xref: /openbmc/linux/fs/xfs/xfs_log.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*logoffsetp);
53 STATIC void
54 xlog_grant_push_ail(
55 	struct xlog		*log,
56 	int			need_bytes);
57 STATIC void
58 xlog_sync(
59 	struct xlog		*log,
60 	struct xlog_in_core	*iclog);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_verify_grant_tail(
64 	struct xlog *log);
65 STATIC void
66 xlog_verify_iclog(
67 	struct xlog		*log,
68 	struct xlog_in_core	*iclog,
69 	int			count);
70 STATIC void
71 xlog_verify_tail_lsn(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog);
74 #else
75 #define xlog_verify_grant_tail(a)
76 #define xlog_verify_iclog(a,b,c)
77 #define xlog_verify_tail_lsn(a,b)
78 #endif
79 
80 STATIC int
81 xlog_iclogs_empty(
82 	struct xlog		*log);
83 
84 static int
85 xfs_log_cover(struct xfs_mount *);
86 
87 /*
88  * We need to make sure the buffer pointer returned is naturally aligned for the
89  * biggest basic data type we put into it. We have already accounted for this
90  * padding when sizing the buffer.
91  *
92  * However, this padding does not get written into the log, and hence we have to
93  * track the space used by the log vectors separately to prevent log space hangs
94  * due to inaccurate accounting (i.e. a leak) of the used log space through the
95  * CIL context ticket.
96  *
97  * We also add space for the xlog_op_header that describes this region in the
98  * log. This prepends the data region we return to the caller to copy their data
99  * into, so do all the static initialisation of the ophdr now. Because the ophdr
100  * is not 8 byte aligned, we have to be careful to ensure that we align the
101  * start of the buffer such that the region we return to the call is 8 byte
102  * aligned and packed against the tail of the ophdr.
103  */
104 void *
105 xlog_prepare_iovec(
106 	struct xfs_log_vec	*lv,
107 	struct xfs_log_iovec	**vecp,
108 	uint			type)
109 {
110 	struct xfs_log_iovec	*vec = *vecp;
111 	struct xlog_op_header	*oph;
112 	uint32_t		len;
113 	void			*buf;
114 
115 	if (vec) {
116 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
117 		vec++;
118 	} else {
119 		vec = &lv->lv_iovecp[0];
120 	}
121 
122 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
123 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
124 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
125 					sizeof(struct xlog_op_header);
126 	}
127 
128 	vec->i_type = type;
129 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
130 
131 	oph = vec->i_addr;
132 	oph->oh_clientid = XFS_TRANSACTION;
133 	oph->oh_res2 = 0;
134 	oph->oh_flags = 0;
135 
136 	buf = vec->i_addr + sizeof(struct xlog_op_header);
137 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
138 
139 	*vecp = vec;
140 	return buf;
141 }
142 
143 static void
144 xlog_grant_sub_space(
145 	struct xlog		*log,
146 	atomic64_t		*head,
147 	int			bytes)
148 {
149 	int64_t	head_val = atomic64_read(head);
150 	int64_t new, old;
151 
152 	do {
153 		int	cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		space -= bytes;
158 		if (space < 0) {
159 			space += log->l_logsize;
160 			cycle--;
161 		}
162 
163 		old = head_val;
164 		new = xlog_assign_grant_head_val(cycle, space);
165 		head_val = atomic64_cmpxchg(head, old, new);
166 	} while (head_val != old);
167 }
168 
169 static void
170 xlog_grant_add_space(
171 	struct xlog		*log,
172 	atomic64_t		*head,
173 	int			bytes)
174 {
175 	int64_t	head_val = atomic64_read(head);
176 	int64_t new, old;
177 
178 	do {
179 		int		tmp;
180 		int		cycle, space;
181 
182 		xlog_crack_grant_head_val(head_val, &cycle, &space);
183 
184 		tmp = log->l_logsize - space;
185 		if (tmp > bytes)
186 			space += bytes;
187 		else {
188 			space = bytes - tmp;
189 			cycle++;
190 		}
191 
192 		old = head_val;
193 		new = xlog_assign_grant_head_val(cycle, space);
194 		head_val = atomic64_cmpxchg(head, old, new);
195 	} while (head_val != old);
196 }
197 
198 STATIC void
199 xlog_grant_head_init(
200 	struct xlog_grant_head	*head)
201 {
202 	xlog_assign_grant_head(&head->grant, 1, 0);
203 	INIT_LIST_HEAD(&head->waiters);
204 	spin_lock_init(&head->lock);
205 }
206 
207 STATIC void
208 xlog_grant_head_wake_all(
209 	struct xlog_grant_head	*head)
210 {
211 	struct xlog_ticket	*tic;
212 
213 	spin_lock(&head->lock);
214 	list_for_each_entry(tic, &head->waiters, t_queue)
215 		wake_up_process(tic->t_task);
216 	spin_unlock(&head->lock);
217 }
218 
219 static inline int
220 xlog_ticket_reservation(
221 	struct xlog		*log,
222 	struct xlog_grant_head	*head,
223 	struct xlog_ticket	*tic)
224 {
225 	if (head == &log->l_write_head) {
226 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
227 		return tic->t_unit_res;
228 	} else {
229 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
230 			return tic->t_unit_res * tic->t_cnt;
231 		else
232 			return tic->t_unit_res;
233 	}
234 }
235 
236 STATIC bool
237 xlog_grant_head_wake(
238 	struct xlog		*log,
239 	struct xlog_grant_head	*head,
240 	int			*free_bytes)
241 {
242 	struct xlog_ticket	*tic;
243 	int			need_bytes;
244 	bool			woken_task = false;
245 
246 	list_for_each_entry(tic, &head->waiters, t_queue) {
247 
248 		/*
249 		 * There is a chance that the size of the CIL checkpoints in
250 		 * progress at the last AIL push target calculation resulted in
251 		 * limiting the target to the log head (l_last_sync_lsn) at the
252 		 * time. This may not reflect where the log head is now as the
253 		 * CIL checkpoints may have completed.
254 		 *
255 		 * Hence when we are woken here, it may be that the head of the
256 		 * log that has moved rather than the tail. As the tail didn't
257 		 * move, there still won't be space available for the
258 		 * reservation we require.  However, if the AIL has already
259 		 * pushed to the target defined by the old log head location, we
260 		 * will hang here waiting for something else to update the AIL
261 		 * push target.
262 		 *
263 		 * Therefore, if there isn't space to wake the first waiter on
264 		 * the grant head, we need to push the AIL again to ensure the
265 		 * target reflects both the current log tail and log head
266 		 * position before we wait for the tail to move again.
267 		 */
268 
269 		need_bytes = xlog_ticket_reservation(log, head, tic);
270 		if (*free_bytes < need_bytes) {
271 			if (!woken_task)
272 				xlog_grant_push_ail(log, need_bytes);
273 			return false;
274 		}
275 
276 		*free_bytes -= need_bytes;
277 		trace_xfs_log_grant_wake_up(log, tic);
278 		wake_up_process(tic->t_task);
279 		woken_task = true;
280 	}
281 
282 	return true;
283 }
284 
285 STATIC int
286 xlog_grant_head_wait(
287 	struct xlog		*log,
288 	struct xlog_grant_head	*head,
289 	struct xlog_ticket	*tic,
290 	int			need_bytes) __releases(&head->lock)
291 					    __acquires(&head->lock)
292 {
293 	list_add_tail(&tic->t_queue, &head->waiters);
294 
295 	do {
296 		if (xlog_is_shutdown(log))
297 			goto shutdown;
298 		xlog_grant_push_ail(log, need_bytes);
299 
300 		__set_current_state(TASK_UNINTERRUPTIBLE);
301 		spin_unlock(&head->lock);
302 
303 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
304 
305 		trace_xfs_log_grant_sleep(log, tic);
306 		schedule();
307 		trace_xfs_log_grant_wake(log, tic);
308 
309 		spin_lock(&head->lock);
310 		if (xlog_is_shutdown(log))
311 			goto shutdown;
312 	} while (xlog_space_left(log, &head->grant) < need_bytes);
313 
314 	list_del_init(&tic->t_queue);
315 	return 0;
316 shutdown:
317 	list_del_init(&tic->t_queue);
318 	return -EIO;
319 }
320 
321 /*
322  * Atomically get the log space required for a log ticket.
323  *
324  * Once a ticket gets put onto head->waiters, it will only return after the
325  * needed reservation is satisfied.
326  *
327  * This function is structured so that it has a lock free fast path. This is
328  * necessary because every new transaction reservation will come through this
329  * path. Hence any lock will be globally hot if we take it unconditionally on
330  * every pass.
331  *
332  * As tickets are only ever moved on and off head->waiters under head->lock, we
333  * only need to take that lock if we are going to add the ticket to the queue
334  * and sleep. We can avoid taking the lock if the ticket was never added to
335  * head->waiters because the t_queue list head will be empty and we hold the
336  * only reference to it so it can safely be checked unlocked.
337  */
338 STATIC int
339 xlog_grant_head_check(
340 	struct xlog		*log,
341 	struct xlog_grant_head	*head,
342 	struct xlog_ticket	*tic,
343 	int			*need_bytes)
344 {
345 	int			free_bytes;
346 	int			error = 0;
347 
348 	ASSERT(!xlog_in_recovery(log));
349 
350 	/*
351 	 * If there are other waiters on the queue then give them a chance at
352 	 * logspace before us.  Wake up the first waiters, if we do not wake
353 	 * up all the waiters then go to sleep waiting for more free space,
354 	 * otherwise try to get some space for this transaction.
355 	 */
356 	*need_bytes = xlog_ticket_reservation(log, head, tic);
357 	free_bytes = xlog_space_left(log, &head->grant);
358 	if (!list_empty_careful(&head->waiters)) {
359 		spin_lock(&head->lock);
360 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
361 		    free_bytes < *need_bytes) {
362 			error = xlog_grant_head_wait(log, head, tic,
363 						     *need_bytes);
364 		}
365 		spin_unlock(&head->lock);
366 	} else if (free_bytes < *need_bytes) {
367 		spin_lock(&head->lock);
368 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
369 		spin_unlock(&head->lock);
370 	}
371 
372 	return error;
373 }
374 
375 bool
376 xfs_log_writable(
377 	struct xfs_mount	*mp)
378 {
379 	/*
380 	 * Do not write to the log on norecovery mounts, if the data or log
381 	 * devices are read-only, or if the filesystem is shutdown. Read-only
382 	 * mounts allow internal writes for log recovery and unmount purposes,
383 	 * so don't restrict that case.
384 	 */
385 	if (xfs_has_norecovery(mp))
386 		return false;
387 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
388 		return false;
389 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
390 		return false;
391 	if (xlog_is_shutdown(mp->m_log))
392 		return false;
393 	return true;
394 }
395 
396 /*
397  * Replenish the byte reservation required by moving the grant write head.
398  */
399 int
400 xfs_log_regrant(
401 	struct xfs_mount	*mp,
402 	struct xlog_ticket	*tic)
403 {
404 	struct xlog		*log = mp->m_log;
405 	int			need_bytes;
406 	int			error = 0;
407 
408 	if (xlog_is_shutdown(log))
409 		return -EIO;
410 
411 	XFS_STATS_INC(mp, xs_try_logspace);
412 
413 	/*
414 	 * This is a new transaction on the ticket, so we need to change the
415 	 * transaction ID so that the next transaction has a different TID in
416 	 * the log. Just add one to the existing tid so that we can see chains
417 	 * of rolling transactions in the log easily.
418 	 */
419 	tic->t_tid++;
420 
421 	xlog_grant_push_ail(log, tic->t_unit_res);
422 
423 	tic->t_curr_res = tic->t_unit_res;
424 	if (tic->t_cnt > 0)
425 		return 0;
426 
427 	trace_xfs_log_regrant(log, tic);
428 
429 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
430 				      &need_bytes);
431 	if (error)
432 		goto out_error;
433 
434 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
435 	trace_xfs_log_regrant_exit(log, tic);
436 	xlog_verify_grant_tail(log);
437 	return 0;
438 
439 out_error:
440 	/*
441 	 * If we are failing, make sure the ticket doesn't have any current
442 	 * reservations.  We don't want to add this back when the ticket/
443 	 * transaction gets cancelled.
444 	 */
445 	tic->t_curr_res = 0;
446 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
447 	return error;
448 }
449 
450 /*
451  * Reserve log space and return a ticket corresponding to the reservation.
452  *
453  * Each reservation is going to reserve extra space for a log record header.
454  * When writes happen to the on-disk log, we don't subtract the length of the
455  * log record header from any reservation.  By wasting space in each
456  * reservation, we prevent over allocation problems.
457  */
458 int
459 xfs_log_reserve(
460 	struct xfs_mount	*mp,
461 	int			unit_bytes,
462 	int			cnt,
463 	struct xlog_ticket	**ticp,
464 	bool			permanent)
465 {
466 	struct xlog		*log = mp->m_log;
467 	struct xlog_ticket	*tic;
468 	int			need_bytes;
469 	int			error = 0;
470 
471 	if (xlog_is_shutdown(log))
472 		return -EIO;
473 
474 	XFS_STATS_INC(mp, xs_try_logspace);
475 
476 	ASSERT(*ticp == NULL);
477 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
478 	*ticp = tic;
479 
480 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
481 					    : tic->t_unit_res);
482 
483 	trace_xfs_log_reserve(log, tic);
484 
485 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
486 				      &need_bytes);
487 	if (error)
488 		goto out_error;
489 
490 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
491 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
492 	trace_xfs_log_reserve_exit(log, tic);
493 	xlog_verify_grant_tail(log);
494 	return 0;
495 
496 out_error:
497 	/*
498 	 * If we are failing, make sure the ticket doesn't have any current
499 	 * reservations.  We don't want to add this back when the ticket/
500 	 * transaction gets cancelled.
501 	 */
502 	tic->t_curr_res = 0;
503 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
504 	return error;
505 }
506 
507 /*
508  * Run all the pending iclog callbacks and wake log force waiters and iclog
509  * space waiters so they can process the newly set shutdown state. We really
510  * don't care what order we process callbacks here because the log is shut down
511  * and so state cannot change on disk anymore. However, we cannot wake waiters
512  * until the callbacks have been processed because we may be in unmount and
513  * we must ensure that all AIL operations the callbacks perform have completed
514  * before we tear down the AIL.
515  *
516  * We avoid processing actively referenced iclogs so that we don't run callbacks
517  * while the iclog owner might still be preparing the iclog for IO submssion.
518  * These will be caught by xlog_state_iclog_release() and call this function
519  * again to process any callbacks that may have been added to that iclog.
520  */
521 static void
522 xlog_state_shutdown_callbacks(
523 	struct xlog		*log)
524 {
525 	struct xlog_in_core	*iclog;
526 	LIST_HEAD(cb_list);
527 
528 	iclog = log->l_iclog;
529 	do {
530 		if (atomic_read(&iclog->ic_refcnt)) {
531 			/* Reference holder will re-run iclog callbacks. */
532 			continue;
533 		}
534 		list_splice_init(&iclog->ic_callbacks, &cb_list);
535 		spin_unlock(&log->l_icloglock);
536 
537 		xlog_cil_process_committed(&cb_list);
538 
539 		spin_lock(&log->l_icloglock);
540 		wake_up_all(&iclog->ic_write_wait);
541 		wake_up_all(&iclog->ic_force_wait);
542 	} while ((iclog = iclog->ic_next) != log->l_iclog);
543 
544 	wake_up_all(&log->l_flush_wait);
545 }
546 
547 /*
548  * Flush iclog to disk if this is the last reference to the given iclog and the
549  * it is in the WANT_SYNC state.
