1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 kmem_zone_t *xfs_log_ticket_zone; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC int 45 xlog_state_get_iclog_space( 46 struct xlog *log, 47 int len, 48 struct xlog_in_core **iclog, 49 struct xlog_ticket *ticket, 50 int *continued_write, 51 int *logoffsetp); 52 STATIC void 53 xlog_state_switch_iclogs( 54 struct xlog *log, 55 struct xlog_in_core *iclog, 56 int eventual_size); 57 STATIC void 58 xlog_grant_push_ail( 59 struct xlog *log, 60 int need_bytes); 61 STATIC void 62 xlog_sync( 63 struct xlog *log, 64 struct xlog_in_core *iclog); 65 #if defined(DEBUG) 66 STATIC void 67 xlog_verify_dest_ptr( 68 struct xlog *log, 69 void *ptr); 70 STATIC void 71 xlog_verify_grant_tail( 72 struct xlog *log); 73 STATIC void 74 xlog_verify_iclog( 75 struct xlog *log, 76 struct xlog_in_core *iclog, 77 int count); 78 STATIC void 79 xlog_verify_tail_lsn( 80 struct xlog *log, 81 struct xlog_in_core *iclog, 82 xfs_lsn_t tail_lsn); 83 #else 84 #define xlog_verify_dest_ptr(a,b) 85 #define xlog_verify_grant_tail(a) 86 #define xlog_verify_iclog(a,b,c) 87 #define xlog_verify_tail_lsn(a,b,c) 88 #endif 89 90 STATIC int 91 xlog_iclogs_empty( 92 struct xlog *log); 93 94 static int 95 xfs_log_cover(struct xfs_mount *); 96 97 static void 98 xlog_grant_sub_space( 99 struct xlog *log, 100 atomic64_t *head, 101 int bytes) 102 { 103 int64_t head_val = atomic64_read(head); 104 int64_t new, old; 105 106 do { 107 int cycle, space; 108 109 xlog_crack_grant_head_val(head_val, &cycle, &space); 110 111 space -= bytes; 112 if (space < 0) { 113 space += log->l_logsize; 114 cycle--; 115 } 116 117 old = head_val; 118 new = xlog_assign_grant_head_val(cycle, space); 119 head_val = atomic64_cmpxchg(head, old, new); 120 } while (head_val != old); 121 } 122 123 static void 124 xlog_grant_add_space( 125 struct xlog *log, 126 atomic64_t *head, 127 int bytes) 128 { 129 int64_t head_val = atomic64_read(head); 130 int64_t new, old; 131 132 do { 133 int tmp; 134 int cycle, space; 135 136 xlog_crack_grant_head_val(head_val, &cycle, &space); 137 138 tmp = log->l_logsize - space; 139 if (tmp > bytes) 140 space += bytes; 141 else { 142 space = bytes - tmp; 143 cycle++; 144 } 145 146 old = head_val; 147 new = xlog_assign_grant_head_val(cycle, space); 148 head_val = atomic64_cmpxchg(head, old, new); 149 } while (head_val != old); 150 } 151 152 STATIC void 153 xlog_grant_head_init( 154 struct xlog_grant_head *head) 155 { 156 xlog_assign_grant_head(&head->grant, 1, 0); 157 INIT_LIST_HEAD(&head->waiters); 158 spin_lock_init(&head->lock); 159 } 160 161 STATIC void 162 xlog_grant_head_wake_all( 163 struct xlog_grant_head *head) 164 { 165 struct xlog_ticket *tic; 166 167 spin_lock(&head->lock); 168 list_for_each_entry(tic, &head->waiters, t_queue) 169 wake_up_process(tic->t_task); 170 spin_unlock(&head->lock); 171 } 172 173 static inline int 174 xlog_ticket_reservation( 175 struct xlog *log, 176 struct xlog_grant_head *head, 177 struct xlog_ticket *tic) 178 { 179 if (head == &log->l_write_head) { 180 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 181 return tic->t_unit_res; 182 } else { 183 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 184 return tic->t_unit_res * tic->t_cnt; 185 else 186 return tic->t_unit_res; 187 } 188 } 189 190 STATIC bool 191 xlog_grant_head_wake( 192 struct xlog *log, 193 struct xlog_grant_head *head, 194 int *free_bytes) 195 { 196 struct xlog_ticket *tic; 197 int need_bytes; 198 bool woken_task = false; 199 200 list_for_each_entry(tic, &head->waiters, t_queue) { 201 202 /* 203 * There is a chance that the size of the CIL checkpoints in 204 * progress at the last AIL push target calculation resulted in 205 * limiting the target to the log head (l_last_sync_lsn) at the 206 * time. This may not reflect where the log head is now as the 207 * CIL checkpoints may have completed. 208 * 209 * Hence when we are woken here, it may be that the head of the 210 * log that has moved rather than the tail. As the tail didn't 211 * move, there still won't be space available for the 212 * reservation we require. However, if the AIL has already 213 * pushed to the target defined by the old log head location, we 214 * will hang here waiting for something else to update the AIL 215 * push target. 216 * 217 * Therefore, if there isn't space to wake the first waiter on 218 * the grant head, we need to push the AIL again to ensure the 219 * target reflects both the current log tail and log head 220 * position before we wait for the tail to move again. 221 */ 222 223 need_bytes = xlog_ticket_reservation(log, head, tic); 224 if (*free_bytes < need_bytes) { 225 if (!woken_task) 226 xlog_grant_push_ail(log, need_bytes); 227 return false; 228 } 229 230 *free_bytes -= need_bytes; 231 trace_xfs_log_grant_wake_up(log, tic); 232 wake_up_process(tic->t_task); 233 woken_task = true; 234 } 235 236 return true; 237 } 238 239 STATIC int 240 xlog_grant_head_wait( 241 struct xlog *log, 242 struct xlog_grant_head *head, 243 struct xlog_ticket *tic, 244 int need_bytes) __releases(&head->lock) 245 __acquires(&head->lock) 246 { 247 list_add_tail(&tic->t_queue, &head->waiters); 248 249 do { 250 if (XLOG_FORCED_SHUTDOWN(log)) 251 goto shutdown; 252 xlog_grant_push_ail(log, need_bytes); 253 254 __set_current_state(TASK_UNINTERRUPTIBLE); 255 spin_unlock(&head->lock); 256 257 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 258 259 trace_xfs_log_grant_sleep(log, tic); 260 schedule(); 261 trace_xfs_log_grant_wake(log, tic); 262 263 spin_lock(&head->lock); 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 } while (xlog_space_left(log, &head->grant) < need_bytes); 267 268 list_del_init(&tic->t_queue); 269 return 0; 270 shutdown: 271 list_del_init(&tic->t_queue); 272 return -EIO; 273 } 274 275 /* 276 * Atomically get the log space required for a log ticket. 277 * 278 * Once a ticket gets put onto head->waiters, it will only return after the 279 * needed reservation is satisfied. 280 * 281 * This function is structured so that it has a lock free fast path. This is 282 * necessary because every new transaction reservation will come through this 283 * path. Hence any lock will be globally hot if we take it unconditionally on 284 * every pass. 285 * 286 * As tickets are only ever moved on and off head->waiters under head->lock, we 287 * only need to take that lock if we are going to add the ticket to the queue 288 * and sleep. We can avoid taking the lock if the ticket was never added to 289 * head->waiters because the t_queue list head will be empty and we hold the 290 * only reference to it so it can safely be checked unlocked. 291 */ 292 STATIC int 293 xlog_grant_head_check( 294 struct xlog *log, 295 struct xlog_grant_head *head, 296 struct xlog_ticket *tic, 297 int *need_bytes) 298 { 299 int free_bytes; 300 int error = 0; 301 302 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 303 304 /* 305 * If there are other waiters on the queue then give them a chance at 306 * logspace before us. Wake up the first waiters, if we do not wake 307 * up all the waiters then go to sleep waiting for more free space, 308 * otherwise try to get some space for this transaction. 309 */ 310 *need_bytes = xlog_ticket_reservation(log, head, tic); 311 free_bytes = xlog_space_left(log, &head->grant); 312 if (!list_empty_careful(&head->waiters)) { 313 spin_lock(&head->lock); 314 if (!xlog_grant_head_wake(log, head, &free_bytes) || 315 free_bytes < *need_bytes) { 316 error = xlog_grant_head_wait(log, head, tic, 317 *need_bytes); 318 } 319 spin_unlock(&head->lock); 320 } else if (free_bytes < *need_bytes) { 321 spin_lock(&head->lock); 322 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 323 spin_unlock(&head->lock); 324 } 325 326 return error; 327 } 328 329 static void 330 xlog_tic_reset_res(xlog_ticket_t *tic) 331 { 332 tic->t_res_num = 0; 333 tic->t_res_arr_sum = 0; 334 tic->t_res_num_ophdrs = 0; 335 } 336 337 static void 338 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 339 { 340 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 341 /* add to overflow and start again */ 342 tic->t_res_o_flow += tic->t_res_arr_sum; 343 tic->t_res_num = 0; 344 tic->t_res_arr_sum = 0; 345 } 346 347 tic->t_res_arr[tic->t_res_num].r_len = len; 348 tic->t_res_arr[tic->t_res_num].r_type = type; 349 tic->t_res_arr_sum += len; 350 tic->t_res_num++; 351 } 352 353 bool 354 xfs_log_writable( 355 struct xfs_mount *mp) 356 { 357 /* 358 * Never write to the log on norecovery mounts, if the block device is 359 * read-only, or if the filesystem is shutdown. Read-only mounts still 360 * allow internal writes for log recovery and unmount purposes, so don't 361 * restrict that case here. 362 */ 363 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 364 return false; 365 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 366 return false; 367 if (XFS_FORCED_SHUTDOWN(mp)) 368 return false; 369 return true; 370 } 371 372 /* 373 * Replenish the byte reservation required by moving the grant write head. 374 */ 375 int 376 xfs_log_regrant( 377 struct xfs_mount *mp, 378 struct xlog_ticket *tic) 379 { 380 struct xlog *log = mp->m_log; 381 int need_bytes; 382 int error = 0; 383 384 if (XLOG_FORCED_SHUTDOWN(log)) 385 return -EIO; 386 387 XFS_STATS_INC(mp, xs_try_logspace); 388 389 /* 390 * This is a new transaction on the ticket, so we need to change the 391 * transaction ID so that the next transaction has a different TID in 392 * the log. Just add one to the existing tid so that we can see chains 393 * of rolling transactions in the log easily. 394 */ 395 tic->t_tid++; 396 397 xlog_grant_push_ail(log, tic->t_unit_res); 398 399 tic->t_curr_res = tic->t_unit_res; 400 xlog_tic_reset_res(tic); 401 402 if (tic->t_cnt > 0) 403 return 0; 404 405 trace_xfs_log_regrant(log, tic); 406 407 error = xlog_grant_head_check(log, &log->l_write_head, tic, 408 &need_bytes); 409 if (error) 410 goto out_error; 411 412 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 413 trace_xfs_log_regrant_exit(log, tic); 414 xlog_verify_grant_tail(log); 415 return 0; 416 417 out_error: 418 /* 419 * If we are failing, make sure the ticket doesn't have any current 420 * reservations. We don't want to add this back when the ticket/ 421 * transaction gets cancelled. 422 */ 423 tic->t_curr_res = 0; 424 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 425 return error; 426 } 427 428 /* 429 * Reserve log space and return a ticket corresponding to the reservation. 430 * 431 * Each reservation is going to reserve extra space for a log record header. 432 * When writes happen to the on-disk log, we don't subtract the length of the 433 * log record header from any reservation. By wasting space in each 434 * reservation, we prevent over allocation problems. 435 */ 436 int 437 xfs_log_reserve( 438 struct xfs_mount *mp, 439 int unit_bytes, 440 int cnt, 441 struct xlog_ticket **ticp, 442 uint8_t client, 443 bool permanent) 444 { 445 struct xlog *log = mp->m_log; 446 struct xlog_ticket *tic; 447 int need_bytes; 448 int error = 0; 449 450 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 451 452 if (XLOG_FORCED_SHUTDOWN(log)) 453 return -EIO; 454 455 XFS_STATS_INC(mp, xs_try_logspace); 456 457 ASSERT(*ticp == NULL); 458 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent); 459 *ticp = tic; 460 461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 462 : tic->t_unit_res); 463 464 trace_xfs_log_reserve(log, tic); 465 466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 467 &need_bytes); 468 if (error) 469 goto out_error; 470 471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 473 trace_xfs_log_reserve_exit(log, tic); 474 xlog_verify_grant_tail(log); 475 return 0; 476 477 out_error: 478 /* 479 * If we are failing, make sure the ticket doesn't have any current 480 * reservations. We don't want to add this back when the ticket/ 481 * transaction gets cancelled. 482 */ 483 tic->t_curr_res = 0; 484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 485 return error; 486 } 487 488 static bool 489 __xlog_state_release_iclog( 490 struct xlog *log, 491 struct xlog_in_core *iclog) 492 { 493 lockdep_assert_held(&log->l_icloglock); 494 495 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 496 /* update tail before writing to iclog */ 497 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 498 499 iclog->ic_state = XLOG_STATE_SYNCING; 500 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 501 xlog_verify_tail_lsn(log, iclog, tail_lsn); 502 /* cycle incremented when incrementing curr_block */ 503 return true; 504 } 505 506 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 507 return false; 508 } 509 510 /* 511 * Flush iclog to disk if this is the last reference to the given iclog and the 512 * it is in the WANT_SYNC state. 513 */ 514 static int 515 xlog_state_release_iclog( 516 struct xlog *log, 517 struct xlog_in_core *iclog) 518 { 519 lockdep_assert_held(&log->l_icloglock); 520 521 if (iclog->ic_state == XLOG_STATE_IOERROR) 522 return -EIO; 523 524 if (atomic_dec_and_test(&iclog->ic_refcnt) && 525 __xlog_state_release_iclog(log, iclog)) { 526 spin_unlock(&log->l_icloglock); 527 xlog_sync(log, iclog); 528 spin_lock(&log->l_icloglock); 529 } 530 531 return 0; 532 } 533 534 void 535 xfs_log_release_iclog( 536 struct xlog_in_core *iclog) 537 { 538 struct xlog *log = iclog->ic_log; 539 bool sync = false; 540 541 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) { 542 if (iclog->ic_state != XLOG_STATE_IOERROR) 543 sync = __xlog_state_release_iclog(log, iclog); 544 spin_unlock(&log->l_icloglock); 545 } 546 547 if (sync) 548 xlog_sync(log, iclog); 549 } 550 551 /* 552 * Mount a log filesystem 553 * 554 * mp - ubiquitous xfs mount point structure 555 * log_target - buftarg of on-disk log device 556 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 557 * num_bblocks - Number of BBSIZE blocks in on-disk log 558 * 559 * Return error or zero. 560 */ 561 int 562 xfs_log_mount( 563 xfs_mount_t *mp, 564 xfs_buftarg_t *log_target, 565 xfs_daddr_t blk_offset, 566 int num_bblks) 567 { 568 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 569 int error = 0; 570 int min_logfsbs; 571 572 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 573 xfs_notice(mp, "Mounting V%d Filesystem", 574 XFS_SB_VERSION_NUM(&mp->m_sb)); 575 } else { 576 xfs_notice(mp, 577 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 578 XFS_SB_VERSION_NUM(&mp->m_sb)); 579 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 580 } 581 582 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 583 if (IS_ERR(mp->m_log)) { 584 error = PTR_ERR(mp->m_log); 585 goto out; 586 } 587 588 /* 589 * Validate the given log space and drop a critical message via syslog 590 * if the log size is too small that would lead to some unexpected 591 * situations in transaction log space reservation stage. 592 * 593 * Note: we can't just reject the mount if the validation fails. This 594 * would mean that people would have to downgrade their kernel just to 595 * remedy the situation as there is no way to grow the log (short of 596 * black magic surgery with xfs_db). 