xref: /openbmc/linux/fs/xfs/xfs_log.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(struct log	*log,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_tail(struct log *log);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 static void
99 xlog_grant_sub_space(
100 	struct log	*log,
101 	atomic64_t	*head,
102 	int		bytes)
103 {
104 	int64_t	head_val = atomic64_read(head);
105 	int64_t new, old;
106 
107 	do {
108 		int	cycle, space;
109 
110 		xlog_crack_grant_head_val(head_val, &cycle, &space);
111 
112 		space -= bytes;
113 		if (space < 0) {
114 			space += log->l_logsize;
115 			cycle--;
116 		}
117 
118 		old = head_val;
119 		new = xlog_assign_grant_head_val(cycle, space);
120 		head_val = atomic64_cmpxchg(head, old, new);
121 	} while (head_val != old);
122 }
123 
124 static void
125 xlog_grant_add_space(
126 	struct log	*log,
127 	atomic64_t	*head,
128 	int		bytes)
129 {
130 	int64_t	head_val = atomic64_read(head);
131 	int64_t new, old;
132 
133 	do {
134 		int		tmp;
135 		int		cycle, space;
136 
137 		xlog_crack_grant_head_val(head_val, &cycle, &space);
138 
139 		tmp = log->l_logsize - space;
140 		if (tmp > bytes)
141 			space += bytes;
142 		else {
143 			space = bytes - tmp;
144 			cycle++;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
155 {
156 	tic->t_res_num = 0;
157 	tic->t_res_arr_sum = 0;
158 	tic->t_res_num_ophdrs = 0;
159 }
160 
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
163 {
164 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 		/* add to overflow and start again */
166 		tic->t_res_o_flow += tic->t_res_arr_sum;
167 		tic->t_res_num = 0;
168 		tic->t_res_arr_sum = 0;
169 	}
170 
171 	tic->t_res_arr[tic->t_res_num].r_len = len;
172 	tic->t_res_arr[tic->t_res_num].r_type = type;
173 	tic->t_res_arr_sum += len;
174 	tic->t_res_num++;
175 }
176 
177 /*
178  * NOTES:
179  *
180  *	1. currblock field gets updated at startup and after in-core logs
181  *		marked as with WANT_SYNC.
182  */
183 
184 /*
185  * This routine is called when a user of a log manager ticket is done with
186  * the reservation.  If the ticket was ever used, then a commit record for
187  * the associated transaction is written out as a log operation header with
188  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
189  * a given ticket.  If the ticket was one with a permanent reservation, then
190  * a few operations are done differently.  Permanent reservation tickets by
191  * default don't release the reservation.  They just commit the current
192  * transaction with the belief that the reservation is still needed.  A flag
193  * must be passed in before permanent reservations are actually released.
194  * When these type of tickets are not released, they need to be set into
195  * the inited state again.  By doing this, a start record will be written
196  * out when the next write occurs.
197  */
198 xfs_lsn_t
199 xfs_log_done(
200 	struct xfs_mount	*mp,
201 	struct xlog_ticket	*ticket,
202 	struct xlog_in_core	**iclog,
203 	uint			flags)
204 {
205 	struct log		*log = mp->m_log;
206 	xfs_lsn_t		lsn = 0;
207 
208 	if (XLOG_FORCED_SHUTDOWN(log) ||
209 	    /*
210 	     * If nothing was ever written, don't write out commit record.
211 	     * If we get an error, just continue and give back the log ticket.
212 	     */
213 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 		lsn = (xfs_lsn_t) -1;
216 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 			flags |= XFS_LOG_REL_PERM_RESERV;
218 		}
219 	}
220 
221 
222 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
224 		trace_xfs_log_done_nonperm(log, ticket);
225 
226 		/*
227 		 * Release ticket if not permanent reservation or a specific
228 		 * request has been made to release a permanent reservation.
229 		 */
230 		xlog_ungrant_log_space(log, ticket);
231 		xfs_log_ticket_put(ticket);
232 	} else {
233 		trace_xfs_log_done_perm(log, ticket);
234 
235 		xlog_regrant_reserve_log_space(log, ticket);
236 		/* If this ticket was a permanent reservation and we aren't
237 		 * trying to release it, reset the inited flags; so next time
238 		 * we write, a start record will be written out.
239 		 */
240 		ticket->t_flags |= XLOG_TIC_INITED;
241 	}
242 
243 	return lsn;
244 }
245 
246 /*
247  * Attaches a new iclog I/O completion callback routine during
248  * transaction commit.  If the log is in error state, a non-zero
249  * return code is handed back and the caller is responsible for
250  * executing the callback at an appropriate time.
251  */
252 int
253 xfs_log_notify(
254 	struct xfs_mount	*mp,
255 	struct xlog_in_core	*iclog,
256 	xfs_log_callback_t	*cb)
257 {
258 	int	abortflg;
259 
260 	spin_lock(&iclog->ic_callback_lock);
261 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 	if (!abortflg) {
263 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 		cb->cb_next = NULL;
266 		*(iclog->ic_callback_tail) = cb;
267 		iclog->ic_callback_tail = &(cb->cb_next);
268 	}
269 	spin_unlock(&iclog->ic_callback_lock);
270 	return abortflg;
271 }
272 
273 int
274 xfs_log_release_iclog(
275 	struct xfs_mount	*mp,
276 	struct xlog_in_core	*iclog)
277 {
278 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 		return EIO;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
288  *	to the reservation.
289  *  2. Potentially, push buffers at tail of log to disk.
290  *
291  * Each reservation is going to reserve extra space for a log record header.
292  * When writes happen to the on-disk log, we don't subtract the length of the
293  * log record header from any reservation.  By wasting space in each
294  * reservation, we prevent over allocation problems.
295  */
296 int
297 xfs_log_reserve(
298 	struct xfs_mount	*mp,
299 	int		 	unit_bytes,
300 	int		 	cnt,
301 	struct xlog_ticket	**ticket,
302 	__uint8_t	 	client,
303 	uint		 	flags,
304 	uint		 	t_type)
305 {
306 	struct log		*log = mp->m_log;
307 	struct xlog_ticket	*internal_ticket;
308 	int			retval = 0;
309 
310 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
311 
312 	if (XLOG_FORCED_SHUTDOWN(log))
313 		return XFS_ERROR(EIO);
314 
315 	XFS_STATS_INC(xs_try_logspace);
316 
317 
318 	if (*ticket != NULL) {
319 		ASSERT(flags & XFS_LOG_PERM_RESERV);
320 		internal_ticket = *ticket;
321 
322 		/*
323 		 * this is a new transaction on the ticket, so we need to
324 		 * change the transaction ID so that the next transaction has a
325 		 * different TID in the log. Just add one to the existing tid
326 		 * so that we can see chains of rolling transactions in the log
327 		 * easily.
328 		 */
329 		internal_ticket->t_tid++;
330 
331 		trace_xfs_log_reserve(log, internal_ticket);
332 
333 		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 		retval = xlog_regrant_write_log_space(log, internal_ticket);
335 	} else {
336 		/* may sleep if need to allocate more tickets */
337 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 						  client, flags,
339 						  KM_SLEEP|KM_MAYFAIL);
340 		if (!internal_ticket)
341 			return XFS_ERROR(ENOMEM);
342 		internal_ticket->t_trans_type = t_type;
343 		*ticket = internal_ticket;
344 
345 		trace_xfs_log_reserve(log, internal_ticket);
346 
347 		xlog_grant_push_ail(log,
348 				    (internal_ticket->t_unit_res *
349 				     internal_ticket->t_cnt));
350 		retval = xlog_grant_log_space(log, internal_ticket);
351 	}
352 
353 	return retval;
354 }	/* xfs_log_reserve */
355 
356 
357 /*
358  * Mount a log filesystem
359  *
360  * mp		- ubiquitous xfs mount point structure
361  * log_target	- buftarg of on-disk log device
362  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
363  * num_bblocks	- Number of BBSIZE blocks in on-disk log
364  *
365  * Return error or zero.
366  */
367 int
368 xfs_log_mount(
369 	xfs_mount_t	*mp,
370 	xfs_buftarg_t	*log_target,
371 	xfs_daddr_t	blk_offset,
372 	int		num_bblks)
373 {
374 	int		error;
375 
376 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 		cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname);
378 	else {
379 		cmn_err(CE_NOTE,
380 			"Mounting filesystem \"%s\" in no-recovery mode.  Filesystem will be inconsistent.",
381 			mp->m_fsname);
382 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
383 	}
384 
385 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
386 	if (IS_ERR(mp->m_log)) {
387 		error = -PTR_ERR(mp->m_log);
388 		goto out;
389 	}
390 
391 	/*
392 	 * Initialize the AIL now we have a log.
393 	 */
394 	error = xfs_trans_ail_init(mp);
395 	if (error) {
396 		cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error);
397 		goto out_free_log;
398 	}
399 	mp->m_log->l_ailp = mp->m_ail;
400 
401 	/*
402 	 * skip log recovery on a norecovery mount.  pretend it all
403 	 * just worked.
404 	 */
405 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
406 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
407 
408 		if (readonly)
409 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
410 
411 		error = xlog_recover(mp->m_log);
412 
413 		if (readonly)
414 			mp->m_flags |= XFS_MOUNT_RDONLY;
415 		if (error) {
416 			cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error);
417 			goto out_destroy_ail;
418 		}
419 	}
420 
421 	/* Normal transactions can now occur */
422 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
423 
424 	/*
425 	 * Now the log has been fully initialised and we know were our
426 	 * space grant counters are, we can initialise the permanent ticket
427 	 * needed for delayed logging to work.
428 	 */
429 	xlog_cil_init_post_recovery(mp->m_log);
430 
431 	return 0;
432 
433 out_destroy_ail:
434 	xfs_trans_ail_destroy(mp);
435 out_free_log:
436 	xlog_dealloc_log(mp->m_log);
437 out:
438 	return error;
439 }
440 
441 /*
442  * Finish the recovery of the file system.  This is separate from
443  * the xfs_log_mount() call, because it depends on the code in
444  * xfs_mountfs() to read in the root and real-time bitmap inodes
445  * between calling xfs_log_mount() and here.
446  *
447  * mp		- ubiquitous xfs mount point structure
448  */
449 int
450 xfs_log_mount_finish(xfs_mount_t *mp)
451 {
452 	int	error;
453 
454 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 		error = xlog_recover_finish(mp->m_log);
456 	else {
457 		error = 0;
458 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
459 	}
460 
461 	return error;
462 }
463 
464 /*
465  * Final log writes as part of unmount.
466  *
467  * Mark the filesystem clean as unmount happens.  Note that during relocation
468  * this routine needs to be executed as part of source-bag while the
469  * deallocation must not be done until source-end.
470  */
471 
472 /*
473  * Unmount record used to have a string "Unmount filesystem--" in the
474  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475  * We just write the magic number now since that particular field isn't
476  * currently architecture converted and "nUmount" is a bit foo.
477  * As far as I know, there weren't any dependencies on the old behaviour.
478  */
479 
480 int
481 xfs_log_unmount_write(xfs_mount_t *mp)
482 {
483 	xlog_t		 *log = mp->m_log;
484 	xlog_in_core_t	 *iclog;
485 #ifdef DEBUG
486 	xlog_in_core_t	 *first_iclog;
487 #endif
488 	xlog_ticket_t	*tic = NULL;
489 	xfs_lsn_t	 lsn;
490 	int		 error;
491 
492 	/*
493 	 * Don't write out unmount record on read-only mounts.
494 	 * Or, if we are doing a forced umount (typically because of IO errors).
495 	 */
496 	if (mp->m_flags & XFS_MOUNT_RDONLY)
497 		return 0;
498 
499 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
501 
502 #ifdef DEBUG
503 	first_iclog = iclog = log->l_iclog;
504 	do {
505 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 			ASSERT(iclog->ic_offset == 0);
508 		}
509 		iclog = iclog->ic_next;
510 	} while (iclog != first_iclog);
511 #endif
512 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 		error = xfs_log_reserve(mp, 600, 1, &tic,
514 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 		if (!error) {
516 			/* the data section must be 32 bit size aligned */
517 			struct {
518 			    __uint16_t magic;
519 			    __uint16_t pad1;
520 			    __uint32_t pad2; /* may as well make it 64 bits */
521 			} magic = {
522 				.magic = XLOG_UNMOUNT_TYPE,
523 			};
524 			struct xfs_log_iovec reg = {
525 				.i_addr = &magic,
526 				.i_len = sizeof(magic),
527 				.i_type = XLOG_REG_TYPE_UNMOUNT,
528 			};
529 			struct xfs_log_vec vec = {
530 				.lv_niovecs = 1,
531 				.lv_iovecp = &reg,
532 			};
533 
534 			/* remove inited flag */
535 			tic->t_flags = 0;
536 			error = xlog_write(log, &vec, tic, &lsn,
537 					   NULL, XLOG_UNMOUNT_TRANS);
538 			/*
539 			 * At this point, we're umounting anyway,
540 			 * so there's no point in transitioning log state
541 			 * to IOERROR. Just continue...
542 			 */
543 		}
544 
545 		if (error) {
546 			xfs_fs_cmn_err(CE_ALERT, mp,
547 				"xfs_log_unmount: unmount record failed");
548 		}
549 
550 
551 		spin_lock(&log->l_icloglock);
552 		iclog = log->l_iclog;
553 		atomic_inc(&iclog->ic_refcnt);
554 		xlog_state_want_sync(log, iclog);
555 		spin_unlock(&log->l_icloglock);
556 		error = xlog_state_release_iclog(log, iclog);
557 
558 		spin_lock(&log->l_icloglock);
559 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
560 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
561 			if (!XLOG_FORCED_SHUTDOWN(log)) {
562 				xlog_wait(&iclog->ic_force_wait,
563 							&log->l_icloglock);
564 			} else {
565 				spin_unlock(&log->l_icloglock);
566 			}
567 		} else {
568 			spin_unlock(&log->l_icloglock);
569 		}
570 		if (tic) {
571 			trace_xfs_log_umount_write(log, tic);
572 			xlog_ungrant_log_space(log, tic);
573 			xfs_log_ticket_put(tic);
574 		}
575 	} else {
576 		/*
577 		 * We're already in forced_shutdown mode, couldn't
578 		 * even attempt to write out the unmount transaction.
579 		 *
580 		 * Go through the motions of sync'ing and releasing
581 		 * the iclog, even though no I/O will actually happen,
582 		 * we need to wait for other log I/Os that may already
583 		 * be in progress.  Do this as a separate section of
584 		 * code so we'll know if we ever get stuck here that
585 		 * we're in this odd situation of trying to unmount
586 		 * a file system that went into forced_shutdown as
587 		 * the result of an unmount..