550  *
551  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
552  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
553  * written to stable storage, and implies that a commit record is contained
554  * within the iclog. We need to ensure that the log tail does not move beyond
555  * the tail that the first commit record in the iclog ordered against, otherwise
556  * correct recovery of that checkpoint becomes dependent on future operations
557  * performed on this iclog.
558  *
559  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
560  * current tail into iclog. Once the iclog tail is set, future operations must
561  * not modify it, otherwise they potentially violate ordering constraints for
562  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
563  * the iclog will get zeroed on activation of the iclog after sync, so we
564  * always capture the tail lsn on the iclog on the first NEED_FUA release
565  * regardless of the number of active reference counts on this iclog.
566  */
567 int
568 xlog_state_release_iclog(
569 	struct xlog		*log,
570 	struct xlog_in_core	*iclog)
571 {
572 	xfs_lsn_t		tail_lsn;
573 	bool			last_ref;
574 
575 	lockdep_assert_held(&log->l_icloglock);
576 
577 	trace_xlog_iclog_release(iclog, _RET_IP_);
578 	/*
579 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
580 	 * of the tail LSN into the iclog so we guarantee that the log tail does
581 	 * not move between the first time we know that the iclog needs to be
582 	 * made stable and when we eventually submit it.
583 	 */
584 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
585 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
586 	    !iclog->ic_header.h_tail_lsn) {
587 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
588 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
589 	}
590 
591 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
592 
593 	if (xlog_is_shutdown(log)) {
594 		/*
595 		 * If there are no more references to this iclog, process the
596 		 * pending iclog callbacks that were waiting on the release of
597 		 * this iclog.
598 		 */
599 		if (last_ref)
600 			xlog_state_shutdown_callbacks(log);
601 		return -EIO;
602 	}
603 
604 	if (!last_ref)
605 		return 0;
606 
607 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
608 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
609 		return 0;
610 	}
611 
612 	iclog->ic_state = XLOG_STATE_SYNCING;
613 	xlog_verify_tail_lsn(log, iclog);
614 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
615 
616 	spin_unlock(&log->l_icloglock);
617 	xlog_sync(log, iclog);
618 	spin_lock(&log->l_icloglock);
619 	return 0;
620 }
621 
622 /*
623  * Mount a log filesystem
624  *
625  * mp		- ubiquitous xfs mount point structure
626  * log_target	- buftarg of on-disk log device
627  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
628  * num_bblocks	- Number of BBSIZE blocks in on-disk log
629  *
630  * Return error or zero.
631  */
632 int
633 xfs_log_mount(
634 	xfs_mount_t	*mp,
635 	xfs_buftarg_t	*log_target,
636 	xfs_daddr_t	blk_offset,
637 	int		num_bblks)
638 {
639 	struct xlog	*log;
640 	bool		fatal = xfs_has_crc(mp);
641 	int		error = 0;
642 	int		min_logfsbs;
643 
644 	if (!xfs_has_norecovery(mp)) {
645 		xfs_notice(mp, "Mounting V%d Filesystem",
646 			   XFS_SB_VERSION_NUM(&mp->m_sb));
647 	} else {
648 		xfs_notice(mp,
649 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
650 			   XFS_SB_VERSION_NUM(&mp->m_sb));
651 		ASSERT(xfs_is_readonly(mp));
652 	}
653 
654 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
655 	if (IS_ERR(log)) {
656 		error = PTR_ERR(log);
657 		goto out;
658 	}
659 	mp->m_log = log;
660 
661 	/*
662 	 * Validate the given log space and drop a critical message via syslog
663 	 * if the log size is too small that would lead to some unexpected
664 	 * situations in transaction log space reservation stage.
665 	 *
666 	 * Note: we can't just reject the mount if the validation fails.  This
667 	 * would mean that people would have to downgrade their kernel just to
668 	 * remedy the situation as there is no way to grow the log (short of
669 	 * black magic surgery with xfs_db).
670 	 *
671 	 * We can, however, reject mounts for CRC format filesystems, as the
672 	 * mkfs binary being used to make the filesystem should never create a
673 	 * filesystem with a log that is too small.
674 	 */
675 	min_logfsbs = xfs_log_calc_minimum_size(mp);
676 
677 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
678 		xfs_warn(mp,
679 		"Log size %d blocks too small, minimum size is %d blocks",
680 			 mp->m_sb.sb_logblocks, min_logfsbs);
681 		error = -EINVAL;
682 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
683 		xfs_warn(mp,
684 		"Log size %d blocks too large, maximum size is %lld blocks",
685 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
686 		error = -EINVAL;
687 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
688 		xfs_warn(mp,
689 		"log size %lld bytes too large, maximum size is %lld bytes",
690 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
691 			 XFS_MAX_LOG_BYTES);
692 		error = -EINVAL;
693 	} else if (mp->m_sb.sb_logsunit > 1 &&
694 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
695 		xfs_warn(mp,
696 		"log stripe unit %u bytes must be a multiple of block size",
697 			 mp->m_sb.sb_logsunit);
698 		error = -EINVAL;
699 		fatal = true;
700 	}
701 	if (error) {
702 		/*
703 		 * Log check errors are always fatal on v5; or whenever bad
704 		 * metadata leads to a crash.
705 		 */
706 		if (fatal) {
707 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
708 			ASSERT(0);
709 			goto out_free_log;
710 		}
711 		xfs_crit(mp, "Log size out of supported range.");
712 		xfs_crit(mp,
713 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
714 	}
715 
716 	/*
717 	 * Initialize the AIL now we have a log.
718 	 */
719 	error = xfs_trans_ail_init(mp);
720 	if (error) {
721 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
722 		goto out_free_log;
723 	}
724 	log->l_ailp = mp->m_ail;
725 
726 	/*
727 	 * skip log recovery on a norecovery mount.  pretend it all
728 	 * just worked.
729 	 */
730 	if (!xfs_has_norecovery(mp)) {
731 		/*
732 		 * log recovery ignores readonly state and so we need to clear
733 		 * mount-based read only state so it can write to disk.
734 		 */
735 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
736 						&mp->m_opstate);
737 		error = xlog_recover(log);
738 		if (readonly)
739 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
740 		if (error) {
741 			xfs_warn(mp, "log mount/recovery failed: error %d",
742 				error);
743 			xlog_recover_cancel(log);
744 			goto out_destroy_ail;
745 		}
746 	}
747 
748 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
749 			       "log");
750 	if (error)
751 		goto out_destroy_ail;
752 
753 	/* Normal transactions can now occur */
754 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
755 
756 	/*
757 	 * Now the log has been fully initialised and we know were our
758 	 * space grant counters are, we can initialise the permanent ticket
759 	 * needed for delayed logging to work.
760 	 */
761 	xlog_cil_init_post_recovery(log);
762 
763 	return 0;
764 
765 out_destroy_ail:
766 	xfs_trans_ail_destroy(mp);
767 out_free_log:
768 	xlog_dealloc_log(log);
769 out:
770 	return error;
771 }
772 
773 /*
774  * Finish the recovery of the file system.  This is separate from the
775  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
776  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
777  * here.
778  *
779  * If we finish recovery successfully, start the background log work. If we are
780  * not doing recovery, then we have a RO filesystem and we don't need to start
781  * it.
782  */
783 int
784 xfs_log_mount_finish(
785 	struct xfs_mount	*mp)
786 {
787 	struct xlog		*log = mp->m_log;
788 	bool			readonly;
789 	int			error = 0;
790 
791 	if (xfs_has_norecovery(mp)) {
792 		ASSERT(xfs_is_readonly(mp));
793 		return 0;
794 	}
795 
796 	/*
797 	 * log recovery ignores readonly state and so we need to clear
798 	 * mount-based read only state so it can write to disk.
799 	 */
800 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
801 
802 	/*
803 	 * During the second phase of log recovery, we need iget and
804 	 * iput to behave like they do for an active filesystem.
805 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
806 	 * of inodes before we're done replaying log items on those
807 	 * inodes.  Turn it off immediately after recovery finishes
808 	 * so that we don't leak the quota inodes if subsequent mount
809 	 * activities fail.
810 	 *
811 	 * We let all inodes involved in redo item processing end up on
812 	 * the LRU instead of being evicted immediately so that if we do
813 	 * something to an unlinked inode, the irele won't cause
814 	 * premature truncation and freeing of the inode, which results
815 	 * in log recovery failure.  We have to evict the unreferenced
816 	 * lru inodes after clearing SB_ACTIVE because we don't
817 	 * otherwise clean up the lru if there's a subsequent failure in
818 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
819 	 * else (e.g. quotacheck) references the inodes before the
820 	 * mount failure occurs.
821 	 */
822 	mp->m_super->s_flags |= SB_ACTIVE;
823 	xfs_log_work_queue(mp);
824 	if (xlog_recovery_needed(log))
825 		error = xlog_recover_finish(log);
826 	mp->m_super->s_flags &= ~SB_ACTIVE;
827 	evict_inodes(mp->m_super);
828 
829 	/*
830 	 * Drain the buffer LRU after log recovery. This is required for v4
831 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
832 	 * but we do it unconditionally to make sure we're always in a clean
833 	 * cache state after mount.
834 	 *
835 	 * Don't push in the error case because the AIL may have pending intents
836 	 * that aren't removed until recovery is cancelled.
837 	 */
838 	if (xlog_recovery_needed(log)) {
839 		if (!error) {
840 			xfs_log_force(mp, XFS_LOG_SYNC);
841 			xfs_ail_push_all_sync(mp->m_ail);
842 		}
843 		xfs_notice(mp, "Ending recovery (logdev: %s)",
844 				mp->m_logname ? mp->m_logname : "internal");
845 	} else {
846 		xfs_info(mp, "Ending clean mount");
847 	}
848 	xfs_buftarg_drain(mp->m_ddev_targp);
849 
850 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
851 	if (readonly)
852 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
853 
854 	/* Make sure the log is dead if we're returning failure. */
855 	ASSERT(!error || xlog_is_shutdown(log));
856 
857 	return error;
858 }
859 
860 /*
861  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
862  * the log.
863  */
864 void
865 xfs_log_mount_cancel(
866 	struct xfs_mount	*mp)
867 {
868 	xlog_recover_cancel(mp->m_log);
869 	xfs_log_unmount(mp);
870 }
871 
872 /*
873  * Flush out the iclog to disk ensuring that device caches are flushed and
874  * the iclog hits stable storage before any completion waiters are woken.
875  */
876 static inline int
877 xlog_force_iclog(
878 	struct xlog_in_core	*iclog)
879 {
880 	atomic_inc(&iclog->ic_refcnt);
881 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
882 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
883 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
884 	return xlog_state_release_iclog(iclog->ic_log, iclog);
885 }
886 
887 /*
888  * Wait for the iclog and all prior iclogs to be written disk as required by the
889  * log force state machine. Waiting on ic_force_wait ensures iclog completions
890  * have been ordered and callbacks run before we are woken here, hence
891  * guaranteeing that all the iclogs up to this one are on stable storage.
892  */
893 int
894 xlog_wait_on_iclog(
895 	struct xlog_in_core	*iclog)
896 		__releases(iclog->ic_log->l_icloglock)
897 {
898 	struct xlog		*log = iclog->ic_log;
899 
900 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
901 	if (!xlog_is_shutdown(log) &&
902 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
903 	    iclog->ic_state != XLOG_STATE_DIRTY) {
904 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
905 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
906 	} else {
907 		spin_unlock(&log->l_icloglock);
908 	}
909 
910 	if (xlog_is_shutdown(log))
911 		return -EIO;
912 	return 0;
913 }
914 
915 /*
916  * Write out an unmount record using the ticket provided. We have to account for
917  * the data space used in the unmount ticket as this write is not done from a
918  * transaction context that has already done the accounting for us.
919  */
920 static int
921 xlog_write_unmount_record(
922 	struct xlog		*log,
923 	struct xlog_ticket	*ticket)
924 {
925 	struct  {
926 		struct xlog_op_header ophdr;
927 		struct xfs_unmount_log_format ulf;
928 	} unmount_rec = {
929 		.ophdr = {
930 			.oh_clientid = XFS_LOG,
931 			.oh_tid = cpu_to_be32(ticket->t_tid),
932 			.oh_flags = XLOG_UNMOUNT_TRANS,
933 		},
934 		.ulf = {
935 			.magic = XLOG_UNMOUNT_TYPE,
936 		},
937 	};
938 	struct xfs_log_iovec reg = {
939 		.i_addr = &unmount_rec,
940 		.i_len = sizeof(unmount_rec),
941 		.i_type = XLOG_REG_TYPE_UNMOUNT,
942 	};
943 	struct xfs_log_vec vec = {
944 		.lv_niovecs = 1,
945 		.lv_iovecp = &reg,
946 	};
947 
948 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
949 		      sizeof(struct xfs_unmount_log_format)) !=
950 							sizeof(unmount_rec));
951 
952 	/* account for space used by record data */
953 	ticket->t_curr_res -= sizeof(unmount_rec);
954 
955 	return xlog_write(log, NULL, &vec, ticket, reg.i_len);
956 }
957 
958 /*
959  * Mark the filesystem clean by writing an unmount record to the head of the
960  * log.
961  */
962 static void
963 xlog_unmount_write(
964 	struct xlog		*log)
965 {
966 	struct xfs_mount	*mp = log->l_mp;
967 	struct xlog_in_core	*iclog;
968 	struct xlog_ticket	*tic = NULL;
969 	int			error;
970 
971 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
972 	if (error)
973 		goto out_err;
974 
975 	error = xlog_write_unmount_record(log, tic);
976 	/*
977 	 * At this point, we're umounting anyway, so there's no point in
978 	 * transitioning log state to shutdown. Just continue...
979 	 */
980 out_err:
981 	if (error)
982 		xfs_alert(mp, "%s: unmount record failed", __func__);
983 
984 	spin_lock(&log->l_icloglock);
985 	iclog = log->l_iclog;
986 	error = xlog_force_iclog(iclog);
987 	xlog_wait_on_iclog(iclog);
988 
989 	if (tic) {
990 		trace_xfs_log_umount_write(log, tic);
991 		xfs_log_ticket_ungrant(log, tic);
992 	}
993 }
994 
995 static void
996 xfs_log_unmount_verify_iclog(
997 	struct xlog		*log)
998 {
999 	struct xlog_in_core	*iclog = log->l_iclog;
1000 
1001 	do {
1002 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1003 		ASSERT(iclog->ic_offset == 0);
1004 	} while ((iclog = iclog->ic_next) != log->l_iclog);
1005 }
1006 
1007 /*
1008  * Unmount record used to have a string "Unmount filesystem--" in the
1009  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1010  * We just write the magic number now since that particular field isn't
1011  * currently architecture converted and "Unmount" is a bit foo.
1012  * As far as I know, there weren't any dependencies on the old behaviour.
1013  */
1014 static void
1015 xfs_log_unmount_write(
1016 	struct xfs_mount	*mp)
1017 {
1018 	struct xlog		*log = mp->m_log;
1019 
1020 	if (!xfs_log_writable(mp))
1021 		return;
1022 
1023 	xfs_log_force(mp, XFS_LOG_SYNC);
1024 
1025 	if (xlog_is_shutdown(log))
1026 		return;
1027 
1028 	/*
1029 	 * If we think the summary counters are bad, avoid writing the unmount
1030 	 * record to force log recovery at next mount, after which the summary
1031 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1032 	 * more details.