597 * 598 * We can, however, reject mounts for CRC format filesystems, as the 599 * mkfs binary being used to make the filesystem should never create a 600 * filesystem with a log that is too small. 601 */ 602 min_logfsbs = xfs_log_calc_minimum_size(mp); 603 604 if (mp->m_sb.sb_logblocks < min_logfsbs) { 605 xfs_warn(mp, 606 "Log size %d blocks too small, minimum size is %d blocks", 607 mp->m_sb.sb_logblocks, min_logfsbs); 608 error = -EINVAL; 609 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 610 xfs_warn(mp, 611 "Log size %d blocks too large, maximum size is %lld blocks", 612 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 613 error = -EINVAL; 614 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 615 xfs_warn(mp, 616 "log size %lld bytes too large, maximum size is %lld bytes", 617 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 618 XFS_MAX_LOG_BYTES); 619 error = -EINVAL; 620 } else if (mp->m_sb.sb_logsunit > 1 && 621 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 622 xfs_warn(mp, 623 "log stripe unit %u bytes must be a multiple of block size", 624 mp->m_sb.sb_logsunit); 625 error = -EINVAL; 626 fatal = true; 627 } 628 if (error) { 629 /* 630 * Log check errors are always fatal on v5; or whenever bad 631 * metadata leads to a crash. 632 */ 633 if (fatal) { 634 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 635 ASSERT(0); 636 goto out_free_log; 637 } 638 xfs_crit(mp, "Log size out of supported range."); 639 xfs_crit(mp, 640 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 641 } 642 643 /* 644 * Initialize the AIL now we have a log. 645 */ 646 error = xfs_trans_ail_init(mp); 647 if (error) { 648 xfs_warn(mp, "AIL initialisation failed: error %d", error); 649 goto out_free_log; 650 } 651 mp->m_log->l_ailp = mp->m_ail; 652 653 /* 654 * skip log recovery on a norecovery mount. pretend it all 655 * just worked. 656 */ 657 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 658 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 659 660 if (readonly) 661 mp->m_flags &= ~XFS_MOUNT_RDONLY; 662 663 error = xlog_recover(mp->m_log); 664 665 if (readonly) 666 mp->m_flags |= XFS_MOUNT_RDONLY; 667 if (error) { 668 xfs_warn(mp, "log mount/recovery failed: error %d", 669 error); 670 xlog_recover_cancel(mp->m_log); 671 goto out_destroy_ail; 672 } 673 } 674 675 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 676 "log"); 677 if (error) 678 goto out_destroy_ail; 679 680 /* Normal transactions can now occur */ 681 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 682 683 /* 684 * Now the log has been fully initialised and we know were our 685 * space grant counters are, we can initialise the permanent ticket 686 * needed for delayed logging to work. 687 */ 688 xlog_cil_init_post_recovery(mp->m_log); 689 690 return 0; 691 692 out_destroy_ail: 693 xfs_trans_ail_destroy(mp); 694 out_free_log: 695 xlog_dealloc_log(mp->m_log); 696 out: 697 return error; 698 } 699 700 /* 701 * Finish the recovery of the file system. This is separate from the 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 704 * here. 705 * 706 * If we finish recovery successfully, start the background log work. If we are 707 * not doing recovery, then we have a RO filesystem and we don't need to start 708 * it. 709 */ 710 int 711 xfs_log_mount_finish( 712 struct xfs_mount *mp) 713 { 714 int error = 0; 715 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 716 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 717 718 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 719 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 720 return 0; 721 } else if (readonly) { 722 /* Allow unlinked processing to proceed */ 723 mp->m_flags &= ~XFS_MOUNT_RDONLY; 724 } 725 726 /* 727 * During the second phase of log recovery, we need iget and 728 * iput to behave like they do for an active filesystem. 729 * xfs_fs_drop_inode needs to be able to prevent the deletion 730 * of inodes before we're done replaying log items on those 731 * inodes. Turn it off immediately after recovery finishes 732 * so that we don't leak the quota inodes if subsequent mount 733 * activities fail. 734 * 735 * We let all inodes involved in redo item processing end up on 736 * the LRU instead of being evicted immediately so that if we do 737 * something to an unlinked inode, the irele won't cause 738 * premature truncation and freeing of the inode, which results 739 * in log recovery failure. We have to evict the unreferenced 740 * lru inodes after clearing SB_ACTIVE because we don't 741 * otherwise clean up the lru if there's a subsequent failure in 742 * xfs_mountfs, which leads to us leaking the inodes if nothing 743 * else (e.g. quotacheck) references the inodes before the 744 * mount failure occurs. 745 */ 746 mp->m_super->s_flags |= SB_ACTIVE; 747 error = xlog_recover_finish(mp->m_log); 748 if (!error) 749 xfs_log_work_queue(mp); 750 mp->m_super->s_flags &= ~SB_ACTIVE; 751 evict_inodes(mp->m_super); 752 753 /* 754 * Drain the buffer LRU after log recovery. This is required for v4 755 * filesystems to avoid leaving around buffers with NULL verifier ops, 756 * but we do it unconditionally to make sure we're always in a clean 757 * cache state after mount. 758 * 759 * Don't push in the error case because the AIL may have pending intents 760 * that aren't removed until recovery is cancelled. 761 */ 762 if (!error && recovered) { 763 xfs_log_force(mp, XFS_LOG_SYNC); 764 xfs_ail_push_all_sync(mp->m_ail); 765 } 766 xfs_buftarg_drain(mp->m_ddev_targp); 767 768 if (readonly) 769 mp->m_flags |= XFS_MOUNT_RDONLY; 770 771 return error; 772 } 773 774 /* 775 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 776 * the log. 777 */ 778 void 779 xfs_log_mount_cancel( 780 struct xfs_mount *mp) 781 { 782 xlog_recover_cancel(mp->m_log); 783 xfs_log_unmount(mp); 784 } 785 786 /* 787 * Wait for the iclog to be written disk, or return an error if the log has been 788 * shut down. 789 */ 790 static int 791 xlog_wait_on_iclog( 792 struct xlog_in_core *iclog) 793 __releases(iclog->ic_log->l_icloglock) 794 { 795 struct xlog *log = iclog->ic_log; 796 797 if (!XLOG_FORCED_SHUTDOWN(log) && 798 iclog->ic_state != XLOG_STATE_ACTIVE && 799 iclog->ic_state != XLOG_STATE_DIRTY) { 800 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 801 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 802 } else { 803 spin_unlock(&log->l_icloglock); 804 } 805 806 if (XLOG_FORCED_SHUTDOWN(log)) 807 return -EIO; 808 return 0; 809 } 810 811 /* 812 * Write out an unmount record using the ticket provided. We have to account for 813 * the data space used in the unmount ticket as this write is not done from a 814 * transaction context that has already done the accounting for us. 815 */ 816 static int 817 xlog_write_unmount_record( 818 struct xlog *log, 819 struct xlog_ticket *ticket, 820 xfs_lsn_t *lsn, 821 uint flags) 822 { 823 struct xfs_unmount_log_format ulf = { 824 .magic = XLOG_UNMOUNT_TYPE, 825 }; 826 struct xfs_log_iovec reg = { 827 .i_addr = &ulf, 828 .i_len = sizeof(ulf), 829 .i_type = XLOG_REG_TYPE_UNMOUNT, 830 }; 831 struct xfs_log_vec vec = { 832 .lv_niovecs = 1, 833 .lv_iovecp = ®, 834 }; 835 836 /* account for space used by record data */ 837 ticket->t_curr_res -= sizeof(ulf); 838 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false); 839 } 840 841 /* 842 * Mark the filesystem clean by writing an unmount record to the head of the 843 * log. 844 */ 845 static void 846 xlog_unmount_write( 847 struct xlog *log) 848 { 849 struct xfs_mount *mp = log->l_mp; 850 struct xlog_in_core *iclog; 851 struct xlog_ticket *tic = NULL; 852 xfs_lsn_t lsn; 853 uint flags = XLOG_UNMOUNT_TRANS; 854 int error; 855 856 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 857 if (error) 858 goto out_err; 859 860 error = xlog_write_unmount_record(log, tic, &lsn, flags); 861 /* 862 * At this point, we're umounting anyway, so there's no point in 863 * transitioning log state to IOERROR. Just continue... 864 */ 865 out_err: 866 if (error) 867 xfs_alert(mp, "%s: unmount record failed", __func__); 868 869 spin_lock(&log->l_icloglock); 870 iclog = log->l_iclog; 871 atomic_inc(&iclog->ic_refcnt); 872 if (iclog->ic_state == XLOG_STATE_ACTIVE) 873 xlog_state_switch_iclogs(log, iclog, 0); 874 else 875 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 876 iclog->ic_state == XLOG_STATE_IOERROR); 877 error = xlog_state_release_iclog(log, iclog); 878 xlog_wait_on_iclog(iclog); 879 880 if (tic) { 881 trace_xfs_log_umount_write(log, tic); 882 xfs_log_ticket_ungrant(log, tic); 883 } 884 } 885 886 static void 887 xfs_log_unmount_verify_iclog( 888 struct xlog *log) 889 { 890 struct xlog_in_core *iclog = log->l_iclog; 891 892 do { 893 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 894 ASSERT(iclog->ic_offset == 0); 895 } while ((iclog = iclog->ic_next) != log->l_iclog); 896 } 897 898 /* 899 * Unmount record used to have a string "Unmount filesystem--" in the 900 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 901 * We just write the magic number now since that particular field isn't 902 * currently architecture converted and "Unmount" is a bit foo. 903 * As far as I know, there weren't any dependencies on the old behaviour. 904 */ 905 static void 906 xfs_log_unmount_write( 907 struct xfs_mount *mp) 908 { 909 struct xlog *log = mp->m_log; 910 911 if (!xfs_log_writable(mp)) 912 return; 913 914 xfs_log_force(mp, XFS_LOG_SYNC); 915 916 if (XLOG_FORCED_SHUTDOWN(log)) 917 return; 918 919 /* 920 * If we think the summary counters are bad, avoid writing the unmount 921 * record to force log recovery at next mount, after which the summary 922 * counters will be recalculated. Refer to xlog_check_unmount_rec for 923 * more details. 924 */ 925 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 926 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 927 xfs_alert(mp, "%s: will fix summary counters at next mount", 928 __func__); 929 return; 930 } 931 932 xfs_log_unmount_verify_iclog(log); 933 xlog_unmount_write(log); 934 } 935 936 /* 937 * Empty the log for unmount/freeze. 938 * 939 * To do this, we first need to shut down the background log work so it is not 940 * trying to cover the log as we clean up. We then need to unpin all objects in 941 * the log so we can then flush them out. Once they have completed their IO and 942 * run the callbacks removing themselves from the AIL, we can cover the log. 943 */ 944 int 945 xfs_log_quiesce( 946 struct xfs_mount *mp) 947 { 948 cancel_delayed_work_sync(&mp->m_log->l_work); 949 xfs_log_force(mp, XFS_LOG_SYNC); 950 951 /* 952 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 953 * will push it, xfs_buftarg_wait() will not wait for it. Further, 954 * xfs_buf_iowait() cannot be used because it was pushed with the 955 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 956 * the IO to complete. 957 */ 958 xfs_ail_push_all_sync(mp->m_ail); 959 xfs_buftarg_wait(mp->m_ddev_targp); 960 xfs_buf_lock(mp->m_sb_bp); 961 xfs_buf_unlock(mp->m_sb_bp); 962 963 return xfs_log_cover(mp); 964 } 965 966 void 967 xfs_log_clean( 968 struct xfs_mount *mp) 969 { 970 xfs_log_quiesce(mp); 971 xfs_log_unmount_write(mp); 972 } 973 974 /* 975 * Shut down and release the AIL and Log. 976 * 977 * During unmount, we need to ensure we flush all the dirty metadata objects 978 * from the AIL so that the log is empty before we write the unmount record to 979 * the log. Once this is done, we can tear down the AIL and the log. 980 */ 981 void 982 xfs_log_unmount( 983 struct xfs_mount *mp) 984 { 985 xfs_log_clean(mp); 986 987 xfs_buftarg_drain(mp->m_ddev_targp); 988 989 xfs_trans_ail_destroy(mp); 990 991 xfs_sysfs_del(&mp->m_log->l_kobj); 992 993 xlog_dealloc_log(mp->m_log); 994 } 995 996 void 997 xfs_log_item_init( 998 struct xfs_mount *mp, 999 struct xfs_log_item *item, 1000 int type, 1001 const struct xfs_item_ops *ops) 1002 { 1003 item->li_mountp = mp; 1004 item->li_ailp = mp->m_ail; 1005 item->li_type = type; 1006 item->li_ops = ops; 1007 item->li_lv = NULL; 1008 1009 INIT_LIST_HEAD(&item->li_ail); 1010 INIT_LIST_HEAD(&item->li_cil); 1011 INIT_LIST_HEAD(&item->li_bio_list); 1012 INIT_LIST_HEAD(&item->li_trans); 1013 } 1014 1015 /* 1016 * Wake up processes waiting for log space after we have moved the log tail. 1017 */ 1018 void 1019 xfs_log_space_wake( 1020 struct xfs_mount *mp) 1021 { 1022 struct xlog *log = mp->m_log; 1023 int free_bytes; 1024 1025 if (XLOG_FORCED_SHUTDOWN(log)) 1026 return; 1027 1028 if (!list_empty_careful(&log->l_write_head.waiters)) { 1029 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1030 1031 spin_lock(&log->l_write_head.lock); 1032 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1033 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1034 spin_unlock(&log->l_write_head.lock); 1035 } 1036 1037 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1038 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1039 1040 spin_lock(&log->l_reserve_head.lock); 1041 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1042 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1043 spin_unlock(&log->l_reserve_head.lock); 1044 } 1045 } 1046 1047 /* 1048 * Determine if we have a transaction that has gone to disk that needs to be 1049 * covered. To begin the transition to the idle state firstly the log needs to 1050 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1051 * we start attempting to cover the log. 1052 * 1053 * Only if we are then in a state where covering is needed, the caller is 1054 * informed that dummy transactions are required to move the log into the idle 1055 * state. 1056 * 1057 * If there are any items in the AIl or CIL, then we do not want to attempt to 1058 * cover the log as we may be in a situation where there isn't log space 1059 * available to run a dummy transaction and this can lead to deadlocks when the 1060 * tail of the log is pinned by an item that is modified in the CIL. Hence 1061 * there's no point in running a dummy transaction at this point because we 1062 * can't start trying to idle the log until both the CIL and AIL are empty. 1063 */ 1064 static bool 1065 xfs_log_need_covered( 1066 struct xfs_mount *mp) 1067 { 1068 struct xlog *log = mp->m_log; 1069 bool needed = false; 1070 1071 if (!xlog_cil_empty(log)) 1072 return false; 1073 1074 spin_lock(&log->l_icloglock); 1075 switch (log->l_covered_state) { 1076 case XLOG_STATE_COVER_DONE: 1077 case XLOG_STATE_COVER_DONE2: 1078 case XLOG_STATE_COVER_IDLE: 1079 break; 1080 case XLOG_STATE_COVER_NEED: 1081 case XLOG_STATE_COVER_NEED2: 1082 if (xfs_ail_min_lsn(log->l_ailp)) 1083 break; 1084 if (!xlog_iclogs_empty(log)) 1085 break; 1086 1087 needed = true; 1088 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1089 log->l_covered_state = XLOG_STATE_COVER_DONE; 1090 else 1091 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1092 break; 1093 default: 1094 needed = true; 1095 break; 1096 } 1097 spin_unlock(&log->l_icloglock); 1098 return needed; 1099 } 1100 1101 /* 1102 * Explicitly cover the log. This is similar to background log covering but 1103 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1104 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1105 * must all be empty. 