1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_rw.h" 39 #include "xfs_trace.h" 40 41 kmem_zone_t *xfs_log_ticket_zone; 42 43 /* Local miscellaneous function prototypes */ 44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket, 45 xlog_in_core_t **, xfs_lsn_t *); 46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, 47 xfs_buftarg_t *log_target, 48 xfs_daddr_t blk_offset, 49 int num_bblks); 50 STATIC int xlog_space_left(struct log *log, atomic64_t *head); 51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog); 52 STATIC void xlog_dealloc_log(xlog_t *log); 53 54 /* local state machine functions */ 55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog); 57 STATIC int xlog_state_get_iclog_space(xlog_t *log, 58 int len, 59 xlog_in_core_t **iclog, 60 xlog_ticket_t *ticket, 61 int *continued_write, 62 int *logoffsetp); 63 STATIC int xlog_state_release_iclog(xlog_t *log, 64 xlog_in_core_t *iclog); 65 STATIC void xlog_state_switch_iclogs(xlog_t *log, 66 xlog_in_core_t *iclog, 67 int eventual_size); 68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog); 69 70 /* local functions to manipulate grant head */ 71 STATIC int xlog_grant_log_space(xlog_t *log, 72 xlog_ticket_t *xtic); 73 STATIC void xlog_grant_push_ail(struct log *log, 74 int need_bytes); 75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log, 76 xlog_ticket_t *ticket); 77 STATIC int xlog_regrant_write_log_space(xlog_t *log, 78 xlog_ticket_t *ticket); 79 STATIC void xlog_ungrant_log_space(xlog_t *log, 80 xlog_ticket_t *ticket); 81 82 #if defined(DEBUG) 83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr); 84 STATIC void xlog_verify_grant_tail(struct log *log); 85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, 86 int count, boolean_t syncing); 87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, 88 xfs_lsn_t tail_lsn); 89 #else 90 #define xlog_verify_dest_ptr(a,b) 91 #define xlog_verify_grant_tail(a) 92 #define xlog_verify_iclog(a,b,c,d) 93 #define xlog_verify_tail_lsn(a,b,c) 94 #endif 95 96 STATIC int xlog_iclogs_empty(xlog_t *log); 97 98 static void 99 xlog_grant_sub_space( 100 struct log *log, 101 atomic64_t *head, 102 int bytes) 103 { 104 int64_t head_val = atomic64_read(head); 105 int64_t new, old; 106 107 do { 108 int cycle, space; 109 110 xlog_crack_grant_head_val(head_val, &cycle, &space); 111 112 space -= bytes; 113 if (space < 0) { 114 space += log->l_logsize; 115 cycle--; 116 } 117 118 old = head_val; 119 new = xlog_assign_grant_head_val(cycle, space); 120 head_val = atomic64_cmpxchg(head, old, new); 121 } while (head_val != old); 122 } 123 124 static void 125 xlog_grant_add_space( 126 struct log *log, 127 atomic64_t *head, 128 int bytes) 129 { 130 int64_t head_val = atomic64_read(head); 131 int64_t new, old; 132 133 do { 134 int tmp; 135 int cycle, space; 136 137 xlog_crack_grant_head_val(head_val, &cycle, &space); 138 139 tmp = log->l_logsize - space; 140 if (tmp > bytes) 141 space += bytes; 142 else { 143 space = bytes - tmp; 144 cycle++; 145 } 146 147 old = head_val; 148 new = xlog_assign_grant_head_val(cycle, space); 149 head_val = atomic64_cmpxchg(head, old, new); 150 } while (head_val != old); 151 } 152 153 static void 154 xlog_tic_reset_res(xlog_ticket_t *tic) 155 { 156 tic->t_res_num = 0; 157 tic->t_res_arr_sum = 0; 158 tic->t_res_num_ophdrs = 0; 159 } 160 161 static void 162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 163 { 164 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 165 /* add to overflow and start again */ 166 tic->t_res_o_flow += tic->t_res_arr_sum; 167 tic->t_res_num = 0; 168 tic->t_res_arr_sum = 0; 169 } 170 171 tic->t_res_arr[tic->t_res_num].r_len = len; 172 tic->t_res_arr[tic->t_res_num].r_type = type; 173 tic->t_res_arr_sum += len; 174 tic->t_res_num++; 175 } 176 177 /* 178 * NOTES: 179 * 180 * 1. currblock field gets updated at startup and after in-core logs 181 * marked as with WANT_SYNC. 182 */ 183 184 /* 185 * This routine is called when a user of a log manager ticket is done with 186 * the reservation. If the ticket was ever used, then a commit record for 187 * the associated transaction is written out as a log operation header with 188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 189 * a given ticket. If the ticket was one with a permanent reservation, then 190 * a few operations are done differently. Permanent reservation tickets by 191 * default don't release the reservation. They just commit the current 192 * transaction with the belief that the reservation is still needed. A flag 193 * must be passed in before permanent reservations are actually released. 194 * When these type of tickets are not released, they need to be set into 195 * the inited state again. By doing this, a start record will be written 196 * out when the next write occurs. 197 */ 198 xfs_lsn_t 199 xfs_log_done( 200 struct xfs_mount *mp, 201 struct xlog_ticket *ticket, 202 struct xlog_in_core **iclog, 203 uint flags) 204 { 205 struct log *log = mp->m_log; 206 xfs_lsn_t lsn = 0; 207 208 if (XLOG_FORCED_SHUTDOWN(log) || 209 /* 210 * If nothing was ever written, don't write out commit record. 211 * If we get an error, just continue and give back the log ticket. 212 */ 213 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 214 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 215 lsn = (xfs_lsn_t) -1; 216 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 217 flags |= XFS_LOG_REL_PERM_RESERV; 218 } 219 } 220 221 222 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 223 (flags & XFS_LOG_REL_PERM_RESERV)) { 224 trace_xfs_log_done_nonperm(log, ticket); 225 226 /* 227 * Release ticket if not permanent reservation or a specific 228 * request has been made to release a permanent reservation. 229 */ 230 xlog_ungrant_log_space(log, ticket); 231 xfs_log_ticket_put(ticket); 232 } else { 233 trace_xfs_log_done_perm(log, ticket); 234 235 xlog_regrant_reserve_log_space(log, ticket); 236 /* If this ticket was a permanent reservation and we aren't 237 * trying to release it, reset the inited flags; so next time 238 * we write, a start record will be written out. 239 */ 240 ticket->t_flags |= XLOG_TIC_INITED; 241 } 242 243 return lsn; 244 } 245 246 /* 247 * Attaches a new iclog I/O completion callback routine during 248 * transaction commit. If the log is in error state, a non-zero 249 * return code is handed back and the caller is responsible for 250 * executing the callback at an appropriate time. 251 */ 252 int 253 xfs_log_notify( 254 struct xfs_mount *mp, 255 struct xlog_in_core *iclog, 256 xfs_log_callback_t *cb) 257 { 258 int abortflg; 259 260 spin_lock(&iclog->ic_callback_lock); 261 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 262 if (!abortflg) { 263 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 264 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 265 cb->cb_next = NULL; 266 *(iclog->ic_callback_tail) = cb; 267 iclog->ic_callback_tail = &(cb->cb_next); 268 } 269 spin_unlock(&iclog->ic_callback_lock); 270 return abortflg; 271 } 272 273 int 274 xfs_log_release_iclog( 275 struct xfs_mount *mp, 276 struct xlog_in_core *iclog) 277 { 278 if (xlog_state_release_iclog(mp->m_log, iclog)) { 279 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 280 return EIO; 281 } 282 283 return 0; 284 } 285 286 /* 287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding 288 * to the reservation. 289 * 2. Potentially, push buffers at tail of log to disk. 290 * 291 * Each reservation is going to reserve extra space for a log record header. 292 * When writes happen to the on-disk log, we don't subtract the length of the 293 * log record header from any reservation. By wasting space in each 294 * reservation, we prevent over allocation problems. 295 */ 296 int 297 xfs_log_reserve( 298 struct xfs_mount *mp, 299 int unit_bytes, 300 int cnt, 301 struct xlog_ticket **ticket, 302 __uint8_t client, 303 uint flags, 304 uint t_type) 305 { 306 struct log *log = mp->m_log; 307 struct xlog_ticket *internal_ticket; 308 int retval = 0; 309 310 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 311 312 if (XLOG_FORCED_SHUTDOWN(log)) 313 return XFS_ERROR(EIO); 314 315 XFS_STATS_INC(xs_try_logspace); 316 317 318 if (*ticket != NULL) { 319 ASSERT(flags & XFS_LOG_PERM_RESERV); 320 internal_ticket = *ticket; 321 322 /* 323 * this is a new transaction on the ticket, so we need to 324 * change the transaction ID so that the next transaction has a 325 * different TID in the log. Just add one to the existing tid 326 * so that we can see chains of rolling transactions in the log 327 * easily. 328 */ 329 internal_ticket->t_tid++; 330 331 trace_xfs_log_reserve(log, internal_ticket); 332 333 xlog_grant_push_ail(log, internal_ticket->t_unit_res); 334 retval = xlog_regrant_write_log_space(log, internal_ticket); 335 } else { 336 /* may sleep if need to allocate more tickets */ 337 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt, 338 client, flags, 339 KM_SLEEP|KM_MAYFAIL); 340 if (!internal_ticket) 341 return XFS_ERROR(ENOMEM); 342 internal_ticket->t_trans_type = t_type; 343 *ticket = internal_ticket; 344 345 trace_xfs_log_reserve(log, internal_ticket); 346 347 xlog_grant_push_ail(log, 348 (internal_ticket->t_unit_res * 349 internal_ticket->t_cnt)); 350 retval = xlog_grant_log_space(log, internal_ticket); 351 } 352 353 return retval; 354 } /* xfs_log_reserve */ 355 356 357 /* 358 * Mount a log filesystem 359 * 360 * mp - ubiquitous xfs mount point structure 361 * log_target - buftarg of on-disk log device 362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 363 * num_bblocks - Number of BBSIZE blocks in on-disk log 364 * 365 * Return error or zero. 366 */ 367 int 368 xfs_log_mount( 369 xfs_mount_t *mp, 370 xfs_buftarg_t *log_target, 371 xfs_daddr_t blk_offset, 372 int num_bblks) 373 { 374 int error; 375 376 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 377 cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname); 378 else { 379 cmn_err(CE_NOTE, 380 "Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.", 381 mp->m_fsname); 382 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 383 } 384 385 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 386 if (IS_ERR(mp->m_log)) { 387 error = -PTR_ERR(mp->m_log); 388 goto out; 389 } 390 391 /* 392 * Initialize the AIL now we have a log. 393 */ 394 error = xfs_trans_ail_init(mp); 395 if (error) { 396 cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error); 397 goto out_free_log; 398 } 399 mp->m_log->l_ailp = mp->m_ail; 400 401 /* 402 * skip log recovery on a norecovery mount. pretend it all 403 * just worked. 404 */ 405 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 406 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 407 408 if (readonly) 409 mp->m_flags &= ~XFS_MOUNT_RDONLY; 410 411 error = xlog_recover(mp->m_log); 412 413 if (readonly) 414 mp->m_flags |= XFS_MOUNT_RDONLY; 415 if (error) { 416 cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error); 417 goto out_destroy_ail; 418 } 419 } 420 421 /* Normal transactions can now occur */ 422 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 423 424 /* 425 * Now the log has been fully initialised and we know were our 426 * space grant counters are, we can initialise the permanent ticket 427 * needed for delayed logging to work. 428 */ 429 xlog_cil_init_post_recovery(mp->m_log); 430 431 return 0; 432 433 out_destroy_ail: 434 xfs_trans_ail_destroy(mp); 435 out_free_log: 436 xlog_dealloc_log(mp->m_log); 437 out: 438 return error; 439 } 440 441 /* 442 * Finish the recovery of the file system. This is separate from 443 * the xfs_log_mount() call, because it depends on the code in 444 * xfs_mountfs() to read in the root and real-time bitmap inodes 445 * between calling xfs_log_mount() and here. 446 * 447 * mp - ubiquitous xfs mount point structure 448 */ 449 int 450 xfs_log_mount_finish(xfs_mount_t *mp) 451 { 452 int error; 453 454 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 455 error = xlog_recover_finish(mp->m_log); 456 else { 457 error = 0; 458 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 459 } 460 461 return error; 462 } 463 464 /* 465 * Final log writes as part of unmount. 466 * 467 * Mark the filesystem clean as unmount happens. Note that during relocation 468 * this routine needs to be executed as part of source-bag while the 469 * deallocation must not be done until source-end. 470 */ 471 472 /* 473 * Unmount record used to have a string "Unmount filesystem--" in the 474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 475 * We just write the magic number now since that particular field isn't 476 * currently architecture converted and "nUmount" is a bit foo. 477 * As far as I know, there weren't any dependencies on the old behaviour. 478 */ 479 480 int 481 xfs_log_unmount_write(xfs_mount_t *mp) 482 { 483 xlog_t *log = mp->m_log; 484 xlog_in_core_t *iclog; 485 #ifdef DEBUG 486 xlog_in_core_t *first_iclog; 487 #endif 488 xlog_ticket_t *tic = NULL; 489 xfs_lsn_t lsn; 490 int error; 491 492 /* 493 * Don't write out unmount record on read-only mounts. 494 * Or, if we are doing a forced umount (typically because of IO errors). 495 */ 496 if (mp->m_flags & XFS_MOUNT_RDONLY) 497 return 0; 498 499 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 500 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 501 502 #ifdef DEBUG 503 first_iclog = iclog = log->l_iclog; 504 do { 505 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 506 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 507 ASSERT(iclog->ic_offset == 0); 508 } 509 iclog = iclog->ic_next; 510 } while (iclog != first_iclog); 511 #endif 512 if (! (XLOG_FORCED_SHUTDOWN(log))) { 513 error = xfs_log_reserve(mp, 600, 1, &tic, 514 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 515 if (!error) { 516 /* the data section must be 32 bit size aligned */ 517 struct { 518 __uint16_t magic; 519 __uint16_t pad1; 520 __uint32_t pad2; /* may as well make it 64 bits */ 521 } magic = { 522 .magic = XLOG_UNMOUNT_TYPE, 523 }; 524 struct xfs_log_iovec reg = { 525 .i_addr = &magic, 526 .i_len = sizeof(magic), 527 .i_type = XLOG_REG_TYPE_UNMOUNT, 528 }; 529 struct xfs_log_vec vec = { 530 .lv_niovecs = 1, 531 .lv_iovecp = ®, 532 }; 533 534 /* remove inited flag */ 535 tic->t_flags = 0; 536 error = xlog_write(log, &vec, tic, &lsn, 537 NULL, XLOG_UNMOUNT_TRANS); 538 /* 539 * At this point, we're umounting anyway, 540 * so there's no point in transitioning log state 541 * to IOERROR. Just continue... 