1033 	 */
1034 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1035 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1036 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1037 				__func__);
1038 		return;
1039 	}
1040 
1041 	xfs_log_unmount_verify_iclog(log);
1042 	xlog_unmount_write(log);
1043 }
1044 
1045 /*
1046  * Empty the log for unmount/freeze.
1047  *
1048  * To do this, we first need to shut down the background log work so it is not
1049  * trying to cover the log as we clean up. We then need to unpin all objects in
1050  * the log so we can then flush them out. Once they have completed their IO and
1051  * run the callbacks removing themselves from the AIL, we can cover the log.
1052  */
1053 int
1054 xfs_log_quiesce(
1055 	struct xfs_mount	*mp)
1056 {
1057 	/*
1058 	 * Clear log incompat features since we're quiescing the log.  Report
1059 	 * failures, though it's not fatal to have a higher log feature
1060 	 * protection level than the log contents actually require.
1061 	 */
1062 	if (xfs_clear_incompat_log_features(mp)) {
1063 		int error;
1064 
1065 		error = xfs_sync_sb(mp, false);
1066 		if (error)
1067 			xfs_warn(mp,
1068 	"Failed to clear log incompat features on quiesce");
1069 	}
1070 
1071 	cancel_delayed_work_sync(&mp->m_log->l_work);
1072 	xfs_log_force(mp, XFS_LOG_SYNC);
1073 
1074 	/*
1075 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1076 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1077 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1078 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1079 	 * the IO to complete.
1080 	 */
1081 	xfs_ail_push_all_sync(mp->m_ail);
1082 	xfs_buftarg_wait(mp->m_ddev_targp);
1083 	xfs_buf_lock(mp->m_sb_bp);
1084 	xfs_buf_unlock(mp->m_sb_bp);
1085 
1086 	return xfs_log_cover(mp);
1087 }
1088 
1089 void
1090 xfs_log_clean(
1091 	struct xfs_mount	*mp)
1092 {
1093 	xfs_log_quiesce(mp);
1094 	xfs_log_unmount_write(mp);
1095 }
1096 
1097 /*
1098  * Shut down and release the AIL and Log.
1099  *
1100  * During unmount, we need to ensure we flush all the dirty metadata objects
1101  * from the AIL so that the log is empty before we write the unmount record to
1102  * the log. Once this is done, we can tear down the AIL and the log.
1103  */
1104 void
1105 xfs_log_unmount(
1106 	struct xfs_mount	*mp)
1107 {
1108 	xfs_log_clean(mp);
1109 
1110 	xfs_buftarg_drain(mp->m_ddev_targp);
1111 
1112 	xfs_trans_ail_destroy(mp);
1113 
1114 	xfs_sysfs_del(&mp->m_log->l_kobj);
1115 
1116 	xlog_dealloc_log(mp->m_log);
1117 }
1118 
1119 void
1120 xfs_log_item_init(
1121 	struct xfs_mount	*mp,
1122 	struct xfs_log_item	*item,
1123 	int			type,
1124 	const struct xfs_item_ops *ops)
1125 {
1126 	item->li_log = mp->m_log;
1127 	item->li_ailp = mp->m_ail;
1128 	item->li_type = type;
1129 	item->li_ops = ops;
1130 	item->li_lv = NULL;
1131 
1132 	INIT_LIST_HEAD(&item->li_ail);
1133 	INIT_LIST_HEAD(&item->li_cil);
1134 	INIT_LIST_HEAD(&item->li_bio_list);
1135 	INIT_LIST_HEAD(&item->li_trans);
1136 }
1137 
1138 /*
1139  * Wake up processes waiting for log space after we have moved the log tail.
1140  */
1141 void
1142 xfs_log_space_wake(
1143 	struct xfs_mount	*mp)
1144 {
1145 	struct xlog		*log = mp->m_log;
1146 	int			free_bytes;
1147 
1148 	if (xlog_is_shutdown(log))
1149 		return;
1150 
1151 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1152 		ASSERT(!xlog_in_recovery(log));
1153 
1154 		spin_lock(&log->l_write_head.lock);
1155 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1156 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1157 		spin_unlock(&log->l_write_head.lock);
1158 	}
1159 
1160 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1161 		ASSERT(!xlog_in_recovery(log));
1162 
1163 		spin_lock(&log->l_reserve_head.lock);
1164 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1165 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1166 		spin_unlock(&log->l_reserve_head.lock);
1167 	}
1168 }
1169 
1170 /*
1171  * Determine if we have a transaction that has gone to disk that needs to be
1172  * covered. To begin the transition to the idle state firstly the log needs to
1173  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1174  * we start attempting to cover the log.
1175  *
1176  * Only if we are then in a state where covering is needed, the caller is
1177  * informed that dummy transactions are required to move the log into the idle
1178  * state.
1179  *
1180  * If there are any items in the AIl or CIL, then we do not want to attempt to
1181  * cover the log as we may be in a situation where there isn't log space
1182  * available to run a dummy transaction and this can lead to deadlocks when the
1183  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1184  * there's no point in running a dummy transaction at this point because we
1185  * can't start trying to idle the log until both the CIL and AIL are empty.
1186  */
1187 static bool
1188 xfs_log_need_covered(
1189 	struct xfs_mount	*mp)
1190 {
1191 	struct xlog		*log = mp->m_log;
1192 	bool			needed = false;
1193 
1194 	if (!xlog_cil_empty(log))
1195 		return false;
1196 
1197 	spin_lock(&log->l_icloglock);
1198 	switch (log->l_covered_state) {
1199 	case XLOG_STATE_COVER_DONE:
1200 	case XLOG_STATE_COVER_DONE2:
1201 	case XLOG_STATE_COVER_IDLE:
1202 		break;
1203 	case XLOG_STATE_COVER_NEED:
1204 	case XLOG_STATE_COVER_NEED2:
1205 		if (xfs_ail_min_lsn(log->l_ailp))
1206 			break;
1207 		if (!xlog_iclogs_empty(log))
1208 			break;
1209 
1210 		needed = true;
1211 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1212 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1213 		else
1214 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1215 		break;
1216 	default:
1217 		needed = true;
1218 		break;
1219 	}
1220 	spin_unlock(&log->l_icloglock);
1221 	return needed;
1222 }
1223 
1224 /*
1225  * Explicitly cover the log. This is similar to background log covering but
1226  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1227  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1228  * must all be empty.
1229  */
1230 static int
1231 xfs_log_cover(
1232 	struct xfs_mount	*mp)
1233 {
1234 	int			error = 0;
1235 	bool			need_covered;
1236 
1237 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1238 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1239 		xlog_is_shutdown(mp->m_log));
1240 
1241 	if (!xfs_log_writable(mp))
1242 		return 0;
1243 
1244 	/*
1245 	 * xfs_log_need_covered() is not idempotent because it progresses the
1246 	 * state machine if the log requires covering. Therefore, we must call
1247 	 * this function once and use the result until we've issued an sb sync.
1248 	 * Do so first to make that abundantly clear.
1249 	 *
1250 	 * Fall into the covering sequence if the log needs covering or the
1251 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1252 	 * used for covering accumulates the in-core counters, so covering
1253 	 * handles this for us.
1254 	 */
1255 	need_covered = xfs_log_need_covered(mp);
1256 	if (!need_covered && !xfs_has_lazysbcount(mp))
1257 		return 0;
1258 
1259 	/*
1260 	 * To cover the log, commit the superblock twice (at most) in
1261 	 * independent checkpoints. The first serves as a reference for the
1262 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1263 	 * updates the in-core tail to the LSN of the first checkpoint. The
1264 	 * second commit updates the on-disk tail with the in-core LSN,
1265 	 * covering the log. Push the AIL one more time to leave it empty, as
1266 	 * we found it.
1267 	 */
1268 	do {
1269 		error = xfs_sync_sb(mp, true);
1270 		if (error)
1271 			break;
1272 		xfs_ail_push_all_sync(mp->m_ail);
1273 	} while (xfs_log_need_covered(mp));
1274 
1275 	return error;
1276 }
1277 
1278 /*
1279  * We may be holding the log iclog lock upon entering this routine.
1280  */
1281 xfs_lsn_t
1282 xlog_assign_tail_lsn_locked(
1283 	struct xfs_mount	*mp)
1284 {
1285 	struct xlog		*log = mp->m_log;
1286 	struct xfs_log_item	*lip;
1287 	xfs_lsn_t		tail_lsn;
1288 
1289 	assert_spin_locked(&mp->m_ail->ail_lock);
1290 
1291 	/*
1292 	 * To make sure we always have a valid LSN for the log tail we keep
1293 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1294 	 * and use that when the AIL was empty.
1295 	 */
1296 	lip = xfs_ail_min(mp->m_ail);
1297 	if (lip)
1298 		tail_lsn = lip->li_lsn;
1299 	else
1300 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1301 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1302 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1303 	return tail_lsn;
1304 }
1305 
1306 xfs_lsn_t
1307 xlog_assign_tail_lsn(
1308 	struct xfs_mount	*mp)
1309 {
1310 	xfs_lsn_t		tail_lsn;
1311 
1312 	spin_lock(&mp->m_ail->ail_lock);
1313 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1314 	spin_unlock(&mp->m_ail->ail_lock);
1315 
1316 	return tail_lsn;
1317 }
1318 
1319 /*
1320  * Return the space in the log between the tail and the head.  The head
1321  * is passed in the cycle/bytes formal parms.  In the special case where
1322  * the reserve head has wrapped passed the tail, this calculation is no
1323  * longer valid.  In this case, just return 0 which means there is no space
1324  * in the log.  This works for all places where this function is called
1325  * with the reserve head.  Of course, if the write head were to ever
1326  * wrap the tail, we should blow up.  Rather than catch this case here,
1327  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1328  *
1329  * If reservation head is behind the tail, we have a problem. Warn about it,
1330  * but then treat it as if the log is empty.
1331  *
1332  * If the log is shut down, the head and tail may be invalid or out of whack, so
1333  * shortcut invalidity asserts in this case so that we don't trigger them
1334  * falsely.
1335  */
1336 STATIC int
1337 xlog_space_left(
1338 	struct xlog	*log,
1339 	atomic64_t	*head)
1340 {
1341 	int		tail_bytes;
1342 	int		tail_cycle;
1343 	int		head_cycle;
1344 	int		head_bytes;
1345 
1346 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1347 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1348 	tail_bytes = BBTOB(tail_bytes);
1349 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1350 		return log->l_logsize - (head_bytes - tail_bytes);
1351 	if (tail_cycle + 1 < head_cycle)
1352 		return 0;
1353 
1354 	/* Ignore potential inconsistency when shutdown. */
1355 	if (xlog_is_shutdown(log))
1356 		return log->l_logsize;
1357 
1358 	if (tail_cycle < head_cycle) {
1359 		ASSERT(tail_cycle == (head_cycle - 1));
1360 		return tail_bytes - head_bytes;
1361 	}
1362 
1363 	/*
1364 	 * The reservation head is behind the tail. In this case we just want to
1365 	 * return the size of the log as the amount of space left.
1366 	 */
1367 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1368 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1369 		  tail_cycle, tail_bytes);
1370 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1371 		  head_cycle, head_bytes);
1372 	ASSERT(0);
1373 	return log->l_logsize;
1374 }
1375 
1376 
1377 static void
1378 xlog_ioend_work(
1379 	struct work_struct	*work)
1380 {
1381 	struct xlog_in_core     *iclog =
1382 		container_of(work, struct xlog_in_core, ic_end_io_work);
1383 	struct xlog		*log = iclog->ic_log;
1384 	int			error;
1385 
1386 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1387 #ifdef DEBUG
1388 	/* treat writes with injected CRC errors as failed */
1389 	if (iclog->ic_fail_crc)
1390 		error = -EIO;
1391 #endif
1392 
1393 	/*
1394 	 * Race to shutdown the filesystem if we see an error.
1395 	 */
1396 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1397 		xfs_alert(log->l_mp, "log I/O error %d", error);
1398 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1399 	}
1400 
1401 	xlog_state_done_syncing(iclog);
1402 	bio_uninit(&iclog->ic_bio);
1403 
1404 	/*
1405 	 * Drop the lock to signal that we are done. Nothing references the
1406 	 * iclog after this, so an unmount waiting on this lock can now tear it
1407 	 * down safely. As such, it is unsafe to reference the iclog after the
1408 	 * unlock as we could race with it being freed.
1409 	 */
1410 	up(&iclog->ic_sema);
1411 }
1412 
1413 /*
1414  * Return size of each in-core log record buffer.
1415  *
1416  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1417  *
1418  * If the filesystem blocksize is too large, we may need to choose a
1419  * larger size since the directory code currently logs entire blocks.
1420  */
1421 STATIC void
1422 xlog_get_iclog_buffer_size(
1423 	struct xfs_mount	*mp,
1424 	struct xlog		*log)
1425 {
1426 	if (mp->m_logbufs <= 0)
1427 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1428 	if (mp->m_logbsize <= 0)
1429 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1430 
1431 	log->l_iclog_bufs = mp->m_logbufs;
1432 	log->l_iclog_size = mp->m_logbsize;
1433 
1434 	/*
1435 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1436 	 */
1437 	log->l_iclog_heads =
1438 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1439 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1440 }
1441 
1442 void
1443 xfs_log_work_queue(
1444 	struct xfs_mount        *mp)
1445 {
1446 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1447 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1448 }
1449 
1450 /*
1451  * Clear the log incompat flags if we have the opportunity.
1452  *
1453  * This only happens if we're about to log the second dummy transaction as part
1454  * of covering the log and we can get the log incompat feature usage lock.
1455  */
1456 static inline void
1457 xlog_clear_incompat(
1458 	struct xlog		*log)
1459 {
1460 	struct xfs_mount	*mp = log->l_mp;
1461 
1462 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1463 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1464 		return;
1465 
1466 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1467 		return;
1468 
1469 	if (!down_write_trylock(&log->l_incompat_users))
1470 		return;
1471 
1472 	xfs_clear_incompat_log_features(mp);
1473 	up_write(&log->l_incompat_users);
1474 }
1475 
1476 /*
1477  * Every sync period we need to unpin all items in the AIL and push them to
1478  * disk. If there is nothing dirty, then we might need to cover the log to
1479  * indicate that the filesystem is idle.
1480  */
1481 static void
1482 xfs_log_worker(
1483 	struct work_struct	*work)
1484 {
1485 	struct xlog		*log = container_of(to_delayed_work(work),
1486 						struct xlog, l_work);
1487 	struct xfs_mount	*mp = log->l_mp;
1488 
1489 	/* dgc: errors ignored - not fatal and nowhere to report them */
1490 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1491 		/*
1492 		 * Dump a transaction into the log that contains no real change.
1493 		 * This is needed to stamp the current tail LSN into the log
1494 		 * during the covering operation.
1495 		 *
1496 		 * We cannot use an inode here for this - that will push dirty
1497 		 * state back up into the VFS and then periodic inode flushing
1498 		 * will prevent log covering from making progress. Hence we
1499 		 * synchronously log the superblock instead to ensure the
1500 		 * superblock is immediately unpinned and can be written back.
