1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_error.h" 27 #include "xfs_log_priv.h" 28 #include "xfs_buf_item.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_trace.h" 37 #include "xfs_fsops.h" 38 #include "xfs_cksum.h" 39 40 kmem_zone_t *xfs_log_ticket_zone; 41 42 /* Local miscellaneous function prototypes */ 43 STATIC int 44 xlog_commit_record( 45 struct xlog *log, 46 struct xlog_ticket *ticket, 47 struct xlog_in_core **iclog, 48 xfs_lsn_t *commitlsnp); 49 50 STATIC struct xlog * 51 xlog_alloc_log( 52 struct xfs_mount *mp, 53 struct xfs_buftarg *log_target, 54 xfs_daddr_t blk_offset, 55 int num_bblks); 56 STATIC int 57 xlog_space_left( 58 struct xlog *log, 59 atomic64_t *head); 60 STATIC int 61 xlog_sync( 62 struct xlog *log, 63 struct xlog_in_core *iclog); 64 STATIC void 65 xlog_dealloc_log( 66 struct xlog *log); 67 68 /* local state machine functions */ 69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 70 STATIC void 71 xlog_state_do_callback( 72 struct xlog *log, 73 int aborted, 74 struct xlog_in_core *iclog); 75 STATIC int 76 xlog_state_get_iclog_space( 77 struct xlog *log, 78 int len, 79 struct xlog_in_core **iclog, 80 struct xlog_ticket *ticket, 81 int *continued_write, 82 int *logoffsetp); 83 STATIC int 84 xlog_state_release_iclog( 85 struct xlog *log, 86 struct xlog_in_core *iclog); 87 STATIC void 88 xlog_state_switch_iclogs( 89 struct xlog *log, 90 struct xlog_in_core *iclog, 91 int eventual_size); 92 STATIC void 93 xlog_state_want_sync( 94 struct xlog *log, 95 struct xlog_in_core *iclog); 96 97 STATIC void 98 xlog_grant_push_ail( 99 struct xlog *log, 100 int need_bytes); 101 STATIC void 102 xlog_regrant_reserve_log_space( 103 struct xlog *log, 104 struct xlog_ticket *ticket); 105 STATIC void 106 xlog_ungrant_log_space( 107 struct xlog *log, 108 struct xlog_ticket *ticket); 109 110 #if defined(DEBUG) 111 STATIC void 112 xlog_verify_dest_ptr( 113 struct xlog *log, 114 char *ptr); 115 STATIC void 116 xlog_verify_grant_tail( 117 struct xlog *log); 118 STATIC void 119 xlog_verify_iclog( 120 struct xlog *log, 121 struct xlog_in_core *iclog, 122 int count, 123 bool syncing); 124 STATIC void 125 xlog_verify_tail_lsn( 126 struct xlog *log, 127 struct xlog_in_core *iclog, 128 xfs_lsn_t tail_lsn); 129 #else 130 #define xlog_verify_dest_ptr(a,b) 131 #define xlog_verify_grant_tail(a) 132 #define xlog_verify_iclog(a,b,c,d) 133 #define xlog_verify_tail_lsn(a,b,c) 134 #endif 135 136 STATIC int 137 xlog_iclogs_empty( 138 struct xlog *log); 139 140 static void 141 xlog_grant_sub_space( 142 struct xlog *log, 143 atomic64_t *head, 144 int bytes) 145 { 146 int64_t head_val = atomic64_read(head); 147 int64_t new, old; 148 149 do { 150 int cycle, space; 151 152 xlog_crack_grant_head_val(head_val, &cycle, &space); 153 154 space -= bytes; 155 if (space < 0) { 156 space += log->l_logsize; 157 cycle--; 158 } 159 160 old = head_val; 161 new = xlog_assign_grant_head_val(cycle, space); 162 head_val = atomic64_cmpxchg(head, old, new); 163 } while (head_val != old); 164 } 165 166 static void 167 xlog_grant_add_space( 168 struct xlog *log, 169 atomic64_t *head, 170 int bytes) 171 { 172 int64_t head_val = atomic64_read(head); 173 int64_t new, old; 174 175 do { 176 int tmp; 177 int cycle, space; 178 179 xlog_crack_grant_head_val(head_val, &cycle, &space); 180 181 tmp = log->l_logsize - space; 182 if (tmp > bytes) 183 space += bytes; 184 else { 185 space = bytes - tmp; 186 cycle++; 187 } 188 189 old = head_val; 190 new = xlog_assign_grant_head_val(cycle, space); 191 head_val = atomic64_cmpxchg(head, old, new); 192 } while (head_val != old); 193 } 194 195 STATIC void 196 xlog_grant_head_init( 197 struct xlog_grant_head *head) 198 { 199 xlog_assign_grant_head(&head->grant, 1, 0); 200 INIT_LIST_HEAD(&head->waiters); 201 spin_lock_init(&head->lock); 202 } 203 204 STATIC void 205 xlog_grant_head_wake_all( 206 struct xlog_grant_head *head) 207 { 208 struct xlog_ticket *tic; 209 210 spin_lock(&head->lock); 211 list_for_each_entry(tic, &head->waiters, t_queue) 212 wake_up_process(tic->t_task); 213 spin_unlock(&head->lock); 214 } 215 216 static inline int 217 xlog_ticket_reservation( 218 struct xlog *log, 219 struct xlog_grant_head *head, 220 struct xlog_ticket *tic) 221 { 222 if (head == &log->l_write_head) { 223 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 224 return tic->t_unit_res; 225 } else { 226 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 227 return tic->t_unit_res * tic->t_cnt; 228 else 229 return tic->t_unit_res; 230 } 231 } 232 233 STATIC bool 234 xlog_grant_head_wake( 235 struct xlog *log, 236 struct xlog_grant_head *head, 237 int *free_bytes) 238 { 239 struct xlog_ticket *tic; 240 int need_bytes; 241 242 list_for_each_entry(tic, &head->waiters, t_queue) { 243 need_bytes = xlog_ticket_reservation(log, head, tic); 244 if (*free_bytes < need_bytes) 245 return false; 246 247 *free_bytes -= need_bytes; 248 trace_xfs_log_grant_wake_up(log, tic); 249 wake_up_process(tic->t_task); 250 } 251 252 return true; 253 } 254 255 STATIC int 256 xlog_grant_head_wait( 257 struct xlog *log, 258 struct xlog_grant_head *head, 259 struct xlog_ticket *tic, 260 int need_bytes) __releases(&head->lock) 261 __acquires(&head->lock) 262 { 263 list_add_tail(&tic->t_queue, &head->waiters); 264 265 do { 266 if (XLOG_FORCED_SHUTDOWN(log)) 267 goto shutdown; 268 xlog_grant_push_ail(log, need_bytes); 269 270 __set_current_state(TASK_UNINTERRUPTIBLE); 271 spin_unlock(&head->lock); 272 273 XFS_STATS_INC(xs_sleep_logspace); 274 275 trace_xfs_log_grant_sleep(log, tic); 276 schedule(); 277 trace_xfs_log_grant_wake(log, tic); 278 279 spin_lock(&head->lock); 280 if (XLOG_FORCED_SHUTDOWN(log)) 281 goto shutdown; 282 } while (xlog_space_left(log, &head->grant) < need_bytes); 283 284 list_del_init(&tic->t_queue); 285 return 0; 286 shutdown: 287 list_del_init(&tic->t_queue); 288 return XFS_ERROR(EIO); 289 } 290 291 /* 292 * Atomically get the log space required for a log ticket. 293 * 294 * Once a ticket gets put onto head->waiters, it will only return after the 295 * needed reservation is satisfied. 296 * 297 * This function is structured so that it has a lock free fast path. This is 298 * necessary because every new transaction reservation will come through this 299 * path. Hence any lock will be globally hot if we take it unconditionally on 300 * every pass. 301 * 302 * As tickets are only ever moved on and off head->waiters under head->lock, we 303 * only need to take that lock if we are going to add the ticket to the queue 304 * and sleep. We can avoid taking the lock if the ticket was never added to 305 * head->waiters because the t_queue list head will be empty and we hold the 306 * only reference to it so it can safely be checked unlocked. 307 */ 308 STATIC int 309 xlog_grant_head_check( 310 struct xlog *log, 311 struct xlog_grant_head *head, 312 struct xlog_ticket *tic, 313 int *need_bytes) 314 { 315 int free_bytes; 316 int error = 0; 317 318 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 319 320 /* 321 * If there are other waiters on the queue then give them a chance at 322 * logspace before us. Wake up the first waiters, if we do not wake 323 * up all the waiters then go to sleep waiting for more free space, 324 * otherwise try to get some space for this transaction. 325 */ 326 *need_bytes = xlog_ticket_reservation(log, head, tic); 327 free_bytes = xlog_space_left(log, &head->grant); 328 if (!list_empty_careful(&head->waiters)) { 329 spin_lock(&head->lock); 330 if (!xlog_grant_head_wake(log, head, &free_bytes) || 331 free_bytes < *need_bytes) { 332 error = xlog_grant_head_wait(log, head, tic, 333 *need_bytes); 334 } 335 spin_unlock(&head->lock); 336 } else if (free_bytes < *need_bytes) { 337 spin_lock(&head->lock); 338 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 339 spin_unlock(&head->lock); 340 } 341 342 return error; 343 } 344 345 static void 346 xlog_tic_reset_res(xlog_ticket_t *tic) 347 { 348 tic->t_res_num = 0; 349 tic->t_res_arr_sum = 0; 350 tic->t_res_num_ophdrs = 0; 351 } 352 353 static void 354 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 355 { 356 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 357 /* add to overflow and start again */ 358 tic->t_res_o_flow += tic->t_res_arr_sum; 359 tic->t_res_num = 0; 360 tic->t_res_arr_sum = 0; 361 } 362 363 tic->t_res_arr[tic->t_res_num].r_len = len; 364 tic->t_res_arr[tic->t_res_num].r_type = type; 365 tic->t_res_arr_sum += len; 366 tic->t_res_num++; 367 } 368 369 /* 370 * Replenish the byte reservation required by moving the grant write head. 371 */ 372 int 373 xfs_log_regrant( 374 struct xfs_mount *mp, 375 struct xlog_ticket *tic) 376 { 377 struct xlog *log = mp->m_log; 378 int need_bytes; 379 int error = 0; 380 381 if (XLOG_FORCED_SHUTDOWN(log)) 382 return XFS_ERROR(EIO); 383 384 XFS_STATS_INC(xs_try_logspace); 385 386 /* 387 * This is a new transaction on the ticket, so we need to change the 388 * transaction ID so that the next transaction has a different TID in 389 * the log. Just add one to the existing tid so that we can see chains 390 * of rolling transactions in the log easily. 391 */ 392 tic->t_tid++; 393 394 xlog_grant_push_ail(log, tic->t_unit_res); 395 396 tic->t_curr_res = tic->t_unit_res; 397 xlog_tic_reset_res(tic); 398 399 if (tic->t_cnt > 0) 400 return 0; 401 402 trace_xfs_log_regrant(log, tic); 403 404 error = xlog_grant_head_check(log, &log->l_write_head, tic, 405 &need_bytes); 406 if (error) 407 goto out_error; 408 409 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 410 trace_xfs_log_regrant_exit(log, tic); 411 xlog_verify_grant_tail(log); 412 return 0; 413 414 out_error: 415 /* 416 * If we are failing, make sure the ticket doesn't have any current 417 * reservations. We don't want to add this back when the ticket/ 418 * transaction gets cancelled. 419 */ 420 tic->t_curr_res = 0; 421 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 422 return error; 423 } 424 425 /* 426 * Reserve log space and return a ticket corresponding the reservation. 427 * 428 * Each reservation is going to reserve extra space for a log record header. 429 * When writes happen to the on-disk log, we don't subtract the length of the 430 * log record header from any reservation. By wasting space in each 431 * reservation, we prevent over allocation problems. 432 */ 433 int 434 xfs_log_reserve( 435 struct xfs_mount *mp, 436 int unit_bytes, 437 int cnt, 438 struct xlog_ticket **ticp, 439 __uint8_t client, 440 bool permanent, 441 uint t_type) 442 { 443 struct xlog *log = mp->m_log; 444 struct xlog_ticket *tic; 445 int need_bytes; 446 int error = 0; 447 448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 449 450 if (XLOG_FORCED_SHUTDOWN(log)) 451 return XFS_ERROR(EIO); 452 453 XFS_STATS_INC(xs_try_logspace); 454 455 ASSERT(*ticp == NULL); 456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 457 KM_SLEEP | KM_MAYFAIL); 458 if (!tic) 459 return XFS_ERROR(ENOMEM); 460 461 tic->t_trans_type = t_type; 462 *ticp = tic; 463 464 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 465 : tic->t_unit_res); 466 467 trace_xfs_log_reserve(log, tic); 468 469 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 470 &need_bytes); 471 if (error) 472 goto out_error; 473 474 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 475 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 476 trace_xfs_log_reserve_exit(log, tic); 477 xlog_verify_grant_tail(log); 478 return 0; 479 480 out_error: 481 /* 482 * If we are failing, make sure the ticket doesn't have any current 483 * reservations. We don't want to add this back when the ticket/ 484 * transaction gets cancelled. 