1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } else { 230 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 231 return tic->t_unit_res * tic->t_cnt; 232 else 233 return tic->t_unit_res; 234 } 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 bool fatal = xfs_has_crc(mp); 643 int error = 0; 644 int min_logfsbs; 645 646 if (!xfs_has_norecovery(mp)) { 647 xfs_notice(mp, "Mounting V%d Filesystem", 648 XFS_SB_VERSION_NUM(&mp->m_sb)); 649 } else { 650 xfs_notice(mp, 651 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 652 XFS_SB_VERSION_NUM(&mp->m_sb)); 653 ASSERT(xfs_is_readonly(mp)); 654 } 655 656 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 657 if (IS_ERR(log)) { 658 error = PTR_ERR(log); 659 goto out; 660 } 661 mp->m_log = log; 662 663 /* 664 * Validate the given log space and drop a critical message via syslog 665 * if the log size is too small that would lead to some unexpected 666 * situations in transaction log space reservation stage. 667 * 668 * Note: we can't just reject the mount if the validation fails. This 669 * would mean that people would have to downgrade their kernel just to 670 * remedy the situation as there is no way to grow the log (short of 671 * black magic surgery with xfs_db). 672 * 673 * We can, however, reject mounts for CRC format filesystems, as the 674 * mkfs binary being used to make the filesystem should never create a 675 * filesystem with a log that is too small. 676 */ 677 min_logfsbs = xfs_log_calc_minimum_size(mp); 678 679 if (mp->m_sb.sb_logblocks < min_logfsbs) { 680 xfs_warn(mp, 681 "Log size %d blocks too small, minimum size is %d blocks", 682 mp->m_sb.sb_logblocks, min_logfsbs); 683 error = -EINVAL; 684 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 685 xfs_warn(mp, 686 "Log size %d blocks too large, maximum size is %lld blocks", 687 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 688 error = -EINVAL; 689 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 690 xfs_warn(mp, 691 "log size %lld bytes too large, maximum size is %lld bytes", 692 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 693 XFS_MAX_LOG_BYTES); 694 error = -EINVAL; 695 } else if (mp->m_sb.sb_logsunit > 1 && 696 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 697 xfs_warn(mp, 698 "log stripe unit %u bytes must be a multiple of block size", 699 mp->m_sb.sb_logsunit); 700 error = -EINVAL; 701 fatal = true; 702 } 703 if (error) { 704 /* 705 * Log check errors are always fatal on v5; or whenever bad 706 * metadata leads to a crash. 707 */ 708 if (fatal) { 709 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 710 ASSERT(0); 711 goto out_free_log; 712 } 713 xfs_crit(mp, "Log size out of supported range."); 714 xfs_crit(mp, 715 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 716 } 717 718 /* 719 * Initialize the AIL now we have a log. 720 */ 721 error = xfs_trans_ail_init(mp); 722 if (error) { 723 xfs_warn(mp, "AIL initialisation failed: error %d", error); 724 goto out_free_log; 725 } 726 log->l_ailp = mp->m_ail; 727 728 /* 729 * skip log recovery on a norecovery mount. pretend it all 730 * just worked. 731 */ 732 if (!xfs_has_norecovery(mp)) { 733 /* 734 * log recovery ignores readonly state and so we need to clear 735 * mount-based read only state so it can write to disk. 736 */ 737 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, 738 &mp->m_opstate); 739 error = xlog_recover(log); 740 if (readonly) 741 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 742 if (error) { 743 xfs_warn(mp, "log mount/recovery failed: error %d", 744 error); 745 xlog_recover_cancel(log); 746 goto out_destroy_ail; 747 } 748 } 749 750 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 751 "log"); 752 if (error) 753 goto out_destroy_ail; 754 755 /* Normal transactions can now occur */ 756 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 757 758 /* 759 * Now the log has been fully initialised and we know were our 760 * space grant counters are, we can initialise the permanent ticket 761 * needed for delayed logging to work. 762 */ 763 xlog_cil_init_post_recovery(log); 764 765 return 0; 766 767 out_destroy_ail: 768 xfs_trans_ail_destroy(mp); 769 out_free_log: 770 xlog_dealloc_log(log); 771 out: 772 return error; 773 } 774 775 /* 776 * Finish the recovery of the file system. This is separate from the 777 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 778 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 779 * here. 780 * 781 * If we finish recovery successfully, start the background log work. If we are 782 * not doing recovery, then we have a RO filesystem and we don't need to start 783 * it. 784 */ 785 int 786 xfs_log_mount_finish( 787 struct xfs_mount *mp) 788 { 789 struct xlog *log = mp->m_log; 790 bool readonly; 791 int error = 0; 792 793 if (xfs_has_norecovery(mp)) { 794 ASSERT(xfs_is_readonly(mp)); 795 return 0; 796 } 797 798 /* 799 * log recovery ignores readonly state and so we need to clear 800 * mount-based read only state so it can write to disk. 801 */ 802 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 803 804 /* 805 * During the second phase of log recovery, we need iget and 806 * iput to behave like they do for an active filesystem. 807 * xfs_fs_drop_inode needs to be able to prevent the deletion 808 * of inodes before we're done replaying log items on those 809 * inodes. Turn it off immediately after recovery finishes 810 * so that we don't leak the quota inodes if subsequent mount 811 * activities fail. 812 * 813 * We let all inodes involved in redo item processing end up on 814 * the LRU instead of being evicted immediately so that if we do 815 * something to an unlinked inode, the irele won't cause 816 * premature truncation and freeing of the inode, which results 817 * in log recovery failure. We have to evict the unreferenced 818 * lru inodes after clearing SB_ACTIVE because we don't 819 * otherwise clean up the lru if there's a subsequent failure in 820 * xfs_mountfs, which leads to us leaking the inodes if nothing 821 * else (e.g. quotacheck) references the inodes before the 822 * mount failure occurs. 823 */ 824 mp->m_super->s_flags |= SB_ACTIVE; 825 xfs_log_work_queue(mp); 826 if (xlog_recovery_needed(log)) 827 error = xlog_recover_finish(log); 828 mp->m_super->s_flags &= ~SB_ACTIVE; 829 evict_inodes(mp->m_super); 830 831 /* 832 * Drain the buffer LRU after log recovery. This is required for v4 833 * filesystems to avoid leaving around buffers with NULL verifier ops, 834 * but we do it unconditionally to make sure we're always in a clean 835 * cache state after mount. 836 * 837 * Don't push in the error case because the AIL may have pending intents 838 * that aren't removed until recovery is cancelled. 839 */ 840 if (xlog_recovery_needed(log)) { 841 if (!error) { 842 xfs_log_force(mp, XFS_LOG_SYNC); 843 xfs_ail_push_all_sync(mp->m_ail); 844 } 845 xfs_notice(mp, "Ending recovery (logdev: %s)", 846 mp->m_logname ? mp->m_logname : "internal"); 847 } else { 848 xfs_info(mp, "Ending clean mount"); 849 } 850 xfs_buftarg_drain(mp->m_ddev_targp); 851 852 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 853 if (readonly) 854 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 855 856 /* Make sure the log is dead if we're returning failure. */ 857 ASSERT(!error || xlog_is_shutdown(log)); 858 859 return error; 860 } 861 862 /* 863 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 864 * the log. 865 */ 866 void 867 xfs_log_mount_cancel( 868 struct xfs_mount *mp) 869 { 870 xlog_recover_cancel(mp->m_log); 871 xfs_log_unmount(mp); 872 } 873 874 /* 875 * Flush out the iclog to disk ensuring that device caches are flushed and 876 * the iclog hits stable storage before any completion waiters are woken. 877 */ 878 static inline int 879 xlog_force_iclog( 880 struct xlog_in_core *iclog) 881 { 882 atomic_inc(&iclog->ic_refcnt); 883 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 884 if (iclog->ic_state == XLOG_STATE_ACTIVE) 885 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 886 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 887 } 888 889 /* 890 * Wait for the iclog and all prior iclogs to be written disk as required by the 891 * log force state machine. Waiting on ic_force_wait ensures iclog completions 892 * have been ordered and callbacks run before we are woken here, hence 893 * guaranteeing that all the iclogs up to this one are on stable storage. 894 */ 895 int 896 xlog_wait_on_iclog( 897 struct xlog_in_core *iclog) 898 __releases(iclog->ic_log->l_icloglock) 899 { 900 struct xlog *log = iclog->ic_log; 901 902 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 903 if (!xlog_is_shutdown(log) && 904 iclog->ic_state != XLOG_STATE_ACTIVE && 905 iclog->ic_state != XLOG_STATE_DIRTY) { 906 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 907 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 908 } else { 909 spin_unlock(&log->l_icloglock); 910 } 911 912 if (xlog_is_shutdown(log)) 913 return -EIO; 914 return 0; 915 } 916 917 /* 918 * Write out an unmount record using the ticket provided. We have to account for 919 * the data space used in the unmount ticket as this write is not done from a 920 * transaction context that has already done the accounting for us. 921 */ 922 static int 923 xlog_write_unmount_record( 924 struct xlog *log, 925 struct xlog_ticket *ticket) 926 { 927 struct { 928 struct xlog_op_header ophdr; 929 struct xfs_unmount_log_format ulf; 930 } unmount_rec = { 931 .ophdr = { 932 .oh_clientid = XFS_LOG, 933 .oh_tid = cpu_to_be32(ticket->t_tid), 934 .oh_flags = XLOG_UNMOUNT_TRANS, 935 }, 936 .ulf = { 937 .magic = XLOG_UNMOUNT_TYPE, 938 }, 939 }; 940 struct xfs_log_iovec reg = { 941 .i_addr = &unmount_rec, 942 .i_len = sizeof(unmount_rec), 943 .i_type = XLOG_REG_TYPE_UNMOUNT, 944 }; 945 struct xfs_log_vec vec = { 946 .lv_niovecs = 1, 947 .lv_iovecp = ®, 948 }; 949 LIST_HEAD(lv_chain); 950 list_add(&vec.lv_list, &lv_chain); 951 952 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 953 sizeof(struct xfs_unmount_log_format)) != 954 sizeof(unmount_rec)); 955 956 /* account for space used by record data */ 957 ticket->t_curr_res -= sizeof(unmount_rec); 958 959 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 960 } 961 962 /* 963 * Mark the filesystem clean by writing an unmount record to the head of the 964 * log. 965 */ 966 static void 967 xlog_unmount_write( 968 struct xlog *log) 969 { 970 struct xfs_mount *mp = log->l_mp; 971 struct xlog_in_core *iclog; 972 struct xlog_ticket *tic = NULL; 973 int error; 974 975 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 976 if (error) 977 goto out_err; 978 979 error = xlog_write_unmount_record(log, tic); 980 /* 981 * At this point, we're umounting anyway, so there's no point in 982 * transitioning log state to shutdown. Just continue... 983 */ 984 out_err: 985 if (error) 986 xfs_alert(mp, "%s: unmount record failed", __func__); 987 988 spin_lock(&log->l_icloglock); 989 iclog = log->l_iclog; 990 error = xlog_force_iclog(iclog); 991 xlog_wait_on_iclog(iclog); 992 993 if (tic) { 994 trace_xfs_log_umount_write(log, tic); 995 xfs_log_ticket_ungrant(log, tic); 996 } 997 } 998 999 static void 1000 xfs_log_unmount_verify_iclog( 1001 struct xlog *log) 1002 { 1003 struct xlog_in_core *iclog = log->l_iclog; 1004 1005 do { 1006 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 1007 ASSERT(iclog->ic_offset == 0); 1008 } while ((iclog = iclog->ic_next) != log->l_iclog); 1009 } 1010 1011 /* 1012 * Unmount record used to have a string "Unmount filesystem--" in the 1013 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 1014 * We just write the magic number now since that particular field isn't 1015 * currently architecture converted and "Unmount" is a bit foo. 1016 * As far as I know, there weren't any dependencies on the old behaviour. 1017 */ 1018 static void 1019 xfs_log_unmount_write( 1020 struct xfs_mount *mp) 1021 { 1022 struct xlog *log = mp->m_log; 1023 1024 if (!xfs_log_writable(mp)) 1025 return; 1026 1027 xfs_log_force(mp, XFS_LOG_SYNC); 1028 1029 if (xlog_is_shutdown(log)) 1030 return; 1031 1032 /* 1033 * If we think the summary counters are bad, avoid writing the unmount 1034 * record to force log recovery at next mount, after which the summary 1035 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1036 * more details. 1037 */ 1038 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1039 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1040 xfs_alert(mp, "%s: will fix summary counters at next mount", 1041 __func__); 1042 return; 1043 } 1044 1045 xfs_log_unmount_verify_iclog(log); 1046 xlog_unmount_write(log); 1047 } 1048 1049 /* 1050 * Empty the log for unmount/freeze. 1051 * 1052 * To do this, we first need to shut down the background log work so it is not 1053 * trying to cover the log as we clean up. We then need to unpin all objects in 1054 * the log so we can then flush them out. Once they have completed their IO and 1055 * run the callbacks removing themselves from the AIL, we can cover the log. 1056 */ 1057 int 1058 xfs_log_quiesce( 1059 struct xfs_mount *mp) 1060 { 1061 /* 1062 * Clear log incompat features since we're quiescing the log. Report 1063 * failures, though it's not fatal to have a higher log feature 1064 * protection level than the log contents actually require. 