1106 */ 1107 static int 1108 xfs_log_cover( 1109 struct xfs_mount *mp) 1110 { 1111 int error = 0; 1112 bool need_covered; 1113 1114 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1115 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1116 XFS_FORCED_SHUTDOWN(mp)); 1117 1118 if (!xfs_log_writable(mp)) 1119 return 0; 1120 1121 /* 1122 * xfs_log_need_covered() is not idempotent because it progresses the 1123 * state machine if the log requires covering. Therefore, we must call 1124 * this function once and use the result until we've issued an sb sync. 1125 * Do so first to make that abundantly clear. 1126 * 1127 * Fall into the covering sequence if the log needs covering or the 1128 * mount has lazy superblock accounting to sync to disk. The sb sync 1129 * used for covering accumulates the in-core counters, so covering 1130 * handles this for us. 1131 */ 1132 need_covered = xfs_log_need_covered(mp); 1133 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb)) 1134 return 0; 1135 1136 /* 1137 * To cover the log, commit the superblock twice (at most) in 1138 * independent checkpoints. The first serves as a reference for the 1139 * tail pointer. The sync transaction and AIL push empties the AIL and 1140 * updates the in-core tail to the LSN of the first checkpoint. The 1141 * second commit updates the on-disk tail with the in-core LSN, 1142 * covering the log. Push the AIL one more time to leave it empty, as 1143 * we found it. 1144 */ 1145 do { 1146 error = xfs_sync_sb(mp, true); 1147 if (error) 1148 break; 1149 xfs_ail_push_all_sync(mp->m_ail); 1150 } while (xfs_log_need_covered(mp)); 1151 1152 return error; 1153 } 1154 1155 /* 1156 * We may be holding the log iclog lock upon entering this routine. 1157 */ 1158 xfs_lsn_t 1159 xlog_assign_tail_lsn_locked( 1160 struct xfs_mount *mp) 1161 { 1162 struct xlog *log = mp->m_log; 1163 struct xfs_log_item *lip; 1164 xfs_lsn_t tail_lsn; 1165 1166 assert_spin_locked(&mp->m_ail->ail_lock); 1167 1168 /* 1169 * To make sure we always have a valid LSN for the log tail we keep 1170 * track of the last LSN which was committed in log->l_last_sync_lsn, 1171 * and use that when the AIL was empty. 1172 */ 1173 lip = xfs_ail_min(mp->m_ail); 1174 if (lip) 1175 tail_lsn = lip->li_lsn; 1176 else 1177 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1178 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1179 atomic64_set(&log->l_tail_lsn, tail_lsn); 1180 return tail_lsn; 1181 } 1182 1183 xfs_lsn_t 1184 xlog_assign_tail_lsn( 1185 struct xfs_mount *mp) 1186 { 1187 xfs_lsn_t tail_lsn; 1188 1189 spin_lock(&mp->m_ail->ail_lock); 1190 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1191 spin_unlock(&mp->m_ail->ail_lock); 1192 1193 return tail_lsn; 1194 } 1195 1196 /* 1197 * Return the space in the log between the tail and the head. The head 1198 * is passed in the cycle/bytes formal parms. In the special case where 1199 * the reserve head has wrapped passed the tail, this calculation is no 1200 * longer valid. In this case, just return 0 which means there is no space 1201 * in the log. This works for all places where this function is called 1202 * with the reserve head. Of course, if the write head were to ever 1203 * wrap the tail, we should blow up. Rather than catch this case here, 1204 * we depend on other ASSERTions in other parts of the code. XXXmiken 1205 * 1206 * This code also handles the case where the reservation head is behind 1207 * the tail. The details of this case are described below, but the end 1208 * result is that we return the size of the log as the amount of space left. 1209 */ 1210 STATIC int 1211 xlog_space_left( 1212 struct xlog *log, 1213 atomic64_t *head) 1214 { 1215 int free_bytes; 1216 int tail_bytes; 1217 int tail_cycle; 1218 int head_cycle; 1219 int head_bytes; 1220 1221 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1222 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1223 tail_bytes = BBTOB(tail_bytes); 1224 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1225 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1226 else if (tail_cycle + 1 < head_cycle) 1227 return 0; 1228 else if (tail_cycle < head_cycle) { 1229 ASSERT(tail_cycle == (head_cycle - 1)); 1230 free_bytes = tail_bytes - head_bytes; 1231 } else { 1232 /* 1233 * The reservation head is behind the tail. 1234 * In this case we just want to return the size of the 1235 * log as the amount of space left. 1236 */ 1237 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1238 xfs_alert(log->l_mp, 1239 " tail_cycle = %d, tail_bytes = %d", 1240 tail_cycle, tail_bytes); 1241 xfs_alert(log->l_mp, 1242 " GH cycle = %d, GH bytes = %d", 1243 head_cycle, head_bytes); 1244 ASSERT(0); 1245 free_bytes = log->l_logsize; 1246 } 1247 return free_bytes; 1248 } 1249 1250 1251 static void 1252 xlog_ioend_work( 1253 struct work_struct *work) 1254 { 1255 struct xlog_in_core *iclog = 1256 container_of(work, struct xlog_in_core, ic_end_io_work); 1257 struct xlog *log = iclog->ic_log; 1258 int error; 1259 1260 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1261 #ifdef DEBUG 1262 /* treat writes with injected CRC errors as failed */ 1263 if (iclog->ic_fail_crc) 1264 error = -EIO; 1265 #endif 1266 1267 /* 1268 * Race to shutdown the filesystem if we see an error. 1269 */ 1270 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1271 xfs_alert(log->l_mp, "log I/O error %d", error); 1272 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1273 } 1274 1275 xlog_state_done_syncing(iclog); 1276 bio_uninit(&iclog->ic_bio); 1277 1278 /* 1279 * Drop the lock to signal that we are done. Nothing references the 1280 * iclog after this, so an unmount waiting on this lock can now tear it 1281 * down safely. As such, it is unsafe to reference the iclog after the 1282 * unlock as we could race with it being freed. 1283 */ 1284 up(&iclog->ic_sema); 1285 } 1286 1287 /* 1288 * Return size of each in-core log record buffer. 1289 * 1290 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1291 * 1292 * If the filesystem blocksize is too large, we may need to choose a 1293 * larger size since the directory code currently logs entire blocks. 1294 */ 1295 STATIC void 1296 xlog_get_iclog_buffer_size( 1297 struct xfs_mount *mp, 1298 struct xlog *log) 1299 { 1300 if (mp->m_logbufs <= 0) 1301 mp->m_logbufs = XLOG_MAX_ICLOGS; 1302 if (mp->m_logbsize <= 0) 1303 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1304 1305 log->l_iclog_bufs = mp->m_logbufs; 1306 log->l_iclog_size = mp->m_logbsize; 1307 1308 /* 1309 * # headers = size / 32k - one header holds cycles from 32k of data. 1310 */ 1311 log->l_iclog_heads = 1312 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1313 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1314 } 1315 1316 void 1317 xfs_log_work_queue( 1318 struct xfs_mount *mp) 1319 { 1320 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1321 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1322 } 1323 1324 /* 1325 * Every sync period we need to unpin all items in the AIL and push them to 1326 * disk. If there is nothing dirty, then we might need to cover the log to 1327 * indicate that the filesystem is idle. 1328 */ 1329 static void 1330 xfs_log_worker( 1331 struct work_struct *work) 1332 { 1333 struct xlog *log = container_of(to_delayed_work(work), 1334 struct xlog, l_work); 1335 struct xfs_mount *mp = log->l_mp; 1336 1337 /* dgc: errors ignored - not fatal and nowhere to report them */ 1338 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1339 /* 1340 * Dump a transaction into the log that contains no real change. 1341 * This is needed to stamp the current tail LSN into the log 1342 * during the covering operation. 1343 * 1344 * We cannot use an inode here for this - that will push dirty 1345 * state back up into the VFS and then periodic inode flushing 1346 * will prevent log covering from making progress. Hence we 1347 * synchronously log the superblock instead to ensure the 1348 * superblock is immediately unpinned and can be written back. 1349 */ 1350 xfs_sync_sb(mp, true); 1351 } else 1352 xfs_log_force(mp, 0); 1353 1354 /* start pushing all the metadata that is currently dirty */ 1355 xfs_ail_push_all(mp->m_ail); 1356 1357 /* queue us up again */ 1358 xfs_log_work_queue(mp); 1359 } 1360 1361 /* 1362 * This routine initializes some of the log structure for a given mount point. 1363 * Its primary purpose is to fill in enough, so recovery can occur. However, 1364 * some other stuff may be filled in too. 1365 */ 1366 STATIC struct xlog * 1367 xlog_alloc_log( 1368 struct xfs_mount *mp, 1369 struct xfs_buftarg *log_target, 1370 xfs_daddr_t blk_offset, 1371 int num_bblks) 1372 { 1373 struct xlog *log; 1374 xlog_rec_header_t *head; 1375 xlog_in_core_t **iclogp; 1376 xlog_in_core_t *iclog, *prev_iclog=NULL; 1377 int i; 1378 int error = -ENOMEM; 1379 uint log2_size = 0; 1380 1381 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1382 if (!log) { 1383 xfs_warn(mp, "Log allocation failed: No memory!"); 1384 goto out; 1385 } 1386 1387 log->l_mp = mp; 1388 log->l_targ = log_target; 1389 log->l_logsize = BBTOB(num_bblks); 1390 log->l_logBBstart = blk_offset; 1391 log->l_logBBsize = num_bblks; 1392 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1393 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1394 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1395 1396 log->l_prev_block = -1; 1397 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1398 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1399 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1400 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1401 1402 xlog_grant_head_init(&log->l_reserve_head); 1403 xlog_grant_head_init(&log->l_write_head); 1404 1405 error = -EFSCORRUPTED; 1406 if (xfs_sb_version_hassector(&mp->m_sb)) { 1407 log2_size = mp->m_sb.sb_logsectlog; 1408 if (log2_size < BBSHIFT) { 1409 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1410 log2_size, BBSHIFT); 1411 goto out_free_log; 1412 } 1413 1414 log2_size -= BBSHIFT; 1415 if (log2_size > mp->m_sectbb_log) { 1416 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1417 log2_size, mp->m_sectbb_log); 1418 goto out_free_log; 1419 } 1420 1421 /* for larger sector sizes, must have v2 or external log */ 1422 if (log2_size && log->l_logBBstart > 0 && 1423 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1424 xfs_warn(mp, 1425 "log sector size (0x%x) invalid for configuration.", 1426 log2_size); 1427 goto out_free_log; 1428 } 1429 } 1430 log->l_sectBBsize = 1 << log2_size; 1431 1432 xlog_get_iclog_buffer_size(mp, log); 1433 1434 spin_lock_init(&log->l_icloglock); 1435 init_waitqueue_head(&log->l_flush_wait); 1436 1437 iclogp = &log->l_iclog; 1438 /* 1439 * The amount of memory to allocate for the iclog structure is 1440 * rather funky due to the way the structure is defined. It is 1441 * done this way so that we can use different sizes for machines 1442 * with different amounts of memory. See the definition of 1443 * xlog_in_core_t in xfs_log_priv.h for details. 1444 */ 1445 ASSERT(log->l_iclog_size >= 4096); 1446 for (i = 0; i < log->l_iclog_bufs; i++) { 1447 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp); 1448 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1449 sizeof(struct bio_vec); 1450 1451 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1452 if (!iclog) 1453 goto out_free_iclog; 1454 1455 *iclogp = iclog; 1456 iclog->ic_prev = prev_iclog; 1457 prev_iclog = iclog; 1458 1459 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask, 1460 KM_MAYFAIL | KM_ZERO); 1461 if (!iclog->ic_data) 1462 goto out_free_iclog; 1463 #ifdef DEBUG 1464 log->l_iclog_bak[i] = &iclog->ic_header; 1465 #endif 1466 head = &iclog->ic_header; 1467 memset(head, 0, sizeof(xlog_rec_header_t)); 1468 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1469 head->h_version = cpu_to_be32( 1470 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1471 head->h_size = cpu_to_be32(log->l_iclog_size); 1472 /* new fields */ 1473 head->h_fmt = cpu_to_be32(XLOG_FMT); 1474 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1475 1476 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1477 iclog->ic_state = XLOG_STATE_ACTIVE; 1478 iclog->ic_log = log; 1479 atomic_set(&iclog->ic_refcnt, 0); 1480 spin_lock_init(&iclog->ic_callback_lock); 1481 INIT_LIST_HEAD(&iclog->ic_callbacks); 1482 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1483 1484 init_waitqueue_head(&iclog->ic_force_wait); 1485 init_waitqueue_head(&iclog->ic_write_wait); 1486 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1487 sema_init(&iclog->ic_sema, 1); 1488 1489 iclogp = &iclog->ic_next; 1490 } 1491 *iclogp = log->l_iclog; /* complete ring */ 1492 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1493 1494 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1495 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1496 WQ_HIGHPRI), 1497 0, mp->m_super->s_id); 1498 if (!log->l_ioend_workqueue) 1499 goto out_free_iclog; 1500 1501 error = xlog_cil_init(log); 1502 if (error) 1503 goto out_destroy_workqueue; 1504 return log; 1505 1506 out_destroy_workqueue: 1507 destroy_workqueue(log->l_ioend_workqueue); 1508 out_free_iclog: 1509 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1510 prev_iclog = iclog->ic_next; 1511 kmem_free(iclog->ic_data); 1512 kmem_free(iclog); 1513 if (prev_iclog == log->l_iclog) 1514 break; 1515 } 1516 out_free_log: 1517 kmem_free(log); 1518 out: 1519 return ERR_PTR(error); 1520 } /* xlog_alloc_log */ 1521 1522 /* 1523 * Write out the commit record of a transaction associated with the given 1524 * ticket to close off a running log write. Return the lsn of the commit record. 1525 */ 1526 int 1527 xlog_commit_record( 1528 struct xlog *log, 1529 struct xlog_ticket *ticket, 1530 struct xlog_in_core **iclog, 1531 xfs_lsn_t *lsn) 1532 { 1533 struct xfs_log_iovec reg = { 1534 .i_addr = NULL, 1535 .i_len = 0, 1536 .i_type = XLOG_REG_TYPE_COMMIT, 1537 }; 1538 struct xfs_log_vec vec = { 1539 .lv_niovecs = 1, 1540 .lv_iovecp = ®, 1541 }; 1542 int error; 1543 1544 if (XLOG_FORCED_SHUTDOWN(log)) 1545 return -EIO; 1546 1547 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS, 1548 false); 1549 if (error) 1550 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1551 return error; 1552 } 1553 1554 /* 1555 * Compute the LSN that we'd need to push the log tail towards in order to have 1556 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1557 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1558 * log free space already meets all three thresholds, this function returns 1559 * NULLCOMMITLSN. 