1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } 230 231 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 232 return tic->t_unit_res * tic->t_cnt; 233 234 return tic->t_unit_res; 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 int error = 0; 643 int min_logfsbs; 644 645 if (!xfs_has_norecovery(mp)) { 646 xfs_notice(mp, "Mounting V%d Filesystem %pU", 647 XFS_SB_VERSION_NUM(&mp->m_sb), 648 &mp->m_sb.sb_uuid); 649 } else { 650 xfs_notice(mp, 651 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 652 XFS_SB_VERSION_NUM(&mp->m_sb), 653 &mp->m_sb.sb_uuid); 654 ASSERT(xfs_is_readonly(mp)); 655 } 656 657 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 658 if (IS_ERR(log)) { 659 error = PTR_ERR(log); 660 goto out; 661 } 662 mp->m_log = log; 663 664 /* 665 * Now that we have set up the log and it's internal geometry 666 * parameters, we can validate the given log space and drop a critical 667 * message via syslog if the log size is too small. A log that is too 668 * small can lead to unexpected situations in transaction log space 669 * reservation stage. The superblock verifier has already validated all 670 * the other log geometry constraints, so we don't have to check those 671 * here. 672 * 673 * Note: For v4 filesystems, we can't just reject the mount if the 674 * validation fails. This would mean that people would have to 675 * downgrade their kernel just to remedy the situation as there is no 676 * way to grow the log (short of black magic surgery with xfs_db). 677 * 678 * We can, however, reject mounts for V5 format filesystems, as the 679 * mkfs binary being used to make the filesystem should never create a 680 * filesystem with a log that is too small. 681 */ 682 min_logfsbs = xfs_log_calc_minimum_size(mp); 683 if (mp->m_sb.sb_logblocks < min_logfsbs) { 684 xfs_warn(mp, 685 "Log size %d blocks too small, minimum size is %d blocks", 686 mp->m_sb.sb_logblocks, min_logfsbs); 687 688 /* 689 * Log check errors are always fatal on v5; or whenever bad 690 * metadata leads to a crash. 691 */ 692 if (xfs_has_crc(mp)) { 693 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 694 ASSERT(0); 695 error = -EINVAL; 696 goto out_free_log; 697 } 698 xfs_crit(mp, "Log size out of supported range."); 699 xfs_crit(mp, 700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 701 } 702 703 /* 704 * Initialize the AIL now we have a log. 705 */ 706 error = xfs_trans_ail_init(mp); 707 if (error) { 708 xfs_warn(mp, "AIL initialisation failed: error %d", error); 709 goto out_free_log; 710 } 711 log->l_ailp = mp->m_ail; 712 713 /* 714 * skip log recovery on a norecovery mount. pretend it all 715 * just worked. 716 */ 717 if (!xfs_has_norecovery(mp)) { 718 error = xlog_recover(log); 719 if (error) { 720 xfs_warn(mp, "log mount/recovery failed: error %d", 721 error); 722 xlog_recover_cancel(log); 723 goto out_destroy_ail; 724 } 725 } 726 727 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 728 "log"); 729 if (error) 730 goto out_destroy_ail; 731 732 /* Normal transactions can now occur */ 733 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 734 735 /* 736 * Now the log has been fully initialised and we know were our 737 * space grant counters are, we can initialise the permanent ticket 738 * needed for delayed logging to work. 739 */ 740 xlog_cil_init_post_recovery(log); 741 742 return 0; 743 744 out_destroy_ail: 745 xfs_trans_ail_destroy(mp); 746 out_free_log: 747 xlog_dealloc_log(log); 748 out: 749 return error; 750 } 751 752 /* 753 * Finish the recovery of the file system. This is separate from the 754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 756 * here. 757 * 758 * If we finish recovery successfully, start the background log work. If we are 759 * not doing recovery, then we have a RO filesystem and we don't need to start 760 * it. 761 */ 762 int 763 xfs_log_mount_finish( 764 struct xfs_mount *mp) 765 { 766 struct xlog *log = mp->m_log; 767 int error = 0; 768 769 if (xfs_has_norecovery(mp)) { 770 ASSERT(xfs_is_readonly(mp)); 771 return 0; 772 } 773 774 /* 775 * During the second phase of log recovery, we need iget and 776 * iput to behave like they do for an active filesystem. 777 * xfs_fs_drop_inode needs to be able to prevent the deletion 778 * of inodes before we're done replaying log items on those 779 * inodes. Turn it off immediately after recovery finishes 780 * so that we don't leak the quota inodes if subsequent mount 781 * activities fail. 782 * 783 * We let all inodes involved in redo item processing end up on 784 * the LRU instead of being evicted immediately so that if we do 785 * something to an unlinked inode, the irele won't cause 786 * premature truncation and freeing of the inode, which results 787 * in log recovery failure. We have to evict the unreferenced 788 * lru inodes after clearing SB_ACTIVE because we don't 789 * otherwise clean up the lru if there's a subsequent failure in 790 * xfs_mountfs, which leads to us leaking the inodes if nothing 791 * else (e.g. quotacheck) references the inodes before the 792 * mount failure occurs. 793 */ 794 mp->m_super->s_flags |= SB_ACTIVE; 795 xfs_log_work_queue(mp); 796 if (xlog_recovery_needed(log)) 797 error = xlog_recover_finish(log); 798 mp->m_super->s_flags &= ~SB_ACTIVE; 799 evict_inodes(mp->m_super); 800 801 /* 802 * Drain the buffer LRU after log recovery. This is required for v4 803 * filesystems to avoid leaving around buffers with NULL verifier ops, 804 * but we do it unconditionally to make sure we're always in a clean 805 * cache state after mount. 806 * 807 * Don't push in the error case because the AIL may have pending intents 808 * that aren't removed until recovery is cancelled. 809 */ 810 if (xlog_recovery_needed(log)) { 811 if (!error) { 812 xfs_log_force(mp, XFS_LOG_SYNC); 813 xfs_ail_push_all_sync(mp->m_ail); 814 } 815 xfs_notice(mp, "Ending recovery (logdev: %s)", 816 mp->m_logname ? mp->m_logname : "internal"); 817 } else { 818 xfs_info(mp, "Ending clean mount"); 819 } 820 xfs_buftarg_drain(mp->m_ddev_targp); 821 822 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 823 824 /* Make sure the log is dead if we're returning failure. */ 825 ASSERT(!error || xlog_is_shutdown(log)); 826 827 return error; 828 } 829 830 /* 831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 832 * the log. 833 */ 834 void 835 xfs_log_mount_cancel( 836 struct xfs_mount *mp) 837 { 838 xlog_recover_cancel(mp->m_log); 839 xfs_log_unmount(mp); 840 } 841 842 /* 843 * Flush out the iclog to disk ensuring that device caches are flushed and 844 * the iclog hits stable storage before any completion waiters are woken. 845 */ 846 static inline int 847 xlog_force_iclog( 848 struct xlog_in_core *iclog) 849 { 850 atomic_inc(&iclog->ic_refcnt); 851 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 852 if (iclog->ic_state == XLOG_STATE_ACTIVE) 853 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 854 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 855 } 856 857 /* 858 * Cycle all the iclogbuf locks to make sure all log IO completion 859 * is done before we tear down these buffers. 860 */ 861 static void 862 xlog_wait_iclog_completion(struct xlog *log) 863 { 864 int i; 865 struct xlog_in_core *iclog = log->l_iclog; 866 867 for (i = 0; i < log->l_iclog_bufs; i++) { 868 down(&iclog->ic_sema); 869 up(&iclog->ic_sema); 870 iclog = iclog->ic_next; 871 } 872 } 873 874 /* 875 * Wait for the iclog and all prior iclogs to be written disk as required by the 876 * log force state machine. Waiting on ic_force_wait ensures iclog completions 877 * have been ordered and callbacks run before we are woken here, hence 878 * guaranteeing that all the iclogs up to this one are on stable storage. 879 */ 880 int 881 xlog_wait_on_iclog( 882 struct xlog_in_core *iclog) 883 __releases(iclog->ic_log->l_icloglock) 884 { 885 struct xlog *log = iclog->ic_log; 886 887 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 888 if (!xlog_is_shutdown(log) && 889 iclog->ic_state != XLOG_STATE_ACTIVE && 890 iclog->ic_state != XLOG_STATE_DIRTY) { 891 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 892 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 893 } else { 894 spin_unlock(&log->l_icloglock); 895 } 896 897 if (xlog_is_shutdown(log)) 898 return -EIO; 899 return 0; 900 } 901 902 /* 903 * Write out an unmount record using the ticket provided. We have to account for 904 * the data space used in the unmount ticket as this write is not done from a 905 * transaction context that has already done the accounting for us. 906 */ 907 static int 908 xlog_write_unmount_record( 909 struct xlog *log, 910 struct xlog_ticket *ticket) 911 { 912 struct { 913 struct xlog_op_header ophdr; 914 struct xfs_unmount_log_format ulf; 915 } unmount_rec = { 916 .ophdr = { 917 .oh_clientid = XFS_LOG, 918 .oh_tid = cpu_to_be32(ticket->t_tid), 919 .oh_flags = XLOG_UNMOUNT_TRANS, 920 }, 921 .ulf = { 922 .magic = XLOG_UNMOUNT_TYPE, 923 }, 924 }; 925 struct xfs_log_iovec reg = { 926 .i_addr = &unmount_rec, 927 .i_len = sizeof(unmount_rec), 928 .i_type = XLOG_REG_TYPE_UNMOUNT, 929 }; 930 struct xfs_log_vec vec = { 931 .lv_niovecs = 1, 932 .lv_iovecp = ®, 933 }; 934 LIST_HEAD(lv_chain); 935 list_add(&vec.lv_list, &lv_chain); 936 937 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 938 sizeof(struct xfs_unmount_log_format)) != 939 sizeof(unmount_rec)); 940 941 /* account for space used by record data */ 942 ticket->t_curr_res -= sizeof(unmount_rec); 943 944 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 945 } 946 947 /* 948 * Mark the filesystem clean by writing an unmount record to the head of the 949 * log. 950 */ 951 static void 952 xlog_unmount_write( 953 struct xlog *log) 954 { 955 struct xfs_mount *mp = log->l_mp; 956 struct xlog_in_core *iclog; 957 struct xlog_ticket *tic = NULL; 958 int error; 959 960 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 961 if (error) 962 goto out_err; 963 964 error = xlog_write_unmount_record(log, tic); 965 /* 966 * At this point, we're umounting anyway, so there's no point in 967 * transitioning log state to shutdown. Just continue... 968 */ 969 out_err: 970 if (error) 971 xfs_alert(mp, "%s: unmount record failed", __func__); 972 973 spin_lock(&log->l_icloglock); 974 iclog = log->l_iclog; 975 error = xlog_force_iclog(iclog); 976 xlog_wait_on_iclog(iclog); 977 978 if (tic) { 979 trace_xfs_log_umount_write(log, tic); 980 xfs_log_ticket_ungrant(log, tic); 981 } 982 } 983 984 static void 985 xfs_log_unmount_verify_iclog( 986 struct xlog *log) 987 { 988 struct xlog_in_core *iclog = log->l_iclog; 989 990 do { 991 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 992 ASSERT(iclog->ic_offset == 0); 993 } while ((iclog = iclog->ic_next) != log->l_iclog); 994 } 995 996 /* 997 * Unmount record used to have a string "Unmount filesystem--" in the 998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 999 * We just write the magic number now since that particular field isn't 1000 * currently architecture converted and "Unmount" is a bit foo. 1001 * As far as I know, there weren't any dependencies on the old behaviour. 1002 */ 1003 static void 1004 xfs_log_unmount_write( 1005 struct xfs_mount *mp) 1006 { 1007 struct xlog *log = mp->m_log; 1008 1009 if (!xfs_log_writable(mp)) 1010 return; 1011 1012 xfs_log_force(mp, XFS_LOG_SYNC); 1013 1014 if (xlog_is_shutdown(log)) 1015 return; 1016 1017 /* 1018 * If we think the summary counters are bad, avoid writing the unmount 1019 * record to force log recovery at next mount, after which the summary 1020 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1021 * more details. 1022 */ 1023 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1024 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1025 xfs_alert(mp, "%s: will fix summary counters at next mount", 1026 __func__); 1027 return; 1028 } 1029 1030 xfs_log_unmount_verify_iclog(log); 1031 xlog_unmount_write(log); 1032 } 1033 1034 /* 1035 * Empty the log for unmount/freeze. 1036 * 1037 * To do this, we first need to shut down the background log work so it is not 1038 * trying to cover the log as we clean up. We then need to unpin all objects in 1039 * the log so we can then flush them out. Once they have completed their IO and 1040 * run the callbacks removing themselves from the AIL, we can cover the log. 1041 */ 1042 int 1043 xfs_log_quiesce( 1044 struct xfs_mount *mp) 1045 { 1046 /* 1047 * Clear log incompat features since we're quiescing the log. Report 1048 * failures, though it's not fatal to have a higher log feature 1049 * protection level than the log contents actually require. 1050 */ 1051 if (xfs_clear_incompat_log_features(mp)) { 1052 int error; 1053 1054 error = xfs_sync_sb(mp, false); 1055 if (error) 1056 xfs_warn(mp, 1057 "Failed to clear log incompat features on quiesce"); 1058 } 1059 1060 cancel_delayed_work_sync(&mp->m_log->l_work); 1061 xfs_log_force(mp, XFS_LOG_SYNC); 1062 1063 /* 1064 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1065 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1066 * xfs_buf_iowait() cannot be used because it was pushed with the 1067 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1068 * the IO to complete. 