1065 */ 1066 if (xfs_clear_incompat_log_features(mp)) { 1067 int error; 1068 1069 error = xfs_sync_sb(mp, false); 1070 if (error) 1071 xfs_warn(mp, 1072 "Failed to clear log incompat features on quiesce"); 1073 } 1074 1075 cancel_delayed_work_sync(&mp->m_log->l_work); 1076 xfs_log_force(mp, XFS_LOG_SYNC); 1077 1078 /* 1079 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1080 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1081 * xfs_buf_iowait() cannot be used because it was pushed with the 1082 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1083 * the IO to complete. 1084 */ 1085 xfs_ail_push_all_sync(mp->m_ail); 1086 xfs_buftarg_wait(mp->m_ddev_targp); 1087 xfs_buf_lock(mp->m_sb_bp); 1088 xfs_buf_unlock(mp->m_sb_bp); 1089 1090 return xfs_log_cover(mp); 1091 } 1092 1093 void 1094 xfs_log_clean( 1095 struct xfs_mount *mp) 1096 { 1097 xfs_log_quiesce(mp); 1098 xfs_log_unmount_write(mp); 1099 } 1100 1101 /* 1102 * Shut down and release the AIL and Log. 1103 * 1104 * During unmount, we need to ensure we flush all the dirty metadata objects 1105 * from the AIL so that the log is empty before we write the unmount record to 1106 * the log. Once this is done, we can tear down the AIL and the log. 1107 */ 1108 void 1109 xfs_log_unmount( 1110 struct xfs_mount *mp) 1111 { 1112 xfs_log_clean(mp); 1113 1114 xfs_buftarg_drain(mp->m_ddev_targp); 1115 1116 xfs_trans_ail_destroy(mp); 1117 1118 xfs_sysfs_del(&mp->m_log->l_kobj); 1119 1120 xlog_dealloc_log(mp->m_log); 1121 } 1122 1123 void 1124 xfs_log_item_init( 1125 struct xfs_mount *mp, 1126 struct xfs_log_item *item, 1127 int type, 1128 const struct xfs_item_ops *ops) 1129 { 1130 item->li_log = mp->m_log; 1131 item->li_ailp = mp->m_ail; 1132 item->li_type = type; 1133 item->li_ops = ops; 1134 item->li_lv = NULL; 1135 1136 INIT_LIST_HEAD(&item->li_ail); 1137 INIT_LIST_HEAD(&item->li_cil); 1138 INIT_LIST_HEAD(&item->li_bio_list); 1139 INIT_LIST_HEAD(&item->li_trans); 1140 } 1141 1142 /* 1143 * Wake up processes waiting for log space after we have moved the log tail. 1144 */ 1145 void 1146 xfs_log_space_wake( 1147 struct xfs_mount *mp) 1148 { 1149 struct xlog *log = mp->m_log; 1150 int free_bytes; 1151 1152 if (xlog_is_shutdown(log)) 1153 return; 1154 1155 if (!list_empty_careful(&log->l_write_head.waiters)) { 1156 ASSERT(!xlog_in_recovery(log)); 1157 1158 spin_lock(&log->l_write_head.lock); 1159 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1160 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1161 spin_unlock(&log->l_write_head.lock); 1162 } 1163 1164 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1165 ASSERT(!xlog_in_recovery(log)); 1166 1167 spin_lock(&log->l_reserve_head.lock); 1168 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1169 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1170 spin_unlock(&log->l_reserve_head.lock); 1171 } 1172 } 1173 1174 /* 1175 * Determine if we have a transaction that has gone to disk that needs to be 1176 * covered. To begin the transition to the idle state firstly the log needs to 1177 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1178 * we start attempting to cover the log. 1179 * 1180 * Only if we are then in a state where covering is needed, the caller is 1181 * informed that dummy transactions are required to move the log into the idle 1182 * state. 1183 * 1184 * If there are any items in the AIl or CIL, then we do not want to attempt to 1185 * cover the log as we may be in a situation where there isn't log space 1186 * available to run a dummy transaction and this can lead to deadlocks when the 1187 * tail of the log is pinned by an item that is modified in the CIL. Hence 1188 * there's no point in running a dummy transaction at this point because we 1189 * can't start trying to idle the log until both the CIL and AIL are empty. 1190 */ 1191 static bool 1192 xfs_log_need_covered( 1193 struct xfs_mount *mp) 1194 { 1195 struct xlog *log = mp->m_log; 1196 bool needed = false; 1197 1198 if (!xlog_cil_empty(log)) 1199 return false; 1200 1201 spin_lock(&log->l_icloglock); 1202 switch (log->l_covered_state) { 1203 case XLOG_STATE_COVER_DONE: 1204 case XLOG_STATE_COVER_DONE2: 1205 case XLOG_STATE_COVER_IDLE: 1206 break; 1207 case XLOG_STATE_COVER_NEED: 1208 case XLOG_STATE_COVER_NEED2: 1209 if (xfs_ail_min_lsn(log->l_ailp)) 1210 break; 1211 if (!xlog_iclogs_empty(log)) 1212 break; 1213 1214 needed = true; 1215 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1216 log->l_covered_state = XLOG_STATE_COVER_DONE; 1217 else 1218 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1219 break; 1220 default: 1221 needed = true; 1222 break; 1223 } 1224 spin_unlock(&log->l_icloglock); 1225 return needed; 1226 } 1227 1228 /* 1229 * Explicitly cover the log. This is similar to background log covering but 1230 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1231 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1232 * must all be empty. 1233 */ 1234 static int 1235 xfs_log_cover( 1236 struct xfs_mount *mp) 1237 { 1238 int error = 0; 1239 bool need_covered; 1240 1241 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1242 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1243 xlog_is_shutdown(mp->m_log)); 1244 1245 if (!xfs_log_writable(mp)) 1246 return 0; 1247 1248 /* 1249 * xfs_log_need_covered() is not idempotent because it progresses the 1250 * state machine if the log requires covering. Therefore, we must call 1251 * this function once and use the result until we've issued an sb sync. 1252 * Do so first to make that abundantly clear. 1253 * 1254 * Fall into the covering sequence if the log needs covering or the 1255 * mount has lazy superblock accounting to sync to disk. The sb sync 1256 * used for covering accumulates the in-core counters, so covering 1257 * handles this for us. 1258 */ 1259 need_covered = xfs_log_need_covered(mp); 1260 if (!need_covered && !xfs_has_lazysbcount(mp)) 1261 return 0; 1262 1263 /* 1264 * To cover the log, commit the superblock twice (at most) in 1265 * independent checkpoints. The first serves as a reference for the 1266 * tail pointer. The sync transaction and AIL push empties the AIL and 1267 * updates the in-core tail to the LSN of the first checkpoint. The 1268 * second commit updates the on-disk tail with the in-core LSN, 1269 * covering the log. Push the AIL one more time to leave it empty, as 1270 * we found it. 1271 */ 1272 do { 1273 error = xfs_sync_sb(mp, true); 1274 if (error) 1275 break; 1276 xfs_ail_push_all_sync(mp->m_ail); 1277 } while (xfs_log_need_covered(mp)); 1278 1279 return error; 1280 } 1281 1282 /* 1283 * We may be holding the log iclog lock upon entering this routine. 1284 */ 1285 xfs_lsn_t 1286 xlog_assign_tail_lsn_locked( 1287 struct xfs_mount *mp) 1288 { 1289 struct xlog *log = mp->m_log; 1290 struct xfs_log_item *lip; 1291 xfs_lsn_t tail_lsn; 1292 1293 assert_spin_locked(&mp->m_ail->ail_lock); 1294 1295 /* 1296 * To make sure we always have a valid LSN for the log tail we keep 1297 * track of the last LSN which was committed in log->l_last_sync_lsn, 1298 * and use that when the AIL was empty. 1299 */ 1300 lip = xfs_ail_min(mp->m_ail); 1301 if (lip) 1302 tail_lsn = lip->li_lsn; 1303 else 1304 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1305 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1306 atomic64_set(&log->l_tail_lsn, tail_lsn); 1307 return tail_lsn; 1308 } 1309 1310 xfs_lsn_t 1311 xlog_assign_tail_lsn( 1312 struct xfs_mount *mp) 1313 { 1314 xfs_lsn_t tail_lsn; 1315 1316 spin_lock(&mp->m_ail->ail_lock); 1317 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1318 spin_unlock(&mp->m_ail->ail_lock); 1319 1320 return tail_lsn; 1321 } 1322 1323 /* 1324 * Return the space in the log between the tail and the head. The head 1325 * is passed in the cycle/bytes formal parms. In the special case where 1326 * the reserve head has wrapped passed the tail, this calculation is no 1327 * longer valid. In this case, just return 0 which means there is no space 1328 * in the log. This works for all places where this function is called 1329 * with the reserve head. Of course, if the write head were to ever 1330 * wrap the tail, we should blow up. Rather than catch this case here, 1331 * we depend on other ASSERTions in other parts of the code. XXXmiken 1332 * 1333 * If reservation head is behind the tail, we have a problem. Warn about it, 1334 * but then treat it as if the log is empty. 1335 * 1336 * If the log is shut down, the head and tail may be invalid or out of whack, so 1337 * shortcut invalidity asserts in this case so that we don't trigger them 1338 * falsely. 1339 */ 1340 STATIC int 1341 xlog_space_left( 1342 struct xlog *log, 1343 atomic64_t *head) 1344 { 1345 int tail_bytes; 1346 int tail_cycle; 1347 int head_cycle; 1348 int head_bytes; 1349 1350 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1351 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1352 tail_bytes = BBTOB(tail_bytes); 1353 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1354 return log->l_logsize - (head_bytes - tail_bytes); 1355 if (tail_cycle + 1 < head_cycle) 1356 return 0; 1357 1358 /* Ignore potential inconsistency when shutdown. */ 1359 if (xlog_is_shutdown(log)) 1360 return log->l_logsize; 1361 1362 if (tail_cycle < head_cycle) { 1363 ASSERT(tail_cycle == (head_cycle - 1)); 1364 return tail_bytes - head_bytes; 1365 } 1366 1367 /* 1368 * The reservation head is behind the tail. In this case we just want to 1369 * return the size of the log as the amount of space left. 1370 */ 1371 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1372 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1373 tail_cycle, tail_bytes); 1374 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1375 head_cycle, head_bytes); 1376 ASSERT(0); 1377 return log->l_logsize; 1378 } 1379 1380 1381 static void 1382 xlog_ioend_work( 1383 struct work_struct *work) 1384 { 1385 struct xlog_in_core *iclog = 1386 container_of(work, struct xlog_in_core, ic_end_io_work); 1387 struct xlog *log = iclog->ic_log; 1388 int error; 1389 1390 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1391 #ifdef DEBUG 1392 /* treat writes with injected CRC errors as failed */ 1393 if (iclog->ic_fail_crc) 1394 error = -EIO; 1395 #endif 1396 1397 /* 1398 * Race to shutdown the filesystem if we see an error. 1399 */ 1400 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1401 xfs_alert(log->l_mp, "log I/O error %d", error); 1402 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1403 } 1404 1405 xlog_state_done_syncing(iclog); 1406 bio_uninit(&iclog->ic_bio); 1407 1408 /* 1409 * Drop the lock to signal that we are done. Nothing references the 1410 * iclog after this, so an unmount waiting on this lock can now tear it 1411 * down safely. As such, it is unsafe to reference the iclog after the 1412 * unlock as we could race with it being freed. 1413 */ 1414 up(&iclog->ic_sema); 1415 } 1416 1417 /* 1418 * Return size of each in-core log record buffer. 1419 * 1420 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1421 * 1422 * If the filesystem blocksize is too large, we may need to choose a 1423 * larger size since the directory code currently logs entire blocks. 1424 */ 1425 STATIC void 1426 xlog_get_iclog_buffer_size( 1427 struct xfs_mount *mp, 1428 struct xlog *log) 1429 { 1430 if (mp->m_logbufs <= 0) 1431 mp->m_logbufs = XLOG_MAX_ICLOGS; 1432 if (mp->m_logbsize <= 0) 1433 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1434 1435 log->l_iclog_bufs = mp->m_logbufs; 1436 log->l_iclog_size = mp->m_logbsize; 1437 1438 /* 1439 * # headers = size / 32k - one header holds cycles from 32k of data. 1440 */ 1441 log->l_iclog_heads = 1442 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1443 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1444 } 1445 1446 void 1447 xfs_log_work_queue( 1448 struct xfs_mount *mp) 1449 { 1450 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1451 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1452 } 1453 1454 /* 1455 * Clear the log incompat flags if we have the opportunity. 1456 * 1457 * This only happens if we're about to log the second dummy transaction as part 1458 * of covering the log and we can get the log incompat feature usage lock. 1459 */ 1460 static inline void 1461 xlog_clear_incompat( 1462 struct xlog *log) 1463 { 1464 struct xfs_mount *mp = log->l_mp; 1465 1466 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1467 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1468 return; 1469 1470 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1471 return; 1472 1473 if (!down_write_trylock(&log->l_incompat_users)) 1474 return; 1475 1476 xfs_clear_incompat_log_features(mp); 1477 up_write(&log->l_incompat_users); 1478 } 1479 1480 /* 1481 * Every sync period we need to unpin all items in the AIL and push them to 1482 * disk. If there is nothing dirty, then we might need to cover the log to 1483 * indicate that the filesystem is idle. 1484 */ 1485 static void 1486 xfs_log_worker( 1487 struct work_struct *work) 1488 { 1489 struct xlog *log = container_of(to_delayed_work(work), 1490 struct xlog, l_work); 1491 struct xfs_mount *mp = log->l_mp; 1492 1493 /* dgc: errors ignored - not fatal and nowhere to report them */ 1494 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1495 /* 1496 * Dump a transaction into the log that contains no real change. 