1560 */ 1561 xfs_lsn_t 1562 xlog_grant_push_threshold( 1563 struct xlog *log, 1564 int need_bytes) 1565 { 1566 xfs_lsn_t threshold_lsn = 0; 1567 xfs_lsn_t last_sync_lsn; 1568 int free_blocks; 1569 int free_bytes; 1570 int threshold_block; 1571 int threshold_cycle; 1572 int free_threshold; 1573 1574 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1575 1576 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1577 free_blocks = BTOBBT(free_bytes); 1578 1579 /* 1580 * Set the threshold for the minimum number of free blocks in the 1581 * log to the maximum of what the caller needs, one quarter of the 1582 * log, and 256 blocks. 1583 */ 1584 free_threshold = BTOBB(need_bytes); 1585 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1586 free_threshold = max(free_threshold, 256); 1587 if (free_blocks >= free_threshold) 1588 return NULLCOMMITLSN; 1589 1590 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1591 &threshold_block); 1592 threshold_block += free_threshold; 1593 if (threshold_block >= log->l_logBBsize) { 1594 threshold_block -= log->l_logBBsize; 1595 threshold_cycle += 1; 1596 } 1597 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1598 threshold_block); 1599 /* 1600 * Don't pass in an lsn greater than the lsn of the last 1601 * log record known to be on disk. Use a snapshot of the last sync lsn 1602 * so that it doesn't change between the compare and the set. 1603 */ 1604 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1605 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1606 threshold_lsn = last_sync_lsn; 1607 1608 return threshold_lsn; 1609 } 1610 1611 /* 1612 * Push the tail of the log if we need to do so to maintain the free log space 1613 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1614 * policy which pushes on an lsn which is further along in the log once we 1615 * reach the high water mark. In this manner, we would be creating a low water 1616 * mark. 1617 */ 1618 STATIC void 1619 xlog_grant_push_ail( 1620 struct xlog *log, 1621 int need_bytes) 1622 { 1623 xfs_lsn_t threshold_lsn; 1624 1625 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1626 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log)) 1627 return; 1628 1629 /* 1630 * Get the transaction layer to kick the dirty buffers out to 1631 * disk asynchronously. No point in trying to do this if 1632 * the filesystem is shutting down. 1633 */ 1634 xfs_ail_push(log->l_ailp, threshold_lsn); 1635 } 1636 1637 /* 1638 * Stamp cycle number in every block 1639 */ 1640 STATIC void 1641 xlog_pack_data( 1642 struct xlog *log, 1643 struct xlog_in_core *iclog, 1644 int roundoff) 1645 { 1646 int i, j, k; 1647 int size = iclog->ic_offset + roundoff; 1648 __be32 cycle_lsn; 1649 char *dp; 1650 1651 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1652 1653 dp = iclog->ic_datap; 1654 for (i = 0; i < BTOBB(size); i++) { 1655 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1656 break; 1657 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1658 *(__be32 *)dp = cycle_lsn; 1659 dp += BBSIZE; 1660 } 1661 1662 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1663 xlog_in_core_2_t *xhdr = iclog->ic_data; 1664 1665 for ( ; i < BTOBB(size); i++) { 1666 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1667 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1668 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1669 *(__be32 *)dp = cycle_lsn; 1670 dp += BBSIZE; 1671 } 1672 1673 for (i = 1; i < log->l_iclog_heads; i++) 1674 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1675 } 1676 } 1677 1678 /* 1679 * Calculate the checksum for a log buffer. 1680 * 1681 * This is a little more complicated than it should be because the various 1682 * headers and the actual data are non-contiguous. 1683 */ 1684 __le32 1685 xlog_cksum( 1686 struct xlog *log, 1687 struct xlog_rec_header *rhead, 1688 char *dp, 1689 int size) 1690 { 1691 uint32_t crc; 1692 1693 /* first generate the crc for the record header ... */ 1694 crc = xfs_start_cksum_update((char *)rhead, 1695 sizeof(struct xlog_rec_header), 1696 offsetof(struct xlog_rec_header, h_crc)); 1697 1698 /* ... then for additional cycle data for v2 logs ... */ 1699 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1700 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1701 int i; 1702 int xheads; 1703 1704 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1705 1706 for (i = 1; i < xheads; i++) { 1707 crc = crc32c(crc, &xhdr[i].hic_xheader, 1708 sizeof(struct xlog_rec_ext_header)); 1709 } 1710 } 1711 1712 /* ... and finally for the payload */ 1713 crc = crc32c(crc, dp, size); 1714 1715 return xfs_end_cksum(crc); 1716 } 1717 1718 static void 1719 xlog_bio_end_io( 1720 struct bio *bio) 1721 { 1722 struct xlog_in_core *iclog = bio->bi_private; 1723 1724 queue_work(iclog->ic_log->l_ioend_workqueue, 1725 &iclog->ic_end_io_work); 1726 } 1727 1728 static int 1729 xlog_map_iclog_data( 1730 struct bio *bio, 1731 void *data, 1732 size_t count) 1733 { 1734 do { 1735 struct page *page = kmem_to_page(data); 1736 unsigned int off = offset_in_page(data); 1737 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1738 1739 if (bio_add_page(bio, page, len, off) != len) 1740 return -EIO; 1741 1742 data += len; 1743 count -= len; 1744 } while (count); 1745 1746 return 0; 1747 } 1748 1749 STATIC void 1750 xlog_write_iclog( 1751 struct xlog *log, 1752 struct xlog_in_core *iclog, 1753 uint64_t bno, 1754 unsigned int count, 1755 bool need_flush) 1756 { 1757 ASSERT(bno < log->l_logBBsize); 1758 1759 /* 1760 * We lock the iclogbufs here so that we can serialise against I/O 1761 * completion during unmount. We might be processing a shutdown 1762 * triggered during unmount, and that can occur asynchronously to the 1763 * unmount thread, and hence we need to ensure that completes before 1764 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1765 * across the log IO to archieve that. 1766 */ 1767 down(&iclog->ic_sema); 1768 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) { 1769 /* 1770 * It would seem logical to return EIO here, but we rely on 1771 * the log state machine to propagate I/O errors instead of 1772 * doing it here. We kick of the state machine and unlock 1773 * the buffer manually, the code needs to be kept in sync 1774 * with the I/O completion path. 1775 */ 1776 xlog_state_done_syncing(iclog); 1777 up(&iclog->ic_sema); 1778 return; 1779 } 1780 1781 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE)); 1782 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev); 1783 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1784 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1785 iclog->ic_bio.bi_private = iclog; 1786 1787 /* 1788 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1789 * IOs coming immediately after this one. This prevents the block layer 1790 * writeback throttle from throttling log writes behind background 1791 * metadata writeback and causing priority inversions. 1792 */ 1793 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | 1794 REQ_IDLE | REQ_FUA; 1795 if (need_flush) 1796 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1797 1798 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1799 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1800 return; 1801 } 1802 if (is_vmalloc_addr(iclog->ic_data)) 1803 flush_kernel_vmap_range(iclog->ic_data, count); 1804 1805 /* 1806 * If this log buffer would straddle the end of the log we will have 1807 * to split it up into two bios, so that we can continue at the start. 1808 */ 1809 if (bno + BTOBB(count) > log->l_logBBsize) { 1810 struct bio *split; 1811 1812 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1813 GFP_NOIO, &fs_bio_set); 1814 bio_chain(split, &iclog->ic_bio); 1815 submit_bio(split); 1816 1817 /* restart at logical offset zero for the remainder */ 1818 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1819 } 1820 1821 submit_bio(&iclog->ic_bio); 1822 } 1823 1824 /* 1825 * We need to bump cycle number for the part of the iclog that is 1826 * written to the start of the log. Watch out for the header magic 1827 * number case, though. 1828 */ 1829 static void 1830 xlog_split_iclog( 1831 struct xlog *log, 1832 void *data, 1833 uint64_t bno, 1834 unsigned int count) 1835 { 1836 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1837 unsigned int i; 1838 1839 for (i = split_offset; i < count; i += BBSIZE) { 1840 uint32_t cycle = get_unaligned_be32(data + i); 1841 1842 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1843 cycle++; 1844 put_unaligned_be32(cycle, data + i); 1845 } 1846 } 1847 1848 static int 1849 xlog_calc_iclog_size( 1850 struct xlog *log, 1851 struct xlog_in_core *iclog, 1852 uint32_t *roundoff) 1853 { 1854 uint32_t count_init, count; 1855 bool use_lsunit; 1856 1857 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 1858 log->l_mp->m_sb.sb_logsunit > 1; 1859 1860 /* Add for LR header */ 1861 count_init = log->l_iclog_hsize + iclog->ic_offset; 1862 1863 /* Round out the log write size */ 1864 if (use_lsunit) { 1865 /* we have a v2 stripe unit to use */ 1866 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1867 } else { 1868 count = BBTOB(BTOBB(count_init)); 1869 } 1870 1871 ASSERT(count >= count_init); 1872 *roundoff = count - count_init; 1873 1874 if (use_lsunit) 1875 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit); 1876 else 1877 ASSERT(*roundoff < BBTOB(1)); 1878 return count; 1879 } 1880 1881 /* 1882 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1883 * fashion. Previously, we should have moved the current iclog 1884 * ptr in the log to point to the next available iclog. This allows further 1885 * write to continue while this code syncs out an iclog ready to go. 1886 * Before an in-core log can be written out, the data section must be scanned 1887 * to save away the 1st word of each BBSIZE block into the header. We replace 1888 * it with the current cycle count. Each BBSIZE block is tagged with the 1889 * cycle count because there in an implicit assumption that drives will 1890 * guarantee that entire 512 byte blocks get written at once. In other words, 1891 * we can't have part of a 512 byte block written and part not written. By 1892 * tagging each block, we will know which blocks are valid when recovering 1893 * after an unclean shutdown. 1894 * 1895 * This routine is single threaded on the iclog. No other thread can be in 1896 * this routine with the same iclog. Changing contents of iclog can there- 1897 * fore be done without grabbing the state machine lock. Updating the global 1898 * log will require grabbing the lock though. 1899 * 1900 * The entire log manager uses a logical block numbering scheme. Only 1901 * xlog_write_iclog knows about the fact that the log may not start with 1902 * block zero on a given device. 1903 */ 1904 STATIC void 1905 xlog_sync( 1906 struct xlog *log, 1907 struct xlog_in_core *iclog) 1908 { 1909 unsigned int count; /* byte count of bwrite */ 1910 unsigned int roundoff; /* roundoff to BB or stripe */ 1911 uint64_t bno; 1912 unsigned int size; 1913 bool need_flush = true, split = false; 1914 1915 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1916 1917 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1918 1919 /* move grant heads by roundoff in sync */ 1920 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1921 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1922 1923 /* put cycle number in every block */ 1924 xlog_pack_data(log, iclog, roundoff); 1925 1926 /* real byte length */ 1927 size = iclog->ic_offset; 1928 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) 1929 size += roundoff; 1930 iclog->ic_header.h_len = cpu_to_be32(size); 1931 1932 XFS_STATS_INC(log->l_mp, xs_log_writes); 1933 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1934 1935 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 1936 1937 /* Do we need to split this write into 2 parts? */ 1938 if (bno + BTOBB(count) > log->l_logBBsize) { 1939 xlog_split_iclog(log, &iclog->ic_header, bno, count); 1940 split = true; 1941 } 1942 1943 /* calculcate the checksum */ 1944 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1945 iclog->ic_datap, size); 1946 /* 1947 * Intentionally corrupt the log record CRC based on the error injection 1948 * frequency, if defined. This facilitates testing log recovery in the 1949 * event of torn writes. Hence, set the IOABORT state to abort the log 1950 * write on I/O completion and shutdown the fs. The subsequent mount 1951 * detects the bad CRC and attempts to recover. 1952 */ 1953 #ifdef DEBUG 1954 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1955 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1956 iclog->ic_fail_crc = true; 1957 xfs_warn(log->l_mp, 1958 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1959 be64_to_cpu(iclog->ic_header.h_lsn)); 1960 } 1961 #endif 1962 1963 /* 1964 * Flush the data device before flushing the log to make sure all meta 1965 * data written back from the AIL actually made it to disk before 1966 * stamping the new log tail LSN into the log buffer. For an external 1967 * log we need to issue the flush explicitly, and unfortunately 1968 * synchronously here; for an internal log we can simply use the block 1969 * layer state machine for preflushes. 1970 */ 1971 if (log->l_targ != log->l_mp->m_ddev_targp || split) { 1972 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1973 need_flush = false; 1974 } 1975 1976 xlog_verify_iclog(log, iclog, count); 1977 xlog_write_iclog(log, iclog, bno, count, need_flush); 1978 } 1979 1980 /* 1981 * Deallocate a log structure 1982 */ 1983 STATIC void 1984 xlog_dealloc_log( 1985 struct xlog *log) 1986 { 1987 xlog_in_core_t *iclog, *next_iclog; 1988 int i; 1989 1990 xlog_cil_destroy(log); 1991 1992 /* 1993 * Cycle all the iclogbuf locks to make sure all log IO completion 1994 * is done before we tear down these buffers. 