485 */ 486 tic->t_curr_res = 0; 487 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 488 return error; 489 } 490 491 492 /* 493 * NOTES: 494 * 495 * 1. currblock field gets updated at startup and after in-core logs 496 * marked as with WANT_SYNC. 497 */ 498 499 /* 500 * This routine is called when a user of a log manager ticket is done with 501 * the reservation. If the ticket was ever used, then a commit record for 502 * the associated transaction is written out as a log operation header with 503 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 504 * a given ticket. If the ticket was one with a permanent reservation, then 505 * a few operations are done differently. Permanent reservation tickets by 506 * default don't release the reservation. They just commit the current 507 * transaction with the belief that the reservation is still needed. A flag 508 * must be passed in before permanent reservations are actually released. 509 * When these type of tickets are not released, they need to be set into 510 * the inited state again. By doing this, a start record will be written 511 * out when the next write occurs. 512 */ 513 xfs_lsn_t 514 xfs_log_done( 515 struct xfs_mount *mp, 516 struct xlog_ticket *ticket, 517 struct xlog_in_core **iclog, 518 uint flags) 519 { 520 struct xlog *log = mp->m_log; 521 xfs_lsn_t lsn = 0; 522 523 if (XLOG_FORCED_SHUTDOWN(log) || 524 /* 525 * If nothing was ever written, don't write out commit record. 526 * If we get an error, just continue and give back the log ticket. 527 */ 528 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 529 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 530 lsn = (xfs_lsn_t) -1; 531 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 532 flags |= XFS_LOG_REL_PERM_RESERV; 533 } 534 } 535 536 537 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 538 (flags & XFS_LOG_REL_PERM_RESERV)) { 539 trace_xfs_log_done_nonperm(log, ticket); 540 541 /* 542 * Release ticket if not permanent reservation or a specific 543 * request has been made to release a permanent reservation. 544 */ 545 xlog_ungrant_log_space(log, ticket); 546 xfs_log_ticket_put(ticket); 547 } else { 548 trace_xfs_log_done_perm(log, ticket); 549 550 xlog_regrant_reserve_log_space(log, ticket); 551 /* If this ticket was a permanent reservation and we aren't 552 * trying to release it, reset the inited flags; so next time 553 * we write, a start record will be written out. 554 */ 555 ticket->t_flags |= XLOG_TIC_INITED; 556 } 557 558 return lsn; 559 } 560 561 /* 562 * Attaches a new iclog I/O completion callback routine during 563 * transaction commit. If the log is in error state, a non-zero 564 * return code is handed back and the caller is responsible for 565 * executing the callback at an appropriate time. 566 */ 567 int 568 xfs_log_notify( 569 struct xfs_mount *mp, 570 struct xlog_in_core *iclog, 571 xfs_log_callback_t *cb) 572 { 573 int abortflg; 574 575 spin_lock(&iclog->ic_callback_lock); 576 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 577 if (!abortflg) { 578 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 579 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 580 cb->cb_next = NULL; 581 *(iclog->ic_callback_tail) = cb; 582 iclog->ic_callback_tail = &(cb->cb_next); 583 } 584 spin_unlock(&iclog->ic_callback_lock); 585 return abortflg; 586 } 587 588 int 589 xfs_log_release_iclog( 590 struct xfs_mount *mp, 591 struct xlog_in_core *iclog) 592 { 593 if (xlog_state_release_iclog(mp->m_log, iclog)) { 594 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 595 return EIO; 596 } 597 598 return 0; 599 } 600 601 /* 602 * Mount a log filesystem 603 * 604 * mp - ubiquitous xfs mount point structure 605 * log_target - buftarg of on-disk log device 606 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 607 * num_bblocks - Number of BBSIZE blocks in on-disk log 608 * 609 * Return error or zero. 610 */ 611 int 612 xfs_log_mount( 613 xfs_mount_t *mp, 614 xfs_buftarg_t *log_target, 615 xfs_daddr_t blk_offset, 616 int num_bblks) 617 { 618 int error = 0; 619 int min_logfsbs; 620 621 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 622 xfs_notice(mp, "Mounting Filesystem"); 623 else { 624 xfs_notice(mp, 625 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 627 } 628 629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 630 if (IS_ERR(mp->m_log)) { 631 error = -PTR_ERR(mp->m_log); 632 goto out; 633 } 634 635 /* 636 * Validate the given log space and drop a critical message via syslog 637 * if the log size is too small that would lead to some unexpected 638 * situations in transaction log space reservation stage. 639 * 640 * Note: we can't just reject the mount if the validation fails. This 641 * would mean that people would have to downgrade their kernel just to 642 * remedy the situation as there is no way to grow the log (short of 643 * black magic surgery with xfs_db). 644 * 645 * We can, however, reject mounts for CRC format filesystems, as the 646 * mkfs binary being used to make the filesystem should never create a 647 * filesystem with a log that is too small. 648 */ 649 min_logfsbs = xfs_log_calc_minimum_size(mp); 650 651 if (mp->m_sb.sb_logblocks < min_logfsbs) { 652 xfs_warn(mp, 653 "Log size %d blocks too small, minimum size is %d blocks", 654 mp->m_sb.sb_logblocks, min_logfsbs); 655 error = EINVAL; 656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 657 xfs_warn(mp, 658 "Log size %d blocks too large, maximum size is %lld blocks", 659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 660 error = EINVAL; 661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 662 xfs_warn(mp, 663 "log size %lld bytes too large, maximum size is %lld bytes", 664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 665 XFS_MAX_LOG_BYTES); 666 error = EINVAL; 667 } 668 if (error) { 669 if (xfs_sb_version_hascrc(&mp->m_sb)) { 670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 671 ASSERT(0); 672 goto out_free_log; 673 } 674 xfs_crit(mp, 675 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 676 "experienced then please report this message in the bug report."); 677 } 678 679 /* 680 * Initialize the AIL now we have a log. 681 */ 682 error = xfs_trans_ail_init(mp); 683 if (error) { 684 xfs_warn(mp, "AIL initialisation failed: error %d", error); 685 goto out_free_log; 686 } 687 mp->m_log->l_ailp = mp->m_ail; 688 689 /* 690 * skip log recovery on a norecovery mount. pretend it all 691 * just worked. 692 */ 693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 695 696 if (readonly) 697 mp->m_flags &= ~XFS_MOUNT_RDONLY; 698 699 error = xlog_recover(mp->m_log); 700 701 if (readonly) 702 mp->m_flags |= XFS_MOUNT_RDONLY; 703 if (error) { 704 xfs_warn(mp, "log mount/recovery failed: error %d", 705 error); 706 goto out_destroy_ail; 707 } 708 } 709 710 /* Normal transactions can now occur */ 711 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 712 713 /* 714 * Now the log has been fully initialised and we know were our 715 * space grant counters are, we can initialise the permanent ticket 716 * needed for delayed logging to work. 717 */ 718 xlog_cil_init_post_recovery(mp->m_log); 719 720 return 0; 721 722 out_destroy_ail: 723 xfs_trans_ail_destroy(mp); 724 out_free_log: 725 xlog_dealloc_log(mp->m_log); 726 out: 727 return error; 728 } 729 730 /* 731 * Finish the recovery of the file system. This is separate from the 732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 734 * here. 735 * 736 * If we finish recovery successfully, start the background log work. If we are 737 * not doing recovery, then we have a RO filesystem and we don't need to start 738 * it. 739 */ 740 int 741 xfs_log_mount_finish(xfs_mount_t *mp) 742 { 743 int error = 0; 744 745 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 746 error = xlog_recover_finish(mp->m_log); 747 if (!error) 748 xfs_log_work_queue(mp); 749 } else { 750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 751 } 752 753 754 return error; 755 } 756 757 /* 758 * Final log writes as part of unmount. 759 * 760 * Mark the filesystem clean as unmount happens. Note that during relocation 761 * this routine needs to be executed as part of source-bag while the 762 * deallocation must not be done until source-end. 763 */ 764 765 /* 766 * Unmount record used to have a string "Unmount filesystem--" in the 767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 768 * We just write the magic number now since that particular field isn't 769 * currently architecture converted and "Unmount" is a bit foo. 770 * As far as I know, there weren't any dependencies on the old behaviour. 771 */ 772 773 int 774 xfs_log_unmount_write(xfs_mount_t *mp) 775 { 776 struct xlog *log = mp->m_log; 777 xlog_in_core_t *iclog; 778 #ifdef DEBUG 779 xlog_in_core_t *first_iclog; 780 #endif 781 xlog_ticket_t *tic = NULL; 782 xfs_lsn_t lsn; 783 int error; 784 785 /* 786 * Don't write out unmount record on read-only mounts. 787 * Or, if we are doing a forced umount (typically because of IO errors). 788 */ 789 if (mp->m_flags & XFS_MOUNT_RDONLY) 790 return 0; 791 792 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 793 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 794 795 #ifdef DEBUG 796 first_iclog = iclog = log->l_iclog; 797 do { 798 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 799 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 800 ASSERT(iclog->ic_offset == 0); 801 } 802 iclog = iclog->ic_next; 803 } while (iclog != first_iclog); 804 #endif 805 if (! (XLOG_FORCED_SHUTDOWN(log))) { 806 error = xfs_log_reserve(mp, 600, 1, &tic, 807 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 808 if (!error) { 809 /* the data section must be 32 bit size aligned */ 810 struct { 811 __uint16_t magic; 812 __uint16_t pad1; 813 __uint32_t pad2; /* may as well make it 64 bits */ 814 } magic = { 815 .magic = XLOG_UNMOUNT_TYPE, 816 }; 817 struct xfs_log_iovec reg = { 818 .i_addr = &magic, 819 .i_len = sizeof(magic), 820 .i_type = XLOG_REG_TYPE_UNMOUNT, 821 }; 822 struct xfs_log_vec vec = { 823 .lv_niovecs = 1, 824 .lv_iovecp = ®, 825 }; 826 827 /* remove inited flag, and account for space used */ 828 tic->t_flags = 0; 829 tic->t_curr_res -= sizeof(magic); 830 error = xlog_write(log, &vec, tic, &lsn, 831 NULL, XLOG_UNMOUNT_TRANS); 832 /* 833 * At this point, we're umounting anyway, 834 * so there's no point in transitioning log state 835 * to IOERROR. Just continue... 