588 		 */
589 		spin_lock(&log->l_icloglock);
590 		iclog = log->l_iclog;
591 		atomic_inc(&iclog->ic_refcnt);
592 
593 		xlog_state_want_sync(log, iclog);
594 		spin_unlock(&log->l_icloglock);
595 		error =  xlog_state_release_iclog(log, iclog);
596 
597 		spin_lock(&log->l_icloglock);
598 
599 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
600 			|| iclog->ic_state == XLOG_STATE_DIRTY
601 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
602 
603 				xlog_wait(&iclog->ic_force_wait,
604 							&log->l_icloglock);
605 		} else {
606 			spin_unlock(&log->l_icloglock);
607 		}
608 	}
609 
610 	return error;
611 }	/* xfs_log_unmount_write */
612 
613 /*
614  * Deallocate log structures for unmount/relocation.
615  *
616  * We need to stop the aild from running before we destroy
617  * and deallocate the log as the aild references the log.
618  */
619 void
620 xfs_log_unmount(xfs_mount_t *mp)
621 {
622 	xfs_trans_ail_destroy(mp);
623 	xlog_dealloc_log(mp->m_log);
624 }
625 
626 void
627 xfs_log_item_init(
628 	struct xfs_mount	*mp,
629 	struct xfs_log_item	*item,
630 	int			type,
631 	struct xfs_item_ops	*ops)
632 {
633 	item->li_mountp = mp;
634 	item->li_ailp = mp->m_ail;
635 	item->li_type = type;
636 	item->li_ops = ops;
637 	item->li_lv = NULL;
638 
639 	INIT_LIST_HEAD(&item->li_ail);
640 	INIT_LIST_HEAD(&item->li_cil);
641 }
642 
643 /*
644  * Write region vectors to log.  The write happens using the space reservation
645  * of the ticket (tic).  It is not a requirement that all writes for a given
646  * transaction occur with one call to xfs_log_write(). However, it is important
647  * to note that the transaction reservation code makes an assumption about the
648  * number of log headers a transaction requires that may be violated if you
649  * don't pass all the transaction vectors in one call....
650  */
651 int
652 xfs_log_write(
653 	struct xfs_mount	*mp,
654 	struct xfs_log_iovec	reg[],
655 	int			nentries,
656 	struct xlog_ticket	*tic,
657 	xfs_lsn_t		*start_lsn)
658 {
659 	struct log		*log = mp->m_log;
660 	int			error;
661 	struct xfs_log_vec	vec = {
662 		.lv_niovecs = nentries,
663 		.lv_iovecp = reg,
664 	};
665 
666 	if (XLOG_FORCED_SHUTDOWN(log))
667 		return XFS_ERROR(EIO);
668 
669 	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
670 	if (error)
671 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
672 	return error;
673 }
674 
675 void
676 xfs_log_move_tail(xfs_mount_t	*mp,
677 		  xfs_lsn_t	tail_lsn)
678 {
679 	xlog_ticket_t	*tic;
680 	xlog_t		*log = mp->m_log;
681 	int		need_bytes, free_bytes;
682 
683 	if (XLOG_FORCED_SHUTDOWN(log))
684 		return;
685 
686 	if (tail_lsn == 0)
687 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
688 
689 	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
690 	if (tail_lsn != 1)
691 		atomic64_set(&log->l_tail_lsn, tail_lsn);
692 
693 	if (!list_empty_careful(&log->l_writeq)) {
694 #ifdef DEBUG
695 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
696 			panic("Recovery problem");
697 #endif
698 		spin_lock(&log->l_grant_write_lock);
699 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
700 		list_for_each_entry(tic, &log->l_writeq, t_queue) {
701 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
702 
703 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
704 				break;
705 			tail_lsn = 0;
706 			free_bytes -= tic->t_unit_res;
707 			trace_xfs_log_regrant_write_wake_up(log, tic);
708 			wake_up(&tic->t_wait);
709 		}
710 		spin_unlock(&log->l_grant_write_lock);
711 	}
712 
713 	if (!list_empty_careful(&log->l_reserveq)) {
714 #ifdef DEBUG
715 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
716 			panic("Recovery problem");
717 #endif
718 		spin_lock(&log->l_grant_reserve_lock);
719 		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
720 		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
721 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
722 				need_bytes = tic->t_unit_res*tic->t_cnt;
723 			else
724 				need_bytes = tic->t_unit_res;
725 			if (free_bytes < need_bytes && tail_lsn != 1)
726 				break;
727 			tail_lsn = 0;
728 			free_bytes -= need_bytes;
729 			trace_xfs_log_grant_wake_up(log, tic);
730 			wake_up(&tic->t_wait);
731 		}
732 		spin_unlock(&log->l_grant_reserve_lock);
733 	}
734 }
735 
736 /*
737  * Determine if we have a transaction that has gone to disk
738  * that needs to be covered. To begin the transition to the idle state
739  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
740  * If we are then in a state where covering is needed, the caller is informed
741  * that dummy transactions are required to move the log into the idle state.
742  *
743  * Because this is called as part of the sync process, we should also indicate
744  * that dummy transactions should be issued in anything but the covered or
745  * idle states. This ensures that the log tail is accurately reflected in
746  * the log at the end of the sync, hence if a crash occurrs avoids replay
747  * of transactions where the metadata is already on disk.
748  */
749 int
750 xfs_log_need_covered(xfs_mount_t *mp)
751 {
752 	int		needed = 0;
753 	xlog_t		*log = mp->m_log;
754 
755 	if (!xfs_fs_writable(mp))
756 		return 0;
757 
758 	spin_lock(&log->l_icloglock);
759 	switch (log->l_covered_state) {
760 	case XLOG_STATE_COVER_DONE:
761 	case XLOG_STATE_COVER_DONE2:
762 	case XLOG_STATE_COVER_IDLE:
763 		break;
764 	case XLOG_STATE_COVER_NEED:
765 	case XLOG_STATE_COVER_NEED2:
766 		if (!xfs_trans_ail_tail(log->l_ailp) &&
767 		    xlog_iclogs_empty(log)) {
768 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
769 				log->l_covered_state = XLOG_STATE_COVER_DONE;
770 			else
771 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
772 		}
773 		/* FALLTHRU */
774 	default:
775 		needed = 1;
776 		break;
777 	}
778 	spin_unlock(&log->l_icloglock);
779 	return needed;
780 }
781 
782 /******************************************************************************
783  *
784  *	local routines
785  *
786  ******************************************************************************
787  */
788 
789 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
790  * The log manager must keep track of the last LR which was committed
791  * to disk.  The lsn of this LR will become the new tail_lsn whenever
792  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
793  * the situation where stuff could be written into the log but nothing
794  * was ever in the AIL when asked.  Eventually, we panic since the
795  * tail hits the head.
796  *
797  * We may be holding the log iclog lock upon entering this routine.
798  */
799 xfs_lsn_t
800 xlog_assign_tail_lsn(
801 	struct xfs_mount	*mp)
802 {
803 	xfs_lsn_t		tail_lsn;
804 	struct log		*log = mp->m_log;
805 
806 	tail_lsn = xfs_trans_ail_tail(mp->m_ail);
807 	if (!tail_lsn)
808 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
809 
810 	atomic64_set(&log->l_tail_lsn, tail_lsn);
811 	return tail_lsn;
812 }
813 
814 /*
815  * Return the space in the log between the tail and the head.  The head
816  * is passed in the cycle/bytes formal parms.  In the special case where
817  * the reserve head has wrapped passed the tail, this calculation is no
818  * longer valid.  In this case, just return 0 which means there is no space
819  * in the log.  This works for all places where this function is called
820  * with the reserve head.  Of course, if the write head were to ever
821  * wrap the tail, we should blow up.  Rather than catch this case here,
822  * we depend on other ASSERTions in other parts of the code.   XXXmiken
823  *
824  * This code also handles the case where the reservation head is behind
825  * the tail.  The details of this case are described below, but the end
826  * result is that we return the size of the log as the amount of space left.
827  */
828 STATIC int
829 xlog_space_left(
830 	struct log	*log,
831 	atomic64_t	*head)
832 {
833 	int		free_bytes;
834 	int		tail_bytes;
835 	int		tail_cycle;
836 	int		head_cycle;
837 	int		head_bytes;
838 
839 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
840 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
841 	tail_bytes = BBTOB(tail_bytes);
842 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
843 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
844 	else if (tail_cycle + 1 < head_cycle)
845 		return 0;
846 	else if (tail_cycle < head_cycle) {
847 		ASSERT(tail_cycle == (head_cycle - 1));
848 		free_bytes = tail_bytes - head_bytes;
849 	} else {
850 		/*
851 		 * The reservation head is behind the tail.
852 		 * In this case we just want to return the size of the
853 		 * log as the amount of space left.
854 		 */
855 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
856 			"xlog_space_left: head behind tail\n"
857 			"  tail_cycle = %d, tail_bytes = %d\n"
858 			"  GH   cycle = %d, GH   bytes = %d",
859 			tail_cycle, tail_bytes, head_cycle, head_bytes);
860 		ASSERT(0);
861 		free_bytes = log->l_logsize;
862 	}
863 	return free_bytes;
864 }
865 
866 
867 /*
868  * Log function which is called when an io completes.
869  *
870  * The log manager needs its own routine, in order to control what
871  * happens with the buffer after the write completes.
872  */
873 void
874 xlog_iodone(xfs_buf_t *bp)
875 {
876 	xlog_in_core_t	*iclog;
877 	xlog_t		*l;
878 	int		aborted;
879 
880 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
881 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
882 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
883 	aborted = 0;
884 	l = iclog->ic_log;
885 
886 	/*
887 	 * Race to shutdown the filesystem if we see an error.
888 	 */
889 	if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
890 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
891 		xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
892 		XFS_BUF_STALE(bp);
893 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
894 		/*
895 		 * This flag will be propagated to the trans-committed
896 		 * callback routines to let them know that the log-commit
897 		 * didn't succeed.
898 		 */
899 		aborted = XFS_LI_ABORTED;
900 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
901 		aborted = XFS_LI_ABORTED;
902 	}
903 
904 	/* log I/O is always issued ASYNC */
905 	ASSERT(XFS_BUF_ISASYNC(bp));
906 	xlog_state_done_syncing(iclog, aborted);
907 	/*
908 	 * do not reference the buffer (bp) here as we could race
909 	 * with it being freed after writing the unmount record to the
910 	 * log.
911 	 */
912 
913 }	/* xlog_iodone */
914 
915 /*
916  * Return size of each in-core log record buffer.
917  *
918  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
919  *
920  * If the filesystem blocksize is too large, we may need to choose a
921  * larger size since the directory code currently logs entire blocks.
922  */
923 
924 STATIC void
925 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
926 			   xlog_t	*log)
927 {
928 	int size;
929 	int xhdrs;
930 
931 	if (mp->m_logbufs <= 0)
932 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
933 	else
934 		log->l_iclog_bufs = mp->m_logbufs;
935 
936 	/*
937 	 * Buffer size passed in from mount system call.
938 	 */
939 	if (mp->m_logbsize > 0) {
940 		size = log->l_iclog_size = mp->m_logbsize;
941 		log->l_iclog_size_log = 0;
942 		while (size != 1) {
943 			log->l_iclog_size_log++;
944 			size >>= 1;
945 		}
946 
947 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
948 			/* # headers = size / 32k
949 			 * one header holds cycles from 32k of data
950 			 */
951 
952 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
953 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
954 				xhdrs++;
955 			log->l_iclog_hsize = xhdrs << BBSHIFT;
956 			log->l_iclog_heads = xhdrs;
957 		} else {
958 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
959 			log->l_iclog_hsize = BBSIZE;
960 			log->l_iclog_heads = 1;
961 		}
962 		goto done;
963 	}
964 
965 	/* All machines use 32kB buffers by default. */
966 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
967 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
968 
969 	/* the default log size is 16k or 32k which is one header sector */
970 	log->l_iclog_hsize = BBSIZE;
971 	log->l_iclog_heads = 1;
972 
973 done:
974 	/* are we being asked to make the sizes selected above visible? */
975 	if (mp->m_logbufs == 0)
976 		mp->m_logbufs = log->l_iclog_bufs;
977 	if (mp->m_logbsize == 0)
978 		mp->m_logbsize = log->l_iclog_size;
979 }	/* xlog_get_iclog_buffer_size */
980 
981 
982 /*
983  * This routine initializes some of the log structure for a given mount point.
984  * Its primary purpose is to fill in enough, so recovery can occur.  However,
985  * some other stuff may be filled in too.
986  */
987 STATIC xlog_t *
988 xlog_alloc_log(xfs_mount_t	*mp,
989 	       xfs_buftarg_t	*log_target,
990 	       xfs_daddr_t	blk_offset,
991 	       int		num_bblks)
992 {
993 	xlog_t			*log;
994 	xlog_rec_header_t	*head;
995 	xlog_in_core_t		**iclogp;
996 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
997 	xfs_buf_t		*bp;
998 	int			i;
999 	int			error = ENOMEM;
1000 	uint			log2_size = 0;
1001 
1002 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1003 	if (!log) {
1004 		xlog_warn("XFS: Log allocation failed: No memory!");
1005 		goto out;
1006 	}
1007 
1008 	log->l_mp	   = mp;
1009 	log->l_targ	   = log_target;
1010 	log->l_logsize     = BBTOB(num_bblks);
1011 	log->l_logBBstart  = blk_offset;
1012 	log->l_logBBsize   = num_bblks;
1013 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1014 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1015 
1016 	log->l_prev_block  = -1;
1017 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1018 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1019 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1020 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1021 	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1022 	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1023 	INIT_LIST_HEAD(&log->l_reserveq);
1024 	INIT_LIST_HEAD(&log->l_writeq);
1025 	spin_lock_init(&log->l_grant_reserve_lock);
1026 	spin_lock_init(&log->l_grant_write_lock);
1027 
1028 	error = EFSCORRUPTED;
1029 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1030 	        log2_size = mp->m_sb.sb_logsectlog;
1031 		if (log2_size < BBSHIFT) {
1032 			xlog_warn("XFS: Log sector size too small "
1033 				"(0x%x < 0x%x)", log2_size, BBSHIFT);
1034 			goto out_free_log;
1035 		}
1036 
1037 	        log2_size -= BBSHIFT;
1038 		if (log2_size > mp->m_sectbb_log) {
1039 			xlog_warn("XFS: Log sector size too large "
1040 				"(0x%x > 0x%x)", log2_size, mp->m_sectbb_log);
1041 			goto out_free_log;
1042 		}
1043 
1044 		/* for larger sector sizes, must have v2 or external log */
1045 		if (log2_size && log->l_logBBstart > 0 &&
1046 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1047 
1048 			xlog_warn("XFS: log sector size (0x%x) invalid "
1049 				  "for configuration.", log2_size);
1050 			goto out_free_log;
1051 		}
1052 	}
1053 	log->l_sectBBsize = 1 << log2_size;
1054 
1055 	xlog_get_iclog_buffer_size(mp, log);
1056 
1057 	error = ENOMEM;
1058 	bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1059 	if (!bp)
1060 		goto out_free_log;
1061 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1062 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1063 	ASSERT(XFS_BUF_ISBUSY(bp));
1064 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1065 	log->l_xbuf = bp;
1066 
1067 	spin_lock_init(&log->l_icloglock);
1068 	init_waitqueue_head(&log->l_flush_wait);
1069 
1070 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1071 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1072 
1073 	iclogp = &log->l_iclog;
1074 	/*
1075 	 * The amount of memory to allocate for the iclog structure is
1076 	 * rather funky due to the way the structure is defined.  It is
1077 	 * done this way so that we can use different sizes for machines
1078 	 * with different amounts of memory.  See the definition of
1079 	 * xlog_in_core_t in xfs_log_priv.h for details.