1995 */ 1996 iclog = log->l_iclog; 1997 for (i = 0; i < log->l_iclog_bufs; i++) { 1998 down(&iclog->ic_sema); 1999 up(&iclog->ic_sema); 2000 iclog = iclog->ic_next; 2001 } 2002 2003 iclog = log->l_iclog; 2004 for (i = 0; i < log->l_iclog_bufs; i++) { 2005 next_iclog = iclog->ic_next; 2006 kmem_free(iclog->ic_data); 2007 kmem_free(iclog); 2008 iclog = next_iclog; 2009 } 2010 2011 log->l_mp->m_log = NULL; 2012 destroy_workqueue(log->l_ioend_workqueue); 2013 kmem_free(log); 2014 } 2015 2016 /* 2017 * Update counters atomically now that memcpy is done. 2018 */ 2019 static inline void 2020 xlog_state_finish_copy( 2021 struct xlog *log, 2022 struct xlog_in_core *iclog, 2023 int record_cnt, 2024 int copy_bytes) 2025 { 2026 lockdep_assert_held(&log->l_icloglock); 2027 2028 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2029 iclog->ic_offset += copy_bytes; 2030 } 2031 2032 /* 2033 * print out info relating to regions written which consume 2034 * the reservation 2035 */ 2036 void 2037 xlog_print_tic_res( 2038 struct xfs_mount *mp, 2039 struct xlog_ticket *ticket) 2040 { 2041 uint i; 2042 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2043 2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2046 static char *res_type_str[] = { 2047 REG_TYPE_STR(BFORMAT, "bformat"), 2048 REG_TYPE_STR(BCHUNK, "bchunk"), 2049 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2050 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2051 REG_TYPE_STR(IFORMAT, "iformat"), 2052 REG_TYPE_STR(ICORE, "icore"), 2053 REG_TYPE_STR(IEXT, "iext"), 2054 REG_TYPE_STR(IBROOT, "ibroot"), 2055 REG_TYPE_STR(ILOCAL, "ilocal"), 2056 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2057 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2058 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2059 REG_TYPE_STR(QFORMAT, "qformat"), 2060 REG_TYPE_STR(DQUOT, "dquot"), 2061 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2062 REG_TYPE_STR(LRHEADER, "LR header"), 2063 REG_TYPE_STR(UNMOUNT, "unmount"), 2064 REG_TYPE_STR(COMMIT, "commit"), 2065 REG_TYPE_STR(TRANSHDR, "trans header"), 2066 REG_TYPE_STR(ICREATE, "inode create"), 2067 REG_TYPE_STR(RUI_FORMAT, "rui_format"), 2068 REG_TYPE_STR(RUD_FORMAT, "rud_format"), 2069 REG_TYPE_STR(CUI_FORMAT, "cui_format"), 2070 REG_TYPE_STR(CUD_FORMAT, "cud_format"), 2071 REG_TYPE_STR(BUI_FORMAT, "bui_format"), 2072 REG_TYPE_STR(BUD_FORMAT, "bud_format"), 2073 }; 2074 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1); 2075 #undef REG_TYPE_STR 2076 2077 xfs_warn(mp, "ticket reservation summary:"); 2078 xfs_warn(mp, " unit res = %d bytes", 2079 ticket->t_unit_res); 2080 xfs_warn(mp, " current res = %d bytes", 2081 ticket->t_curr_res); 2082 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2083 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2084 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2085 ticket->t_res_num_ophdrs, ophdr_spc); 2086 xfs_warn(mp, " ophdr + reg = %u bytes", 2087 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2088 xfs_warn(mp, " num regions = %u", 2089 ticket->t_res_num); 2090 2091 for (i = 0; i < ticket->t_res_num; i++) { 2092 uint r_type = ticket->t_res_arr[i].r_type; 2093 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2094 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2095 "bad-rtype" : res_type_str[r_type]), 2096 ticket->t_res_arr[i].r_len); 2097 } 2098 } 2099 2100 /* 2101 * Print a summary of the transaction. 2102 */ 2103 void 2104 xlog_print_trans( 2105 struct xfs_trans *tp) 2106 { 2107 struct xfs_mount *mp = tp->t_mountp; 2108 struct xfs_log_item *lip; 2109 2110 /* dump core transaction and ticket info */ 2111 xfs_warn(mp, "transaction summary:"); 2112 xfs_warn(mp, " log res = %d", tp->t_log_res); 2113 xfs_warn(mp, " log count = %d", tp->t_log_count); 2114 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2115 2116 xlog_print_tic_res(mp, tp->t_ticket); 2117 2118 /* dump each log item */ 2119 list_for_each_entry(lip, &tp->t_items, li_trans) { 2120 struct xfs_log_vec *lv = lip->li_lv; 2121 struct xfs_log_iovec *vec; 2122 int i; 2123 2124 xfs_warn(mp, "log item: "); 2125 xfs_warn(mp, " type = 0x%x", lip->li_type); 2126 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2127 if (!lv) 2128 continue; 2129 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2130 xfs_warn(mp, " size = %d", lv->lv_size); 2131 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2132 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2133 2134 /* dump each iovec for the log item */ 2135 vec = lv->lv_iovecp; 2136 for (i = 0; i < lv->lv_niovecs; i++) { 2137 int dumplen = min(vec->i_len, 32); 2138 2139 xfs_warn(mp, " iovec[%d]", i); 2140 xfs_warn(mp, " type = 0x%x", vec->i_type); 2141 xfs_warn(mp, " len = %d", vec->i_len); 2142 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2143 xfs_hex_dump(vec->i_addr, dumplen); 2144 2145 vec++; 2146 } 2147 } 2148 } 2149 2150 /* 2151 * Calculate the potential space needed by the log vector. We may need a start 2152 * record, and each region gets its own struct xlog_op_header and may need to be 2153 * double word aligned. 2154 */ 2155 static int 2156 xlog_write_calc_vec_length( 2157 struct xlog_ticket *ticket, 2158 struct xfs_log_vec *log_vector, 2159 bool need_start_rec) 2160 { 2161 struct xfs_log_vec *lv; 2162 int headers = need_start_rec ? 1 : 0; 2163 int len = 0; 2164 int i; 2165 2166 for (lv = log_vector; lv; lv = lv->lv_next) { 2167 /* we don't write ordered log vectors */ 2168 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2169 continue; 2170 2171 headers += lv->lv_niovecs; 2172 2173 for (i = 0; i < lv->lv_niovecs; i++) { 2174 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2175 2176 len += vecp->i_len; 2177 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2178 } 2179 } 2180 2181 ticket->t_res_num_ophdrs += headers; 2182 len += headers * sizeof(struct xlog_op_header); 2183 2184 return len; 2185 } 2186 2187 static void 2188 xlog_write_start_rec( 2189 struct xlog_op_header *ophdr, 2190 struct xlog_ticket *ticket) 2191 { 2192 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2193 ophdr->oh_clientid = ticket->t_clientid; 2194 ophdr->oh_len = 0; 2195 ophdr->oh_flags = XLOG_START_TRANS; 2196 ophdr->oh_res2 = 0; 2197 } 2198 2199 static xlog_op_header_t * 2200 xlog_write_setup_ophdr( 2201 struct xlog *log, 2202 struct xlog_op_header *ophdr, 2203 struct xlog_ticket *ticket, 2204 uint flags) 2205 { 2206 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2207 ophdr->oh_clientid = ticket->t_clientid; 2208 ophdr->oh_res2 = 0; 2209 2210 /* are we copying a commit or unmount record? */ 2211 ophdr->oh_flags = flags; 2212 2213 /* 2214 * We've seen logs corrupted with bad transaction client ids. This 2215 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2216 * and shut down the filesystem. 2217 */ 2218 switch (ophdr->oh_clientid) { 2219 case XFS_TRANSACTION: 2220 case XFS_VOLUME: 2221 case XFS_LOG: 2222 break; 2223 default: 2224 xfs_warn(log->l_mp, 2225 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2226 ophdr->oh_clientid, ticket); 2227 return NULL; 2228 } 2229 2230 return ophdr; 2231 } 2232 2233 /* 2234 * Set up the parameters of the region copy into the log. This has 2235 * to handle region write split across multiple log buffers - this 2236 * state is kept external to this function so that this code can 2237 * be written in an obvious, self documenting manner. 2238 */ 2239 static int 2240 xlog_write_setup_copy( 2241 struct xlog_ticket *ticket, 2242 struct xlog_op_header *ophdr, 2243 int space_available, 2244 int space_required, 2245 int *copy_off, 2246 int *copy_len, 2247 int *last_was_partial_copy, 2248 int *bytes_consumed) 2249 { 2250 int still_to_copy; 2251 2252 still_to_copy = space_required - *bytes_consumed; 2253 *copy_off = *bytes_consumed; 2254 2255 if (still_to_copy <= space_available) { 2256 /* write of region completes here */ 2257 *copy_len = still_to_copy; 2258 ophdr->oh_len = cpu_to_be32(*copy_len); 2259 if (*last_was_partial_copy) 2260 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2261 *last_was_partial_copy = 0; 2262 *bytes_consumed = 0; 2263 return 0; 2264 } 2265 2266 /* partial write of region, needs extra log op header reservation */ 2267 *copy_len = space_available; 2268 ophdr->oh_len = cpu_to_be32(*copy_len); 2269 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2270 if (*last_was_partial_copy) 2271 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2272 *bytes_consumed += *copy_len; 2273 (*last_was_partial_copy)++; 2274 2275 /* account for new log op header */ 2276 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2277 ticket->t_res_num_ophdrs++; 2278 2279 return sizeof(struct xlog_op_header); 2280 } 2281 2282 static int 2283 xlog_write_copy_finish( 2284 struct xlog *log, 2285 struct xlog_in_core *iclog, 2286 uint flags, 2287 int *record_cnt, 2288 int *data_cnt, 2289 int *partial_copy, 2290 int *partial_copy_len, 2291 int log_offset, 2292 struct xlog_in_core **commit_iclog) 2293 { 2294 int error; 2295 2296 if (*partial_copy) { 2297 /* 2298 * This iclog has already been marked WANT_SYNC by 2299 * xlog_state_get_iclog_space. 2300 */ 2301 spin_lock(&log->l_icloglock); 2302 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2303 *record_cnt = 0; 2304 *data_cnt = 0; 2305 goto release_iclog; 2306 } 2307 2308 *partial_copy = 0; 2309 *partial_copy_len = 0; 2310 2311 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2312 /* no more space in this iclog - push it. */ 2313 spin_lock(&log->l_icloglock); 2314 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2315 *record_cnt = 0; 2316 *data_cnt = 0; 2317 2318 if (iclog->ic_state == XLOG_STATE_ACTIVE) 2319 xlog_state_switch_iclogs(log, iclog, 0); 2320 else 2321 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 2322 iclog->ic_state == XLOG_STATE_IOERROR); 2323 if (!commit_iclog) 2324 goto release_iclog; 2325 spin_unlock(&log->l_icloglock); 2326 ASSERT(flags & XLOG_COMMIT_TRANS); 2327 *commit_iclog = iclog; 2328 } 2329 2330 return 0; 2331 2332 release_iclog: 2333 error = xlog_state_release_iclog(log, iclog); 2334 spin_unlock(&log->l_icloglock); 2335 return error; 2336 } 2337 2338 /* 2339 * Write some region out to in-core log 2340 * 2341 * This will be called when writing externally provided regions or when 2342 * writing out a commit record for a given transaction. 2343 * 2344 * General algorithm: 2345 * 1. Find total length of this write. This may include adding to the 2346 * lengths passed in. 2347 * 2. Check whether we violate the tickets reservation. 2348 * 3. While writing to this iclog 2349 * A. Reserve as much space in this iclog as can get 2350 * B. If this is first write, save away start lsn 2351 * C. While writing this region: 2352 * 1. If first write of transaction, write start record 2353 * 2. Write log operation header (header per region) 2354 * 3. Find out if we can fit entire region into this iclog 2355 * 4. Potentially, verify destination memcpy ptr 2356 * 5. Memcpy (partial) region 2357 * 6. If partial copy, release iclog; otherwise, continue 2358 * copying more regions into current iclog 2359 * 4. Mark want sync bit (in simulation mode) 2360 * 5. Release iclog for potential flush to on-disk log. 2361 * 2362 * ERRORS: 2363 * 1. Panic if reservation is overrun. This should never happen since 2364 * reservation amounts are generated internal to the filesystem. 2365 * NOTES: 2366 * 1. Tickets are single threaded data structures. 2367 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2368 * syncing routine. When a single log_write region needs to span 2369 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2370 * on all log operation writes which don't contain the end of the 2371 * region. The XLOG_END_TRANS bit is used for the in-core log 2372 * operation which contains the end of the continued log_write region. 2373 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2374 * we don't really know exactly how much space will be used. As a result, 2375 * we don't update ic_offset until the end when we know exactly how many 2376 * bytes have been written out. 2377 */ 2378 int 2379 xlog_write( 2380 struct xlog *log, 2381 struct xfs_log_vec *log_vector, 2382 struct xlog_ticket *ticket, 2383 xfs_lsn_t *start_lsn, 2384 struct xlog_in_core **commit_iclog, 2385 uint flags, 2386 bool need_start_rec) 2387 { 2388 struct xlog_in_core *iclog = NULL; 2389 struct xfs_log_vec *lv = log_vector; 2390 struct xfs_log_iovec *vecp = lv->lv_iovecp; 2391 int index = 0; 2392 int len; 2393 int partial_copy = 0; 2394 int partial_copy_len = 0; 2395 int contwr = 0; 2396 int record_cnt = 0; 2397 int data_cnt = 0; 2398 int error = 0; 2399 2400 /* 2401 * If this is a commit or unmount transaction, we don't need a start 2402 * record to be written. We do, however, have to account for the 2403 * commit or unmount header that gets written. Hence we always have 2404 * to account for an extra xlog_op_header here. 2405 */ 2406 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2407 if (ticket->t_curr_res < 0) { 2408 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2409 "ctx ticket reservation ran out. Need to up reservation"); 2410 xlog_print_tic_res(log->l_mp, ticket); 2411 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2412 } 2413 2414 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec); 2415 *start_lsn = 0; 2416 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2417 void *ptr; 2418 int log_offset; 2419 2420 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2421 &contwr, &log_offset); 2422 if (error) 2423 return error; 2424 2425 ASSERT(log_offset <= iclog->ic_size - 1); 2426 ptr = iclog->ic_datap + log_offset; 2427 2428 /* start_lsn is the first lsn written to. That's all we need. */ 2429 if (!*start_lsn) 2430 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2431 2432 /* 2433 * This loop writes out as many regions as can fit in the amount 2434 * of space which was allocated by xlog_state_get_iclog_space(). 2435 */ 2436 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2437 struct xfs_log_iovec *reg; 2438 struct xlog_op_header *ophdr; 2439 int copy_len; 2440 int copy_off; 2441 bool ordered = false; 2442 2443 /* ordered log vectors have no regions to write */ 2444 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2445 ASSERT(lv->lv_niovecs == 0); 2446 ordered = true; 2447 goto next_lv; 2448 } 2449 2450 reg = &vecp[index]; 2451 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2452 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2453 2454 /* 2455 * Before we start formatting log vectors, we need to 2456 * write a start record. Only do this for the first 2457 * iclog we write to. 2458 */ 2459 if (need_start_rec) { 2460 xlog_write_start_rec(ptr, ticket); 2461 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2462 sizeof(struct xlog_op_header)); 2463 } 2464 2465 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2466 if (!ophdr) 2467 return -EIO; 2468 2469 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2470 sizeof(struct xlog_op_header)); 2471 2472 len += xlog_write_setup_copy(ticket, ophdr, 2473 iclog->ic_size-log_offset, 2474 reg->i_len, 2475 ©_off, ©_len, 2476 &partial_copy, 2477 &partial_copy_len); 2478 xlog_verify_dest_ptr(log, ptr); 2479 2480 /* 2481 * Copy region. 2482 * 2483 * Unmount records just log an opheader, so can have 2484 * empty payloads with no data region to copy. Hence we 2485 * only copy the payload if the vector says it has data 2486 * to copy. 2487 */ 2488 ASSERT(copy_len >= 0); 2489 if (copy_len > 0) { 2490 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2491 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2492 copy_len); 2493 } 2494 copy_len += sizeof(struct xlog_op_header); 2495 record_cnt++; 2496 if (need_start_rec) { 2497 copy_len += sizeof(struct xlog_op_header); 2498 record_cnt++; 2499 need_start_rec = false; 2500 } 2501 data_cnt += contwr ? copy_len : 0; 2502 2503 error = xlog_write_copy_finish(log, iclog, flags, 2504 &record_cnt, &data_cnt, 2505 &partial_copy, 2506 &partial_copy_len, 2507 log_offset, 2508 commit_iclog); 2509 if (error) 2510 return error; 2511 2512 /* 2513 * if we had a partial copy, we need to get more iclog 2514 * space but we don't want to increment the region 2515 * index because there is still more is this region to 2516 * write. 2517 * 2518 * If we completed writing this region, and we flushed 2519 * the iclog (indicated by resetting of the record 2520 * count), then we also need to get more log space. If 2521 * this was the last record, though, we are done and 2522 * can just return. 