836 */ 837 } 838 839 if (error) 840 xfs_alert(mp, "%s: unmount record failed", __func__); 841 842 843 spin_lock(&log->l_icloglock); 844 iclog = log->l_iclog; 845 atomic_inc(&iclog->ic_refcnt); 846 xlog_state_want_sync(log, iclog); 847 spin_unlock(&log->l_icloglock); 848 error = xlog_state_release_iclog(log, iclog); 849 850 spin_lock(&log->l_icloglock); 851 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 852 iclog->ic_state == XLOG_STATE_DIRTY)) { 853 if (!XLOG_FORCED_SHUTDOWN(log)) { 854 xlog_wait(&iclog->ic_force_wait, 855 &log->l_icloglock); 856 } else { 857 spin_unlock(&log->l_icloglock); 858 } 859 } else { 860 spin_unlock(&log->l_icloglock); 861 } 862 if (tic) { 863 trace_xfs_log_umount_write(log, tic); 864 xlog_ungrant_log_space(log, tic); 865 xfs_log_ticket_put(tic); 866 } 867 } else { 868 /* 869 * We're already in forced_shutdown mode, couldn't 870 * even attempt to write out the unmount transaction. 871 * 872 * Go through the motions of sync'ing and releasing 873 * the iclog, even though no I/O will actually happen, 874 * we need to wait for other log I/Os that may already 875 * be in progress. Do this as a separate section of 876 * code so we'll know if we ever get stuck here that 877 * we're in this odd situation of trying to unmount 878 * a file system that went into forced_shutdown as 879 * the result of an unmount.. 880 */ 881 spin_lock(&log->l_icloglock); 882 iclog = log->l_iclog; 883 atomic_inc(&iclog->ic_refcnt); 884 885 xlog_state_want_sync(log, iclog); 886 spin_unlock(&log->l_icloglock); 887 error = xlog_state_release_iclog(log, iclog); 888 889 spin_lock(&log->l_icloglock); 890 891 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 892 || iclog->ic_state == XLOG_STATE_DIRTY 893 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 894 895 xlog_wait(&iclog->ic_force_wait, 896 &log->l_icloglock); 897 } else { 898 spin_unlock(&log->l_icloglock); 899 } 900 } 901 902 return error; 903 } /* xfs_log_unmount_write */ 904 905 /* 906 * Empty the log for unmount/freeze. 907 * 908 * To do this, we first need to shut down the background log work so it is not 909 * trying to cover the log as we clean up. We then need to unpin all objects in 910 * the log so we can then flush them out. Once they have completed their IO and 911 * run the callbacks removing themselves from the AIL, we can write the unmount 912 * record. 913 */ 914 void 915 xfs_log_quiesce( 916 struct xfs_mount *mp) 917 { 918 cancel_delayed_work_sync(&mp->m_log->l_work); 919 xfs_log_force(mp, XFS_LOG_SYNC); 920 921 /* 922 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 923 * will push it, xfs_wait_buftarg() will not wait for it. Further, 924 * xfs_buf_iowait() cannot be used because it was pushed with the 925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 926 * the IO to complete. 927 */ 928 xfs_ail_push_all_sync(mp->m_ail); 929 xfs_wait_buftarg(mp->m_ddev_targp); 930 xfs_buf_lock(mp->m_sb_bp); 931 xfs_buf_unlock(mp->m_sb_bp); 932 933 xfs_log_unmount_write(mp); 934 } 935 936 /* 937 * Shut down and release the AIL and Log. 938 * 939 * During unmount, we need to ensure we flush all the dirty metadata objects 940 * from the AIL so that the log is empty before we write the unmount record to 941 * the log. Once this is done, we can tear down the AIL and the log. 942 */ 943 void 944 xfs_log_unmount( 945 struct xfs_mount *mp) 946 { 947 xfs_log_quiesce(mp); 948 949 xfs_trans_ail_destroy(mp); 950 xlog_dealloc_log(mp->m_log); 951 } 952 953 void 954 xfs_log_item_init( 955 struct xfs_mount *mp, 956 struct xfs_log_item *item, 957 int type, 958 const struct xfs_item_ops *ops) 959 { 960 item->li_mountp = mp; 961 item->li_ailp = mp->m_ail; 962 item->li_type = type; 963 item->li_ops = ops; 964 item->li_lv = NULL; 965 966 INIT_LIST_HEAD(&item->li_ail); 967 INIT_LIST_HEAD(&item->li_cil); 968 } 969 970 /* 971 * Wake up processes waiting for log space after we have moved the log tail. 972 */ 973 void 974 xfs_log_space_wake( 975 struct xfs_mount *mp) 976 { 977 struct xlog *log = mp->m_log; 978 int free_bytes; 979 980 if (XLOG_FORCED_SHUTDOWN(log)) 981 return; 982 983 if (!list_empty_careful(&log->l_write_head.waiters)) { 984 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 985 986 spin_lock(&log->l_write_head.lock); 987 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 988 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 989 spin_unlock(&log->l_write_head.lock); 990 } 991 992 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 993 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 994 995 spin_lock(&log->l_reserve_head.lock); 996 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 997 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 998 spin_unlock(&log->l_reserve_head.lock); 999 } 1000 } 1001 1002 /* 1003 * Determine if we have a transaction that has gone to disk 1004 * that needs to be covered. To begin the transition to the idle state 1005 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 1006 * If we are then in a state where covering is needed, the caller is informed 1007 * that dummy transactions are required to move the log into the idle state. 1008 * 1009 * Because this is called as part of the sync process, we should also indicate 1010 * that dummy transactions should be issued in anything but the covered or 1011 * idle states. This ensures that the log tail is accurately reflected in 1012 * the log at the end of the sync, hence if a crash occurrs avoids replay 1013 * of transactions where the metadata is already on disk. 1014 */ 1015 int 1016 xfs_log_need_covered(xfs_mount_t *mp) 1017 { 1018 int needed = 0; 1019 struct xlog *log = mp->m_log; 1020 1021 if (!xfs_fs_writable(mp)) 1022 return 0; 1023 1024 spin_lock(&log->l_icloglock); 1025 switch (log->l_covered_state) { 1026 case XLOG_STATE_COVER_DONE: 1027 case XLOG_STATE_COVER_DONE2: 1028 case XLOG_STATE_COVER_IDLE: 1029 break; 1030 case XLOG_STATE_COVER_NEED: 1031 case XLOG_STATE_COVER_NEED2: 1032 if (!xfs_ail_min_lsn(log->l_ailp) && 1033 xlog_iclogs_empty(log)) { 1034 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1035 log->l_covered_state = XLOG_STATE_COVER_DONE; 1036 else 1037 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1038 } 1039 /* FALLTHRU */ 1040 default: 1041 needed = 1; 1042 break; 1043 } 1044 spin_unlock(&log->l_icloglock); 1045 return needed; 1046 } 1047 1048 /* 1049 * We may be holding the log iclog lock upon entering this routine. 1050 */ 1051 xfs_lsn_t 1052 xlog_assign_tail_lsn_locked( 1053 struct xfs_mount *mp) 1054 { 1055 struct xlog *log = mp->m_log; 1056 struct xfs_log_item *lip; 1057 xfs_lsn_t tail_lsn; 1058 1059 assert_spin_locked(&mp->m_ail->xa_lock); 1060 1061 /* 1062 * To make sure we always have a valid LSN for the log tail we keep 1063 * track of the last LSN which was committed in log->l_last_sync_lsn, 1064 * and use that when the AIL was empty. 1065 */ 1066 lip = xfs_ail_min(mp->m_ail); 1067 if (lip) 1068 tail_lsn = lip->li_lsn; 1069 else 1070 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1071 atomic64_set(&log->l_tail_lsn, tail_lsn); 1072 return tail_lsn; 1073 } 1074 1075 xfs_lsn_t 1076 xlog_assign_tail_lsn( 1077 struct xfs_mount *mp) 1078 { 1079 xfs_lsn_t tail_lsn; 1080 1081 spin_lock(&mp->m_ail->xa_lock); 1082 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1083 spin_unlock(&mp->m_ail->xa_lock); 1084 1085 return tail_lsn; 1086 } 1087 1088 /* 1089 * Return the space in the log between the tail and the head. The head 1090 * is passed in the cycle/bytes formal parms. In the special case where 1091 * the reserve head has wrapped passed the tail, this calculation is no 1092 * longer valid. In this case, just return 0 which means there is no space 1093 * in the log. This works for all places where this function is called 1094 * with the reserve head. Of course, if the write head were to ever 1095 * wrap the tail, we should blow up. Rather than catch this case here, 1096 * we depend on other ASSERTions in other parts of the code. XXXmiken 1097 * 1098 * This code also handles the case where the reservation head is behind 1099 * the tail. The details of this case are described below, but the end 1100 * result is that we return the size of the log as the amount of space left. 1101 */ 1102 STATIC int 1103 xlog_space_left( 1104 struct xlog *log, 1105 atomic64_t *head) 1106 { 1107 int free_bytes; 1108 int tail_bytes; 1109 int tail_cycle; 1110 int head_cycle; 1111 int head_bytes; 1112 1113 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1114 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1115 tail_bytes = BBTOB(tail_bytes); 1116 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1117 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1118 else if (tail_cycle + 1 < head_cycle) 1119 return 0; 1120 else if (tail_cycle < head_cycle) { 1121 ASSERT(tail_cycle == (head_cycle - 1)); 1122 free_bytes = tail_bytes - head_bytes; 1123 } else { 1124 /* 1125 * The reservation head is behind the tail. 1126 * In this case we just want to return the size of the 1127 * log as the amount of space left. 1128 */ 1129 xfs_alert(log->l_mp, 1130 "xlog_space_left: head behind tail\n" 1131 " tail_cycle = %d, tail_bytes = %d\n" 1132 " GH cycle = %d, GH bytes = %d", 1133 tail_cycle, tail_bytes, head_cycle, head_bytes); 1134 ASSERT(0); 1135 free_bytes = log->l_logsize; 1136 } 1137 return free_bytes; 1138 } 1139 1140 1141 /* 1142 * Log function which is called when an io completes. 1143 * 1144 * The log manager needs its own routine, in order to control what 1145 * happens with the buffer after the write completes. 1146 */ 1147 void 1148 xlog_iodone(xfs_buf_t *bp) 1149 { 1150 struct xlog_in_core *iclog = bp->b_fspriv; 1151 struct xlog *l = iclog->ic_log; 1152 int aborted = 0; 1153 1154 /* 1155 * Race to shutdown the filesystem if we see an error. 1156 */ 1157 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 1158 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1159 xfs_buf_ioerror_alert(bp, __func__); 1160 xfs_buf_stale(bp); 1161 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1162 /* 1163 * This flag will be propagated to the trans-committed 1164 * callback routines to let them know that the log-commit 1165 * didn't succeed. 1166 */ 1167 aborted = XFS_LI_ABORTED; 1168 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1169 aborted = XFS_LI_ABORTED; 1170 } 1171 1172 /* log I/O is always issued ASYNC */ 1173 ASSERT(XFS_BUF_ISASYNC(bp)); 1174 xlog_state_done_syncing(iclog, aborted); 1175 /* 1176 * do not reference the buffer (bp) here as we could race 1177 * with it being freed after writing the unmount record to the 1178 * log. 1179 */ 1180 } 1181 1182 /* 1183 * Return size of each in-core log record buffer. 1184 * 1185 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1186 * 1187 * If the filesystem blocksize is too large, we may need to choose a 1188 * larger size since the directory code currently logs entire blocks. 