1497 * This is needed to stamp the current tail LSN into the log 1498 * during the covering operation. 1499 * 1500 * We cannot use an inode here for this - that will push dirty 1501 * state back up into the VFS and then periodic inode flushing 1502 * will prevent log covering from making progress. Hence we 1503 * synchronously log the superblock instead to ensure the 1504 * superblock is immediately unpinned and can be written back. 1505 */ 1506 xlog_clear_incompat(log); 1507 xfs_sync_sb(mp, true); 1508 } else 1509 xfs_log_force(mp, 0); 1510 1511 /* start pushing all the metadata that is currently dirty */ 1512 xfs_ail_push_all(mp->m_ail); 1513 1514 /* queue us up again */ 1515 xfs_log_work_queue(mp); 1516 } 1517 1518 /* 1519 * This routine initializes some of the log structure for a given mount point. 1520 * Its primary purpose is to fill in enough, so recovery can occur. However, 1521 * some other stuff may be filled in too. 1522 */ 1523 STATIC struct xlog * 1524 xlog_alloc_log( 1525 struct xfs_mount *mp, 1526 struct xfs_buftarg *log_target, 1527 xfs_daddr_t blk_offset, 1528 int num_bblks) 1529 { 1530 struct xlog *log; 1531 xlog_rec_header_t *head; 1532 xlog_in_core_t **iclogp; 1533 xlog_in_core_t *iclog, *prev_iclog=NULL; 1534 int i; 1535 int error = -ENOMEM; 1536 uint log2_size = 0; 1537 1538 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1539 if (!log) { 1540 xfs_warn(mp, "Log allocation failed: No memory!"); 1541 goto out; 1542 } 1543 1544 log->l_mp = mp; 1545 log->l_targ = log_target; 1546 log->l_logsize = BBTOB(num_bblks); 1547 log->l_logBBstart = blk_offset; 1548 log->l_logBBsize = num_bblks; 1549 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1550 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1551 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1552 1553 log->l_prev_block = -1; 1554 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1555 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1556 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1557 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1558 1559 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1560 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1561 else 1562 log->l_iclog_roundoff = BBSIZE; 1563 1564 xlog_grant_head_init(&log->l_reserve_head); 1565 xlog_grant_head_init(&log->l_write_head); 1566 1567 error = -EFSCORRUPTED; 1568 if (xfs_has_sector(mp)) { 1569 log2_size = mp->m_sb.sb_logsectlog; 1570 if (log2_size < BBSHIFT) { 1571 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1572 log2_size, BBSHIFT); 1573 goto out_free_log; 1574 } 1575 1576 log2_size -= BBSHIFT; 1577 if (log2_size > mp->m_sectbb_log) { 1578 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1579 log2_size, mp->m_sectbb_log); 1580 goto out_free_log; 1581 } 1582 1583 /* for larger sector sizes, must have v2 or external log */ 1584 if (log2_size && log->l_logBBstart > 0 && 1585 !xfs_has_logv2(mp)) { 1586 xfs_warn(mp, 1587 "log sector size (0x%x) invalid for configuration.", 1588 log2_size); 1589 goto out_free_log; 1590 } 1591 } 1592 log->l_sectBBsize = 1 << log2_size; 1593 1594 init_rwsem(&log->l_incompat_users); 1595 1596 xlog_get_iclog_buffer_size(mp, log); 1597 1598 spin_lock_init(&log->l_icloglock); 1599 init_waitqueue_head(&log->l_flush_wait); 1600 1601 iclogp = &log->l_iclog; 1602 /* 1603 * The amount of memory to allocate for the iclog structure is 1604 * rather funky due to the way the structure is defined. It is 1605 * done this way so that we can use different sizes for machines 1606 * with different amounts of memory. See the definition of 1607 * xlog_in_core_t in xfs_log_priv.h for details. 1608 */ 1609 ASSERT(log->l_iclog_size >= 4096); 1610 for (i = 0; i < log->l_iclog_bufs; i++) { 1611 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1612 sizeof(struct bio_vec); 1613 1614 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1615 if (!iclog) 1616 goto out_free_iclog; 1617 1618 *iclogp = iclog; 1619 iclog->ic_prev = prev_iclog; 1620 prev_iclog = iclog; 1621 1622 iclog->ic_data = kvzalloc(log->l_iclog_size, 1623 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1624 if (!iclog->ic_data) 1625 goto out_free_iclog; 1626 head = &iclog->ic_header; 1627 memset(head, 0, sizeof(xlog_rec_header_t)); 1628 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1629 head->h_version = cpu_to_be32( 1630 xfs_has_logv2(log->l_mp) ? 2 : 1); 1631 head->h_size = cpu_to_be32(log->l_iclog_size); 1632 /* new fields */ 1633 head->h_fmt = cpu_to_be32(XLOG_FMT); 1634 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1635 1636 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1637 iclog->ic_state = XLOG_STATE_ACTIVE; 1638 iclog->ic_log = log; 1639 atomic_set(&iclog->ic_refcnt, 0); 1640 INIT_LIST_HEAD(&iclog->ic_callbacks); 1641 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1642 1643 init_waitqueue_head(&iclog->ic_force_wait); 1644 init_waitqueue_head(&iclog->ic_write_wait); 1645 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1646 sema_init(&iclog->ic_sema, 1); 1647 1648 iclogp = &iclog->ic_next; 1649 } 1650 *iclogp = log->l_iclog; /* complete ring */ 1651 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1652 1653 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1654 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1655 WQ_HIGHPRI), 1656 0, mp->m_super->s_id); 1657 if (!log->l_ioend_workqueue) 1658 goto out_free_iclog; 1659 1660 error = xlog_cil_init(log); 1661 if (error) 1662 goto out_destroy_workqueue; 1663 return log; 1664 1665 out_destroy_workqueue: 1666 destroy_workqueue(log->l_ioend_workqueue); 1667 out_free_iclog: 1668 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1669 prev_iclog = iclog->ic_next; 1670 kmem_free(iclog->ic_data); 1671 kmem_free(iclog); 1672 if (prev_iclog == log->l_iclog) 1673 break; 1674 } 1675 out_free_log: 1676 kmem_free(log); 1677 out: 1678 return ERR_PTR(error); 1679 } /* xlog_alloc_log */ 1680 1681 /* 1682 * Compute the LSN that we'd need to push the log tail towards in order to have 1683 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1684 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1685 * log free space already meets all three thresholds, this function returns 1686 * NULLCOMMITLSN. 1687 */ 1688 xfs_lsn_t 1689 xlog_grant_push_threshold( 1690 struct xlog *log, 1691 int need_bytes) 1692 { 1693 xfs_lsn_t threshold_lsn = 0; 1694 xfs_lsn_t last_sync_lsn; 1695 int free_blocks; 1696 int free_bytes; 1697 int threshold_block; 1698 int threshold_cycle; 1699 int free_threshold; 1700 1701 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1702 1703 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1704 free_blocks = BTOBBT(free_bytes); 1705 1706 /* 1707 * Set the threshold for the minimum number of free blocks in the 1708 * log to the maximum of what the caller needs, one quarter of the 1709 * log, and 256 blocks. 1710 */ 1711 free_threshold = BTOBB(need_bytes); 1712 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1713 free_threshold = max(free_threshold, 256); 1714 if (free_blocks >= free_threshold) 1715 return NULLCOMMITLSN; 1716 1717 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1718 &threshold_block); 1719 threshold_block += free_threshold; 1720 if (threshold_block >= log->l_logBBsize) { 1721 threshold_block -= log->l_logBBsize; 1722 threshold_cycle += 1; 1723 } 1724 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1725 threshold_block); 1726 /* 1727 * Don't pass in an lsn greater than the lsn of the last 1728 * log record known to be on disk. Use a snapshot of the last sync lsn 1729 * so that it doesn't change between the compare and the set. 1730 */ 1731 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1732 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1733 threshold_lsn = last_sync_lsn; 1734 1735 return threshold_lsn; 1736 } 1737 1738 /* 1739 * Push the tail of the log if we need to do so to maintain the free log space 1740 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1741 * policy which pushes on an lsn which is further along in the log once we 1742 * reach the high water mark. In this manner, we would be creating a low water 1743 * mark. 1744 */ 1745 STATIC void 1746 xlog_grant_push_ail( 1747 struct xlog *log, 1748 int need_bytes) 1749 { 1750 xfs_lsn_t threshold_lsn; 1751 1752 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1753 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1754 return; 1755 1756 /* 1757 * Get the transaction layer to kick the dirty buffers out to 1758 * disk asynchronously. No point in trying to do this if 1759 * the filesystem is shutting down. 1760 */ 1761 xfs_ail_push(log->l_ailp, threshold_lsn); 1762 } 1763 1764 /* 1765 * Stamp cycle number in every block 1766 */ 1767 STATIC void 1768 xlog_pack_data( 1769 struct xlog *log, 1770 struct xlog_in_core *iclog, 1771 int roundoff) 1772 { 1773 int i, j, k; 1774 int size = iclog->ic_offset + roundoff; 1775 __be32 cycle_lsn; 1776 char *dp; 1777 1778 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1779 1780 dp = iclog->ic_datap; 1781 for (i = 0; i < BTOBB(size); i++) { 1782 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1783 break; 1784 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1785 *(__be32 *)dp = cycle_lsn; 1786 dp += BBSIZE; 1787 } 1788 1789 if (xfs_has_logv2(log->l_mp)) { 1790 xlog_in_core_2_t *xhdr = iclog->ic_data; 1791 1792 for ( ; i < BTOBB(size); i++) { 1793 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1794 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1795 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1796 *(__be32 *)dp = cycle_lsn; 1797 dp += BBSIZE; 1798 } 1799 1800 for (i = 1; i < log->l_iclog_heads; i++) 1801 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1802 } 1803 } 1804 1805 /* 1806 * Calculate the checksum for a log buffer. 1807 * 1808 * This is a little more complicated than it should be because the various 1809 * headers and the actual data are non-contiguous. 1810 */ 1811 __le32 1812 xlog_cksum( 1813 struct xlog *log, 1814 struct xlog_rec_header *rhead, 1815 char *dp, 1816 int size) 1817 { 1818 uint32_t crc; 1819 1820 /* first generate the crc for the record header ... */ 1821 crc = xfs_start_cksum_update((char *)rhead, 1822 sizeof(struct xlog_rec_header), 1823 offsetof(struct xlog_rec_header, h_crc)); 1824 1825 /* ... then for additional cycle data for v2 logs ... */ 1826 if (xfs_has_logv2(log->l_mp)) { 1827 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1828 int i; 1829 int xheads; 1830 1831 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1832 1833 for (i = 1; i < xheads; i++) { 1834 crc = crc32c(crc, &xhdr[i].hic_xheader, 1835 sizeof(struct xlog_rec_ext_header)); 1836 } 1837 } 1838 1839 /* ... and finally for the payload */ 1840 crc = crc32c(crc, dp, size); 1841 1842 return xfs_end_cksum(crc); 1843 } 1844 1845 static void 1846 xlog_bio_end_io( 1847 struct bio *bio) 1848 { 1849 struct xlog_in_core *iclog = bio->bi_private; 1850 1851 queue_work(iclog->ic_log->l_ioend_workqueue, 1852 &iclog->ic_end_io_work); 1853 } 1854 1855 static int 1856 xlog_map_iclog_data( 1857 struct bio *bio, 1858 void *data, 1859 size_t count) 1860 { 1861 do { 1862 struct page *page = kmem_to_page(data); 1863 unsigned int off = offset_in_page(data); 1864 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1865 1866 if (bio_add_page(bio, page, len, off) != len) 1867 return -EIO; 1868 1869 data += len; 1870 count -= len; 1871 } while (count); 1872 1873 return 0; 1874 } 1875 1876 STATIC void 1877 xlog_write_iclog( 1878 struct xlog *log, 1879 struct xlog_in_core *iclog, 1880 uint64_t bno, 1881 unsigned int count) 1882 { 1883 ASSERT(bno < log->l_logBBsize); 1884 trace_xlog_iclog_write(iclog, _RET_IP_); 1885 1886 /* 1887 * We lock the iclogbufs here so that we can serialise against I/O 1888 * completion during unmount. We might be processing a shutdown 1889 * triggered during unmount, and that can occur asynchronously to the 1890 * unmount thread, and hence we need to ensure that completes before 1891 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1892 * across the log IO to archieve that. 1893 */ 1894 down(&iclog->ic_sema); 1895 if (xlog_is_shutdown(log)) { 1896 /* 1897 * It would seem logical to return EIO here, but we rely on 1898 * the log state machine to propagate I/O errors instead of 1899 * doing it here. We kick of the state machine and unlock 1900 * the buffer manually, the code needs to be kept in sync 1901 * with the I/O completion path. 1902 */ 1903 xlog_state_done_syncing(iclog); 1904 up(&iclog->ic_sema); 1905 return; 1906 } 1907 1908 /* 1909 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1910 * IOs coming immediately after this one. This prevents the block layer 1911 * writeback throttle from throttling log writes behind background 1912 * metadata writeback and causing priority inversions. 