1069 */ 1070 xfs_ail_push_all_sync(mp->m_ail); 1071 xfs_buftarg_wait(mp->m_ddev_targp); 1072 xfs_buf_lock(mp->m_sb_bp); 1073 xfs_buf_unlock(mp->m_sb_bp); 1074 1075 return xfs_log_cover(mp); 1076 } 1077 1078 void 1079 xfs_log_clean( 1080 struct xfs_mount *mp) 1081 { 1082 xfs_log_quiesce(mp); 1083 xfs_log_unmount_write(mp); 1084 } 1085 1086 /* 1087 * Shut down and release the AIL and Log. 1088 * 1089 * During unmount, we need to ensure we flush all the dirty metadata objects 1090 * from the AIL so that the log is empty before we write the unmount record to 1091 * the log. Once this is done, we can tear down the AIL and the log. 1092 */ 1093 void 1094 xfs_log_unmount( 1095 struct xfs_mount *mp) 1096 { 1097 xfs_log_clean(mp); 1098 1099 /* 1100 * If shutdown has come from iclog IO context, the log 1101 * cleaning will have been skipped and so we need to wait 1102 * for the iclog to complete shutdown processing before we 1103 * tear anything down. 1104 */ 1105 xlog_wait_iclog_completion(mp->m_log); 1106 1107 xfs_buftarg_drain(mp->m_ddev_targp); 1108 1109 xfs_trans_ail_destroy(mp); 1110 1111 xfs_sysfs_del(&mp->m_log->l_kobj); 1112 1113 xlog_dealloc_log(mp->m_log); 1114 } 1115 1116 void 1117 xfs_log_item_init( 1118 struct xfs_mount *mp, 1119 struct xfs_log_item *item, 1120 int type, 1121 const struct xfs_item_ops *ops) 1122 { 1123 item->li_log = mp->m_log; 1124 item->li_ailp = mp->m_ail; 1125 item->li_type = type; 1126 item->li_ops = ops; 1127 item->li_lv = NULL; 1128 1129 INIT_LIST_HEAD(&item->li_ail); 1130 INIT_LIST_HEAD(&item->li_cil); 1131 INIT_LIST_HEAD(&item->li_bio_list); 1132 INIT_LIST_HEAD(&item->li_trans); 1133 } 1134 1135 /* 1136 * Wake up processes waiting for log space after we have moved the log tail. 1137 */ 1138 void 1139 xfs_log_space_wake( 1140 struct xfs_mount *mp) 1141 { 1142 struct xlog *log = mp->m_log; 1143 int free_bytes; 1144 1145 if (xlog_is_shutdown(log)) 1146 return; 1147 1148 if (!list_empty_careful(&log->l_write_head.waiters)) { 1149 ASSERT(!xlog_in_recovery(log)); 1150 1151 spin_lock(&log->l_write_head.lock); 1152 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1153 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1154 spin_unlock(&log->l_write_head.lock); 1155 } 1156 1157 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1158 ASSERT(!xlog_in_recovery(log)); 1159 1160 spin_lock(&log->l_reserve_head.lock); 1161 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1162 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1163 spin_unlock(&log->l_reserve_head.lock); 1164 } 1165 } 1166 1167 /* 1168 * Determine if we have a transaction that has gone to disk that needs to be 1169 * covered. To begin the transition to the idle state firstly the log needs to 1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1171 * we start attempting to cover the log. 1172 * 1173 * Only if we are then in a state where covering is needed, the caller is 1174 * informed that dummy transactions are required to move the log into the idle 1175 * state. 1176 * 1177 * If there are any items in the AIl or CIL, then we do not want to attempt to 1178 * cover the log as we may be in a situation where there isn't log space 1179 * available to run a dummy transaction and this can lead to deadlocks when the 1180 * tail of the log is pinned by an item that is modified in the CIL. Hence 1181 * there's no point in running a dummy transaction at this point because we 1182 * can't start trying to idle the log until both the CIL and AIL are empty. 1183 */ 1184 static bool 1185 xfs_log_need_covered( 1186 struct xfs_mount *mp) 1187 { 1188 struct xlog *log = mp->m_log; 1189 bool needed = false; 1190 1191 if (!xlog_cil_empty(log)) 1192 return false; 1193 1194 spin_lock(&log->l_icloglock); 1195 switch (log->l_covered_state) { 1196 case XLOG_STATE_COVER_DONE: 1197 case XLOG_STATE_COVER_DONE2: 1198 case XLOG_STATE_COVER_IDLE: 1199 break; 1200 case XLOG_STATE_COVER_NEED: 1201 case XLOG_STATE_COVER_NEED2: 1202 if (xfs_ail_min_lsn(log->l_ailp)) 1203 break; 1204 if (!xlog_iclogs_empty(log)) 1205 break; 1206 1207 needed = true; 1208 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1209 log->l_covered_state = XLOG_STATE_COVER_DONE; 1210 else 1211 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1212 break; 1213 default: 1214 needed = true; 1215 break; 1216 } 1217 spin_unlock(&log->l_icloglock); 1218 return needed; 1219 } 1220 1221 /* 1222 * Explicitly cover the log. This is similar to background log covering but 1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1225 * must all be empty. 1226 */ 1227 static int 1228 xfs_log_cover( 1229 struct xfs_mount *mp) 1230 { 1231 int error = 0; 1232 bool need_covered; 1233 1234 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1235 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1236 xlog_is_shutdown(mp->m_log)); 1237 1238 if (!xfs_log_writable(mp)) 1239 return 0; 1240 1241 /* 1242 * xfs_log_need_covered() is not idempotent because it progresses the 1243 * state machine if the log requires covering. Therefore, we must call 1244 * this function once and use the result until we've issued an sb sync. 1245 * Do so first to make that abundantly clear. 1246 * 1247 * Fall into the covering sequence if the log needs covering or the 1248 * mount has lazy superblock accounting to sync to disk. The sb sync 1249 * used for covering accumulates the in-core counters, so covering 1250 * handles this for us. 1251 */ 1252 need_covered = xfs_log_need_covered(mp); 1253 if (!need_covered && !xfs_has_lazysbcount(mp)) 1254 return 0; 1255 1256 /* 1257 * To cover the log, commit the superblock twice (at most) in 1258 * independent checkpoints. The first serves as a reference for the 1259 * tail pointer. The sync transaction and AIL push empties the AIL and 1260 * updates the in-core tail to the LSN of the first checkpoint. The 1261 * second commit updates the on-disk tail with the in-core LSN, 1262 * covering the log. Push the AIL one more time to leave it empty, as 1263 * we found it. 1264 */ 1265 do { 1266 error = xfs_sync_sb(mp, true); 1267 if (error) 1268 break; 1269 xfs_ail_push_all_sync(mp->m_ail); 1270 } while (xfs_log_need_covered(mp)); 1271 1272 return error; 1273 } 1274 1275 /* 1276 * We may be holding the log iclog lock upon entering this routine. 1277 */ 1278 xfs_lsn_t 1279 xlog_assign_tail_lsn_locked( 1280 struct xfs_mount *mp) 1281 { 1282 struct xlog *log = mp->m_log; 1283 struct xfs_log_item *lip; 1284 xfs_lsn_t tail_lsn; 1285 1286 assert_spin_locked(&mp->m_ail->ail_lock); 1287 1288 /* 1289 * To make sure we always have a valid LSN for the log tail we keep 1290 * track of the last LSN which was committed in log->l_last_sync_lsn, 1291 * and use that when the AIL was empty. 1292 */ 1293 lip = xfs_ail_min(mp->m_ail); 1294 if (lip) 1295 tail_lsn = lip->li_lsn; 1296 else 1297 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1298 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1299 atomic64_set(&log->l_tail_lsn, tail_lsn); 1300 return tail_lsn; 1301 } 1302 1303 xfs_lsn_t 1304 xlog_assign_tail_lsn( 1305 struct xfs_mount *mp) 1306 { 1307 xfs_lsn_t tail_lsn; 1308 1309 spin_lock(&mp->m_ail->ail_lock); 1310 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1311 spin_unlock(&mp->m_ail->ail_lock); 1312 1313 return tail_lsn; 1314 } 1315 1316 /* 1317 * Return the space in the log between the tail and the head. The head 1318 * is passed in the cycle/bytes formal parms. In the special case where 1319 * the reserve head has wrapped passed the tail, this calculation is no 1320 * longer valid. In this case, just return 0 which means there is no space 1321 * in the log. This works for all places where this function is called 1322 * with the reserve head. Of course, if the write head were to ever 1323 * wrap the tail, we should blow up. Rather than catch this case here, 1324 * we depend on other ASSERTions in other parts of the code. XXXmiken 1325 * 1326 * If reservation head is behind the tail, we have a problem. Warn about it, 1327 * but then treat it as if the log is empty. 1328 * 1329 * If the log is shut down, the head and tail may be invalid or out of whack, so 1330 * shortcut invalidity asserts in this case so that we don't trigger them 1331 * falsely. 1332 */ 1333 STATIC int 1334 xlog_space_left( 1335 struct xlog *log, 1336 atomic64_t *head) 1337 { 1338 int tail_bytes; 1339 int tail_cycle; 1340 int head_cycle; 1341 int head_bytes; 1342 1343 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1344 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1345 tail_bytes = BBTOB(tail_bytes); 1346 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1347 return log->l_logsize - (head_bytes - tail_bytes); 1348 if (tail_cycle + 1 < head_cycle) 1349 return 0; 1350 1351 /* Ignore potential inconsistency when shutdown. */ 1352 if (xlog_is_shutdown(log)) 1353 return log->l_logsize; 1354 1355 if (tail_cycle < head_cycle) { 1356 ASSERT(tail_cycle == (head_cycle - 1)); 1357 return tail_bytes - head_bytes; 1358 } 1359 1360 /* 1361 * The reservation head is behind the tail. In this case we just want to 1362 * return the size of the log as the amount of space left. 1363 */ 1364 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1365 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1366 tail_cycle, tail_bytes); 1367 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1368 head_cycle, head_bytes); 1369 ASSERT(0); 1370 return log->l_logsize; 1371 } 1372 1373 1374 static void 1375 xlog_ioend_work( 1376 struct work_struct *work) 1377 { 1378 struct xlog_in_core *iclog = 1379 container_of(work, struct xlog_in_core, ic_end_io_work); 1380 struct xlog *log = iclog->ic_log; 1381 int error; 1382 1383 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1384 #ifdef DEBUG 1385 /* treat writes with injected CRC errors as failed */ 1386 if (iclog->ic_fail_crc) 1387 error = -EIO; 1388 #endif 1389 1390 /* 1391 * Race to shutdown the filesystem if we see an error. 1392 */ 1393 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1394 xfs_alert(log->l_mp, "log I/O error %d", error); 1395 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1396 } 1397 1398 xlog_state_done_syncing(iclog); 1399 bio_uninit(&iclog->ic_bio); 1400 1401 /* 1402 * Drop the lock to signal that we are done. Nothing references the 1403 * iclog after this, so an unmount waiting on this lock can now tear it 1404 * down safely. As such, it is unsafe to reference the iclog after the 1405 * unlock as we could race with it being freed. 1406 */ 1407 up(&iclog->ic_sema); 1408 } 1409 1410 /* 1411 * Return size of each in-core log record buffer. 1412 * 1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1414 * 1415 * If the filesystem blocksize is too large, we may need to choose a 1416 * larger size since the directory code currently logs entire blocks. 1417 */ 1418 STATIC void 1419 xlog_get_iclog_buffer_size( 1420 struct xfs_mount *mp, 1421 struct xlog *log) 1422 { 1423 if (mp->m_logbufs <= 0) 1424 mp->m_logbufs = XLOG_MAX_ICLOGS; 1425 if (mp->m_logbsize <= 0) 1426 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1427 1428 log->l_iclog_bufs = mp->m_logbufs; 1429 log->l_iclog_size = mp->m_logbsize; 1430 1431 /* 1432 * # headers = size / 32k - one header holds cycles from 32k of data. 1433 */ 1434 log->l_iclog_heads = 1435 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1436 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1437 } 1438 1439 void 1440 xfs_log_work_queue( 1441 struct xfs_mount *mp) 1442 { 1443 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1444 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1445 } 1446 1447 /* 1448 * Clear the log incompat flags if we have the opportunity. 1449 * 1450 * This only happens if we're about to log the second dummy transaction as part 1451 * of covering the log and we can get the log incompat feature usage lock. 1452 */ 1453 static inline void 1454 xlog_clear_incompat( 1455 struct xlog *log) 1456 { 1457 struct xfs_mount *mp = log->l_mp; 1458 1459 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1460 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1461 return; 1462 1463 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1464 return; 1465 1466 if (!down_write_trylock(&log->l_incompat_users)) 1467 return; 1468 1469 xfs_clear_incompat_log_features(mp); 1470 up_write(&log->l_incompat_users); 1471 } 1472 1473 /* 1474 * Every sync period we need to unpin all items in the AIL and push them to 1475 * disk. If there is nothing dirty, then we might need to cover the log to 1476 * indicate that the filesystem is idle. 1477 */ 1478 static void 1479 xfs_log_worker( 1480 struct work_struct *work) 1481 { 1482 struct xlog *log = container_of(to_delayed_work(work), 1483 struct xlog, l_work); 1484 struct xfs_mount *mp = log->l_mp; 1485 1486 /* dgc: errors ignored - not fatal and nowhere to report them */ 1487 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1488 /* 1489 * Dump a transaction into the log that contains no real change. 1490 * This is needed to stamp the current tail LSN into the log 1491 * during the covering operation. 