1189 */ 1190 1191 STATIC void 1192 xlog_get_iclog_buffer_size( 1193 struct xfs_mount *mp, 1194 struct xlog *log) 1195 { 1196 int size; 1197 int xhdrs; 1198 1199 if (mp->m_logbufs <= 0) 1200 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1201 else 1202 log->l_iclog_bufs = mp->m_logbufs; 1203 1204 /* 1205 * Buffer size passed in from mount system call. 1206 */ 1207 if (mp->m_logbsize > 0) { 1208 size = log->l_iclog_size = mp->m_logbsize; 1209 log->l_iclog_size_log = 0; 1210 while (size != 1) { 1211 log->l_iclog_size_log++; 1212 size >>= 1; 1213 } 1214 1215 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1216 /* # headers = size / 32k 1217 * one header holds cycles from 32k of data 1218 */ 1219 1220 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1221 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1222 xhdrs++; 1223 log->l_iclog_hsize = xhdrs << BBSHIFT; 1224 log->l_iclog_heads = xhdrs; 1225 } else { 1226 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1227 log->l_iclog_hsize = BBSIZE; 1228 log->l_iclog_heads = 1; 1229 } 1230 goto done; 1231 } 1232 1233 /* All machines use 32kB buffers by default. */ 1234 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1235 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1236 1237 /* the default log size is 16k or 32k which is one header sector */ 1238 log->l_iclog_hsize = BBSIZE; 1239 log->l_iclog_heads = 1; 1240 1241 done: 1242 /* are we being asked to make the sizes selected above visible? */ 1243 if (mp->m_logbufs == 0) 1244 mp->m_logbufs = log->l_iclog_bufs; 1245 if (mp->m_logbsize == 0) 1246 mp->m_logbsize = log->l_iclog_size; 1247 } /* xlog_get_iclog_buffer_size */ 1248 1249 1250 void 1251 xfs_log_work_queue( 1252 struct xfs_mount *mp) 1253 { 1254 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1255 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1256 } 1257 1258 /* 1259 * Every sync period we need to unpin all items in the AIL and push them to 1260 * disk. If there is nothing dirty, then we might need to cover the log to 1261 * indicate that the filesystem is idle. 1262 */ 1263 void 1264 xfs_log_worker( 1265 struct work_struct *work) 1266 { 1267 struct xlog *log = container_of(to_delayed_work(work), 1268 struct xlog, l_work); 1269 struct xfs_mount *mp = log->l_mp; 1270 1271 /* dgc: errors ignored - not fatal and nowhere to report them */ 1272 if (xfs_log_need_covered(mp)) 1273 xfs_fs_log_dummy(mp); 1274 else 1275 xfs_log_force(mp, 0); 1276 1277 /* start pushing all the metadata that is currently dirty */ 1278 xfs_ail_push_all(mp->m_ail); 1279 1280 /* queue us up again */ 1281 xfs_log_work_queue(mp); 1282 } 1283 1284 /* 1285 * This routine initializes some of the log structure for a given mount point. 1286 * Its primary purpose is to fill in enough, so recovery can occur. However, 1287 * some other stuff may be filled in too. 1288 */ 1289 STATIC struct xlog * 1290 xlog_alloc_log( 1291 struct xfs_mount *mp, 1292 struct xfs_buftarg *log_target, 1293 xfs_daddr_t blk_offset, 1294 int num_bblks) 1295 { 1296 struct xlog *log; 1297 xlog_rec_header_t *head; 1298 xlog_in_core_t **iclogp; 1299 xlog_in_core_t *iclog, *prev_iclog=NULL; 1300 xfs_buf_t *bp; 1301 int i; 1302 int error = ENOMEM; 1303 uint log2_size = 0; 1304 1305 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1306 if (!log) { 1307 xfs_warn(mp, "Log allocation failed: No memory!"); 1308 goto out; 1309 } 1310 1311 log->l_mp = mp; 1312 log->l_targ = log_target; 1313 log->l_logsize = BBTOB(num_bblks); 1314 log->l_logBBstart = blk_offset; 1315 log->l_logBBsize = num_bblks; 1316 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1317 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1318 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1319 1320 log->l_prev_block = -1; 1321 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1322 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1323 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1324 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1325 1326 xlog_grant_head_init(&log->l_reserve_head); 1327 xlog_grant_head_init(&log->l_write_head); 1328 1329 error = EFSCORRUPTED; 1330 if (xfs_sb_version_hassector(&mp->m_sb)) { 1331 log2_size = mp->m_sb.sb_logsectlog; 1332 if (log2_size < BBSHIFT) { 1333 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1334 log2_size, BBSHIFT); 1335 goto out_free_log; 1336 } 1337 1338 log2_size -= BBSHIFT; 1339 if (log2_size > mp->m_sectbb_log) { 1340 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1341 log2_size, mp->m_sectbb_log); 1342 goto out_free_log; 1343 } 1344 1345 /* for larger sector sizes, must have v2 or external log */ 1346 if (log2_size && log->l_logBBstart > 0 && 1347 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1348 xfs_warn(mp, 1349 "log sector size (0x%x) invalid for configuration.", 1350 log2_size); 1351 goto out_free_log; 1352 } 1353 } 1354 log->l_sectBBsize = 1 << log2_size; 1355 1356 xlog_get_iclog_buffer_size(mp, log); 1357 1358 error = ENOMEM; 1359 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1360 if (!bp) 1361 goto out_free_log; 1362 bp->b_iodone = xlog_iodone; 1363 ASSERT(xfs_buf_islocked(bp)); 1364 log->l_xbuf = bp; 1365 1366 spin_lock_init(&log->l_icloglock); 1367 init_waitqueue_head(&log->l_flush_wait); 1368 1369 iclogp = &log->l_iclog; 1370 /* 1371 * The amount of memory to allocate for the iclog structure is 1372 * rather funky due to the way the structure is defined. It is 1373 * done this way so that we can use different sizes for machines 1374 * with different amounts of memory. See the definition of 1375 * xlog_in_core_t in xfs_log_priv.h for details. 1376 */ 1377 ASSERT(log->l_iclog_size >= 4096); 1378 for (i=0; i < log->l_iclog_bufs; i++) { 1379 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1380 if (!*iclogp) 1381 goto out_free_iclog; 1382 1383 iclog = *iclogp; 1384 iclog->ic_prev = prev_iclog; 1385 prev_iclog = iclog; 1386 1387 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1388 BTOBB(log->l_iclog_size), 0); 1389 if (!bp) 1390 goto out_free_iclog; 1391 1392 bp->b_iodone = xlog_iodone; 1393 iclog->ic_bp = bp; 1394 iclog->ic_data = bp->b_addr; 1395 #ifdef DEBUG 1396 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1397 #endif 1398 head = &iclog->ic_header; 1399 memset(head, 0, sizeof(xlog_rec_header_t)); 1400 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1401 head->h_version = cpu_to_be32( 1402 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1403 head->h_size = cpu_to_be32(log->l_iclog_size); 1404 /* new fields */ 1405 head->h_fmt = cpu_to_be32(XLOG_FMT); 1406 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1407 1408 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1409 iclog->ic_state = XLOG_STATE_ACTIVE; 1410 iclog->ic_log = log; 1411 atomic_set(&iclog->ic_refcnt, 0); 1412 spin_lock_init(&iclog->ic_callback_lock); 1413 iclog->ic_callback_tail = &(iclog->ic_callback); 1414 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1415 1416 ASSERT(xfs_buf_islocked(iclog->ic_bp)); 1417 init_waitqueue_head(&iclog->ic_force_wait); 1418 init_waitqueue_head(&iclog->ic_write_wait); 1419 1420 iclogp = &iclog->ic_next; 1421 } 1422 *iclogp = log->l_iclog; /* complete ring */ 1423 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1424 1425 error = xlog_cil_init(log); 1426 if (error) 1427 goto out_free_iclog; 1428 return log; 1429 1430 out_free_iclog: 1431 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1432 prev_iclog = iclog->ic_next; 1433 if (iclog->ic_bp) 1434 xfs_buf_free(iclog->ic_bp); 1435 kmem_free(iclog); 1436 } 1437 spinlock_destroy(&log->l_icloglock); 1438 xfs_buf_free(log->l_xbuf); 1439 out_free_log: 1440 kmem_free(log); 1441 out: 1442 return ERR_PTR(-error); 1443 } /* xlog_alloc_log */ 1444 1445 1446 /* 1447 * Write out the commit record of a transaction associated with the given 1448 * ticket. Return the lsn of the commit record. 1449 */ 1450 STATIC int 1451 xlog_commit_record( 1452 struct xlog *log, 1453 struct xlog_ticket *ticket, 1454 struct xlog_in_core **iclog, 1455 xfs_lsn_t *commitlsnp) 1456 { 1457 struct xfs_mount *mp = log->l_mp; 1458 int error; 1459 struct xfs_log_iovec reg = { 1460 .i_addr = NULL, 1461 .i_len = 0, 1462 .i_type = XLOG_REG_TYPE_COMMIT, 1463 }; 1464 struct xfs_log_vec vec = { 1465 .lv_niovecs = 1, 1466 .lv_iovecp = ®, 1467 }; 1468 1469 ASSERT_ALWAYS(iclog); 1470 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1471 XLOG_COMMIT_TRANS); 1472 if (error) 1473 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1474 return error; 1475 } 1476 1477 /* 1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1479 * log space. This code pushes on the lsn which would supposedly free up 1480 * the 25% which we want to leave free. We may need to adopt a policy which 1481 * pushes on an lsn which is further along in the log once we reach the high 1482 * water mark. In this manner, we would be creating a low water mark. 1483 */ 1484 STATIC void 1485 xlog_grant_push_ail( 1486 struct xlog *log, 1487 int need_bytes) 1488 { 1489 xfs_lsn_t threshold_lsn = 0; 1490 xfs_lsn_t last_sync_lsn; 1491 int free_blocks; 1492 int free_bytes; 1493 int threshold_block; 1494 int threshold_cycle; 1495 int free_threshold; 1496 1497 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1498 1499 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1500 free_blocks = BTOBBT(free_bytes); 1501 1502 /* 1503 * Set the threshold for the minimum number of free blocks in the 1504 * log to the maximum of what the caller needs, one quarter of the 1505 * log, and 256 blocks. 1506 */ 1507 free_threshold = BTOBB(need_bytes); 1508 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1509 free_threshold = MAX(free_threshold, 256); 1510 if (free_blocks >= free_threshold) 1511 return; 1512 1513 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1514 &threshold_block); 1515 threshold_block += free_threshold; 1516 if (threshold_block >= log->l_logBBsize) { 1517 threshold_block -= log->l_logBBsize; 1518 threshold_cycle += 1; 1519 } 1520 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1521 threshold_block); 1522 /* 1523 * Don't pass in an lsn greater than the lsn of the last 1524 * log record known to be on disk. Use a snapshot of the last sync lsn 1525 * so that it doesn't change between the compare and the set. 1526 */ 1527 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1528 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1529 threshold_lsn = last_sync_lsn; 1530 1531 /* 1532 * Get the transaction layer to kick the dirty buffers out to 1533 * disk asynchronously. No point in trying to do this if 1534 * the filesystem is shutting down. 1535 */ 1536 if (!XLOG_FORCED_SHUTDOWN(log)) 1537 xfs_ail_push(log->l_ailp, threshold_lsn); 1538 } 1539 1540 /* 1541 * Stamp cycle number in every block 1542 */ 1543 STATIC void 1544 xlog_pack_data( 1545 struct xlog *log, 1546 struct xlog_in_core *iclog, 1547 int roundoff) 1548 { 1549 int i, j, k; 1550 int size = iclog->ic_offset + roundoff; 1551 __be32 cycle_lsn; 1552 xfs_caddr_t dp; 1553 1554 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1555 1556 dp = iclog->ic_datap; 1557 for (i = 0; i < BTOBB(size); i++) { 1558 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1559 break; 1560 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1561 *(__be32 *)dp = cycle_lsn; 1562 dp += BBSIZE; 1563 } 1564 1565 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1566 xlog_in_core_2_t *xhdr = iclog->ic_data; 1567 1568 for ( ; i < BTOBB(size); i++) { 1569 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1570 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1571 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1572 *(__be32 *)dp = cycle_lsn; 1573 dp += BBSIZE; 1574 } 1575 1576 for (i = 1; i < log->l_iclog_heads; i++) 1577 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1578 } 1579 } 1580 1581 /* 1582 * Calculate the checksum for a log buffer. 