1080 	 */
1081 	ASSERT(log->l_iclog_size >= 4096);
1082 	for (i=0; i < log->l_iclog_bufs; i++) {
1083 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1084 		if (!*iclogp)
1085 			goto out_free_iclog;
1086 
1087 		iclog = *iclogp;
1088 		iclog->ic_prev = prev_iclog;
1089 		prev_iclog = iclog;
1090 
1091 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1092 						log->l_iclog_size, 0);
1093 		if (!bp)
1094 			goto out_free_iclog;
1095 		if (!XFS_BUF_CPSEMA(bp))
1096 			ASSERT(0);
1097 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1098 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1099 		iclog->ic_bp = bp;
1100 		iclog->ic_data = bp->b_addr;
1101 #ifdef DEBUG
1102 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1103 #endif
1104 		head = &iclog->ic_header;
1105 		memset(head, 0, sizeof(xlog_rec_header_t));
1106 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1107 		head->h_version = cpu_to_be32(
1108 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1109 		head->h_size = cpu_to_be32(log->l_iclog_size);
1110 		/* new fields */
1111 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1112 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1113 
1114 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1115 		iclog->ic_state = XLOG_STATE_ACTIVE;
1116 		iclog->ic_log = log;
1117 		atomic_set(&iclog->ic_refcnt, 0);
1118 		spin_lock_init(&iclog->ic_callback_lock);
1119 		iclog->ic_callback_tail = &(iclog->ic_callback);
1120 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1121 
1122 		ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1123 		ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1124 		init_waitqueue_head(&iclog->ic_force_wait);
1125 		init_waitqueue_head(&iclog->ic_write_wait);
1126 
1127 		iclogp = &iclog->ic_next;
1128 	}
1129 	*iclogp = log->l_iclog;			/* complete ring */
1130 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1131 
1132 	error = xlog_cil_init(log);
1133 	if (error)
1134 		goto out_free_iclog;
1135 	return log;
1136 
1137 out_free_iclog:
1138 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1139 		prev_iclog = iclog->ic_next;
1140 		if (iclog->ic_bp)
1141 			xfs_buf_free(iclog->ic_bp);
1142 		kmem_free(iclog);
1143 	}
1144 	spinlock_destroy(&log->l_icloglock);
1145 	xfs_buf_free(log->l_xbuf);
1146 out_free_log:
1147 	kmem_free(log);
1148 out:
1149 	return ERR_PTR(-error);
1150 }	/* xlog_alloc_log */
1151 
1152 
1153 /*
1154  * Write out the commit record of a transaction associated with the given
1155  * ticket.  Return the lsn of the commit record.
1156  */
1157 STATIC int
1158 xlog_commit_record(
1159 	struct log		*log,
1160 	struct xlog_ticket	*ticket,
1161 	struct xlog_in_core	**iclog,
1162 	xfs_lsn_t		*commitlsnp)
1163 {
1164 	struct xfs_mount *mp = log->l_mp;
1165 	int	error;
1166 	struct xfs_log_iovec reg = {
1167 		.i_addr = NULL,
1168 		.i_len = 0,
1169 		.i_type = XLOG_REG_TYPE_COMMIT,
1170 	};
1171 	struct xfs_log_vec vec = {
1172 		.lv_niovecs = 1,
1173 		.lv_iovecp = &reg,
1174 	};
1175 
1176 	ASSERT_ALWAYS(iclog);
1177 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1178 					XLOG_COMMIT_TRANS);
1179 	if (error)
1180 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1181 	return error;
1182 }
1183 
1184 /*
1185  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1186  * log space.  This code pushes on the lsn which would supposedly free up
1187  * the 25% which we want to leave free.  We may need to adopt a policy which
1188  * pushes on an lsn which is further along in the log once we reach the high
1189  * water mark.  In this manner, we would be creating a low water mark.
1190  */
1191 STATIC void
1192 xlog_grant_push_ail(
1193 	struct log	*log,
1194 	int		need_bytes)
1195 {
1196 	xfs_lsn_t	threshold_lsn = 0;
1197 	xfs_lsn_t	last_sync_lsn;
1198 	int		free_blocks;
1199 	int		free_bytes;
1200 	int		threshold_block;
1201 	int		threshold_cycle;
1202 	int		free_threshold;
1203 
1204 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1205 
1206 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1207 	free_blocks = BTOBBT(free_bytes);
1208 
1209 	/*
1210 	 * Set the threshold for the minimum number of free blocks in the
1211 	 * log to the maximum of what the caller needs, one quarter of the
1212 	 * log, and 256 blocks.
1213 	 */
1214 	free_threshold = BTOBB(need_bytes);
1215 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1216 	free_threshold = MAX(free_threshold, 256);
1217 	if (free_blocks >= free_threshold)
1218 		return;
1219 
1220 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1221 						&threshold_block);
1222 	threshold_block += free_threshold;
1223 	if (threshold_block >= log->l_logBBsize) {
1224 		threshold_block -= log->l_logBBsize;
1225 		threshold_cycle += 1;
1226 	}
1227 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1228 					threshold_block);
1229 	/*
1230 	 * Don't pass in an lsn greater than the lsn of the last
1231 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1232 	 * so that it doesn't change between the compare and the set.
1233 	 */
1234 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1235 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1236 		threshold_lsn = last_sync_lsn;
1237 
1238 	/*
1239 	 * Get the transaction layer to kick the dirty buffers out to
1240 	 * disk asynchronously. No point in trying to do this if
1241 	 * the filesystem is shutting down.
1242 	 */
1243 	if (!XLOG_FORCED_SHUTDOWN(log))
1244 		xfs_trans_ail_push(log->l_ailp, threshold_lsn);
1245 }
1246 
1247 /*
1248  * The bdstrat callback function for log bufs. This gives us a central
1249  * place to trap bufs in case we get hit by a log I/O error and need to
1250  * shutdown. Actually, in practice, even when we didn't get a log error,
1251  * we transition the iclogs to IOERROR state *after* flushing all existing
1252  * iclogs to disk. This is because we don't want anymore new transactions to be
1253  * started or completed afterwards.
1254  */
1255 STATIC int
1256 xlog_bdstrat(
1257 	struct xfs_buf		*bp)
1258 {
1259 	struct xlog_in_core	*iclog;
1260 
1261 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1262 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1263 		XFS_BUF_ERROR(bp, EIO);
1264 		XFS_BUF_STALE(bp);
1265 		xfs_buf_ioend(bp, 0);
1266 		/*
1267 		 * It would seem logical to return EIO here, but we rely on
1268 		 * the log state machine to propagate I/O errors instead of
1269 		 * doing it here.
1270 		 */
1271 		return 0;
1272 	}
1273 
1274 	bp->b_flags |= _XBF_RUN_QUEUES;
1275 	xfs_buf_iorequest(bp);
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1281  * fashion.  Previously, we should have moved the current iclog
1282  * ptr in the log to point to the next available iclog.  This allows further
1283  * write to continue while this code syncs out an iclog ready to go.
1284  * Before an in-core log can be written out, the data section must be scanned
1285  * to save away the 1st word of each BBSIZE block into the header.  We replace
1286  * it with the current cycle count.  Each BBSIZE block is tagged with the
1287  * cycle count because there in an implicit assumption that drives will
1288  * guarantee that entire 512 byte blocks get written at once.  In other words,
1289  * we can't have part of a 512 byte block written and part not written.  By
1290  * tagging each block, we will know which blocks are valid when recovering
1291  * after an unclean shutdown.
1292  *
1293  * This routine is single threaded on the iclog.  No other thread can be in
1294  * this routine with the same iclog.  Changing contents of iclog can there-
1295  * fore be done without grabbing the state machine lock.  Updating the global
1296  * log will require grabbing the lock though.
1297  *
1298  * The entire log manager uses a logical block numbering scheme.  Only
1299  * log_sync (and then only bwrite()) know about the fact that the log may
1300  * not start with block zero on a given device.  The log block start offset
1301  * is added immediately before calling bwrite().
1302  */
1303 
1304 STATIC int
1305 xlog_sync(xlog_t		*log,
1306 	  xlog_in_core_t	*iclog)
1307 {
1308 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1309 	xfs_buf_t	*bp;
1310 	int		i;
1311 	uint		count;		/* byte count of bwrite */
1312 	uint		count_init;	/* initial count before roundup */
1313 	int		roundoff;       /* roundoff to BB or stripe */
1314 	int		split = 0;	/* split write into two regions */
1315 	int		error;
1316 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1317 
1318 	XFS_STATS_INC(xs_log_writes);
1319 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1320 
1321 	/* Add for LR header */
1322 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1323 
1324 	/* Round out the log write size */
1325 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1326 		/* we have a v2 stripe unit to use */
1327 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1328 	} else {
1329 		count = BBTOB(BTOBB(count_init));
1330 	}
1331 	roundoff = count - count_init;
1332 	ASSERT(roundoff >= 0);
1333 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1334                 roundoff < log->l_mp->m_sb.sb_logsunit)
1335 		||
1336 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1337 		 roundoff < BBTOB(1)));
1338 
1339 	/* move grant heads by roundoff in sync */
1340 	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1341 	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1342 
1343 	/* put cycle number in every block */
1344 	xlog_pack_data(log, iclog, roundoff);
1345 
1346 	/* real byte length */
1347 	if (v2) {
1348 		iclog->ic_header.h_len =
1349 			cpu_to_be32(iclog->ic_offset + roundoff);
1350 	} else {
1351 		iclog->ic_header.h_len =
1352 			cpu_to_be32(iclog->ic_offset);
1353 	}
1354 
1355 	bp = iclog->ic_bp;
1356 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1357 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1358 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1359 
1360 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1361 
1362 	/* Do we need to split this write into 2 parts? */
1363 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1364 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1365 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1366 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1367 	} else {
1368 		iclog->ic_bwritecnt = 1;
1369 	}
1370 	XFS_BUF_SET_COUNT(bp, count);
1371 	XFS_BUF_SET_FSPRIVATE(bp, iclog);	/* save for later */
1372 	XFS_BUF_ZEROFLAGS(bp);
1373 	XFS_BUF_BUSY(bp);
1374 	XFS_BUF_ASYNC(bp);
1375 	bp->b_flags |= XBF_LOG_BUFFER;
1376 
1377 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1378 		XFS_BUF_ORDERED(bp);
1379 
1380 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1381 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1382 
1383 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1384 
1385 	/* account for log which doesn't start at block #0 */
1386 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1387 	/*
1388 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1389 	 * is shutting down.
1390 	 */
1391 	XFS_BUF_WRITE(bp);
1392 
1393 	if ((error = xlog_bdstrat(bp))) {
1394 		xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1395 				  XFS_BUF_ADDR(bp));
1396 		return error;
1397 	}
1398 	if (split) {
1399 		bp = iclog->ic_log->l_xbuf;
1400 		ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1401 							(unsigned long)1);
1402 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1403 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1404 		XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1405 					    (__psint_t)count), split);
1406 		XFS_BUF_SET_FSPRIVATE(bp, iclog);
1407 		XFS_BUF_ZEROFLAGS(bp);
1408 		XFS_BUF_BUSY(bp);
1409 		XFS_BUF_ASYNC(bp);
1410 		bp->b_flags |= XBF_LOG_BUFFER;
1411 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1412 			XFS_BUF_ORDERED(bp);
1413 		dptr = XFS_BUF_PTR(bp);
1414 		/*
1415 		 * Bump the cycle numbers at the start of each block
1416 		 * since this part of the buffer is at the start of
1417 		 * a new cycle.  Watch out for the header magic number
1418 		 * case, though.
1419 		 */
1420 		for (i = 0; i < split; i += BBSIZE) {
1421 			be32_add_cpu((__be32 *)dptr, 1);
1422 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1423 				be32_add_cpu((__be32 *)dptr, 1);
1424 			dptr += BBSIZE;
1425 		}
1426 
1427 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1428 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1429 
1430 		/* account for internal log which doesn't start at block #0 */
1431 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1432 		XFS_BUF_WRITE(bp);
1433 		if ((error = xlog_bdstrat(bp))) {
1434 			xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1435 					  bp, XFS_BUF_ADDR(bp));
1436 			return error;
1437 		}
1438 	}
1439 	return 0;
1440 }	/* xlog_sync */
1441 
1442 
1443 /*
1444  * Deallocate a log structure
1445  */
1446 STATIC void
1447 xlog_dealloc_log(xlog_t *log)
1448 {
1449 	xlog_in_core_t	*iclog, *next_iclog;
1450 	int		i;
1451 
1452 	xlog_cil_destroy(log);
1453 
1454 	iclog = log->l_iclog;
1455 	for (i=0; i<log->l_iclog_bufs; i++) {
1456 		xfs_buf_free(iclog->ic_bp);
1457 		next_iclog = iclog->ic_next;
1458 		kmem_free(iclog);
1459 		iclog = next_iclog;
1460 	}
1461 	spinlock_destroy(&log->l_icloglock);
1462 
1463 	xfs_buf_free(log->l_xbuf);
1464 	log->l_mp->m_log = NULL;
1465 	kmem_free(log);
1466 }	/* xlog_dealloc_log */
1467 
1468 /*
1469  * Update counters atomically now that memcpy is done.