542 */ 543 } 544 545 if (error) { 546 xfs_fs_cmn_err(CE_ALERT, mp, 547 "xfs_log_unmount: unmount record failed"); 548 } 549 550 551 spin_lock(&log->l_icloglock); 552 iclog = log->l_iclog; 553 atomic_inc(&iclog->ic_refcnt); 554 xlog_state_want_sync(log, iclog); 555 spin_unlock(&log->l_icloglock); 556 error = xlog_state_release_iclog(log, iclog); 557 558 spin_lock(&log->l_icloglock); 559 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 560 iclog->ic_state == XLOG_STATE_DIRTY)) { 561 if (!XLOG_FORCED_SHUTDOWN(log)) { 562 xlog_wait(&iclog->ic_force_wait, 563 &log->l_icloglock); 564 } else { 565 spin_unlock(&log->l_icloglock); 566 } 567 } else { 568 spin_unlock(&log->l_icloglock); 569 } 570 if (tic) { 571 trace_xfs_log_umount_write(log, tic); 572 xlog_ungrant_log_space(log, tic); 573 xfs_log_ticket_put(tic); 574 } 575 } else { 576 /* 577 * We're already in forced_shutdown mode, couldn't 578 * even attempt to write out the unmount transaction. 579 * 580 * Go through the motions of sync'ing and releasing 581 * the iclog, even though no I/O will actually happen, 582 * we need to wait for other log I/Os that may already 583 * be in progress. Do this as a separate section of 584 * code so we'll know if we ever get stuck here that 585 * we're in this odd situation of trying to unmount 586 * a file system that went into forced_shutdown as 587 * the result of an unmount.. 588 */ 589 spin_lock(&log->l_icloglock); 590 iclog = log->l_iclog; 591 atomic_inc(&iclog->ic_refcnt); 592 593 xlog_state_want_sync(log, iclog); 594 spin_unlock(&log->l_icloglock); 595 error = xlog_state_release_iclog(log, iclog); 596 597 spin_lock(&log->l_icloglock); 598 599 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 600 || iclog->ic_state == XLOG_STATE_DIRTY 601 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 602 603 xlog_wait(&iclog->ic_force_wait, 604 &log->l_icloglock); 605 } else { 606 spin_unlock(&log->l_icloglock); 607 } 608 } 609 610 return error; 611 } /* xfs_log_unmount_write */ 612 613 /* 614 * Deallocate log structures for unmount/relocation. 615 * 616 * We need to stop the aild from running before we destroy 617 * and deallocate the log as the aild references the log. 618 */ 619 void 620 xfs_log_unmount(xfs_mount_t *mp) 621 { 622 xfs_trans_ail_destroy(mp); 623 xlog_dealloc_log(mp->m_log); 624 } 625 626 void 627 xfs_log_item_init( 628 struct xfs_mount *mp, 629 struct xfs_log_item *item, 630 int type, 631 struct xfs_item_ops *ops) 632 { 633 item->li_mountp = mp; 634 item->li_ailp = mp->m_ail; 635 item->li_type = type; 636 item->li_ops = ops; 637 item->li_lv = NULL; 638 639 INIT_LIST_HEAD(&item->li_ail); 640 INIT_LIST_HEAD(&item->li_cil); 641 } 642 643 /* 644 * Write region vectors to log. The write happens using the space reservation 645 * of the ticket (tic). It is not a requirement that all writes for a given 646 * transaction occur with one call to xfs_log_write(). However, it is important 647 * to note that the transaction reservation code makes an assumption about the 648 * number of log headers a transaction requires that may be violated if you 649 * don't pass all the transaction vectors in one call.... 650 */ 651 int 652 xfs_log_write( 653 struct xfs_mount *mp, 654 struct xfs_log_iovec reg[], 655 int nentries, 656 struct xlog_ticket *tic, 657 xfs_lsn_t *start_lsn) 658 { 659 struct log *log = mp->m_log; 660 int error; 661 struct xfs_log_vec vec = { 662 .lv_niovecs = nentries, 663 .lv_iovecp = reg, 664 }; 665 666 if (XLOG_FORCED_SHUTDOWN(log)) 667 return XFS_ERROR(EIO); 668 669 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0); 670 if (error) 671 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 672 return error; 673 } 674 675 void 676 xfs_log_move_tail(xfs_mount_t *mp, 677 xfs_lsn_t tail_lsn) 678 { 679 xlog_ticket_t *tic; 680 xlog_t *log = mp->m_log; 681 int need_bytes, free_bytes; 682 683 if (XLOG_FORCED_SHUTDOWN(log)) 684 return; 685 686 if (tail_lsn == 0) 687 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 688 689 /* tail_lsn == 1 implies that we weren't passed a valid value. */ 690 if (tail_lsn != 1) 691 atomic64_set(&log->l_tail_lsn, tail_lsn); 692 693 if (!list_empty_careful(&log->l_writeq)) { 694 #ifdef DEBUG 695 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 696 panic("Recovery problem"); 697 #endif 698 spin_lock(&log->l_grant_write_lock); 699 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 700 list_for_each_entry(tic, &log->l_writeq, t_queue) { 701 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 702 703 if (free_bytes < tic->t_unit_res && tail_lsn != 1) 704 break; 705 tail_lsn = 0; 706 free_bytes -= tic->t_unit_res; 707 trace_xfs_log_regrant_write_wake_up(log, tic); 708 wake_up(&tic->t_wait); 709 } 710 spin_unlock(&log->l_grant_write_lock); 711 } 712 713 if (!list_empty_careful(&log->l_reserveq)) { 714 #ifdef DEBUG 715 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 716 panic("Recovery problem"); 717 #endif 718 spin_lock(&log->l_grant_reserve_lock); 719 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 720 list_for_each_entry(tic, &log->l_reserveq, t_queue) { 721 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 722 need_bytes = tic->t_unit_res*tic->t_cnt; 723 else 724 need_bytes = tic->t_unit_res; 725 if (free_bytes < need_bytes && tail_lsn != 1) 726 break; 727 tail_lsn = 0; 728 free_bytes -= need_bytes; 729 trace_xfs_log_grant_wake_up(log, tic); 730 wake_up(&tic->t_wait); 731 } 732 spin_unlock(&log->l_grant_reserve_lock); 733 } 734 } 735 736 /* 737 * Determine if we have a transaction that has gone to disk 738 * that needs to be covered. To begin the transition to the idle state 739 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 740 * If we are then in a state where covering is needed, the caller is informed 741 * that dummy transactions are required to move the log into the idle state. 742 * 743 * Because this is called as part of the sync process, we should also indicate 744 * that dummy transactions should be issued in anything but the covered or 745 * idle states. This ensures that the log tail is accurately reflected in 746 * the log at the end of the sync, hence if a crash occurrs avoids replay 747 * of transactions where the metadata is already on disk. 748 */ 749 int 750 xfs_log_need_covered(xfs_mount_t *mp) 751 { 752 int needed = 0; 753 xlog_t *log = mp->m_log; 754 755 if (!xfs_fs_writable(mp)) 756 return 0; 757 758 spin_lock(&log->l_icloglock); 759 switch (log->l_covered_state) { 760 case XLOG_STATE_COVER_DONE: 761 case XLOG_STATE_COVER_DONE2: 762 case XLOG_STATE_COVER_IDLE: 763 break; 764 case XLOG_STATE_COVER_NEED: 765 case XLOG_STATE_COVER_NEED2: 766 if (!xfs_trans_ail_tail(log->l_ailp) && 767 xlog_iclogs_empty(log)) { 768 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 769 log->l_covered_state = XLOG_STATE_COVER_DONE; 770 else 771 log->l_covered_state = XLOG_STATE_COVER_DONE2; 772 } 773 /* FALLTHRU */ 774 default: 775 needed = 1; 776 break; 777 } 778 spin_unlock(&log->l_icloglock); 779 return needed; 780 } 781 782 /****************************************************************************** 783 * 784 * local routines 785 * 786 ****************************************************************************** 787 */ 788 789 /* xfs_trans_tail_ail returns 0 when there is nothing in the list. 790 * The log manager must keep track of the last LR which was committed 791 * to disk. The lsn of this LR will become the new tail_lsn whenever 792 * xfs_trans_tail_ail returns 0. If we don't do this, we run into 793 * the situation where stuff could be written into the log but nothing 794 * was ever in the AIL when asked. Eventually, we panic since the 795 * tail hits the head. 796 * 797 * We may be holding the log iclog lock upon entering this routine. 798 */ 799 xfs_lsn_t 800 xlog_assign_tail_lsn( 801 struct xfs_mount *mp) 802 { 803 xfs_lsn_t tail_lsn; 804 struct log *log = mp->m_log; 805 806 tail_lsn = xfs_trans_ail_tail(mp->m_ail); 807 if (!tail_lsn) 808 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 809 810 atomic64_set(&log->l_tail_lsn, tail_lsn); 811 return tail_lsn; 812 } 813 814 /* 815 * Return the space in the log between the tail and the head. The head 816 * is passed in the cycle/bytes formal parms. In the special case where 817 * the reserve head has wrapped passed the tail, this calculation is no 818 * longer valid. In this case, just return 0 which means there is no space 819 * in the log. This works for all places where this function is called 820 * with the reserve head. Of course, if the write head were to ever 821 * wrap the tail, we should blow up. Rather than catch this case here, 822 * we depend on other ASSERTions in other parts of the code. XXXmiken 823 * 824 * This code also handles the case where the reservation head is behind 825 * the tail. The details of this case are described below, but the end 826 * result is that we return the size of the log as the amount of space left. 827 */ 828 STATIC int 829 xlog_space_left( 830 struct log *log, 831 atomic64_t *head) 832 { 833 int free_bytes; 834 int tail_bytes; 835 int tail_cycle; 836 int head_cycle; 837 int head_bytes; 838 839 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 840 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 841 tail_bytes = BBTOB(tail_bytes); 842 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 843 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 844 else if (tail_cycle + 1 < head_cycle) 845 return 0; 846 else if (tail_cycle < head_cycle) { 847 ASSERT(tail_cycle == (head_cycle - 1)); 848 free_bytes = tail_bytes - head_bytes; 849 } else { 850 /* 851 * The reservation head is behind the tail. 852 * In this case we just want to return the size of the 853 * log as the amount of space left. 854 */ 855 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 856 "xlog_space_left: head behind tail\n" 857 " tail_cycle = %d, tail_bytes = %d\n" 858 " GH cycle = %d, GH bytes = %d", 859 tail_cycle, tail_bytes, head_cycle, head_bytes); 860 ASSERT(0); 861 free_bytes = log->l_logsize; 862 } 863 return free_bytes; 864 } 865 866 867 /* 868 * Log function which is called when an io completes. 869 * 870 * The log manager needs its own routine, in order to control what 871 * happens with the buffer after the write completes. 872 */ 873 void 874 xlog_iodone(xfs_buf_t *bp) 875 { 876 xlog_in_core_t *iclog; 877 xlog_t *l; 878 int aborted; 879 880 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); 881 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2); 882 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 883 aborted = 0; 884 l = iclog->ic_log; 885 886 /* 887 * Race to shutdown the filesystem if we see an error. 888 */ 889 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp, 890 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 891 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp)); 892 XFS_BUF_STALE(bp); 893 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 894 /* 895 * This flag will be propagated to the trans-committed 896 * callback routines to let them know that the log-commit 897 * didn't succeed. 898 */ 899 aborted = XFS_LI_ABORTED; 900 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 901 aborted = XFS_LI_ABORTED; 902 } 903 904 /* log I/O is always issued ASYNC */ 905 ASSERT(XFS_BUF_ISASYNC(bp)); 906 xlog_state_done_syncing(iclog, aborted); 907 /* 908 * do not reference the buffer (bp) here as we could race 909 * with it being freed after writing the unmount record to the 910 * log. 911 */ 912 913 } /* xlog_iodone */ 914 915 /* 916 * Return size of each in-core log record buffer. 917 * 918 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 919 * 920 * If the filesystem blocksize is too large, we may need to choose a 921 * larger size since the directory code currently logs entire blocks. 922 */ 923 924 STATIC void 925 xlog_get_iclog_buffer_size(xfs_mount_t *mp, 926 xlog_t *log) 927 { 928 int size; 929 int xhdrs; 930 931 if (mp->m_logbufs <= 0) 932 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 933 else 934 log->l_iclog_bufs = mp->m_logbufs; 935 936 /* 937 * Buffer size passed in from mount system call. 938 */ 939 if (mp->m_logbsize > 0) { 940 size = log->l_iclog_size = mp->m_logbsize; 941 log->l_iclog_size_log = 0; 942 while (size != 1) { 943 log->l_iclog_size_log++; 944 size >>= 1; 945 } 946 947 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 948 /* # headers = size / 32k 949 * one header holds cycles from 32k of data 950 */ 951 952 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 953 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 954 xhdrs++; 955 log->l_iclog_hsize = xhdrs << BBSHIFT; 956 log->l_iclog_heads = xhdrs; 957 } else { 958 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 959 log->l_iclog_hsize = BBSIZE; 960 log->l_iclog_heads = 1; 961 } 962 goto done; 963 } 964 965 /* All machines use 32kB buffers by default. */ 966 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 967 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 968 969 /* the default log size is 16k or 32k which is one header sector */ 970 log->l_iclog_hsize = BBSIZE; 971 log->l_iclog_heads = 1; 972 973 done: 974 /* are we being asked to make the sizes selected above visible? */ 975 if (mp->m_logbufs == 0) 976 mp->m_logbufs = log->l_iclog_bufs; 977 if (mp->m_logbsize == 0) 978 mp->m_logbsize = log->l_iclog_size; 979 } /* xlog_get_iclog_buffer_size */ 980 981 982 /* 983 * This routine initializes some of the log structure for a given mount point. 