1583 * 1584 * This is a little more complicated than it should be because the various 1585 * headers and the actual data are non-contiguous. 1586 */ 1587 __le32 1588 xlog_cksum( 1589 struct xlog *log, 1590 struct xlog_rec_header *rhead, 1591 char *dp, 1592 int size) 1593 { 1594 __uint32_t crc; 1595 1596 /* first generate the crc for the record header ... */ 1597 crc = xfs_start_cksum((char *)rhead, 1598 sizeof(struct xlog_rec_header), 1599 offsetof(struct xlog_rec_header, h_crc)); 1600 1601 /* ... then for additional cycle data for v2 logs ... */ 1602 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1603 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1604 int i; 1605 1606 for (i = 1; i < log->l_iclog_heads; i++) { 1607 crc = crc32c(crc, &xhdr[i].hic_xheader, 1608 sizeof(struct xlog_rec_ext_header)); 1609 } 1610 } 1611 1612 /* ... and finally for the payload */ 1613 crc = crc32c(crc, dp, size); 1614 1615 return xfs_end_cksum(crc); 1616 } 1617 1618 /* 1619 * The bdstrat callback function for log bufs. This gives us a central 1620 * place to trap bufs in case we get hit by a log I/O error and need to 1621 * shutdown. Actually, in practice, even when we didn't get a log error, 1622 * we transition the iclogs to IOERROR state *after* flushing all existing 1623 * iclogs to disk. This is because we don't want anymore new transactions to be 1624 * started or completed afterwards. 1625 */ 1626 STATIC int 1627 xlog_bdstrat( 1628 struct xfs_buf *bp) 1629 { 1630 struct xlog_in_core *iclog = bp->b_fspriv; 1631 1632 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1633 xfs_buf_ioerror(bp, EIO); 1634 xfs_buf_stale(bp); 1635 xfs_buf_ioend(bp, 0); 1636 /* 1637 * It would seem logical to return EIO here, but we rely on 1638 * the log state machine to propagate I/O errors instead of 1639 * doing it here. 1640 */ 1641 return 0; 1642 } 1643 1644 xfs_buf_iorequest(bp); 1645 return 0; 1646 } 1647 1648 /* 1649 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1650 * fashion. Previously, we should have moved the current iclog 1651 * ptr in the log to point to the next available iclog. This allows further 1652 * write to continue while this code syncs out an iclog ready to go. 1653 * Before an in-core log can be written out, the data section must be scanned 1654 * to save away the 1st word of each BBSIZE block into the header. We replace 1655 * it with the current cycle count. Each BBSIZE block is tagged with the 1656 * cycle count because there in an implicit assumption that drives will 1657 * guarantee that entire 512 byte blocks get written at once. In other words, 1658 * we can't have part of a 512 byte block written and part not written. By 1659 * tagging each block, we will know which blocks are valid when recovering 1660 * after an unclean shutdown. 1661 * 1662 * This routine is single threaded on the iclog. No other thread can be in 1663 * this routine with the same iclog. Changing contents of iclog can there- 1664 * fore be done without grabbing the state machine lock. Updating the global 1665 * log will require grabbing the lock though. 1666 * 1667 * The entire log manager uses a logical block numbering scheme. Only 1668 * log_sync (and then only bwrite()) know about the fact that the log may 1669 * not start with block zero on a given device. The log block start offset 1670 * is added immediately before calling bwrite(). 1671 */ 1672 1673 STATIC int 1674 xlog_sync( 1675 struct xlog *log, 1676 struct xlog_in_core *iclog) 1677 { 1678 xfs_buf_t *bp; 1679 int i; 1680 uint count; /* byte count of bwrite */ 1681 uint count_init; /* initial count before roundup */ 1682 int roundoff; /* roundoff to BB or stripe */ 1683 int split = 0; /* split write into two regions */ 1684 int error; 1685 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1686 int size; 1687 1688 XFS_STATS_INC(xs_log_writes); 1689 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1690 1691 /* Add for LR header */ 1692 count_init = log->l_iclog_hsize + iclog->ic_offset; 1693 1694 /* Round out the log write size */ 1695 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1696 /* we have a v2 stripe unit to use */ 1697 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1698 } else { 1699 count = BBTOB(BTOBB(count_init)); 1700 } 1701 roundoff = count - count_init; 1702 ASSERT(roundoff >= 0); 1703 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1704 roundoff < log->l_mp->m_sb.sb_logsunit) 1705 || 1706 (log->l_mp->m_sb.sb_logsunit <= 1 && 1707 roundoff < BBTOB(1))); 1708 1709 /* move grant heads by roundoff in sync */ 1710 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1711 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1712 1713 /* put cycle number in every block */ 1714 xlog_pack_data(log, iclog, roundoff); 1715 1716 /* real byte length */ 1717 size = iclog->ic_offset; 1718 if (v2) 1719 size += roundoff; 1720 iclog->ic_header.h_len = cpu_to_be32(size); 1721 1722 bp = iclog->ic_bp; 1723 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1724 1725 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1726 1727 /* Do we need to split this write into 2 parts? */ 1728 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1729 char *dptr; 1730 1731 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1732 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1733 iclog->ic_bwritecnt = 2; 1734 1735 /* 1736 * Bump the cycle numbers at the start of each block in the 1737 * part of the iclog that ends up in the buffer that gets 1738 * written to the start of the log. 1739 * 1740 * Watch out for the header magic number case, though. 1741 */ 1742 dptr = (char *)&iclog->ic_header + count; 1743 for (i = 0; i < split; i += BBSIZE) { 1744 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1745 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1746 cycle++; 1747 *(__be32 *)dptr = cpu_to_be32(cycle); 1748 1749 dptr += BBSIZE; 1750 } 1751 } else { 1752 iclog->ic_bwritecnt = 1; 1753 } 1754 1755 /* calculcate the checksum */ 1756 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1757 iclog->ic_datap, size); 1758 1759 bp->b_io_length = BTOBB(count); 1760 bp->b_fspriv = iclog; 1761 XFS_BUF_ZEROFLAGS(bp); 1762 XFS_BUF_ASYNC(bp); 1763 bp->b_flags |= XBF_SYNCIO; 1764 1765 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1766 bp->b_flags |= XBF_FUA; 1767 1768 /* 1769 * Flush the data device before flushing the log to make 1770 * sure all meta data written back from the AIL actually made 1771 * it to disk before stamping the new log tail LSN into the 1772 * log buffer. For an external log we need to issue the 1773 * flush explicitly, and unfortunately synchronously here; 1774 * for an internal log we can simply use the block layer 1775 * state machine for preflushes. 1776 */ 1777 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1778 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1779 else 1780 bp->b_flags |= XBF_FLUSH; 1781 } 1782 1783 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1784 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1785 1786 xlog_verify_iclog(log, iclog, count, true); 1787 1788 /* account for log which doesn't start at block #0 */ 1789 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1790 /* 1791 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1792 * is shutting down. 1793 */ 1794 XFS_BUF_WRITE(bp); 1795 1796 error = xlog_bdstrat(bp); 1797 if (error) { 1798 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1799 return error; 1800 } 1801 if (split) { 1802 bp = iclog->ic_log->l_xbuf; 1803 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1804 xfs_buf_associate_memory(bp, 1805 (char *)&iclog->ic_header + count, split); 1806 bp->b_fspriv = iclog; 1807 XFS_BUF_ZEROFLAGS(bp); 1808 XFS_BUF_ASYNC(bp); 1809 bp->b_flags |= XBF_SYNCIO; 1810 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1811 bp->b_flags |= XBF_FUA; 1812 1813 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1814 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1815 1816 /* account for internal log which doesn't start at block #0 */ 1817 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1818 XFS_BUF_WRITE(bp); 1819 error = xlog_bdstrat(bp); 1820 if (error) { 1821 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1822 return error; 1823 } 1824 } 1825 return 0; 1826 } /* xlog_sync */ 1827 1828 /* 1829 * Deallocate a log structure 1830 */ 1831 STATIC void 1832 xlog_dealloc_log( 1833 struct xlog *log) 1834 { 1835 xlog_in_core_t *iclog, *next_iclog; 1836 int i; 1837 1838 xlog_cil_destroy(log); 1839 1840 /* 1841 * always need to ensure that the extra buffer does not point to memory 1842 * owned by another log buffer before we free it. 1843 */ 1844 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1845 xfs_buf_free(log->l_xbuf); 1846 1847 iclog = log->l_iclog; 1848 for (i=0; i<log->l_iclog_bufs; i++) { 1849 xfs_buf_free(iclog->ic_bp); 1850 next_iclog = iclog->ic_next; 1851 kmem_free(iclog); 1852 iclog = next_iclog; 1853 } 1854 spinlock_destroy(&log->l_icloglock); 1855 1856 log->l_mp->m_log = NULL; 1857 kmem_free(log); 1858 } /* xlog_dealloc_log */ 1859 1860 /* 1861 * Update counters atomically now that memcpy is done. 1862 */ 1863 /* ARGSUSED */ 1864 static inline void 1865 xlog_state_finish_copy( 1866 struct xlog *log, 1867 struct xlog_in_core *iclog, 1868 int record_cnt, 1869 int copy_bytes) 1870 { 1871 spin_lock(&log->l_icloglock); 1872 1873 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1874 iclog->ic_offset += copy_bytes; 1875 1876 spin_unlock(&log->l_icloglock); 1877 } /* xlog_state_finish_copy */ 1878 1879 1880 1881 1882 /* 1883 * print out info relating to regions written which consume 1884 * the reservation 1885 */ 1886 void 1887 xlog_print_tic_res( 1888 struct xfs_mount *mp, 1889 struct xlog_ticket *ticket) 1890 { 1891 uint i; 1892 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1893 1894 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1895 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1896 "bformat", 1897 "bchunk", 1898 "efi_format", 1899 "efd_format", 1900 "iformat", 1901 "icore", 1902 "iext", 1903 "ibroot", 1904 "ilocal", 1905 "iattr_ext", 1906 "iattr_broot", 1907 "iattr_local", 1908 "qformat", 1909 "dquot", 1910 "quotaoff", 1911 "LR header", 1912 "unmount", 1913 "commit", 1914 "trans header" 1915 }; 1916 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1917 "SETATTR_NOT_SIZE", 1918 "SETATTR_SIZE", 1919 "INACTIVE", 1920 "CREATE", 1921 "CREATE_TRUNC", 1922 "TRUNCATE_FILE", 1923 "REMOVE", 