1492 * 1493 * We cannot use an inode here for this - that will push dirty 1494 * state back up into the VFS and then periodic inode flushing 1495 * will prevent log covering from making progress. Hence we 1496 * synchronously log the superblock instead to ensure the 1497 * superblock is immediately unpinned and can be written back. 1498 */ 1499 xlog_clear_incompat(log); 1500 xfs_sync_sb(mp, true); 1501 } else 1502 xfs_log_force(mp, 0); 1503 1504 /* start pushing all the metadata that is currently dirty */ 1505 xfs_ail_push_all(mp->m_ail); 1506 1507 /* queue us up again */ 1508 xfs_log_work_queue(mp); 1509 } 1510 1511 /* 1512 * This routine initializes some of the log structure for a given mount point. 1513 * Its primary purpose is to fill in enough, so recovery can occur. However, 1514 * some other stuff may be filled in too. 1515 */ 1516 STATIC struct xlog * 1517 xlog_alloc_log( 1518 struct xfs_mount *mp, 1519 struct xfs_buftarg *log_target, 1520 xfs_daddr_t blk_offset, 1521 int num_bblks) 1522 { 1523 struct xlog *log; 1524 xlog_rec_header_t *head; 1525 xlog_in_core_t **iclogp; 1526 xlog_in_core_t *iclog, *prev_iclog=NULL; 1527 int i; 1528 int error = -ENOMEM; 1529 uint log2_size = 0; 1530 1531 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1532 if (!log) { 1533 xfs_warn(mp, "Log allocation failed: No memory!"); 1534 goto out; 1535 } 1536 1537 log->l_mp = mp; 1538 log->l_targ = log_target; 1539 log->l_logsize = BBTOB(num_bblks); 1540 log->l_logBBstart = blk_offset; 1541 log->l_logBBsize = num_bblks; 1542 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1543 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1544 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1545 INIT_LIST_HEAD(&log->r_dfops); 1546 1547 log->l_prev_block = -1; 1548 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1549 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1550 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1551 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1552 1553 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1554 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1555 else 1556 log->l_iclog_roundoff = BBSIZE; 1557 1558 xlog_grant_head_init(&log->l_reserve_head); 1559 xlog_grant_head_init(&log->l_write_head); 1560 1561 error = -EFSCORRUPTED; 1562 if (xfs_has_sector(mp)) { 1563 log2_size = mp->m_sb.sb_logsectlog; 1564 if (log2_size < BBSHIFT) { 1565 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1566 log2_size, BBSHIFT); 1567 goto out_free_log; 1568 } 1569 1570 log2_size -= BBSHIFT; 1571 if (log2_size > mp->m_sectbb_log) { 1572 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1573 log2_size, mp->m_sectbb_log); 1574 goto out_free_log; 1575 } 1576 1577 /* for larger sector sizes, must have v2 or external log */ 1578 if (log2_size && log->l_logBBstart > 0 && 1579 !xfs_has_logv2(mp)) { 1580 xfs_warn(mp, 1581 "log sector size (0x%x) invalid for configuration.", 1582 log2_size); 1583 goto out_free_log; 1584 } 1585 } 1586 log->l_sectBBsize = 1 << log2_size; 1587 1588 init_rwsem(&log->l_incompat_users); 1589 1590 xlog_get_iclog_buffer_size(mp, log); 1591 1592 spin_lock_init(&log->l_icloglock); 1593 init_waitqueue_head(&log->l_flush_wait); 1594 1595 iclogp = &log->l_iclog; 1596 /* 1597 * The amount of memory to allocate for the iclog structure is 1598 * rather funky due to the way the structure is defined. It is 1599 * done this way so that we can use different sizes for machines 1600 * with different amounts of memory. See the definition of 1601 * xlog_in_core_t in xfs_log_priv.h for details. 1602 */ 1603 ASSERT(log->l_iclog_size >= 4096); 1604 for (i = 0; i < log->l_iclog_bufs; i++) { 1605 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1606 sizeof(struct bio_vec); 1607 1608 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1609 if (!iclog) 1610 goto out_free_iclog; 1611 1612 *iclogp = iclog; 1613 iclog->ic_prev = prev_iclog; 1614 prev_iclog = iclog; 1615 1616 iclog->ic_data = kvzalloc(log->l_iclog_size, 1617 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1618 if (!iclog->ic_data) 1619 goto out_free_iclog; 1620 head = &iclog->ic_header; 1621 memset(head, 0, sizeof(xlog_rec_header_t)); 1622 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1623 head->h_version = cpu_to_be32( 1624 xfs_has_logv2(log->l_mp) ? 2 : 1); 1625 head->h_size = cpu_to_be32(log->l_iclog_size); 1626 /* new fields */ 1627 head->h_fmt = cpu_to_be32(XLOG_FMT); 1628 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1629 1630 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1631 iclog->ic_state = XLOG_STATE_ACTIVE; 1632 iclog->ic_log = log; 1633 atomic_set(&iclog->ic_refcnt, 0); 1634 INIT_LIST_HEAD(&iclog->ic_callbacks); 1635 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1636 1637 init_waitqueue_head(&iclog->ic_force_wait); 1638 init_waitqueue_head(&iclog->ic_write_wait); 1639 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1640 sema_init(&iclog->ic_sema, 1); 1641 1642 iclogp = &iclog->ic_next; 1643 } 1644 *iclogp = log->l_iclog; /* complete ring */ 1645 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1646 1647 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1648 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1649 WQ_HIGHPRI), 1650 0, mp->m_super->s_id); 1651 if (!log->l_ioend_workqueue) 1652 goto out_free_iclog; 1653 1654 error = xlog_cil_init(log); 1655 if (error) 1656 goto out_destroy_workqueue; 1657 return log; 1658 1659 out_destroy_workqueue: 1660 destroy_workqueue(log->l_ioend_workqueue); 1661 out_free_iclog: 1662 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1663 prev_iclog = iclog->ic_next; 1664 kmem_free(iclog->ic_data); 1665 kmem_free(iclog); 1666 if (prev_iclog == log->l_iclog) 1667 break; 1668 } 1669 out_free_log: 1670 kmem_free(log); 1671 out: 1672 return ERR_PTR(error); 1673 } /* xlog_alloc_log */ 1674 1675 /* 1676 * Compute the LSN that we'd need to push the log tail towards in order to have 1677 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1678 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1679 * log free space already meets all three thresholds, this function returns 1680 * NULLCOMMITLSN. 1681 */ 1682 xfs_lsn_t 1683 xlog_grant_push_threshold( 1684 struct xlog *log, 1685 int need_bytes) 1686 { 1687 xfs_lsn_t threshold_lsn = 0; 1688 xfs_lsn_t last_sync_lsn; 1689 int free_blocks; 1690 int free_bytes; 1691 int threshold_block; 1692 int threshold_cycle; 1693 int free_threshold; 1694 1695 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1696 1697 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1698 free_blocks = BTOBBT(free_bytes); 1699 1700 /* 1701 * Set the threshold for the minimum number of free blocks in the 1702 * log to the maximum of what the caller needs, one quarter of the 1703 * log, and 256 blocks. 1704 */ 1705 free_threshold = BTOBB(need_bytes); 1706 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1707 free_threshold = max(free_threshold, 256); 1708 if (free_blocks >= free_threshold) 1709 return NULLCOMMITLSN; 1710 1711 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1712 &threshold_block); 1713 threshold_block += free_threshold; 1714 if (threshold_block >= log->l_logBBsize) { 1715 threshold_block -= log->l_logBBsize; 1716 threshold_cycle += 1; 1717 } 1718 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1719 threshold_block); 1720 /* 1721 * Don't pass in an lsn greater than the lsn of the last 1722 * log record known to be on disk. Use a snapshot of the last sync lsn 1723 * so that it doesn't change between the compare and the set. 1724 */ 1725 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1726 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1727 threshold_lsn = last_sync_lsn; 1728 1729 return threshold_lsn; 1730 } 1731 1732 /* 1733 * Push the tail of the log if we need to do so to maintain the free log space 1734 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1735 * policy which pushes on an lsn which is further along in the log once we 1736 * reach the high water mark. In this manner, we would be creating a low water 1737 * mark. 1738 */ 1739 STATIC void 1740 xlog_grant_push_ail( 1741 struct xlog *log, 1742 int need_bytes) 1743 { 1744 xfs_lsn_t threshold_lsn; 1745 1746 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1747 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1748 return; 1749 1750 /* 1751 * Get the transaction layer to kick the dirty buffers out to 1752 * disk asynchronously. No point in trying to do this if 1753 * the filesystem is shutting down. 1754 */ 1755 xfs_ail_push(log->l_ailp, threshold_lsn); 1756 } 1757 1758 /* 1759 * Stamp cycle number in every block 1760 */ 1761 STATIC void 1762 xlog_pack_data( 1763 struct xlog *log, 1764 struct xlog_in_core *iclog, 1765 int roundoff) 1766 { 1767 int i, j, k; 1768 int size = iclog->ic_offset + roundoff; 1769 __be32 cycle_lsn; 1770 char *dp; 1771 1772 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1773 1774 dp = iclog->ic_datap; 1775 for (i = 0; i < BTOBB(size); i++) { 1776 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1777 break; 1778 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1779 *(__be32 *)dp = cycle_lsn; 1780 dp += BBSIZE; 1781 } 1782 1783 if (xfs_has_logv2(log->l_mp)) { 1784 xlog_in_core_2_t *xhdr = iclog->ic_data; 1785 1786 for ( ; i < BTOBB(size); i++) { 1787 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1788 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1789 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1790 *(__be32 *)dp = cycle_lsn; 1791 dp += BBSIZE; 1792 } 1793 1794 for (i = 1; i < log->l_iclog_heads; i++) 1795 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1796 } 1797 } 1798 1799 /* 1800 * Calculate the checksum for a log buffer. 1801 * 1802 * This is a little more complicated than it should be because the various 1803 * headers and the actual data are non-contiguous. 1804 */ 1805 __le32 1806 xlog_cksum( 1807 struct xlog *log, 1808 struct xlog_rec_header *rhead, 1809 char *dp, 1810 int size) 1811 { 1812 uint32_t crc; 1813 1814 /* first generate the crc for the record header ... */ 1815 crc = xfs_start_cksum_update((char *)rhead, 1816 sizeof(struct xlog_rec_header), 1817 offsetof(struct xlog_rec_header, h_crc)); 1818 1819 /* ... then for additional cycle data for v2 logs ... */ 1820 if (xfs_has_logv2(log->l_mp)) { 1821 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1822 int i; 1823 int xheads; 1824 1825 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1826 1827 for (i = 1; i < xheads; i++) { 1828 crc = crc32c(crc, &xhdr[i].hic_xheader, 1829 sizeof(struct xlog_rec_ext_header)); 1830 } 1831 } 1832 1833 /* ... and finally for the payload */ 1834 crc = crc32c(crc, dp, size); 1835 1836 return xfs_end_cksum(crc); 1837 } 1838 1839 static void 1840 xlog_bio_end_io( 1841 struct bio *bio) 1842 { 1843 struct xlog_in_core *iclog = bio->bi_private; 1844 1845 queue_work(iclog->ic_log->l_ioend_workqueue, 1846 &iclog->ic_end_io_work); 1847 } 1848 1849 static int 1850 xlog_map_iclog_data( 1851 struct bio *bio, 1852 void *data, 1853 size_t count) 1854 { 1855 do { 1856 struct page *page = kmem_to_page(data); 1857 unsigned int off = offset_in_page(data); 1858 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1859 1860 if (bio_add_page(bio, page, len, off) != len) 1861 return -EIO; 1862 1863 data += len; 1864 count -= len; 1865 } while (count); 1866 1867 return 0; 1868 } 1869 1870 STATIC void 1871 xlog_write_iclog( 1872 struct xlog *log, 1873 struct xlog_in_core *iclog, 1874 uint64_t bno, 1875 unsigned int count) 1876 { 1877 ASSERT(bno < log->l_logBBsize); 1878 trace_xlog_iclog_write(iclog, _RET_IP_); 1879 1880 /* 1881 * We lock the iclogbufs here so that we can serialise against I/O 1882 * completion during unmount. We might be processing a shutdown 1883 * triggered during unmount, and that can occur asynchronously to the 1884 * unmount thread, and hence we need to ensure that completes before 1885 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1886 * across the log IO to archieve that. 1887 */ 1888 down(&iclog->ic_sema); 1889 if (xlog_is_shutdown(log)) { 1890 /* 1891 * It would seem logical to return EIO here, but we rely on 1892 * the log state machine to propagate I/O errors instead of 1893 * doing it here. We kick of the state machine and unlock 1894 * the buffer manually, the code needs to be kept in sync 1895 * with the I/O completion path. 1896 */ 1897 goto sync; 1898 } 1899 1900 /* 1901 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1902 * IOs coming immediately after this one. This prevents the block layer 1903 * writeback throttle from throttling log writes behind background 1904 * metadata writeback and causing priority inversions. 