984 * Its primary purpose is to fill in enough, so recovery can occur. However, 985 * some other stuff may be filled in too. 986 */ 987 STATIC xlog_t * 988 xlog_alloc_log(xfs_mount_t *mp, 989 xfs_buftarg_t *log_target, 990 xfs_daddr_t blk_offset, 991 int num_bblks) 992 { 993 xlog_t *log; 994 xlog_rec_header_t *head; 995 xlog_in_core_t **iclogp; 996 xlog_in_core_t *iclog, *prev_iclog=NULL; 997 xfs_buf_t *bp; 998 int i; 999 int error = ENOMEM; 1000 uint log2_size = 0; 1001 1002 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL); 1003 if (!log) { 1004 xlog_warn("XFS: Log allocation failed: No memory!"); 1005 goto out; 1006 } 1007 1008 log->l_mp = mp; 1009 log->l_targ = log_target; 1010 log->l_logsize = BBTOB(num_bblks); 1011 log->l_logBBstart = blk_offset; 1012 log->l_logBBsize = num_bblks; 1013 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1014 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1015 1016 log->l_prev_block = -1; 1017 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1018 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1019 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1020 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1021 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0); 1022 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0); 1023 INIT_LIST_HEAD(&log->l_reserveq); 1024 INIT_LIST_HEAD(&log->l_writeq); 1025 spin_lock_init(&log->l_grant_reserve_lock); 1026 spin_lock_init(&log->l_grant_write_lock); 1027 1028 error = EFSCORRUPTED; 1029 if (xfs_sb_version_hassector(&mp->m_sb)) { 1030 log2_size = mp->m_sb.sb_logsectlog; 1031 if (log2_size < BBSHIFT) { 1032 xlog_warn("XFS: Log sector size too small " 1033 "(0x%x < 0x%x)", log2_size, BBSHIFT); 1034 goto out_free_log; 1035 } 1036 1037 log2_size -= BBSHIFT; 1038 if (log2_size > mp->m_sectbb_log) { 1039 xlog_warn("XFS: Log sector size too large " 1040 "(0x%x > 0x%x)", log2_size, mp->m_sectbb_log); 1041 goto out_free_log; 1042 } 1043 1044 /* for larger sector sizes, must have v2 or external log */ 1045 if (log2_size && log->l_logBBstart > 0 && 1046 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1047 1048 xlog_warn("XFS: log sector size (0x%x) invalid " 1049 "for configuration.", log2_size); 1050 goto out_free_log; 1051 } 1052 } 1053 log->l_sectBBsize = 1 << log2_size; 1054 1055 xlog_get_iclog_buffer_size(mp, log); 1056 1057 error = ENOMEM; 1058 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp); 1059 if (!bp) 1060 goto out_free_log; 1061 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); 1062 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 1063 ASSERT(XFS_BUF_ISBUSY(bp)); 1064 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 1065 log->l_xbuf = bp; 1066 1067 spin_lock_init(&log->l_icloglock); 1068 init_waitqueue_head(&log->l_flush_wait); 1069 1070 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */ 1071 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0); 1072 1073 iclogp = &log->l_iclog; 1074 /* 1075 * The amount of memory to allocate for the iclog structure is 1076 * rather funky due to the way the structure is defined. It is 1077 * done this way so that we can use different sizes for machines 1078 * with different amounts of memory. See the definition of 1079 * xlog_in_core_t in xfs_log_priv.h for details. 1080 */ 1081 ASSERT(log->l_iclog_size >= 4096); 1082 for (i=0; i < log->l_iclog_bufs; i++) { 1083 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1084 if (!*iclogp) 1085 goto out_free_iclog; 1086 1087 iclog = *iclogp; 1088 iclog->ic_prev = prev_iclog; 1089 prev_iclog = iclog; 1090 1091 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1092 log->l_iclog_size, 0); 1093 if (!bp) 1094 goto out_free_iclog; 1095 if (!XFS_BUF_CPSEMA(bp)) 1096 ASSERT(0); 1097 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); 1098 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 1099 iclog->ic_bp = bp; 1100 iclog->ic_data = bp->b_addr; 1101 #ifdef DEBUG 1102 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1103 #endif 1104 head = &iclog->ic_header; 1105 memset(head, 0, sizeof(xlog_rec_header_t)); 1106 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1107 head->h_version = cpu_to_be32( 1108 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1109 head->h_size = cpu_to_be32(log->l_iclog_size); 1110 /* new fields */ 1111 head->h_fmt = cpu_to_be32(XLOG_FMT); 1112 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1113 1114 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize; 1115 iclog->ic_state = XLOG_STATE_ACTIVE; 1116 iclog->ic_log = log; 1117 atomic_set(&iclog->ic_refcnt, 0); 1118 spin_lock_init(&iclog->ic_callback_lock); 1119 iclog->ic_callback_tail = &(iclog->ic_callback); 1120 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1121 1122 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp)); 1123 ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0); 1124 init_waitqueue_head(&iclog->ic_force_wait); 1125 init_waitqueue_head(&iclog->ic_write_wait); 1126 1127 iclogp = &iclog->ic_next; 1128 } 1129 *iclogp = log->l_iclog; /* complete ring */ 1130 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1131 1132 error = xlog_cil_init(log); 1133 if (error) 1134 goto out_free_iclog; 1135 return log; 1136 1137 out_free_iclog: 1138 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1139 prev_iclog = iclog->ic_next; 1140 if (iclog->ic_bp) 1141 xfs_buf_free(iclog->ic_bp); 1142 kmem_free(iclog); 1143 } 1144 spinlock_destroy(&log->l_icloglock); 1145 xfs_buf_free(log->l_xbuf); 1146 out_free_log: 1147 kmem_free(log); 1148 out: 1149 return ERR_PTR(-error); 1150 } /* xlog_alloc_log */ 1151 1152 1153 /* 1154 * Write out the commit record of a transaction associated with the given 1155 * ticket. Return the lsn of the commit record. 1156 */ 1157 STATIC int 1158 xlog_commit_record( 1159 struct log *log, 1160 struct xlog_ticket *ticket, 1161 struct xlog_in_core **iclog, 1162 xfs_lsn_t *commitlsnp) 1163 { 1164 struct xfs_mount *mp = log->l_mp; 1165 int error; 1166 struct xfs_log_iovec reg = { 1167 .i_addr = NULL, 1168 .i_len = 0, 1169 .i_type = XLOG_REG_TYPE_COMMIT, 1170 }; 1171 struct xfs_log_vec vec = { 1172 .lv_niovecs = 1, 1173 .lv_iovecp = ®, 1174 }; 1175 1176 ASSERT_ALWAYS(iclog); 1177 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1178 XLOG_COMMIT_TRANS); 1179 if (error) 1180 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1181 return error; 1182 } 1183 1184 /* 1185 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1186 * log space. This code pushes on the lsn which would supposedly free up 1187 * the 25% which we want to leave free. We may need to adopt a policy which 1188 * pushes on an lsn which is further along in the log once we reach the high 1189 * water mark. In this manner, we would be creating a low water mark. 1190 */ 1191 STATIC void 1192 xlog_grant_push_ail( 1193 struct log *log, 1194 int need_bytes) 1195 { 1196 xfs_lsn_t threshold_lsn = 0; 1197 xfs_lsn_t last_sync_lsn; 1198 int free_blocks; 1199 int free_bytes; 1200 int threshold_block; 1201 int threshold_cycle; 1202 int free_threshold; 1203 1204 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1205 1206 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 1207 free_blocks = BTOBBT(free_bytes); 1208 1209 /* 1210 * Set the threshold for the minimum number of free blocks in the 1211 * log to the maximum of what the caller needs, one quarter of the 1212 * log, and 256 blocks. 1213 */ 1214 free_threshold = BTOBB(need_bytes); 1215 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1216 free_threshold = MAX(free_threshold, 256); 1217 if (free_blocks >= free_threshold) 1218 return; 1219 1220 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1221 &threshold_block); 1222 threshold_block += free_threshold; 1223 if (threshold_block >= log->l_logBBsize) { 1224 threshold_block -= log->l_logBBsize; 1225 threshold_cycle += 1; 1226 } 1227 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1228 threshold_block); 1229 /* 1230 * Don't pass in an lsn greater than the lsn of the last 1231 * log record known to be on disk. Use a snapshot of the last sync lsn 1232 * so that it doesn't change between the compare and the set. 1233 */ 1234 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1235 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1236 threshold_lsn = last_sync_lsn; 1237 1238 /* 1239 * Get the transaction layer to kick the dirty buffers out to 1240 * disk asynchronously. No point in trying to do this if 1241 * the filesystem is shutting down. 1242 */ 1243 if (!XLOG_FORCED_SHUTDOWN(log)) 1244 xfs_trans_ail_push(log->l_ailp, threshold_lsn); 1245 } 1246 1247 /* 1248 * The bdstrat callback function for log bufs. This gives us a central 1249 * place to trap bufs in case we get hit by a log I/O error and need to 1250 * shutdown. Actually, in practice, even when we didn't get a log error, 1251 * we transition the iclogs to IOERROR state *after* flushing all existing 1252 * iclogs to disk. This is because we don't want anymore new transactions to be 1253 * started or completed afterwards. 1254 */ 1255 STATIC int 1256 xlog_bdstrat( 1257 struct xfs_buf *bp) 1258 { 1259 struct xlog_in_core *iclog; 1260 1261 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); 1262 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1263 XFS_BUF_ERROR(bp, EIO); 1264 XFS_BUF_STALE(bp); 1265 xfs_buf_ioend(bp, 0); 1266 /* 1267 * It would seem logical to return EIO here, but we rely on 1268 * the log state machine to propagate I/O errors instead of 1269 * doing it here. 1270 */ 1271 return 0; 1272 } 1273 1274 bp->b_flags |= _XBF_RUN_QUEUES; 1275 xfs_buf_iorequest(bp); 1276 return 0; 1277 } 1278 1279 /* 1280 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1281 * fashion. Previously, we should have moved the current iclog 1282 * ptr in the log to point to the next available iclog. This allows further 1283 * write to continue while this code syncs out an iclog ready to go. 1284 * Before an in-core log can be written out, the data section must be scanned 1285 * to save away the 1st word of each BBSIZE block into the header. We replace 1286 * it with the current cycle count. Each BBSIZE block is tagged with the 1287 * cycle count because there in an implicit assumption that drives will 1288 * guarantee that entire 512 byte blocks get written at once. In other words, 1289 * we can't have part of a 512 byte block written and part not written. By 1290 * tagging each block, we will know which blocks are valid when recovering 1291 * after an unclean shutdown. 1292 * 1293 * This routine is single threaded on the iclog. No other thread can be in 1294 * this routine with the same iclog. Changing contents of iclog can there- 1295 * fore be done without grabbing the state machine lock. Updating the global 1296 * log will require grabbing the lock though. 1297 * 1298 * The entire log manager uses a logical block numbering scheme. Only 1299 * log_sync (and then only bwrite()) know about the fact that the log may 1300 * not start with block zero on a given device. The log block start offset 1301 * is added immediately before calling bwrite(). 1302 */ 1303 1304 STATIC int 1305 xlog_sync(xlog_t *log, 1306 xlog_in_core_t *iclog) 1307 { 1308 xfs_caddr_t dptr; /* pointer to byte sized element */ 1309 xfs_buf_t *bp; 1310 int i; 1311 uint count; /* byte count of bwrite */ 1312 uint count_init; /* initial count before roundup */ 1313 int roundoff; /* roundoff to BB or stripe */ 1314 int split = 0; /* split write into two regions */ 1315 int error; 1316 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1317 1318 XFS_STATS_INC(xs_log_writes); 1319 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1320 1321 /* Add for LR header */ 1322 count_init = log->l_iclog_hsize + iclog->ic_offset; 1323 1324 /* Round out the log write size */ 1325 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1326 /* we have a v2 stripe unit to use */ 1327 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1328 } else { 1329 count = BBTOB(BTOBB(count_init)); 1330 } 1331 roundoff = count - count_init; 1332 ASSERT(roundoff >= 0); 1333 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1334 roundoff < log->l_mp->m_sb.sb_logsunit) 1335 || 1336 (log->l_mp->m_sb.sb_logsunit <= 1 && 1337 roundoff < BBTOB(1))); 1338 1339 /* move grant heads by roundoff in sync */ 1340 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff); 1341 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff); 1342 1343 /* put cycle number in every block */ 1344 xlog_pack_data(log, iclog, roundoff); 1345 1346 /* real byte length */ 1347 if (v2) { 1348 iclog->ic_header.h_len = 1349 cpu_to_be32(iclog->ic_offset + roundoff); 1350 } else { 1351 iclog->ic_header.h_len = 1352 cpu_to_be32(iclog->ic_offset); 1353 } 1354 1355 bp = iclog->ic_bp; 1356 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1); 1357 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); 1358 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1359 1360 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1361 1362 /* Do we need to split this write into 2 parts? */ 1363 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1364 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1365 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1366 iclog->ic_bwritecnt = 2; /* split into 2 writes */ 1367 } else { 1368 iclog->ic_bwritecnt = 1; 1369 } 1370 XFS_BUF_SET_COUNT(bp, count); 1371 XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */ 1372 XFS_BUF_ZEROFLAGS(bp); 1373 XFS_BUF_BUSY(bp); 1374 XFS_BUF_ASYNC(bp); 1375 bp->b_flags |= XBF_LOG_BUFFER; 1376 1377 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1378 XFS_BUF_ORDERED(bp); 1379 1380 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1381 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1382 1383 xlog_verify_iclog(log, iclog, count, B_TRUE); 1384 1385 /* account for log which doesn't start at block #0 */ 1386 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1387 /* 1388 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1389 * is shutting down. 1390 */ 1391 XFS_BUF_WRITE(bp); 1392 1393 if ((error = xlog_bdstrat(bp))) { 1394 xfs_ioerror_alert("xlog_sync", log->l_mp, bp, 1395 XFS_BUF_ADDR(bp)); 1396 return error; 1397 } 1398 if (split) { 1399 bp = iclog->ic_log->l_xbuf; 1400 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == 1401 (unsigned long)1); 1402 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); 1403 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1404 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+ 1405 (__psint_t)count), split); 1406 XFS_BUF_SET_FSPRIVATE(bp, iclog); 1407 XFS_BUF_ZEROFLAGS(bp); 1408 XFS_BUF_BUSY(bp); 1409 XFS_BUF_ASYNC(bp); 1410 bp->b_flags |= XBF_LOG_BUFFER; 1411 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1412 XFS_BUF_ORDERED(bp); 1413 dptr = XFS_BUF_PTR(bp); 1414 /* 1415 * Bump the cycle numbers at the start of each block 1416 * since this part of the buffer is at the start of 1417 * a new cycle. Watch out for the header magic number 1418 * case, though. 