1924 "LINK", 1925 "RENAME", 1926 "MKDIR", 1927 "RMDIR", 1928 "SYMLINK", 1929 "SET_DMATTRS", 1930 "GROWFS", 1931 "STRAT_WRITE", 1932 "DIOSTRAT", 1933 "WRITE_SYNC", 1934 "WRITEID", 1935 "ADDAFORK", 1936 "ATTRINVAL", 1937 "ATRUNCATE", 1938 "ATTR_SET", 1939 "ATTR_RM", 1940 "ATTR_FLAG", 1941 "CLEAR_AGI_BUCKET", 1942 "QM_SBCHANGE", 1943 "DUMMY1", 1944 "DUMMY2", 1945 "QM_QUOTAOFF", 1946 "QM_DQALLOC", 1947 "QM_SETQLIM", 1948 "QM_DQCLUSTER", 1949 "QM_QINOCREATE", 1950 "QM_QUOTAOFF_END", 1951 "SB_UNIT", 1952 "FSYNC_TS", 1953 "GROWFSRT_ALLOC", 1954 "GROWFSRT_ZERO", 1955 "GROWFSRT_FREE", 1956 "SWAPEXT" 1957 }; 1958 1959 xfs_warn(mp, 1960 "xlog_write: reservation summary:\n" 1961 " trans type = %s (%u)\n" 1962 " unit res = %d bytes\n" 1963 " current res = %d bytes\n" 1964 " total reg = %u bytes (o/flow = %u bytes)\n" 1965 " ophdrs = %u (ophdr space = %u bytes)\n" 1966 " ophdr + reg = %u bytes\n" 1967 " num regions = %u\n", 1968 ((ticket->t_trans_type <= 0 || 1969 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1970 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1971 ticket->t_trans_type, 1972 ticket->t_unit_res, 1973 ticket->t_curr_res, 1974 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1975 ticket->t_res_num_ophdrs, ophdr_spc, 1976 ticket->t_res_arr_sum + 1977 ticket->t_res_o_flow + ophdr_spc, 1978 ticket->t_res_num); 1979 1980 for (i = 0; i < ticket->t_res_num; i++) { 1981 uint r_type = ticket->t_res_arr[i].r_type; 1982 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i, 1983 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1984 "bad-rtype" : res_type_str[r_type-1]), 1985 ticket->t_res_arr[i].r_len); 1986 } 1987 1988 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 1989 "xlog_write: reservation ran out. Need to up reservation"); 1990 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1991 } 1992 1993 /* 1994 * Calculate the potential space needed by the log vector. Each region gets 1995 * its own xlog_op_header_t and may need to be double word aligned. 1996 */ 1997 static int 1998 xlog_write_calc_vec_length( 1999 struct xlog_ticket *ticket, 2000 struct xfs_log_vec *log_vector) 2001 { 2002 struct xfs_log_vec *lv; 2003 int headers = 0; 2004 int len = 0; 2005 int i; 2006 2007 /* acct for start rec of xact */ 2008 if (ticket->t_flags & XLOG_TIC_INITED) 2009 headers++; 2010 2011 for (lv = log_vector; lv; lv = lv->lv_next) { 2012 /* we don't write ordered log vectors */ 2013 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2014 continue; 2015 2016 headers += lv->lv_niovecs; 2017 2018 for (i = 0; i < lv->lv_niovecs; i++) { 2019 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2020 2021 len += vecp->i_len; 2022 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2023 } 2024 } 2025 2026 ticket->t_res_num_ophdrs += headers; 2027 len += headers * sizeof(struct xlog_op_header); 2028 2029 return len; 2030 } 2031 2032 /* 2033 * If first write for transaction, insert start record We can't be trying to 2034 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2035 */ 2036 static int 2037 xlog_write_start_rec( 2038 struct xlog_op_header *ophdr, 2039 struct xlog_ticket *ticket) 2040 { 2041 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2042 return 0; 2043 2044 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2045 ophdr->oh_clientid = ticket->t_clientid; 2046 ophdr->oh_len = 0; 2047 ophdr->oh_flags = XLOG_START_TRANS; 2048 ophdr->oh_res2 = 0; 2049 2050 ticket->t_flags &= ~XLOG_TIC_INITED; 2051 2052 return sizeof(struct xlog_op_header); 2053 } 2054 2055 static xlog_op_header_t * 2056 xlog_write_setup_ophdr( 2057 struct xlog *log, 2058 struct xlog_op_header *ophdr, 2059 struct xlog_ticket *ticket, 2060 uint flags) 2061 { 2062 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2063 ophdr->oh_clientid = ticket->t_clientid; 2064 ophdr->oh_res2 = 0; 2065 2066 /* are we copying a commit or unmount record? */ 2067 ophdr->oh_flags = flags; 2068 2069 /* 2070 * We've seen logs corrupted with bad transaction client ids. This 2071 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2072 * and shut down the filesystem. 2073 */ 2074 switch (ophdr->oh_clientid) { 2075 case XFS_TRANSACTION: 2076 case XFS_VOLUME: 2077 case XFS_LOG: 2078 break; 2079 default: 2080 xfs_warn(log->l_mp, 2081 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2082 ophdr->oh_clientid, ticket); 2083 return NULL; 2084 } 2085 2086 return ophdr; 2087 } 2088 2089 /* 2090 * Set up the parameters of the region copy into the log. This has 2091 * to handle region write split across multiple log buffers - this 2092 * state is kept external to this function so that this code can 2093 * be written in an obvious, self documenting manner. 2094 */ 2095 static int 2096 xlog_write_setup_copy( 2097 struct xlog_ticket *ticket, 2098 struct xlog_op_header *ophdr, 2099 int space_available, 2100 int space_required, 2101 int *copy_off, 2102 int *copy_len, 2103 int *last_was_partial_copy, 2104 int *bytes_consumed) 2105 { 2106 int still_to_copy; 2107 2108 still_to_copy = space_required - *bytes_consumed; 2109 *copy_off = *bytes_consumed; 2110 2111 if (still_to_copy <= space_available) { 2112 /* write of region completes here */ 2113 *copy_len = still_to_copy; 2114 ophdr->oh_len = cpu_to_be32(*copy_len); 2115 if (*last_was_partial_copy) 2116 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2117 *last_was_partial_copy = 0; 2118 *bytes_consumed = 0; 2119 return 0; 2120 } 2121 2122 /* partial write of region, needs extra log op header reservation */ 2123 *copy_len = space_available; 2124 ophdr->oh_len = cpu_to_be32(*copy_len); 2125 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2126 if (*last_was_partial_copy) 2127 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2128 *bytes_consumed += *copy_len; 2129 (*last_was_partial_copy)++; 2130 2131 /* account for new log op header */ 2132 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2133 ticket->t_res_num_ophdrs++; 2134 2135 return sizeof(struct xlog_op_header); 2136 } 2137 2138 static int 2139 xlog_write_copy_finish( 2140 struct xlog *log, 2141 struct xlog_in_core *iclog, 2142 uint flags, 2143 int *record_cnt, 2144 int *data_cnt, 2145 int *partial_copy, 2146 int *partial_copy_len, 2147 int log_offset, 2148 struct xlog_in_core **commit_iclog) 2149 { 2150 if (*partial_copy) { 2151 /* 2152 * This iclog has already been marked WANT_SYNC by 2153 * xlog_state_get_iclog_space. 2154 */ 2155 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2156 *record_cnt = 0; 2157 *data_cnt = 0; 2158 return xlog_state_release_iclog(log, iclog); 2159 } 2160 2161 *partial_copy = 0; 2162 *partial_copy_len = 0; 2163 2164 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2165 /* no more space in this iclog - push it. */ 2166 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2167 *record_cnt = 0; 2168 *data_cnt = 0; 2169 2170 spin_lock(&log->l_icloglock); 2171 xlog_state_want_sync(log, iclog); 2172 spin_unlock(&log->l_icloglock); 2173 2174 if (!commit_iclog) 2175 return xlog_state_release_iclog(log, iclog); 2176 ASSERT(flags & XLOG_COMMIT_TRANS); 2177 *commit_iclog = iclog; 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 2184 * Write some region out to in-core log 2185 * 2186 * This will be called when writing externally provided regions or when 2187 * writing out a commit record for a given transaction. 2188 * 2189 * General algorithm: 2190 * 1. Find total length of this write. This may include adding to the 2191 * lengths passed in. 2192 * 2. Check whether we violate the tickets reservation. 2193 * 3. While writing to this iclog 2194 * A. Reserve as much space in this iclog as can get 2195 * B. If this is first write, save away start lsn 2196 * C. While writing this region: 2197 * 1. If first write of transaction, write start record 2198 * 2. Write log operation header (header per region) 2199 * 3. Find out if we can fit entire region into this iclog 2200 * 4. Potentially, verify destination memcpy ptr 2201 * 5. Memcpy (partial) region 2202 * 6. If partial copy, release iclog; otherwise, continue 2203 * copying more regions into current iclog 2204 * 4. Mark want sync bit (in simulation mode) 2205 * 5. Release iclog for potential flush to on-disk log. 2206 * 2207 * ERRORS: 2208 * 1. Panic if reservation is overrun. This should never happen since 2209 * reservation amounts are generated internal to the filesystem. 2210 * NOTES: 2211 * 1. Tickets are single threaded data structures. 2212 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2213 * syncing routine. When a single log_write region needs to span 2214 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2215 * on all log operation writes which don't contain the end of the 2216 * region. The XLOG_END_TRANS bit is used for the in-core log 2217 * operation which contains the end of the continued log_write region. 2218 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2219 * we don't really know exactly how much space will be used. As a result, 2220 * we don't update ic_offset until the end when we know exactly how many 2221 * bytes have been written out. 2222 */ 2223 int 2224 xlog_write( 2225 struct xlog *log, 2226 struct xfs_log_vec *log_vector, 2227 struct xlog_ticket *ticket, 2228 xfs_lsn_t *start_lsn, 2229 struct xlog_in_core **commit_iclog, 2230 uint flags) 2231 { 2232 struct xlog_in_core *iclog = NULL; 2233 struct xfs_log_iovec *vecp; 2234 struct xfs_log_vec *lv; 2235 int len; 2236 int index; 2237 int partial_copy = 0; 2238 int partial_copy_len = 0; 2239 int contwr = 0; 2240 int record_cnt = 0; 2241 int data_cnt = 0; 2242 int error; 2243 2244 *start_lsn = 0; 2245 2246 len = xlog_write_calc_vec_length(ticket, log_vector); 2247 2248 /* 2249 * Region headers and bytes are already accounted for. 2250 * We only need to take into account start records and 2251 * split regions in this function. 2252 */ 2253 if (ticket->t_flags & XLOG_TIC_INITED) 2254 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2255 2256 /* 2257 * Commit record headers need to be accounted for. These 2258 * come in as separate writes so are easy to detect. 2259 */ 2260 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2261 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2262 2263 if (ticket->t_curr_res < 0) 2264 xlog_print_tic_res(log->l_mp, ticket); 2265 2266 index = 0; 2267 lv = log_vector; 2268 vecp = lv->lv_iovecp; 2269 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2270 void *ptr; 2271 int log_offset; 2272 2273 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2274 &contwr, &log_offset); 2275 if (error) 2276 return error; 2277 2278 ASSERT(log_offset <= iclog->ic_size - 1); 2279 ptr = iclog->ic_datap + log_offset; 2280 2281 /* start_lsn is the first lsn written to. That's all we need. */ 2282 if (!*start_lsn) 2283 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2284 2285 /* 2286 * This loop writes out as many regions as can fit in the amount 2287 * of space which was allocated by xlog_state_get_iclog_space(). 