2523 */ 2524 if (partial_copy) 2525 break; 2526 2527 if (++index == lv->lv_niovecs) { 2528 next_lv: 2529 lv = lv->lv_next; 2530 index = 0; 2531 if (lv) 2532 vecp = lv->lv_iovecp; 2533 } 2534 if (record_cnt == 0 && !ordered) { 2535 if (!lv) 2536 return 0; 2537 break; 2538 } 2539 } 2540 } 2541 2542 ASSERT(len == 0); 2543 2544 spin_lock(&log->l_icloglock); 2545 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2546 if (commit_iclog) { 2547 ASSERT(flags & XLOG_COMMIT_TRANS); 2548 *commit_iclog = iclog; 2549 } else { 2550 error = xlog_state_release_iclog(log, iclog); 2551 } 2552 spin_unlock(&log->l_icloglock); 2553 2554 return error; 2555 } 2556 2557 static void 2558 xlog_state_activate_iclog( 2559 struct xlog_in_core *iclog, 2560 int *iclogs_changed) 2561 { 2562 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2563 2564 /* 2565 * If the number of ops in this iclog indicate it just contains the 2566 * dummy transaction, we can change state into IDLE (the second time 2567 * around). Otherwise we should change the state into NEED a dummy. 2568 * We don't need to cover the dummy. 2569 */ 2570 if (*iclogs_changed == 0 && 2571 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2572 *iclogs_changed = 1; 2573 } else { 2574 /* 2575 * We have two dirty iclogs so start over. This could also be 2576 * num of ops indicating this is not the dummy going out. 2577 */ 2578 *iclogs_changed = 2; 2579 } 2580 2581 iclog->ic_state = XLOG_STATE_ACTIVE; 2582 iclog->ic_offset = 0; 2583 iclog->ic_header.h_num_logops = 0; 2584 memset(iclog->ic_header.h_cycle_data, 0, 2585 sizeof(iclog->ic_header.h_cycle_data)); 2586 iclog->ic_header.h_lsn = 0; 2587 } 2588 2589 /* 2590 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2591 * ACTIVE after iclog I/O has completed. 2592 */ 2593 static void 2594 xlog_state_activate_iclogs( 2595 struct xlog *log, 2596 int *iclogs_changed) 2597 { 2598 struct xlog_in_core *iclog = log->l_iclog; 2599 2600 do { 2601 if (iclog->ic_state == XLOG_STATE_DIRTY) 2602 xlog_state_activate_iclog(iclog, iclogs_changed); 2603 /* 2604 * The ordering of marking iclogs ACTIVE must be maintained, so 2605 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2606 */ 2607 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2608 break; 2609 } while ((iclog = iclog->ic_next) != log->l_iclog); 2610 } 2611 2612 static int 2613 xlog_covered_state( 2614 int prev_state, 2615 int iclogs_changed) 2616 { 2617 /* 2618 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2619 * wrote the first covering record (DONE). We go to IDLE if we just 2620 * wrote the second covering record (DONE2) and remain in IDLE until a 2621 * non-covering write occurs. 2622 */ 2623 switch (prev_state) { 2624 case XLOG_STATE_COVER_IDLE: 2625 if (iclogs_changed == 1) 2626 return XLOG_STATE_COVER_IDLE; 2627 case XLOG_STATE_COVER_NEED: 2628 case XLOG_STATE_COVER_NEED2: 2629 break; 2630 case XLOG_STATE_COVER_DONE: 2631 if (iclogs_changed == 1) 2632 return XLOG_STATE_COVER_NEED2; 2633 break; 2634 case XLOG_STATE_COVER_DONE2: 2635 if (iclogs_changed == 1) 2636 return XLOG_STATE_COVER_IDLE; 2637 break; 2638 default: 2639 ASSERT(0); 2640 } 2641 2642 return XLOG_STATE_COVER_NEED; 2643 } 2644 2645 STATIC void 2646 xlog_state_clean_iclog( 2647 struct xlog *log, 2648 struct xlog_in_core *dirty_iclog) 2649 { 2650 int iclogs_changed = 0; 2651 2652 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2653 2654 xlog_state_activate_iclogs(log, &iclogs_changed); 2655 wake_up_all(&dirty_iclog->ic_force_wait); 2656 2657 if (iclogs_changed) { 2658 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2659 iclogs_changed); 2660 } 2661 } 2662 2663 STATIC xfs_lsn_t 2664 xlog_get_lowest_lsn( 2665 struct xlog *log) 2666 { 2667 struct xlog_in_core *iclog = log->l_iclog; 2668 xfs_lsn_t lowest_lsn = 0, lsn; 2669 2670 do { 2671 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2672 iclog->ic_state == XLOG_STATE_DIRTY) 2673 continue; 2674 2675 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2676 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2677 lowest_lsn = lsn; 2678 } while ((iclog = iclog->ic_next) != log->l_iclog); 2679 2680 return lowest_lsn; 2681 } 2682 2683 /* 2684 * Completion of a iclog IO does not imply that a transaction has completed, as 2685 * transactions can be large enough to span many iclogs. We cannot change the 2686 * tail of the log half way through a transaction as this may be the only 2687 * transaction in the log and moving the tail to point to the middle of it 2688 * will prevent recovery from finding the start of the transaction. Hence we 2689 * should only update the last_sync_lsn if this iclog contains transaction 2690 * completion callbacks on it. 2691 * 2692 * We have to do this before we drop the icloglock to ensure we are the only one 2693 * that can update it. 2694 * 2695 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2696 * the reservation grant head pushing. This is due to the fact that the push 2697 * target is bound by the current last_sync_lsn value. Hence if we have a large 2698 * amount of log space bound up in this committing transaction then the 2699 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2700 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2701 * should push the AIL to ensure the push target (and hence the grant head) is 2702 * no longer bound by the old log head location and can move forwards and make 2703 * progress again. 2704 */ 2705 static void 2706 xlog_state_set_callback( 2707 struct xlog *log, 2708 struct xlog_in_core *iclog, 2709 xfs_lsn_t header_lsn) 2710 { 2711 iclog->ic_state = XLOG_STATE_CALLBACK; 2712 2713 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2714 header_lsn) <= 0); 2715 2716 if (list_empty_careful(&iclog->ic_callbacks)) 2717 return; 2718 2719 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2720 xlog_grant_push_ail(log, 0); 2721 } 2722 2723 /* 2724 * Return true if we need to stop processing, false to continue to the next 2725 * iclog. The caller will need to run callbacks if the iclog is returned in the 2726 * XLOG_STATE_CALLBACK state. 2727 */ 2728 static bool 2729 xlog_state_iodone_process_iclog( 2730 struct xlog *log, 2731 struct xlog_in_core *iclog, 2732 bool *ioerror) 2733 { 2734 xfs_lsn_t lowest_lsn; 2735 xfs_lsn_t header_lsn; 2736 2737 switch (iclog->ic_state) { 2738 case XLOG_STATE_ACTIVE: 2739 case XLOG_STATE_DIRTY: 2740 /* 2741 * Skip all iclogs in the ACTIVE & DIRTY states: 2742 */ 2743 return false; 2744 case XLOG_STATE_IOERROR: 2745 /* 2746 * Between marking a filesystem SHUTDOWN and stopping the log, 2747 * we do flush all iclogs to disk (if there wasn't a log I/O 2748 * error). So, we do want things to go smoothly in case of just 2749 * a SHUTDOWN w/o a LOG_IO_ERROR. 2750 */ 2751 *ioerror = true; 2752 return false; 2753 case XLOG_STATE_DONE_SYNC: 2754 /* 2755 * Now that we have an iclog that is in the DONE_SYNC state, do 2756 * one more check here to see if we have chased our tail around. 2757 * If this is not the lowest lsn iclog, then we will leave it 2758 * for another completion to process. 2759 */ 2760 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2761 lowest_lsn = xlog_get_lowest_lsn(log); 2762 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2763 return false; 2764 xlog_state_set_callback(log, iclog, header_lsn); 2765 return false; 2766 default: 2767 /* 2768 * Can only perform callbacks in order. Since this iclog is not 2769 * in the DONE_SYNC state, we skip the rest and just try to 2770 * clean up. 2771 */ 2772 return true; 2773 } 2774 } 2775 2776 /* 2777 * Keep processing entries in the iclog callback list until we come around and 2778 * it is empty. We need to atomically see that the list is empty and change the 2779 * state to DIRTY so that we don't miss any more callbacks being added. 2780 * 2781 * This function is called with the icloglock held and returns with it held. We 2782 * drop it while running callbacks, however, as holding it over thousands of 2783 * callbacks is unnecessary and causes excessive contention if we do. 2784 */ 2785 static void 2786 xlog_state_do_iclog_callbacks( 2787 struct xlog *log, 2788 struct xlog_in_core *iclog) 2789 __releases(&log->l_icloglock) 2790 __acquires(&log->l_icloglock) 2791 { 2792 spin_unlock(&log->l_icloglock); 2793 spin_lock(&iclog->ic_callback_lock); 2794 while (!list_empty(&iclog->ic_callbacks)) { 2795 LIST_HEAD(tmp); 2796 2797 list_splice_init(&iclog->ic_callbacks, &tmp); 2798 2799 spin_unlock(&iclog->ic_callback_lock); 2800 xlog_cil_process_committed(&tmp); 2801 spin_lock(&iclog->ic_callback_lock); 2802 } 2803 2804 /* 2805 * Pick up the icloglock while still holding the callback lock so we 2806 * serialise against anyone trying to add more callbacks to this iclog 2807 * now we've finished processing. 2808 */ 2809 spin_lock(&log->l_icloglock); 2810 spin_unlock(&iclog->ic_callback_lock); 2811 } 2812 2813 STATIC void 2814 xlog_state_do_callback( 2815 struct xlog *log) 2816 { 2817 struct xlog_in_core *iclog; 2818 struct xlog_in_core *first_iclog; 2819 bool cycled_icloglock; 2820 bool ioerror; 2821 int flushcnt = 0; 2822 int repeats = 0; 2823 2824 spin_lock(&log->l_icloglock); 2825 do { 2826 /* 2827 * Scan all iclogs starting with the one pointed to by the 2828 * log. Reset this starting point each time the log is 2829 * unlocked (during callbacks). 2830 * 2831 * Keep looping through iclogs until one full pass is made 2832 * without running any callbacks. 2833 */ 2834 first_iclog = log->l_iclog; 2835 iclog = log->l_iclog; 2836 cycled_icloglock = false; 2837 ioerror = false; 2838 repeats++; 2839 2840 do { 2841 if (xlog_state_iodone_process_iclog(log, iclog, 2842 &ioerror)) 2843 break; 2844 2845 if (iclog->ic_state != XLOG_STATE_CALLBACK && 2846 iclog->ic_state != XLOG_STATE_IOERROR) { 2847 iclog = iclog->ic_next; 2848 continue; 2849 } 2850 2851 /* 2852 * Running callbacks will drop the icloglock which means 2853 * we'll have to run at least one more complete loop. 2854 */ 2855 cycled_icloglock = true; 2856 xlog_state_do_iclog_callbacks(log, iclog); 2857 if (XLOG_FORCED_SHUTDOWN(log)) 2858 wake_up_all(&iclog->ic_force_wait); 2859 else 2860 xlog_state_clean_iclog(log, iclog); 2861 iclog = iclog->ic_next; 2862 } while (first_iclog != iclog); 2863 2864 if (repeats > 5000) { 2865 flushcnt += repeats; 2866 repeats = 0; 2867 xfs_warn(log->l_mp, 2868 "%s: possible infinite loop (%d iterations)", 2869 __func__, flushcnt); 2870 } 2871 } while (!ioerror && cycled_icloglock); 2872 2873 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE || 2874 log->l_iclog->ic_state == XLOG_STATE_IOERROR) 2875 wake_up_all(&log->l_flush_wait); 2876 2877 spin_unlock(&log->l_icloglock); 2878 } 2879 2880 2881 /* 2882 * Finish transitioning this iclog to the dirty state. 2883 * 2884 * Make sure that we completely execute this routine only when this is 2885 * the last call to the iclog. There is a good chance that iclog flushes, 2886 * when we reach the end of the physical log, get turned into 2 separate 2887 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2888 * routine. By using the reference count bwritecnt, we guarantee that only 2889 * the second completion goes through. 2890 * 2891 * Callbacks could take time, so they are done outside the scope of the 2892 * global state machine log lock. 2893 */ 2894 STATIC void 2895 xlog_state_done_syncing( 2896 struct xlog_in_core *iclog) 2897 { 2898 struct xlog *log = iclog->ic_log; 2899 2900 spin_lock(&log->l_icloglock); 2901 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2902 2903 /* 2904 * If we got an error, either on the first buffer, or in the case of 2905 * split log writes, on the second, we shut down the file system and 2906 * no iclogs should ever be attempted to be written to disk again. 2907 */ 2908 if (!XLOG_FORCED_SHUTDOWN(log)) { 2909 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2910 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2911 } 2912 2913 /* 2914 * Someone could be sleeping prior to writing out the next 2915 * iclog buffer, we wake them all, one will get to do the 2916 * I/O, the others get to wait for the result. 2917 */ 2918 wake_up_all(&iclog->ic_write_wait); 2919 spin_unlock(&log->l_icloglock); 2920 xlog_state_do_callback(log); 2921 } 2922 2923 /* 2924 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2925 * sleep. We wait on the flush queue on the head iclog as that should be 2926 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2927 * we will wait here and all new writes will sleep until a sync completes. 2928 * 2929 * The in-core logs are used in a circular fashion. They are not used 2930 * out-of-order even when an iclog past the head is free. 2931 * 2932 * return: 2933 * * log_offset where xlog_write() can start writing into the in-core 2934 * log's data space. 2935 * * in-core log pointer to which xlog_write() should write. 2936 * * boolean indicating this is a continued write to an in-core log. 2937 * If this is the last write, then the in-core log's offset field 2938 * needs to be incremented, depending on the amount of data which 2939 * is copied. 2940 */ 2941 STATIC int 2942 xlog_state_get_iclog_space( 2943 struct xlog *log, 2944 int len, 2945 struct xlog_in_core **iclogp, 2946 struct xlog_ticket *ticket, 2947 int *continued_write, 2948 int *logoffsetp) 2949 { 2950 int log_offset; 2951 xlog_rec_header_t *head; 2952 xlog_in_core_t *iclog; 2953 2954 restart: 2955 spin_lock(&log->l_icloglock); 2956 if (XLOG_FORCED_SHUTDOWN(log)) { 2957 spin_unlock(&log->l_icloglock); 2958 return -EIO; 2959 } 2960 2961 iclog = log->l_iclog; 2962 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2963 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2964 2965 /* Wait for log writes to have flushed */ 2966 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2967 goto restart; 2968 } 2969 2970 head = &iclog->ic_header; 2971 2972 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2973 log_offset = iclog->ic_offset; 2974 2975 /* On the 1st write to an iclog, figure out lsn. This works 2976 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2977 * committing to. If the offset is set, that's how many blocks 2978 * must be written. 2979 */ 2980 if (log_offset == 0) { 2981 ticket->t_curr_res -= log->l_iclog_hsize; 2982 xlog_tic_add_region(ticket, 2983 log->l_iclog_hsize, 2984 XLOG_REG_TYPE_LRHEADER); 2985 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2986 head->h_lsn = cpu_to_be64( 2987 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2988 ASSERT(log->l_curr_block >= 0); 2989 } 2990 2991 /* If there is enough room to write everything, then do it. Otherwise, 2992 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2993 * bit is on, so this will get flushed out. Don't update ic_offset 2994 * until you know exactly how many bytes get copied. Therefore, wait 2995 * until later to update ic_offset. 2996 * 2997 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2998 * can fit into remaining data section. 