1419 */ 1420 for (i = 0; i < split; i += BBSIZE) { 1421 be32_add_cpu((__be32 *)dptr, 1); 1422 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM) 1423 be32_add_cpu((__be32 *)dptr, 1); 1424 dptr += BBSIZE; 1425 } 1426 1427 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1428 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1429 1430 /* account for internal log which doesn't start at block #0 */ 1431 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1432 XFS_BUF_WRITE(bp); 1433 if ((error = xlog_bdstrat(bp))) { 1434 xfs_ioerror_alert("xlog_sync (split)", log->l_mp, 1435 bp, XFS_BUF_ADDR(bp)); 1436 return error; 1437 } 1438 } 1439 return 0; 1440 } /* xlog_sync */ 1441 1442 1443 /* 1444 * Deallocate a log structure 1445 */ 1446 STATIC void 1447 xlog_dealloc_log(xlog_t *log) 1448 { 1449 xlog_in_core_t *iclog, *next_iclog; 1450 int i; 1451 1452 xlog_cil_destroy(log); 1453 1454 iclog = log->l_iclog; 1455 for (i=0; i<log->l_iclog_bufs; i++) { 1456 xfs_buf_free(iclog->ic_bp); 1457 next_iclog = iclog->ic_next; 1458 kmem_free(iclog); 1459 iclog = next_iclog; 1460 } 1461 spinlock_destroy(&log->l_icloglock); 1462 1463 xfs_buf_free(log->l_xbuf); 1464 log->l_mp->m_log = NULL; 1465 kmem_free(log); 1466 } /* xlog_dealloc_log */ 1467 1468 /* 1469 * Update counters atomically now that memcpy is done. 1470 */ 1471 /* ARGSUSED */ 1472 static inline void 1473 xlog_state_finish_copy(xlog_t *log, 1474 xlog_in_core_t *iclog, 1475 int record_cnt, 1476 int copy_bytes) 1477 { 1478 spin_lock(&log->l_icloglock); 1479 1480 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1481 iclog->ic_offset += copy_bytes; 1482 1483 spin_unlock(&log->l_icloglock); 1484 } /* xlog_state_finish_copy */ 1485 1486 1487 1488 1489 /* 1490 * print out info relating to regions written which consume 1491 * the reservation 1492 */ 1493 void 1494 xlog_print_tic_res( 1495 struct xfs_mount *mp, 1496 struct xlog_ticket *ticket) 1497 { 1498 uint i; 1499 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1500 1501 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1502 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1503 "bformat", 1504 "bchunk", 1505 "efi_format", 1506 "efd_format", 1507 "iformat", 1508 "icore", 1509 "iext", 1510 "ibroot", 1511 "ilocal", 1512 "iattr_ext", 1513 "iattr_broot", 1514 "iattr_local", 1515 "qformat", 1516 "dquot", 1517 "quotaoff", 1518 "LR header", 1519 "unmount", 1520 "commit", 1521 "trans header" 1522 }; 1523 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1524 "SETATTR_NOT_SIZE", 1525 "SETATTR_SIZE", 1526 "INACTIVE", 1527 "CREATE", 1528 "CREATE_TRUNC", 1529 "TRUNCATE_FILE", 1530 "REMOVE", 1531 "LINK", 1532 "RENAME", 1533 "MKDIR", 1534 "RMDIR", 1535 "SYMLINK", 1536 "SET_DMATTRS", 1537 "GROWFS", 1538 "STRAT_WRITE", 1539 "DIOSTRAT", 1540 "WRITE_SYNC", 1541 "WRITEID", 1542 "ADDAFORK", 1543 "ATTRINVAL", 1544 "ATRUNCATE", 1545 "ATTR_SET", 1546 "ATTR_RM", 1547 "ATTR_FLAG", 1548 "CLEAR_AGI_BUCKET", 1549 "QM_SBCHANGE", 1550 "DUMMY1", 1551 "DUMMY2", 1552 "QM_QUOTAOFF", 1553 "QM_DQALLOC", 1554 "QM_SETQLIM", 1555 "QM_DQCLUSTER", 1556 "QM_QINOCREATE", 1557 "QM_QUOTAOFF_END", 1558 "SB_UNIT", 1559 "FSYNC_TS", 1560 "GROWFSRT_ALLOC", 1561 "GROWFSRT_ZERO", 1562 "GROWFSRT_FREE", 1563 "SWAPEXT" 1564 }; 1565 1566 xfs_fs_cmn_err(CE_WARN, mp, 1567 "xfs_log_write: reservation summary:\n" 1568 " trans type = %s (%u)\n" 1569 " unit res = %d bytes\n" 1570 " current res = %d bytes\n" 1571 " total reg = %u bytes (o/flow = %u bytes)\n" 1572 " ophdrs = %u (ophdr space = %u bytes)\n" 1573 " ophdr + reg = %u bytes\n" 1574 " num regions = %u\n", 1575 ((ticket->t_trans_type <= 0 || 1576 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1577 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1578 ticket->t_trans_type, 1579 ticket->t_unit_res, 1580 ticket->t_curr_res, 1581 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1582 ticket->t_res_num_ophdrs, ophdr_spc, 1583 ticket->t_res_arr_sum + 1584 ticket->t_res_o_flow + ophdr_spc, 1585 ticket->t_res_num); 1586 1587 for (i = 0; i < ticket->t_res_num; i++) { 1588 uint r_type = ticket->t_res_arr[i].r_type; 1589 cmn_err(CE_WARN, 1590 "region[%u]: %s - %u bytes\n", 1591 i, 1592 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1593 "bad-rtype" : res_type_str[r_type-1]), 1594 ticket->t_res_arr[i].r_len); 1595 } 1596 1597 xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp, 1598 "xfs_log_write: reservation ran out. Need to up reservation"); 1599 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1600 } 1601 1602 /* 1603 * Calculate the potential space needed by the log vector. Each region gets 1604 * its own xlog_op_header_t and may need to be double word aligned. 1605 */ 1606 static int 1607 xlog_write_calc_vec_length( 1608 struct xlog_ticket *ticket, 1609 struct xfs_log_vec *log_vector) 1610 { 1611 struct xfs_log_vec *lv; 1612 int headers = 0; 1613 int len = 0; 1614 int i; 1615 1616 /* acct for start rec of xact */ 1617 if (ticket->t_flags & XLOG_TIC_INITED) 1618 headers++; 1619 1620 for (lv = log_vector; lv; lv = lv->lv_next) { 1621 headers += lv->lv_niovecs; 1622 1623 for (i = 0; i < lv->lv_niovecs; i++) { 1624 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 1625 1626 len += vecp->i_len; 1627 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 1628 } 1629 } 1630 1631 ticket->t_res_num_ophdrs += headers; 1632 len += headers * sizeof(struct xlog_op_header); 1633 1634 return len; 1635 } 1636 1637 /* 1638 * If first write for transaction, insert start record We can't be trying to 1639 * commit if we are inited. We can't have any "partial_copy" if we are inited. 1640 */ 1641 static int 1642 xlog_write_start_rec( 1643 struct xlog_op_header *ophdr, 1644 struct xlog_ticket *ticket) 1645 { 1646 if (!(ticket->t_flags & XLOG_TIC_INITED)) 1647 return 0; 1648 1649 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1650 ophdr->oh_clientid = ticket->t_clientid; 1651 ophdr->oh_len = 0; 1652 ophdr->oh_flags = XLOG_START_TRANS; 1653 ophdr->oh_res2 = 0; 1654 1655 ticket->t_flags &= ~XLOG_TIC_INITED; 1656 1657 return sizeof(struct xlog_op_header); 1658 } 1659 1660 static xlog_op_header_t * 1661 xlog_write_setup_ophdr( 1662 struct log *log, 1663 struct xlog_op_header *ophdr, 1664 struct xlog_ticket *ticket, 1665 uint flags) 1666 { 1667 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1668 ophdr->oh_clientid = ticket->t_clientid; 1669 ophdr->oh_res2 = 0; 1670 1671 /* are we copying a commit or unmount record? */ 1672 ophdr->oh_flags = flags; 1673 1674 /* 1675 * We've seen logs corrupted with bad transaction client ids. This 1676 * makes sure that XFS doesn't generate them on. Turn this into an EIO 1677 * and shut down the filesystem. 1678 */ 1679 switch (ophdr->oh_clientid) { 1680 case XFS_TRANSACTION: 1681 case XFS_VOLUME: 1682 case XFS_LOG: 1683 break; 1684 default: 1685 xfs_fs_cmn_err(CE_WARN, log->l_mp, 1686 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 1687 ophdr->oh_clientid, ticket); 1688 return NULL; 1689 } 1690 1691 return ophdr; 1692 } 1693 1694 /* 1695 * Set up the parameters of the region copy into the log. This has 1696 * to handle region write split across multiple log buffers - this 1697 * state is kept external to this function so that this code can 1698 * can be written in an obvious, self documenting manner. 1699 */ 1700 static int 1701 xlog_write_setup_copy( 1702 struct xlog_ticket *ticket, 1703 struct xlog_op_header *ophdr, 1704 int space_available, 1705 int space_required, 1706 int *copy_off, 1707 int *copy_len, 1708 int *last_was_partial_copy, 1709 int *bytes_consumed) 1710 { 1711 int still_to_copy; 1712 1713 still_to_copy = space_required - *bytes_consumed; 1714 *copy_off = *bytes_consumed; 1715 1716 if (still_to_copy <= space_available) { 1717 /* write of region completes here */ 1718 *copy_len = still_to_copy; 1719 ophdr->oh_len = cpu_to_be32(*copy_len); 1720 if (*last_was_partial_copy) 1721 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 1722 *last_was_partial_copy = 0; 1723 *bytes_consumed = 0; 1724 return 0; 1725 } 1726 1727 /* partial write of region, needs extra log op header reservation */ 1728 *copy_len = space_available; 1729 ophdr->oh_len = cpu_to_be32(*copy_len); 1730 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 1731 if (*last_was_partial_copy) 1732 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 1733 *bytes_consumed += *copy_len; 1734 (*last_was_partial_copy)++; 1735 1736 /* account for new log op header */ 1737 ticket->t_curr_res -= sizeof(struct xlog_op_header); 1738 ticket->t_res_num_ophdrs++; 1739 1740 return sizeof(struct xlog_op_header); 1741 } 1742 1743 static int 1744 xlog_write_copy_finish( 1745 struct log *log, 1746 struct xlog_in_core *iclog, 1747 uint flags, 1748 int *record_cnt, 1749 int *data_cnt, 1750 int *partial_copy, 1751 int *partial_copy_len, 1752 int log_offset, 1753 struct xlog_in_core **commit_iclog) 1754 { 1755 if (*partial_copy) { 1756 /* 1757 * This iclog has already been marked WANT_SYNC by 1758 * xlog_state_get_iclog_space. 1759 */ 1760 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1761 *record_cnt = 0; 1762 *data_cnt = 0; 1763 return xlog_state_release_iclog(log, iclog); 1764 } 1765 1766 *partial_copy = 0; 1767 *partial_copy_len = 0; 1768 1769 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 1770 /* no more space in this iclog - push it. */ 1771 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1772 *record_cnt = 0; 1773 *data_cnt = 0; 1774 1775 spin_lock(&log->l_icloglock); 1776 xlog_state_want_sync(log, iclog); 1777 spin_unlock(&log->l_icloglock); 1778 1779 if (!commit_iclog) 1780 return xlog_state_release_iclog(log, iclog); 1781 ASSERT(flags & XLOG_COMMIT_TRANS); 1782 *commit_iclog = iclog; 1783 } 1784 1785 return 0; 1786 } 1787 1788 /* 1789 * Write some region out to in-core log 1790 * 1791 * This will be called when writing externally provided regions or when 1792 * writing out a commit record for a given transaction. 1793 * 1794 * General algorithm: 1795 * 1. Find total length of this write. This may include adding to the 1796 * lengths passed in. 1797 * 2. Check whether we violate the tickets reservation. 1798 * 3. While writing to this iclog 1799 * A. Reserve as much space in this iclog as can get 1800 * B. If this is first write, save away start lsn 1801 * C. While writing this region: 1802 * 1. If first write of transaction, write start record 1803 * 2. Write log operation header (header per region) 1804 * 3. Find out if we can fit entire region into this iclog 1805 * 4. Potentially, verify destination memcpy ptr 1806 * 5. Memcpy (partial) region 1807 * 6. If partial copy, release iclog; otherwise, continue 1808 * copying more regions into current iclog 1809 * 4. Mark want sync bit (in simulation mode) 1810 * 5. Release iclog for potential flush to on-disk log. 1811 * 1812 * ERRORS: 1813 * 1. Panic if reservation is overrun. This should never happen since 1814 * reservation amounts are generated internal to the filesystem. 1815 * NOTES: 1816 * 1. Tickets are single threaded data structures. 1817 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 1818 * syncing routine. When a single log_write region needs to span 1819 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 1820 * on all log operation writes which don't contain the end of the 1821 * region. The XLOG_END_TRANS bit is used for the in-core log 1822 * operation which contains the end of the continued log_write region. 1823 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 1824 * we don't really know exactly how much space will be used. As a result, 1825 * we don't update ic_offset until the end when we know exactly how many 1826 * bytes have been written out. 1827 */ 1828 int 1829 xlog_write( 1830 struct log *log, 1831 struct xfs_log_vec *log_vector, 1832 struct xlog_ticket *ticket, 1833 xfs_lsn_t *start_lsn, 1834 struct xlog_in_core **commit_iclog, 1835 uint flags) 1836 { 1837 struct xlog_in_core *iclog = NULL; 1838 struct xfs_log_iovec *vecp; 1839 struct xfs_log_vec *lv; 1840 int len; 1841 int index; 1842 int partial_copy = 0; 1843 int partial_copy_len = 0; 1844 int contwr = 0; 1845 int record_cnt = 0; 1846 int data_cnt = 0; 1847 int error; 1848 1849 *start_lsn = 0; 1850 1851 len = xlog_write_calc_vec_length(ticket, log_vector); 1852 if (log->l_cilp) { 1853 /* 1854 * Region headers and bytes are already accounted for. 1855 * We only need to take into account start records and 1856 * split regions in this function. 1857 */ 1858 if (ticket->t_flags & XLOG_TIC_INITED) 1859 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1860 1861 /* 1862 * Commit record headers need to be accounted for. These 1863 * come in as separate writes so are easy to detect. 1864 */ 1865 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 1866 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1867 } else 1868 ticket->t_curr_res -= len; 1869 1870 if (ticket->t_curr_res < 0) 1871 xlog_print_tic_res(log->l_mp, ticket); 1872 1873 index = 0; 1874 lv = log_vector; 1875 vecp = lv->lv_iovecp; 1876 while (lv && index < lv->lv_niovecs) { 1877 void *ptr; 1878 int log_offset; 1879 1880 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 1881 &contwr, &log_offset); 1882 if (error) 1883 return error; 1884 1885 ASSERT(log_offset <= iclog->ic_size - 1); 1886 ptr = iclog->ic_datap + log_offset; 1887 1888 /* start_lsn is the first lsn written to. That's all we need. */ 1889 if (!*start_lsn) 1890 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 1891 1892 /* 1893 * This loop writes out as many regions as can fit in the amount 1894 * of space which was allocated by xlog_state_get_iclog_space(). 1895 */ 1896 while (lv && index < lv->lv_niovecs) { 1897 struct xfs_log_iovec *reg = &vecp[index]; 1898 struct xlog_op_header *ophdr; 1899 int start_rec_copy; 1900 int copy_len; 1901 int copy_off; 1902 1903 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 1904 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 1905 1906 start_rec_copy = xlog_write_start_rec(ptr, ticket); 1907 if (start_rec_copy) { 1908 record_cnt++; 1909 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1910 start_rec_copy); 1911 } 1912 1913 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 1914 if (!ophdr) 1915 return XFS_ERROR(EIO); 1916 1917 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1918 sizeof(struct xlog_op_header)); 1919 1920 len += xlog_write_setup_copy(ticket, ophdr, 1921 iclog->ic_size-log_offset, 1922 reg->i_len, 1923 ©_off, ©_len, 1924 &partial_copy, 1925 &partial_copy_len); 1926 xlog_verify_dest_ptr(log, ptr); 1927 1928 /* copy region */ 1929 ASSERT(copy_len >= 0); 1930 memcpy(ptr, reg->i_addr + copy_off, copy_len); 1931 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 1932 1933 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 1934 record_cnt++; 1935 data_cnt += contwr ? copy_len : 0; 1936 1937 error = xlog_write_copy_finish(log, iclog, flags, 1938 &record_cnt, &data_cnt, 1939 &partial_copy, 1940 &partial_copy_len, 1941 log_offset, 1942 commit_iclog); 1943 if (error) 1944 return error; 1945 1946 /* 1947 * if we had a partial copy, we need to get more iclog 1948 * space but we don't want to increment the region 1949 * index because there is still more is this region to 1950 * write. 