1470  */
1471 /* ARGSUSED */
1472 static inline void
1473 xlog_state_finish_copy(xlog_t		*log,
1474 		       xlog_in_core_t	*iclog,
1475 		       int		record_cnt,
1476 		       int		copy_bytes)
1477 {
1478 	spin_lock(&log->l_icloglock);
1479 
1480 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1481 	iclog->ic_offset += copy_bytes;
1482 
1483 	spin_unlock(&log->l_icloglock);
1484 }	/* xlog_state_finish_copy */
1485 
1486 
1487 
1488 
1489 /*
1490  * print out info relating to regions written which consume
1491  * the reservation
1492  */
1493 void
1494 xlog_print_tic_res(
1495 	struct xfs_mount	*mp,
1496 	struct xlog_ticket	*ticket)
1497 {
1498 	uint i;
1499 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1500 
1501 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1502 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1503 	    "bformat",
1504 	    "bchunk",
1505 	    "efi_format",
1506 	    "efd_format",
1507 	    "iformat",
1508 	    "icore",
1509 	    "iext",
1510 	    "ibroot",
1511 	    "ilocal",
1512 	    "iattr_ext",
1513 	    "iattr_broot",
1514 	    "iattr_local",
1515 	    "qformat",
1516 	    "dquot",
1517 	    "quotaoff",
1518 	    "LR header",
1519 	    "unmount",
1520 	    "commit",
1521 	    "trans header"
1522 	};
1523 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1524 	    "SETATTR_NOT_SIZE",
1525 	    "SETATTR_SIZE",
1526 	    "INACTIVE",
1527 	    "CREATE",
1528 	    "CREATE_TRUNC",
1529 	    "TRUNCATE_FILE",
1530 	    "REMOVE",
1531 	    "LINK",
1532 	    "RENAME",
1533 	    "MKDIR",
1534 	    "RMDIR",
1535 	    "SYMLINK",
1536 	    "SET_DMATTRS",
1537 	    "GROWFS",
1538 	    "STRAT_WRITE",
1539 	    "DIOSTRAT",
1540 	    "WRITE_SYNC",
1541 	    "WRITEID",
1542 	    "ADDAFORK",
1543 	    "ATTRINVAL",
1544 	    "ATRUNCATE",
1545 	    "ATTR_SET",
1546 	    "ATTR_RM",
1547 	    "ATTR_FLAG",
1548 	    "CLEAR_AGI_BUCKET",
1549 	    "QM_SBCHANGE",
1550 	    "DUMMY1",
1551 	    "DUMMY2",
1552 	    "QM_QUOTAOFF",
1553 	    "QM_DQALLOC",
1554 	    "QM_SETQLIM",
1555 	    "QM_DQCLUSTER",
1556 	    "QM_QINOCREATE",
1557 	    "QM_QUOTAOFF_END",
1558 	    "SB_UNIT",
1559 	    "FSYNC_TS",
1560 	    "GROWFSRT_ALLOC",
1561 	    "GROWFSRT_ZERO",
1562 	    "GROWFSRT_FREE",
1563 	    "SWAPEXT"
1564 	};
1565 
1566 	xfs_fs_cmn_err(CE_WARN, mp,
1567 			"xfs_log_write: reservation summary:\n"
1568 			"  trans type  = %s (%u)\n"
1569 			"  unit res    = %d bytes\n"
1570 			"  current res = %d bytes\n"
1571 			"  total reg   = %u bytes (o/flow = %u bytes)\n"
1572 			"  ophdrs      = %u (ophdr space = %u bytes)\n"
1573 			"  ophdr + reg = %u bytes\n"
1574 			"  num regions = %u\n",
1575 			((ticket->t_trans_type <= 0 ||
1576 			  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1577 			  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1578 			ticket->t_trans_type,
1579 			ticket->t_unit_res,
1580 			ticket->t_curr_res,
1581 			ticket->t_res_arr_sum, ticket->t_res_o_flow,
1582 			ticket->t_res_num_ophdrs, ophdr_spc,
1583 			ticket->t_res_arr_sum +
1584 			ticket->t_res_o_flow + ophdr_spc,
1585 			ticket->t_res_num);
1586 
1587 	for (i = 0; i < ticket->t_res_num; i++) {
1588 		uint r_type = ticket->t_res_arr[i].r_type;
1589 		cmn_err(CE_WARN,
1590 			    "region[%u]: %s - %u bytes\n",
1591 			    i,
1592 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1593 			    "bad-rtype" : res_type_str[r_type-1]),
1594 			    ticket->t_res_arr[i].r_len);
1595 	}
1596 
1597 	xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp,
1598 		"xfs_log_write: reservation ran out. Need to up reservation");
1599 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1600 }
1601 
1602 /*
1603  * Calculate the potential space needed by the log vector.  Each region gets
1604  * its own xlog_op_header_t and may need to be double word aligned.
1605  */
1606 static int
1607 xlog_write_calc_vec_length(
1608 	struct xlog_ticket	*ticket,
1609 	struct xfs_log_vec	*log_vector)
1610 {
1611 	struct xfs_log_vec	*lv;
1612 	int			headers = 0;
1613 	int			len = 0;
1614 	int			i;
1615 
1616 	/* acct for start rec of xact */
1617 	if (ticket->t_flags & XLOG_TIC_INITED)
1618 		headers++;
1619 
1620 	for (lv = log_vector; lv; lv = lv->lv_next) {
1621 		headers += lv->lv_niovecs;
1622 
1623 		for (i = 0; i < lv->lv_niovecs; i++) {
1624 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1625 
1626 			len += vecp->i_len;
1627 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1628 		}
1629 	}
1630 
1631 	ticket->t_res_num_ophdrs += headers;
1632 	len += headers * sizeof(struct xlog_op_header);
1633 
1634 	return len;
1635 }
1636 
1637 /*
1638  * If first write for transaction, insert start record  We can't be trying to
1639  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1640  */
1641 static int
1642 xlog_write_start_rec(
1643 	struct xlog_op_header	*ophdr,
1644 	struct xlog_ticket	*ticket)
1645 {
1646 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1647 		return 0;
1648 
1649 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1650 	ophdr->oh_clientid = ticket->t_clientid;
1651 	ophdr->oh_len = 0;
1652 	ophdr->oh_flags = XLOG_START_TRANS;
1653 	ophdr->oh_res2 = 0;
1654 
1655 	ticket->t_flags &= ~XLOG_TIC_INITED;
1656 
1657 	return sizeof(struct xlog_op_header);
1658 }
1659 
1660 static xlog_op_header_t *
1661 xlog_write_setup_ophdr(
1662 	struct log		*log,
1663 	struct xlog_op_header	*ophdr,
1664 	struct xlog_ticket	*ticket,
1665 	uint			flags)
1666 {
1667 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1668 	ophdr->oh_clientid = ticket->t_clientid;
1669 	ophdr->oh_res2 = 0;
1670 
1671 	/* are we copying a commit or unmount record? */
1672 	ophdr->oh_flags = flags;
1673 
1674 	/*
1675 	 * We've seen logs corrupted with bad transaction client ids.  This
1676 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1677 	 * and shut down the filesystem.
1678 	 */
1679 	switch (ophdr->oh_clientid)  {
1680 	case XFS_TRANSACTION:
1681 	case XFS_VOLUME:
1682 	case XFS_LOG:
1683 		break;
1684 	default:
1685 		xfs_fs_cmn_err(CE_WARN, log->l_mp,
1686 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1687 			ophdr->oh_clientid, ticket);
1688 		return NULL;
1689 	}
1690 
1691 	return ophdr;
1692 }
1693 
1694 /*
1695  * Set up the parameters of the region copy into the log. This has
1696  * to handle region write split across multiple log buffers - this
1697  * state is kept external to this function so that this code can
1698  * can be written in an obvious, self documenting manner.
1699  */
1700 static int
1701 xlog_write_setup_copy(
1702 	struct xlog_ticket	*ticket,
1703 	struct xlog_op_header	*ophdr,
1704 	int			space_available,
1705 	int			space_required,
1706 	int			*copy_off,
1707 	int			*copy_len,
1708 	int			*last_was_partial_copy,
1709 	int			*bytes_consumed)
1710 {
1711 	int			still_to_copy;
1712 
1713 	still_to_copy = space_required - *bytes_consumed;
1714 	*copy_off = *bytes_consumed;
1715 
1716 	if (still_to_copy <= space_available) {
1717 		/* write of region completes here */
1718 		*copy_len = still_to_copy;
1719 		ophdr->oh_len = cpu_to_be32(*copy_len);
1720 		if (*last_was_partial_copy)
1721 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1722 		*last_was_partial_copy = 0;
1723 		*bytes_consumed = 0;
1724 		return 0;
1725 	}
1726 
1727 	/* partial write of region, needs extra log op header reservation */
1728 	*copy_len = space_available;
1729 	ophdr->oh_len = cpu_to_be32(*copy_len);
1730 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1731 	if (*last_was_partial_copy)
1732 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1733 	*bytes_consumed += *copy_len;
1734 	(*last_was_partial_copy)++;
1735 
1736 	/* account for new log op header */
1737 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1738 	ticket->t_res_num_ophdrs++;
1739 
1740 	return sizeof(struct xlog_op_header);
1741 }
1742 
1743 static int
1744 xlog_write_copy_finish(
1745 	struct log		*log,
1746 	struct xlog_in_core	*iclog,
1747 	uint			flags,
1748 	int			*record_cnt,
1749 	int			*data_cnt,
1750 	int			*partial_copy,
1751 	int			*partial_copy_len,
1752 	int			log_offset,
1753 	struct xlog_in_core	**commit_iclog)
1754 {
1755 	if (*partial_copy) {
1756 		/*
1757 		 * This iclog has already been marked WANT_SYNC by
1758 		 * xlog_state_get_iclog_space.
1759 		 */
1760 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1761 		*record_cnt = 0;
1762 		*data_cnt = 0;
1763 		return xlog_state_release_iclog(log, iclog);
1764 	}
1765 
1766 	*partial_copy = 0;
1767 	*partial_copy_len = 0;
1768 
1769 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1770 		/* no more space in this iclog - push it. */
1771 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1772 		*record_cnt = 0;
1773 		*data_cnt = 0;
1774 
1775 		spin_lock(&log->l_icloglock);
1776 		xlog_state_want_sync(log, iclog);
1777 		spin_unlock(&log->l_icloglock);
1778 
1779 		if (!commit_iclog)
1780 			return xlog_state_release_iclog(log, iclog);
1781 		ASSERT(flags & XLOG_COMMIT_TRANS);
1782 		*commit_iclog = iclog;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 /*
1789  * Write some region out to in-core log
1790  *
1791  * This will be called when writing externally provided regions or when
1792  * writing out a commit record for a given transaction.
1793  *
1794  * General algorithm:
1795  *	1. Find total length of this write.  This may include adding to the
1796  *		lengths passed in.
1797  *	2. Check whether we violate the tickets reservation.
1798  *	3. While writing to this iclog
1799  *	    A. Reserve as much space in this iclog as can get
1800  *	    B. If this is first write, save away start lsn
1801  *	    C. While writing this region:
1802  *		1. If first write of transaction, write start record
1803  *		2. Write log operation header (header per region)
1804  *		3. Find out if we can fit entire region into this iclog
1805  *		4. Potentially, verify destination memcpy ptr
1806  *		5. Memcpy (partial) region
1807  *		6. If partial copy, release iclog; otherwise, continue
1808  *			copying more regions into current iclog
1809  *	4. Mark want sync bit (in simulation mode)
1810  *	5. Release iclog for potential flush to on-disk log.
1811  *
1812  * ERRORS:
1813  * 1.	Panic if reservation is overrun.  This should never happen since
1814  *	reservation amounts are generated internal to the filesystem.
1815  * NOTES:
1816  * 1. Tickets are single threaded data structures.
1817  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1818  *	syncing routine.  When a single log_write region needs to span
1819  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1820  *	on all log operation writes which don't contain the end of the
1821  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1822  *	operation which contains the end of the continued log_write region.
1823  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1824  *	we don't really know exactly how much space will be used.  As a result,
1825  *	we don't update ic_offset until the end when we know exactly how many
1826  *	bytes have been written out.
1827  */
1828 int
1829 xlog_write(
1830 	struct log		*log,
1831 	struct xfs_log_vec	*log_vector,
1832 	struct xlog_ticket	*ticket,
1833 	xfs_lsn_t		*start_lsn,
1834 	struct xlog_in_core	**commit_iclog,
1835 	uint			flags)
1836 {
1837 	struct xlog_in_core	*iclog = NULL;
1838 	struct xfs_log_iovec	*vecp;
1839 	struct xfs_log_vec	*lv;
1840 	int			len;
1841 	int			index;
1842 	int			partial_copy = 0;
1843 	int			partial_copy_len = 0;
1844 	int			contwr = 0;
1845 	int			record_cnt = 0;
1846 	int			data_cnt = 0;
1847 	int			error;
1848 
1849 	*start_lsn = 0;
1850 
1851 	len = xlog_write_calc_vec_length(ticket, log_vector);
1852 	if (log->l_cilp) {
1853 		/*
1854 		 * Region headers and bytes are already accounted for.
1855 		 * We only need to take into account start records and
1856 		 * split regions in this function.
1857 		 */
1858 		if (ticket->t_flags & XLOG_TIC_INITED)
1859 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1860 
1861 		/*
1862 		 * Commit record headers need to be accounted for. These
1863 		 * come in as separate writes so are easy to detect.
1864 		 */
1865 		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1866 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1867 	} else
1868 		ticket->t_curr_res -= len;
1869 
1870 	if (ticket->t_curr_res < 0)
1871 		xlog_print_tic_res(log->l_mp, ticket);
1872 
1873 	index = 0;
1874 	lv = log_vector;
1875 	vecp = lv->lv_iovecp;
1876 	while (lv && index < lv->lv_niovecs) {
1877 		void		*ptr;
1878 		int		log_offset;
1879 
1880 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1881 						   &contwr, &log_offset);
1882 		if (error)
1883 			return error;
1884 
1885 		ASSERT(log_offset <= iclog->ic_size - 1);
1886 		ptr = iclog->ic_datap + log_offset;
1887 
1888 		/* start_lsn is the first lsn written to. That's all we need. */
1889 		if (!*start_lsn)
1890 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1891 
1892 		/*
1893 		 * This loop writes out as many regions as can fit in the amount
1894 		 * of space which was allocated by xlog_state_get_iclog_space().
1895 		 */
1896 		while (lv && index < lv->lv_niovecs) {
1897 			struct xfs_log_iovec	*reg = &vecp[index];
1898 			struct xlog_op_header	*ophdr;
1899 			int			start_rec_copy;
1900 			int			copy_len;
1901 			int			copy_off;
1902 
1903 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1904 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1905 
1906 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1907 			if (start_rec_copy) {
1908 				record_cnt++;
1909 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1910 						   start_rec_copy);
1911 			}
1912 
1913 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1914 			if (!ophdr)
1915 				return XFS_ERROR(EIO);
1916 
1917 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1918 					   sizeof(struct xlog_op_header));
1919 
1920 			len += xlog_write_setup_copy(ticket, ophdr,
1921 						     iclog->ic_size-log_offset,
1922 						     reg->i_len,
1923 						     &copy_off, &copy_len,
1924 						     &partial_copy,
1925 						     &partial_copy_len);
1926 			xlog_verify_dest_ptr(log, ptr);
1927 
1928 			/* copy region */
1929 			ASSERT(copy_len >= 0);
1930 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1931 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1932 
1933 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1934 			record_cnt++;
1935 			data_cnt += contwr ? copy_len : 0;
1936 
1937 			error = xlog_write_copy_finish(log, iclog, flags,
1938 						       &record_cnt, &data_cnt,
1939 						       &partial_copy,
1940 						       &partial_copy_len,
1941 						       log_offset,
1942 						       commit_iclog);
1943 			if (error)
1944 				return error;
1945 
1946 			/*
1947 			 * if we had a partial copy, we need to get more iclog
1948 			 * space but we don't want to increment the region
1949 			 * index because there is still more is this region to
1950 			 * write.
1951 			 *
1952 			 * If we completed writing this region, and we flushed
1953 			 * the iclog (indicated by resetting of the record
1954 			 * count), then we also need to get more log space. If
1955 			 * this was the last record, though, we are done and
1956 			 * can just return.