1905 */ 1906 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1907 howmany(count, PAGE_SIZE), 1908 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1909 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1910 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1911 iclog->ic_bio.bi_private = iclog; 1912 1913 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1914 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1915 /* 1916 * For external log devices, we also need to flush the data 1917 * device cache first to ensure all metadata writeback covered 1918 * by the LSN in this iclog is on stable storage. This is slow, 1919 * but it *must* complete before we issue the external log IO. 1920 * 1921 * If the flush fails, we cannot conclude that past metadata 1922 * writeback from the log succeeded. Repeating the flush is 1923 * not possible, hence we must shut down with log IO error to 1924 * avoid shutdown re-entering this path and erroring out again. 1925 */ 1926 if (log->l_targ != log->l_mp->m_ddev_targp && 1927 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) 1928 goto shutdown; 1929 } 1930 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1931 iclog->ic_bio.bi_opf |= REQ_FUA; 1932 1933 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1934 1935 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) 1936 goto shutdown; 1937 1938 if (is_vmalloc_addr(iclog->ic_data)) 1939 flush_kernel_vmap_range(iclog->ic_data, count); 1940 1941 /* 1942 * If this log buffer would straddle the end of the log we will have 1943 * to split it up into two bios, so that we can continue at the start. 1944 */ 1945 if (bno + BTOBB(count) > log->l_logBBsize) { 1946 struct bio *split; 1947 1948 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1949 GFP_NOIO, &fs_bio_set); 1950 bio_chain(split, &iclog->ic_bio); 1951 submit_bio(split); 1952 1953 /* restart at logical offset zero for the remainder */ 1954 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1955 } 1956 1957 submit_bio(&iclog->ic_bio); 1958 return; 1959 shutdown: 1960 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1961 sync: 1962 xlog_state_done_syncing(iclog); 1963 up(&iclog->ic_sema); 1964 } 1965 1966 /* 1967 * We need to bump cycle number for the part of the iclog that is 1968 * written to the start of the log. Watch out for the header magic 1969 * number case, though. 1970 */ 1971 static void 1972 xlog_split_iclog( 1973 struct xlog *log, 1974 void *data, 1975 uint64_t bno, 1976 unsigned int count) 1977 { 1978 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1979 unsigned int i; 1980 1981 for (i = split_offset; i < count; i += BBSIZE) { 1982 uint32_t cycle = get_unaligned_be32(data + i); 1983 1984 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1985 cycle++; 1986 put_unaligned_be32(cycle, data + i); 1987 } 1988 } 1989 1990 static int 1991 xlog_calc_iclog_size( 1992 struct xlog *log, 1993 struct xlog_in_core *iclog, 1994 uint32_t *roundoff) 1995 { 1996 uint32_t count_init, count; 1997 1998 /* Add for LR header */ 1999 count_init = log->l_iclog_hsize + iclog->ic_offset; 2000 count = roundup(count_init, log->l_iclog_roundoff); 2001 2002 *roundoff = count - count_init; 2003 2004 ASSERT(count >= count_init); 2005 ASSERT(*roundoff < log->l_iclog_roundoff); 2006 return count; 2007 } 2008 2009 /* 2010 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2011 * fashion. Previously, we should have moved the current iclog 2012 * ptr in the log to point to the next available iclog. This allows further 2013 * write to continue while this code syncs out an iclog ready to go. 2014 * Before an in-core log can be written out, the data section must be scanned 2015 * to save away the 1st word of each BBSIZE block into the header. We replace 2016 * it with the current cycle count. Each BBSIZE block is tagged with the 2017 * cycle count because there in an implicit assumption that drives will 2018 * guarantee that entire 512 byte blocks get written at once. In other words, 2019 * we can't have part of a 512 byte block written and part not written. By 2020 * tagging each block, we will know which blocks are valid when recovering 2021 * after an unclean shutdown. 2022 * 2023 * This routine is single threaded on the iclog. No other thread can be in 2024 * this routine with the same iclog. Changing contents of iclog can there- 2025 * fore be done without grabbing the state machine lock. Updating the global 2026 * log will require grabbing the lock though. 2027 * 2028 * The entire log manager uses a logical block numbering scheme. Only 2029 * xlog_write_iclog knows about the fact that the log may not start with 2030 * block zero on a given device. 2031 */ 2032 STATIC void 2033 xlog_sync( 2034 struct xlog *log, 2035 struct xlog_in_core *iclog, 2036 struct xlog_ticket *ticket) 2037 { 2038 unsigned int count; /* byte count of bwrite */ 2039 unsigned int roundoff; /* roundoff to BB or stripe */ 2040 uint64_t bno; 2041 unsigned int size; 2042 2043 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2044 trace_xlog_iclog_sync(iclog, _RET_IP_); 2045 2046 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2047 2048 /* 2049 * If we have a ticket, account for the roundoff via the ticket 2050 * reservation to avoid touching the hot grant heads needlessly. 2051 * Otherwise, we have to move grant heads directly. 2052 */ 2053 if (ticket) { 2054 ticket->t_curr_res -= roundoff; 2055 } else { 2056 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2057 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2058 } 2059 2060 /* put cycle number in every block */ 2061 xlog_pack_data(log, iclog, roundoff); 2062 2063 /* real byte length */ 2064 size = iclog->ic_offset; 2065 if (xfs_has_logv2(log->l_mp)) 2066 size += roundoff; 2067 iclog->ic_header.h_len = cpu_to_be32(size); 2068 2069 XFS_STATS_INC(log->l_mp, xs_log_writes); 2070 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2071 2072 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2073 2074 /* Do we need to split this write into 2 parts? */ 2075 if (bno + BTOBB(count) > log->l_logBBsize) 2076 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2077 2078 /* calculcate the checksum */ 2079 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2080 iclog->ic_datap, size); 2081 /* 2082 * Intentionally corrupt the log record CRC based on the error injection 2083 * frequency, if defined. This facilitates testing log recovery in the 2084 * event of torn writes. Hence, set the IOABORT state to abort the log 2085 * write on I/O completion and shutdown the fs. The subsequent mount 2086 * detects the bad CRC and attempts to recover. 2087 */ 2088 #ifdef DEBUG 2089 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2090 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2091 iclog->ic_fail_crc = true; 2092 xfs_warn(log->l_mp, 2093 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2094 be64_to_cpu(iclog->ic_header.h_lsn)); 2095 } 2096 #endif 2097 xlog_verify_iclog(log, iclog, count); 2098 xlog_write_iclog(log, iclog, bno, count); 2099 } 2100 2101 /* 2102 * Deallocate a log structure 2103 */ 2104 STATIC void 2105 xlog_dealloc_log( 2106 struct xlog *log) 2107 { 2108 xlog_in_core_t *iclog, *next_iclog; 2109 int i; 2110 2111 /* 2112 * Destroy the CIL after waiting for iclog IO completion because an 2113 * iclog EIO error will try to shut down the log, which accesses the 2114 * CIL to wake up the waiters. 2115 */ 2116 xlog_cil_destroy(log); 2117 2118 iclog = log->l_iclog; 2119 for (i = 0; i < log->l_iclog_bufs; i++) { 2120 next_iclog = iclog->ic_next; 2121 kmem_free(iclog->ic_data); 2122 kmem_free(iclog); 2123 iclog = next_iclog; 2124 } 2125 2126 log->l_mp->m_log = NULL; 2127 destroy_workqueue(log->l_ioend_workqueue); 2128 kmem_free(log); 2129 } 2130 2131 /* 2132 * Update counters atomically now that memcpy is done. 2133 */ 2134 static inline void 2135 xlog_state_finish_copy( 2136 struct xlog *log, 2137 struct xlog_in_core *iclog, 2138 int record_cnt, 2139 int copy_bytes) 2140 { 2141 lockdep_assert_held(&log->l_icloglock); 2142 2143 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2144 iclog->ic_offset += copy_bytes; 2145 } 2146 2147 /* 2148 * print out info relating to regions written which consume 2149 * the reservation 2150 */ 2151 void 2152 xlog_print_tic_res( 2153 struct xfs_mount *mp, 2154 struct xlog_ticket *ticket) 2155 { 2156 xfs_warn(mp, "ticket reservation summary:"); 2157 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2158 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2159 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2160 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2161 } 2162 2163 /* 2164 * Print a summary of the transaction. 2165 */ 2166 void 2167 xlog_print_trans( 2168 struct xfs_trans *tp) 2169 { 2170 struct xfs_mount *mp = tp->t_mountp; 2171 struct xfs_log_item *lip; 2172 2173 /* dump core transaction and ticket info */ 2174 xfs_warn(mp, "transaction summary:"); 2175 xfs_warn(mp, " log res = %d", tp->t_log_res); 2176 xfs_warn(mp, " log count = %d", tp->t_log_count); 2177 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2178 2179 xlog_print_tic_res(mp, tp->t_ticket); 2180 2181 /* dump each log item */ 2182 list_for_each_entry(lip, &tp->t_items, li_trans) { 2183 struct xfs_log_vec *lv = lip->li_lv; 2184 struct xfs_log_iovec *vec; 2185 int i; 2186 2187 xfs_warn(mp, "log item: "); 2188 xfs_warn(mp, " type = 0x%x", lip->li_type); 2189 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2190 if (!lv) 2191 continue; 2192 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2193 xfs_warn(mp, " size = %d", lv->lv_size); 2194 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2195 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2196 2197 /* dump each iovec for the log item */ 2198 vec = lv->lv_iovecp; 2199 for (i = 0; i < lv->lv_niovecs; i++) { 2200 int dumplen = min(vec->i_len, 32); 2201 2202 xfs_warn(mp, " iovec[%d]", i); 2203 xfs_warn(mp, " type = 0x%x", vec->i_type); 2204 xfs_warn(mp, " len = %d", vec->i_len); 2205 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2206 xfs_hex_dump(vec->i_addr, dumplen); 2207 2208 vec++; 2209 } 2210 } 2211 } 2212 2213 static inline void 2214 xlog_write_iovec( 2215 struct xlog_in_core *iclog, 2216 uint32_t *log_offset, 2217 void *data, 2218 uint32_t write_len, 2219 int *bytes_left, 2220 uint32_t *record_cnt, 2221 uint32_t *data_cnt) 2222 { 2223 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2224 ASSERT(*log_offset % sizeof(int32_t) == 0); 2225 ASSERT(write_len % sizeof(int32_t) == 0); 2226 2227 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2228 *log_offset += write_len; 2229 *bytes_left -= write_len; 2230 (*record_cnt)++; 2231 *data_cnt += write_len; 2232 } 2233 2234 /* 2235 * Write log vectors into a single iclog which is guaranteed by the caller 2236 * to have enough space to write the entire log vector into. 2237 */ 2238 static void 2239 xlog_write_full( 2240 struct xfs_log_vec *lv, 2241 struct xlog_ticket *ticket, 2242 struct xlog_in_core *iclog, 2243 uint32_t *log_offset, 2244 uint32_t *len, 2245 uint32_t *record_cnt, 2246 uint32_t *data_cnt) 2247 { 2248 int index; 2249 2250 ASSERT(*log_offset + *len <= iclog->ic_size || 2251 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2252 2253 /* 2254 * Ordered log vectors have no regions to write so this 2255 * loop will naturally skip them. 2256 */ 2257 for (index = 0; index < lv->lv_niovecs; index++) { 2258 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2259 struct xlog_op_header *ophdr = reg->i_addr; 2260 2261 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2262 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2263 reg->i_len, len, record_cnt, data_cnt); 2264 } 2265 } 2266 2267 static int 2268 xlog_write_get_more_iclog_space( 2269 struct xlog_ticket *ticket, 2270 struct xlog_in_core **iclogp, 2271 uint32_t *log_offset, 2272 uint32_t len, 2273 uint32_t *record_cnt, 2274 uint32_t *data_cnt) 2275 { 2276 struct xlog_in_core *iclog = *iclogp; 2277 struct xlog *log = iclog->ic_log; 2278 int error; 2279 2280 spin_lock(&log->l_icloglock); 2281 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2282 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2283 error = xlog_state_release_iclog(log, iclog, ticket); 2284 spin_unlock(&log->l_icloglock); 2285 if (error) 2286 return error; 2287 2288 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2289 log_offset); 2290 if (error) 2291 return error; 2292 *record_cnt = 0; 2293 *data_cnt = 0; 2294 *iclogp = iclog; 2295 return 0; 2296 } 2297 2298 /* 2299 * Write log vectors into a single iclog which is smaller than the current chain 2300 * length. We write until we cannot fit a full record into the remaining space 2301 * and then stop. We return the log vector that is to be written that cannot 2302 * wholly fit in the iclog. 2303 */ 2304 static int 2305 xlog_write_partial( 2306 struct xfs_log_vec *lv, 2307 struct xlog_ticket *ticket, 2308 struct xlog_in_core **iclogp, 2309 uint32_t *log_offset, 2310 uint32_t *len, 2311 uint32_t *record_cnt, 2312 uint32_t *data_cnt) 2313 { 2314 struct xlog_in_core *iclog = *iclogp; 2315 struct xlog_op_header *ophdr; 2316 int index = 0; 2317 uint32_t rlen; 2318 int error; 2319 2320 /* walk the logvec, copying until we run out of space in the iclog */ 2321 for (index = 0; index < lv->lv_niovecs; index++) { 2322 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2323 uint32_t reg_offset = 0; 2324 2325 /* 2326 * The first region of a continuation must have a non-zero 2327 * length otherwise log recovery will just skip over it and 2328 * start recovering from the next opheader it finds. Because we 2329 * mark the next opheader as a continuation, recovery will then 2330 * incorrectly add the continuation to the previous region and 2331 * that breaks stuff. 