1951 * 1952 * If we completed writing this region, and we flushed 1953 * the iclog (indicated by resetting of the record 1954 * count), then we also need to get more log space. If 1955 * this was the last record, though, we are done and 1956 * can just return. 1957 */ 1958 if (partial_copy) 1959 break; 1960 1961 if (++index == lv->lv_niovecs) { 1962 lv = lv->lv_next; 1963 index = 0; 1964 if (lv) 1965 vecp = lv->lv_iovecp; 1966 } 1967 if (record_cnt == 0) { 1968 if (!lv) 1969 return 0; 1970 break; 1971 } 1972 } 1973 } 1974 1975 ASSERT(len == 0); 1976 1977 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 1978 if (!commit_iclog) 1979 return xlog_state_release_iclog(log, iclog); 1980 1981 ASSERT(flags & XLOG_COMMIT_TRANS); 1982 *commit_iclog = iclog; 1983 return 0; 1984 } 1985 1986 1987 /***************************************************************************** 1988 * 1989 * State Machine functions 1990 * 1991 ***************************************************************************** 1992 */ 1993 1994 /* Clean iclogs starting from the head. This ordering must be 1995 * maintained, so an iclog doesn't become ACTIVE beyond one that 1996 * is SYNCING. This is also required to maintain the notion that we use 1997 * a ordered wait queue to hold off would be writers to the log when every 1998 * iclog is trying to sync to disk. 1999 * 2000 * State Change: DIRTY -> ACTIVE 2001 */ 2002 STATIC void 2003 xlog_state_clean_log(xlog_t *log) 2004 { 2005 xlog_in_core_t *iclog; 2006 int changed = 0; 2007 2008 iclog = log->l_iclog; 2009 do { 2010 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2011 iclog->ic_state = XLOG_STATE_ACTIVE; 2012 iclog->ic_offset = 0; 2013 ASSERT(iclog->ic_callback == NULL); 2014 /* 2015 * If the number of ops in this iclog indicate it just 2016 * contains the dummy transaction, we can 2017 * change state into IDLE (the second time around). 2018 * Otherwise we should change the state into 2019 * NEED a dummy. 2020 * We don't need to cover the dummy. 2021 */ 2022 if (!changed && 2023 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2024 XLOG_COVER_OPS)) { 2025 changed = 1; 2026 } else { 2027 /* 2028 * We have two dirty iclogs so start over 2029 * This could also be num of ops indicates 2030 * this is not the dummy going out. 2031 */ 2032 changed = 2; 2033 } 2034 iclog->ic_header.h_num_logops = 0; 2035 memset(iclog->ic_header.h_cycle_data, 0, 2036 sizeof(iclog->ic_header.h_cycle_data)); 2037 iclog->ic_header.h_lsn = 0; 2038 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2039 /* do nothing */; 2040 else 2041 break; /* stop cleaning */ 2042 iclog = iclog->ic_next; 2043 } while (iclog != log->l_iclog); 2044 2045 /* log is locked when we are called */ 2046 /* 2047 * Change state for the dummy log recording. 2048 * We usually go to NEED. But we go to NEED2 if the changed indicates 2049 * we are done writing the dummy record. 2050 * If we are done with the second dummy recored (DONE2), then 2051 * we go to IDLE. 2052 */ 2053 if (changed) { 2054 switch (log->l_covered_state) { 2055 case XLOG_STATE_COVER_IDLE: 2056 case XLOG_STATE_COVER_NEED: 2057 case XLOG_STATE_COVER_NEED2: 2058 log->l_covered_state = XLOG_STATE_COVER_NEED; 2059 break; 2060 2061 case XLOG_STATE_COVER_DONE: 2062 if (changed == 1) 2063 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2064 else 2065 log->l_covered_state = XLOG_STATE_COVER_NEED; 2066 break; 2067 2068 case XLOG_STATE_COVER_DONE2: 2069 if (changed == 1) 2070 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2071 else 2072 log->l_covered_state = XLOG_STATE_COVER_NEED; 2073 break; 2074 2075 default: 2076 ASSERT(0); 2077 } 2078 } 2079 } /* xlog_state_clean_log */ 2080 2081 STATIC xfs_lsn_t 2082 xlog_get_lowest_lsn( 2083 xlog_t *log) 2084 { 2085 xlog_in_core_t *lsn_log; 2086 xfs_lsn_t lowest_lsn, lsn; 2087 2088 lsn_log = log->l_iclog; 2089 lowest_lsn = 0; 2090 do { 2091 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2092 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2093 if ((lsn && !lowest_lsn) || 2094 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2095 lowest_lsn = lsn; 2096 } 2097 } 2098 lsn_log = lsn_log->ic_next; 2099 } while (lsn_log != log->l_iclog); 2100 return lowest_lsn; 2101 } 2102 2103 2104 STATIC void 2105 xlog_state_do_callback( 2106 xlog_t *log, 2107 int aborted, 2108 xlog_in_core_t *ciclog) 2109 { 2110 xlog_in_core_t *iclog; 2111 xlog_in_core_t *first_iclog; /* used to know when we've 2112 * processed all iclogs once */ 2113 xfs_log_callback_t *cb, *cb_next; 2114 int flushcnt = 0; 2115 xfs_lsn_t lowest_lsn; 2116 int ioerrors; /* counter: iclogs with errors */ 2117 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2118 int funcdidcallbacks; /* flag: function did callbacks */ 2119 int repeats; /* for issuing console warnings if 2120 * looping too many times */ 2121 int wake = 0; 2122 2123 spin_lock(&log->l_icloglock); 2124 first_iclog = iclog = log->l_iclog; 2125 ioerrors = 0; 2126 funcdidcallbacks = 0; 2127 repeats = 0; 2128 2129 do { 2130 /* 2131 * Scan all iclogs starting with the one pointed to by the 2132 * log. Reset this starting point each time the log is 2133 * unlocked (during callbacks). 2134 * 2135 * Keep looping through iclogs until one full pass is made 2136 * without running any callbacks. 2137 */ 2138 first_iclog = log->l_iclog; 2139 iclog = log->l_iclog; 2140 loopdidcallbacks = 0; 2141 repeats++; 2142 2143 do { 2144 2145 /* skip all iclogs in the ACTIVE & DIRTY states */ 2146 if (iclog->ic_state & 2147 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2148 iclog = iclog->ic_next; 2149 continue; 2150 } 2151 2152 /* 2153 * Between marking a filesystem SHUTDOWN and stopping 2154 * the log, we do flush all iclogs to disk (if there 2155 * wasn't a log I/O error). So, we do want things to 2156 * go smoothly in case of just a SHUTDOWN w/o a 2157 * LOG_IO_ERROR. 2158 */ 2159 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2160 /* 2161 * Can only perform callbacks in order. Since 2162 * this iclog is not in the DONE_SYNC/ 2163 * DO_CALLBACK state, we skip the rest and 2164 * just try to clean up. If we set our iclog 2165 * to DO_CALLBACK, we will not process it when 2166 * we retry since a previous iclog is in the 2167 * CALLBACK and the state cannot change since 2168 * we are holding the l_icloglock. 2169 */ 2170 if (!(iclog->ic_state & 2171 (XLOG_STATE_DONE_SYNC | 2172 XLOG_STATE_DO_CALLBACK))) { 2173 if (ciclog && (ciclog->ic_state == 2174 XLOG_STATE_DONE_SYNC)) { 2175 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2176 } 2177 break; 2178 } 2179 /* 2180 * We now have an iclog that is in either the 2181 * DO_CALLBACK or DONE_SYNC states. The other 2182 * states (WANT_SYNC, SYNCING, or CALLBACK were 2183 * caught by the above if and are going to 2184 * clean (i.e. we aren't doing their callbacks) 2185 * see the above if. 2186 */ 2187 2188 /* 2189 * We will do one more check here to see if we 2190 * have chased our tail around. 2191 */ 2192 2193 lowest_lsn = xlog_get_lowest_lsn(log); 2194 if (lowest_lsn && 2195 XFS_LSN_CMP(lowest_lsn, 2196 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2197 iclog = iclog->ic_next; 2198 continue; /* Leave this iclog for 2199 * another thread */ 2200 } 2201 2202 iclog->ic_state = XLOG_STATE_CALLBACK; 2203 2204 2205 /* 2206 * update the last_sync_lsn before we drop the 2207 * icloglock to ensure we are the only one that 2208 * can update it. 2209 */ 2210 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2211 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2212 atomic64_set(&log->l_last_sync_lsn, 2213 be64_to_cpu(iclog->ic_header.h_lsn)); 2214 2215 } else 2216 ioerrors++; 2217 2218 spin_unlock(&log->l_icloglock); 2219 2220 /* 2221 * Keep processing entries in the callback list until 2222 * we come around and it is empty. We need to 2223 * atomically see that the list is empty and change the 2224 * state to DIRTY so that we don't miss any more 2225 * callbacks being added. 2226 */ 2227 spin_lock(&iclog->ic_callback_lock); 2228 cb = iclog->ic_callback; 2229 while (cb) { 2230 iclog->ic_callback_tail = &(iclog->ic_callback); 2231 iclog->ic_callback = NULL; 2232 spin_unlock(&iclog->ic_callback_lock); 2233 2234 /* perform callbacks in the order given */ 2235 for (; cb; cb = cb_next) { 2236 cb_next = cb->cb_next; 2237 cb->cb_func(cb->cb_arg, aborted); 2238 } 2239 spin_lock(&iclog->ic_callback_lock); 2240 cb = iclog->ic_callback; 2241 } 2242 2243 loopdidcallbacks++; 2244 funcdidcallbacks++; 2245 2246 spin_lock(&log->l_icloglock); 2247 ASSERT(iclog->ic_callback == NULL); 2248 spin_unlock(&iclog->ic_callback_lock); 2249 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2250 iclog->ic_state = XLOG_STATE_DIRTY; 2251 2252 /* 2253 * Transition from DIRTY to ACTIVE if applicable. 2254 * NOP if STATE_IOERROR. 2255 */ 2256 xlog_state_clean_log(log); 2257 2258 /* wake up threads waiting in xfs_log_force() */ 2259 wake_up_all(&iclog->ic_force_wait); 2260 2261 iclog = iclog->ic_next; 2262 } while (first_iclog != iclog); 2263 2264 if (repeats > 5000) { 2265 flushcnt += repeats; 2266 repeats = 0; 2267 xfs_fs_cmn_err(CE_WARN, log->l_mp, 2268 "%s: possible infinite loop (%d iterations)", 2269 __func__, flushcnt); 2270 } 2271 } while (!ioerrors && loopdidcallbacks); 2272 2273 /* 2274 * make one last gasp attempt to see if iclogs are being left in 2275 * limbo.. 2276 */ 2277 #ifdef DEBUG 2278 if (funcdidcallbacks) { 2279 first_iclog = iclog = log->l_iclog; 2280 do { 2281 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2282 /* 2283 * Terminate the loop if iclogs are found in states 2284 * which will cause other threads to clean up iclogs. 2285 * 2286 * SYNCING - i/o completion will go through logs 2287 * DONE_SYNC - interrupt thread should be waiting for 2288 * l_icloglock 2289 * IOERROR - give up hope all ye who enter here 2290 */ 2291 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2292 iclog->ic_state == XLOG_STATE_SYNCING || 2293 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2294 iclog->ic_state == XLOG_STATE_IOERROR ) 2295 break; 2296 iclog = iclog->ic_next; 2297 } while (first_iclog != iclog); 2298 } 2299 #endif 2300 2301 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2302 wake = 1; 2303 spin_unlock(&log->l_icloglock); 2304 2305 if (wake) 2306 wake_up_all(&log->l_flush_wait); 2307 } 2308 2309 2310 /* 2311 * Finish transitioning this iclog to the dirty state. 2312 * 2313 * Make sure that we completely execute this routine only when this is 2314 * the last call to the iclog. There is a good chance that iclog flushes, 2315 * when we reach the end of the physical log, get turned into 2 separate 2316 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2317 * routine. By using the reference count bwritecnt, we guarantee that only 2318 * the second completion goes through. 2319 * 2320 * Callbacks could take time, so they are done outside the scope of the 2321 * global state machine log lock. 2322 */ 2323 STATIC void 2324 xlog_state_done_syncing( 2325 xlog_in_core_t *iclog, 2326 int aborted) 2327 { 2328 xlog_t *log = iclog->ic_log; 2329 2330 spin_lock(&log->l_icloglock); 2331 2332 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2333 iclog->ic_state == XLOG_STATE_IOERROR); 2334 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2335 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2336 2337 2338 /* 2339 * If we got an error, either on the first buffer, or in the case of 2340 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2341 * and none should ever be attempted to be written to disk 2342 * again. 2343 */ 2344 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2345 if (--iclog->ic_bwritecnt == 1) { 2346 spin_unlock(&log->l_icloglock); 2347 return; 2348 } 2349 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2350 } 2351 2352 /* 2353 * Someone could be sleeping prior to writing out the next 2354 * iclog buffer, we wake them all, one will get to do the 2355 * I/O, the others get to wait for the result. 2356 */ 2357 wake_up_all(&iclog->ic_write_wait); 2358 spin_unlock(&log->l_icloglock); 2359 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2360 } /* xlog_state_done_syncing */ 2361 2362 2363 /* 2364 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2365 * sleep. We wait on the flush queue on the head iclog as that should be 2366 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2367 * we will wait here and all new writes will sleep until a sync completes. 2368 * 2369 * The in-core logs are used in a circular fashion. They are not used 2370 * out-of-order even when an iclog past the head is free. 2371 * 2372 * return: 2373 * * log_offset where xlog_write() can start writing into the in-core 2374 * log's data space. 2375 * * in-core log pointer to which xlog_write() should write. 2376 * * boolean indicating this is a continued write to an in-core log. 2377 * If this is the last write, then the in-core log's offset field 2378 * needs to be incremented, depending on the amount of data which 2379 * is copied. 2380 */ 2381 STATIC int 2382 xlog_state_get_iclog_space(xlog_t *log, 2383 int len, 2384 xlog_in_core_t **iclogp, 2385 xlog_ticket_t *ticket, 2386 int *continued_write, 2387 int *logoffsetp) 2388 { 2389 int log_offset; 2390 xlog_rec_header_t *head; 2391 xlog_in_core_t *iclog; 2392 int error; 2393 2394 restart: 2395 spin_lock(&log->l_icloglock); 2396 if (XLOG_FORCED_SHUTDOWN(log)) { 2397 spin_unlock(&log->l_icloglock); 2398 return XFS_ERROR(EIO); 2399 } 2400 2401 iclog = log->l_iclog; 2402 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2403 XFS_STATS_INC(xs_log_noiclogs); 2404 2405 /* Wait for log writes to have flushed */ 2406 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2407 goto restart; 2408 } 2409 2410 head = &iclog->ic_header; 2411 2412 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2413 log_offset = iclog->ic_offset; 2414 2415 /* On the 1st write to an iclog, figure out lsn. This works 2416 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2417 * committing to. If the offset is set, that's how many blocks 2418 * must be written. 