1957 			 */
1958 			if (partial_copy)
1959 				break;
1960 
1961 			if (++index == lv->lv_niovecs) {
1962 				lv = lv->lv_next;
1963 				index = 0;
1964 				if (lv)
1965 					vecp = lv->lv_iovecp;
1966 			}
1967 			if (record_cnt == 0) {
1968 				if (!lv)
1969 					return 0;
1970 				break;
1971 			}
1972 		}
1973 	}
1974 
1975 	ASSERT(len == 0);
1976 
1977 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1978 	if (!commit_iclog)
1979 		return xlog_state_release_iclog(log, iclog);
1980 
1981 	ASSERT(flags & XLOG_COMMIT_TRANS);
1982 	*commit_iclog = iclog;
1983 	return 0;
1984 }
1985 
1986 
1987 /*****************************************************************************
1988  *
1989  *		State Machine functions
1990  *
1991  *****************************************************************************
1992  */
1993 
1994 /* Clean iclogs starting from the head.  This ordering must be
1995  * maintained, so an iclog doesn't become ACTIVE beyond one that
1996  * is SYNCING.  This is also required to maintain the notion that we use
1997  * a ordered wait queue to hold off would be writers to the log when every
1998  * iclog is trying to sync to disk.
1999  *
2000  * State Change: DIRTY -> ACTIVE
2001  */
2002 STATIC void
2003 xlog_state_clean_log(xlog_t *log)
2004 {
2005 	xlog_in_core_t	*iclog;
2006 	int changed = 0;
2007 
2008 	iclog = log->l_iclog;
2009 	do {
2010 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2011 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2012 			iclog->ic_offset       = 0;
2013 			ASSERT(iclog->ic_callback == NULL);
2014 			/*
2015 			 * If the number of ops in this iclog indicate it just
2016 			 * contains the dummy transaction, we can
2017 			 * change state into IDLE (the second time around).
2018 			 * Otherwise we should change the state into
2019 			 * NEED a dummy.
2020 			 * We don't need to cover the dummy.
2021 			 */
2022 			if (!changed &&
2023 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2024 			   		XLOG_COVER_OPS)) {
2025 				changed = 1;
2026 			} else {
2027 				/*
2028 				 * We have two dirty iclogs so start over
2029 				 * This could also be num of ops indicates
2030 				 * this is not the dummy going out.
2031 				 */
2032 				changed = 2;
2033 			}
2034 			iclog->ic_header.h_num_logops = 0;
2035 			memset(iclog->ic_header.h_cycle_data, 0,
2036 			      sizeof(iclog->ic_header.h_cycle_data));
2037 			iclog->ic_header.h_lsn = 0;
2038 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2039 			/* do nothing */;
2040 		else
2041 			break;	/* stop cleaning */
2042 		iclog = iclog->ic_next;
2043 	} while (iclog != log->l_iclog);
2044 
2045 	/* log is locked when we are called */
2046 	/*
2047 	 * Change state for the dummy log recording.
2048 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2049 	 * we are done writing the dummy record.
2050 	 * If we are done with the second dummy recored (DONE2), then
2051 	 * we go to IDLE.
2052 	 */
2053 	if (changed) {
2054 		switch (log->l_covered_state) {
2055 		case XLOG_STATE_COVER_IDLE:
2056 		case XLOG_STATE_COVER_NEED:
2057 		case XLOG_STATE_COVER_NEED2:
2058 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2059 			break;
2060 
2061 		case XLOG_STATE_COVER_DONE:
2062 			if (changed == 1)
2063 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2064 			else
2065 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2066 			break;
2067 
2068 		case XLOG_STATE_COVER_DONE2:
2069 			if (changed == 1)
2070 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2071 			else
2072 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2073 			break;
2074 
2075 		default:
2076 			ASSERT(0);
2077 		}
2078 	}
2079 }	/* xlog_state_clean_log */
2080 
2081 STATIC xfs_lsn_t
2082 xlog_get_lowest_lsn(
2083 	xlog_t		*log)
2084 {
2085 	xlog_in_core_t  *lsn_log;
2086 	xfs_lsn_t	lowest_lsn, lsn;
2087 
2088 	lsn_log = log->l_iclog;
2089 	lowest_lsn = 0;
2090 	do {
2091 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2092 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2093 		if ((lsn && !lowest_lsn) ||
2094 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2095 			lowest_lsn = lsn;
2096 		}
2097 	    }
2098 	    lsn_log = lsn_log->ic_next;
2099 	} while (lsn_log != log->l_iclog);
2100 	return lowest_lsn;
2101 }
2102 
2103 
2104 STATIC void
2105 xlog_state_do_callback(
2106 	xlog_t		*log,
2107 	int		aborted,
2108 	xlog_in_core_t	*ciclog)
2109 {
2110 	xlog_in_core_t	   *iclog;
2111 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2112 						 * processed all iclogs once */
2113 	xfs_log_callback_t *cb, *cb_next;
2114 	int		   flushcnt = 0;
2115 	xfs_lsn_t	   lowest_lsn;
2116 	int		   ioerrors;	/* counter: iclogs with errors */
2117 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2118 	int		   funcdidcallbacks; /* flag: function did callbacks */
2119 	int		   repeats;	/* for issuing console warnings if
2120 					 * looping too many times */
2121 	int		   wake = 0;
2122 
2123 	spin_lock(&log->l_icloglock);
2124 	first_iclog = iclog = log->l_iclog;
2125 	ioerrors = 0;
2126 	funcdidcallbacks = 0;
2127 	repeats = 0;
2128 
2129 	do {
2130 		/*
2131 		 * Scan all iclogs starting with the one pointed to by the
2132 		 * log.  Reset this starting point each time the log is
2133 		 * unlocked (during callbacks).
2134 		 *
2135 		 * Keep looping through iclogs until one full pass is made
2136 		 * without running any callbacks.
2137 		 */
2138 		first_iclog = log->l_iclog;
2139 		iclog = log->l_iclog;
2140 		loopdidcallbacks = 0;
2141 		repeats++;
2142 
2143 		do {
2144 
2145 			/* skip all iclogs in the ACTIVE & DIRTY states */
2146 			if (iclog->ic_state &
2147 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2148 				iclog = iclog->ic_next;
2149 				continue;
2150 			}
2151 
2152 			/*
2153 			 * Between marking a filesystem SHUTDOWN and stopping
2154 			 * the log, we do flush all iclogs to disk (if there
2155 			 * wasn't a log I/O error). So, we do want things to
2156 			 * go smoothly in case of just a SHUTDOWN  w/o a
2157 			 * LOG_IO_ERROR.
2158 			 */
2159 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2160 				/*
2161 				 * Can only perform callbacks in order.  Since
2162 				 * this iclog is not in the DONE_SYNC/
2163 				 * DO_CALLBACK state, we skip the rest and
2164 				 * just try to clean up.  If we set our iclog
2165 				 * to DO_CALLBACK, we will not process it when
2166 				 * we retry since a previous iclog is in the
2167 				 * CALLBACK and the state cannot change since
2168 				 * we are holding the l_icloglock.
2169 				 */
2170 				if (!(iclog->ic_state &
2171 					(XLOG_STATE_DONE_SYNC |
2172 						 XLOG_STATE_DO_CALLBACK))) {
2173 					if (ciclog && (ciclog->ic_state ==
2174 							XLOG_STATE_DONE_SYNC)) {
2175 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2176 					}
2177 					break;
2178 				}
2179 				/*
2180 				 * We now have an iclog that is in either the
2181 				 * DO_CALLBACK or DONE_SYNC states. The other
2182 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2183 				 * caught by the above if and are going to
2184 				 * clean (i.e. we aren't doing their callbacks)
2185 				 * see the above if.
2186 				 */
2187 
2188 				/*
2189 				 * We will do one more check here to see if we
2190 				 * have chased our tail around.
2191 				 */
2192 
2193 				lowest_lsn = xlog_get_lowest_lsn(log);
2194 				if (lowest_lsn &&
2195 				    XFS_LSN_CMP(lowest_lsn,
2196 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2197 					iclog = iclog->ic_next;
2198 					continue; /* Leave this iclog for
2199 						   * another thread */
2200 				}
2201 
2202 				iclog->ic_state = XLOG_STATE_CALLBACK;
2203 
2204 
2205 				/*
2206 				 * update the last_sync_lsn before we drop the
2207 				 * icloglock to ensure we are the only one that
2208 				 * can update it.
2209 				 */
2210 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2211 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2212 				atomic64_set(&log->l_last_sync_lsn,
2213 					be64_to_cpu(iclog->ic_header.h_lsn));
2214 
2215 			} else
2216 				ioerrors++;
2217 
2218 			spin_unlock(&log->l_icloglock);
2219 
2220 			/*
2221 			 * Keep processing entries in the callback list until
2222 			 * we come around and it is empty.  We need to
2223 			 * atomically see that the list is empty and change the
2224 			 * state to DIRTY so that we don't miss any more
2225 			 * callbacks being added.
2226 			 */
2227 			spin_lock(&iclog->ic_callback_lock);
2228 			cb = iclog->ic_callback;
2229 			while (cb) {
2230 				iclog->ic_callback_tail = &(iclog->ic_callback);
2231 				iclog->ic_callback = NULL;
2232 				spin_unlock(&iclog->ic_callback_lock);
2233 
2234 				/* perform callbacks in the order given */
2235 				for (; cb; cb = cb_next) {
2236 					cb_next = cb->cb_next;
2237 					cb->cb_func(cb->cb_arg, aborted);
2238 				}
2239 				spin_lock(&iclog->ic_callback_lock);
2240 				cb = iclog->ic_callback;
2241 			}
2242 
2243 			loopdidcallbacks++;
2244 			funcdidcallbacks++;
2245 
2246 			spin_lock(&log->l_icloglock);
2247 			ASSERT(iclog->ic_callback == NULL);
2248 			spin_unlock(&iclog->ic_callback_lock);
2249 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2250 				iclog->ic_state = XLOG_STATE_DIRTY;
2251 
2252 			/*
2253 			 * Transition from DIRTY to ACTIVE if applicable.
2254 			 * NOP if STATE_IOERROR.
2255 			 */
2256 			xlog_state_clean_log(log);
2257 
2258 			/* wake up threads waiting in xfs_log_force() */
2259 			wake_up_all(&iclog->ic_force_wait);
2260 
2261 			iclog = iclog->ic_next;
2262 		} while (first_iclog != iclog);
2263 
2264 		if (repeats > 5000) {
2265 			flushcnt += repeats;
2266 			repeats = 0;
2267 			xfs_fs_cmn_err(CE_WARN, log->l_mp,
2268 				"%s: possible infinite loop (%d iterations)",
2269 				__func__, flushcnt);
2270 		}
2271 	} while (!ioerrors && loopdidcallbacks);
2272 
2273 	/*
2274 	 * make one last gasp attempt to see if iclogs are being left in
2275 	 * limbo..
2276 	 */
2277 #ifdef DEBUG
2278 	if (funcdidcallbacks) {
2279 		first_iclog = iclog = log->l_iclog;
2280 		do {
2281 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2282 			/*
2283 			 * Terminate the loop if iclogs are found in states
2284 			 * which will cause other threads to clean up iclogs.
2285 			 *
2286 			 * SYNCING - i/o completion will go through logs
2287 			 * DONE_SYNC - interrupt thread should be waiting for
2288 			 *              l_icloglock
2289 			 * IOERROR - give up hope all ye who enter here
2290 			 */
2291 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2292 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2293 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2294 			    iclog->ic_state == XLOG_STATE_IOERROR )
2295 				break;
2296 			iclog = iclog->ic_next;
2297 		} while (first_iclog != iclog);
2298 	}
2299 #endif
2300 
2301 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2302 		wake = 1;
2303 	spin_unlock(&log->l_icloglock);
2304 
2305 	if (wake)
2306 		wake_up_all(&log->l_flush_wait);
2307 }
2308 
2309 
2310 /*
2311  * Finish transitioning this iclog to the dirty state.
2312  *
2313  * Make sure that we completely execute this routine only when this is
2314  * the last call to the iclog.  There is a good chance that iclog flushes,
2315  * when we reach the end of the physical log, get turned into 2 separate
2316  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2317  * routine.  By using the reference count bwritecnt, we guarantee that only
2318  * the second completion goes through.
2319  *
2320  * Callbacks could take time, so they are done outside the scope of the
2321  * global state machine log lock.
2322  */
2323 STATIC void
2324 xlog_state_done_syncing(
2325 	xlog_in_core_t	*iclog,
2326 	int		aborted)
2327 {
2328 	xlog_t		   *log = iclog->ic_log;
2329 
2330 	spin_lock(&log->l_icloglock);
2331 
2332 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2333 	       iclog->ic_state == XLOG_STATE_IOERROR);
2334 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2335 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2336 
2337 
2338 	/*
2339 	 * If we got an error, either on the first buffer, or in the case of
2340 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2341 	 * and none should ever be attempted to be written to disk
2342 	 * again.
2343 	 */
2344 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2345 		if (--iclog->ic_bwritecnt == 1) {
2346 			spin_unlock(&log->l_icloglock);
2347 			return;
2348 		}
2349 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2350 	}
2351 
2352 	/*
2353 	 * Someone could be sleeping prior to writing out the next
2354 	 * iclog buffer, we wake them all, one will get to do the
2355 	 * I/O, the others get to wait for the result.
2356 	 */
2357 	wake_up_all(&iclog->ic_write_wait);
2358 	spin_unlock(&log->l_icloglock);
2359 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2360 }	/* xlog_state_done_syncing */
2361 
2362 
2363 /*
2364  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2365  * sleep.  We wait on the flush queue on the head iclog as that should be
2366  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2367  * we will wait here and all new writes will sleep until a sync completes.
2368  *
2369  * The in-core logs are used in a circular fashion. They are not used
2370  * out-of-order even when an iclog past the head is free.
2371  *
2372  * return:
2373  *	* log_offset where xlog_write() can start writing into the in-core
2374  *		log's data space.
2375  *	* in-core log pointer to which xlog_write() should write.
2376  *	* boolean indicating this is a continued write to an in-core log.
2377  *		If this is the last write, then the in-core log's offset field
2378  *		needs to be incremented, depending on the amount of data which
2379  *		is copied.
2380  */
2381 STATIC int
2382 xlog_state_get_iclog_space(xlog_t	  *log,
2383 			   int		  len,
2384 			   xlog_in_core_t **iclogp,
2385 			   xlog_ticket_t  *ticket,
2386 			   int		  *continued_write,
2387 			   int		  *logoffsetp)
2388 {
2389 	int		  log_offset;
2390 	xlog_rec_header_t *head;
2391 	xlog_in_core_t	  *iclog;
2392 	int		  error;
2393 
2394 restart:
2395 	spin_lock(&log->l_icloglock);
2396 	if (XLOG_FORCED_SHUTDOWN(log)) {
2397 		spin_unlock(&log->l_icloglock);
2398 		return XFS_ERROR(EIO);
2399 	}
2400 
2401 	iclog = log->l_iclog;
2402 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2403 		XFS_STATS_INC(xs_log_noiclogs);
2404 
2405 		/* Wait for log writes to have flushed */
2406 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2407 		goto restart;
2408 	}
2409 
2410 	head = &iclog->ic_header;
2411 
2412 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2413 	log_offset = iclog->ic_offset;
2414 
2415 	/* On the 1st write to an iclog, figure out lsn.  This works
2416 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2417 	 * committing to.  If the offset is set, that's how many blocks
2418 	 * must be written.