1501 		 */
1502 		xlog_clear_incompat(log);
1503 		xfs_sync_sb(mp, true);
1504 	} else
1505 		xfs_log_force(mp, 0);
1506 
1507 	/* start pushing all the metadata that is currently dirty */
1508 	xfs_ail_push_all(mp->m_ail);
1509 
1510 	/* queue us up again */
1511 	xfs_log_work_queue(mp);
1512 }
1513 
1514 /*
1515  * This routine initializes some of the log structure for a given mount point.
1516  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1517  * some other stuff may be filled in too.
1518  */
1519 STATIC struct xlog *
1520 xlog_alloc_log(
1521 	struct xfs_mount	*mp,
1522 	struct xfs_buftarg	*log_target,
1523 	xfs_daddr_t		blk_offset,
1524 	int			num_bblks)
1525 {
1526 	struct xlog		*log;
1527 	xlog_rec_header_t	*head;
1528 	xlog_in_core_t		**iclogp;
1529 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1530 	int			i;
1531 	int			error = -ENOMEM;
1532 	uint			log2_size = 0;
1533 
1534 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1535 	if (!log) {
1536 		xfs_warn(mp, "Log allocation failed: No memory!");
1537 		goto out;
1538 	}
1539 
1540 	log->l_mp	   = mp;
1541 	log->l_targ	   = log_target;
1542 	log->l_logsize     = BBTOB(num_bblks);
1543 	log->l_logBBstart  = blk_offset;
1544 	log->l_logBBsize   = num_bblks;
1545 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1546 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1547 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1548 
1549 	log->l_prev_block  = -1;
1550 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1551 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1552 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1553 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1554 
1555 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1556 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1557 	else
1558 		log->l_iclog_roundoff = BBSIZE;
1559 
1560 	xlog_grant_head_init(&log->l_reserve_head);
1561 	xlog_grant_head_init(&log->l_write_head);
1562 
1563 	error = -EFSCORRUPTED;
1564 	if (xfs_has_sector(mp)) {
1565 	        log2_size = mp->m_sb.sb_logsectlog;
1566 		if (log2_size < BBSHIFT) {
1567 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1568 				log2_size, BBSHIFT);
1569 			goto out_free_log;
1570 		}
1571 
1572 	        log2_size -= BBSHIFT;
1573 		if (log2_size > mp->m_sectbb_log) {
1574 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1575 				log2_size, mp->m_sectbb_log);
1576 			goto out_free_log;
1577 		}
1578 
1579 		/* for larger sector sizes, must have v2 or external log */
1580 		if (log2_size && log->l_logBBstart > 0 &&
1581 			    !xfs_has_logv2(mp)) {
1582 			xfs_warn(mp,
1583 		"log sector size (0x%x) invalid for configuration.",
1584 				log2_size);
1585 			goto out_free_log;
1586 		}
1587 	}
1588 	log->l_sectBBsize = 1 << log2_size;
1589 
1590 	init_rwsem(&log->l_incompat_users);
1591 
1592 	xlog_get_iclog_buffer_size(mp, log);
1593 
1594 	spin_lock_init(&log->l_icloglock);
1595 	init_waitqueue_head(&log->l_flush_wait);
1596 
1597 	iclogp = &log->l_iclog;
1598 	/*
1599 	 * The amount of memory to allocate for the iclog structure is
1600 	 * rather funky due to the way the structure is defined.  It is
1601 	 * done this way so that we can use different sizes for machines
1602 	 * with different amounts of memory.  See the definition of
1603 	 * xlog_in_core_t in xfs_log_priv.h for details.
1604 	 */
1605 	ASSERT(log->l_iclog_size >= 4096);
1606 	for (i = 0; i < log->l_iclog_bufs; i++) {
1607 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1608 				sizeof(struct bio_vec);
1609 
1610 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1611 		if (!iclog)
1612 			goto out_free_iclog;
1613 
1614 		*iclogp = iclog;
1615 		iclog->ic_prev = prev_iclog;
1616 		prev_iclog = iclog;
1617 
1618 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1619 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1620 		if (!iclog->ic_data)
1621 			goto out_free_iclog;
1622 		head = &iclog->ic_header;
1623 		memset(head, 0, sizeof(xlog_rec_header_t));
1624 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1625 		head->h_version = cpu_to_be32(
1626 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1627 		head->h_size = cpu_to_be32(log->l_iclog_size);
1628 		/* new fields */
1629 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1630 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1631 
1632 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1633 		iclog->ic_state = XLOG_STATE_ACTIVE;
1634 		iclog->ic_log = log;
1635 		atomic_set(&iclog->ic_refcnt, 0);
1636 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1637 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1638 
1639 		init_waitqueue_head(&iclog->ic_force_wait);
1640 		init_waitqueue_head(&iclog->ic_write_wait);
1641 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1642 		sema_init(&iclog->ic_sema, 1);
1643 
1644 		iclogp = &iclog->ic_next;
1645 	}
1646 	*iclogp = log->l_iclog;			/* complete ring */
1647 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1648 
1649 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1650 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1651 				    WQ_HIGHPRI),
1652 			0, mp->m_super->s_id);
1653 	if (!log->l_ioend_workqueue)
1654 		goto out_free_iclog;
1655 
1656 	error = xlog_cil_init(log);
1657 	if (error)
1658 		goto out_destroy_workqueue;
1659 	return log;
1660 
1661 out_destroy_workqueue:
1662 	destroy_workqueue(log->l_ioend_workqueue);
1663 out_free_iclog:
1664 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1665 		prev_iclog = iclog->ic_next;
1666 		kmem_free(iclog->ic_data);
1667 		kmem_free(iclog);
1668 		if (prev_iclog == log->l_iclog)
1669 			break;
1670 	}
1671 out_free_log:
1672 	kmem_free(log);
1673 out:
1674 	return ERR_PTR(error);
1675 }	/* xlog_alloc_log */
1676 
1677 /*
1678  * Compute the LSN that we'd need to push the log tail towards in order to have
1679  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1680  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1681  * log free space already meets all three thresholds, this function returns
1682  * NULLCOMMITLSN.
1683  */
1684 xfs_lsn_t
1685 xlog_grant_push_threshold(
1686 	struct xlog	*log,
1687 	int		need_bytes)
1688 {
1689 	xfs_lsn_t	threshold_lsn = 0;
1690 	xfs_lsn_t	last_sync_lsn;
1691 	int		free_blocks;
1692 	int		free_bytes;
1693 	int		threshold_block;
1694 	int		threshold_cycle;
1695 	int		free_threshold;
1696 
1697 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1698 
1699 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1700 	free_blocks = BTOBBT(free_bytes);
1701 
1702 	/*
1703 	 * Set the threshold for the minimum number of free blocks in the
1704 	 * log to the maximum of what the caller needs, one quarter of the
1705 	 * log, and 256 blocks.
1706 	 */
1707 	free_threshold = BTOBB(need_bytes);
1708 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1709 	free_threshold = max(free_threshold, 256);
1710 	if (free_blocks >= free_threshold)
1711 		return NULLCOMMITLSN;
1712 
1713 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1714 						&threshold_block);
1715 	threshold_block += free_threshold;
1716 	if (threshold_block >= log->l_logBBsize) {
1717 		threshold_block -= log->l_logBBsize;
1718 		threshold_cycle += 1;
1719 	}
1720 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1721 					threshold_block);
1722 	/*
1723 	 * Don't pass in an lsn greater than the lsn of the last
1724 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1725 	 * so that it doesn't change between the compare and the set.
1726 	 */
1727 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1728 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1729 		threshold_lsn = last_sync_lsn;
1730 
1731 	return threshold_lsn;
1732 }
1733 
1734 /*
1735  * Push the tail of the log if we need to do so to maintain the free log space
1736  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1737  * policy which pushes on an lsn which is further along in the log once we
1738  * reach the high water mark.  In this manner, we would be creating a low water
1739  * mark.
1740  */
1741 STATIC void
1742 xlog_grant_push_ail(
1743 	struct xlog	*log,
1744 	int		need_bytes)
1745 {
1746 	xfs_lsn_t	threshold_lsn;
1747 
1748 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1749 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1750 		return;
1751 
1752 	/*
1753 	 * Get the transaction layer to kick the dirty buffers out to
1754 	 * disk asynchronously. No point in trying to do this if
1755 	 * the filesystem is shutting down.
1756 	 */
1757 	xfs_ail_push(log->l_ailp, threshold_lsn);
1758 }
1759 
1760 /*
1761  * Stamp cycle number in every block
1762  */
1763 STATIC void
1764 xlog_pack_data(
1765 	struct xlog		*log,
1766 	struct xlog_in_core	*iclog,
1767 	int			roundoff)
1768 {
1769 	int			i, j, k;
1770 	int			size = iclog->ic_offset + roundoff;
1771 	__be32			cycle_lsn;
1772 	char			*dp;
1773 
1774 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1775 
1776 	dp = iclog->ic_datap;
1777 	for (i = 0; i < BTOBB(size); i++) {
1778 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1779 			break;
1780 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1781 		*(__be32 *)dp = cycle_lsn;
1782 		dp += BBSIZE;
1783 	}
1784 
1785 	if (xfs_has_logv2(log->l_mp)) {
1786 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1787 
1788 		for ( ; i < BTOBB(size); i++) {
1789 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1790 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1791 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1792 			*(__be32 *)dp = cycle_lsn;
1793 			dp += BBSIZE;
1794 		}
1795 
1796 		for (i = 1; i < log->l_iclog_heads; i++)
1797 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1798 	}
1799 }
1800 
1801 /*
1802  * Calculate the checksum for a log buffer.
1803  *
1804  * This is a little more complicated than it should be because the various
1805  * headers and the actual data are non-contiguous.
1806  */
1807 __le32
1808 xlog_cksum(
1809 	struct xlog		*log,
1810 	struct xlog_rec_header	*rhead,
1811 	char			*dp,
1812 	int			size)
1813 {
1814 	uint32_t		crc;
1815 
1816 	/* first generate the crc for the record header ... */
1817 	crc = xfs_start_cksum_update((char *)rhead,
1818 			      sizeof(struct xlog_rec_header),
1819 			      offsetof(struct xlog_rec_header, h_crc));
1820 
1821 	/* ... then for additional cycle data for v2 logs ... */
1822 	if (xfs_has_logv2(log->l_mp)) {
1823 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1824 		int		i;
1825 		int		xheads;
1826 
1827 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1828 
1829 		for (i = 1; i < xheads; i++) {
1830 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1831 				     sizeof(struct xlog_rec_ext_header));
1832 		}
1833 	}
1834 
1835 	/* ... and finally for the payload */
1836 	crc = crc32c(crc, dp, size);
1837 
1838 	return xfs_end_cksum(crc);
1839 }
1840 
1841 static void
1842 xlog_bio_end_io(
1843 	struct bio		*bio)
1844 {
1845 	struct xlog_in_core	*iclog = bio->bi_private;
1846 
1847 	queue_work(iclog->ic_log->l_ioend_workqueue,
1848 		   &iclog->ic_end_io_work);
1849 }
1850 
1851 static int
1852 xlog_map_iclog_data(
1853 	struct bio		*bio,
1854 	void			*data,
1855 	size_t			count)
1856 {
1857 	do {
1858 		struct page	*page = kmem_to_page(data);
1859 		unsigned int	off = offset_in_page(data);
1860 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1861 
1862 		if (bio_add_page(bio, page, len, off) != len)
1863 			return -EIO;
1864 
1865 		data += len;
1866 		count -= len;
1867 	} while (count);
1868 
1869 	return 0;
1870 }
1871 
1872 STATIC void
1873 xlog_write_iclog(
1874 	struct xlog		*log,
1875 	struct xlog_in_core	*iclog,
1876 	uint64_t		bno,
1877 	unsigned int		count)
1878 {
1879 	ASSERT(bno < log->l_logBBsize);
1880 	trace_xlog_iclog_write(iclog, _RET_IP_);
1881 
1882 	/*
1883 	 * We lock the iclogbufs here so that we can serialise against I/O
1884 	 * completion during unmount.  We might be processing a shutdown
1885 	 * triggered during unmount, and that can occur asynchronously to the
1886 	 * unmount thread, and hence we need to ensure that completes before
1887 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1888 	 * across the log IO to archieve that.
1889 	 */
1890 	down(&iclog->ic_sema);
1891 	if (xlog_is_shutdown(log)) {
1892 		/*
1893 		 * It would seem logical to return EIO here, but we rely on
1894 		 * the log state machine to propagate I/O errors instead of
1895 		 * doing it here.  We kick of the state machine and unlock
1896 		 * the buffer manually, the code needs to be kept in sync
1897 		 * with the I/O completion path.
1898 		 */
1899 		xlog_state_done_syncing(iclog);
1900 		up(&iclog->ic_sema);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1906 	 * IOs coming immediately after this one. This prevents the block layer
1907 	 * writeback throttle from throttling log writes behind background
1908 	 * metadata writeback and causing priority inversions.
1909 	 */
1910 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1911 		 howmany(count, PAGE_SIZE),
1912 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1913 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1914 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1915 	iclog->ic_bio.bi_private = iclog;
1916 
1917 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1918 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1919 		/*
1920 		 * For external log devices, we also need to flush the data
1921 		 * device cache first to ensure all metadata writeback covered
1922 		 * by the LSN in this iclog is on stable storage. This is slow,
1923 		 * but it *must* complete before we issue the external log IO.
1924 		 */
1925 		if (log->l_targ != log->l_mp->m_ddev_targp)
1926 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1927 	}
1928 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1929 		iclog->ic_bio.bi_opf |= REQ_FUA;
1930 
1931 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1932 
1933 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1934 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1935 		return;
1936 	}
1937 	if (is_vmalloc_addr(iclog->ic_data))
1938 		flush_kernel_vmap_range(iclog->ic_data, count);
1939 
1940 	/*
1941 	 * If this log buffer would straddle the end of the log we will have
1942 	 * to split it up into two bios, so that we can continue at the start.
1943 	 */
1944 	if (bno + BTOBB(count) > log->l_logBBsize) {
1945 		struct bio *split;
1946 
1947 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1948 				  GFP_NOIO, &fs_bio_set);
1949 		bio_chain(split, &iclog->ic_bio);
1950 		submit_bio(split);
1951 
1952 		/* restart at logical offset zero for the remainder */
1953 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1954 	}
1955 
1956 	submit_bio(&iclog->ic_bio);
1957 }
1958 
1959 /*
1960  * We need to bump cycle number for the part of the iclog that is
1961  * written to the start of the log. Watch out for the header magic
1962  * number case, though.
1963  */
1964 static void
1965 xlog_split_iclog(
1966 	struct xlog		*log,
1967 	void			*data,
1968 	uint64_t		bno,
1969 	unsigned int		count)
1970 {
1971 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1972 	unsigned int		i;
1973 
1974 	for (i = split_offset; i < count; i += BBSIZE) {
1975 		uint32_t cycle = get_unaligned_be32(data + i);
1976 
1977 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1978 			cycle++;
1979 		put_unaligned_be32(cycle, data + i);
1980 	}
1981 }
1982 
1983 static int
1984 xlog_calc_iclog_size(
1985 	struct xlog		*log,
1986 	struct xlog_in_core	*iclog,
1987 	uint32_t		*roundoff)
1988 {
1989 	uint32_t		count_init, count;
1990 
1991 	/* Add for LR header */
1992 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1993 	count = roundup(count_init, log->l_iclog_roundoff);
1994 
1995 	*roundoff = count - count_init;
1996 
1997 	ASSERT(count >= count_init);
1998 	ASSERT(*roundoff < log->l_iclog_roundoff);
1999 	return count;
2000 }
2001 
2002 /*
2003  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2004  * fashion.  Previously, we should have moved the current iclog
2005  * ptr in the log to point to the next available iclog.  This allows further
2006  * write to continue while this code syncs out an iclog ready to go.