2332 * 2333 * Hence if there isn't space for region data after the 2334 * opheader, then we need to start afresh with a new iclog. 2335 */ 2336 if (iclog->ic_size - *log_offset <= 2337 sizeof(struct xlog_op_header)) { 2338 error = xlog_write_get_more_iclog_space(ticket, 2339 &iclog, log_offset, *len, record_cnt, 2340 data_cnt); 2341 if (error) 2342 return error; 2343 } 2344 2345 ophdr = reg->i_addr; 2346 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2347 2348 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2349 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2350 if (rlen != reg->i_len) 2351 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2352 2353 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2354 rlen, len, record_cnt, data_cnt); 2355 2356 /* If we wrote the whole region, move to the next. */ 2357 if (rlen == reg->i_len) 2358 continue; 2359 2360 /* 2361 * We now have a partially written iovec, but it can span 2362 * multiple iclogs so we loop here. First we release the iclog 2363 * we currently have, then we get a new iclog and add a new 2364 * opheader. Then we continue copying from where we were until 2365 * we either complete the iovec or fill the iclog. If we 2366 * complete the iovec, then we increment the index and go right 2367 * back to the top of the outer loop. if we fill the iclog, we 2368 * run the inner loop again. 2369 * 2370 * This is complicated by the tail of a region using all the 2371 * space in an iclog and hence requiring us to release the iclog 2372 * and get a new one before returning to the outer loop. We must 2373 * always guarantee that we exit this inner loop with at least 2374 * space for log transaction opheaders left in the current 2375 * iclog, hence we cannot just terminate the loop at the end 2376 * of the of the continuation. So we loop while there is no 2377 * space left in the current iclog, and check for the end of the 2378 * continuation after getting a new iclog. 2379 */ 2380 do { 2381 /* 2382 * Ensure we include the continuation opheader in the 2383 * space we need in the new iclog by adding that size 2384 * to the length we require. This continuation opheader 2385 * needs to be accounted to the ticket as the space it 2386 * consumes hasn't been accounted to the lv we are 2387 * writing. 2388 */ 2389 error = xlog_write_get_more_iclog_space(ticket, 2390 &iclog, log_offset, 2391 *len + sizeof(struct xlog_op_header), 2392 record_cnt, data_cnt); 2393 if (error) 2394 return error; 2395 2396 ophdr = iclog->ic_datap + *log_offset; 2397 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2398 ophdr->oh_clientid = XFS_TRANSACTION; 2399 ophdr->oh_res2 = 0; 2400 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2401 2402 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2403 *log_offset += sizeof(struct xlog_op_header); 2404 *data_cnt += sizeof(struct xlog_op_header); 2405 2406 /* 2407 * If rlen fits in the iclog, then end the region 2408 * continuation. Otherwise we're going around again. 2409 */ 2410 reg_offset += rlen; 2411 rlen = reg->i_len - reg_offset; 2412 if (rlen <= iclog->ic_size - *log_offset) 2413 ophdr->oh_flags |= XLOG_END_TRANS; 2414 else 2415 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2416 2417 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2418 ophdr->oh_len = cpu_to_be32(rlen); 2419 2420 xlog_write_iovec(iclog, log_offset, 2421 reg->i_addr + reg_offset, 2422 rlen, len, record_cnt, data_cnt); 2423 2424 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2425 } 2426 2427 /* 2428 * No more iovecs remain in this logvec so return the next log vec to 2429 * the caller so it can go back to fast path copying. 2430 */ 2431 *iclogp = iclog; 2432 return 0; 2433 } 2434 2435 /* 2436 * Write some region out to in-core log 2437 * 2438 * This will be called when writing externally provided regions or when 2439 * writing out a commit record for a given transaction. 2440 * 2441 * General algorithm: 2442 * 1. Find total length of this write. This may include adding to the 2443 * lengths passed in. 2444 * 2. Check whether we violate the tickets reservation. 2445 * 3. While writing to this iclog 2446 * A. Reserve as much space in this iclog as can get 2447 * B. If this is first write, save away start lsn 2448 * C. While writing this region: 2449 * 1. If first write of transaction, write start record 2450 * 2. Write log operation header (header per region) 2451 * 3. Find out if we can fit entire region into this iclog 2452 * 4. Potentially, verify destination memcpy ptr 2453 * 5. Memcpy (partial) region 2454 * 6. If partial copy, release iclog; otherwise, continue 2455 * copying more regions into current iclog 2456 * 4. Mark want sync bit (in simulation mode) 2457 * 5. Release iclog for potential flush to on-disk log. 2458 * 2459 * ERRORS: 2460 * 1. Panic if reservation is overrun. This should never happen since 2461 * reservation amounts are generated internal to the filesystem. 2462 * NOTES: 2463 * 1. Tickets are single threaded data structures. 2464 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2465 * syncing routine. When a single log_write region needs to span 2466 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2467 * on all log operation writes which don't contain the end of the 2468 * region. The XLOG_END_TRANS bit is used for the in-core log 2469 * operation which contains the end of the continued log_write region. 2470 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2471 * we don't really know exactly how much space will be used. As a result, 2472 * we don't update ic_offset until the end when we know exactly how many 2473 * bytes have been written out. 2474 */ 2475 int 2476 xlog_write( 2477 struct xlog *log, 2478 struct xfs_cil_ctx *ctx, 2479 struct list_head *lv_chain, 2480 struct xlog_ticket *ticket, 2481 uint32_t len) 2482 2483 { 2484 struct xlog_in_core *iclog = NULL; 2485 struct xfs_log_vec *lv; 2486 uint32_t record_cnt = 0; 2487 uint32_t data_cnt = 0; 2488 int error = 0; 2489 int log_offset; 2490 2491 if (ticket->t_curr_res < 0) { 2492 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2493 "ctx ticket reservation ran out. Need to up reservation"); 2494 xlog_print_tic_res(log->l_mp, ticket); 2495 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2496 } 2497 2498 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2499 &log_offset); 2500 if (error) 2501 return error; 2502 2503 ASSERT(log_offset <= iclog->ic_size - 1); 2504 2505 /* 2506 * If we have a context pointer, pass it the first iclog we are 2507 * writing to so it can record state needed for iclog write 2508 * ordering. 2509 */ 2510 if (ctx) 2511 xlog_cil_set_ctx_write_state(ctx, iclog); 2512 2513 list_for_each_entry(lv, lv_chain, lv_list) { 2514 /* 2515 * If the entire log vec does not fit in the iclog, punt it to 2516 * the partial copy loop which can handle this case. 2517 */ 2518 if (lv->lv_niovecs && 2519 lv->lv_bytes > iclog->ic_size - log_offset) { 2520 error = xlog_write_partial(lv, ticket, &iclog, 2521 &log_offset, &len, &record_cnt, 2522 &data_cnt); 2523 if (error) { 2524 /* 2525 * We have no iclog to release, so just return 2526 * the error immediately. 2527 */ 2528 return error; 2529 } 2530 } else { 2531 xlog_write_full(lv, ticket, iclog, &log_offset, 2532 &len, &record_cnt, &data_cnt); 2533 } 2534 } 2535 ASSERT(len == 0); 2536 2537 /* 2538 * We've already been guaranteed that the last writes will fit inside 2539 * the current iclog, and hence it will already have the space used by 2540 * those writes accounted to it. Hence we do not need to update the 2541 * iclog with the number of bytes written here. 2542 */ 2543 spin_lock(&log->l_icloglock); 2544 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2545 error = xlog_state_release_iclog(log, iclog, ticket); 2546 spin_unlock(&log->l_icloglock); 2547 2548 return error; 2549 } 2550 2551 static void 2552 xlog_state_activate_iclog( 2553 struct xlog_in_core *iclog, 2554 int *iclogs_changed) 2555 { 2556 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2557 trace_xlog_iclog_activate(iclog, _RET_IP_); 2558 2559 /* 2560 * If the number of ops in this iclog indicate it just contains the 2561 * dummy transaction, we can change state into IDLE (the second time 2562 * around). Otherwise we should change the state into NEED a dummy. 2563 * We don't need to cover the dummy. 2564 */ 2565 if (*iclogs_changed == 0 && 2566 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2567 *iclogs_changed = 1; 2568 } else { 2569 /* 2570 * We have two dirty iclogs so start over. This could also be 2571 * num of ops indicating this is not the dummy going out. 2572 */ 2573 *iclogs_changed = 2; 2574 } 2575 2576 iclog->ic_state = XLOG_STATE_ACTIVE; 2577 iclog->ic_offset = 0; 2578 iclog->ic_header.h_num_logops = 0; 2579 memset(iclog->ic_header.h_cycle_data, 0, 2580 sizeof(iclog->ic_header.h_cycle_data)); 2581 iclog->ic_header.h_lsn = 0; 2582 iclog->ic_header.h_tail_lsn = 0; 2583 } 2584 2585 /* 2586 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2587 * ACTIVE after iclog I/O has completed. 2588 */ 2589 static void 2590 xlog_state_activate_iclogs( 2591 struct xlog *log, 2592 int *iclogs_changed) 2593 { 2594 struct xlog_in_core *iclog = log->l_iclog; 2595 2596 do { 2597 if (iclog->ic_state == XLOG_STATE_DIRTY) 2598 xlog_state_activate_iclog(iclog, iclogs_changed); 2599 /* 2600 * The ordering of marking iclogs ACTIVE must be maintained, so 2601 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2602 */ 2603 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2604 break; 2605 } while ((iclog = iclog->ic_next) != log->l_iclog); 2606 } 2607 2608 static int 2609 xlog_covered_state( 2610 int prev_state, 2611 int iclogs_changed) 2612 { 2613 /* 2614 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2615 * wrote the first covering record (DONE). We go to IDLE if we just 2616 * wrote the second covering record (DONE2) and remain in IDLE until a 2617 * non-covering write occurs. 2618 */ 2619 switch (prev_state) { 2620 case XLOG_STATE_COVER_IDLE: 2621 if (iclogs_changed == 1) 2622 return XLOG_STATE_COVER_IDLE; 2623 fallthrough; 2624 case XLOG_STATE_COVER_NEED: 2625 case XLOG_STATE_COVER_NEED2: 2626 break; 2627 case XLOG_STATE_COVER_DONE: 2628 if (iclogs_changed == 1) 2629 return XLOG_STATE_COVER_NEED2; 2630 break; 2631 case XLOG_STATE_COVER_DONE2: 2632 if (iclogs_changed == 1) 2633 return XLOG_STATE_COVER_IDLE; 2634 break; 2635 default: 2636 ASSERT(0); 2637 } 2638 2639 return XLOG_STATE_COVER_NEED; 2640 } 2641 2642 STATIC void 2643 xlog_state_clean_iclog( 2644 struct xlog *log, 2645 struct xlog_in_core *dirty_iclog) 2646 { 2647 int iclogs_changed = 0; 2648 2649 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2650 2651 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2652 2653 xlog_state_activate_iclogs(log, &iclogs_changed); 2654 wake_up_all(&dirty_iclog->ic_force_wait); 2655 2656 if (iclogs_changed) { 2657 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2658 iclogs_changed); 2659 } 2660 } 2661 2662 STATIC xfs_lsn_t 2663 xlog_get_lowest_lsn( 2664 struct xlog *log) 2665 { 2666 struct xlog_in_core *iclog = log->l_iclog; 2667 xfs_lsn_t lowest_lsn = 0, lsn; 2668 2669 do { 2670 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2671 iclog->ic_state == XLOG_STATE_DIRTY) 2672 continue; 2673 2674 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2675 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2676 lowest_lsn = lsn; 2677 } while ((iclog = iclog->ic_next) != log->l_iclog); 2678 2679 return lowest_lsn; 2680 } 2681 2682 /* 2683 * Completion of a iclog IO does not imply that a transaction has completed, as 2684 * transactions can be large enough to span many iclogs. We cannot change the 2685 * tail of the log half way through a transaction as this may be the only 2686 * transaction in the log and moving the tail to point to the middle of it 2687 * will prevent recovery from finding the start of the transaction. Hence we 2688 * should only update the last_sync_lsn if this iclog contains transaction 2689 * completion callbacks on it. 2690 * 2691 * We have to do this before we drop the icloglock to ensure we are the only one 2692 * that can update it. 2693 * 2694 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2695 * the reservation grant head pushing. This is due to the fact that the push 2696 * target is bound by the current last_sync_lsn value. Hence if we have a large 2697 * amount of log space bound up in this committing transaction then the 2698 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2699 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2700 * should push the AIL to ensure the push target (and hence the grant head) is 2701 * no longer bound by the old log head location and can move forwards and make 2702 * progress again. 