2419 */ 2420 if (log_offset == 0) { 2421 ticket->t_curr_res -= log->l_iclog_hsize; 2422 xlog_tic_add_region(ticket, 2423 log->l_iclog_hsize, 2424 XLOG_REG_TYPE_LRHEADER); 2425 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2426 head->h_lsn = cpu_to_be64( 2427 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2428 ASSERT(log->l_curr_block >= 0); 2429 } 2430 2431 /* If there is enough room to write everything, then do it. Otherwise, 2432 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2433 * bit is on, so this will get flushed out. Don't update ic_offset 2434 * until you know exactly how many bytes get copied. Therefore, wait 2435 * until later to update ic_offset. 2436 * 2437 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2438 * can fit into remaining data section. 2439 */ 2440 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2441 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2442 2443 /* 2444 * If I'm the only one writing to this iclog, sync it to disk. 2445 * We need to do an atomic compare and decrement here to avoid 2446 * racing with concurrent atomic_dec_and_lock() calls in 2447 * xlog_state_release_iclog() when there is more than one 2448 * reference to the iclog. 2449 */ 2450 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2451 /* we are the only one */ 2452 spin_unlock(&log->l_icloglock); 2453 error = xlog_state_release_iclog(log, iclog); 2454 if (error) 2455 return error; 2456 } else { 2457 spin_unlock(&log->l_icloglock); 2458 } 2459 goto restart; 2460 } 2461 2462 /* Do we have enough room to write the full amount in the remainder 2463 * of this iclog? Or must we continue a write on the next iclog and 2464 * mark this iclog as completely taken? In the case where we switch 2465 * iclogs (to mark it taken), this particular iclog will release/sync 2466 * to disk in xlog_write(). 2467 */ 2468 if (len <= iclog->ic_size - iclog->ic_offset) { 2469 *continued_write = 0; 2470 iclog->ic_offset += len; 2471 } else { 2472 *continued_write = 1; 2473 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2474 } 2475 *iclogp = iclog; 2476 2477 ASSERT(iclog->ic_offset <= iclog->ic_size); 2478 spin_unlock(&log->l_icloglock); 2479 2480 *logoffsetp = log_offset; 2481 return 0; 2482 } /* xlog_state_get_iclog_space */ 2483 2484 /* 2485 * Atomically get the log space required for a log ticket. 2486 * 2487 * Once a ticket gets put onto the reserveq, it will only return after 2488 * the needed reservation is satisfied. 2489 * 2490 * This function is structured so that it has a lock free fast path. This is 2491 * necessary because every new transaction reservation will come through this 2492 * path. Hence any lock will be globally hot if we take it unconditionally on 2493 * every pass. 2494 * 2495 * As tickets are only ever moved on and off the reserveq under the 2496 * l_grant_reserve_lock, we only need to take that lock if we are going 2497 * to add the ticket to the queue and sleep. We can avoid taking the lock if the 2498 * ticket was never added to the reserveq because the t_queue list head will be 2499 * empty and we hold the only reference to it so it can safely be checked 2500 * unlocked. 2501 */ 2502 STATIC int 2503 xlog_grant_log_space(xlog_t *log, 2504 xlog_ticket_t *tic) 2505 { 2506 int free_bytes; 2507 int need_bytes; 2508 2509 #ifdef DEBUG 2510 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2511 panic("grant Recovery problem"); 2512 #endif 2513 2514 trace_xfs_log_grant_enter(log, tic); 2515 2516 need_bytes = tic->t_unit_res; 2517 if (tic->t_flags & XFS_LOG_PERM_RESERV) 2518 need_bytes *= tic->t_ocnt; 2519 2520 /* something is already sleeping; insert new transaction at end */ 2521 if (!list_empty_careful(&log->l_reserveq)) { 2522 spin_lock(&log->l_grant_reserve_lock); 2523 /* recheck the queue now we are locked */ 2524 if (list_empty(&log->l_reserveq)) { 2525 spin_unlock(&log->l_grant_reserve_lock); 2526 goto redo; 2527 } 2528 list_add_tail(&tic->t_queue, &log->l_reserveq); 2529 2530 trace_xfs_log_grant_sleep1(log, tic); 2531 2532 /* 2533 * Gotta check this before going to sleep, while we're 2534 * holding the grant lock. 2535 */ 2536 if (XLOG_FORCED_SHUTDOWN(log)) 2537 goto error_return; 2538 2539 XFS_STATS_INC(xs_sleep_logspace); 2540 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); 2541 2542 /* 2543 * If we got an error, and the filesystem is shutting down, 2544 * we'll catch it down below. So just continue... 2545 */ 2546 trace_xfs_log_grant_wake1(log, tic); 2547 } 2548 2549 redo: 2550 if (XLOG_FORCED_SHUTDOWN(log)) 2551 goto error_return_unlocked; 2552 2553 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); 2554 if (free_bytes < need_bytes) { 2555 spin_lock(&log->l_grant_reserve_lock); 2556 if (list_empty(&tic->t_queue)) 2557 list_add_tail(&tic->t_queue, &log->l_reserveq); 2558 2559 trace_xfs_log_grant_sleep2(log, tic); 2560 2561 if (XLOG_FORCED_SHUTDOWN(log)) 2562 goto error_return; 2563 2564 xlog_grant_push_ail(log, need_bytes); 2565 2566 XFS_STATS_INC(xs_sleep_logspace); 2567 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); 2568 2569 trace_xfs_log_grant_wake2(log, tic); 2570 goto redo; 2571 } 2572 2573 if (!list_empty(&tic->t_queue)) { 2574 spin_lock(&log->l_grant_reserve_lock); 2575 list_del_init(&tic->t_queue); 2576 spin_unlock(&log->l_grant_reserve_lock); 2577 } 2578 2579 /* we've got enough space */ 2580 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes); 2581 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); 2582 trace_xfs_log_grant_exit(log, tic); 2583 xlog_verify_grant_tail(log); 2584 return 0; 2585 2586 error_return_unlocked: 2587 spin_lock(&log->l_grant_reserve_lock); 2588 error_return: 2589 list_del_init(&tic->t_queue); 2590 spin_unlock(&log->l_grant_reserve_lock); 2591 trace_xfs_log_grant_error(log, tic); 2592 2593 /* 2594 * If we are failing, make sure the ticket doesn't have any 2595 * current reservations. We don't want to add this back when 2596 * the ticket/transaction gets cancelled. 2597 */ 2598 tic->t_curr_res = 0; 2599 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2600 return XFS_ERROR(EIO); 2601 } /* xlog_grant_log_space */ 2602 2603 2604 /* 2605 * Replenish the byte reservation required by moving the grant write head. 2606 * 2607 * Similar to xlog_grant_log_space, the function is structured to have a lock 2608 * free fast path. 2609 */ 2610 STATIC int 2611 xlog_regrant_write_log_space(xlog_t *log, 2612 xlog_ticket_t *tic) 2613 { 2614 int free_bytes, need_bytes; 2615 2616 tic->t_curr_res = tic->t_unit_res; 2617 xlog_tic_reset_res(tic); 2618 2619 if (tic->t_cnt > 0) 2620 return 0; 2621 2622 #ifdef DEBUG 2623 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2624 panic("regrant Recovery problem"); 2625 #endif 2626 2627 trace_xfs_log_regrant_write_enter(log, tic); 2628 if (XLOG_FORCED_SHUTDOWN(log)) 2629 goto error_return_unlocked; 2630 2631 /* If there are other waiters on the queue then give them a 2632 * chance at logspace before us. Wake up the first waiters, 2633 * if we do not wake up all the waiters then go to sleep waiting 2634 * for more free space, otherwise try to get some space for 2635 * this transaction. 2636 */ 2637 need_bytes = tic->t_unit_res; 2638 if (!list_empty_careful(&log->l_writeq)) { 2639 struct xlog_ticket *ntic; 2640 2641 spin_lock(&log->l_grant_write_lock); 2642 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 2643 list_for_each_entry(ntic, &log->l_writeq, t_queue) { 2644 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV); 2645 2646 if (free_bytes < ntic->t_unit_res) 2647 break; 2648 free_bytes -= ntic->t_unit_res; 2649 wake_up(&ntic->t_wait); 2650 } 2651 2652 if (ntic != list_first_entry(&log->l_writeq, 2653 struct xlog_ticket, t_queue)) { 2654 if (list_empty(&tic->t_queue)) 2655 list_add_tail(&tic->t_queue, &log->l_writeq); 2656 trace_xfs_log_regrant_write_sleep1(log, tic); 2657 2658 xlog_grant_push_ail(log, need_bytes); 2659 2660 XFS_STATS_INC(xs_sleep_logspace); 2661 xlog_wait(&tic->t_wait, &log->l_grant_write_lock); 2662 trace_xfs_log_regrant_write_wake1(log, tic); 2663 } else 2664 spin_unlock(&log->l_grant_write_lock); 2665 } 2666 2667 redo: 2668 if (XLOG_FORCED_SHUTDOWN(log)) 2669 goto error_return_unlocked; 2670 2671 free_bytes = xlog_space_left(log, &log->l_grant_write_head); 2672 if (free_bytes < need_bytes) { 2673 spin_lock(&log->l_grant_write_lock); 2674 if (list_empty(&tic->t_queue)) 2675 list_add_tail(&tic->t_queue, &log->l_writeq); 2676 2677 if (XLOG_FORCED_SHUTDOWN(log)) 2678 goto error_return; 2679 2680 xlog_grant_push_ail(log, need_bytes); 2681 2682 XFS_STATS_INC(xs_sleep_logspace); 2683 trace_xfs_log_regrant_write_sleep2(log, tic); 2684 xlog_wait(&tic->t_wait, &log->l_grant_write_lock); 2685 2686 trace_xfs_log_regrant_write_wake2(log, tic); 2687 goto redo; 2688 } 2689 2690 if (!list_empty(&tic->t_queue)) { 2691 spin_lock(&log->l_grant_write_lock); 2692 list_del_init(&tic->t_queue); 2693 spin_unlock(&log->l_grant_write_lock); 2694 } 2695 2696 /* we've got enough space */ 2697 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); 2698 trace_xfs_log_regrant_write_exit(log, tic); 2699 xlog_verify_grant_tail(log); 2700 return 0; 2701 2702 2703 error_return_unlocked: 2704 spin_lock(&log->l_grant_write_lock); 2705 error_return: 2706 list_del_init(&tic->t_queue); 2707 spin_unlock(&log->l_grant_write_lock); 2708 trace_xfs_log_regrant_write_error(log, tic); 2709 2710 /* 2711 * If we are failing, make sure the ticket doesn't have any 2712 * current reservations. We don't want to add this back when 2713 * the ticket/transaction gets cancelled. 2714 */ 2715 tic->t_curr_res = 0; 2716 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2717 return XFS_ERROR(EIO); 2718 } /* xlog_regrant_write_log_space */ 2719 2720 2721 /* The first cnt-1 times through here we don't need to 2722 * move the grant write head because the permanent 2723 * reservation has reserved cnt times the unit amount. 2724 * Release part of current permanent unit reservation and 2725 * reset current reservation to be one units worth. Also 2726 * move grant reservation head forward. 2727 */ 2728 STATIC void 2729 xlog_regrant_reserve_log_space(xlog_t *log, 2730 xlog_ticket_t *ticket) 2731 { 2732 trace_xfs_log_regrant_reserve_enter(log, ticket); 2733 2734 if (ticket->t_cnt > 0) 2735 ticket->t_cnt--; 2736 2737 xlog_grant_sub_space(log, &log->l_grant_reserve_head, 2738 ticket->t_curr_res); 2739 xlog_grant_sub_space(log, &log->l_grant_write_head, 2740 ticket->t_curr_res); 2741 ticket->t_curr_res = ticket->t_unit_res; 2742 xlog_tic_reset_res(ticket); 2743 2744 trace_xfs_log_regrant_reserve_sub(log, ticket); 2745 2746 /* just return if we still have some of the pre-reserved space */ 2747 if (ticket->t_cnt > 0) 2748 return; 2749 2750 xlog_grant_add_space(log, &log->l_grant_reserve_head, 2751 ticket->t_unit_res); 2752 2753 trace_xfs_log_regrant_reserve_exit(log, ticket); 2754 2755 ticket->t_curr_res = ticket->t_unit_res; 2756 xlog_tic_reset_res(ticket); 2757 } /* xlog_regrant_reserve_log_space */ 2758 2759 2760 /* 2761 * Give back the space left from a reservation. 2762 * 2763 * All the information we need to make a correct determination of space left 2764 * is present. For non-permanent reservations, things are quite easy. The 2765 * count should have been decremented to zero. We only need to deal with the 2766 * space remaining in the current reservation part of the ticket. If the 2767 * ticket contains a permanent reservation, there may be left over space which 2768 * needs to be released. A count of N means that N-1 refills of the current 2769 * reservation can be done before we need to ask for more space. The first 2770 * one goes to fill up the first current reservation. Once we run out of 2771 * space, the count will stay at zero and the only space remaining will be 2772 * in the current reservation field. 2773 */ 2774 STATIC void 2775 xlog_ungrant_log_space(xlog_t *log, 2776 xlog_ticket_t *ticket) 2777 { 2778 int bytes; 2779 2780 if (ticket->t_cnt > 0) 2781 ticket->t_cnt--; 2782 2783 trace_xfs_log_ungrant_enter(log, ticket); 2784 trace_xfs_log_ungrant_sub(log, ticket); 2785 2786 /* 2787 * If this is a permanent reservation ticket, we may be able to free 2788 * up more space based on the remaining count. 2789 */ 2790 bytes = ticket->t_curr_res; 2791 if (ticket->t_cnt > 0) { 2792 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2793 bytes += ticket->t_unit_res*ticket->t_cnt; 2794 } 2795 2796 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes); 2797 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes); 2798 2799 trace_xfs_log_ungrant_exit(log, ticket); 2800 2801 xfs_log_move_tail(log->l_mp, 1); 2802 } /* xlog_ungrant_log_space */ 2803 2804 2805 /* 2806 * Flush iclog to disk if this is the last reference to the given iclog and 2807 * the WANT_SYNC bit is set. 2808 * 2809 * When this function is entered, the iclog is not necessarily in the 2810 * WANT_SYNC state. It may be sitting around waiting to get filled. 2811 * 2812 * 2813 */ 2814 STATIC int 2815 xlog_state_release_iclog( 2816 xlog_t *log, 2817 xlog_in_core_t *iclog) 2818 { 2819 int sync = 0; /* do we sync? */ 2820 2821 if (iclog->ic_state & XLOG_STATE_IOERROR) 2822 return XFS_ERROR(EIO); 2823 2824 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 2825 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 2826 return 0; 2827 2828 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2829 spin_unlock(&log->l_icloglock); 2830 return XFS_ERROR(EIO); 2831 } 2832 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 2833 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2834 2835 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 2836 /* update tail before writing to iclog */ 2837 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 2838 sync++; 2839 iclog->ic_state = XLOG_STATE_SYNCING; 2840 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 2841 xlog_verify_tail_lsn(log, iclog, tail_lsn); 2842 /* cycle incremented when incrementing curr_block */ 2843 } 2844 spin_unlock(&log->l_icloglock); 2845 2846 /* 2847 * We let the log lock go, so it's possible that we hit a log I/O 2848 * error or some other SHUTDOWN condition that marks the iclog 2849 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 2850 * this iclog has consistent data, so we ignore IOERROR 2851 * flags after this point. 