1913 */ 1914 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1915 howmany(count, PAGE_SIZE), 1916 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1917 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1918 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1919 iclog->ic_bio.bi_private = iclog; 1920 1921 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1922 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1923 /* 1924 * For external log devices, we also need to flush the data 1925 * device cache first to ensure all metadata writeback covered 1926 * by the LSN in this iclog is on stable storage. This is slow, 1927 * but it *must* complete before we issue the external log IO. 1928 * 1929 * If the flush fails, we cannot conclude that past metadata 1930 * writeback from the log succeeded. Repeating the flush is 1931 * not possible, hence we must shut down with log IO error to 1932 * avoid shutdown re-entering this path and erroring out again. 1933 */ 1934 if (log->l_targ != log->l_mp->m_ddev_targp && 1935 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) { 1936 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1937 return; 1938 } 1939 } 1940 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1941 iclog->ic_bio.bi_opf |= REQ_FUA; 1942 1943 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1944 1945 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1946 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1947 return; 1948 } 1949 if (is_vmalloc_addr(iclog->ic_data)) 1950 flush_kernel_vmap_range(iclog->ic_data, count); 1951 1952 /* 1953 * If this log buffer would straddle the end of the log we will have 1954 * to split it up into two bios, so that we can continue at the start. 1955 */ 1956 if (bno + BTOBB(count) > log->l_logBBsize) { 1957 struct bio *split; 1958 1959 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1960 GFP_NOIO, &fs_bio_set); 1961 bio_chain(split, &iclog->ic_bio); 1962 submit_bio(split); 1963 1964 /* restart at logical offset zero for the remainder */ 1965 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1966 } 1967 1968 submit_bio(&iclog->ic_bio); 1969 } 1970 1971 /* 1972 * We need to bump cycle number for the part of the iclog that is 1973 * written to the start of the log. Watch out for the header magic 1974 * number case, though. 1975 */ 1976 static void 1977 xlog_split_iclog( 1978 struct xlog *log, 1979 void *data, 1980 uint64_t bno, 1981 unsigned int count) 1982 { 1983 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1984 unsigned int i; 1985 1986 for (i = split_offset; i < count; i += BBSIZE) { 1987 uint32_t cycle = get_unaligned_be32(data + i); 1988 1989 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1990 cycle++; 1991 put_unaligned_be32(cycle, data + i); 1992 } 1993 } 1994 1995 static int 1996 xlog_calc_iclog_size( 1997 struct xlog *log, 1998 struct xlog_in_core *iclog, 1999 uint32_t *roundoff) 2000 { 2001 uint32_t count_init, count; 2002 2003 /* Add for LR header */ 2004 count_init = log->l_iclog_hsize + iclog->ic_offset; 2005 count = roundup(count_init, log->l_iclog_roundoff); 2006 2007 *roundoff = count - count_init; 2008 2009 ASSERT(count >= count_init); 2010 ASSERT(*roundoff < log->l_iclog_roundoff); 2011 return count; 2012 } 2013 2014 /* 2015 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2016 * fashion. Previously, we should have moved the current iclog 2017 * ptr in the log to point to the next available iclog. This allows further 2018 * write to continue while this code syncs out an iclog ready to go. 2019 * Before an in-core log can be written out, the data section must be scanned 2020 * to save away the 1st word of each BBSIZE block into the header. We replace 2021 * it with the current cycle count. Each BBSIZE block is tagged with the 2022 * cycle count because there in an implicit assumption that drives will 2023 * guarantee that entire 512 byte blocks get written at once. In other words, 2024 * we can't have part of a 512 byte block written and part not written. By 2025 * tagging each block, we will know which blocks are valid when recovering 2026 * after an unclean shutdown. 2027 * 2028 * This routine is single threaded on the iclog. No other thread can be in 2029 * this routine with the same iclog. Changing contents of iclog can there- 2030 * fore be done without grabbing the state machine lock. Updating the global 2031 * log will require grabbing the lock though. 2032 * 2033 * The entire log manager uses a logical block numbering scheme. Only 2034 * xlog_write_iclog knows about the fact that the log may not start with 2035 * block zero on a given device. 2036 */ 2037 STATIC void 2038 xlog_sync( 2039 struct xlog *log, 2040 struct xlog_in_core *iclog, 2041 struct xlog_ticket *ticket) 2042 { 2043 unsigned int count; /* byte count of bwrite */ 2044 unsigned int roundoff; /* roundoff to BB or stripe */ 2045 uint64_t bno; 2046 unsigned int size; 2047 2048 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2049 trace_xlog_iclog_sync(iclog, _RET_IP_); 2050 2051 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2052 2053 /* 2054 * If we have a ticket, account for the roundoff via the ticket 2055 * reservation to avoid touching the hot grant heads needlessly. 2056 * Otherwise, we have to move grant heads directly. 2057 */ 2058 if (ticket) { 2059 ticket->t_curr_res -= roundoff; 2060 } else { 2061 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2062 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2063 } 2064 2065 /* put cycle number in every block */ 2066 xlog_pack_data(log, iclog, roundoff); 2067 2068 /* real byte length */ 2069 size = iclog->ic_offset; 2070 if (xfs_has_logv2(log->l_mp)) 2071 size += roundoff; 2072 iclog->ic_header.h_len = cpu_to_be32(size); 2073 2074 XFS_STATS_INC(log->l_mp, xs_log_writes); 2075 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2076 2077 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2078 2079 /* Do we need to split this write into 2 parts? */ 2080 if (bno + BTOBB(count) > log->l_logBBsize) 2081 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2082 2083 /* calculcate the checksum */ 2084 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2085 iclog->ic_datap, size); 2086 /* 2087 * Intentionally corrupt the log record CRC based on the error injection 2088 * frequency, if defined. This facilitates testing log recovery in the 2089 * event of torn writes. Hence, set the IOABORT state to abort the log 2090 * write on I/O completion and shutdown the fs. The subsequent mount 2091 * detects the bad CRC and attempts to recover. 2092 */ 2093 #ifdef DEBUG 2094 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2095 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2096 iclog->ic_fail_crc = true; 2097 xfs_warn(log->l_mp, 2098 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2099 be64_to_cpu(iclog->ic_header.h_lsn)); 2100 } 2101 #endif 2102 xlog_verify_iclog(log, iclog, count); 2103 xlog_write_iclog(log, iclog, bno, count); 2104 } 2105 2106 /* 2107 * Deallocate a log structure 2108 */ 2109 STATIC void 2110 xlog_dealloc_log( 2111 struct xlog *log) 2112 { 2113 xlog_in_core_t *iclog, *next_iclog; 2114 int i; 2115 2116 /* 2117 * Cycle all the iclogbuf locks to make sure all log IO completion 2118 * is done before we tear down these buffers. 2119 */ 2120 iclog = log->l_iclog; 2121 for (i = 0; i < log->l_iclog_bufs; i++) { 2122 down(&iclog->ic_sema); 2123 up(&iclog->ic_sema); 2124 iclog = iclog->ic_next; 2125 } 2126 2127 /* 2128 * Destroy the CIL after waiting for iclog IO completion because an 2129 * iclog EIO error will try to shut down the log, which accesses the 2130 * CIL to wake up the waiters. 2131 */ 2132 xlog_cil_destroy(log); 2133 2134 iclog = log->l_iclog; 2135 for (i = 0; i < log->l_iclog_bufs; i++) { 2136 next_iclog = iclog->ic_next; 2137 kmem_free(iclog->ic_data); 2138 kmem_free(iclog); 2139 iclog = next_iclog; 2140 } 2141 2142 log->l_mp->m_log = NULL; 2143 destroy_workqueue(log->l_ioend_workqueue); 2144 kmem_free(log); 2145 } 2146 2147 /* 2148 * Update counters atomically now that memcpy is done. 2149 */ 2150 static inline void 2151 xlog_state_finish_copy( 2152 struct xlog *log, 2153 struct xlog_in_core *iclog, 2154 int record_cnt, 2155 int copy_bytes) 2156 { 2157 lockdep_assert_held(&log->l_icloglock); 2158 2159 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2160 iclog->ic_offset += copy_bytes; 2161 } 2162 2163 /* 2164 * print out info relating to regions written which consume 2165 * the reservation 2166 */ 2167 void 2168 xlog_print_tic_res( 2169 struct xfs_mount *mp, 2170 struct xlog_ticket *ticket) 2171 { 2172 xfs_warn(mp, "ticket reservation summary:"); 2173 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2174 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2175 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2176 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2177 } 2178 2179 /* 2180 * Print a summary of the transaction. 2181 */ 2182 void 2183 xlog_print_trans( 2184 struct xfs_trans *tp) 2185 { 2186 struct xfs_mount *mp = tp->t_mountp; 2187 struct xfs_log_item *lip; 2188 2189 /* dump core transaction and ticket info */ 2190 xfs_warn(mp, "transaction summary:"); 2191 xfs_warn(mp, " log res = %d", tp->t_log_res); 2192 xfs_warn(mp, " log count = %d", tp->t_log_count); 2193 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2194 2195 xlog_print_tic_res(mp, tp->t_ticket); 2196 2197 /* dump each log item */ 2198 list_for_each_entry(lip, &tp->t_items, li_trans) { 2199 struct xfs_log_vec *lv = lip->li_lv; 2200 struct xfs_log_iovec *vec; 2201 int i; 2202 2203 xfs_warn(mp, "log item: "); 2204 xfs_warn(mp, " type = 0x%x", lip->li_type); 2205 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2206 if (!lv) 2207 continue; 2208 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2209 xfs_warn(mp, " size = %d", lv->lv_size); 2210 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2211 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2212 2213 /* dump each iovec for the log item */ 2214 vec = lv->lv_iovecp; 2215 for (i = 0; i < lv->lv_niovecs; i++) { 2216 int dumplen = min(vec->i_len, 32); 2217 2218 xfs_warn(mp, " iovec[%d]", i); 2219 xfs_warn(mp, " type = 0x%x", vec->i_type); 2220 xfs_warn(mp, " len = %d", vec->i_len); 2221 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2222 xfs_hex_dump(vec->i_addr, dumplen); 2223 2224 vec++; 2225 } 2226 } 2227 } 2228 2229 static inline void 2230 xlog_write_iovec( 2231 struct xlog_in_core *iclog, 2232 uint32_t *log_offset, 2233 void *data, 2234 uint32_t write_len, 2235 int *bytes_left, 2236 uint32_t *record_cnt, 2237 uint32_t *data_cnt) 2238 { 2239 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2240 ASSERT(*log_offset % sizeof(int32_t) == 0); 2241 ASSERT(write_len % sizeof(int32_t) == 0); 2242 2243 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2244 *log_offset += write_len; 2245 *bytes_left -= write_len; 2246 (*record_cnt)++; 2247 *data_cnt += write_len; 2248 } 2249 2250 /* 2251 * Write log vectors into a single iclog which is guaranteed by the caller 2252 * to have enough space to write the entire log vector into. 2253 */ 2254 static void 2255 xlog_write_full( 2256 struct xfs_log_vec *lv, 2257 struct xlog_ticket *ticket, 2258 struct xlog_in_core *iclog, 2259 uint32_t *log_offset, 2260 uint32_t *len, 2261 uint32_t *record_cnt, 2262 uint32_t *data_cnt) 2263 { 2264 int index; 2265 2266 ASSERT(*log_offset + *len <= iclog->ic_size || 2267 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2268 2269 /* 2270 * Ordered log vectors have no regions to write so this 2271 * loop will naturally skip them. 2272 */ 2273 for (index = 0; index < lv->lv_niovecs; index++) { 2274 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2275 struct xlog_op_header *ophdr = reg->i_addr; 2276 2277 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2278 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2279 reg->i_len, len, record_cnt, data_cnt); 2280 } 2281 } 2282 2283 static int 2284 xlog_write_get_more_iclog_space( 2285 struct xlog_ticket *ticket, 2286 struct xlog_in_core **iclogp, 2287 uint32_t *log_offset, 2288 uint32_t len, 2289 uint32_t *record_cnt, 2290 uint32_t *data_cnt) 2291 { 2292 struct xlog_in_core *iclog = *iclogp; 2293 struct xlog *log = iclog->ic_log; 2294 int error; 2295 2296 spin_lock(&log->l_icloglock); 2297 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2298 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2299 error = xlog_state_release_iclog(log, iclog, ticket); 2300 spin_unlock(&log->l_icloglock); 2301 if (error) 2302 return error; 2303 2304 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2305 log_offset); 2306 if (error) 2307 return error; 2308 *record_cnt = 0; 2309 *data_cnt = 0; 2310 *iclogp = iclog; 2311 return 0; 2312 } 2313 2314 /* 2315 * Write log vectors into a single iclog which is smaller than the current chain 2316 * length. We write until we cannot fit a full record into the remaining space 2317 * and then stop. We return the log vector that is to be written that cannot 2318 * wholly fit in the iclog. 