2703 */ 2704 static void 2705 xlog_state_set_callback( 2706 struct xlog *log, 2707 struct xlog_in_core *iclog, 2708 xfs_lsn_t header_lsn) 2709 { 2710 trace_xlog_iclog_callback(iclog, _RET_IP_); 2711 iclog->ic_state = XLOG_STATE_CALLBACK; 2712 2713 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2714 header_lsn) <= 0); 2715 2716 if (list_empty_careful(&iclog->ic_callbacks)) 2717 return; 2718 2719 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2720 xlog_grant_push_ail(log, 0); 2721 } 2722 2723 /* 2724 * Return true if we need to stop processing, false to continue to the next 2725 * iclog. The caller will need to run callbacks if the iclog is returned in the 2726 * XLOG_STATE_CALLBACK state. 2727 */ 2728 static bool 2729 xlog_state_iodone_process_iclog( 2730 struct xlog *log, 2731 struct xlog_in_core *iclog) 2732 { 2733 xfs_lsn_t lowest_lsn; 2734 xfs_lsn_t header_lsn; 2735 2736 switch (iclog->ic_state) { 2737 case XLOG_STATE_ACTIVE: 2738 case XLOG_STATE_DIRTY: 2739 /* 2740 * Skip all iclogs in the ACTIVE & DIRTY states: 2741 */ 2742 return false; 2743 case XLOG_STATE_DONE_SYNC: 2744 /* 2745 * Now that we have an iclog that is in the DONE_SYNC state, do 2746 * one more check here to see if we have chased our tail around. 2747 * If this is not the lowest lsn iclog, then we will leave it 2748 * for another completion to process. 2749 */ 2750 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2751 lowest_lsn = xlog_get_lowest_lsn(log); 2752 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2753 return false; 2754 xlog_state_set_callback(log, iclog, header_lsn); 2755 return false; 2756 default: 2757 /* 2758 * Can only perform callbacks in order. Since this iclog is not 2759 * in the DONE_SYNC state, we skip the rest and just try to 2760 * clean up. 2761 */ 2762 return true; 2763 } 2764 } 2765 2766 /* 2767 * Loop over all the iclogs, running attached callbacks on them. Return true if 2768 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2769 * to handle transient shutdown state here at all because 2770 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2771 * cleanup of the callbacks. 2772 */ 2773 static bool 2774 xlog_state_do_iclog_callbacks( 2775 struct xlog *log) 2776 __releases(&log->l_icloglock) 2777 __acquires(&log->l_icloglock) 2778 { 2779 struct xlog_in_core *first_iclog = log->l_iclog; 2780 struct xlog_in_core *iclog = first_iclog; 2781 bool ran_callback = false; 2782 2783 do { 2784 LIST_HEAD(cb_list); 2785 2786 if (xlog_state_iodone_process_iclog(log, iclog)) 2787 break; 2788 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2789 iclog = iclog->ic_next; 2790 continue; 2791 } 2792 list_splice_init(&iclog->ic_callbacks, &cb_list); 2793 spin_unlock(&log->l_icloglock); 2794 2795 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2796 xlog_cil_process_committed(&cb_list); 2797 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2798 ran_callback = true; 2799 2800 spin_lock(&log->l_icloglock); 2801 xlog_state_clean_iclog(log, iclog); 2802 iclog = iclog->ic_next; 2803 } while (iclog != first_iclog); 2804 2805 return ran_callback; 2806 } 2807 2808 2809 /* 2810 * Loop running iclog completion callbacks until there are no more iclogs in a 2811 * state that can run callbacks. 2812 */ 2813 STATIC void 2814 xlog_state_do_callback( 2815 struct xlog *log) 2816 { 2817 int flushcnt = 0; 2818 int repeats = 0; 2819 2820 spin_lock(&log->l_icloglock); 2821 while (xlog_state_do_iclog_callbacks(log)) { 2822 if (xlog_is_shutdown(log)) 2823 break; 2824 2825 if (++repeats > 5000) { 2826 flushcnt += repeats; 2827 repeats = 0; 2828 xfs_warn(log->l_mp, 2829 "%s: possible infinite loop (%d iterations)", 2830 __func__, flushcnt); 2831 } 2832 } 2833 2834 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2835 wake_up_all(&log->l_flush_wait); 2836 2837 spin_unlock(&log->l_icloglock); 2838 } 2839 2840 2841 /* 2842 * Finish transitioning this iclog to the dirty state. 2843 * 2844 * Callbacks could take time, so they are done outside the scope of the 2845 * global state machine log lock. 2846 */ 2847 STATIC void 2848 xlog_state_done_syncing( 2849 struct xlog_in_core *iclog) 2850 { 2851 struct xlog *log = iclog->ic_log; 2852 2853 spin_lock(&log->l_icloglock); 2854 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2855 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2856 2857 /* 2858 * If we got an error, either on the first buffer, or in the case of 2859 * split log writes, on the second, we shut down the file system and 2860 * no iclogs should ever be attempted to be written to disk again. 2861 */ 2862 if (!xlog_is_shutdown(log)) { 2863 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2864 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2865 } 2866 2867 /* 2868 * Someone could be sleeping prior to writing out the next 2869 * iclog buffer, we wake them all, one will get to do the 2870 * I/O, the others get to wait for the result. 2871 */ 2872 wake_up_all(&iclog->ic_write_wait); 2873 spin_unlock(&log->l_icloglock); 2874 xlog_state_do_callback(log); 2875 } 2876 2877 /* 2878 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2879 * sleep. We wait on the flush queue on the head iclog as that should be 2880 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2881 * we will wait here and all new writes will sleep until a sync completes. 2882 * 2883 * The in-core logs are used in a circular fashion. They are not used 2884 * out-of-order even when an iclog past the head is free. 2885 * 2886 * return: 2887 * * log_offset where xlog_write() can start writing into the in-core 2888 * log's data space. 2889 * * in-core log pointer to which xlog_write() should write. 2890 * * boolean indicating this is a continued write to an in-core log. 2891 * If this is the last write, then the in-core log's offset field 2892 * needs to be incremented, depending on the amount of data which 2893 * is copied. 2894 */ 2895 STATIC int 2896 xlog_state_get_iclog_space( 2897 struct xlog *log, 2898 int len, 2899 struct xlog_in_core **iclogp, 2900 struct xlog_ticket *ticket, 2901 int *logoffsetp) 2902 { 2903 int log_offset; 2904 xlog_rec_header_t *head; 2905 xlog_in_core_t *iclog; 2906 2907 restart: 2908 spin_lock(&log->l_icloglock); 2909 if (xlog_is_shutdown(log)) { 2910 spin_unlock(&log->l_icloglock); 2911 return -EIO; 2912 } 2913 2914 iclog = log->l_iclog; 2915 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2916 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2917 2918 /* Wait for log writes to have flushed */ 2919 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2920 goto restart; 2921 } 2922 2923 head = &iclog->ic_header; 2924 2925 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2926 log_offset = iclog->ic_offset; 2927 2928 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2929 2930 /* On the 1st write to an iclog, figure out lsn. This works 2931 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2932 * committing to. If the offset is set, that's how many blocks 2933 * must be written. 2934 */ 2935 if (log_offset == 0) { 2936 ticket->t_curr_res -= log->l_iclog_hsize; 2937 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2938 head->h_lsn = cpu_to_be64( 2939 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2940 ASSERT(log->l_curr_block >= 0); 2941 } 2942 2943 /* If there is enough room to write everything, then do it. Otherwise, 2944 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2945 * bit is on, so this will get flushed out. Don't update ic_offset 2946 * until you know exactly how many bytes get copied. Therefore, wait 2947 * until later to update ic_offset. 2948 * 2949 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2950 * can fit into remaining data section. 2951 */ 2952 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2953 int error = 0; 2954 2955 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2956 2957 /* 2958 * If we are the only one writing to this iclog, sync it to 2959 * disk. We need to do an atomic compare and decrement here to 2960 * avoid racing with concurrent atomic_dec_and_lock() calls in 2961 * xlog_state_release_iclog() when there is more than one 2962 * reference to the iclog. 2963 */ 2964 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2965 error = xlog_state_release_iclog(log, iclog, ticket); 2966 spin_unlock(&log->l_icloglock); 2967 if (error) 2968 return error; 2969 goto restart; 2970 } 2971 2972 /* Do we have enough room to write the full amount in the remainder 2973 * of this iclog? Or must we continue a write on the next iclog and 2974 * mark this iclog as completely taken? In the case where we switch 2975 * iclogs (to mark it taken), this particular iclog will release/sync 2976 * to disk in xlog_write(). 2977 */ 2978 if (len <= iclog->ic_size - iclog->ic_offset) 2979 iclog->ic_offset += len; 2980 else 2981 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2982 *iclogp = iclog; 2983 2984 ASSERT(iclog->ic_offset <= iclog->ic_size); 2985 spin_unlock(&log->l_icloglock); 2986 2987 *logoffsetp = log_offset; 2988 return 0; 2989 } 2990 2991 /* 2992 * The first cnt-1 times a ticket goes through here we don't need to move the 2993 * grant write head because the permanent reservation has reserved cnt times the 2994 * unit amount. Release part of current permanent unit reservation and reset 2995 * current reservation to be one units worth. Also move grant reservation head 2996 * forward. 2997 */ 2998 void 2999 xfs_log_ticket_regrant( 3000 struct xlog *log, 3001 struct xlog_ticket *ticket) 3002 { 3003 trace_xfs_log_ticket_regrant(log, ticket); 3004 3005 if (ticket->t_cnt > 0) 3006 ticket->t_cnt--; 3007 3008 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3009 ticket->t_curr_res); 3010 xlog_grant_sub_space(log, &log->l_write_head.grant, 3011 ticket->t_curr_res); 3012 ticket->t_curr_res = ticket->t_unit_res; 3013 3014 trace_xfs_log_ticket_regrant_sub(log, ticket); 3015 3016 /* just return if we still have some of the pre-reserved space */ 3017 if (!ticket->t_cnt) { 3018 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3019 ticket->t_unit_res); 3020 trace_xfs_log_ticket_regrant_exit(log, ticket); 3021 3022 ticket->t_curr_res = ticket->t_unit_res; 3023 } 3024 3025 xfs_log_ticket_put(ticket); 3026 } 3027 3028 /* 3029 * Give back the space left from a reservation. 3030 * 3031 * All the information we need to make a correct determination of space left 3032 * is present. For non-permanent reservations, things are quite easy. The 3033 * count should have been decremented to zero. We only need to deal with the 3034 * space remaining in the current reservation part of the ticket. If the 3035 * ticket contains a permanent reservation, there may be left over space which 3036 * needs to be released. A count of N means that N-1 refills of the current 3037 * reservation can be done before we need to ask for more space. The first 3038 * one goes to fill up the first current reservation. Once we run out of 3039 * space, the count will stay at zero and the only space remaining will be 3040 * in the current reservation field. 3041 */ 3042 void 3043 xfs_log_ticket_ungrant( 3044 struct xlog *log, 3045 struct xlog_ticket *ticket) 3046 { 3047 int bytes; 3048 3049 trace_xfs_log_ticket_ungrant(log, ticket); 3050 3051 if (ticket->t_cnt > 0) 3052 ticket->t_cnt--; 3053 3054 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3055 3056 /* 3057 * If this is a permanent reservation ticket, we may be able to free 3058 * up more space based on the remaining count. 3059 */ 3060 bytes = ticket->t_curr_res; 3061 if (ticket->t_cnt > 0) { 3062 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3063 bytes += ticket->t_unit_res*ticket->t_cnt; 3064 } 3065 3066 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3067 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3068 3069 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3070 3071 xfs_log_space_wake(log->l_mp); 3072 xfs_log_ticket_put(ticket); 3073 } 3074 3075 /* 3076 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3077 * the current iclog pointer to the next iclog in the ring. 3078 */ 3079 void 3080 xlog_state_switch_iclogs( 3081 struct xlog *log, 3082 struct xlog_in_core *iclog, 3083 int eventual_size) 3084 { 3085 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3086 assert_spin_locked(&log->l_icloglock); 3087 trace_xlog_iclog_switch(iclog, _RET_IP_); 3088 3089 if (!eventual_size) 3090 eventual_size = iclog->ic_offset; 3091 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3092 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3093 log->l_prev_block = log->l_curr_block; 3094 log->l_prev_cycle = log->l_curr_cycle; 3095 3096 /* roll log?: ic_offset changed later */ 3097 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3098 3099 /* Round up to next log-sunit */ 3100 if (log->l_iclog_roundoff > BBSIZE) { 3101 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3102 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3103 } 3104 3105 if (log->l_curr_block >= log->l_logBBsize) { 3106 /* 3107 * Rewind the current block before the cycle is bumped to make 3108 * sure that the combined LSN never transiently moves forward 3109 * when the log wraps to the next cycle. This is to support the 3110 * unlocked sample of these fields from xlog_valid_lsn(). Most 3111 * other cases should acquire l_icloglock. 