2007  * Before an in-core log can be written out, the data section must be scanned
2008  * to save away the 1st word of each BBSIZE block into the header.  We replace
2009  * it with the current cycle count.  Each BBSIZE block is tagged with the
2010  * cycle count because there in an implicit assumption that drives will
2011  * guarantee that entire 512 byte blocks get written at once.  In other words,
2012  * we can't have part of a 512 byte block written and part not written.  By
2013  * tagging each block, we will know which blocks are valid when recovering
2014  * after an unclean shutdown.
2015  *
2016  * This routine is single threaded on the iclog.  No other thread can be in
2017  * this routine with the same iclog.  Changing contents of iclog can there-
2018  * fore be done without grabbing the state machine lock.  Updating the global
2019  * log will require grabbing the lock though.
2020  *
2021  * The entire log manager uses a logical block numbering scheme.  Only
2022  * xlog_write_iclog knows about the fact that the log may not start with
2023  * block zero on a given device.
2024  */
2025 STATIC void
2026 xlog_sync(
2027 	struct xlog		*log,
2028 	struct xlog_in_core	*iclog)
2029 {
2030 	unsigned int		count;		/* byte count of bwrite */
2031 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2032 	uint64_t		bno;
2033 	unsigned int		size;
2034 
2035 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2036 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2037 
2038 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2039 
2040 	/* move grant heads by roundoff in sync */
2041 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2042 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2043 
2044 	/* put cycle number in every block */
2045 	xlog_pack_data(log, iclog, roundoff);
2046 
2047 	/* real byte length */
2048 	size = iclog->ic_offset;
2049 	if (xfs_has_logv2(log->l_mp))
2050 		size += roundoff;
2051 	iclog->ic_header.h_len = cpu_to_be32(size);
2052 
2053 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2054 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2055 
2056 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2057 
2058 	/* Do we need to split this write into 2 parts? */
2059 	if (bno + BTOBB(count) > log->l_logBBsize)
2060 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2061 
2062 	/* calculcate the checksum */
2063 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2064 					    iclog->ic_datap, size);
2065 	/*
2066 	 * Intentionally corrupt the log record CRC based on the error injection
2067 	 * frequency, if defined. This facilitates testing log recovery in the
2068 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2069 	 * write on I/O completion and shutdown the fs. The subsequent mount
2070 	 * detects the bad CRC and attempts to recover.
2071 	 */
2072 #ifdef DEBUG
2073 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2074 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2075 		iclog->ic_fail_crc = true;
2076 		xfs_warn(log->l_mp,
2077 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2078 			 be64_to_cpu(iclog->ic_header.h_lsn));
2079 	}
2080 #endif
2081 	xlog_verify_iclog(log, iclog, count);
2082 	xlog_write_iclog(log, iclog, bno, count);
2083 }
2084 
2085 /*
2086  * Deallocate a log structure
2087  */
2088 STATIC void
2089 xlog_dealloc_log(
2090 	struct xlog	*log)
2091 {
2092 	xlog_in_core_t	*iclog, *next_iclog;
2093 	int		i;
2094 
2095 	xlog_cil_destroy(log);
2096 
2097 	/*
2098 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2099 	 * is done before we tear down these buffers.
2100 	 */
2101 	iclog = log->l_iclog;
2102 	for (i = 0; i < log->l_iclog_bufs; i++) {
2103 		down(&iclog->ic_sema);
2104 		up(&iclog->ic_sema);
2105 		iclog = iclog->ic_next;
2106 	}
2107 
2108 	iclog = log->l_iclog;
2109 	for (i = 0; i < log->l_iclog_bufs; i++) {
2110 		next_iclog = iclog->ic_next;
2111 		kmem_free(iclog->ic_data);
2112 		kmem_free(iclog);
2113 		iclog = next_iclog;
2114 	}
2115 
2116 	log->l_mp->m_log = NULL;
2117 	destroy_workqueue(log->l_ioend_workqueue);
2118 	kmem_free(log);
2119 }
2120 
2121 /*
2122  * Update counters atomically now that memcpy is done.
2123  */
2124 static inline void
2125 xlog_state_finish_copy(
2126 	struct xlog		*log,
2127 	struct xlog_in_core	*iclog,
2128 	int			record_cnt,
2129 	int			copy_bytes)
2130 {
2131 	lockdep_assert_held(&log->l_icloglock);
2132 
2133 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2134 	iclog->ic_offset += copy_bytes;
2135 }
2136 
2137 /*
2138  * print out info relating to regions written which consume
2139  * the reservation
2140  */
2141 void
2142 xlog_print_tic_res(
2143 	struct xfs_mount	*mp,
2144 	struct xlog_ticket	*ticket)
2145 {
2146 	xfs_warn(mp, "ticket reservation summary:");
2147 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2148 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2149 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2150 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2151 }
2152 
2153 /*
2154  * Print a summary of the transaction.
2155  */
2156 void
2157 xlog_print_trans(
2158 	struct xfs_trans	*tp)
2159 {
2160 	struct xfs_mount	*mp = tp->t_mountp;
2161 	struct xfs_log_item	*lip;
2162 
2163 	/* dump core transaction and ticket info */
2164 	xfs_warn(mp, "transaction summary:");
2165 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2166 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2167 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2168 
2169 	xlog_print_tic_res(mp, tp->t_ticket);
2170 
2171 	/* dump each log item */
2172 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2173 		struct xfs_log_vec	*lv = lip->li_lv;
2174 		struct xfs_log_iovec	*vec;
2175 		int			i;
2176 
2177 		xfs_warn(mp, "log item: ");
2178 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2179 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2180 		if (!lv)
2181 			continue;
2182 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2183 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2184 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2185 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2186 
2187 		/* dump each iovec for the log item */
2188 		vec = lv->lv_iovecp;
2189 		for (i = 0; i < lv->lv_niovecs; i++) {
2190 			int dumplen = min(vec->i_len, 32);
2191 
2192 			xfs_warn(mp, "  iovec[%d]", i);
2193 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2194 			xfs_warn(mp, "    len	= %d", vec->i_len);
2195 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2196 			xfs_hex_dump(vec->i_addr, dumplen);
2197 
2198 			vec++;
2199 		}
2200 	}
2201 }
2202 
2203 static inline void
2204 xlog_write_iovec(
2205 	struct xlog_in_core	*iclog,
2206 	uint32_t		*log_offset,
2207 	void			*data,
2208 	uint32_t		write_len,
2209 	int			*bytes_left,
2210 	uint32_t		*record_cnt,
2211 	uint32_t		*data_cnt)
2212 {
2213 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2214 	ASSERT(*log_offset % sizeof(int32_t) == 0);
2215 	ASSERT(write_len % sizeof(int32_t) == 0);
2216 
2217 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2218 	*log_offset += write_len;
2219 	*bytes_left -= write_len;
2220 	(*record_cnt)++;
2221 	*data_cnt += write_len;
2222 }
2223 
2224 /*
2225  * Write log vectors into a single iclog which is guaranteed by the caller
2226  * to have enough space to write the entire log vector into.
2227  */
2228 static void
2229 xlog_write_full(
2230 	struct xfs_log_vec	*lv,
2231 	struct xlog_ticket	*ticket,
2232 	struct xlog_in_core	*iclog,
2233 	uint32_t		*log_offset,
2234 	uint32_t		*len,
2235 	uint32_t		*record_cnt,
2236 	uint32_t		*data_cnt)
2237 {
2238 	int			index;
2239 
2240 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2241 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2242 
2243 	/*
2244 	 * Ordered log vectors have no regions to write so this
2245 	 * loop will naturally skip them.
2246 	 */
2247 	for (index = 0; index < lv->lv_niovecs; index++) {
2248 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2249 		struct xlog_op_header	*ophdr = reg->i_addr;
2250 
2251 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2252 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2253 				reg->i_len, len, record_cnt, data_cnt);
2254 	}
2255 }
2256 
2257 static int
2258 xlog_write_get_more_iclog_space(
2259 	struct xlog_ticket	*ticket,
2260 	struct xlog_in_core	**iclogp,
2261 	uint32_t		*log_offset,
2262 	uint32_t		len,
2263 	uint32_t		*record_cnt,
2264 	uint32_t		*data_cnt)
2265 {
2266 	struct xlog_in_core	*iclog = *iclogp;
2267 	struct xlog		*log = iclog->ic_log;
2268 	int			error;
2269 
2270 	spin_lock(&log->l_icloglock);
2271 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2272 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2273 	error = xlog_state_release_iclog(log, iclog);
2274 	spin_unlock(&log->l_icloglock);
2275 	if (error)
2276 		return error;
2277 
2278 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2279 					log_offset);
2280 	if (error)
2281 		return error;
2282 	*record_cnt = 0;
2283 	*data_cnt = 0;
2284 	*iclogp = iclog;
2285 	return 0;
2286 }
2287 
2288 /*
2289  * Write log vectors into a single iclog which is smaller than the current chain
2290  * length. We write until we cannot fit a full record into the remaining space
2291  * and then stop. We return the log vector that is to be written that cannot
2292  * wholly fit in the iclog.
2293  */
2294 static int
2295 xlog_write_partial(
2296 	struct xfs_log_vec	*lv,
2297 	struct xlog_ticket	*ticket,
2298 	struct xlog_in_core	**iclogp,
2299 	uint32_t		*log_offset,
2300 	uint32_t		*len,
2301 	uint32_t		*record_cnt,
2302 	uint32_t		*data_cnt)
2303 {
2304 	struct xlog_in_core	*iclog = *iclogp;
2305 	struct xlog_op_header	*ophdr;
2306 	int			index = 0;
2307 	uint32_t		rlen;
2308 	int			error;
2309 
2310 	/* walk the logvec, copying until we run out of space in the iclog */
2311 	for (index = 0; index < lv->lv_niovecs; index++) {
2312 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2313 		uint32_t		reg_offset = 0;
2314 
2315 		/*
2316 		 * The first region of a continuation must have a non-zero
2317 		 * length otherwise log recovery will just skip over it and
2318 		 * start recovering from the next opheader it finds. Because we
2319 		 * mark the next opheader as a continuation, recovery will then
2320 		 * incorrectly add the continuation to the previous region and
2321 		 * that breaks stuff.
2322 		 *
2323 		 * Hence if there isn't space for region data after the
2324 		 * opheader, then we need to start afresh with a new iclog.
2325 		 */
2326 		if (iclog->ic_size - *log_offset <=
2327 					sizeof(struct xlog_op_header)) {
2328 			error = xlog_write_get_more_iclog_space(ticket,
2329 					&iclog, log_offset, *len, record_cnt,
2330 					data_cnt);
2331 			if (error)
2332 				return error;
2333 		}
2334 
2335 		ophdr = reg->i_addr;
2336 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2337 
2338 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2339 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2340 		if (rlen != reg->i_len)
2341 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2342 
2343 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2344 				rlen, len, record_cnt, data_cnt);
2345 
2346 		/* If we wrote the whole region, move to the next. */
2347 		if (rlen == reg->i_len)
2348 			continue;
2349 
2350 		/*
2351 		 * We now have a partially written iovec, but it can span
2352 		 * multiple iclogs so we loop here. First we release the iclog
2353 		 * we currently have, then we get a new iclog and add a new
2354 		 * opheader. Then we continue copying from where we were until
2355 		 * we either complete the iovec or fill the iclog. If we
2356 		 * complete the iovec, then we increment the index and go right
2357 		 * back to the top of the outer loop. if we fill the iclog, we
2358 		 * run the inner loop again.
2359 		 *
2360 		 * This is complicated by the tail of a region using all the
2361 		 * space in an iclog and hence requiring us to release the iclog
2362 		 * and get a new one before returning to the outer loop. We must
2363 		 * always guarantee that we exit this inner loop with at least
2364 		 * space for log transaction opheaders left in the current
2365 		 * iclog, hence we cannot just terminate the loop at the end
2366 		 * of the of the continuation. So we loop while there is no
2367 		 * space left in the current iclog, and check for the end of the
2368 		 * continuation after getting a new iclog.
2369 		 */
2370 		do {
2371 			/*
2372 			 * Ensure we include the continuation opheader in the
2373 			 * space we need in the new iclog by adding that size
2374 			 * to the length we require. This continuation opheader
2375 			 * needs to be accounted to the ticket as the space it
2376 			 * consumes hasn't been accounted to the lv we are
2377 			 * writing.
2378 			 */
2379 			error = xlog_write_get_more_iclog_space(ticket,
2380 					&iclog, log_offset,
2381 					*len + sizeof(struct xlog_op_header),
2382 					record_cnt, data_cnt);
2383 			if (error)
2384 				return error;
2385 
2386 			ophdr = iclog->ic_datap + *log_offset;
2387 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2388 			ophdr->oh_clientid = XFS_TRANSACTION;
2389 			ophdr->oh_res2 = 0;
2390 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2391 
2392 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2393 			*log_offset += sizeof(struct xlog_op_header);
2394 			*data_cnt += sizeof(struct xlog_op_header);
2395 
2396 			/*
2397 			 * If rlen fits in the iclog, then end the region
2398 			 * continuation. Otherwise we're going around again.
2399 			 */
2400 			reg_offset += rlen;
2401 			rlen = reg->i_len - reg_offset;
2402 			if (rlen <= iclog->ic_size - *log_offset)
2403 				ophdr->oh_flags |= XLOG_END_TRANS;
2404 			else
2405 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2406 
2407 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2408 			ophdr->oh_len = cpu_to_be32(rlen);
2409 
2410 			xlog_write_iovec(iclog, log_offset,
2411 					reg->i_addr + reg_offset,
2412 					rlen, len, record_cnt, data_cnt);
2413 
2414 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2415 	}
2416 
2417 	/*
2418 	 * No more iovecs remain in this logvec so return the next log vec to
2419 	 * the caller so it can go back to fast path copying.
2420 	 */
2421 	*iclogp = iclog;
2422 	return 0;
2423 }
2424 
2425 /*
2426  * Write some region out to in-core log
2427  *
2428  * This will be called when writing externally provided regions or when
2429  * writing out a commit record for a given transaction.
2430  *
2431  * General algorithm:
2432  *	1. Find total length of this write.  This may include adding to the
2433  *		lengths passed in.
2434  *	2. Check whether we violate the tickets reservation.
2435  *	3. While writing to this iclog
2436  *	    A. Reserve as much space in this iclog as can get
2437  *	    B. If this is first write, save away start lsn
2438  *	    C. While writing this region:
2439  *		1. If first write of transaction, write start record
2440  *		2. Write log operation header (header per region)
2441  *		3. Find out if we can fit entire region into this iclog
2442  *		4. Potentially, verify destination memcpy ptr
2443  *		5. Memcpy (partial) region
2444  *		6. If partial copy, release iclog; otherwise, continue
2445  *			copying more regions into current iclog
2446  *	4. Mark want sync bit (in simulation mode)
2447  *	5. Release iclog for potential flush to on-disk log.
2448  *
2449  * ERRORS:
2450  * 1.	Panic if reservation is overrun.  This should never happen since
2451  *	reservation amounts are generated internal to the filesystem.
2452  * NOTES:
2453  * 1. Tickets are single threaded data structures.
