(&log->l_icloglock);
3984 	}
3985 #endif
3986 	/* return non-zero if log IOERROR transition had already happened */
3987 	return retval;
3988 }
3989 
3990 STATIC int
3991 xlog_iclogs_empty(
3992 	struct xlog	*log)
3993 {
3994 	xlog_in_core_t	*iclog;
3995 
3996 	iclog = log->l_iclog;
3997 	do {
3998 		/* endianness does not matter here, zero is zero in
3999 		 * any language.
4000 		 */
4001 		if (iclog->ic_header.h_num_logops)
4002 			return 0;
4003 		iclog = iclog->ic_next;
4004 	} while (iclog != log->l_iclog);
4005 	return 1;
4006 }
4007 
4008