2852 */ 2853 if (sync) 2854 return xlog_sync(log, iclog); 2855 return 0; 2856 } /* xlog_state_release_iclog */ 2857 2858 2859 /* 2860 * This routine will mark the current iclog in the ring as WANT_SYNC 2861 * and move the current iclog pointer to the next iclog in the ring. 2862 * When this routine is called from xlog_state_get_iclog_space(), the 2863 * exact size of the iclog has not yet been determined. All we know is 2864 * that every data block. We have run out of space in this log record. 2865 */ 2866 STATIC void 2867 xlog_state_switch_iclogs(xlog_t *log, 2868 xlog_in_core_t *iclog, 2869 int eventual_size) 2870 { 2871 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2872 if (!eventual_size) 2873 eventual_size = iclog->ic_offset; 2874 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2875 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 2876 log->l_prev_block = log->l_curr_block; 2877 log->l_prev_cycle = log->l_curr_cycle; 2878 2879 /* roll log?: ic_offset changed later */ 2880 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2881 2882 /* Round up to next log-sunit */ 2883 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 2884 log->l_mp->m_sb.sb_logsunit > 1) { 2885 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 2886 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2887 } 2888 2889 if (log->l_curr_block >= log->l_logBBsize) { 2890 log->l_curr_cycle++; 2891 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2892 log->l_curr_cycle++; 2893 log->l_curr_block -= log->l_logBBsize; 2894 ASSERT(log->l_curr_block >= 0); 2895 } 2896 ASSERT(iclog == log->l_iclog); 2897 log->l_iclog = iclog->ic_next; 2898 } /* xlog_state_switch_iclogs */ 2899 2900 /* 2901 * Write out all data in the in-core log as of this exact moment in time. 2902 * 2903 * Data may be written to the in-core log during this call. However, 2904 * we don't guarantee this data will be written out. A change from past 2905 * implementation means this routine will *not* write out zero length LRs. 2906 * 2907 * Basically, we try and perform an intelligent scan of the in-core logs. 2908 * If we determine there is no flushable data, we just return. There is no 2909 * flushable data if: 2910 * 2911 * 1. the current iclog is active and has no data; the previous iclog 2912 * is in the active or dirty state. 2913 * 2. the current iclog is drity, and the previous iclog is in the 2914 * active or dirty state. 2915 * 2916 * We may sleep if: 2917 * 2918 * 1. the current iclog is not in the active nor dirty state. 2919 * 2. the current iclog dirty, and the previous iclog is not in the 2920 * active nor dirty state. 2921 * 3. the current iclog is active, and there is another thread writing 2922 * to this particular iclog. 2923 * 4. a) the current iclog is active and has no other writers 2924 * b) when we return from flushing out this iclog, it is still 2925 * not in the active nor dirty state. 2926 */ 2927 int 2928 _xfs_log_force( 2929 struct xfs_mount *mp, 2930 uint flags, 2931 int *log_flushed) 2932 { 2933 struct log *log = mp->m_log; 2934 struct xlog_in_core *iclog; 2935 xfs_lsn_t lsn; 2936 2937 XFS_STATS_INC(xs_log_force); 2938 2939 if (log->l_cilp) 2940 xlog_cil_force(log); 2941 2942 spin_lock(&log->l_icloglock); 2943 2944 iclog = log->l_iclog; 2945 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2946 spin_unlock(&log->l_icloglock); 2947 return XFS_ERROR(EIO); 2948 } 2949 2950 /* If the head iclog is not active nor dirty, we just attach 2951 * ourselves to the head and go to sleep. 2952 */ 2953 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2954 iclog->ic_state == XLOG_STATE_DIRTY) { 2955 /* 2956 * If the head is dirty or (active and empty), then 2957 * we need to look at the previous iclog. If the previous 2958 * iclog is active or dirty we are done. There is nothing 2959 * to sync out. Otherwise, we attach ourselves to the 2960 * previous iclog and go to sleep. 2961 */ 2962 if (iclog->ic_state == XLOG_STATE_DIRTY || 2963 (atomic_read(&iclog->ic_refcnt) == 0 2964 && iclog->ic_offset == 0)) { 2965 iclog = iclog->ic_prev; 2966 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2967 iclog->ic_state == XLOG_STATE_DIRTY) 2968 goto no_sleep; 2969 else 2970 goto maybe_sleep; 2971 } else { 2972 if (atomic_read(&iclog->ic_refcnt) == 0) { 2973 /* We are the only one with access to this 2974 * iclog. Flush it out now. There should 2975 * be a roundoff of zero to show that someone 2976 * has already taken care of the roundoff from 2977 * the previous sync. 2978 */ 2979 atomic_inc(&iclog->ic_refcnt); 2980 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2981 xlog_state_switch_iclogs(log, iclog, 0); 2982 spin_unlock(&log->l_icloglock); 2983 2984 if (xlog_state_release_iclog(log, iclog)) 2985 return XFS_ERROR(EIO); 2986 2987 if (log_flushed) 2988 *log_flushed = 1; 2989 spin_lock(&log->l_icloglock); 2990 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 2991 iclog->ic_state != XLOG_STATE_DIRTY) 2992 goto maybe_sleep; 2993 else 2994 goto no_sleep; 2995 } else { 2996 /* Someone else is writing to this iclog. 2997 * Use its call to flush out the data. However, 2998 * the other thread may not force out this LR, 2999 * so we mark it WANT_SYNC. 3000 */ 3001 xlog_state_switch_iclogs(log, iclog, 0); 3002 goto maybe_sleep; 3003 } 3004 } 3005 } 3006 3007 /* By the time we come around again, the iclog could've been filled 3008 * which would give it another lsn. If we have a new lsn, just 3009 * return because the relevant data has been flushed. 3010 */ 3011 maybe_sleep: 3012 if (flags & XFS_LOG_SYNC) { 3013 /* 3014 * We must check if we're shutting down here, before 3015 * we wait, while we're holding the l_icloglock. 3016 * Then we check again after waking up, in case our 3017 * sleep was disturbed by a bad news. 3018 */ 3019 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3020 spin_unlock(&log->l_icloglock); 3021 return XFS_ERROR(EIO); 3022 } 3023 XFS_STATS_INC(xs_log_force_sleep); 3024 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3025 /* 3026 * No need to grab the log lock here since we're 3027 * only deciding whether or not to return EIO 3028 * and the memory read should be atomic. 3029 */ 3030 if (iclog->ic_state & XLOG_STATE_IOERROR) 3031 return XFS_ERROR(EIO); 3032 if (log_flushed) 3033 *log_flushed = 1; 3034 } else { 3035 3036 no_sleep: 3037 spin_unlock(&log->l_icloglock); 3038 } 3039 return 0; 3040 } 3041 3042 /* 3043 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3044 * about errors or whether the log was flushed or not. This is the normal 3045 * interface to use when trying to unpin items or move the log forward. 3046 */ 3047 void 3048 xfs_log_force( 3049 xfs_mount_t *mp, 3050 uint flags) 3051 { 3052 int error; 3053 3054 error = _xfs_log_force(mp, flags, NULL); 3055 if (error) { 3056 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: " 3057 "error %d returned.", error); 3058 } 3059 } 3060 3061 /* 3062 * Force the in-core log to disk for a specific LSN. 3063 * 3064 * Find in-core log with lsn. 3065 * If it is in the DIRTY state, just return. 3066 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3067 * state and go to sleep or return. 3068 * If it is in any other state, go to sleep or return. 3069 * 3070 * Synchronous forces are implemented with a signal variable. All callers 3071 * to force a given lsn to disk will wait on a the sv attached to the 3072 * specific in-core log. When given in-core log finally completes its 3073 * write to disk, that thread will wake up all threads waiting on the 3074 * sv. 3075 */ 3076 int 3077 _xfs_log_force_lsn( 3078 struct xfs_mount *mp, 3079 xfs_lsn_t lsn, 3080 uint flags, 3081 int *log_flushed) 3082 { 3083 struct log *log = mp->m_log; 3084 struct xlog_in_core *iclog; 3085 int already_slept = 0; 3086 3087 ASSERT(lsn != 0); 3088 3089 XFS_STATS_INC(xs_log_force); 3090 3091 if (log->l_cilp) { 3092 lsn = xlog_cil_force_lsn(log, lsn); 3093 if (lsn == NULLCOMMITLSN) 3094 return 0; 3095 } 3096 3097 try_again: 3098 spin_lock(&log->l_icloglock); 3099 iclog = log->l_iclog; 3100 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3101 spin_unlock(&log->l_icloglock); 3102 return XFS_ERROR(EIO); 3103 } 3104 3105 do { 3106 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3107 iclog = iclog->ic_next; 3108 continue; 3109 } 3110 3111 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3112 spin_unlock(&log->l_icloglock); 3113 return 0; 3114 } 3115 3116 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3117 /* 3118 * We sleep here if we haven't already slept (e.g. 3119 * this is the first time we've looked at the correct 3120 * iclog buf) and the buffer before us is going to 3121 * be sync'ed. The reason for this is that if we 3122 * are doing sync transactions here, by waiting for 3123 * the previous I/O to complete, we can allow a few 3124 * more transactions into this iclog before we close 3125 * it down. 3126 * 3127 * Otherwise, we mark the buffer WANT_SYNC, and bump 3128 * up the refcnt so we can release the log (which 3129 * drops the ref count). The state switch keeps new 3130 * transaction commits from using this buffer. When 3131 * the current commits finish writing into the buffer, 3132 * the refcount will drop to zero and the buffer will 3133 * go out then. 3134 */ 3135 if (!already_slept && 3136 (iclog->ic_prev->ic_state & 3137 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3138 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3139 3140 XFS_STATS_INC(xs_log_force_sleep); 3141 3142 xlog_wait(&iclog->ic_prev->ic_write_wait, 3143 &log->l_icloglock); 3144 if (log_flushed) 3145 *log_flushed = 1; 3146 already_slept = 1; 3147 goto try_again; 3148 } 3149 atomic_inc(&iclog->ic_refcnt); 3150 xlog_state_switch_iclogs(log, iclog, 0); 3151 spin_unlock(&log->l_icloglock); 3152 if (xlog_state_release_iclog(log, iclog)) 3153 return XFS_ERROR(EIO); 3154 if (log_flushed) 3155 *log_flushed = 1; 3156 spin_lock(&log->l_icloglock); 3157 } 3158 3159 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3160 !(iclog->ic_state & 3161 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3162 /* 3163 * Don't wait on completion if we know that we've 3164 * gotten a log write error. 3165 */ 3166 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3167 spin_unlock(&log->l_icloglock); 3168 return XFS_ERROR(EIO); 3169 } 3170 XFS_STATS_INC(xs_log_force_sleep); 3171 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3172 /* 3173 * No need to grab the log lock here since we're 3174 * only deciding whether or not to return EIO 3175 * and the memory read should be atomic. 3176 */ 3177 if (iclog->ic_state & XLOG_STATE_IOERROR) 3178 return XFS_ERROR(EIO); 3179 3180 if (log_flushed) 3181 *log_flushed = 1; 3182 } else { /* just return */ 3183 spin_unlock(&log->l_icloglock); 3184 } 3185 3186 return 0; 3187 } while (iclog != log->l_iclog); 3188 3189 spin_unlock(&log->l_icloglock); 3190 return 0; 3191 } 3192 3193 /* 3194 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3195 * about errors or whether the log was flushed or not. This is the normal 3196 * interface to use when trying to unpin items or move the log forward. 3197 */ 3198 void 3199 xfs_log_force_lsn( 3200 xfs_mount_t *mp, 3201 xfs_lsn_t lsn, 3202 uint flags) 3203 { 3204 int error; 3205 3206 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3207 if (error) { 3208 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: " 3209 "error %d returned.", error); 3210 } 3211 } 3212 3213 /* 3214 * Called when we want to mark the current iclog as being ready to sync to 3215 * disk. 3216 */ 3217 STATIC void 3218 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog) 3219 { 3220 assert_spin_locked(&log->l_icloglock); 3221 3222 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3223 xlog_state_switch_iclogs(log, iclog, 0); 3224 } else { 3225 ASSERT(iclog->ic_state & 3226 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3227 } 3228 } 3229 3230 3231 /***************************************************************************** 3232 * 3233 * TICKET functions 3234 * 3235 ***************************************************************************** 3236 */ 3237 3238 /* 3239 * Free a used ticket when its refcount falls to zero. 3240 */ 3241 void 3242 xfs_log_ticket_put( 3243 xlog_ticket_t *ticket) 3244 { 3245 ASSERT(atomic_read(&ticket->t_ref) > 0); 3246 if (atomic_dec_and_test(&ticket->t_ref)) 3247 kmem_zone_free(xfs_log_ticket_zone, ticket); 3248 } 3249 3250 xlog_ticket_t * 3251 xfs_log_ticket_get( 3252 xlog_ticket_t *ticket) 3253 { 3254 ASSERT(atomic_read(&ticket->t_ref) > 0); 3255 atomic_inc(&ticket->t_ref); 3256 return ticket; 3257 } 3258 3259 xlog_tid_t 3260 xfs_log_get_trans_ident( 3261 struct xfs_trans *tp) 3262 { 3263 return tp->t_ticket->t_tid; 3264 } 3265 3266 /* 3267 * Allocate and initialise a new log ticket. 3268 */ 3269 xlog_ticket_t * 3270 xlog_ticket_alloc( 3271 struct log *log, 3272 int unit_bytes, 3273 int cnt, 3274 char client, 3275 uint xflags, 3276 int alloc_flags) 3277 { 3278 struct xlog_ticket *tic; 3279 uint num_headers; 3280 int iclog_space; 3281 3282 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3283 if (!tic) 3284 return NULL; 3285 3286 /* 3287 * Permanent reservations have up to 'cnt'-1 active log operations 3288 * in the log. A unit in this case is the amount of space for one 3289 * of these log operations. Normal reservations have a cnt of 1 3290 * and their unit amount is the total amount of space required. 3291 * 3292 * The following lines of code account for non-transaction data 3293 * which occupy space in the on-disk log. 3294 * 3295 * Normal form of a transaction is: 3296 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3297 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3298 * 3299 * We need to account for all the leadup data and trailer data 3300 * around the transaction data. 3301 * And then we need to account for the worst case in terms of using 3302 * more space. 3303 * The worst case will happen if: 3304 * - the placement of the transaction happens to be such that the 3305 * roundoff is at its maximum 3306 * - the transaction data is synced before the commit record is synced 3307 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3308 * Therefore the commit record is in its own Log Record. 