2419 	 */
2420 	if (log_offset == 0) {
2421 		ticket->t_curr_res -= log->l_iclog_hsize;
2422 		xlog_tic_add_region(ticket,
2423 				    log->l_iclog_hsize,
2424 				    XLOG_REG_TYPE_LRHEADER);
2425 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2426 		head->h_lsn = cpu_to_be64(
2427 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2428 		ASSERT(log->l_curr_block >= 0);
2429 	}
2430 
2431 	/* If there is enough room to write everything, then do it.  Otherwise,
2432 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2433 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2434 	 * until you know exactly how many bytes get copied.  Therefore, wait
2435 	 * until later to update ic_offset.
2436 	 *
2437 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2438 	 * can fit into remaining data section.
2439 	 */
2440 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2441 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2442 
2443 		/*
2444 		 * If I'm the only one writing to this iclog, sync it to disk.
2445 		 * We need to do an atomic compare and decrement here to avoid
2446 		 * racing with concurrent atomic_dec_and_lock() calls in
2447 		 * xlog_state_release_iclog() when there is more than one
2448 		 * reference to the iclog.
2449 		 */
2450 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2451 			/* we are the only one */
2452 			spin_unlock(&log->l_icloglock);
2453 			error = xlog_state_release_iclog(log, iclog);
2454 			if (error)
2455 				return error;
2456 		} else {
2457 			spin_unlock(&log->l_icloglock);
2458 		}
2459 		goto restart;
2460 	}
2461 
2462 	/* Do we have enough room to write the full amount in the remainder
2463 	 * of this iclog?  Or must we continue a write on the next iclog and
2464 	 * mark this iclog as completely taken?  In the case where we switch
2465 	 * iclogs (to mark it taken), this particular iclog will release/sync
2466 	 * to disk in xlog_write().
2467 	 */
2468 	if (len <= iclog->ic_size - iclog->ic_offset) {
2469 		*continued_write = 0;
2470 		iclog->ic_offset += len;
2471 	} else {
2472 		*continued_write = 1;
2473 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2474 	}
2475 	*iclogp = iclog;
2476 
2477 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2478 	spin_unlock(&log->l_icloglock);
2479 
2480 	*logoffsetp = log_offset;
2481 	return 0;
2482 }	/* xlog_state_get_iclog_space */
2483 
2484 /*
2485  * Atomically get the log space required for a log ticket.
2486  *
2487  * Once a ticket gets put onto the reserveq, it will only return after
2488  * the needed reservation is satisfied.
2489  *
2490  * This function is structured so that it has a lock free fast path. This is
2491  * necessary because every new transaction reservation will come through this
2492  * path. Hence any lock will be globally hot if we take it unconditionally on
2493  * every pass.
2494  *
2495  * As tickets are only ever moved on and off the reserveq under the
2496  * l_grant_reserve_lock, we only need to take that lock if we are going
2497  * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2498  * ticket was never added to the reserveq because the t_queue list head will be
2499  * empty and we hold the only reference to it so it can safely be checked
2500  * unlocked.
2501  */
2502 STATIC int
2503 xlog_grant_log_space(xlog_t	   *log,
2504 		     xlog_ticket_t *tic)
2505 {
2506 	int		 free_bytes;
2507 	int		 need_bytes;
2508 
2509 #ifdef DEBUG
2510 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2511 		panic("grant Recovery problem");
2512 #endif
2513 
2514 	trace_xfs_log_grant_enter(log, tic);
2515 
2516 	need_bytes = tic->t_unit_res;
2517 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2518 		need_bytes *= tic->t_ocnt;
2519 
2520 	/* something is already sleeping; insert new transaction at end */
2521 	if (!list_empty_careful(&log->l_reserveq)) {
2522 		spin_lock(&log->l_grant_reserve_lock);
2523 		/* recheck the queue now we are locked */
2524 		if (list_empty(&log->l_reserveq)) {
2525 			spin_unlock(&log->l_grant_reserve_lock);
2526 			goto redo;
2527 		}
2528 		list_add_tail(&tic->t_queue, &log->l_reserveq);
2529 
2530 		trace_xfs_log_grant_sleep1(log, tic);
2531 
2532 		/*
2533 		 * Gotta check this before going to sleep, while we're
2534 		 * holding the grant lock.
2535 		 */
2536 		if (XLOG_FORCED_SHUTDOWN(log))
2537 			goto error_return;
2538 
2539 		XFS_STATS_INC(xs_sleep_logspace);
2540 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2541 
2542 		/*
2543 		 * If we got an error, and the filesystem is shutting down,
2544 		 * we'll catch it down below. So just continue...
2545 		 */
2546 		trace_xfs_log_grant_wake1(log, tic);
2547 	}
2548 
2549 redo:
2550 	if (XLOG_FORCED_SHUTDOWN(log))
2551 		goto error_return_unlocked;
2552 
2553 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2554 	if (free_bytes < need_bytes) {
2555 		spin_lock(&log->l_grant_reserve_lock);
2556 		if (list_empty(&tic->t_queue))
2557 			list_add_tail(&tic->t_queue, &log->l_reserveq);
2558 
2559 		trace_xfs_log_grant_sleep2(log, tic);
2560 
2561 		if (XLOG_FORCED_SHUTDOWN(log))
2562 			goto error_return;
2563 
2564 		xlog_grant_push_ail(log, need_bytes);
2565 
2566 		XFS_STATS_INC(xs_sleep_logspace);
2567 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2568 
2569 		trace_xfs_log_grant_wake2(log, tic);
2570 		goto redo;
2571 	}
2572 
2573 	if (!list_empty(&tic->t_queue)) {
2574 		spin_lock(&log->l_grant_reserve_lock);
2575 		list_del_init(&tic->t_queue);
2576 		spin_unlock(&log->l_grant_reserve_lock);
2577 	}
2578 
2579 	/* we've got enough space */
2580 	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2581 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2582 	trace_xfs_log_grant_exit(log, tic);
2583 	xlog_verify_grant_tail(log);
2584 	return 0;
2585 
2586 error_return_unlocked:
2587 	spin_lock(&log->l_grant_reserve_lock);
2588 error_return:
2589 	list_del_init(&tic->t_queue);
2590 	spin_unlock(&log->l_grant_reserve_lock);
2591 	trace_xfs_log_grant_error(log, tic);
2592 
2593 	/*
2594 	 * If we are failing, make sure the ticket doesn't have any
2595 	 * current reservations. We don't want to add this back when
2596 	 * the ticket/transaction gets cancelled.
2597 	 */
2598 	tic->t_curr_res = 0;
2599 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2600 	return XFS_ERROR(EIO);
2601 }	/* xlog_grant_log_space */
2602 
2603 
2604 /*
2605  * Replenish the byte reservation required by moving the grant write head.
2606  *
2607  * Similar to xlog_grant_log_space, the function is structured to have a lock
2608  * free fast path.
2609  */
2610 STATIC int
2611 xlog_regrant_write_log_space(xlog_t	   *log,
2612 			     xlog_ticket_t *tic)
2613 {
2614 	int		free_bytes, need_bytes;
2615 
2616 	tic->t_curr_res = tic->t_unit_res;
2617 	xlog_tic_reset_res(tic);
2618 
2619 	if (tic->t_cnt > 0)
2620 		return 0;
2621 
2622 #ifdef DEBUG
2623 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2624 		panic("regrant Recovery problem");
2625 #endif
2626 
2627 	trace_xfs_log_regrant_write_enter(log, tic);
2628 	if (XLOG_FORCED_SHUTDOWN(log))
2629 		goto error_return_unlocked;
2630 
2631 	/* If there are other waiters on the queue then give them a
2632 	 * chance at logspace before us. Wake up the first waiters,
2633 	 * if we do not wake up all the waiters then go to sleep waiting
2634 	 * for more free space, otherwise try to get some space for
2635 	 * this transaction.
2636 	 */
2637 	need_bytes = tic->t_unit_res;
2638 	if (!list_empty_careful(&log->l_writeq)) {
2639 		struct xlog_ticket *ntic;
2640 
2641 		spin_lock(&log->l_grant_write_lock);
2642 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2643 		list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2644 			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2645 
2646 			if (free_bytes < ntic->t_unit_res)
2647 				break;
2648 			free_bytes -= ntic->t_unit_res;
2649 			wake_up(&ntic->t_wait);
2650 		}
2651 
2652 		if (ntic != list_first_entry(&log->l_writeq,
2653 						struct xlog_ticket, t_queue)) {
2654 			if (list_empty(&tic->t_queue))
2655 				list_add_tail(&tic->t_queue, &log->l_writeq);
2656 			trace_xfs_log_regrant_write_sleep1(log, tic);
2657 
2658 			xlog_grant_push_ail(log, need_bytes);
2659 
2660 			XFS_STATS_INC(xs_sleep_logspace);
2661 			xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2662 			trace_xfs_log_regrant_write_wake1(log, tic);
2663 		} else
2664 			spin_unlock(&log->l_grant_write_lock);
2665 	}
2666 
2667 redo:
2668 	if (XLOG_FORCED_SHUTDOWN(log))
2669 		goto error_return_unlocked;
2670 
2671 	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2672 	if (free_bytes < need_bytes) {
2673 		spin_lock(&log->l_grant_write_lock);
2674 		if (list_empty(&tic->t_queue))
2675 			list_add_tail(&tic->t_queue, &log->l_writeq);
2676 
2677 		if (XLOG_FORCED_SHUTDOWN(log))
2678 			goto error_return;
2679 
2680 		xlog_grant_push_ail(log, need_bytes);
2681 
2682 		XFS_STATS_INC(xs_sleep_logspace);
2683 		trace_xfs_log_regrant_write_sleep2(log, tic);
2684 		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2685 
2686 		trace_xfs_log_regrant_write_wake2(log, tic);
2687 		goto redo;
2688 	}
2689 
2690 	if (!list_empty(&tic->t_queue)) {
2691 		spin_lock(&log->l_grant_write_lock);
2692 		list_del_init(&tic->t_queue);
2693 		spin_unlock(&log->l_grant_write_lock);
2694 	}
2695 
2696 	/* we've got enough space */
2697 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2698 	trace_xfs_log_regrant_write_exit(log, tic);
2699 	xlog_verify_grant_tail(log);
2700 	return 0;
2701 
2702 
2703  error_return_unlocked:
2704 	spin_lock(&log->l_grant_write_lock);
2705  error_return:
2706 	list_del_init(&tic->t_queue);
2707 	spin_unlock(&log->l_grant_write_lock);
2708 	trace_xfs_log_regrant_write_error(log, tic);
2709 
2710 	/*
2711 	 * If we are failing, make sure the ticket doesn't have any
2712 	 * current reservations. We don't want to add this back when
2713 	 * the ticket/transaction gets cancelled.
2714 	 */
2715 	tic->t_curr_res = 0;
2716 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2717 	return XFS_ERROR(EIO);
2718 }	/* xlog_regrant_write_log_space */
2719 
2720 
2721 /* The first cnt-1 times through here we don't need to
2722  * move the grant write head because the permanent
2723  * reservation has reserved cnt times the unit amount.
2724  * Release part of current permanent unit reservation and
2725  * reset current reservation to be one units worth.  Also
2726  * move grant reservation head forward.
2727  */
2728 STATIC void
2729 xlog_regrant_reserve_log_space(xlog_t	     *log,
2730 			       xlog_ticket_t *ticket)
2731 {
2732 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2733 
2734 	if (ticket->t_cnt > 0)
2735 		ticket->t_cnt--;
2736 
2737 	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2738 					ticket->t_curr_res);
2739 	xlog_grant_sub_space(log, &log->l_grant_write_head,
2740 					ticket->t_curr_res);
2741 	ticket->t_curr_res = ticket->t_unit_res;
2742 	xlog_tic_reset_res(ticket);
2743 
2744 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2745 
2746 	/* just return if we still have some of the pre-reserved space */
2747 	if (ticket->t_cnt > 0)
2748 		return;
2749 
2750 	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2751 					ticket->t_unit_res);
2752 
2753 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2754 
2755 	ticket->t_curr_res = ticket->t_unit_res;
2756 	xlog_tic_reset_res(ticket);
2757 }	/* xlog_regrant_reserve_log_space */
2758 
2759 
2760 /*
2761  * Give back the space left from a reservation.
2762  *
2763  * All the information we need to make a correct determination of space left
2764  * is present.  For non-permanent reservations, things are quite easy.  The
2765  * count should have been decremented to zero.  We only need to deal with the
2766  * space remaining in the current reservation part of the ticket.  If the
2767  * ticket contains a permanent reservation, there may be left over space which
2768  * needs to be released.  A count of N means that N-1 refills of the current
2769  * reservation can be done before we need to ask for more space.  The first
2770  * one goes to fill up the first current reservation.  Once we run out of
2771  * space, the count will stay at zero and the only space remaining will be
2772  * in the current reservation field.
2773  */
2774 STATIC void
2775 xlog_ungrant_log_space(xlog_t	     *log,
2776 		       xlog_ticket_t *ticket)
2777 {
2778 	int	bytes;
2779 
2780 	if (ticket->t_cnt > 0)
2781 		ticket->t_cnt--;
2782 
2783 	trace_xfs_log_ungrant_enter(log, ticket);
2784 	trace_xfs_log_ungrant_sub(log, ticket);
2785 
2786 	/*
2787 	 * If this is a permanent reservation ticket, we may be able to free
2788 	 * up more space based on the remaining count.
2789 	 */
2790 	bytes = ticket->t_curr_res;
2791 	if (ticket->t_cnt > 0) {
2792 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2793 		bytes += ticket->t_unit_res*ticket->t_cnt;
2794 	}
2795 
2796 	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2797 	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2798 
2799 	trace_xfs_log_ungrant_exit(log, ticket);
2800 
2801 	xfs_log_move_tail(log->l_mp, 1);
2802 }	/* xlog_ungrant_log_space */
2803 
2804 
2805 /*
2806  * Flush iclog to disk if this is the last reference to the given iclog and
2807  * the WANT_SYNC bit is set.
2808  *
2809  * When this function is entered, the iclog is not necessarily in the
2810  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2811  *
2812  *
2813  */
2814 STATIC int
2815 xlog_state_release_iclog(
2816 	xlog_t		*log,
2817 	xlog_in_core_t	*iclog)
2818 {
2819 	int		sync = 0;	/* do we sync? */
2820 
2821 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2822 		return XFS_ERROR(EIO);
2823 
2824 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2825 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2826 		return 0;
2827 
2828 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2829 		spin_unlock(&log->l_icloglock);
2830 		return XFS_ERROR(EIO);
2831 	}
2832 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2833 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2834 
2835 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2836 		/* update tail before writing to iclog */
2837 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2838 		sync++;
2839 		iclog->ic_state = XLOG_STATE_SYNCING;
2840 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2841 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2842 		/* cycle incremented when incrementing curr_block */
2843 	}
2844 	spin_unlock(&log->l_icloglock);
2845 
2846 	/*
2847 	 * We let the log lock go, so it's possible that we hit a log I/O
2848 	 * error or some other SHUTDOWN condition that marks the iclog
2849 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2850 	 * this iclog has consistent data, so we ignore IOERROR
2851 	 * flags after this point.