3112 */ 3113 log->l_curr_block -= log->l_logBBsize; 3114 ASSERT(log->l_curr_block >= 0); 3115 smp_wmb(); 3116 log->l_curr_cycle++; 3117 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3118 log->l_curr_cycle++; 3119 } 3120 ASSERT(iclog == log->l_iclog); 3121 log->l_iclog = iclog->ic_next; 3122 } 3123 3124 /* 3125 * Force the iclog to disk and check if the iclog has been completed before 3126 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3127 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3128 * If completion has already occurred, tell the caller so that it can avoid an 3129 * unnecessary wait on the iclog. 3130 */ 3131 static int 3132 xlog_force_and_check_iclog( 3133 struct xlog_in_core *iclog, 3134 bool *completed) 3135 { 3136 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3137 int error; 3138 3139 *completed = false; 3140 error = xlog_force_iclog(iclog); 3141 if (error) 3142 return error; 3143 3144 /* 3145 * If the iclog has already been completed and reused the header LSN 3146 * will have been rewritten by completion 3147 */ 3148 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3149 *completed = true; 3150 return 0; 3151 } 3152 3153 /* 3154 * Write out all data in the in-core log as of this exact moment in time. 3155 * 3156 * Data may be written to the in-core log during this call. However, 3157 * we don't guarantee this data will be written out. A change from past 3158 * implementation means this routine will *not* write out zero length LRs. 3159 * 3160 * Basically, we try and perform an intelligent scan of the in-core logs. 3161 * If we determine there is no flushable data, we just return. There is no 3162 * flushable data if: 3163 * 3164 * 1. the current iclog is active and has no data; the previous iclog 3165 * is in the active or dirty state. 3166 * 2. the current iclog is drity, and the previous iclog is in the 3167 * active or dirty state. 3168 * 3169 * We may sleep if: 3170 * 3171 * 1. the current iclog is not in the active nor dirty state. 3172 * 2. the current iclog dirty, and the previous iclog is not in the 3173 * active nor dirty state. 3174 * 3. the current iclog is active, and there is another thread writing 3175 * to this particular iclog. 3176 * 4. a) the current iclog is active and has no other writers 3177 * b) when we return from flushing out this iclog, it is still 3178 * not in the active nor dirty state. 3179 */ 3180 int 3181 xfs_log_force( 3182 struct xfs_mount *mp, 3183 uint flags) 3184 { 3185 struct xlog *log = mp->m_log; 3186 struct xlog_in_core *iclog; 3187 3188 XFS_STATS_INC(mp, xs_log_force); 3189 trace_xfs_log_force(mp, 0, _RET_IP_); 3190 3191 xlog_cil_force(log); 3192 3193 spin_lock(&log->l_icloglock); 3194 if (xlog_is_shutdown(log)) 3195 goto out_error; 3196 3197 iclog = log->l_iclog; 3198 trace_xlog_iclog_force(iclog, _RET_IP_); 3199 3200 if (iclog->ic_state == XLOG_STATE_DIRTY || 3201 (iclog->ic_state == XLOG_STATE_ACTIVE && 3202 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3203 /* 3204 * If the head is dirty or (active and empty), then we need to 3205 * look at the previous iclog. 3206 * 3207 * If the previous iclog is active or dirty we are done. There 3208 * is nothing to sync out. Otherwise, we attach ourselves to the 3209 * previous iclog and go to sleep. 3210 */ 3211 iclog = iclog->ic_prev; 3212 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3213 if (atomic_read(&iclog->ic_refcnt) == 0) { 3214 /* We have exclusive access to this iclog. */ 3215 bool completed; 3216 3217 if (xlog_force_and_check_iclog(iclog, &completed)) 3218 goto out_error; 3219 3220 if (completed) 3221 goto out_unlock; 3222 } else { 3223 /* 3224 * Someone else is still writing to this iclog, so we 3225 * need to ensure that when they release the iclog it 3226 * gets synced immediately as we may be waiting on it. 3227 */ 3228 xlog_state_switch_iclogs(log, iclog, 0); 3229 } 3230 } 3231 3232 /* 3233 * The iclog we are about to wait on may contain the checkpoint pushed 3234 * by the above xlog_cil_force() call, but it may not have been pushed 3235 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3236 * are flushed when this iclog is written. 3237 */ 3238 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3239 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3240 3241 if (flags & XFS_LOG_SYNC) 3242 return xlog_wait_on_iclog(iclog); 3243 out_unlock: 3244 spin_unlock(&log->l_icloglock); 3245 return 0; 3246 out_error: 3247 spin_unlock(&log->l_icloglock); 3248 return -EIO; 3249 } 3250 3251 /* 3252 * Force the log to a specific LSN. 3253 * 3254 * If an iclog with that lsn can be found: 3255 * If it is in the DIRTY state, just return. 3256 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3257 * state and go to sleep or return. 3258 * If it is in any other state, go to sleep or return. 3259 * 3260 * Synchronous forces are implemented with a wait queue. All callers trying 3261 * to force a given lsn to disk must wait on the queue attached to the 3262 * specific in-core log. When given in-core log finally completes its write 3263 * to disk, that thread will wake up all threads waiting on the queue. 3264 */ 3265 static int 3266 xlog_force_lsn( 3267 struct xlog *log, 3268 xfs_lsn_t lsn, 3269 uint flags, 3270 int *log_flushed, 3271 bool already_slept) 3272 { 3273 struct xlog_in_core *iclog; 3274 bool completed; 3275 3276 spin_lock(&log->l_icloglock); 3277 if (xlog_is_shutdown(log)) 3278 goto out_error; 3279 3280 iclog = log->l_iclog; 3281 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3282 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3283 iclog = iclog->ic_next; 3284 if (iclog == log->l_iclog) 3285 goto out_unlock; 3286 } 3287 3288 switch (iclog->ic_state) { 3289 case XLOG_STATE_ACTIVE: 3290 /* 3291 * We sleep here if we haven't already slept (e.g. this is the 3292 * first time we've looked at the correct iclog buf) and the 3293 * buffer before us is going to be sync'ed. The reason for this 3294 * is that if we are doing sync transactions here, by waiting 3295 * for the previous I/O to complete, we can allow a few more 3296 * transactions into this iclog before we close it down. 3297 * 3298 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3299 * refcnt so we can release the log (which drops the ref count). 3300 * The state switch keeps new transaction commits from using 3301 * this buffer. When the current commits finish writing into 3302 * the buffer, the refcount will drop to zero and the buffer 3303 * will go out then. 3304 */ 3305 if (!already_slept && 3306 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3307 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3308 xlog_wait(&iclog->ic_prev->ic_write_wait, 3309 &log->l_icloglock); 3310 return -EAGAIN; 3311 } 3312 if (xlog_force_and_check_iclog(iclog, &completed)) 3313 goto out_error; 3314 if (log_flushed) 3315 *log_flushed = 1; 3316 if (completed) 3317 goto out_unlock; 3318 break; 3319 case XLOG_STATE_WANT_SYNC: 3320 /* 3321 * This iclog may contain the checkpoint pushed by the 3322 * xlog_cil_force_seq() call, but there are other writers still 3323 * accessing it so it hasn't been pushed to disk yet. Like the 3324 * ACTIVE case above, we need to make sure caches are flushed 3325 * when this iclog is written. 3326 */ 3327 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3328 break; 3329 default: 3330 /* 3331 * The entire checkpoint was written by the CIL force and is on 3332 * its way to disk already. It will be stable when it 3333 * completes, so we don't need to manipulate caches here at all. 3334 * We just need to wait for completion if necessary. 3335 */ 3336 break; 3337 } 3338 3339 if (flags & XFS_LOG_SYNC) 3340 return xlog_wait_on_iclog(iclog); 3341 out_unlock: 3342 spin_unlock(&log->l_icloglock); 3343 return 0; 3344 out_error: 3345 spin_unlock(&log->l_icloglock); 3346 return -EIO; 3347 } 3348 3349 /* 3350 * Force the log to a specific checkpoint sequence. 3351 * 3352 * First force the CIL so that all the required changes have been flushed to the 3353 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3354 * the iclog that needs to be flushed to stable storage. If the caller needs 3355 * a synchronous log force, we will wait on the iclog with the LSN returned by 3356 * xlog_cil_force_seq() to be completed. 3357 */ 3358 int 3359 xfs_log_force_seq( 3360 struct xfs_mount *mp, 3361 xfs_csn_t seq, 3362 uint flags, 3363 int *log_flushed) 3364 { 3365 struct xlog *log = mp->m_log; 3366 xfs_lsn_t lsn; 3367 int ret; 3368 ASSERT(seq != 0); 3369 3370 XFS_STATS_INC(mp, xs_log_force); 3371 trace_xfs_log_force(mp, seq, _RET_IP_); 3372 3373 lsn = xlog_cil_force_seq(log, seq); 3374 if (lsn == NULLCOMMITLSN) 3375 return 0; 3376 3377 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3378 if (ret == -EAGAIN) { 3379 XFS_STATS_INC(mp, xs_log_force_sleep); 3380 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3381 } 3382 return ret; 3383 } 3384 3385 /* 3386 * Free a used ticket when its refcount falls to zero. 3387 */ 3388 void 3389 xfs_log_ticket_put( 3390 xlog_ticket_t *ticket) 3391 { 3392 ASSERT(atomic_read(&ticket->t_ref) > 0); 3393 if (atomic_dec_and_test(&ticket->t_ref)) 3394 kmem_cache_free(xfs_log_ticket_cache, ticket); 3395 } 3396 3397 xlog_ticket_t * 3398 xfs_log_ticket_get( 3399 xlog_ticket_t *ticket) 3400 { 3401 ASSERT(atomic_read(&ticket->t_ref) > 0); 3402 atomic_inc(&ticket->t_ref); 3403 return ticket; 3404 } 3405 3406 /* 3407 * Figure out the total log space unit (in bytes) that would be 3408 * required for a log ticket. 3409 */ 3410 static int 3411 xlog_calc_unit_res( 3412 struct xlog *log, 3413 int unit_bytes, 3414 int *niclogs) 3415 { 3416 int iclog_space; 3417 uint num_headers; 3418 3419 /* 3420 * Permanent reservations have up to 'cnt'-1 active log operations 3421 * in the log. A unit in this case is the amount of space for one 3422 * of these log operations. Normal reservations have a cnt of 1 3423 * and their unit amount is the total amount of space required. 3424 * 3425 * The following lines of code account for non-transaction data 3426 * which occupy space in the on-disk log. 3427 * 3428 * Normal form of a transaction is: 3429 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3430 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3431 * 3432 * We need to account for all the leadup data and trailer data 3433 * around the transaction data. 3434 * And then we need to account for the worst case in terms of using 3435 * more space. 3436 * The worst case will happen if: 3437 * - the placement of the transaction happens to be such that the 3438 * roundoff is at its maximum 3439 * - the transaction data is synced before the commit record is synced 3440 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3441 * Therefore the commit record is in its own Log Record. 3442 * This can happen as the commit record is called with its 3443 * own region to xlog_write(). 3444 * This then means that in the worst case, roundoff can happen for 3445 * the commit-rec as well. 3446 * The commit-rec is smaller than padding in this scenario and so it is 3447 * not added separately. 3448 */ 3449 3450 /* for trans header */ 3451 unit_bytes += sizeof(xlog_op_header_t); 3452 unit_bytes += sizeof(xfs_trans_header_t); 3453 3454 /* for start-rec */ 3455 unit_bytes += sizeof(xlog_op_header_t); 3456 3457 /* 3458 * for LR headers - the space for data in an iclog is the size minus 3459 * the space used for the headers. If we use the iclog size, then we 3460 * undercalculate the number of headers required. 3461 * 3462 * Furthermore - the addition of op headers for split-recs might 3463 * increase the space required enough to require more log and op 3464 * headers, so take that into account too. 3465 * 3466 * IMPORTANT: This reservation makes the assumption that if this 3467 * transaction is the first in an iclog and hence has the LR headers 3468 * accounted to it, then the remaining space in the iclog is 3469 * exclusively for this transaction. i.e. if the transaction is larger 3470 * than the iclog, it will be the only thing in that iclog. 3471 * Fundamentally, this means we must pass the entire log vector to 3472 * xlog_write to guarantee this. 3473 */ 3474 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3475 num_headers = howmany(unit_bytes, iclog_space); 3476 3477 /* for split-recs - ophdrs added when data split over LRs */ 3478 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3479 3480 /* add extra header reservations if we overrun */ 3481 while (!num_headers || 3482 howmany(unit_bytes, iclog_space) > num_headers) { 3483 unit_bytes += sizeof(xlog_op_header_t); 3484 num_headers++; 3485 } 3486 unit_bytes += log->l_iclog_hsize * num_headers; 3487 3488 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3489 unit_bytes += log->l_iclog_hsize; 3490 3491 /* roundoff padding for transaction data and one for commit record */ 3492 unit_bytes += 2 * log->l_iclog_roundoff; 3493 3494 if (niclogs) 3495 *niclogs = num_headers; 3496 return unit_bytes; 3497 } 3498 3499 int 3500 xfs_log_calc_unit_res( 3501 struct xfs_mount *mp, 3502 int unit_bytes) 3503 { 3504 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3505 } 3506 3507 /* 3508 * Allocate and initialise a new log ticket. 