3309 * This can happen as the commit record is called with its 3310 * own region to xlog_write(). 3311 * This then means that in the worst case, roundoff can happen for 3312 * the commit-rec as well. 3313 * The commit-rec is smaller than padding in this scenario and so it is 3314 * not added separately. 3315 */ 3316 3317 /* for trans header */ 3318 unit_bytes += sizeof(xlog_op_header_t); 3319 unit_bytes += sizeof(xfs_trans_header_t); 3320 3321 /* for start-rec */ 3322 unit_bytes += sizeof(xlog_op_header_t); 3323 3324 /* 3325 * for LR headers - the space for data in an iclog is the size minus 3326 * the space used for the headers. If we use the iclog size, then we 3327 * undercalculate the number of headers required. 3328 * 3329 * Furthermore - the addition of op headers for split-recs might 3330 * increase the space required enough to require more log and op 3331 * headers, so take that into account too. 3332 * 3333 * IMPORTANT: This reservation makes the assumption that if this 3334 * transaction is the first in an iclog and hence has the LR headers 3335 * accounted to it, then the remaining space in the iclog is 3336 * exclusively for this transaction. i.e. if the transaction is larger 3337 * than the iclog, it will be the only thing in that iclog. 3338 * Fundamentally, this means we must pass the entire log vector to 3339 * xlog_write to guarantee this. 3340 */ 3341 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3342 num_headers = howmany(unit_bytes, iclog_space); 3343 3344 /* for split-recs - ophdrs added when data split over LRs */ 3345 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3346 3347 /* add extra header reservations if we overrun */ 3348 while (!num_headers || 3349 howmany(unit_bytes, iclog_space) > num_headers) { 3350 unit_bytes += sizeof(xlog_op_header_t); 3351 num_headers++; 3352 } 3353 unit_bytes += log->l_iclog_hsize * num_headers; 3354 3355 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3356 unit_bytes += log->l_iclog_hsize; 3357 3358 /* for roundoff padding for transaction data and one for commit record */ 3359 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3360 log->l_mp->m_sb.sb_logsunit > 1) { 3361 /* log su roundoff */ 3362 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit; 3363 } else { 3364 /* BB roundoff */ 3365 unit_bytes += 2*BBSIZE; 3366 } 3367 3368 atomic_set(&tic->t_ref, 1); 3369 INIT_LIST_HEAD(&tic->t_queue); 3370 tic->t_unit_res = unit_bytes; 3371 tic->t_curr_res = unit_bytes; 3372 tic->t_cnt = cnt; 3373 tic->t_ocnt = cnt; 3374 tic->t_tid = random32(); 3375 tic->t_clientid = client; 3376 tic->t_flags = XLOG_TIC_INITED; 3377 tic->t_trans_type = 0; 3378 if (xflags & XFS_LOG_PERM_RESERV) 3379 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3380 init_waitqueue_head(&tic->t_wait); 3381 3382 xlog_tic_reset_res(tic); 3383 3384 return tic; 3385 } 3386 3387 3388 /****************************************************************************** 3389 * 3390 * Log debug routines 3391 * 3392 ****************************************************************************** 3393 */ 3394 #if defined(DEBUG) 3395 /* 3396 * Make sure that the destination ptr is within the valid data region of 3397 * one of the iclogs. This uses backup pointers stored in a different 3398 * part of the log in case we trash the log structure. 3399 */ 3400 void 3401 xlog_verify_dest_ptr( 3402 struct log *log, 3403 char *ptr) 3404 { 3405 int i; 3406 int good_ptr = 0; 3407 3408 for (i = 0; i < log->l_iclog_bufs; i++) { 3409 if (ptr >= log->l_iclog_bak[i] && 3410 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3411 good_ptr++; 3412 } 3413 3414 if (!good_ptr) 3415 xlog_panic("xlog_verify_dest_ptr: invalid ptr"); 3416 } 3417 3418 STATIC void 3419 xlog_verify_grant_tail( 3420 struct log *log) 3421 { 3422 int tail_cycle, tail_blocks; 3423 int cycle, space; 3424 3425 /* 3426 * Check to make sure the grant write head didn't just over lap the 3427 * tail. If the cycles are the same, we can't be overlapping. 3428 * Otherwise, make sure that the cycles differ by exactly one and 3429 * check the byte count. 3430 */ 3431 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space); 3432 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3433 if (tail_cycle != cycle) { 3434 ASSERT(cycle - 1 == tail_cycle); 3435 ASSERT(space <= BBTOB(tail_blocks)); 3436 } 3437 } 3438 3439 /* check if it will fit */ 3440 STATIC void 3441 xlog_verify_tail_lsn(xlog_t *log, 3442 xlog_in_core_t *iclog, 3443 xfs_lsn_t tail_lsn) 3444 { 3445 int blocks; 3446 3447 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3448 blocks = 3449 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3450 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3451 xlog_panic("xlog_verify_tail_lsn: ran out of log space"); 3452 } else { 3453 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3454 3455 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3456 xlog_panic("xlog_verify_tail_lsn: tail wrapped"); 3457 3458 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3459 if (blocks < BTOBB(iclog->ic_offset) + 1) 3460 xlog_panic("xlog_verify_tail_lsn: ran out of log space"); 3461 } 3462 } /* xlog_verify_tail_lsn */ 3463 3464 /* 3465 * Perform a number of checks on the iclog before writing to disk. 3466 * 3467 * 1. Make sure the iclogs are still circular 3468 * 2. Make sure we have a good magic number 3469 * 3. Make sure we don't have magic numbers in the data 3470 * 4. Check fields of each log operation header for: 3471 * A. Valid client identifier 3472 * B. tid ptr value falls in valid ptr space (user space code) 3473 * C. Length in log record header is correct according to the 3474 * individual operation headers within record. 3475 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3476 * log, check the preceding blocks of the physical log to make sure all 3477 * the cycle numbers agree with the current cycle number. 3478 */ 3479 STATIC void 3480 xlog_verify_iclog(xlog_t *log, 3481 xlog_in_core_t *iclog, 3482 int count, 3483 boolean_t syncing) 3484 { 3485 xlog_op_header_t *ophead; 3486 xlog_in_core_t *icptr; 3487 xlog_in_core_2_t *xhdr; 3488 xfs_caddr_t ptr; 3489 xfs_caddr_t base_ptr; 3490 __psint_t field_offset; 3491 __uint8_t clientid; 3492 int len, i, j, k, op_len; 3493 int idx; 3494 3495 /* check validity of iclog pointers */ 3496 spin_lock(&log->l_icloglock); 3497 icptr = log->l_iclog; 3498 for (i=0; i < log->l_iclog_bufs; i++) { 3499 if (icptr == NULL) 3500 xlog_panic("xlog_verify_iclog: invalid ptr"); 3501 icptr = icptr->ic_next; 3502 } 3503 if (icptr != log->l_iclog) 3504 xlog_panic("xlog_verify_iclog: corrupt iclog ring"); 3505 spin_unlock(&log->l_icloglock); 3506 3507 /* check log magic numbers */ 3508 if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM) 3509 xlog_panic("xlog_verify_iclog: invalid magic num"); 3510 3511 ptr = (xfs_caddr_t) &iclog->ic_header; 3512 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3513 ptr += BBSIZE) { 3514 if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) 3515 xlog_panic("xlog_verify_iclog: unexpected magic num"); 3516 } 3517 3518 /* check fields */ 3519 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3520 ptr = iclog->ic_datap; 3521 base_ptr = ptr; 3522 ophead = (xlog_op_header_t *)ptr; 3523 xhdr = iclog->ic_data; 3524 for (i = 0; i < len; i++) { 3525 ophead = (xlog_op_header_t *)ptr; 3526 3527 /* clientid is only 1 byte */ 3528 field_offset = (__psint_t) 3529 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3530 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3531 clientid = ophead->oh_clientid; 3532 } else { 3533 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3534 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3535 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3536 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3537 clientid = xlog_get_client_id( 3538 xhdr[j].hic_xheader.xh_cycle_data[k]); 3539 } else { 3540 clientid = xlog_get_client_id( 3541 iclog->ic_header.h_cycle_data[idx]); 3542 } 3543 } 3544 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3545 cmn_err(CE_WARN, "xlog_verify_iclog: " 3546 "invalid clientid %d op 0x%p offset 0x%lx", 3547 clientid, ophead, (unsigned long)field_offset); 3548 3549 /* check length */ 3550 field_offset = (__psint_t) 3551 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3552 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3553 op_len = be32_to_cpu(ophead->oh_len); 3554 } else { 3555 idx = BTOBBT((__psint_t)&ophead->oh_len - 3556 (__psint_t)iclog->ic_datap); 3557 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3558 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3559 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3560 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3561 } else { 3562 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3563 } 3564 } 3565 ptr += sizeof(xlog_op_header_t) + op_len; 3566 } 3567 } /* xlog_verify_iclog */ 3568 #endif 3569 3570 /* 3571 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3572 */ 3573 STATIC int 3574 xlog_state_ioerror( 3575 xlog_t *log) 3576 { 3577 xlog_in_core_t *iclog, *ic; 3578 3579 iclog = log->l_iclog; 3580 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3581 /* 3582 * Mark all the incore logs IOERROR. 3583 * From now on, no log flushes will result. 3584 */ 3585 ic = iclog; 3586 do { 3587 ic->ic_state = XLOG_STATE_IOERROR; 3588 ic = ic->ic_next; 3589 } while (ic != iclog); 3590 return 0; 3591 } 3592 /* 3593 * Return non-zero, if state transition has already happened. 3594 */ 3595 return 1; 3596 } 3597 3598 /* 3599 * This is called from xfs_force_shutdown, when we're forcibly 3600 * shutting down the filesystem, typically because of an IO error. 3601 * Our main objectives here are to make sure that: 3602 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3603 * parties to find out, 'atomically'. 3604 * b. those who're sleeping on log reservations, pinned objects and 3605 * other resources get woken up, and be told the bad news. 3606 * c. nothing new gets queued up after (a) and (b) are done. 3607 * d. if !logerror, flush the iclogs to disk, then seal them off 3608 * for business. 3609 * 3610 * Note: for delayed logging the !logerror case needs to flush the regions 3611 * held in memory out to the iclogs before flushing them to disk. This needs 3612 * to be done before the log is marked as shutdown, otherwise the flush to the 3613 * iclogs will fail. 3614 */ 3615 int 3616 xfs_log_force_umount( 3617 struct xfs_mount *mp, 3618 int logerror) 3619 { 3620 xlog_ticket_t *tic; 3621 xlog_t *log; 3622 int retval; 3623 3624 log = mp->m_log; 3625 3626 /* 3627 * If this happens during log recovery, don't worry about 3628 * locking; the log isn't open for business yet. 3629 */ 3630 if (!log || 3631 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3632 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3633 if (mp->m_sb_bp) 3634 XFS_BUF_DONE(mp->m_sb_bp); 3635 return 0; 3636 } 3637 3638 /* 3639 * Somebody could've already done the hard work for us. 3640 * No need to get locks for this. 3641 */ 3642 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3643 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3644 return 1; 3645 } 3646 retval = 0; 3647 3648 /* 3649 * Flush the in memory commit item list before marking the log as 3650 * being shut down. We need to do it in this order to ensure all the 3651 * completed transactions are flushed to disk with the xfs_log_force() 3652 * call below. 3653 */ 3654 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG)) 3655 xlog_cil_force(log); 3656 3657 /* 3658 * mark the filesystem and the as in a shutdown state and wake 3659 * everybody up to tell them the bad news. 3660 */ 3661 spin_lock(&log->l_icloglock); 3662 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3663 if (mp->m_sb_bp) 3664 XFS_BUF_DONE(mp->m_sb_bp); 3665 3666 /* 3667 * This flag is sort of redundant because of the mount flag, but 3668 * it's good to maintain the separation between the log and the rest 3669 * of XFS. 3670 */ 3671 log->l_flags |= XLOG_IO_ERROR; 3672 3673 /* 3674 * If we hit a log error, we want to mark all the iclogs IOERROR 3675 * while we're still holding the loglock. 3676 */ 3677 if (logerror) 3678 retval = xlog_state_ioerror(log); 3679 spin_unlock(&log->l_icloglock); 3680 3681 /* 3682 * We don't want anybody waiting for log reservations after this. That 3683 * means we have to wake up everybody queued up on reserveq as well as 3684 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3685 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3686 * action is protected by the grant locks. 3687 */ 3688 spin_lock(&log->l_grant_reserve_lock); 3689 list_for_each_entry(tic, &log->l_reserveq, t_queue) 3690 wake_up(&tic->t_wait); 3691 spin_unlock(&log->l_grant_reserve_lock); 3692 3693 spin_lock(&log->l_grant_write_lock); 3694 list_for_each_entry(tic, &log->l_writeq, t_queue) 3695 wake_up(&tic->t_wait); 3696 spin_unlock(&log->l_grant_write_lock); 3697 3698 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3699 ASSERT(!logerror); 3700 /* 3701 * Force the incore logs to disk before shutting the 3702 * log down completely. 3703 */ 3704 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3705 3706 spin_lock(&log->l_icloglock); 3707 retval = xlog_state_ioerror(log); 3708 spin_unlock(&log->l_icloglock); 3709 } 3710 /* 3711 * Wake up everybody waiting on xfs_log_force. 3712 * Callback all log item committed functions as if the 3713 * log writes were completed. 3714 */ 3715 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3716 3717 #ifdef XFSERRORDEBUG 3718 { 3719 xlog_in_core_t *iclog; 3720 3721 spin_lock(&log->l_icloglock); 3722 iclog = log->l_iclog; 3723 do { 3724 ASSERT(iclog->ic_callback == 0); 3725 iclog = iclog->ic_next; 3726 } while (iclog != log->l_iclog); 3727 spin_unlock(&log->l_icloglock); 3728 } 3729 #endif 3730 /* return non-zero if log IOERROR transition had already happened */ 3731 return retval; 3732 } 3733 3734 STATIC int 3735 xlog_iclogs_empty(xlog_t *log) 3736 { 3737 xlog_in_core_t *iclog; 3738 3739 iclog = log->l_iclog; 3740 do { 3741 /* endianness does not matter here, zero is zero in 3742 * any language. 3743 */ 3744 if (iclog->ic_header.h_num_logops) 3745 return 0; 3746 iclog = iclog->ic_next; 3747 } while (iclog != log->l_iclog); 3748 return 1; 3749 } 3750