2319 */ 2320 static int 2321 xlog_write_partial( 2322 struct xfs_log_vec *lv, 2323 struct xlog_ticket *ticket, 2324 struct xlog_in_core **iclogp, 2325 uint32_t *log_offset, 2326 uint32_t *len, 2327 uint32_t *record_cnt, 2328 uint32_t *data_cnt) 2329 { 2330 struct xlog_in_core *iclog = *iclogp; 2331 struct xlog_op_header *ophdr; 2332 int index = 0; 2333 uint32_t rlen; 2334 int error; 2335 2336 /* walk the logvec, copying until we run out of space in the iclog */ 2337 for (index = 0; index < lv->lv_niovecs; index++) { 2338 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2339 uint32_t reg_offset = 0; 2340 2341 /* 2342 * The first region of a continuation must have a non-zero 2343 * length otherwise log recovery will just skip over it and 2344 * start recovering from the next opheader it finds. Because we 2345 * mark the next opheader as a continuation, recovery will then 2346 * incorrectly add the continuation to the previous region and 2347 * that breaks stuff. 2348 * 2349 * Hence if there isn't space for region data after the 2350 * opheader, then we need to start afresh with a new iclog. 2351 */ 2352 if (iclog->ic_size - *log_offset <= 2353 sizeof(struct xlog_op_header)) { 2354 error = xlog_write_get_more_iclog_space(ticket, 2355 &iclog, log_offset, *len, record_cnt, 2356 data_cnt); 2357 if (error) 2358 return error; 2359 } 2360 2361 ophdr = reg->i_addr; 2362 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2363 2364 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2365 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2366 if (rlen != reg->i_len) 2367 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2368 2369 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2370 rlen, len, record_cnt, data_cnt); 2371 2372 /* If we wrote the whole region, move to the next. */ 2373 if (rlen == reg->i_len) 2374 continue; 2375 2376 /* 2377 * We now have a partially written iovec, but it can span 2378 * multiple iclogs so we loop here. First we release the iclog 2379 * we currently have, then we get a new iclog and add a new 2380 * opheader. Then we continue copying from where we were until 2381 * we either complete the iovec or fill the iclog. If we 2382 * complete the iovec, then we increment the index and go right 2383 * back to the top of the outer loop. if we fill the iclog, we 2384 * run the inner loop again. 2385 * 2386 * This is complicated by the tail of a region using all the 2387 * space in an iclog and hence requiring us to release the iclog 2388 * and get a new one before returning to the outer loop. We must 2389 * always guarantee that we exit this inner loop with at least 2390 * space for log transaction opheaders left in the current 2391 * iclog, hence we cannot just terminate the loop at the end 2392 * of the of the continuation. So we loop while there is no 2393 * space left in the current iclog, and check for the end of the 2394 * continuation after getting a new iclog. 2395 */ 2396 do { 2397 /* 2398 * Ensure we include the continuation opheader in the 2399 * space we need in the new iclog by adding that size 2400 * to the length we require. This continuation opheader 2401 * needs to be accounted to the ticket as the space it 2402 * consumes hasn't been accounted to the lv we are 2403 * writing. 2404 */ 2405 error = xlog_write_get_more_iclog_space(ticket, 2406 &iclog, log_offset, 2407 *len + sizeof(struct xlog_op_header), 2408 record_cnt, data_cnt); 2409 if (error) 2410 return error; 2411 2412 ophdr = iclog->ic_datap + *log_offset; 2413 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2414 ophdr->oh_clientid = XFS_TRANSACTION; 2415 ophdr->oh_res2 = 0; 2416 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2417 2418 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2419 *log_offset += sizeof(struct xlog_op_header); 2420 *data_cnt += sizeof(struct xlog_op_header); 2421 2422 /* 2423 * If rlen fits in the iclog, then end the region 2424 * continuation. Otherwise we're going around again. 2425 */ 2426 reg_offset += rlen; 2427 rlen = reg->i_len - reg_offset; 2428 if (rlen <= iclog->ic_size - *log_offset) 2429 ophdr->oh_flags |= XLOG_END_TRANS; 2430 else 2431 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2432 2433 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2434 ophdr->oh_len = cpu_to_be32(rlen); 2435 2436 xlog_write_iovec(iclog, log_offset, 2437 reg->i_addr + reg_offset, 2438 rlen, len, record_cnt, data_cnt); 2439 2440 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2441 } 2442 2443 /* 2444 * No more iovecs remain in this logvec so return the next log vec to 2445 * the caller so it can go back to fast path copying. 2446 */ 2447 *iclogp = iclog; 2448 return 0; 2449 } 2450 2451 /* 2452 * Write some region out to in-core log 2453 * 2454 * This will be called when writing externally provided regions or when 2455 * writing out a commit record for a given transaction. 2456 * 2457 * General algorithm: 2458 * 1. Find total length of this write. This may include adding to the 2459 * lengths passed in. 2460 * 2. Check whether we violate the tickets reservation. 2461 * 3. While writing to this iclog 2462 * A. Reserve as much space in this iclog as can get 2463 * B. If this is first write, save away start lsn 2464 * C. While writing this region: 2465 * 1. If first write of transaction, write start record 2466 * 2. Write log operation header (header per region) 2467 * 3. Find out if we can fit entire region into this iclog 2468 * 4. Potentially, verify destination memcpy ptr 2469 * 5. Memcpy (partial) region 2470 * 6. If partial copy, release iclog; otherwise, continue 2471 * copying more regions into current iclog 2472 * 4. Mark want sync bit (in simulation mode) 2473 * 5. Release iclog for potential flush to on-disk log. 2474 * 2475 * ERRORS: 2476 * 1. Panic if reservation is overrun. This should never happen since 2477 * reservation amounts are generated internal to the filesystem. 2478 * NOTES: 2479 * 1. Tickets are single threaded data structures. 2480 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2481 * syncing routine. When a single log_write region needs to span 2482 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2483 * on all log operation writes which don't contain the end of the 2484 * region. The XLOG_END_TRANS bit is used for the in-core log 2485 * operation which contains the end of the continued log_write region. 2486 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2487 * we don't really know exactly how much space will be used. As a result, 2488 * we don't update ic_offset until the end when we know exactly how many 2489 * bytes have been written out. 2490 */ 2491 int 2492 xlog_write( 2493 struct xlog *log, 2494 struct xfs_cil_ctx *ctx, 2495 struct list_head *lv_chain, 2496 struct xlog_ticket *ticket, 2497 uint32_t len) 2498 2499 { 2500 struct xlog_in_core *iclog = NULL; 2501 struct xfs_log_vec *lv; 2502 uint32_t record_cnt = 0; 2503 uint32_t data_cnt = 0; 2504 int error = 0; 2505 int log_offset; 2506 2507 if (ticket->t_curr_res < 0) { 2508 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2509 "ctx ticket reservation ran out. Need to up reservation"); 2510 xlog_print_tic_res(log->l_mp, ticket); 2511 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2512 } 2513 2514 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2515 &log_offset); 2516 if (error) 2517 return error; 2518 2519 ASSERT(log_offset <= iclog->ic_size - 1); 2520 2521 /* 2522 * If we have a context pointer, pass it the first iclog we are 2523 * writing to so it can record state needed for iclog write 2524 * ordering. 2525 */ 2526 if (ctx) 2527 xlog_cil_set_ctx_write_state(ctx, iclog); 2528 2529 list_for_each_entry(lv, lv_chain, lv_list) { 2530 /* 2531 * If the entire log vec does not fit in the iclog, punt it to 2532 * the partial copy loop which can handle this case. 2533 */ 2534 if (lv->lv_niovecs && 2535 lv->lv_bytes > iclog->ic_size - log_offset) { 2536 error = xlog_write_partial(lv, ticket, &iclog, 2537 &log_offset, &len, &record_cnt, 2538 &data_cnt); 2539 if (error) { 2540 /* 2541 * We have no iclog to release, so just return 2542 * the error immediately. 2543 */ 2544 return error; 2545 } 2546 } else { 2547 xlog_write_full(lv, ticket, iclog, &log_offset, 2548 &len, &record_cnt, &data_cnt); 2549 } 2550 } 2551 ASSERT(len == 0); 2552 2553 /* 2554 * We've already been guaranteed that the last writes will fit inside 2555 * the current iclog, and hence it will already have the space used by 2556 * those writes accounted to it. Hence we do not need to update the 2557 * iclog with the number of bytes written here. 2558 */ 2559 spin_lock(&log->l_icloglock); 2560 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2561 error = xlog_state_release_iclog(log, iclog, ticket); 2562 spin_unlock(&log->l_icloglock); 2563 2564 return error; 2565 } 2566 2567 static void 2568 xlog_state_activate_iclog( 2569 struct xlog_in_core *iclog, 2570 int *iclogs_changed) 2571 { 2572 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2573 trace_xlog_iclog_activate(iclog, _RET_IP_); 2574 2575 /* 2576 * If the number of ops in this iclog indicate it just contains the 2577 * dummy transaction, we can change state into IDLE (the second time 2578 * around). Otherwise we should change the state into NEED a dummy. 2579 * We don't need to cover the dummy. 2580 */ 2581 if (*iclogs_changed == 0 && 2582 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2583 *iclogs_changed = 1; 2584 } else { 2585 /* 2586 * We have two dirty iclogs so start over. This could also be 2587 * num of ops indicating this is not the dummy going out. 2588 */ 2589 *iclogs_changed = 2; 2590 } 2591 2592 iclog->ic_state = XLOG_STATE_ACTIVE; 2593 iclog->ic_offset = 0; 2594 iclog->ic_header.h_num_logops = 0; 2595 memset(iclog->ic_header.h_cycle_data, 0, 2596 sizeof(iclog->ic_header.h_cycle_data)); 2597 iclog->ic_header.h_lsn = 0; 2598 iclog->ic_header.h_tail_lsn = 0; 2599 } 2600 2601 /* 2602 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2603 * ACTIVE after iclog I/O has completed. 2604 */ 2605 static void 2606 xlog_state_activate_iclogs( 2607 struct xlog *log, 2608 int *iclogs_changed) 2609 { 2610 struct xlog_in_core *iclog = log->l_iclog; 2611 2612 do { 2613 if (iclog->ic_state == XLOG_STATE_DIRTY) 2614 xlog_state_activate_iclog(iclog, iclogs_changed); 2615 /* 2616 * The ordering of marking iclogs ACTIVE must be maintained, so 2617 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2618 */ 2619 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2620 break; 2621 } while ((iclog = iclog->ic_next) != log->l_iclog); 2622 } 2623 2624 static int 2625 xlog_covered_state( 2626 int prev_state, 2627 int iclogs_changed) 2628 { 2629 /* 2630 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2631 * wrote the first covering record (DONE). We go to IDLE if we just 2632 * wrote the second covering record (DONE2) and remain in IDLE until a 2633 * non-covering write occurs. 2634 */ 2635 switch (prev_state) { 2636 case XLOG_STATE_COVER_IDLE: 2637 if (iclogs_changed == 1) 2638 return XLOG_STATE_COVER_IDLE; 2639 fallthrough; 2640 case XLOG_STATE_COVER_NEED: 2641 case XLOG_STATE_COVER_NEED2: 2642 break; 2643 case XLOG_STATE_COVER_DONE: 2644 if (iclogs_changed == 1) 2645 return XLOG_STATE_COVER_NEED2; 2646 break; 2647 case XLOG_STATE_COVER_DONE2: 2648 if (iclogs_changed == 1) 2649 return XLOG_STATE_COVER_IDLE; 2650 break; 2651 default: 2652 ASSERT(0); 2653 } 2654 2655 return XLOG_STATE_COVER_NEED; 2656 } 2657 2658 STATIC void 2659 xlog_state_clean_iclog( 2660 struct xlog *log, 2661 struct xlog_in_core *dirty_iclog) 2662 { 2663 int iclogs_changed = 0; 2664 2665 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2666 2667 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2668 2669 xlog_state_activate_iclogs(log, &iclogs_changed); 2670 wake_up_all(&dirty_iclog->ic_force_wait); 2671 2672 if (iclogs_changed) { 2673 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2674 iclogs_changed); 2675 } 2676 } 2677 2678 STATIC xfs_lsn_t 2679 xlog_get_lowest_lsn( 2680 struct xlog *log) 2681 { 2682 struct xlog_in_core *iclog = log->l_iclog; 2683 xfs_lsn_t lowest_lsn = 0, lsn; 2684 2685 do { 2686 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2687 iclog->ic_state == XLOG_STATE_DIRTY) 2688 continue; 2689 2690 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2691 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2692 lowest_lsn = lsn; 2693 } while ((iclog = iclog->ic_next) != log->l_iclog); 2694 2695 return lowest_lsn; 2696 } 2697 2698 /* 2699 * Completion of a iclog IO does not imply that a transaction has completed, as 2700 * transactions can be large enough to span many iclogs. We cannot change the 2701 * tail of the log half way through a transaction as this may be the only 2702 * transaction in the log and moving the tail to point to the middle of it 2703 * will prevent recovery from finding the start of the transaction. Hence we 2704 * should only update the last_sync_lsn if this iclog contains transaction 2705 * completion callbacks on it. 2706 * 2707 * We have to do this before we drop the icloglock to ensure we are the only one 2708 * that can update it. 2709 * 2710 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2711 * the reservation grant head pushing. This is due to the fact that the push 2712 * target is bound by the current last_sync_lsn value. Hence if we have a large 2713 * amount of log space bound up in this committing transaction then the 2714 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2715 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2716 * should push the AIL to ensure the push target (and hence the grant head) is 2717 * no longer bound by the old log head location and can move forwards and make 2718 * progress again. 