2852 	 */
2853 	if (sync)
2854 		return xlog_sync(log, iclog);
2855 	return 0;
2856 }	/* xlog_state_release_iclog */
2857 
2858 
2859 /*
2860  * This routine will mark the current iclog in the ring as WANT_SYNC
2861  * and move the current iclog pointer to the next iclog in the ring.
2862  * When this routine is called from xlog_state_get_iclog_space(), the
2863  * exact size of the iclog has not yet been determined.  All we know is
2864  * that every data block.  We have run out of space in this log record.
2865  */
2866 STATIC void
2867 xlog_state_switch_iclogs(xlog_t		*log,
2868 			 xlog_in_core_t *iclog,
2869 			 int		eventual_size)
2870 {
2871 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2872 	if (!eventual_size)
2873 		eventual_size = iclog->ic_offset;
2874 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2875 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2876 	log->l_prev_block = log->l_curr_block;
2877 	log->l_prev_cycle = log->l_curr_cycle;
2878 
2879 	/* roll log?: ic_offset changed later */
2880 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2881 
2882 	/* Round up to next log-sunit */
2883 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2884 	    log->l_mp->m_sb.sb_logsunit > 1) {
2885 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2886 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2887 	}
2888 
2889 	if (log->l_curr_block >= log->l_logBBsize) {
2890 		log->l_curr_cycle++;
2891 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2892 			log->l_curr_cycle++;
2893 		log->l_curr_block -= log->l_logBBsize;
2894 		ASSERT(log->l_curr_block >= 0);
2895 	}
2896 	ASSERT(iclog == log->l_iclog);
2897 	log->l_iclog = iclog->ic_next;
2898 }	/* xlog_state_switch_iclogs */
2899 
2900 /*
2901  * Write out all data in the in-core log as of this exact moment in time.
2902  *
2903  * Data may be written to the in-core log during this call.  However,
2904  * we don't guarantee this data will be written out.  A change from past
2905  * implementation means this routine will *not* write out zero length LRs.
2906  *
2907  * Basically, we try and perform an intelligent scan of the in-core logs.
2908  * If we determine there is no flushable data, we just return.  There is no
2909  * flushable data if:
2910  *
2911  *	1. the current iclog is active and has no data; the previous iclog
2912  *		is in the active or dirty state.
2913  *	2. the current iclog is drity, and the previous iclog is in the
2914  *		active or dirty state.
2915  *
2916  * We may sleep if:
2917  *
2918  *	1. the current iclog is not in the active nor dirty state.
2919  *	2. the current iclog dirty, and the previous iclog is not in the
2920  *		active nor dirty state.
2921  *	3. the current iclog is active, and there is another thread writing
2922  *		to this particular iclog.
2923  *	4. a) the current iclog is active and has no other writers
2924  *	   b) when we return from flushing out this iclog, it is still
2925  *		not in the active nor dirty state.
2926  */
2927 int
2928 _xfs_log_force(
2929 	struct xfs_mount	*mp,
2930 	uint			flags,
2931 	int			*log_flushed)
2932 {
2933 	struct log		*log = mp->m_log;
2934 	struct xlog_in_core	*iclog;
2935 	xfs_lsn_t		lsn;
2936 
2937 	XFS_STATS_INC(xs_log_force);
2938 
2939 	if (log->l_cilp)
2940 		xlog_cil_force(log);
2941 
2942 	spin_lock(&log->l_icloglock);
2943 
2944 	iclog = log->l_iclog;
2945 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2946 		spin_unlock(&log->l_icloglock);
2947 		return XFS_ERROR(EIO);
2948 	}
2949 
2950 	/* If the head iclog is not active nor dirty, we just attach
2951 	 * ourselves to the head and go to sleep.
2952 	 */
2953 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2954 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2955 		/*
2956 		 * If the head is dirty or (active and empty), then
2957 		 * we need to look at the previous iclog.  If the previous
2958 		 * iclog is active or dirty we are done.  There is nothing
2959 		 * to sync out.  Otherwise, we attach ourselves to the
2960 		 * previous iclog and go to sleep.
2961 		 */
2962 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2963 		    (atomic_read(&iclog->ic_refcnt) == 0
2964 		     && iclog->ic_offset == 0)) {
2965 			iclog = iclog->ic_prev;
2966 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2967 			    iclog->ic_state == XLOG_STATE_DIRTY)
2968 				goto no_sleep;
2969 			else
2970 				goto maybe_sleep;
2971 		} else {
2972 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2973 				/* We are the only one with access to this
2974 				 * iclog.  Flush it out now.  There should
2975 				 * be a roundoff of zero to show that someone
2976 				 * has already taken care of the roundoff from
2977 				 * the previous sync.
2978 				 */
2979 				atomic_inc(&iclog->ic_refcnt);
2980 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2981 				xlog_state_switch_iclogs(log, iclog, 0);
2982 				spin_unlock(&log->l_icloglock);
2983 
2984 				if (xlog_state_release_iclog(log, iclog))
2985 					return XFS_ERROR(EIO);
2986 
2987 				if (log_flushed)
2988 					*log_flushed = 1;
2989 				spin_lock(&log->l_icloglock);
2990 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2991 				    iclog->ic_state != XLOG_STATE_DIRTY)
2992 					goto maybe_sleep;
2993 				else
2994 					goto no_sleep;
2995 			} else {
2996 				/* Someone else is writing to this iclog.
2997 				 * Use its call to flush out the data.  However,
2998 				 * the other thread may not force out this LR,
2999 				 * so we mark it WANT_SYNC.
3000 				 */
3001 				xlog_state_switch_iclogs(log, iclog, 0);
3002 				goto maybe_sleep;
3003 			}
3004 		}
3005 	}
3006 
3007 	/* By the time we come around again, the iclog could've been filled
3008 	 * which would give it another lsn.  If we have a new lsn, just
3009 	 * return because the relevant data has been flushed.
3010 	 */
3011 maybe_sleep:
3012 	if (flags & XFS_LOG_SYNC) {
3013 		/*
3014 		 * We must check if we're shutting down here, before
3015 		 * we wait, while we're holding the l_icloglock.
3016 		 * Then we check again after waking up, in case our
3017 		 * sleep was disturbed by a bad news.
3018 		 */
3019 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3020 			spin_unlock(&log->l_icloglock);
3021 			return XFS_ERROR(EIO);
3022 		}
3023 		XFS_STATS_INC(xs_log_force_sleep);
3024 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3025 		/*
3026 		 * No need to grab the log lock here since we're
3027 		 * only deciding whether or not to return EIO
3028 		 * and the memory read should be atomic.
3029 		 */
3030 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3031 			return XFS_ERROR(EIO);
3032 		if (log_flushed)
3033 			*log_flushed = 1;
3034 	} else {
3035 
3036 no_sleep:
3037 		spin_unlock(&log->l_icloglock);
3038 	}
3039 	return 0;
3040 }
3041 
3042 /*
3043  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3044  * about errors or whether the log was flushed or not. This is the normal
3045  * interface to use when trying to unpin items or move the log forward.
3046  */
3047 void
3048 xfs_log_force(
3049 	xfs_mount_t	*mp,
3050 	uint		flags)
3051 {
3052 	int	error;
3053 
3054 	error = _xfs_log_force(mp, flags, NULL);
3055 	if (error) {
3056 		xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3057 			"error %d returned.", error);
3058 	}
3059 }
3060 
3061 /*
3062  * Force the in-core log to disk for a specific LSN.
3063  *
3064  * Find in-core log with lsn.
3065  *	If it is in the DIRTY state, just return.
3066  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3067  *		state and go to sleep or return.
3068  *	If it is in any other state, go to sleep or return.
3069  *
3070  * Synchronous forces are implemented with a signal variable. All callers
3071  * to force a given lsn to disk will wait on a the sv attached to the
3072  * specific in-core log.  When given in-core log finally completes its
3073  * write to disk, that thread will wake up all threads waiting on the
3074  * sv.
3075  */
3076 int
3077 _xfs_log_force_lsn(
3078 	struct xfs_mount	*mp,
3079 	xfs_lsn_t		lsn,
3080 	uint			flags,
3081 	int			*log_flushed)
3082 {
3083 	struct log		*log = mp->m_log;
3084 	struct xlog_in_core	*iclog;
3085 	int			already_slept = 0;
3086 
3087 	ASSERT(lsn != 0);
3088 
3089 	XFS_STATS_INC(xs_log_force);
3090 
3091 	if (log->l_cilp) {
3092 		lsn = xlog_cil_force_lsn(log, lsn);
3093 		if (lsn == NULLCOMMITLSN)
3094 			return 0;
3095 	}
3096 
3097 try_again:
3098 	spin_lock(&log->l_icloglock);
3099 	iclog = log->l_iclog;
3100 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3101 		spin_unlock(&log->l_icloglock);
3102 		return XFS_ERROR(EIO);
3103 	}
3104 
3105 	do {
3106 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3107 			iclog = iclog->ic_next;
3108 			continue;
3109 		}
3110 
3111 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3112 			spin_unlock(&log->l_icloglock);
3113 			return 0;
3114 		}
3115 
3116 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3117 			/*
3118 			 * We sleep here if we haven't already slept (e.g.
3119 			 * this is the first time we've looked at the correct
3120 			 * iclog buf) and the buffer before us is going to
3121 			 * be sync'ed. The reason for this is that if we
3122 			 * are doing sync transactions here, by waiting for
3123 			 * the previous I/O to complete, we can allow a few
3124 			 * more transactions into this iclog before we close
3125 			 * it down.
3126 			 *
3127 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3128 			 * up the refcnt so we can release the log (which
3129 			 * drops the ref count).  The state switch keeps new
3130 			 * transaction commits from using this buffer.  When
3131 			 * the current commits finish writing into the buffer,
3132 			 * the refcount will drop to zero and the buffer will
3133 			 * go out then.
3134 			 */
3135 			if (!already_slept &&
3136 			    (iclog->ic_prev->ic_state &
3137 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3138 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3139 
3140 				XFS_STATS_INC(xs_log_force_sleep);
3141 
3142 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3143 							&log->l_icloglock);
3144 				if (log_flushed)
3145 					*log_flushed = 1;
3146 				already_slept = 1;
3147 				goto try_again;
3148 			}
3149 			atomic_inc(&iclog->ic_refcnt);
3150 			xlog_state_switch_iclogs(log, iclog, 0);
3151 			spin_unlock(&log->l_icloglock);
3152 			if (xlog_state_release_iclog(log, iclog))
3153 				return XFS_ERROR(EIO);
3154 			if (log_flushed)
3155 				*log_flushed = 1;
3156 			spin_lock(&log->l_icloglock);
3157 		}
3158 
3159 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3160 		    !(iclog->ic_state &
3161 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3162 			/*
3163 			 * Don't wait on completion if we know that we've
3164 			 * gotten a log write error.
3165 			 */
3166 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3167 				spin_unlock(&log->l_icloglock);
3168 				return XFS_ERROR(EIO);
3169 			}
3170 			XFS_STATS_INC(xs_log_force_sleep);
3171 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3172 			/*
3173 			 * No need to grab the log lock here since we're
3174 			 * only deciding whether or not to return EIO
3175 			 * and the memory read should be atomic.
3176 			 */
3177 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3178 				return XFS_ERROR(EIO);
3179 
3180 			if (log_flushed)
3181 				*log_flushed = 1;
3182 		} else {		/* just return */
3183 			spin_unlock(&log->l_icloglock);
3184 		}
3185 
3186 		return 0;
3187 	} while (iclog != log->l_iclog);
3188 
3189 	spin_unlock(&log->l_icloglock);
3190 	return 0;
3191 }
3192 
3193 /*
3194  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3195  * about errors or whether the log was flushed or not. This is the normal
3196  * interface to use when trying to unpin items or move the log forward.
3197  */
3198 void
3199 xfs_log_force_lsn(
3200 	xfs_mount_t	*mp,
3201 	xfs_lsn_t	lsn,
3202 	uint		flags)
3203 {
3204 	int	error;
3205 
3206 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3207 	if (error) {
3208 		xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3209 			"error %d returned.", error);
3210 	}
3211 }
3212 
3213 /*
3214  * Called when we want to mark the current iclog as being ready to sync to
3215  * disk.
3216  */
3217 STATIC void
3218 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3219 {
3220 	assert_spin_locked(&log->l_icloglock);
3221 
3222 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3223 		xlog_state_switch_iclogs(log, iclog, 0);
3224 	} else {
3225 		ASSERT(iclog->ic_state &
3226 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3227 	}
3228 }
3229 
3230 
3231 /*****************************************************************************
3232  *
3233  *		TICKET functions
3234  *
3235  *****************************************************************************
3236  */
3237 
3238 /*
3239  * Free a used ticket when its refcount falls to zero.
3240  */
3241 void
3242 xfs_log_ticket_put(
3243 	xlog_ticket_t	*ticket)
3244 {
3245 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3246 	if (atomic_dec_and_test(&ticket->t_ref))
3247 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3248 }
3249 
3250 xlog_ticket_t *
3251 xfs_log_ticket_get(
3252 	xlog_ticket_t	*ticket)
3253 {
3254 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3255 	atomic_inc(&ticket->t_ref);
3256 	return ticket;
3257 }
3258 
3259 xlog_tid_t
3260 xfs_log_get_trans_ident(
3261 	struct xfs_trans	*tp)
3262 {
3263 	return tp->t_ticket->t_tid;
3264 }
3265 
3266 /*
3267  * Allocate and initialise a new log ticket.
3268  */
3269 xlog_ticket_t *
3270 xlog_ticket_alloc(
3271 	struct log	*log,
3272 	int		unit_bytes,
3273 	int		cnt,
3274 	char		client,
3275 	uint		xflags,
3276 	int		alloc_flags)
3277 {
3278 	struct xlog_ticket *tic;
3279 	uint		num_headers;
3280 	int		iclog_space;
3281 
3282 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3283 	if (!tic)
3284 		return NULL;
3285 
3286 	/*
3287 	 * Permanent reservations have up to 'cnt'-1 active log operations
3288 	 * in the log.  A unit in this case is the amount of space for one
3289 	 * of these log operations.  Normal reservations have a cnt of 1
3290 	 * and their unit amount is the total amount of space required.
3291 	 *
3292 	 * The following lines of code account for non-transaction data
3293 	 * which occupy space in the on-disk log.
3294 	 *
3295 	 * Normal form of a transaction is:
3296 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3297 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3298 	 *
3299 	 * We need to account for all the leadup data and trailer data
3300 	 * around the transaction data.
3301 	 * And then we need to account for the worst case in terms of using
3302 	 * more space.
3303 	 * The worst case will happen if:
3304 	 * - the placement of the transaction happens to be such that the
3305 	 *   roundoff is at its maximum
3306 	 * - the transaction data is synced before the commit record is synced
3307 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3308 	 *   Therefore the commit record is in its own Log Record.