2999 */ 3000 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3001 int error = 0; 3002 3003 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3004 3005 /* 3006 * If we are the only one writing to this iclog, sync it to 3007 * disk. We need to do an atomic compare and decrement here to 3008 * avoid racing with concurrent atomic_dec_and_lock() calls in 3009 * xlog_state_release_iclog() when there is more than one 3010 * reference to the iclog. 3011 */ 3012 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 3013 error = xlog_state_release_iclog(log, iclog); 3014 spin_unlock(&log->l_icloglock); 3015 if (error) 3016 return error; 3017 goto restart; 3018 } 3019 3020 /* Do we have enough room to write the full amount in the remainder 3021 * of this iclog? Or must we continue a write on the next iclog and 3022 * mark this iclog as completely taken? In the case where we switch 3023 * iclogs (to mark it taken), this particular iclog will release/sync 3024 * to disk in xlog_write(). 3025 */ 3026 if (len <= iclog->ic_size - iclog->ic_offset) { 3027 *continued_write = 0; 3028 iclog->ic_offset += len; 3029 } else { 3030 *continued_write = 1; 3031 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3032 } 3033 *iclogp = iclog; 3034 3035 ASSERT(iclog->ic_offset <= iclog->ic_size); 3036 spin_unlock(&log->l_icloglock); 3037 3038 *logoffsetp = log_offset; 3039 return 0; 3040 } 3041 3042 /* 3043 * The first cnt-1 times a ticket goes through here we don't need to move the 3044 * grant write head because the permanent reservation has reserved cnt times the 3045 * unit amount. Release part of current permanent unit reservation and reset 3046 * current reservation to be one units worth. Also move grant reservation head 3047 * forward. 3048 */ 3049 void 3050 xfs_log_ticket_regrant( 3051 struct xlog *log, 3052 struct xlog_ticket *ticket) 3053 { 3054 trace_xfs_log_ticket_regrant(log, ticket); 3055 3056 if (ticket->t_cnt > 0) 3057 ticket->t_cnt--; 3058 3059 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3060 ticket->t_curr_res); 3061 xlog_grant_sub_space(log, &log->l_write_head.grant, 3062 ticket->t_curr_res); 3063 ticket->t_curr_res = ticket->t_unit_res; 3064 xlog_tic_reset_res(ticket); 3065 3066 trace_xfs_log_ticket_regrant_sub(log, ticket); 3067 3068 /* just return if we still have some of the pre-reserved space */ 3069 if (!ticket->t_cnt) { 3070 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3071 ticket->t_unit_res); 3072 trace_xfs_log_ticket_regrant_exit(log, ticket); 3073 3074 ticket->t_curr_res = ticket->t_unit_res; 3075 xlog_tic_reset_res(ticket); 3076 } 3077 3078 xfs_log_ticket_put(ticket); 3079 } 3080 3081 /* 3082 * Give back the space left from a reservation. 3083 * 3084 * All the information we need to make a correct determination of space left 3085 * is present. For non-permanent reservations, things are quite easy. The 3086 * count should have been decremented to zero. We only need to deal with the 3087 * space remaining in the current reservation part of the ticket. If the 3088 * ticket contains a permanent reservation, there may be left over space which 3089 * needs to be released. A count of N means that N-1 refills of the current 3090 * reservation can be done before we need to ask for more space. The first 3091 * one goes to fill up the first current reservation. Once we run out of 3092 * space, the count will stay at zero and the only space remaining will be 3093 * in the current reservation field. 3094 */ 3095 void 3096 xfs_log_ticket_ungrant( 3097 struct xlog *log, 3098 struct xlog_ticket *ticket) 3099 { 3100 int bytes; 3101 3102 trace_xfs_log_ticket_ungrant(log, ticket); 3103 3104 if (ticket->t_cnt > 0) 3105 ticket->t_cnt--; 3106 3107 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3108 3109 /* 3110 * If this is a permanent reservation ticket, we may be able to free 3111 * up more space based on the remaining count. 3112 */ 3113 bytes = ticket->t_curr_res; 3114 if (ticket->t_cnt > 0) { 3115 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3116 bytes += ticket->t_unit_res*ticket->t_cnt; 3117 } 3118 3119 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3120 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3121 3122 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3123 3124 xfs_log_space_wake(log->l_mp); 3125 xfs_log_ticket_put(ticket); 3126 } 3127 3128 /* 3129 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3130 * the current iclog pointer to the next iclog in the ring. 3131 */ 3132 STATIC void 3133 xlog_state_switch_iclogs( 3134 struct xlog *log, 3135 struct xlog_in_core *iclog, 3136 int eventual_size) 3137 { 3138 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3139 assert_spin_locked(&log->l_icloglock); 3140 3141 if (!eventual_size) 3142 eventual_size = iclog->ic_offset; 3143 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3144 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3145 log->l_prev_block = log->l_curr_block; 3146 log->l_prev_cycle = log->l_curr_cycle; 3147 3148 /* roll log?: ic_offset changed later */ 3149 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3150 3151 /* Round up to next log-sunit */ 3152 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3153 log->l_mp->m_sb.sb_logsunit > 1) { 3154 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3155 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3156 } 3157 3158 if (log->l_curr_block >= log->l_logBBsize) { 3159 /* 3160 * Rewind the current block before the cycle is bumped to make 3161 * sure that the combined LSN never transiently moves forward 3162 * when the log wraps to the next cycle. This is to support the 3163 * unlocked sample of these fields from xlog_valid_lsn(). Most 3164 * other cases should acquire l_icloglock. 3165 */ 3166 log->l_curr_block -= log->l_logBBsize; 3167 ASSERT(log->l_curr_block >= 0); 3168 smp_wmb(); 3169 log->l_curr_cycle++; 3170 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3171 log->l_curr_cycle++; 3172 } 3173 ASSERT(iclog == log->l_iclog); 3174 log->l_iclog = iclog->ic_next; 3175 } 3176 3177 /* 3178 * Write out all data in the in-core log as of this exact moment in time. 3179 * 3180 * Data may be written to the in-core log during this call. However, 3181 * we don't guarantee this data will be written out. A change from past 3182 * implementation means this routine will *not* write out zero length LRs. 3183 * 3184 * Basically, we try and perform an intelligent scan of the in-core logs. 3185 * If we determine there is no flushable data, we just return. There is no 3186 * flushable data if: 3187 * 3188 * 1. the current iclog is active and has no data; the previous iclog 3189 * is in the active or dirty state. 3190 * 2. the current iclog is drity, and the previous iclog is in the 3191 * active or dirty state. 3192 * 3193 * We may sleep if: 3194 * 3195 * 1. the current iclog is not in the active nor dirty state. 3196 * 2. the current iclog dirty, and the previous iclog is not in the 3197 * active nor dirty state. 3198 * 3. the current iclog is active, and there is another thread writing 3199 * to this particular iclog. 3200 * 4. a) the current iclog is active and has no other writers 3201 * b) when we return from flushing out this iclog, it is still 3202 * not in the active nor dirty state. 3203 */ 3204 int 3205 xfs_log_force( 3206 struct xfs_mount *mp, 3207 uint flags) 3208 { 3209 struct xlog *log = mp->m_log; 3210 struct xlog_in_core *iclog; 3211 xfs_lsn_t lsn; 3212 3213 XFS_STATS_INC(mp, xs_log_force); 3214 trace_xfs_log_force(mp, 0, _RET_IP_); 3215 3216 xlog_cil_force(log); 3217 3218 spin_lock(&log->l_icloglock); 3219 iclog = log->l_iclog; 3220 if (iclog->ic_state == XLOG_STATE_IOERROR) 3221 goto out_error; 3222 3223 if (iclog->ic_state == XLOG_STATE_DIRTY || 3224 (iclog->ic_state == XLOG_STATE_ACTIVE && 3225 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3226 /* 3227 * If the head is dirty or (active and empty), then we need to 3228 * look at the previous iclog. 3229 * 3230 * If the previous iclog is active or dirty we are done. There 3231 * is nothing to sync out. Otherwise, we attach ourselves to the 3232 * previous iclog and go to sleep. 3233 */ 3234 iclog = iclog->ic_prev; 3235 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3236 if (atomic_read(&iclog->ic_refcnt) == 0) { 3237 /* 3238 * We are the only one with access to this iclog. 3239 * 3240 * Flush it out now. There should be a roundoff of zero 3241 * to show that someone has already taken care of the 3242 * roundoff from the previous sync. 3243 */ 3244 atomic_inc(&iclog->ic_refcnt); 3245 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3246 xlog_state_switch_iclogs(log, iclog, 0); 3247 if (xlog_state_release_iclog(log, iclog)) 3248 goto out_error; 3249 3250 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3251 goto out_unlock; 3252 } else { 3253 /* 3254 * Someone else is writing to this iclog. 3255 * 3256 * Use its call to flush out the data. However, the 3257 * other thread may not force out this LR, so we mark 3258 * it WANT_SYNC. 3259 */ 3260 xlog_state_switch_iclogs(log, iclog, 0); 3261 } 3262 } else { 3263 /* 3264 * If the head iclog is not active nor dirty, we just attach 3265 * ourselves to the head and go to sleep if necessary. 3266 */ 3267 ; 3268 } 3269 3270 if (flags & XFS_LOG_SYNC) 3271 return xlog_wait_on_iclog(iclog); 3272 out_unlock: 3273 spin_unlock(&log->l_icloglock); 3274 return 0; 3275 out_error: 3276 spin_unlock(&log->l_icloglock); 3277 return -EIO; 3278 } 3279 3280 static int 3281 __xfs_log_force_lsn( 3282 struct xfs_mount *mp, 3283 xfs_lsn_t lsn, 3284 uint flags, 3285 int *log_flushed, 3286 bool already_slept) 3287 { 3288 struct xlog *log = mp->m_log; 3289 struct xlog_in_core *iclog; 3290 3291 spin_lock(&log->l_icloglock); 3292 iclog = log->l_iclog; 3293 if (iclog->ic_state == XLOG_STATE_IOERROR) 3294 goto out_error; 3295 3296 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3297 iclog = iclog->ic_next; 3298 if (iclog == log->l_iclog) 3299 goto out_unlock; 3300 } 3301 3302 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3303 /* 3304 * We sleep here if we haven't already slept (e.g. this is the 3305 * first time we've looked at the correct iclog buf) and the 3306 * buffer before us is going to be sync'ed. The reason for this 3307 * is that if we are doing sync transactions here, by waiting 3308 * for the previous I/O to complete, we can allow a few more 3309 * transactions into this iclog before we close it down. 3310 * 3311 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3312 * refcnt so we can release the log (which drops the ref count). 3313 * The state switch keeps new transaction commits from using 3314 * this buffer. When the current commits finish writing into 3315 * the buffer, the refcount will drop to zero and the buffer 3316 * will go out then. 3317 */ 3318 if (!already_slept && 3319 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3320 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3321 XFS_STATS_INC(mp, xs_log_force_sleep); 3322 3323 xlog_wait(&iclog->ic_prev->ic_write_wait, 3324 &log->l_icloglock); 3325 return -EAGAIN; 3326 } 3327 atomic_inc(&iclog->ic_refcnt); 3328 xlog_state_switch_iclogs(log, iclog, 0); 3329 if (xlog_state_release_iclog(log, iclog)) 3330 goto out_error; 3331 if (log_flushed) 3332 *log_flushed = 1; 3333 } 3334 3335 if (flags & XFS_LOG_SYNC) 3336 return xlog_wait_on_iclog(iclog); 3337 out_unlock: 3338 spin_unlock(&log->l_icloglock); 3339 return 0; 3340 out_error: 3341 spin_unlock(&log->l_icloglock); 3342 return -EIO; 3343 } 3344 3345 /* 3346 * Force the in-core log to disk for a specific LSN. 3347 * 3348 * Find in-core log with lsn. 3349 * If it is in the DIRTY state, just return. 3350 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3351 * state and go to sleep or return. 3352 * If it is in any other state, go to sleep or return. 3353 * 3354 * Synchronous forces are implemented with a wait queue. All callers trying 3355 * to force a given lsn to disk must wait on the queue attached to the 3356 * specific in-core log. When given in-core log finally completes its write 3357 * to disk, that thread will wake up all threads waiting on the queue. 3358 */ 3359 int 3360 xfs_log_force_lsn( 3361 struct xfs_mount *mp, 3362 xfs_lsn_t lsn, 3363 uint flags, 3364 int *log_flushed) 3365 { 3366 int ret; 3367 ASSERT(lsn != 0); 3368 3369 XFS_STATS_INC(mp, xs_log_force); 3370 trace_xfs_log_force(mp, lsn, _RET_IP_); 3371 3372 lsn = xlog_cil_force_lsn(mp->m_log, lsn); 3373 if (lsn == NULLCOMMITLSN) 3374 return 0; 3375 3376 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false); 3377 if (ret == -EAGAIN) 3378 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true); 3379 return ret; 3380 } 3381 3382 /* 3383 * Free a used ticket when its refcount falls to zero. 3384 */ 3385 void 3386 xfs_log_ticket_put( 3387 xlog_ticket_t *ticket) 3388 { 3389 ASSERT(atomic_read(&ticket->t_ref) > 0); 3390 if (atomic_dec_and_test(&ticket->t_ref)) 3391 kmem_cache_free(xfs_log_ticket_zone, ticket); 3392 } 3393 3394 xlog_ticket_t * 3395 xfs_log_ticket_get( 3396 xlog_ticket_t *ticket) 3397 { 3398 ASSERT(atomic_read(&ticket->t_ref) > 0); 3399 atomic_inc(&ticket->t_ref); 3400 return ticket; 3401 } 3402 3403 /* 3404 * Figure out the total log space unit (in bytes) that would be 3405 * required for a log ticket. 3406 */ 3407 int 3408 xfs_log_calc_unit_res( 3409 struct xfs_mount *mp, 3410 int unit_bytes) 3411 { 3412 struct xlog *log = mp->m_log; 3413 int iclog_space; 3414 uint num_headers; 3415 3416 /* 3417 * Permanent reservations have up to 'cnt'-1 active log operations 3418 * in the log. A unit in this case is the amount of space for one 3419 * of these log operations. Normal reservations have a cnt of 1 3420 * and their unit amount is the total amount of space required. 3421 * 3422 * The following lines of code account for non-transaction data 3423 * which occupy space in the on-disk log. 3424 * 3425 * Normal form of a transaction is: 3426 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3427 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3428 * 3429 * We need to account for all the leadup data and trailer data 3430 * around the transaction data. 3431 * And then we need to account for the worst case in terms of using 3432 * more space. 3433 * The worst case will happen if: 3434 * - the placement of the transaction happens to be such that the 3435 * roundoff is at its maximum 3436 * - the transaction data is synced before the commit record is synced 3437 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3438 * Therefore the commit record is in its own Log Record. 3439 * This can happen as the commit record is called with its 3440 * own region to xlog_write(). 3441 * This then means that in the worst case, roundoff can happen for 3442 * the commit-rec as well. 3443 * The commit-rec is smaller than padding in this scenario and so it is 3444 * not added separately. 