2719 */ 2720 static void 2721 xlog_state_set_callback( 2722 struct xlog *log, 2723 struct xlog_in_core *iclog, 2724 xfs_lsn_t header_lsn) 2725 { 2726 trace_xlog_iclog_callback(iclog, _RET_IP_); 2727 iclog->ic_state = XLOG_STATE_CALLBACK; 2728 2729 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2730 header_lsn) <= 0); 2731 2732 if (list_empty_careful(&iclog->ic_callbacks)) 2733 return; 2734 2735 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2736 xlog_grant_push_ail(log, 0); 2737 } 2738 2739 /* 2740 * Return true if we need to stop processing, false to continue to the next 2741 * iclog. The caller will need to run callbacks if the iclog is returned in the 2742 * XLOG_STATE_CALLBACK state. 2743 */ 2744 static bool 2745 xlog_state_iodone_process_iclog( 2746 struct xlog *log, 2747 struct xlog_in_core *iclog) 2748 { 2749 xfs_lsn_t lowest_lsn; 2750 xfs_lsn_t header_lsn; 2751 2752 switch (iclog->ic_state) { 2753 case XLOG_STATE_ACTIVE: 2754 case XLOG_STATE_DIRTY: 2755 /* 2756 * Skip all iclogs in the ACTIVE & DIRTY states: 2757 */ 2758 return false; 2759 case XLOG_STATE_DONE_SYNC: 2760 /* 2761 * Now that we have an iclog that is in the DONE_SYNC state, do 2762 * one more check here to see if we have chased our tail around. 2763 * If this is not the lowest lsn iclog, then we will leave it 2764 * for another completion to process. 2765 */ 2766 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2767 lowest_lsn = xlog_get_lowest_lsn(log); 2768 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2769 return false; 2770 xlog_state_set_callback(log, iclog, header_lsn); 2771 return false; 2772 default: 2773 /* 2774 * Can only perform callbacks in order. Since this iclog is not 2775 * in the DONE_SYNC state, we skip the rest and just try to 2776 * clean up. 2777 */ 2778 return true; 2779 } 2780 } 2781 2782 /* 2783 * Loop over all the iclogs, running attached callbacks on them. Return true if 2784 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2785 * to handle transient shutdown state here at all because 2786 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2787 * cleanup of the callbacks. 2788 */ 2789 static bool 2790 xlog_state_do_iclog_callbacks( 2791 struct xlog *log) 2792 __releases(&log->l_icloglock) 2793 __acquires(&log->l_icloglock) 2794 { 2795 struct xlog_in_core *first_iclog = log->l_iclog; 2796 struct xlog_in_core *iclog = first_iclog; 2797 bool ran_callback = false; 2798 2799 do { 2800 LIST_HEAD(cb_list); 2801 2802 if (xlog_state_iodone_process_iclog(log, iclog)) 2803 break; 2804 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2805 iclog = iclog->ic_next; 2806 continue; 2807 } 2808 list_splice_init(&iclog->ic_callbacks, &cb_list); 2809 spin_unlock(&log->l_icloglock); 2810 2811 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2812 xlog_cil_process_committed(&cb_list); 2813 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2814 ran_callback = true; 2815 2816 spin_lock(&log->l_icloglock); 2817 xlog_state_clean_iclog(log, iclog); 2818 iclog = iclog->ic_next; 2819 } while (iclog != first_iclog); 2820 2821 return ran_callback; 2822 } 2823 2824 2825 /* 2826 * Loop running iclog completion callbacks until there are no more iclogs in a 2827 * state that can run callbacks. 2828 */ 2829 STATIC void 2830 xlog_state_do_callback( 2831 struct xlog *log) 2832 { 2833 int flushcnt = 0; 2834 int repeats = 0; 2835 2836 spin_lock(&log->l_icloglock); 2837 while (xlog_state_do_iclog_callbacks(log)) { 2838 if (xlog_is_shutdown(log)) 2839 break; 2840 2841 if (++repeats > 5000) { 2842 flushcnt += repeats; 2843 repeats = 0; 2844 xfs_warn(log->l_mp, 2845 "%s: possible infinite loop (%d iterations)", 2846 __func__, flushcnt); 2847 } 2848 } 2849 2850 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2851 wake_up_all(&log->l_flush_wait); 2852 2853 spin_unlock(&log->l_icloglock); 2854 } 2855 2856 2857 /* 2858 * Finish transitioning this iclog to the dirty state. 2859 * 2860 * Callbacks could take time, so they are done outside the scope of the 2861 * global state machine log lock. 2862 */ 2863 STATIC void 2864 xlog_state_done_syncing( 2865 struct xlog_in_core *iclog) 2866 { 2867 struct xlog *log = iclog->ic_log; 2868 2869 spin_lock(&log->l_icloglock); 2870 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2871 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2872 2873 /* 2874 * If we got an error, either on the first buffer, or in the case of 2875 * split log writes, on the second, we shut down the file system and 2876 * no iclogs should ever be attempted to be written to disk again. 2877 */ 2878 if (!xlog_is_shutdown(log)) { 2879 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2880 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2881 } 2882 2883 /* 2884 * Someone could be sleeping prior to writing out the next 2885 * iclog buffer, we wake them all, one will get to do the 2886 * I/O, the others get to wait for the result. 2887 */ 2888 wake_up_all(&iclog->ic_write_wait); 2889 spin_unlock(&log->l_icloglock); 2890 xlog_state_do_callback(log); 2891 } 2892 2893 /* 2894 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2895 * sleep. We wait on the flush queue on the head iclog as that should be 2896 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2897 * we will wait here and all new writes will sleep until a sync completes. 2898 * 2899 * The in-core logs are used in a circular fashion. They are not used 2900 * out-of-order even when an iclog past the head is free. 2901 * 2902 * return: 2903 * * log_offset where xlog_write() can start writing into the in-core 2904 * log's data space. 2905 * * in-core log pointer to which xlog_write() should write. 2906 * * boolean indicating this is a continued write to an in-core log. 2907 * If this is the last write, then the in-core log's offset field 2908 * needs to be incremented, depending on the amount of data which 2909 * is copied. 2910 */ 2911 STATIC int 2912 xlog_state_get_iclog_space( 2913 struct xlog *log, 2914 int len, 2915 struct xlog_in_core **iclogp, 2916 struct xlog_ticket *ticket, 2917 int *logoffsetp) 2918 { 2919 int log_offset; 2920 xlog_rec_header_t *head; 2921 xlog_in_core_t *iclog; 2922 2923 restart: 2924 spin_lock(&log->l_icloglock); 2925 if (xlog_is_shutdown(log)) { 2926 spin_unlock(&log->l_icloglock); 2927 return -EIO; 2928 } 2929 2930 iclog = log->l_iclog; 2931 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2932 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2933 2934 /* Wait for log writes to have flushed */ 2935 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2936 goto restart; 2937 } 2938 2939 head = &iclog->ic_header; 2940 2941 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2942 log_offset = iclog->ic_offset; 2943 2944 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2945 2946 /* On the 1st write to an iclog, figure out lsn. This works 2947 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2948 * committing to. If the offset is set, that's how many blocks 2949 * must be written. 2950 */ 2951 if (log_offset == 0) { 2952 ticket->t_curr_res -= log->l_iclog_hsize; 2953 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2954 head->h_lsn = cpu_to_be64( 2955 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2956 ASSERT(log->l_curr_block >= 0); 2957 } 2958 2959 /* If there is enough room to write everything, then do it. Otherwise, 2960 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2961 * bit is on, so this will get flushed out. Don't update ic_offset 2962 * until you know exactly how many bytes get copied. Therefore, wait 2963 * until later to update ic_offset. 2964 * 2965 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2966 * can fit into remaining data section. 2967 */ 2968 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2969 int error = 0; 2970 2971 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2972 2973 /* 2974 * If we are the only one writing to this iclog, sync it to 2975 * disk. We need to do an atomic compare and decrement here to 2976 * avoid racing with concurrent atomic_dec_and_lock() calls in 2977 * xlog_state_release_iclog() when there is more than one 2978 * reference to the iclog. 2979 */ 2980 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2981 error = xlog_state_release_iclog(log, iclog, ticket); 2982 spin_unlock(&log->l_icloglock); 2983 if (error) 2984 return error; 2985 goto restart; 2986 } 2987 2988 /* Do we have enough room to write the full amount in the remainder 2989 * of this iclog? Or must we continue a write on the next iclog and 2990 * mark this iclog as completely taken? In the case where we switch 2991 * iclogs (to mark it taken), this particular iclog will release/sync 2992 * to disk in xlog_write(). 2993 */ 2994 if (len <= iclog->ic_size - iclog->ic_offset) 2995 iclog->ic_offset += len; 2996 else 2997 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2998 *iclogp = iclog; 2999 3000 ASSERT(iclog->ic_offset <= iclog->ic_size); 3001 spin_unlock(&log->l_icloglock); 3002 3003 *logoffsetp = log_offset; 3004 return 0; 3005 } 3006 3007 /* 3008 * The first cnt-1 times a ticket goes through here we don't need to move the 3009 * grant write head because the permanent reservation has reserved cnt times the 3010 * unit amount. Release part of current permanent unit reservation and reset 3011 * current reservation to be one units worth. Also move grant reservation head 3012 * forward. 3013 */ 3014 void 3015 xfs_log_ticket_regrant( 3016 struct xlog *log, 3017 struct xlog_ticket *ticket) 3018 { 3019 trace_xfs_log_ticket_regrant(log, ticket); 3020 3021 if (ticket->t_cnt > 0) 3022 ticket->t_cnt--; 3023 3024 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3025 ticket->t_curr_res); 3026 xlog_grant_sub_space(log, &log->l_write_head.grant, 3027 ticket->t_curr_res); 3028 ticket->t_curr_res = ticket->t_unit_res; 3029 3030 trace_xfs_log_ticket_regrant_sub(log, ticket); 3031 3032 /* just return if we still have some of the pre-reserved space */ 3033 if (!ticket->t_cnt) { 3034 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3035 ticket->t_unit_res); 3036 trace_xfs_log_ticket_regrant_exit(log, ticket); 3037 3038 ticket->t_curr_res = ticket->t_unit_res; 3039 } 3040 3041 xfs_log_ticket_put(ticket); 3042 } 3043 3044 /* 3045 * Give back the space left from a reservation. 3046 * 3047 * All the information we need to make a correct determination of space left 3048 * is present. For non-permanent reservations, things are quite easy. The 3049 * count should have been decremented to zero. We only need to deal with the 3050 * space remaining in the current reservation part of the ticket. If the 3051 * ticket contains a permanent reservation, there may be left over space which 3052 * needs to be released. A count of N means that N-1 refills of the current 3053 * reservation can be done before we need to ask for more space. The first 3054 * one goes to fill up the first current reservation. Once we run out of 3055 * space, the count will stay at zero and the only space remaining will be 3056 * in the current reservation field. 3057 */ 3058 void 3059 xfs_log_ticket_ungrant( 3060 struct xlog *log, 3061 struct xlog_ticket *ticket) 3062 { 3063 int bytes; 3064 3065 trace_xfs_log_ticket_ungrant(log, ticket); 3066 3067 if (ticket->t_cnt > 0) 3068 ticket->t_cnt--; 3069 3070 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3071 3072 /* 3073 * If this is a permanent reservation ticket, we may be able to free 3074 * up more space based on the remaining count. 3075 */ 3076 bytes = ticket->t_curr_res; 3077 if (ticket->t_cnt > 0) { 3078 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3079 bytes += ticket->t_unit_res*ticket->t_cnt; 3080 } 3081 3082 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3083 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3084 3085 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3086 3087 xfs_log_space_wake(log->l_mp); 3088 xfs_log_ticket_put(ticket); 3089 } 3090 3091 /* 3092 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3093 * the current iclog pointer to the next iclog in the ring. 3094 */ 3095 void 3096 xlog_state_switch_iclogs( 3097 struct xlog *log, 3098 struct xlog_in_core *iclog, 3099 int eventual_size) 3100 { 3101 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3102 assert_spin_locked(&log->l_icloglock); 3103 trace_xlog_iclog_switch(iclog, _RET_IP_); 3104 3105 if (!eventual_size) 3106 eventual_size = iclog->ic_offset; 3107 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3108 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3109 log->l_prev_block = log->l_curr_block; 3110 log->l_prev_cycle = log->l_curr_cycle; 3111 3112 /* roll log?: ic_offset changed later */ 3113 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3114 3115 /* Round up to next log-sunit */ 3116 if (log->l_iclog_roundoff > BBSIZE) { 3117 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3118 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3119 } 3120 3121 if (log->l_curr_block >= log->l_logBBsize) { 3122 /* 3123 * Rewind the current block before the cycle is bumped to make 3124 * sure that the combined LSN never transiently moves forward 3125 * when the log wraps to the next cycle. This is to support the 3126 * unlocked sample of these fields from xlog_valid_lsn(). Most 3127 * other cases should acquire l_icloglock. 