2454  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2455  *	syncing routine.  When a single log_write region needs to span
2456  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2457  *	on all log operation writes which don't contain the end of the
2458  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2459  *	operation which contains the end of the continued log_write region.
2460  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2461  *	we don't really know exactly how much space will be used.  As a result,
2462  *	we don't update ic_offset until the end when we know exactly how many
2463  *	bytes have been written out.
2464  */
2465 int
2466 xlog_write(
2467 	struct xlog		*log,
2468 	struct xfs_cil_ctx	*ctx,
2469 	struct xfs_log_vec	*log_vector,
2470 	struct xlog_ticket	*ticket,
2471 	uint32_t		len)
2472 
2473 {
2474 	struct xlog_in_core	*iclog = NULL;
2475 	struct xfs_log_vec	*lv = log_vector;
2476 	uint32_t		record_cnt = 0;
2477 	uint32_t		data_cnt = 0;
2478 	int			error = 0;
2479 	int			log_offset;
2480 
2481 	if (ticket->t_curr_res < 0) {
2482 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2483 		     "ctx ticket reservation ran out. Need to up reservation");
2484 		xlog_print_tic_res(log->l_mp, ticket);
2485 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2486 	}
2487 
2488 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2489 					   &log_offset);
2490 	if (error)
2491 		return error;
2492 
2493 	ASSERT(log_offset <= iclog->ic_size - 1);
2494 
2495 	/*
2496 	 * If we have a context pointer, pass it the first iclog we are
2497 	 * writing to so it can record state needed for iclog write
2498 	 * ordering.
2499 	 */
2500 	if (ctx)
2501 		xlog_cil_set_ctx_write_state(ctx, iclog);
2502 
2503 	while (lv) {
2504 		/*
2505 		 * If the entire log vec does not fit in the iclog, punt it to
2506 		 * the partial copy loop which can handle this case.
2507 		 */
2508 		if (lv->lv_niovecs &&
2509 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2510 			error = xlog_write_partial(lv, ticket, &iclog,
2511 					&log_offset, &len, &record_cnt,
2512 					&data_cnt);
2513 			if (error) {
2514 				/*
2515 				 * We have no iclog to release, so just return
2516 				 * the error immediately.
2517 				 */
2518 				return error;
2519 			}
2520 		} else {
2521 			xlog_write_full(lv, ticket, iclog, &log_offset,
2522 					 &len, &record_cnt, &data_cnt);
2523 		}
2524 		lv = lv->lv_next;
2525 	}
2526 	ASSERT(len == 0);
2527 
2528 	/*
2529 	 * We've already been guaranteed that the last writes will fit inside
2530 	 * the current iclog, and hence it will already have the space used by
2531 	 * those writes accounted to it. Hence we do not need to update the
2532 	 * iclog with the number of bytes written here.
2533 	 */
2534 	spin_lock(&log->l_icloglock);
2535 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2536 	error = xlog_state_release_iclog(log, iclog);
2537 	spin_unlock(&log->l_icloglock);
2538 
2539 	return error;
2540 }
2541 
2542 static void
2543 xlog_state_activate_iclog(
2544 	struct xlog_in_core	*iclog,
2545 	int			*iclogs_changed)
2546 {
2547 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2548 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2549 
2550 	/*
2551 	 * If the number of ops in this iclog indicate it just contains the
2552 	 * dummy transaction, we can change state into IDLE (the second time
2553 	 * around). Otherwise we should change the state into NEED a dummy.
2554 	 * We don't need to cover the dummy.
2555 	 */
2556 	if (*iclogs_changed == 0 &&
2557 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2558 		*iclogs_changed = 1;
2559 	} else {
2560 		/*
2561 		 * We have two dirty iclogs so start over.  This could also be
2562 		 * num of ops indicating this is not the dummy going out.
2563 		 */
2564 		*iclogs_changed = 2;
2565 	}
2566 
2567 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2568 	iclog->ic_offset = 0;
2569 	iclog->ic_header.h_num_logops = 0;
2570 	memset(iclog->ic_header.h_cycle_data, 0,
2571 		sizeof(iclog->ic_header.h_cycle_data));
2572 	iclog->ic_header.h_lsn = 0;
2573 	iclog->ic_header.h_tail_lsn = 0;
2574 }
2575 
2576 /*
2577  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2578  * ACTIVE after iclog I/O has completed.
2579  */
2580 static void
2581 xlog_state_activate_iclogs(
2582 	struct xlog		*log,
2583 	int			*iclogs_changed)
2584 {
2585 	struct xlog_in_core	*iclog = log->l_iclog;
2586 
2587 	do {
2588 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2589 			xlog_state_activate_iclog(iclog, iclogs_changed);
2590 		/*
2591 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2592 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2593 		 */
2594 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2595 			break;
2596 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2597 }
2598 
2599 static int
2600 xlog_covered_state(
2601 	int			prev_state,
2602 	int			iclogs_changed)
2603 {
2604 	/*
2605 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2606 	 * wrote the first covering record (DONE). We go to IDLE if we just
2607 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2608 	 * non-covering write occurs.
2609 	 */
2610 	switch (prev_state) {
2611 	case XLOG_STATE_COVER_IDLE:
2612 		if (iclogs_changed == 1)
2613 			return XLOG_STATE_COVER_IDLE;
2614 		fallthrough;
2615 	case XLOG_STATE_COVER_NEED:
2616 	case XLOG_STATE_COVER_NEED2:
2617 		break;
2618 	case XLOG_STATE_COVER_DONE:
2619 		if (iclogs_changed == 1)
2620 			return XLOG_STATE_COVER_NEED2;
2621 		break;
2622 	case XLOG_STATE_COVER_DONE2:
2623 		if (iclogs_changed == 1)
2624 			return XLOG_STATE_COVER_IDLE;
2625 		break;
2626 	default:
2627 		ASSERT(0);
2628 	}
2629 
2630 	return XLOG_STATE_COVER_NEED;
2631 }
2632 
2633 STATIC void
2634 xlog_state_clean_iclog(
2635 	struct xlog		*log,
2636 	struct xlog_in_core	*dirty_iclog)
2637 {
2638 	int			iclogs_changed = 0;
2639 
2640 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2641 
2642 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2643 
2644 	xlog_state_activate_iclogs(log, &iclogs_changed);
2645 	wake_up_all(&dirty_iclog->ic_force_wait);
2646 
2647 	if (iclogs_changed) {
2648 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2649 				iclogs_changed);
2650 	}
2651 }
2652 
2653 STATIC xfs_lsn_t
2654 xlog_get_lowest_lsn(
2655 	struct xlog		*log)
2656 {
2657 	struct xlog_in_core	*iclog = log->l_iclog;
2658 	xfs_lsn_t		lowest_lsn = 0, lsn;
2659 
2660 	do {
2661 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2662 		    iclog->ic_state == XLOG_STATE_DIRTY)
2663 			continue;
2664 
2665 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2666 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2667 			lowest_lsn = lsn;
2668 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2669 
2670 	return lowest_lsn;
2671 }
2672 
2673 /*
2674  * Completion of a iclog IO does not imply that a transaction has completed, as
2675  * transactions can be large enough to span many iclogs. We cannot change the
2676  * tail of the log half way through a transaction as this may be the only
2677  * transaction in the log and moving the tail to point to the middle of it
2678  * will prevent recovery from finding the start of the transaction. Hence we
2679  * should only update the last_sync_lsn if this iclog contains transaction
2680  * completion callbacks on it.
2681  *
2682  * We have to do this before we drop the icloglock to ensure we are the only one
2683  * that can update it.
2684  *
2685  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2686  * the reservation grant head pushing. This is due to the fact that the push
2687  * target is bound by the current last_sync_lsn value. Hence if we have a large
2688  * amount of log space bound up in this committing transaction then the
2689  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2690  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2691  * should push the AIL to ensure the push target (and hence the grant head) is
2692  * no longer bound by the old log head location and can move forwards and make
2693  * progress again.
2694  */
2695 static void
2696 xlog_state_set_callback(
2697 	struct xlog		*log,
2698 	struct xlog_in_core	*iclog,
2699 	xfs_lsn_t		header_lsn)
2700 {
2701 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2702 	iclog->ic_state = XLOG_STATE_CALLBACK;
2703 
2704 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2705 			   header_lsn) <= 0);
2706 
2707 	if (list_empty_careful(&iclog->ic_callbacks))
2708 		return;
2709 
2710 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2711 	xlog_grant_push_ail(log, 0);
2712 }
2713 
2714 /*
2715  * Return true if we need to stop processing, false to continue to the next
2716  * iclog. The caller will need to run callbacks if the iclog is returned in the
2717  * XLOG_STATE_CALLBACK state.
2718  */
2719 static bool
2720 xlog_state_iodone_process_iclog(
2721 	struct xlog		*log,
2722 	struct xlog_in_core	*iclog)
2723 {
2724 	xfs_lsn_t		lowest_lsn;
2725 	xfs_lsn_t		header_lsn;
2726 
2727 	switch (iclog->ic_state) {
2728 	case XLOG_STATE_ACTIVE:
2729 	case XLOG_STATE_DIRTY:
2730 		/*
2731 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2732 		 */
2733 		return false;
2734 	case XLOG_STATE_DONE_SYNC:
2735 		/*
2736 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2737 		 * one more check here to see if we have chased our tail around.
2738 		 * If this is not the lowest lsn iclog, then we will leave it
2739 		 * for another completion to process.
2740 		 */
2741 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2742 		lowest_lsn = xlog_get_lowest_lsn(log);
2743 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2744 			return false;
2745 		xlog_state_set_callback(log, iclog, header_lsn);
2746 		return false;
2747 	default:
2748 		/*
2749 		 * Can only perform callbacks in order.  Since this iclog is not
2750 		 * in the DONE_SYNC state, we skip the rest and just try to
2751 		 * clean up.
2752 		 */
2753 		return true;
2754 	}
2755 }
2756 
2757 /*
2758  * Loop over all the iclogs, running attached callbacks on them. Return true if
2759  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2760  * to handle transient shutdown state here at all because
2761  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2762  * cleanup of the callbacks.
2763  */
2764 static bool
2765 xlog_state_do_iclog_callbacks(
2766 	struct xlog		*log)
2767 		__releases(&log->l_icloglock)
2768 		__acquires(&log->l_icloglock)
2769 {
2770 	struct xlog_in_core	*first_iclog = log->l_iclog;
2771 	struct xlog_in_core	*iclog = first_iclog;
2772 	bool			ran_callback = false;
2773 
2774 	do {
2775 		LIST_HEAD(cb_list);
2776 
2777 		if (xlog_state_iodone_process_iclog(log, iclog))
2778 			break;
2779 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2780 			iclog = iclog->ic_next;
2781 			continue;
2782 		}
2783 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2784 		spin_unlock(&log->l_icloglock);
2785 
2786 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2787 		xlog_cil_process_committed(&cb_list);
2788 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2789 		ran_callback = true;
2790 
2791 		spin_lock(&log->l_icloglock);
2792 		xlog_state_clean_iclog(log, iclog);
2793 		iclog = iclog->ic_next;
2794 	} while (iclog != first_iclog);
2795 
2796 	return ran_callback;
2797 }
2798 
2799 
2800 /*
2801  * Loop running iclog completion callbacks until there are no more iclogs in a
2802  * state that can run callbacks.
2803  */
2804 STATIC void
2805 xlog_state_do_callback(
2806 	struct xlog		*log)
2807 {
2808 	int			flushcnt = 0;
2809 	int			repeats = 0;
2810 
2811 	spin_lock(&log->l_icloglock);
2812 	while (xlog_state_do_iclog_callbacks(log)) {
2813 		if (xlog_is_shutdown(log))
2814 			break;
2815 
2816 		if (++repeats > 5000) {
2817 			flushcnt += repeats;
2818 			repeats = 0;
2819 			xfs_warn(log->l_mp,
2820 				"%s: possible infinite loop (%d iterations)",
2821 				__func__, flushcnt);
2822 		}
2823 	}
2824 
2825 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2826 		wake_up_all(&log->l_flush_wait);
2827 
2828 	spin_unlock(&log->l_icloglock);
2829 }
2830 
2831 
2832 /*
2833  * Finish transitioning this iclog to the dirty state.
2834  *
2835  * Callbacks could take time, so they are done outside the scope of the
2836  * global state machine log lock.
2837  */
2838 STATIC void
2839 xlog_state_done_syncing(
2840 	struct xlog_in_core	*iclog)
2841 {
2842 	struct xlog		*log = iclog->ic_log;
2843 
2844 	spin_lock(&log->l_icloglock);
2845 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2846 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2847 
2848 	/*
2849 	 * If we got an error, either on the first buffer, or in the case of
2850 	 * split log writes, on the second, we shut down the file system and
2851 	 * no iclogs should ever be attempted to be written to disk again.
2852 	 */
2853 	if (!xlog_is_shutdown(log)) {
2854 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2855 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2856 	}
2857 
2858 	/*
2859 	 * Someone could be sleeping prior to writing out the next
2860 	 * iclog buffer, we wake them all, one will get to do the
2861 	 * I/O, the others get to wait for the result.
2862 	 */
2863 	wake_up_all(&iclog->ic_write_wait);
2864 	spin_unlock(&log->l_icloglock);
2865 	xlog_state_do_callback(log);
2866 }
2867 
2868 /*
2869  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2870  * sleep.  We wait on the flush queue on the head iclog as that should be
2871  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2872  * we will wait here and all new writes will sleep until a sync completes.
2873  *
2874  * The in-core logs are used in a circular fashion. They are not used
2875  * out-of-order even when an iclog past the head is free.
2876  *
2877  * return:
2878  *	* log_offset where xlog_write() can start writing into the in-core
2879  *		log's data space.
2880  *	* in-core log pointer to which xlog_write() should write.
2881  *	* boolean indicating this is a continued write to an in-core log.
2882  *		If this is the last write, then the in-core log's offset field
2883  *		needs to be incremented, depending on the amount of data which
2884  *		is copied.
2885  */
2886 STATIC int
2887 xlog_state_get_iclog_space(
2888 	struct xlog		*log,
2889 	int			len,
2890 	struct xlog_in_core	**iclogp,
2891 	struct xlog_ticket	*ticket,
2892 	int			*logoffsetp)
2893 {
2894 	int		  log_offset;
2895 	xlog_rec_header_t *head;
2896 	xlog_in_core_t	  *iclog;
2897 
2898 restart:
2899 	spin_lock(&log->l_icloglock);
2900 	if (xlog_is_shutdown(log)) {
2901 		spin_unlock(&log->l_icloglock);
2902 		return -EIO;
2903 	}
2904 
2905 	iclog = log->l_iclog;
2906 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2907 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2908 
2909 		/* Wait for log writes to have flushed */
2910 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2911 		goto restart;
2912 	}
2913 
2914 	head = &iclog->ic_header;
2915 
2916 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2917 	log_offset = iclog->ic_offset;
2918 
2919 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2920 
2921 	/* On the 1st write to an iclog, figure out lsn.  This works
2922 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2923 	 * committing to.  If the offset is set, that's how many blocks
2924 	 * must be written.
2925 	 */
2926 	if (log_offset == 0) {
2927 		ticket->t_curr_res -= log->l_iclog_hsize;
2928 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2929 		head->h_lsn = cpu_to_be64(
2930 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2931 		ASSERT(log->l_curr_block >= 0);
2932 	}
2933 
2934 	/* If there is enough room to write everything, then do it.  Otherwise,
2935 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2936 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2937 	 * until you know exactly how many bytes get copied.  Therefore, wait
2938 	 * until later to update ic_offset.