3309 	 *   This can happen as the commit record is called with its
3310 	 *   own region to xlog_write().
3311 	 *   This then means that in the worst case, roundoff can happen for
3312 	 *   the commit-rec as well.
3313 	 *   The commit-rec is smaller than padding in this scenario and so it is
3314 	 *   not added separately.
3315 	 */
3316 
3317 	/* for trans header */
3318 	unit_bytes += sizeof(xlog_op_header_t);
3319 	unit_bytes += sizeof(xfs_trans_header_t);
3320 
3321 	/* for start-rec */
3322 	unit_bytes += sizeof(xlog_op_header_t);
3323 
3324 	/*
3325 	 * for LR headers - the space for data in an iclog is the size minus
3326 	 * the space used for the headers. If we use the iclog size, then we
3327 	 * undercalculate the number of headers required.
3328 	 *
3329 	 * Furthermore - the addition of op headers for split-recs might
3330 	 * increase the space required enough to require more log and op
3331 	 * headers, so take that into account too.
3332 	 *
3333 	 * IMPORTANT: This reservation makes the assumption that if this
3334 	 * transaction is the first in an iclog and hence has the LR headers
3335 	 * accounted to it, then the remaining space in the iclog is
3336 	 * exclusively for this transaction.  i.e. if the transaction is larger
3337 	 * than the iclog, it will be the only thing in that iclog.
3338 	 * Fundamentally, this means we must pass the entire log vector to
3339 	 * xlog_write to guarantee this.
3340 	 */
3341 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3342 	num_headers = howmany(unit_bytes, iclog_space);
3343 
3344 	/* for split-recs - ophdrs added when data split over LRs */
3345 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3346 
3347 	/* add extra header reservations if we overrun */
3348 	while (!num_headers ||
3349 	       howmany(unit_bytes, iclog_space) > num_headers) {
3350 		unit_bytes += sizeof(xlog_op_header_t);
3351 		num_headers++;
3352 	}
3353 	unit_bytes += log->l_iclog_hsize * num_headers;
3354 
3355 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3356 	unit_bytes += log->l_iclog_hsize;
3357 
3358 	/* for roundoff padding for transaction data and one for commit record */
3359 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3360 	    log->l_mp->m_sb.sb_logsunit > 1) {
3361 		/* log su roundoff */
3362 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3363 	} else {
3364 		/* BB roundoff */
3365 		unit_bytes += 2*BBSIZE;
3366         }
3367 
3368 	atomic_set(&tic->t_ref, 1);
3369 	INIT_LIST_HEAD(&tic->t_queue);
3370 	tic->t_unit_res		= unit_bytes;
3371 	tic->t_curr_res		= unit_bytes;
3372 	tic->t_cnt		= cnt;
3373 	tic->t_ocnt		= cnt;
3374 	tic->t_tid		= random32();
3375 	tic->t_clientid		= client;
3376 	tic->t_flags		= XLOG_TIC_INITED;
3377 	tic->t_trans_type	= 0;
3378 	if (xflags & XFS_LOG_PERM_RESERV)
3379 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3380 	init_waitqueue_head(&tic->t_wait);
3381 
3382 	xlog_tic_reset_res(tic);
3383 
3384 	return tic;
3385 }
3386 
3387 
3388 /******************************************************************************
3389  *
3390  *		Log debug routines
3391  *
3392  ******************************************************************************
3393  */
3394 #if defined(DEBUG)
3395 /*
3396  * Make sure that the destination ptr is within the valid data region of
3397  * one of the iclogs.  This uses backup pointers stored in a different
3398  * part of the log in case we trash the log structure.
3399  */
3400 void
3401 xlog_verify_dest_ptr(
3402 	struct log	*log,
3403 	char		*ptr)
3404 {
3405 	int i;
3406 	int good_ptr = 0;
3407 
3408 	for (i = 0; i < log->l_iclog_bufs; i++) {
3409 		if (ptr >= log->l_iclog_bak[i] &&
3410 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3411 			good_ptr++;
3412 	}
3413 
3414 	if (!good_ptr)
3415 		xlog_panic("xlog_verify_dest_ptr: invalid ptr");
3416 }
3417 
3418 STATIC void
3419 xlog_verify_grant_tail(
3420 	struct log	*log)
3421 {
3422 	int		tail_cycle, tail_blocks;
3423 	int		cycle, space;
3424 
3425 	/*
3426 	 * Check to make sure the grant write head didn't just over lap the
3427 	 * tail.  If the cycles are the same, we can't be overlapping.
3428 	 * Otherwise, make sure that the cycles differ by exactly one and
3429 	 * check the byte count.
3430 	 */
3431 	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3432 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3433 	if (tail_cycle != cycle) {
3434 		ASSERT(cycle - 1 == tail_cycle);
3435 		ASSERT(space <= BBTOB(tail_blocks));
3436 	}
3437 }
3438 
3439 /* check if it will fit */
3440 STATIC void
3441 xlog_verify_tail_lsn(xlog_t	    *log,
3442 		     xlog_in_core_t *iclog,
3443 		     xfs_lsn_t	    tail_lsn)
3444 {
3445     int blocks;
3446 
3447     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3448 	blocks =
3449 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3450 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3451 	    xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3452     } else {
3453 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3454 
3455 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3456 	    xlog_panic("xlog_verify_tail_lsn: tail wrapped");
3457 
3458 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3459 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3460 	    xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3461     }
3462 }	/* xlog_verify_tail_lsn */
3463 
3464 /*
3465  * Perform a number of checks on the iclog before writing to disk.
3466  *
3467  * 1. Make sure the iclogs are still circular
3468  * 2. Make sure we have a good magic number
3469  * 3. Make sure we don't have magic numbers in the data
3470  * 4. Check fields of each log operation header for:
3471  *	A. Valid client identifier
3472  *	B. tid ptr value falls in valid ptr space (user space code)
3473  *	C. Length in log record header is correct according to the
3474  *		individual operation headers within record.
3475  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3476  *	log, check the preceding blocks of the physical log to make sure all
3477  *	the cycle numbers agree with the current cycle number.
3478  */
3479 STATIC void
3480 xlog_verify_iclog(xlog_t	 *log,
3481 		  xlog_in_core_t *iclog,
3482 		  int		 count,
3483 		  boolean_t	 syncing)
3484 {
3485 	xlog_op_header_t	*ophead;
3486 	xlog_in_core_t		*icptr;
3487 	xlog_in_core_2_t	*xhdr;
3488 	xfs_caddr_t		ptr;
3489 	xfs_caddr_t		base_ptr;
3490 	__psint_t		field_offset;
3491 	__uint8_t		clientid;
3492 	int			len, i, j, k, op_len;
3493 	int			idx;
3494 
3495 	/* check validity of iclog pointers */
3496 	spin_lock(&log->l_icloglock);
3497 	icptr = log->l_iclog;
3498 	for (i=0; i < log->l_iclog_bufs; i++) {
3499 		if (icptr == NULL)
3500 			xlog_panic("xlog_verify_iclog: invalid ptr");
3501 		icptr = icptr->ic_next;
3502 	}
3503 	if (icptr != log->l_iclog)
3504 		xlog_panic("xlog_verify_iclog: corrupt iclog ring");
3505 	spin_unlock(&log->l_icloglock);
3506 
3507 	/* check log magic numbers */
3508 	if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3509 		xlog_panic("xlog_verify_iclog: invalid magic num");
3510 
3511 	ptr = (xfs_caddr_t) &iclog->ic_header;
3512 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3513 	     ptr += BBSIZE) {
3514 		if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3515 			xlog_panic("xlog_verify_iclog: unexpected magic num");
3516 	}
3517 
3518 	/* check fields */
3519 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3520 	ptr = iclog->ic_datap;
3521 	base_ptr = ptr;
3522 	ophead = (xlog_op_header_t *)ptr;
3523 	xhdr = iclog->ic_data;
3524 	for (i = 0; i < len; i++) {
3525 		ophead = (xlog_op_header_t *)ptr;
3526 
3527 		/* clientid is only 1 byte */
3528 		field_offset = (__psint_t)
3529 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3530 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3531 			clientid = ophead->oh_clientid;
3532 		} else {
3533 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3534 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3535 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3536 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3537 				clientid = xlog_get_client_id(
3538 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3539 			} else {
3540 				clientid = xlog_get_client_id(
3541 					iclog->ic_header.h_cycle_data[idx]);
3542 			}
3543 		}
3544 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3545 			cmn_err(CE_WARN, "xlog_verify_iclog: "
3546 				"invalid clientid %d op 0x%p offset 0x%lx",
3547 				clientid, ophead, (unsigned long)field_offset);
3548 
3549 		/* check length */
3550 		field_offset = (__psint_t)
3551 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3552 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3553 			op_len = be32_to_cpu(ophead->oh_len);
3554 		} else {
3555 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3556 				    (__psint_t)iclog->ic_datap);
3557 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3558 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3559 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3560 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3561 			} else {
3562 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3563 			}
3564 		}
3565 		ptr += sizeof(xlog_op_header_t) + op_len;
3566 	}
3567 }	/* xlog_verify_iclog */
3568 #endif
3569 
3570 /*
3571  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3572  */
3573 STATIC int
3574 xlog_state_ioerror(
3575 	xlog_t	*log)
3576 {
3577 	xlog_in_core_t	*iclog, *ic;
3578 
3579 	iclog = log->l_iclog;
3580 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3581 		/*
3582 		 * Mark all the incore logs IOERROR.
3583 		 * From now on, no log flushes will result.
3584 		 */
3585 		ic = iclog;
3586 		do {
3587 			ic->ic_state = XLOG_STATE_IOERROR;
3588 			ic = ic->ic_next;
3589 		} while (ic != iclog);
3590 		return 0;
3591 	}
3592 	/*
3593 	 * Return non-zero, if state transition has already happened.
3594 	 */
3595 	return 1;
3596 }
3597 
3598 /*
3599  * This is called from xfs_force_shutdown, when we're forcibly
3600  * shutting down the filesystem, typically because of an IO error.
3601  * Our main objectives here are to make sure that:
3602  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3603  *	   parties to find out, 'atomically'.
3604  *	b. those who're sleeping on log reservations, pinned objects and
3605  *	    other resources get woken up, and be told the bad news.
3606  *	c. nothing new gets queued up after (a) and (b) are done.
3607  *	d. if !logerror, flush the iclogs to disk, then seal them off
3608  *	   for business.
3609  *
3610  * Note: for delayed logging the !logerror case needs to flush the regions
3611  * held in memory out to the iclogs before flushing them to disk. This needs
3612  * to be done before the log is marked as shutdown, otherwise the flush to the
3613  * iclogs will fail.
3614  */
3615 int
3616 xfs_log_force_umount(
3617 	struct xfs_mount	*mp,
3618 	int			logerror)
3619 {
3620 	xlog_ticket_t	*tic;
3621 	xlog_t		*log;
3622 	int		retval;
3623 
3624 	log = mp->m_log;
3625 
3626 	/*
3627 	 * If this happens during log recovery, don't worry about
3628 	 * locking; the log isn't open for business yet.
3629 	 */
3630 	if (!log ||
3631 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3632 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3633 		if (mp->m_sb_bp)
3634 			XFS_BUF_DONE(mp->m_sb_bp);
3635 		return 0;
3636 	}
3637 
3638 	/*
3639 	 * Somebody could've already done the hard work for us.
3640 	 * No need to get locks for this.
3641 	 */
3642 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3643 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3644 		return 1;
3645 	}
3646 	retval = 0;
3647 
3648 	/*
3649 	 * Flush the in memory commit item list before marking the log as
3650 	 * being shut down. We need to do it in this order to ensure all the
3651 	 * completed transactions are flushed to disk with the xfs_log_force()
3652 	 * call below.
3653 	 */
3654 	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3655 		xlog_cil_force(log);
3656 
3657 	/*
3658 	 * mark the filesystem and the as in a shutdown state and wake
3659 	 * everybody up to tell them the bad news.
3660 	 */
3661 	spin_lock(&log->l_icloglock);
3662 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3663 	if (mp->m_sb_bp)
3664 		XFS_BUF_DONE(mp->m_sb_bp);
3665 
3666 	/*
3667 	 * This flag is sort of redundant because of the mount flag, but
3668 	 * it's good to maintain the separation between the log and the rest
3669 	 * of XFS.
3670 	 */
3671 	log->l_flags |= XLOG_IO_ERROR;
3672 
3673 	/*
3674 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3675 	 * while we're still holding the loglock.
3676 	 */
3677 	if (logerror)
3678 		retval = xlog_state_ioerror(log);
3679 	spin_unlock(&log->l_icloglock);
3680 
3681 	/*
3682 	 * We don't want anybody waiting for log reservations after this. That
3683 	 * means we have to wake up everybody queued up on reserveq as well as
3684 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3685 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3686 	 * action is protected by the grant locks.
3687 	 */
3688 	spin_lock(&log->l_grant_reserve_lock);
3689 	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3690 		wake_up(&tic->t_wait);
3691 	spin_unlock(&log->l_grant_reserve_lock);
3692 
3693 	spin_lock(&log->l_grant_write_lock);
3694 	list_for_each_entry(tic, &log->l_writeq, t_queue)
3695 		wake_up(&tic->t_wait);
3696 	spin_unlock(&log->l_grant_write_lock);
3697 
3698 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3699 		ASSERT(!logerror);
3700 		/*
3701 		 * Force the incore logs to disk before shutting the
3702 		 * log down completely.
3703 		 */
3704 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3705 
3706 		spin_lock(&log->l_icloglock);
3707 		retval = xlog_state_ioerror(log);
3708 		spin_unlock(&log->l_icloglock);
3709 	}
3710 	/*
3711 	 * Wake up everybody waiting on xfs_log_force.
3712 	 * Callback all log item committed functions as if the
3713 	 * log writes were completed.
3714 	 */
3715 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3716 
3717 #ifdef XFSERRORDEBUG
3718 	{
3719 		xlog_in_core_t	*iclog;
3720 
3721 		spin_lock(&log->l_icloglock);
3722 		iclog = log->l_iclog;
3723 		do {
3724 			ASSERT(iclog->ic_callback == 0);
3725 			iclog = iclog->ic_next;
3726 		} while (iclog != log->l_iclog);
3727 		spin_unlock(&log->l_icloglock);
3728 	}
3729 #endif
3730 	/* return non-zero if log IOERROR transition had already happened */
3731 	return retval;
3732 }
3733 
3734 STATIC int
3735 xlog_iclogs_empty(xlog_t *log)
3736 {
3737 	xlog_in_core_t	*iclog;
3738 
3739 	iclog = log->l_iclog;
3740 	do {
3741 		/* endianness does not matter here, zero is zero in
3742 		 * any language.
3743 		 */
3744 		if (iclog->ic_header.h_num_logops)
3745 			return 0;
3746 		iclog = iclog->ic_next;
3747 	} while (iclog != log->l_iclog);
3748 	return 1;
3749 }
3750