2288 */ 2289 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2290 struct xfs_log_iovec *reg; 2291 struct xlog_op_header *ophdr; 2292 int start_rec_copy; 2293 int copy_len; 2294 int copy_off; 2295 bool ordered = false; 2296 2297 /* ordered log vectors have no regions to write */ 2298 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2299 ASSERT(lv->lv_niovecs == 0); 2300 ordered = true; 2301 goto next_lv; 2302 } 2303 2304 reg = &vecp[index]; 2305 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2306 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2307 2308 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2309 if (start_rec_copy) { 2310 record_cnt++; 2311 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2312 start_rec_copy); 2313 } 2314 2315 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2316 if (!ophdr) 2317 return XFS_ERROR(EIO); 2318 2319 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2320 sizeof(struct xlog_op_header)); 2321 2322 len += xlog_write_setup_copy(ticket, ophdr, 2323 iclog->ic_size-log_offset, 2324 reg->i_len, 2325 ©_off, ©_len, 2326 &partial_copy, 2327 &partial_copy_len); 2328 xlog_verify_dest_ptr(log, ptr); 2329 2330 /* copy region */ 2331 ASSERT(copy_len >= 0); 2332 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2333 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2334 2335 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2336 record_cnt++; 2337 data_cnt += contwr ? copy_len : 0; 2338 2339 error = xlog_write_copy_finish(log, iclog, flags, 2340 &record_cnt, &data_cnt, 2341 &partial_copy, 2342 &partial_copy_len, 2343 log_offset, 2344 commit_iclog); 2345 if (error) 2346 return error; 2347 2348 /* 2349 * if we had a partial copy, we need to get more iclog 2350 * space but we don't want to increment the region 2351 * index because there is still more is this region to 2352 * write. 2353 * 2354 * If we completed writing this region, and we flushed 2355 * the iclog (indicated by resetting of the record 2356 * count), then we also need to get more log space. If 2357 * this was the last record, though, we are done and 2358 * can just return. 2359 */ 2360 if (partial_copy) 2361 break; 2362 2363 if (++index == lv->lv_niovecs) { 2364 next_lv: 2365 lv = lv->lv_next; 2366 index = 0; 2367 if (lv) 2368 vecp = lv->lv_iovecp; 2369 } 2370 if (record_cnt == 0 && ordered == false) { 2371 if (!lv) 2372 return 0; 2373 break; 2374 } 2375 } 2376 } 2377 2378 ASSERT(len == 0); 2379 2380 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2381 if (!commit_iclog) 2382 return xlog_state_release_iclog(log, iclog); 2383 2384 ASSERT(flags & XLOG_COMMIT_TRANS); 2385 *commit_iclog = iclog; 2386 return 0; 2387 } 2388 2389 2390 /***************************************************************************** 2391 * 2392 * State Machine functions 2393 * 2394 ***************************************************************************** 2395 */ 2396 2397 /* Clean iclogs starting from the head. This ordering must be 2398 * maintained, so an iclog doesn't become ACTIVE beyond one that 2399 * is SYNCING. This is also required to maintain the notion that we use 2400 * a ordered wait queue to hold off would be writers to the log when every 2401 * iclog is trying to sync to disk. 2402 * 2403 * State Change: DIRTY -> ACTIVE 2404 */ 2405 STATIC void 2406 xlog_state_clean_log( 2407 struct xlog *log) 2408 { 2409 xlog_in_core_t *iclog; 2410 int changed = 0; 2411 2412 iclog = log->l_iclog; 2413 do { 2414 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2415 iclog->ic_state = XLOG_STATE_ACTIVE; 2416 iclog->ic_offset = 0; 2417 ASSERT(iclog->ic_callback == NULL); 2418 /* 2419 * If the number of ops in this iclog indicate it just 2420 * contains the dummy transaction, we can 2421 * change state into IDLE (the second time around). 2422 * Otherwise we should change the state into 2423 * NEED a dummy. 2424 * We don't need to cover the dummy. 2425 */ 2426 if (!changed && 2427 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2428 XLOG_COVER_OPS)) { 2429 changed = 1; 2430 } else { 2431 /* 2432 * We have two dirty iclogs so start over 2433 * This could also be num of ops indicates 2434 * this is not the dummy going out. 2435 */ 2436 changed = 2; 2437 } 2438 iclog->ic_header.h_num_logops = 0; 2439 memset(iclog->ic_header.h_cycle_data, 0, 2440 sizeof(iclog->ic_header.h_cycle_data)); 2441 iclog->ic_header.h_lsn = 0; 2442 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2443 /* do nothing */; 2444 else 2445 break; /* stop cleaning */ 2446 iclog = iclog->ic_next; 2447 } while (iclog != log->l_iclog); 2448 2449 /* log is locked when we are called */ 2450 /* 2451 * Change state for the dummy log recording. 2452 * We usually go to NEED. But we go to NEED2 if the changed indicates 2453 * we are done writing the dummy record. 2454 * If we are done with the second dummy recored (DONE2), then 2455 * we go to IDLE. 2456 */ 2457 if (changed) { 2458 switch (log->l_covered_state) { 2459 case XLOG_STATE_COVER_IDLE: 2460 case XLOG_STATE_COVER_NEED: 2461 case XLOG_STATE_COVER_NEED2: 2462 log->l_covered_state = XLOG_STATE_COVER_NEED; 2463 break; 2464 2465 case XLOG_STATE_COVER_DONE: 2466 if (changed == 1) 2467 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2468 else 2469 log->l_covered_state = XLOG_STATE_COVER_NEED; 2470 break; 2471 2472 case XLOG_STATE_COVER_DONE2: 2473 if (changed == 1) 2474 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2475 else 2476 log->l_covered_state = XLOG_STATE_COVER_NEED; 2477 break; 2478 2479 default: 2480 ASSERT(0); 2481 } 2482 } 2483 } /* xlog_state_clean_log */ 2484 2485 STATIC xfs_lsn_t 2486 xlog_get_lowest_lsn( 2487 struct xlog *log) 2488 { 2489 xlog_in_core_t *lsn_log; 2490 xfs_lsn_t lowest_lsn, lsn; 2491 2492 lsn_log = log->l_iclog; 2493 lowest_lsn = 0; 2494 do { 2495 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2496 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2497 if ((lsn && !lowest_lsn) || 2498 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2499 lowest_lsn = lsn; 2500 } 2501 } 2502 lsn_log = lsn_log->ic_next; 2503 } while (lsn_log != log->l_iclog); 2504 return lowest_lsn; 2505 } 2506 2507 2508 STATIC void 2509 xlog_state_do_callback( 2510 struct xlog *log, 2511 int aborted, 2512 struct xlog_in_core *ciclog) 2513 { 2514 xlog_in_core_t *iclog; 2515 xlog_in_core_t *first_iclog; /* used to know when we've 2516 * processed all iclogs once */ 2517 xfs_log_callback_t *cb, *cb_next; 2518 int flushcnt = 0; 2519 xfs_lsn_t lowest_lsn; 2520 int ioerrors; /* counter: iclogs with errors */ 2521 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2522 int funcdidcallbacks; /* flag: function did callbacks */ 2523 int repeats; /* for issuing console warnings if 2524 * looping too many times */ 2525 int wake = 0; 2526 2527 spin_lock(&log->l_icloglock); 2528 first_iclog = iclog = log->l_iclog; 2529 ioerrors = 0; 2530 funcdidcallbacks = 0; 2531 repeats = 0; 2532 2533 do { 2534 /* 2535 * Scan all iclogs starting with the one pointed to by the 2536 * log. Reset this starting point each time the log is 2537 * unlocked (during callbacks). 2538 * 2539 * Keep looping through iclogs until one full pass is made 2540 * without running any callbacks. 2541 */ 2542 first_iclog = log->l_iclog; 2543 iclog = log->l_iclog; 2544 loopdidcallbacks = 0; 2545 repeats++; 2546 2547 do { 2548 2549 /* skip all iclogs in the ACTIVE & DIRTY states */ 2550 if (iclog->ic_state & 2551 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2552 iclog = iclog->ic_next; 2553 continue; 2554 } 2555 2556 /* 2557 * Between marking a filesystem SHUTDOWN and stopping 2558 * the log, we do flush all iclogs to disk (if there 2559 * wasn't a log I/O error). So, we do want things to 2560 * go smoothly in case of just a SHUTDOWN w/o a 2561 * LOG_IO_ERROR. 2562 */ 2563 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2564 /* 2565 * Can only perform callbacks in order. Since 2566 * this iclog is not in the DONE_SYNC/ 2567 * DO_CALLBACK state, we skip the rest and 2568 * just try to clean up. If we set our iclog 2569 * to DO_CALLBACK, we will not process it when 2570 * we retry since a previous iclog is in the 2571 * CALLBACK and the state cannot change since 2572 * we are holding the l_icloglock. 2573 */ 2574 if (!(iclog->ic_state & 2575 (XLOG_STATE_DONE_SYNC | 2576 XLOG_STATE_DO_CALLBACK))) { 2577 if (ciclog && (ciclog->ic_state == 2578 XLOG_STATE_DONE_SYNC)) { 2579 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2580 } 2581 break; 2582 } 2583 /* 2584 * We now have an iclog that is in either the 2585 * DO_CALLBACK or DONE_SYNC states. The other 2586 * states (WANT_SYNC, SYNCING, or CALLBACK were 2587 * caught by the above if and are going to 2588 * clean (i.e. we aren't doing their callbacks) 2589 * see the above if. 2590 */ 2591 2592 /* 2593 * We will do one more check here to see if we 2594 * have chased our tail around. 2595 */ 2596 2597 lowest_lsn = xlog_get_lowest_lsn(log); 2598 if (lowest_lsn && 2599 XFS_LSN_CMP(lowest_lsn, 2600 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2601 iclog = iclog->ic_next; 2602 continue; /* Leave this iclog for 2603 * another thread */ 2604 } 2605 2606 iclog->ic_state = XLOG_STATE_CALLBACK; 2607 2608 2609 /* 2610 * Completion of a iclog IO does not imply that 2611 * a transaction has completed, as transactions 2612 * can be large enough to span many iclogs. We 2613 * cannot change the tail of the log half way 2614 * through a transaction as this may be the only 2615 * transaction in the log and moving th etail to 2616 * point to the middle of it will prevent 2617 * recovery from finding the start of the 2618 * transaction. Hence we should only update the 2619 * last_sync_lsn if this iclog contains 2620 * transaction completion callbacks on it. 2621 * 2622 * We have to do this before we drop the 2623 * icloglock to ensure we are the only one that 2624 * can update it. 2625 */ 2626 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2627 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2628 if (iclog->ic_callback) 2629 atomic64_set(&log->l_last_sync_lsn, 2630 be64_to_cpu(iclog->ic_header.h_lsn)); 2631 2632 } else 2633 ioerrors++; 2634 2635 spin_unlock(&log->l_icloglock); 2636 2637 /* 2638 * Keep processing entries in the callback list until 2639 * we come around and it is empty. We need to 2640 * atomically see that the list is empty and change the 2641 * state to DIRTY so that we don't miss any more 2642 * callbacks being added. 2643 */ 2644 spin_lock(&iclog->ic_callback_lock); 2645 cb = iclog->ic_callback; 2646 while (cb) { 2647 iclog->ic_callback_tail = &(iclog->ic_callback); 2648 iclog->ic_callback = NULL; 2649 spin_unlock(&iclog->ic_callback_lock); 2650 2651 /* perform callbacks in the order given */ 2652 for (; cb; cb = cb_next) { 2653 cb_next = cb->cb_next; 2654 cb->cb_func(cb->cb_arg, aborted); 2655 } 2656 spin_lock(&iclog->ic_callback_lock); 2657 cb = iclog->ic_callback; 2658 } 2659 2660 loopdidcallbacks++; 2661 funcdidcallbacks++; 2662 2663 spin_lock(&log->l_icloglock); 2664 ASSERT(iclog->ic_callback == NULL); 2665 spin_unlock(&iclog->ic_callback_lock); 2666 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2667 iclog->ic_state = XLOG_STATE_DIRTY; 2668 2669 /* 2670 * Transition from DIRTY to ACTIVE if applicable. 