2939 	 *
2940 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2941 	 * can fit into remaining data section.
2942 	 */
2943 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2944 		int		error = 0;
2945 
2946 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2947 
2948 		/*
2949 		 * If we are the only one writing to this iclog, sync it to
2950 		 * disk.  We need to do an atomic compare and decrement here to
2951 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2952 		 * xlog_state_release_iclog() when there is more than one
2953 		 * reference to the iclog.
2954 		 */
2955 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2956 			error = xlog_state_release_iclog(log, iclog);
2957 		spin_unlock(&log->l_icloglock);
2958 		if (error)
2959 			return error;
2960 		goto restart;
2961 	}
2962 
2963 	/* Do we have enough room to write the full amount in the remainder
2964 	 * of this iclog?  Or must we continue a write on the next iclog and
2965 	 * mark this iclog as completely taken?  In the case where we switch
2966 	 * iclogs (to mark it taken), this particular iclog will release/sync
2967 	 * to disk in xlog_write().
2968 	 */
2969 	if (len <= iclog->ic_size - iclog->ic_offset)
2970 		iclog->ic_offset += len;
2971 	else
2972 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2973 	*iclogp = iclog;
2974 
2975 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2976 	spin_unlock(&log->l_icloglock);
2977 
2978 	*logoffsetp = log_offset;
2979 	return 0;
2980 }
2981 
2982 /*
2983  * The first cnt-1 times a ticket goes through here we don't need to move the
2984  * grant write head because the permanent reservation has reserved cnt times the
2985  * unit amount.  Release part of current permanent unit reservation and reset
2986  * current reservation to be one units worth.  Also move grant reservation head
2987  * forward.
2988  */
2989 void
2990 xfs_log_ticket_regrant(
2991 	struct xlog		*log,
2992 	struct xlog_ticket	*ticket)
2993 {
2994 	trace_xfs_log_ticket_regrant(log, ticket);
2995 
2996 	if (ticket->t_cnt > 0)
2997 		ticket->t_cnt--;
2998 
2999 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3000 					ticket->t_curr_res);
3001 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3002 					ticket->t_curr_res);
3003 	ticket->t_curr_res = ticket->t_unit_res;
3004 
3005 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3006 
3007 	/* just return if we still have some of the pre-reserved space */
3008 	if (!ticket->t_cnt) {
3009 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3010 				     ticket->t_unit_res);
3011 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3012 
3013 		ticket->t_curr_res = ticket->t_unit_res;
3014 	}
3015 
3016 	xfs_log_ticket_put(ticket);
3017 }
3018 
3019 /*
3020  * Give back the space left from a reservation.
3021  *
3022  * All the information we need to make a correct determination of space left
3023  * is present.  For non-permanent reservations, things are quite easy.  The
3024  * count should have been decremented to zero.  We only need to deal with the
3025  * space remaining in the current reservation part of the ticket.  If the
3026  * ticket contains a permanent reservation, there may be left over space which
3027  * needs to be released.  A count of N means that N-1 refills of the current
3028  * reservation can be done before we need to ask for more space.  The first
3029  * one goes to fill up the first current reservation.  Once we run out of
3030  * space, the count will stay at zero and the only space remaining will be
3031  * in the current reservation field.
3032  */
3033 void
3034 xfs_log_ticket_ungrant(
3035 	struct xlog		*log,
3036 	struct xlog_ticket	*ticket)
3037 {
3038 	int			bytes;
3039 
3040 	trace_xfs_log_ticket_ungrant(log, ticket);
3041 
3042 	if (ticket->t_cnt > 0)
3043 		ticket->t_cnt--;
3044 
3045 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3046 
3047 	/*
3048 	 * If this is a permanent reservation ticket, we may be able to free
3049 	 * up more space based on the remaining count.
3050 	 */
3051 	bytes = ticket->t_curr_res;
3052 	if (ticket->t_cnt > 0) {
3053 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3054 		bytes += ticket->t_unit_res*ticket->t_cnt;
3055 	}
3056 
3057 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3058 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3059 
3060 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3061 
3062 	xfs_log_space_wake(log->l_mp);
3063 	xfs_log_ticket_put(ticket);
3064 }
3065 
3066 /*
3067  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3068  * the current iclog pointer to the next iclog in the ring.
3069  */
3070 void
3071 xlog_state_switch_iclogs(
3072 	struct xlog		*log,
3073 	struct xlog_in_core	*iclog,
3074 	int			eventual_size)
3075 {
3076 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3077 	assert_spin_locked(&log->l_icloglock);
3078 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3079 
3080 	if (!eventual_size)
3081 		eventual_size = iclog->ic_offset;
3082 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3083 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3084 	log->l_prev_block = log->l_curr_block;
3085 	log->l_prev_cycle = log->l_curr_cycle;
3086 
3087 	/* roll log?: ic_offset changed later */
3088 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3089 
3090 	/* Round up to next log-sunit */
3091 	if (log->l_iclog_roundoff > BBSIZE) {
3092 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3093 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3094 	}
3095 
3096 	if (log->l_curr_block >= log->l_logBBsize) {
3097 		/*
3098 		 * Rewind the current block before the cycle is bumped to make
3099 		 * sure that the combined LSN never transiently moves forward
3100 		 * when the log wraps to the next cycle. This is to support the
3101 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3102 		 * other cases should acquire l_icloglock.
3103 		 */
3104 		log->l_curr_block -= log->l_logBBsize;
3105 		ASSERT(log->l_curr_block >= 0);
3106 		smp_wmb();
3107 		log->l_curr_cycle++;
3108 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3109 			log->l_curr_cycle++;
3110 	}
3111 	ASSERT(iclog == log->l_iclog);
3112 	log->l_iclog = iclog->ic_next;
3113 }
3114 
3115 /*
3116  * Force the iclog to disk and check if the iclog has been completed before
3117  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3118  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3119  * If completion has already occurred, tell the caller so that it can avoid an
3120  * unnecessary wait on the iclog.
3121  */
3122 static int
3123 xlog_force_and_check_iclog(
3124 	struct xlog_in_core	*iclog,
3125 	bool			*completed)
3126 {
3127 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3128 	int			error;
3129 
3130 	*completed = false;
3131 	error = xlog_force_iclog(iclog);
3132 	if (error)
3133 		return error;
3134 
3135 	/*
3136 	 * If the iclog has already been completed and reused the header LSN
3137 	 * will have been rewritten by completion
3138 	 */
3139 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3140 		*completed = true;
3141 	return 0;
3142 }
3143 
3144 /*
3145  * Write out all data in the in-core log as of this exact moment in time.
3146  *
3147  * Data may be written to the in-core log during this call.  However,
3148  * we don't guarantee this data will be written out.  A change from past
3149  * implementation means this routine will *not* write out zero length LRs.
3150  *
3151  * Basically, we try and perform an intelligent scan of the in-core logs.
3152  * If we determine there is no flushable data, we just return.  There is no
3153  * flushable data if:
3154  *
3155  *	1. the current iclog is active and has no data; the previous iclog
3156  *		is in the active or dirty state.
3157  *	2. the current iclog is drity, and the previous iclog is in the
3158  *		active or dirty state.
3159  *
3160  * We may sleep if:
3161  *
3162  *	1. the current iclog is not in the active nor dirty state.
3163  *	2. the current iclog dirty, and the previous iclog is not in the
3164  *		active nor dirty state.
3165  *	3. the current iclog is active, and there is another thread writing
3166  *		to this particular iclog.
3167  *	4. a) the current iclog is active and has no other writers
3168  *	   b) when we return from flushing out this iclog, it is still
3169  *		not in the active nor dirty state.
3170  */
3171 int
3172 xfs_log_force(
3173 	struct xfs_mount	*mp,
3174 	uint			flags)
3175 {
3176 	struct xlog		*log = mp->m_log;
3177 	struct xlog_in_core	*iclog;
3178 
3179 	XFS_STATS_INC(mp, xs_log_force);
3180 	trace_xfs_log_force(mp, 0, _RET_IP_);
3181 
3182 	xlog_cil_force(log);
3183 
3184 	spin_lock(&log->l_icloglock);
3185 	if (xlog_is_shutdown(log))
3186 		goto out_error;
3187 
3188 	iclog = log->l_iclog;
3189 	trace_xlog_iclog_force(iclog, _RET_IP_);
3190 
3191 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3192 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3193 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3194 		/*
3195 		 * If the head is dirty or (active and empty), then we need to
3196 		 * look at the previous iclog.
3197 		 *
3198 		 * If the previous iclog is active or dirty we are done.  There
3199 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3200 		 * previous iclog and go to sleep.
3201 		 */
3202 		iclog = iclog->ic_prev;
3203 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3204 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3205 			/* We have exclusive access to this iclog. */
3206 			bool	completed;
3207 
3208 			if (xlog_force_and_check_iclog(iclog, &completed))
3209 				goto out_error;
3210 
3211 			if (completed)
3212 				goto out_unlock;
3213 		} else {
3214 			/*
3215 			 * Someone else is still writing to this iclog, so we
3216 			 * need to ensure that when they release the iclog it
3217 			 * gets synced immediately as we may be waiting on it.
3218 			 */
3219 			xlog_state_switch_iclogs(log, iclog, 0);
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * The iclog we are about to wait on may contain the checkpoint pushed
3225 	 * by the above xlog_cil_force() call, but it may not have been pushed
3226 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3227 	 * are flushed when this iclog is written.
3228 	 */
3229 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3230 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3231 
3232 	if (flags & XFS_LOG_SYNC)
3233 		return xlog_wait_on_iclog(iclog);
3234 out_unlock:
3235 	spin_unlock(&log->l_icloglock);
3236 	return 0;
3237 out_error:
3238 	spin_unlock(&log->l_icloglock);
3239 	return -EIO;
3240 }
3241 
3242 /*
3243  * Force the log to a specific LSN.
3244  *
3245  * If an iclog with that lsn can be found:
3246  *	If it is in the DIRTY state, just return.
3247  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3248  *		state and go to sleep or return.
3249  *	If it is in any other state, go to sleep or return.
3250  *
3251  * Synchronous forces are implemented with a wait queue.  All callers trying
3252  * to force a given lsn to disk must wait on the queue attached to the
3253  * specific in-core log.  When given in-core log finally completes its write
3254  * to disk, that thread will wake up all threads waiting on the queue.
3255  */
3256 static int
3257 xlog_force_lsn(
3258 	struct xlog		*log,
3259 	xfs_lsn_t		lsn,
3260 	uint			flags,
3261 	int			*log_flushed,
3262 	bool			already_slept)
3263 {
3264 	struct xlog_in_core	*iclog;
3265 	bool			completed;
3266 
3267 	spin_lock(&log->l_icloglock);
3268 	if (xlog_is_shutdown(log))
3269 		goto out_error;
3270 
3271 	iclog = log->l_iclog;
3272 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3273 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3274 		iclog = iclog->ic_next;
3275 		if (iclog == log->l_iclog)
3276 			goto out_unlock;
3277 	}
3278 
3279 	switch (iclog->ic_state) {
3280 	case XLOG_STATE_ACTIVE:
3281 		/*
3282 		 * We sleep here if we haven't already slept (e.g. this is the
3283 		 * first time we've looked at the correct iclog buf) and the
3284 		 * buffer before us is going to be sync'ed.  The reason for this
3285 		 * is that if we are doing sync transactions here, by waiting
3286 		 * for the previous I/O to complete, we can allow a few more
3287 		 * transactions into this iclog before we close it down.
3288 		 *
3289 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3290 		 * refcnt so we can release the log (which drops the ref count).
3291 		 * The state switch keeps new transaction commits from using
3292 		 * this buffer.  When the current commits finish writing into
3293 		 * the buffer, the refcount will drop to zero and the buffer
3294 		 * will go out then.
3295 		 */
3296 		if (!already_slept &&
3297 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3298 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3299 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3300 					&log->l_icloglock);
3301 			return -EAGAIN;
3302 		}
3303 		if (xlog_force_and_check_iclog(iclog, &completed))
3304 			goto out_error;
3305 		if (log_flushed)
3306 			*log_flushed = 1;
3307 		if (completed)
3308 			goto out_unlock;
3309 		break;
3310 	case XLOG_STATE_WANT_SYNC:
3311 		/*
3312 		 * This iclog may contain the checkpoint pushed by the
3313 		 * xlog_cil_force_seq() call, but there are other writers still
3314 		 * accessing it so it hasn't been pushed to disk yet. Like the
3315 		 * ACTIVE case above, we need to make sure caches are flushed
3316 		 * when this iclog is written.
3317 		 */
3318 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3319 		break;
3320 	default:
3321 		/*
3322 		 * The entire checkpoint was written by the CIL force and is on
3323 		 * its way to disk already. It will be stable when it
3324 		 * completes, so we don't need to manipulate caches here at all.
3325 		 * We just need to wait for completion if necessary.
3326 		 */
3327 		break;
3328 	}
3329 
3330 	if (flags & XFS_LOG_SYNC)
3331 		return xlog_wait_on_iclog(iclog);
3332 out_unlock:
3333 	spin_unlock(&log->l_icloglock);
3334 	return 0;
3335 out_error:
3336 	spin_unlock(&log->l_icloglock);
3337 	return -EIO;
3338 }
3339 
3340 /*
3341  * Force the log to a specific checkpoint sequence.
3342  *
3343  * First force the CIL so that all the required changes have been flushed to the
3344  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3345  * the iclog that needs to be flushed to stable storage. If the caller needs
3346  * a synchronous log force, we will wait on the iclog with the LSN returned by
3347  * xlog_cil_force_seq() to be completed.
3348  */
3349 int
3350 xfs_log_force_seq(
3351 	struct xfs_mount	*mp,
3352 	xfs_csn_t		seq,
3353 	uint			flags,
3354 	int			*log_flushed)
3355 {
3356 	struct xlog		*log = mp->m_log;
3357 	xfs_lsn_t		lsn;
3358 	int			ret;
3359 	ASSERT(seq != 0);
3360 
3361 	XFS_STATS_INC(mp, xs_log_force);
3362 	trace_xfs_log_force(mp, seq, _RET_IP_);
3363 
3364 	lsn = xlog_cil_force_seq(log, seq);
3365 	if (lsn == NULLCOMMITLSN)
3366 		return 0;
3367 
3368 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3369 	if (ret == -EAGAIN) {
3370 		XFS_STATS_INC(mp, xs_log_force_sleep);
3371 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3372 	}
3373 	return ret;
3374 }
3375 
3376 /*
3377  * Free a used ticket when its refcount falls to zero.
3378  */
3379 void
3380 xfs_log_ticket_put(
3381 	xlog_ticket_t	*ticket)
3382 {
3383 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3384 	if (atomic_dec_and_test(&ticket->t_ref))
3385 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3386 }
3387 
3388 xlog_ticket_t *
3389 xfs_log_ticket_get(
3390 	xlog_ticket_t	*ticket)
3391 {
3392 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3393 	atomic_inc(&ticket->t_ref);
3394 	return ticket;
3395 }
3396 
3397 /*
3398  * Figure out the total log space unit (in bytes) that would be
3399  * required for a log ticket.
3400  */
3401 static int
3402 xlog_calc_unit_res(
3403 	struct xlog		*log,
3404 	int			unit_bytes)
3405 {
3406 	int			iclog_space;
3407 	uint			num_headers;
3408 
3409 	/*
3410 	 * Permanent reservations have up to 'cnt'-1 active log operations
3411 	 * in the log.  A unit in this case is the amount of space for one
3412 	 * of these log operations.  Normal reservations have a cnt of 1
3413 	 * and their unit amount is the total amount of space required.