3128 */ 3129 log->l_curr_block -= log->l_logBBsize; 3130 ASSERT(log->l_curr_block >= 0); 3131 smp_wmb(); 3132 log->l_curr_cycle++; 3133 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3134 log->l_curr_cycle++; 3135 } 3136 ASSERT(iclog == log->l_iclog); 3137 log->l_iclog = iclog->ic_next; 3138 } 3139 3140 /* 3141 * Force the iclog to disk and check if the iclog has been completed before 3142 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3143 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3144 * If completion has already occurred, tell the caller so that it can avoid an 3145 * unnecessary wait on the iclog. 3146 */ 3147 static int 3148 xlog_force_and_check_iclog( 3149 struct xlog_in_core *iclog, 3150 bool *completed) 3151 { 3152 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3153 int error; 3154 3155 *completed = false; 3156 error = xlog_force_iclog(iclog); 3157 if (error) 3158 return error; 3159 3160 /* 3161 * If the iclog has already been completed and reused the header LSN 3162 * will have been rewritten by completion 3163 */ 3164 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3165 *completed = true; 3166 return 0; 3167 } 3168 3169 /* 3170 * Write out all data in the in-core log as of this exact moment in time. 3171 * 3172 * Data may be written to the in-core log during this call. However, 3173 * we don't guarantee this data will be written out. A change from past 3174 * implementation means this routine will *not* write out zero length LRs. 3175 * 3176 * Basically, we try and perform an intelligent scan of the in-core logs. 3177 * If we determine there is no flushable data, we just return. There is no 3178 * flushable data if: 3179 * 3180 * 1. the current iclog is active and has no data; the previous iclog 3181 * is in the active or dirty state. 3182 * 2. the current iclog is drity, and the previous iclog is in the 3183 * active or dirty state. 3184 * 3185 * We may sleep if: 3186 * 3187 * 1. the current iclog is not in the active nor dirty state. 3188 * 2. the current iclog dirty, and the previous iclog is not in the 3189 * active nor dirty state. 3190 * 3. the current iclog is active, and there is another thread writing 3191 * to this particular iclog. 3192 * 4. a) the current iclog is active and has no other writers 3193 * b) when we return from flushing out this iclog, it is still 3194 * not in the active nor dirty state. 3195 */ 3196 int 3197 xfs_log_force( 3198 struct xfs_mount *mp, 3199 uint flags) 3200 { 3201 struct xlog *log = mp->m_log; 3202 struct xlog_in_core *iclog; 3203 3204 XFS_STATS_INC(mp, xs_log_force); 3205 trace_xfs_log_force(mp, 0, _RET_IP_); 3206 3207 xlog_cil_force(log); 3208 3209 spin_lock(&log->l_icloglock); 3210 if (xlog_is_shutdown(log)) 3211 goto out_error; 3212 3213 iclog = log->l_iclog; 3214 trace_xlog_iclog_force(iclog, _RET_IP_); 3215 3216 if (iclog->ic_state == XLOG_STATE_DIRTY || 3217 (iclog->ic_state == XLOG_STATE_ACTIVE && 3218 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3219 /* 3220 * If the head is dirty or (active and empty), then we need to 3221 * look at the previous iclog. 3222 * 3223 * If the previous iclog is active or dirty we are done. There 3224 * is nothing to sync out. Otherwise, we attach ourselves to the 3225 * previous iclog and go to sleep. 3226 */ 3227 iclog = iclog->ic_prev; 3228 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3229 if (atomic_read(&iclog->ic_refcnt) == 0) { 3230 /* We have exclusive access to this iclog. */ 3231 bool completed; 3232 3233 if (xlog_force_and_check_iclog(iclog, &completed)) 3234 goto out_error; 3235 3236 if (completed) 3237 goto out_unlock; 3238 } else { 3239 /* 3240 * Someone else is still writing to this iclog, so we 3241 * need to ensure that when they release the iclog it 3242 * gets synced immediately as we may be waiting on it. 3243 */ 3244 xlog_state_switch_iclogs(log, iclog, 0); 3245 } 3246 } 3247 3248 /* 3249 * The iclog we are about to wait on may contain the checkpoint pushed 3250 * by the above xlog_cil_force() call, but it may not have been pushed 3251 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3252 * are flushed when this iclog is written. 3253 */ 3254 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3255 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3256 3257 if (flags & XFS_LOG_SYNC) 3258 return xlog_wait_on_iclog(iclog); 3259 out_unlock: 3260 spin_unlock(&log->l_icloglock); 3261 return 0; 3262 out_error: 3263 spin_unlock(&log->l_icloglock); 3264 return -EIO; 3265 } 3266 3267 /* 3268 * Force the log to a specific LSN. 3269 * 3270 * If an iclog with that lsn can be found: 3271 * If it is in the DIRTY state, just return. 3272 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3273 * state and go to sleep or return. 3274 * If it is in any other state, go to sleep or return. 3275 * 3276 * Synchronous forces are implemented with a wait queue. All callers trying 3277 * to force a given lsn to disk must wait on the queue attached to the 3278 * specific in-core log. When given in-core log finally completes its write 3279 * to disk, that thread will wake up all threads waiting on the queue. 3280 */ 3281 static int 3282 xlog_force_lsn( 3283 struct xlog *log, 3284 xfs_lsn_t lsn, 3285 uint flags, 3286 int *log_flushed, 3287 bool already_slept) 3288 { 3289 struct xlog_in_core *iclog; 3290 bool completed; 3291 3292 spin_lock(&log->l_icloglock); 3293 if (xlog_is_shutdown(log)) 3294 goto out_error; 3295 3296 iclog = log->l_iclog; 3297 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3298 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3299 iclog = iclog->ic_next; 3300 if (iclog == log->l_iclog) 3301 goto out_unlock; 3302 } 3303 3304 switch (iclog->ic_state) { 3305 case XLOG_STATE_ACTIVE: 3306 /* 3307 * We sleep here if we haven't already slept (e.g. this is the 3308 * first time we've looked at the correct iclog buf) and the 3309 * buffer before us is going to be sync'ed. The reason for this 3310 * is that if we are doing sync transactions here, by waiting 3311 * for the previous I/O to complete, we can allow a few more 3312 * transactions into this iclog before we close it down. 3313 * 3314 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3315 * refcnt so we can release the log (which drops the ref count). 3316 * The state switch keeps new transaction commits from using 3317 * this buffer. When the current commits finish writing into 3318 * the buffer, the refcount will drop to zero and the buffer 3319 * will go out then. 3320 */ 3321 if (!already_slept && 3322 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3323 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3324 xlog_wait(&iclog->ic_prev->ic_write_wait, 3325 &log->l_icloglock); 3326 return -EAGAIN; 3327 } 3328 if (xlog_force_and_check_iclog(iclog, &completed)) 3329 goto out_error; 3330 if (log_flushed) 3331 *log_flushed = 1; 3332 if (completed) 3333 goto out_unlock; 3334 break; 3335 case XLOG_STATE_WANT_SYNC: 3336 /* 3337 * This iclog may contain the checkpoint pushed by the 3338 * xlog_cil_force_seq() call, but there are other writers still 3339 * accessing it so it hasn't been pushed to disk yet. Like the 3340 * ACTIVE case above, we need to make sure caches are flushed 3341 * when this iclog is written. 3342 */ 3343 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3344 break; 3345 default: 3346 /* 3347 * The entire checkpoint was written by the CIL force and is on 3348 * its way to disk already. It will be stable when it 3349 * completes, so we don't need to manipulate caches here at all. 3350 * We just need to wait for completion if necessary. 3351 */ 3352 break; 3353 } 3354 3355 if (flags & XFS_LOG_SYNC) 3356 return xlog_wait_on_iclog(iclog); 3357 out_unlock: 3358 spin_unlock(&log->l_icloglock); 3359 return 0; 3360 out_error: 3361 spin_unlock(&log->l_icloglock); 3362 return -EIO; 3363 } 3364 3365 /* 3366 * Force the log to a specific checkpoint sequence. 3367 * 3368 * First force the CIL so that all the required changes have been flushed to the 3369 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3370 * the iclog that needs to be flushed to stable storage. If the caller needs 3371 * a synchronous log force, we will wait on the iclog with the LSN returned by 3372 * xlog_cil_force_seq() to be completed. 3373 */ 3374 int 3375 xfs_log_force_seq( 3376 struct xfs_mount *mp, 3377 xfs_csn_t seq, 3378 uint flags, 3379 int *log_flushed) 3380 { 3381 struct xlog *log = mp->m_log; 3382 xfs_lsn_t lsn; 3383 int ret; 3384 ASSERT(seq != 0); 3385 3386 XFS_STATS_INC(mp, xs_log_force); 3387 trace_xfs_log_force(mp, seq, _RET_IP_); 3388 3389 lsn = xlog_cil_force_seq(log, seq); 3390 if (lsn == NULLCOMMITLSN) 3391 return 0; 3392 3393 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3394 if (ret == -EAGAIN) { 3395 XFS_STATS_INC(mp, xs_log_force_sleep); 3396 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3397 } 3398 return ret; 3399 } 3400 3401 /* 3402 * Free a used ticket when its refcount falls to zero. 3403 */ 3404 void 3405 xfs_log_ticket_put( 3406 xlog_ticket_t *ticket) 3407 { 3408 ASSERT(atomic_read(&ticket->t_ref) > 0); 3409 if (atomic_dec_and_test(&ticket->t_ref)) 3410 kmem_cache_free(xfs_log_ticket_cache, ticket); 3411 } 3412 3413 xlog_ticket_t * 3414 xfs_log_ticket_get( 3415 xlog_ticket_t *ticket) 3416 { 3417 ASSERT(atomic_read(&ticket->t_ref) > 0); 3418 atomic_inc(&ticket->t_ref); 3419 return ticket; 3420 } 3421 3422 /* 3423 * Figure out the total log space unit (in bytes) that would be 3424 * required for a log ticket. 3425 */ 3426 static int 3427 xlog_calc_unit_res( 3428 struct xlog *log, 3429 int unit_bytes, 3430 int *niclogs) 3431 { 3432 int iclog_space; 3433 uint num_headers; 3434 3435 /* 3436 * Permanent reservations have up to 'cnt'-1 active log operations 3437 * in the log. A unit in this case is the amount of space for one 3438 * of these log operations. Normal reservations have a cnt of 1 3439 * and their unit amount is the total amount of space required. 3440 * 3441 * The following lines of code account for non-transaction data 3442 * which occupy space in the on-disk log. 3443 * 3444 * Normal form of a transaction is: 3445 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3446 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3447 * 3448 * We need to account for all the leadup data and trailer data 3449 * around the transaction data. 3450 * And then we need to account for the worst case in terms of using 3451 * more space. 3452 * The worst case will happen if: 3453 * - the placement of the transaction happens to be such that the 3454 * roundoff is at its maximum 3455 * - the transaction data is synced before the commit record is synced 3456 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3457 * Therefore the commit record is in its own Log Record. 3458 * This can happen as the commit record is called with its 3459 * own region to xlog_write(). 3460 * This then means that in the worst case, roundoff can happen for 3461 * the commit-rec as well. 3462 * The commit-rec is smaller than padding in this scenario and so it is 3463 * not added separately. 3464 */ 3465 3466 /* for trans header */ 3467 unit_bytes += sizeof(xlog_op_header_t); 3468 unit_bytes += sizeof(xfs_trans_header_t); 3469 3470 /* for start-rec */ 3471 unit_bytes += sizeof(xlog_op_header_t); 3472 3473 /* 3474 * for LR headers - the space for data in an iclog is the size minus 3475 * the space used for the headers. If we use the iclog size, then we 3476 * undercalculate the number of headers required. 3477 * 3478 * Furthermore - the addition of op headers for split-recs might 3479 * increase the space required enough to require more log and op 3480 * headers, so take that into account too. 3481 * 3482 * IMPORTANT: This reservation makes the assumption that if this 3483 * transaction is the first in an iclog and hence has the LR headers 3484 * accounted to it, then the remaining space in the iclog is 3485 * exclusively for this transaction. i.e. if the transaction is larger 3486 * than the iclog, it will be the only thing in that iclog. 3487 * Fundamentally, this means we must pass the entire log vector to 3488 * xlog_write to guarantee this. 3489 */ 3490 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3491 num_headers = howmany(unit_bytes, iclog_space); 3492 3493 /* for split-recs - ophdrs added when data split over LRs */ 3494 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3495 3496 /* add extra header reservations if we overrun */ 3497 while (!num_headers || 3498 howmany(unit_bytes, iclog_space) > num_headers) { 3499 unit_bytes += sizeof(xlog_op_header_t); 3500 num_headers++; 3501 } 3502 unit_bytes += log->l_iclog_hsize * num_headers; 3503 3504 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3505 unit_bytes += log->l_iclog_hsize; 3506 3507 /* roundoff padding for transaction data and one for commit record */ 3508 unit_bytes += 2 * log->l_iclog_roundoff; 3509 3510 if (niclogs) 3511 *niclogs = num_headers; 3512 return unit_bytes; 3513 } 3514 3515 int 3516 xfs_log_calc_unit_res( 3517 struct xfs_mount *mp, 3518 int unit_bytes) 3519 { 3520 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3521 } 3522 3523 /* 3524 * Allocate and initialise a new log ticket. 