3445 */ 3446 3447 /* for trans header */ 3448 unit_bytes += sizeof(xlog_op_header_t); 3449 unit_bytes += sizeof(xfs_trans_header_t); 3450 3451 /* for start-rec */ 3452 unit_bytes += sizeof(xlog_op_header_t); 3453 3454 /* 3455 * for LR headers - the space for data in an iclog is the size minus 3456 * the space used for the headers. If we use the iclog size, then we 3457 * undercalculate the number of headers required. 3458 * 3459 * Furthermore - the addition of op headers for split-recs might 3460 * increase the space required enough to require more log and op 3461 * headers, so take that into account too. 3462 * 3463 * IMPORTANT: This reservation makes the assumption that if this 3464 * transaction is the first in an iclog and hence has the LR headers 3465 * accounted to it, then the remaining space in the iclog is 3466 * exclusively for this transaction. i.e. if the transaction is larger 3467 * than the iclog, it will be the only thing in that iclog. 3468 * Fundamentally, this means we must pass the entire log vector to 3469 * xlog_write to guarantee this. 3470 */ 3471 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3472 num_headers = howmany(unit_bytes, iclog_space); 3473 3474 /* for split-recs - ophdrs added when data split over LRs */ 3475 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3476 3477 /* add extra header reservations if we overrun */ 3478 while (!num_headers || 3479 howmany(unit_bytes, iclog_space) > num_headers) { 3480 unit_bytes += sizeof(xlog_op_header_t); 3481 num_headers++; 3482 } 3483 unit_bytes += log->l_iclog_hsize * num_headers; 3484 3485 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3486 unit_bytes += log->l_iclog_hsize; 3487 3488 /* for roundoff padding for transaction data and one for commit record */ 3489 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3490 /* log su roundoff */ 3491 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3492 } else { 3493 /* BB roundoff */ 3494 unit_bytes += 2 * BBSIZE; 3495 } 3496 3497 return unit_bytes; 3498 } 3499 3500 /* 3501 * Allocate and initialise a new log ticket. 3502 */ 3503 struct xlog_ticket * 3504 xlog_ticket_alloc( 3505 struct xlog *log, 3506 int unit_bytes, 3507 int cnt, 3508 char client, 3509 bool permanent) 3510 { 3511 struct xlog_ticket *tic; 3512 int unit_res; 3513 3514 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL); 3515 3516 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3517 3518 atomic_set(&tic->t_ref, 1); 3519 tic->t_task = current; 3520 INIT_LIST_HEAD(&tic->t_queue); 3521 tic->t_unit_res = unit_res; 3522 tic->t_curr_res = unit_res; 3523 tic->t_cnt = cnt; 3524 tic->t_ocnt = cnt; 3525 tic->t_tid = prandom_u32(); 3526 tic->t_clientid = client; 3527 if (permanent) 3528 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3529 3530 xlog_tic_reset_res(tic); 3531 3532 return tic; 3533 } 3534 3535 #if defined(DEBUG) 3536 /* 3537 * Make sure that the destination ptr is within the valid data region of 3538 * one of the iclogs. This uses backup pointers stored in a different 3539 * part of the log in case we trash the log structure. 3540 */ 3541 STATIC void 3542 xlog_verify_dest_ptr( 3543 struct xlog *log, 3544 void *ptr) 3545 { 3546 int i; 3547 int good_ptr = 0; 3548 3549 for (i = 0; i < log->l_iclog_bufs; i++) { 3550 if (ptr >= log->l_iclog_bak[i] && 3551 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3552 good_ptr++; 3553 } 3554 3555 if (!good_ptr) 3556 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3557 } 3558 3559 /* 3560 * Check to make sure the grant write head didn't just over lap the tail. If 3561 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3562 * the cycles differ by exactly one and check the byte count. 3563 * 3564 * This check is run unlocked, so can give false positives. Rather than assert 3565 * on failures, use a warn-once flag and a panic tag to allow the admin to 3566 * determine if they want to panic the machine when such an error occurs. For 3567 * debug kernels this will have the same effect as using an assert but, unlinke 3568 * an assert, it can be turned off at runtime. 3569 */ 3570 STATIC void 3571 xlog_verify_grant_tail( 3572 struct xlog *log) 3573 { 3574 int tail_cycle, tail_blocks; 3575 int cycle, space; 3576 3577 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3578 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3579 if (tail_cycle != cycle) { 3580 if (cycle - 1 != tail_cycle && 3581 !(log->l_flags & XLOG_TAIL_WARN)) { 3582 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3583 "%s: cycle - 1 != tail_cycle", __func__); 3584 log->l_flags |= XLOG_TAIL_WARN; 3585 } 3586 3587 if (space > BBTOB(tail_blocks) && 3588 !(log->l_flags & XLOG_TAIL_WARN)) { 3589 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3590 "%s: space > BBTOB(tail_blocks)", __func__); 3591 log->l_flags |= XLOG_TAIL_WARN; 3592 } 3593 } 3594 } 3595 3596 /* check if it will fit */ 3597 STATIC void 3598 xlog_verify_tail_lsn( 3599 struct xlog *log, 3600 struct xlog_in_core *iclog, 3601 xfs_lsn_t tail_lsn) 3602 { 3603 int blocks; 3604 3605 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3606 blocks = 3607 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3608 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3609 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3610 } else { 3611 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3612 3613 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3614 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3615 3616 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3617 if (blocks < BTOBB(iclog->ic_offset) + 1) 3618 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3619 } 3620 } 3621 3622 /* 3623 * Perform a number of checks on the iclog before writing to disk. 3624 * 3625 * 1. Make sure the iclogs are still circular 3626 * 2. Make sure we have a good magic number 3627 * 3. Make sure we don't have magic numbers in the data 3628 * 4. Check fields of each log operation header for: 3629 * A. Valid client identifier 3630 * B. tid ptr value falls in valid ptr space (user space code) 3631 * C. Length in log record header is correct according to the 3632 * individual operation headers within record. 3633 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3634 * log, check the preceding blocks of the physical log to make sure all 3635 * the cycle numbers agree with the current cycle number. 3636 */ 3637 STATIC void 3638 xlog_verify_iclog( 3639 struct xlog *log, 3640 struct xlog_in_core *iclog, 3641 int count) 3642 { 3643 xlog_op_header_t *ophead; 3644 xlog_in_core_t *icptr; 3645 xlog_in_core_2_t *xhdr; 3646 void *base_ptr, *ptr, *p; 3647 ptrdiff_t field_offset; 3648 uint8_t clientid; 3649 int len, i, j, k, op_len; 3650 int idx; 3651 3652 /* check validity of iclog pointers */ 3653 spin_lock(&log->l_icloglock); 3654 icptr = log->l_iclog; 3655 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3656 ASSERT(icptr); 3657 3658 if (icptr != log->l_iclog) 3659 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3660 spin_unlock(&log->l_icloglock); 3661 3662 /* check log magic numbers */ 3663 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3664 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3665 3666 base_ptr = ptr = &iclog->ic_header; 3667 p = &iclog->ic_header; 3668 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3669 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3670 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3671 __func__); 3672 } 3673 3674 /* check fields */ 3675 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3676 base_ptr = ptr = iclog->ic_datap; 3677 ophead = ptr; 3678 xhdr = iclog->ic_data; 3679 for (i = 0; i < len; i++) { 3680 ophead = ptr; 3681 3682 /* clientid is only 1 byte */ 3683 p = &ophead->oh_clientid; 3684 field_offset = p - base_ptr; 3685 if (field_offset & 0x1ff) { 3686 clientid = ophead->oh_clientid; 3687 } else { 3688 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3689 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3690 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3691 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3692 clientid = xlog_get_client_id( 3693 xhdr[j].hic_xheader.xh_cycle_data[k]); 3694 } else { 3695 clientid = xlog_get_client_id( 3696 iclog->ic_header.h_cycle_data[idx]); 3697 } 3698 } 3699 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3700 xfs_warn(log->l_mp, 3701 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3702 __func__, clientid, ophead, 3703 (unsigned long)field_offset); 3704 3705 /* check length */ 3706 p = &ophead->oh_len; 3707 field_offset = p - base_ptr; 3708 if (field_offset & 0x1ff) { 3709 op_len = be32_to_cpu(ophead->oh_len); 3710 } else { 3711 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3712 (uintptr_t)iclog->ic_datap); 3713 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3714 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3715 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3716 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3717 } else { 3718 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3719 } 3720 } 3721 ptr += sizeof(xlog_op_header_t) + op_len; 3722 } 3723 } 3724 #endif 3725 3726 /* 3727 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3728 */ 3729 STATIC int 3730 xlog_state_ioerror( 3731 struct xlog *log) 3732 { 3733 xlog_in_core_t *iclog, *ic; 3734 3735 iclog = log->l_iclog; 3736 if (iclog->ic_state != XLOG_STATE_IOERROR) { 3737 /* 3738 * Mark all the incore logs IOERROR. 3739 * From now on, no log flushes will result. 3740 */ 3741 ic = iclog; 3742 do { 3743 ic->ic_state = XLOG_STATE_IOERROR; 3744 ic = ic->ic_next; 3745 } while (ic != iclog); 3746 return 0; 3747 } 3748 /* 3749 * Return non-zero, if state transition has already happened. 3750 */ 3751 return 1; 3752 } 3753 3754 /* 3755 * This is called from xfs_force_shutdown, when we're forcibly 3756 * shutting down the filesystem, typically because of an IO error. 3757 * Our main objectives here are to make sure that: 3758 * a. if !logerror, flush the logs to disk. Anything modified 3759 * after this is ignored. 3760 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3761 * parties to find out, 'atomically'. 3762 * c. those who're sleeping on log reservations, pinned objects and 3763 * other resources get woken up, and be told the bad news. 3764 * d. nothing new gets queued up after (b) and (c) are done. 3765 * 3766 * Note: for the !logerror case we need to flush the regions held in memory out 3767 * to disk first. This needs to be done before the log is marked as shutdown, 3768 * otherwise the iclog writes will fail. 3769 */ 3770 int 3771 xfs_log_force_umount( 3772 struct xfs_mount *mp, 3773 int logerror) 3774 { 3775 struct xlog *log; 3776 int retval; 3777 3778 log = mp->m_log; 3779 3780 /* 3781 * If this happens during log recovery, don't worry about 3782 * locking; the log isn't open for business yet. 3783 */ 3784 if (!log || 3785 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3786 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3787 if (mp->m_sb_bp) 3788 mp->m_sb_bp->b_flags |= XBF_DONE; 3789 return 0; 3790 } 3791 3792 /* 3793 * Somebody could've already done the hard work for us. 3794 * No need to get locks for this. 3795 */ 3796 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) { 3797 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3798 return 1; 3799 } 3800 3801 /* 3802 * Flush all the completed transactions to disk before marking the log 3803 * being shut down. We need to do it in this order to ensure that 3804 * completed operations are safely on disk before we shut down, and that 3805 * we don't have to issue any buffer IO after the shutdown flags are set 3806 * to guarantee this. 3807 */ 3808 if (!logerror) 3809 xfs_log_force(mp, XFS_LOG_SYNC); 3810 3811 /* 3812 * mark the filesystem and the as in a shutdown state and wake 3813 * everybody up to tell them the bad news. 3814 */ 3815 spin_lock(&log->l_icloglock); 3816 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3817 if (mp->m_sb_bp) 3818 mp->m_sb_bp->b_flags |= XBF_DONE; 3819 3820 /* 3821 * Mark the log and the iclogs with IO error flags to prevent any 3822 * further log IO from being issued or completed. 3823 */ 3824 log->l_flags |= XLOG_IO_ERROR; 3825 retval = xlog_state_ioerror(log); 3826 spin_unlock(&log->l_icloglock); 3827 3828 /* 3829 * We don't want anybody waiting for log reservations after this. That 3830 * means we have to wake up everybody queued up on reserveq as well as 3831 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3832 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3833 * action is protected by the grant locks. 3834 */ 3835 xlog_grant_head_wake_all(&log->l_reserve_head); 3836 xlog_grant_head_wake_all(&log->l_write_head); 3837 3838 /* 3839 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3840 * as if the log writes were completed. The abort handling in the log 3841 * item committed callback functions will do this again under lock to 3842 * avoid races. 3843 */ 3844 spin_lock(&log->l_cilp->xc_push_lock); 3845 wake_up_all(&log->l_cilp->xc_commit_wait); 3846 spin_unlock(&log->l_cilp->xc_push_lock); 3847 xlog_state_do_callback(log); 3848 3849 /* return non-zero if log IOERROR transition had already happened */ 3850 return retval; 3851 } 3852 3853 STATIC int 3854 xlog_iclogs_empty( 3855 struct xlog *log) 3856 { 3857 xlog_in_core_t *iclog; 3858 3859 iclog = log->l_iclog; 3860 do { 3861 /* endianness does not matter here, zero is zero in 3862 * any language. 3863 */ 3864 if (iclog->ic_header.h_num_logops) 3865 return 0; 3866 iclog = iclog->ic_next; 3867 } while (iclog != log->l_iclog); 3868 return 1; 3869 } 3870 3871 /* 3872 * Verify that an LSN stamped into a piece of metadata is valid. This is 3873 * intended for use in read verifiers on v5 superblocks. 3874 */ 3875 bool 3876 xfs_log_check_lsn( 3877 struct xfs_mount *mp, 3878 xfs_lsn_t lsn) 3879 { 3880 struct xlog *log = mp->m_log; 3881 bool valid; 3882 3883 /* 3884 * norecovery mode skips mount-time log processing and unconditionally 3885 * resets the in-core LSN. We can't validate in this mode, but 3886 * modifications are not allowed anyways so just return true. 3887 */ 3888 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 3889 return true; 3890 3891 /* 3892 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3893 * handled by recovery and thus safe to ignore here. 3894 */ 3895 if (lsn == NULLCOMMITLSN) 3896 return true; 3897 3898 valid = xlog_valid_lsn(mp->m_log, lsn); 3899 3900 /* warn the user about what's gone wrong before verifier failure */ 3901 if (!valid) { 3902 spin_lock(&log->l_icloglock); 3903 xfs_warn(mp, 3904 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3905 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3906 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3907 log->l_curr_cycle, log->l_curr_block); 3908 spin_unlock(&log->l_icloglock); 3909 } 3910 3911 return valid; 3912 } 3913 3914 bool 3915 xfs_log_in_recovery( 3916 struct xfs_mount *mp) 3917 { 3918 struct xlog *log = mp->m_log; 3919 3920 return log->l_flags & XLOG_ACTIVE_RECOVERY; 3921 } 3922