3509 */ 3510 struct xlog_ticket * 3511 xlog_ticket_alloc( 3512 struct xlog *log, 3513 int unit_bytes, 3514 int cnt, 3515 bool permanent) 3516 { 3517 struct xlog_ticket *tic; 3518 int unit_res; 3519 3520 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3521 3522 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3523 3524 atomic_set(&tic->t_ref, 1); 3525 tic->t_task = current; 3526 INIT_LIST_HEAD(&tic->t_queue); 3527 tic->t_unit_res = unit_res; 3528 tic->t_curr_res = unit_res; 3529 tic->t_cnt = cnt; 3530 tic->t_ocnt = cnt; 3531 tic->t_tid = get_random_u32(); 3532 if (permanent) 3533 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3534 3535 return tic; 3536 } 3537 3538 #if defined(DEBUG) 3539 /* 3540 * Check to make sure the grant write head didn't just over lap the tail. If 3541 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3542 * the cycles differ by exactly one and check the byte count. 3543 * 3544 * This check is run unlocked, so can give false positives. Rather than assert 3545 * on failures, use a warn-once flag and a panic tag to allow the admin to 3546 * determine if they want to panic the machine when such an error occurs. For 3547 * debug kernels this will have the same effect as using an assert but, unlinke 3548 * an assert, it can be turned off at runtime. 3549 */ 3550 STATIC void 3551 xlog_verify_grant_tail( 3552 struct xlog *log) 3553 { 3554 int tail_cycle, tail_blocks; 3555 int cycle, space; 3556 3557 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3558 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3559 if (tail_cycle != cycle) { 3560 if (cycle - 1 != tail_cycle && 3561 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3562 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3563 "%s: cycle - 1 != tail_cycle", __func__); 3564 } 3565 3566 if (space > BBTOB(tail_blocks) && 3567 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3568 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3569 "%s: space > BBTOB(tail_blocks)", __func__); 3570 } 3571 } 3572 } 3573 3574 /* check if it will fit */ 3575 STATIC void 3576 xlog_verify_tail_lsn( 3577 struct xlog *log, 3578 struct xlog_in_core *iclog) 3579 { 3580 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3581 int blocks; 3582 3583 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3584 blocks = 3585 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3586 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3587 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3588 } else { 3589 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3590 3591 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3592 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3593 3594 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3595 if (blocks < BTOBB(iclog->ic_offset) + 1) 3596 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3597 } 3598 } 3599 3600 /* 3601 * Perform a number of checks on the iclog before writing to disk. 3602 * 3603 * 1. Make sure the iclogs are still circular 3604 * 2. Make sure we have a good magic number 3605 * 3. Make sure we don't have magic numbers in the data 3606 * 4. Check fields of each log operation header for: 3607 * A. Valid client identifier 3608 * B. tid ptr value falls in valid ptr space (user space code) 3609 * C. Length in log record header is correct according to the 3610 * individual operation headers within record. 3611 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3612 * log, check the preceding blocks of the physical log to make sure all 3613 * the cycle numbers agree with the current cycle number. 3614 */ 3615 STATIC void 3616 xlog_verify_iclog( 3617 struct xlog *log, 3618 struct xlog_in_core *iclog, 3619 int count) 3620 { 3621 xlog_op_header_t *ophead; 3622 xlog_in_core_t *icptr; 3623 xlog_in_core_2_t *xhdr; 3624 void *base_ptr, *ptr, *p; 3625 ptrdiff_t field_offset; 3626 uint8_t clientid; 3627 int len, i, j, k, op_len; 3628 int idx; 3629 3630 /* check validity of iclog pointers */ 3631 spin_lock(&log->l_icloglock); 3632 icptr = log->l_iclog; 3633 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3634 ASSERT(icptr); 3635 3636 if (icptr != log->l_iclog) 3637 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3638 spin_unlock(&log->l_icloglock); 3639 3640 /* check log magic numbers */ 3641 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3642 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3643 3644 base_ptr = ptr = &iclog->ic_header; 3645 p = &iclog->ic_header; 3646 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3647 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3648 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3649 __func__); 3650 } 3651 3652 /* check fields */ 3653 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3654 base_ptr = ptr = iclog->ic_datap; 3655 ophead = ptr; 3656 xhdr = iclog->ic_data; 3657 for (i = 0; i < len; i++) { 3658 ophead = ptr; 3659 3660 /* clientid is only 1 byte */ 3661 p = &ophead->oh_clientid; 3662 field_offset = p - base_ptr; 3663 if (field_offset & 0x1ff) { 3664 clientid = ophead->oh_clientid; 3665 } else { 3666 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3667 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3668 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3669 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3670 clientid = xlog_get_client_id( 3671 xhdr[j].hic_xheader.xh_cycle_data[k]); 3672 } else { 3673 clientid = xlog_get_client_id( 3674 iclog->ic_header.h_cycle_data[idx]); 3675 } 3676 } 3677 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3678 xfs_warn(log->l_mp, 3679 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3680 __func__, i, clientid, ophead, 3681 (unsigned long)field_offset); 3682 } 3683 3684 /* check length */ 3685 p = &ophead->oh_len; 3686 field_offset = p - base_ptr; 3687 if (field_offset & 0x1ff) { 3688 op_len = be32_to_cpu(ophead->oh_len); 3689 } else { 3690 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3691 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3692 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3693 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3694 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3695 } else { 3696 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3697 } 3698 } 3699 ptr += sizeof(xlog_op_header_t) + op_len; 3700 } 3701 } 3702 #endif 3703 3704 /* 3705 * Perform a forced shutdown on the log. 3706 * 3707 * This can be called from low level log code to trigger a shutdown, or from the 3708 * high level mount shutdown code when the mount shuts down. 3709 * 3710 * Our main objectives here are to make sure that: 3711 * a. if the shutdown was not due to a log IO error, flush the logs to 3712 * disk. Anything modified after this is ignored. 3713 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3714 * parties to find out. Nothing new gets queued after this is done. 3715 * c. Tasks sleeping on log reservations, pinned objects and 3716 * other resources get woken up. 3717 * d. The mount is also marked as shut down so that log triggered shutdowns 3718 * still behave the same as if they called xfs_forced_shutdown(). 3719 * 3720 * Return true if the shutdown cause was a log IO error and we actually shut the 3721 * log down. 3722 */ 3723 bool 3724 xlog_force_shutdown( 3725 struct xlog *log, 3726 uint32_t shutdown_flags) 3727 { 3728 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3729 3730 if (!log) 3731 return false; 3732 3733 /* 3734 * Flush all the completed transactions to disk before marking the log 3735 * being shut down. We need to do this first as shutting down the log 3736 * before the force will prevent the log force from flushing the iclogs 3737 * to disk. 3738 * 3739 * When we are in recovery, there are no transactions to flush, and 3740 * we don't want to touch the log because we don't want to perturb the 3741 * current head/tail for future recovery attempts. Hence we need to 3742 * avoid a log force in this case. 3743 * 3744 * If we are shutting down due to a log IO error, then we must avoid 3745 * trying to write the log as that may just result in more IO errors and 3746 * an endless shutdown/force loop. 3747 */ 3748 if (!log_error && !xlog_in_recovery(log)) 3749 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3750 3751 /* 3752 * Atomically set the shutdown state. If the shutdown state is already 3753 * set, there someone else is performing the shutdown and so we are done 3754 * here. This should never happen because we should only ever get called 3755 * once by the first shutdown caller. 3756 * 3757 * Much of the log state machine transitions assume that shutdown state 3758 * cannot change once they hold the log->l_icloglock. Hence we need to 3759 * hold that lock here, even though we use the atomic test_and_set_bit() 3760 * operation to set the shutdown state. 3761 */ 3762 spin_lock(&log->l_icloglock); 3763 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3764 spin_unlock(&log->l_icloglock); 3765 return false; 3766 } 3767 spin_unlock(&log->l_icloglock); 3768 3769 /* 3770 * If this log shutdown also sets the mount shutdown state, issue a 3771 * shutdown warning message. 3772 */ 3773 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3774 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3775 "Filesystem has been shut down due to log error (0x%x).", 3776 shutdown_flags); 3777 xfs_alert(log->l_mp, 3778 "Please unmount the filesystem and rectify the problem(s)."); 3779 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3780 xfs_stack_trace(); 3781 } 3782 3783 /* 3784 * We don't want anybody waiting for log reservations after this. That 3785 * means we have to wake up everybody queued up on reserveq as well as 3786 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3787 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3788 * action is protected by the grant locks. 3789 */ 3790 xlog_grant_head_wake_all(&log->l_reserve_head); 3791 xlog_grant_head_wake_all(&log->l_write_head); 3792 3793 /* 3794 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3795 * as if the log writes were completed. The abort handling in the log 3796 * item committed callback functions will do this again under lock to 3797 * avoid races. 3798 */ 3799 spin_lock(&log->l_cilp->xc_push_lock); 3800 wake_up_all(&log->l_cilp->xc_start_wait); 3801 wake_up_all(&log->l_cilp->xc_commit_wait); 3802 spin_unlock(&log->l_cilp->xc_push_lock); 3803 3804 spin_lock(&log->l_icloglock); 3805 xlog_state_shutdown_callbacks(log); 3806 spin_unlock(&log->l_icloglock); 3807 3808 wake_up_var(&log->l_opstate); 3809 return log_error; 3810 } 3811 3812 STATIC int 3813 xlog_iclogs_empty( 3814 struct xlog *log) 3815 { 3816 xlog_in_core_t *iclog; 3817 3818 iclog = log->l_iclog; 3819 do { 3820 /* endianness does not matter here, zero is zero in 3821 * any language. 3822 */ 3823 if (iclog->ic_header.h_num_logops) 3824 return 0; 3825 iclog = iclog->ic_next; 3826 } while (iclog != log->l_iclog); 3827 return 1; 3828 } 3829 3830 /* 3831 * Verify that an LSN stamped into a piece of metadata is valid. This is 3832 * intended for use in read verifiers on v5 superblocks. 3833 */ 3834 bool 3835 xfs_log_check_lsn( 3836 struct xfs_mount *mp, 3837 xfs_lsn_t lsn) 3838 { 3839 struct xlog *log = mp->m_log; 3840 bool valid; 3841 3842 /* 3843 * norecovery mode skips mount-time log processing and unconditionally 3844 * resets the in-core LSN. We can't validate in this mode, but 3845 * modifications are not allowed anyways so just return true. 3846 */ 3847 if (xfs_has_norecovery(mp)) 3848 return true; 3849 3850 /* 3851 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3852 * handled by recovery and thus safe to ignore here. 3853 */ 3854 if (lsn == NULLCOMMITLSN) 3855 return true; 3856 3857 valid = xlog_valid_lsn(mp->m_log, lsn); 3858 3859 /* warn the user about what's gone wrong before verifier failure */ 3860 if (!valid) { 3861 spin_lock(&log->l_icloglock); 3862 xfs_warn(mp, 3863 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3864 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3865 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3866 log->l_curr_cycle, log->l_curr_block); 3867 spin_unlock(&log->l_icloglock); 3868 } 3869 3870 return valid; 3871 } 3872 3873 /* 3874 * Notify the log that we're about to start using a feature that is protected 3875 * by a log incompat feature flag. This will prevent log covering from 3876 * clearing those flags. 3877 */ 3878 void 3879 xlog_use_incompat_feat( 3880 struct xlog *log) 3881 { 3882 down_read(&log->l_incompat_users); 3883 } 3884 3885 /* Notify the log that we've finished using log incompat features. */ 3886 void 3887 xlog_drop_incompat_feat( 3888 struct xlog *log) 3889 { 3890 up_read(&log->l_incompat_users); 3891 } 3892