3414 	 *
3415 	 * The following lines of code account for non-transaction data
3416 	 * which occupy space in the on-disk log.
3417 	 *
3418 	 * Normal form of a transaction is:
3419 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3420 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3421 	 *
3422 	 * We need to account for all the leadup data and trailer data
3423 	 * around the transaction data.
3424 	 * And then we need to account for the worst case in terms of using
3425 	 * more space.
3426 	 * The worst case will happen if:
3427 	 * - the placement of the transaction happens to be such that the
3428 	 *   roundoff is at its maximum
3429 	 * - the transaction data is synced before the commit record is synced
3430 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3431 	 *   Therefore the commit record is in its own Log Record.
3432 	 *   This can happen as the commit record is called with its
3433 	 *   own region to xlog_write().
3434 	 *   This then means that in the worst case, roundoff can happen for
3435 	 *   the commit-rec as well.
3436 	 *   The commit-rec is smaller than padding in this scenario and so it is
3437 	 *   not added separately.
3438 	 */
3439 
3440 	/* for trans header */
3441 	unit_bytes += sizeof(xlog_op_header_t);
3442 	unit_bytes += sizeof(xfs_trans_header_t);
3443 
3444 	/* for start-rec */
3445 	unit_bytes += sizeof(xlog_op_header_t);
3446 
3447 	/*
3448 	 * for LR headers - the space for data in an iclog is the size minus
3449 	 * the space used for the headers. If we use the iclog size, then we
3450 	 * undercalculate the number of headers required.
3451 	 *
3452 	 * Furthermore - the addition of op headers for split-recs might
3453 	 * increase the space required enough to require more log and op
3454 	 * headers, so take that into account too.
3455 	 *
3456 	 * IMPORTANT: This reservation makes the assumption that if this
3457 	 * transaction is the first in an iclog and hence has the LR headers
3458 	 * accounted to it, then the remaining space in the iclog is
3459 	 * exclusively for this transaction.  i.e. if the transaction is larger
3460 	 * than the iclog, it will be the only thing in that iclog.
3461 	 * Fundamentally, this means we must pass the entire log vector to
3462 	 * xlog_write to guarantee this.
3463 	 */
3464 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3465 	num_headers = howmany(unit_bytes, iclog_space);
3466 
3467 	/* for split-recs - ophdrs added when data split over LRs */
3468 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3469 
3470 	/* add extra header reservations if we overrun */
3471 	while (!num_headers ||
3472 	       howmany(unit_bytes, iclog_space) > num_headers) {
3473 		unit_bytes += sizeof(xlog_op_header_t);
3474 		num_headers++;
3475 	}
3476 	unit_bytes += log->l_iclog_hsize * num_headers;
3477 
3478 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3479 	unit_bytes += log->l_iclog_hsize;
3480 
3481 	/* roundoff padding for transaction data and one for commit record */
3482 	unit_bytes += 2 * log->l_iclog_roundoff;
3483 
3484 	return unit_bytes;
3485 }
3486 
3487 int
3488 xfs_log_calc_unit_res(
3489 	struct xfs_mount	*mp,
3490 	int			unit_bytes)
3491 {
3492 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3493 }
3494 
3495 /*
3496  * Allocate and initialise a new log ticket.
3497  */
3498 struct xlog_ticket *
3499 xlog_ticket_alloc(
3500 	struct xlog		*log,
3501 	int			unit_bytes,
3502 	int			cnt,
3503 	bool			permanent)
3504 {
3505 	struct xlog_ticket	*tic;
3506 	int			unit_res;
3507 
3508 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3509 
3510 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3511 
3512 	atomic_set(&tic->t_ref, 1);
3513 	tic->t_task		= current;
3514 	INIT_LIST_HEAD(&tic->t_queue);
3515 	tic->t_unit_res		= unit_res;
3516 	tic->t_curr_res		= unit_res;
3517 	tic->t_cnt		= cnt;
3518 	tic->t_ocnt		= cnt;
3519 	tic->t_tid		= prandom_u32();
3520 	if (permanent)
3521 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3522 
3523 	return tic;
3524 }
3525 
3526 #if defined(DEBUG)
3527 /*
3528  * Check to make sure the grant write head didn't just over lap the tail.  If
3529  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3530  * the cycles differ by exactly one and check the byte count.
3531  *
3532  * This check is run unlocked, so can give false positives. Rather than assert
3533  * on failures, use a warn-once flag and a panic tag to allow the admin to
3534  * determine if they want to panic the machine when such an error occurs. For
3535  * debug kernels this will have the same effect as using an assert but, unlinke
3536  * an assert, it can be turned off at runtime.
3537  */
3538 STATIC void
3539 xlog_verify_grant_tail(
3540 	struct xlog	*log)
3541 {
3542 	int		tail_cycle, tail_blocks;
3543 	int		cycle, space;
3544 
3545 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3546 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3547 	if (tail_cycle != cycle) {
3548 		if (cycle - 1 != tail_cycle &&
3549 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3550 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3551 				"%s: cycle - 1 != tail_cycle", __func__);
3552 		}
3553 
3554 		if (space > BBTOB(tail_blocks) &&
3555 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3556 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3557 				"%s: space > BBTOB(tail_blocks)", __func__);
3558 		}
3559 	}
3560 }
3561 
3562 /* check if it will fit */
3563 STATIC void
3564 xlog_verify_tail_lsn(
3565 	struct xlog		*log,
3566 	struct xlog_in_core	*iclog)
3567 {
3568 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3569 	int		blocks;
3570 
3571     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3572 	blocks =
3573 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3574 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3575 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3576     } else {
3577 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3578 
3579 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3580 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3581 
3582 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3583 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3584 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3585     }
3586 }
3587 
3588 /*
3589  * Perform a number of checks on the iclog before writing to disk.
3590  *
3591  * 1. Make sure the iclogs are still circular
3592  * 2. Make sure we have a good magic number
3593  * 3. Make sure we don't have magic numbers in the data
3594  * 4. Check fields of each log operation header for:
3595  *	A. Valid client identifier
3596  *	B. tid ptr value falls in valid ptr space (user space code)
3597  *	C. Length in log record header is correct according to the
3598  *		individual operation headers within record.
3599  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3600  *	log, check the preceding blocks of the physical log to make sure all
3601  *	the cycle numbers agree with the current cycle number.
3602  */
3603 STATIC void
3604 xlog_verify_iclog(
3605 	struct xlog		*log,
3606 	struct xlog_in_core	*iclog,
3607 	int			count)
3608 {
3609 	xlog_op_header_t	*ophead;
3610 	xlog_in_core_t		*icptr;
3611 	xlog_in_core_2_t	*xhdr;
3612 	void			*base_ptr, *ptr, *p;
3613 	ptrdiff_t		field_offset;
3614 	uint8_t			clientid;
3615 	int			len, i, j, k, op_len;
3616 	int			idx;
3617 
3618 	/* check validity of iclog pointers */
3619 	spin_lock(&log->l_icloglock);
3620 	icptr = log->l_iclog;
3621 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3622 		ASSERT(icptr);
3623 
3624 	if (icptr != log->l_iclog)
3625 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3626 	spin_unlock(&log->l_icloglock);
3627 
3628 	/* check log magic numbers */
3629 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3630 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3631 
3632 	base_ptr = ptr = &iclog->ic_header;
3633 	p = &iclog->ic_header;
3634 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3635 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3636 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3637 				__func__);
3638 	}
3639 
3640 	/* check fields */
3641 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3642 	base_ptr = ptr = iclog->ic_datap;
3643 	ophead = ptr;
3644 	xhdr = iclog->ic_data;
3645 	for (i = 0; i < len; i++) {
3646 		ophead = ptr;
3647 
3648 		/* clientid is only 1 byte */
3649 		p = &ophead->oh_clientid;
3650 		field_offset = p - base_ptr;
3651 		if (field_offset & 0x1ff) {
3652 			clientid = ophead->oh_clientid;
3653 		} else {
3654 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3655 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3656 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3657 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3658 				clientid = xlog_get_client_id(
3659 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3660 			} else {
3661 				clientid = xlog_get_client_id(
3662 					iclog->ic_header.h_cycle_data[idx]);
3663 			}
3664 		}
3665 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3666 			xfs_warn(log->l_mp,
3667 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3668 				__func__, i, clientid, ophead,
3669 				(unsigned long)field_offset);
3670 		}
3671 
3672 		/* check length */
3673 		p = &ophead->oh_len;
3674 		field_offset = p - base_ptr;
3675 		if (field_offset & 0x1ff) {
3676 			op_len = be32_to_cpu(ophead->oh_len);
3677 		} else {
3678 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3679 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3680 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3681 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3682 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3683 			} else {
3684 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3685 			}
3686 		}
3687 		ptr += sizeof(xlog_op_header_t) + op_len;
3688 	}
3689 }
3690 #endif
3691 
3692 /*
3693  * Perform a forced shutdown on the log.
3694  *
3695  * This can be called from low level log code to trigger a shutdown, or from the
3696  * high level mount shutdown code when the mount shuts down.
3697  *
3698  * Our main objectives here are to make sure that:
3699  *	a. if the shutdown was not due to a log IO error, flush the logs to
3700  *	   disk. Anything modified after this is ignored.
3701  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3702  *	   parties to find out. Nothing new gets queued after this is done.
3703  *	c. Tasks sleeping on log reservations, pinned objects and
3704  *	   other resources get woken up.
3705  *	d. The mount is also marked as shut down so that log triggered shutdowns
3706  *	   still behave the same as if they called xfs_forced_shutdown().
3707  *
3708  * Return true if the shutdown cause was a log IO error and we actually shut the
3709  * log down.
3710  */
3711 bool
3712 xlog_force_shutdown(
3713 	struct xlog	*log,
3714 	uint32_t	shutdown_flags)
3715 {
3716 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3717 
3718 	if (!log)
3719 		return false;
3720 
3721 	/*
3722 	 * Flush all the completed transactions to disk before marking the log
3723 	 * being shut down. We need to do this first as shutting down the log
3724 	 * before the force will prevent the log force from flushing the iclogs
3725 	 * to disk.
3726 	 *
3727 	 * When we are in recovery, there are no transactions to flush, and
3728 	 * we don't want to touch the log because we don't want to perturb the
3729 	 * current head/tail for future recovery attempts. Hence we need to
3730 	 * avoid a log force in this case.
3731 	 *
3732 	 * If we are shutting down due to a log IO error, then we must avoid
3733 	 * trying to write the log as that may just result in more IO errors and
3734 	 * an endless shutdown/force loop.
3735 	 */
3736 	if (!log_error && !xlog_in_recovery(log))
3737 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3738 
3739 	/*
3740 	 * Atomically set the shutdown state. If the shutdown state is already
3741 	 * set, there someone else is performing the shutdown and so we are done
3742 	 * here. This should never happen because we should only ever get called
3743 	 * once by the first shutdown caller.
3744 	 *
3745 	 * Much of the log state machine transitions assume that shutdown state
3746 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3747 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3748 	 * operation to set the shutdown state.
3749 	 */
3750 	spin_lock(&log->l_icloglock);
3751 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3752 		spin_unlock(&log->l_icloglock);
3753 		return false;
3754 	}
3755 	spin_unlock(&log->l_icloglock);
3756 
3757 	/*
3758 	 * If this log shutdown also sets the mount shutdown state, issue a
3759 	 * shutdown warning message.
3760 	 */
3761 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3762 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3763 "Filesystem has been shut down due to log error (0x%x).",
3764 				shutdown_flags);
3765 		xfs_alert(log->l_mp,
3766 "Please unmount the filesystem and rectify the problem(s).");
3767 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3768 			xfs_stack_trace();
3769 	}
3770 
3771 	/*
3772 	 * We don't want anybody waiting for log reservations after this. That
3773 	 * means we have to wake up everybody queued up on reserveq as well as
3774 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3775 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3776 	 * action is protected by the grant locks.
3777 	 */
3778 	xlog_grant_head_wake_all(&log->l_reserve_head);
3779 	xlog_grant_head_wake_all(&log->l_write_head);
3780 
3781 	/*
3782 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3783 	 * as if the log writes were completed. The abort handling in the log
3784 	 * item committed callback functions will do this again under lock to
3785 	 * avoid races.
3786 	 */
3787 	spin_lock(&log->l_cilp->xc_push_lock);
3788 	wake_up_all(&log->l_cilp->xc_start_wait);
3789 	wake_up_all(&log->l_cilp->xc_commit_wait);
3790 	spin_unlock(&log->l_cilp->xc_push_lock);
3791 
3792 	spin_lock(&log->l_icloglock);
3793 	xlog_state_shutdown_callbacks(log);
3794 	spin_unlock(&log->l_icloglock);
3795 
3796 	wake_up_var(&log->l_opstate);
3797 	return log_error;
3798 }
3799 
3800 STATIC int
3801 xlog_iclogs_empty(
3802 	struct xlog	*log)
3803 {
3804 	xlog_in_core_t	*iclog;
3805 
3806 	iclog = log->l_iclog;
3807 	do {
3808 		/* endianness does not matter here, zero is zero in
3809 		 * any language.
3810 		 */
3811 		if (iclog->ic_header.h_num_logops)
3812 			return 0;
3813 		iclog = iclog->ic_next;
3814 	} while (iclog != log->l_iclog);
3815 	return 1;
3816 }
3817 
3818 /*
3819  * Verify that an LSN stamped into a piece of metadata is valid. This is
3820  * intended for use in read verifiers on v5 superblocks.
3821  */
3822 bool
3823 xfs_log_check_lsn(
3824 	struct xfs_mount	*mp,
3825 	xfs_lsn_t		lsn)
3826 {
3827 	struct xlog		*log = mp->m_log;
3828 	bool			valid;
3829 
3830 	/*
3831 	 * norecovery mode skips mount-time log processing and unconditionally
3832 	 * resets the in-core LSN. We can't validate in this mode, but
3833 	 * modifications are not allowed anyways so just return true.
3834 	 */
3835 	if (xfs_has_norecovery(mp))
3836 		return true;
3837 
3838 	/*
3839 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3840 	 * handled by recovery and thus safe to ignore here.
3841 	 */
3842 	if (lsn == NULLCOMMITLSN)
3843 		return true;
3844 
3845 	valid = xlog_valid_lsn(mp->m_log, lsn);
3846 
3847 	/* warn the user about what's gone wrong before verifier failure */
3848 	if (!valid) {
3849 		spin_lock(&log->l_icloglock);
3850 		xfs_warn(mp,
3851 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3852 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3853 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3854 			 log->l_curr_cycle, log->l_curr_block);
3855 		spin_unlock(&log->l_icloglock);
3856 	}
3857 
3858 	return valid;
3859 }
3860 
3861 /*
3862  * Notify the log that we're about to start using a feature that is protected
3863  * by a log incompat feature flag.  This will prevent log covering from
3864  * clearing those flags.
3865  */
3866 void
3867 xlog_use_incompat_feat(
3868 	struct xlog		*log)
3869 {
3870 	down_read(&log->l_incompat_users);
3871 }
3872 
3873 /* Notify the log that we've finished using log incompat features. */
3874 void
3875 xlog_drop_incompat_feat(
3876 	struct xlog		*log)
3877 {
3878 	up_read(&log->l_incompat_users);
3879 }
3880