3525 */ 3526 struct xlog_ticket * 3527 xlog_ticket_alloc( 3528 struct xlog *log, 3529 int unit_bytes, 3530 int cnt, 3531 bool permanent) 3532 { 3533 struct xlog_ticket *tic; 3534 int unit_res; 3535 3536 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3537 3538 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3539 3540 atomic_set(&tic->t_ref, 1); 3541 tic->t_task = current; 3542 INIT_LIST_HEAD(&tic->t_queue); 3543 tic->t_unit_res = unit_res; 3544 tic->t_curr_res = unit_res; 3545 tic->t_cnt = cnt; 3546 tic->t_ocnt = cnt; 3547 tic->t_tid = prandom_u32(); 3548 if (permanent) 3549 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3550 3551 return tic; 3552 } 3553 3554 #if defined(DEBUG) 3555 /* 3556 * Check to make sure the grant write head didn't just over lap the tail. If 3557 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3558 * the cycles differ by exactly one and check the byte count. 3559 * 3560 * This check is run unlocked, so can give false positives. Rather than assert 3561 * on failures, use a warn-once flag and a panic tag to allow the admin to 3562 * determine if they want to panic the machine when such an error occurs. For 3563 * debug kernels this will have the same effect as using an assert but, unlinke 3564 * an assert, it can be turned off at runtime. 3565 */ 3566 STATIC void 3567 xlog_verify_grant_tail( 3568 struct xlog *log) 3569 { 3570 int tail_cycle, tail_blocks; 3571 int cycle, space; 3572 3573 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3574 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3575 if (tail_cycle != cycle) { 3576 if (cycle - 1 != tail_cycle && 3577 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3578 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3579 "%s: cycle - 1 != tail_cycle", __func__); 3580 } 3581 3582 if (space > BBTOB(tail_blocks) && 3583 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3584 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3585 "%s: space > BBTOB(tail_blocks)", __func__); 3586 } 3587 } 3588 } 3589 3590 /* check if it will fit */ 3591 STATIC void 3592 xlog_verify_tail_lsn( 3593 struct xlog *log, 3594 struct xlog_in_core *iclog) 3595 { 3596 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3597 int blocks; 3598 3599 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3600 blocks = 3601 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3602 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3603 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3604 } else { 3605 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3606 3607 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3608 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3609 3610 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3611 if (blocks < BTOBB(iclog->ic_offset) + 1) 3612 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3613 } 3614 } 3615 3616 /* 3617 * Perform a number of checks on the iclog before writing to disk. 3618 * 3619 * 1. Make sure the iclogs are still circular 3620 * 2. Make sure we have a good magic number 3621 * 3. Make sure we don't have magic numbers in the data 3622 * 4. Check fields of each log operation header for: 3623 * A. Valid client identifier 3624 * B. tid ptr value falls in valid ptr space (user space code) 3625 * C. Length in log record header is correct according to the 3626 * individual operation headers within record. 3627 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3628 * log, check the preceding blocks of the physical log to make sure all 3629 * the cycle numbers agree with the current cycle number. 3630 */ 3631 STATIC void 3632 xlog_verify_iclog( 3633 struct xlog *log, 3634 struct xlog_in_core *iclog, 3635 int count) 3636 { 3637 xlog_op_header_t *ophead; 3638 xlog_in_core_t *icptr; 3639 xlog_in_core_2_t *xhdr; 3640 void *base_ptr, *ptr, *p; 3641 ptrdiff_t field_offset; 3642 uint8_t clientid; 3643 int len, i, j, k, op_len; 3644 int idx; 3645 3646 /* check validity of iclog pointers */ 3647 spin_lock(&log->l_icloglock); 3648 icptr = log->l_iclog; 3649 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3650 ASSERT(icptr); 3651 3652 if (icptr != log->l_iclog) 3653 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3654 spin_unlock(&log->l_icloglock); 3655 3656 /* check log magic numbers */ 3657 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3658 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3659 3660 base_ptr = ptr = &iclog->ic_header; 3661 p = &iclog->ic_header; 3662 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3663 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3664 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3665 __func__); 3666 } 3667 3668 /* check fields */ 3669 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3670 base_ptr = ptr = iclog->ic_datap; 3671 ophead = ptr; 3672 xhdr = iclog->ic_data; 3673 for (i = 0; i < len; i++) { 3674 ophead = ptr; 3675 3676 /* clientid is only 1 byte */ 3677 p = &ophead->oh_clientid; 3678 field_offset = p - base_ptr; 3679 if (field_offset & 0x1ff) { 3680 clientid = ophead->oh_clientid; 3681 } else { 3682 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3683 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3684 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3685 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3686 clientid = xlog_get_client_id( 3687 xhdr[j].hic_xheader.xh_cycle_data[k]); 3688 } else { 3689 clientid = xlog_get_client_id( 3690 iclog->ic_header.h_cycle_data[idx]); 3691 } 3692 } 3693 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3694 xfs_warn(log->l_mp, 3695 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3696 __func__, i, clientid, ophead, 3697 (unsigned long)field_offset); 3698 } 3699 3700 /* check length */ 3701 p = &ophead->oh_len; 3702 field_offset = p - base_ptr; 3703 if (field_offset & 0x1ff) { 3704 op_len = be32_to_cpu(ophead->oh_len); 3705 } else { 3706 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3707 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3708 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3709 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3710 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3711 } else { 3712 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3713 } 3714 } 3715 ptr += sizeof(xlog_op_header_t) + op_len; 3716 } 3717 } 3718 #endif 3719 3720 /* 3721 * Perform a forced shutdown on the log. 3722 * 3723 * This can be called from low level log code to trigger a shutdown, or from the 3724 * high level mount shutdown code when the mount shuts down. 3725 * 3726 * Our main objectives here are to make sure that: 3727 * a. if the shutdown was not due to a log IO error, flush the logs to 3728 * disk. Anything modified after this is ignored. 3729 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3730 * parties to find out. Nothing new gets queued after this is done. 3731 * c. Tasks sleeping on log reservations, pinned objects and 3732 * other resources get woken up. 3733 * d. The mount is also marked as shut down so that log triggered shutdowns 3734 * still behave the same as if they called xfs_forced_shutdown(). 3735 * 3736 * Return true if the shutdown cause was a log IO error and we actually shut the 3737 * log down. 3738 */ 3739 bool 3740 xlog_force_shutdown( 3741 struct xlog *log, 3742 uint32_t shutdown_flags) 3743 { 3744 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3745 3746 if (!log) 3747 return false; 3748 3749 /* 3750 * Flush all the completed transactions to disk before marking the log 3751 * being shut down. We need to do this first as shutting down the log 3752 * before the force will prevent the log force from flushing the iclogs 3753 * to disk. 3754 * 3755 * When we are in recovery, there are no transactions to flush, and 3756 * we don't want to touch the log because we don't want to perturb the 3757 * current head/tail for future recovery attempts. Hence we need to 3758 * avoid a log force in this case. 3759 * 3760 * If we are shutting down due to a log IO error, then we must avoid 3761 * trying to write the log as that may just result in more IO errors and 3762 * an endless shutdown/force loop. 3763 */ 3764 if (!log_error && !xlog_in_recovery(log)) 3765 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3766 3767 /* 3768 * Atomically set the shutdown state. If the shutdown state is already 3769 * set, there someone else is performing the shutdown and so we are done 3770 * here. This should never happen because we should only ever get called 3771 * once by the first shutdown caller. 3772 * 3773 * Much of the log state machine transitions assume that shutdown state 3774 * cannot change once they hold the log->l_icloglock. Hence we need to 3775 * hold that lock here, even though we use the atomic test_and_set_bit() 3776 * operation to set the shutdown state. 3777 */ 3778 spin_lock(&log->l_icloglock); 3779 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3780 spin_unlock(&log->l_icloglock); 3781 return false; 3782 } 3783 spin_unlock(&log->l_icloglock); 3784 3785 /* 3786 * If this log shutdown also sets the mount shutdown state, issue a 3787 * shutdown warning message. 3788 */ 3789 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3790 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3791 "Filesystem has been shut down due to log error (0x%x).", 3792 shutdown_flags); 3793 xfs_alert(log->l_mp, 3794 "Please unmount the filesystem and rectify the problem(s)."); 3795 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3796 xfs_stack_trace(); 3797 } 3798 3799 /* 3800 * We don't want anybody waiting for log reservations after this. That 3801 * means we have to wake up everybody queued up on reserveq as well as 3802 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3803 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3804 * action is protected by the grant locks. 3805 */ 3806 xlog_grant_head_wake_all(&log->l_reserve_head); 3807 xlog_grant_head_wake_all(&log->l_write_head); 3808 3809 /* 3810 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3811 * as if the log writes were completed. The abort handling in the log 3812 * item committed callback functions will do this again under lock to 3813 * avoid races. 3814 */ 3815 spin_lock(&log->l_cilp->xc_push_lock); 3816 wake_up_all(&log->l_cilp->xc_start_wait); 3817 wake_up_all(&log->l_cilp->xc_commit_wait); 3818 spin_unlock(&log->l_cilp->xc_push_lock); 3819 3820 spin_lock(&log->l_icloglock); 3821 xlog_state_shutdown_callbacks(log); 3822 spin_unlock(&log->l_icloglock); 3823 3824 wake_up_var(&log->l_opstate); 3825 return log_error; 3826 } 3827 3828 STATIC int 3829 xlog_iclogs_empty( 3830 struct xlog *log) 3831 { 3832 xlog_in_core_t *iclog; 3833 3834 iclog = log->l_iclog; 3835 do { 3836 /* endianness does not matter here, zero is zero in 3837 * any language. 3838 */ 3839 if (iclog->ic_header.h_num_logops) 3840 return 0; 3841 iclog = iclog->ic_next; 3842 } while (iclog != log->l_iclog); 3843 return 1; 3844 } 3845 3846 /* 3847 * Verify that an LSN stamped into a piece of metadata is valid. This is 3848 * intended for use in read verifiers on v5 superblocks. 3849 */ 3850 bool 3851 xfs_log_check_lsn( 3852 struct xfs_mount *mp, 3853 xfs_lsn_t lsn) 3854 { 3855 struct xlog *log = mp->m_log; 3856 bool valid; 3857 3858 /* 3859 * norecovery mode skips mount-time log processing and unconditionally 3860 * resets the in-core LSN. We can't validate in this mode, but 3861 * modifications are not allowed anyways so just return true. 3862 */ 3863 if (xfs_has_norecovery(mp)) 3864 return true; 3865 3866 /* 3867 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3868 * handled by recovery and thus safe to ignore here. 3869 */ 3870 if (lsn == NULLCOMMITLSN) 3871 return true; 3872 3873 valid = xlog_valid_lsn(mp->m_log, lsn); 3874 3875 /* warn the user about what's gone wrong before verifier failure */ 3876 if (!valid) { 3877 spin_lock(&log->l_icloglock); 3878 xfs_warn(mp, 3879 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3880 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3881 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3882 log->l_curr_cycle, log->l_curr_block); 3883 spin_unlock(&log->l_icloglock); 3884 } 3885 3886 return valid; 3887 } 3888 3889 /* 3890 * Notify the log that we're about to start using a feature that is protected 3891 * by a log incompat feature flag. This will prevent log covering from 3892 * clearing those flags. 3893 */ 3894 void 3895 xlog_use_incompat_feat( 3896 struct xlog *log) 3897 { 3898 down_read(&log->l_incompat_users); 3899 } 3900 3901 /* Notify the log that we've finished using log incompat features. */ 3902 void 3903 xlog_drop_incompat_feat( 3904 struct xlog *log) 3905 { 3906 up_read(&log->l_incompat_users); 3907 } 3908