2671 * NOP if STATE_IOERROR. 2672 */ 2673 xlog_state_clean_log(log); 2674 2675 /* wake up threads waiting in xfs_log_force() */ 2676 wake_up_all(&iclog->ic_force_wait); 2677 2678 iclog = iclog->ic_next; 2679 } while (first_iclog != iclog); 2680 2681 if (repeats > 5000) { 2682 flushcnt += repeats; 2683 repeats = 0; 2684 xfs_warn(log->l_mp, 2685 "%s: possible infinite loop (%d iterations)", 2686 __func__, flushcnt); 2687 } 2688 } while (!ioerrors && loopdidcallbacks); 2689 2690 /* 2691 * make one last gasp attempt to see if iclogs are being left in 2692 * limbo.. 2693 */ 2694 #ifdef DEBUG 2695 if (funcdidcallbacks) { 2696 first_iclog = iclog = log->l_iclog; 2697 do { 2698 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2699 /* 2700 * Terminate the loop if iclogs are found in states 2701 * which will cause other threads to clean up iclogs. 2702 * 2703 * SYNCING - i/o completion will go through logs 2704 * DONE_SYNC - interrupt thread should be waiting for 2705 * l_icloglock 2706 * IOERROR - give up hope all ye who enter here 2707 */ 2708 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2709 iclog->ic_state == XLOG_STATE_SYNCING || 2710 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2711 iclog->ic_state == XLOG_STATE_IOERROR ) 2712 break; 2713 iclog = iclog->ic_next; 2714 } while (first_iclog != iclog); 2715 } 2716 #endif 2717 2718 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2719 wake = 1; 2720 spin_unlock(&log->l_icloglock); 2721 2722 if (wake) 2723 wake_up_all(&log->l_flush_wait); 2724 } 2725 2726 2727 /* 2728 * Finish transitioning this iclog to the dirty state. 2729 * 2730 * Make sure that we completely execute this routine only when this is 2731 * the last call to the iclog. There is a good chance that iclog flushes, 2732 * when we reach the end of the physical log, get turned into 2 separate 2733 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2734 * routine. By using the reference count bwritecnt, we guarantee that only 2735 * the second completion goes through. 2736 * 2737 * Callbacks could take time, so they are done outside the scope of the 2738 * global state machine log lock. 2739 */ 2740 STATIC void 2741 xlog_state_done_syncing( 2742 xlog_in_core_t *iclog, 2743 int aborted) 2744 { 2745 struct xlog *log = iclog->ic_log; 2746 2747 spin_lock(&log->l_icloglock); 2748 2749 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2750 iclog->ic_state == XLOG_STATE_IOERROR); 2751 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2752 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2753 2754 2755 /* 2756 * If we got an error, either on the first buffer, or in the case of 2757 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2758 * and none should ever be attempted to be written to disk 2759 * again. 2760 */ 2761 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2762 if (--iclog->ic_bwritecnt == 1) { 2763 spin_unlock(&log->l_icloglock); 2764 return; 2765 } 2766 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2767 } 2768 2769 /* 2770 * Someone could be sleeping prior to writing out the next 2771 * iclog buffer, we wake them all, one will get to do the 2772 * I/O, the others get to wait for the result. 2773 */ 2774 wake_up_all(&iclog->ic_write_wait); 2775 spin_unlock(&log->l_icloglock); 2776 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2777 } /* xlog_state_done_syncing */ 2778 2779 2780 /* 2781 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2782 * sleep. We wait on the flush queue on the head iclog as that should be 2783 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2784 * we will wait here and all new writes will sleep until a sync completes. 2785 * 2786 * The in-core logs are used in a circular fashion. They are not used 2787 * out-of-order even when an iclog past the head is free. 2788 * 2789 * return: 2790 * * log_offset where xlog_write() can start writing into the in-core 2791 * log's data space. 2792 * * in-core log pointer to which xlog_write() should write. 2793 * * boolean indicating this is a continued write to an in-core log. 2794 * If this is the last write, then the in-core log's offset field 2795 * needs to be incremented, depending on the amount of data which 2796 * is copied. 2797 */ 2798 STATIC int 2799 xlog_state_get_iclog_space( 2800 struct xlog *log, 2801 int len, 2802 struct xlog_in_core **iclogp, 2803 struct xlog_ticket *ticket, 2804 int *continued_write, 2805 int *logoffsetp) 2806 { 2807 int log_offset; 2808 xlog_rec_header_t *head; 2809 xlog_in_core_t *iclog; 2810 int error; 2811 2812 restart: 2813 spin_lock(&log->l_icloglock); 2814 if (XLOG_FORCED_SHUTDOWN(log)) { 2815 spin_unlock(&log->l_icloglock); 2816 return XFS_ERROR(EIO); 2817 } 2818 2819 iclog = log->l_iclog; 2820 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2821 XFS_STATS_INC(xs_log_noiclogs); 2822 2823 /* Wait for log writes to have flushed */ 2824 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2825 goto restart; 2826 } 2827 2828 head = &iclog->ic_header; 2829 2830 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2831 log_offset = iclog->ic_offset; 2832 2833 /* On the 1st write to an iclog, figure out lsn. This works 2834 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2835 * committing to. If the offset is set, that's how many blocks 2836 * must be written. 2837 */ 2838 if (log_offset == 0) { 2839 ticket->t_curr_res -= log->l_iclog_hsize; 2840 xlog_tic_add_region(ticket, 2841 log->l_iclog_hsize, 2842 XLOG_REG_TYPE_LRHEADER); 2843 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2844 head->h_lsn = cpu_to_be64( 2845 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2846 ASSERT(log->l_curr_block >= 0); 2847 } 2848 2849 /* If there is enough room to write everything, then do it. Otherwise, 2850 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2851 * bit is on, so this will get flushed out. Don't update ic_offset 2852 * until you know exactly how many bytes get copied. Therefore, wait 2853 * until later to update ic_offset. 2854 * 2855 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2856 * can fit into remaining data section. 2857 */ 2858 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2859 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2860 2861 /* 2862 * If I'm the only one writing to this iclog, sync it to disk. 2863 * We need to do an atomic compare and decrement here to avoid 2864 * racing with concurrent atomic_dec_and_lock() calls in 2865 * xlog_state_release_iclog() when there is more than one 2866 * reference to the iclog. 2867 */ 2868 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2869 /* we are the only one */ 2870 spin_unlock(&log->l_icloglock); 2871 error = xlog_state_release_iclog(log, iclog); 2872 if (error) 2873 return error; 2874 } else { 2875 spin_unlock(&log->l_icloglock); 2876 } 2877 goto restart; 2878 } 2879 2880 /* Do we have enough room to write the full amount in the remainder 2881 * of this iclog? Or must we continue a write on the next iclog and 2882 * mark this iclog as completely taken? In the case where we switch 2883 * iclogs (to mark it taken), this particular iclog will release/sync 2884 * to disk in xlog_write(). 2885 */ 2886 if (len <= iclog->ic_size - iclog->ic_offset) { 2887 *continued_write = 0; 2888 iclog->ic_offset += len; 2889 } else { 2890 *continued_write = 1; 2891 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2892 } 2893 *iclogp = iclog; 2894 2895 ASSERT(iclog->ic_offset <= iclog->ic_size); 2896 spin_unlock(&log->l_icloglock); 2897 2898 *logoffsetp = log_offset; 2899 return 0; 2900 } /* xlog_state_get_iclog_space */ 2901 2902 /* The first cnt-1 times through here we don't need to 2903 * move the grant write head because the permanent 2904 * reservation has reserved cnt times the unit amount. 2905 * Release part of current permanent unit reservation and 2906 * reset current reservation to be one units worth. Also 2907 * move grant reservation head forward. 2908 */ 2909 STATIC void 2910 xlog_regrant_reserve_log_space( 2911 struct xlog *log, 2912 struct xlog_ticket *ticket) 2913 { 2914 trace_xfs_log_regrant_reserve_enter(log, ticket); 2915 2916 if (ticket->t_cnt > 0) 2917 ticket->t_cnt--; 2918 2919 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2920 ticket->t_curr_res); 2921 xlog_grant_sub_space(log, &log->l_write_head.grant, 2922 ticket->t_curr_res); 2923 ticket->t_curr_res = ticket->t_unit_res; 2924 xlog_tic_reset_res(ticket); 2925 2926 trace_xfs_log_regrant_reserve_sub(log, ticket); 2927 2928 /* just return if we still have some of the pre-reserved space */ 2929 if (ticket->t_cnt > 0) 2930 return; 2931 2932 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2933 ticket->t_unit_res); 2934 2935 trace_xfs_log_regrant_reserve_exit(log, ticket); 2936 2937 ticket->t_curr_res = ticket->t_unit_res; 2938 xlog_tic_reset_res(ticket); 2939 } /* xlog_regrant_reserve_log_space */ 2940 2941 2942 /* 2943 * Give back the space left from a reservation. 2944 * 2945 * All the information we need to make a correct determination of space left 2946 * is present. For non-permanent reservations, things are quite easy. The 2947 * count should have been decremented to zero. We only need to deal with the 2948 * space remaining in the current reservation part of the ticket. If the 2949 * ticket contains a permanent reservation, there may be left over space which 2950 * needs to be released. A count of N means that N-1 refills of the current 2951 * reservation can be done before we need to ask for more space. The first 2952 * one goes to fill up the first current reservation. Once we run out of 2953 * space, the count will stay at zero and the only space remaining will be 2954 * in the current reservation field. 2955 */ 2956 STATIC void 2957 xlog_ungrant_log_space( 2958 struct xlog *log, 2959 struct xlog_ticket *ticket) 2960 { 2961 int bytes; 2962 2963 if (ticket->t_cnt > 0) 2964 ticket->t_cnt--; 2965 2966 trace_xfs_log_ungrant_enter(log, ticket); 2967 trace_xfs_log_ungrant_sub(log, ticket); 2968 2969 /* 2970 * If this is a permanent reservation ticket, we may be able to free 2971 * up more space based on the remaining count. 2972 */ 2973 bytes = ticket->t_curr_res; 2974 if (ticket->t_cnt > 0) { 2975 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2976 bytes += ticket->t_unit_res*ticket->t_cnt; 2977 } 2978 2979 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 2980 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 2981 2982 trace_xfs_log_ungrant_exit(log, ticket); 2983 2984 xfs_log_space_wake(log->l_mp); 2985 } 2986 2987 /* 2988 * Flush iclog to disk if this is the last reference to the given iclog and 2989 * the WANT_SYNC bit is set. 2990 * 2991 * When this function is entered, the iclog is not necessarily in the 2992 * WANT_SYNC state. It may be sitting around waiting to get filled. 2993 * 2994 * 2995 */ 2996 STATIC int 2997 xlog_state_release_iclog( 2998 struct xlog *log, 2999 struct xlog_in_core *iclog) 3000 { 3001 int sync = 0; /* do we sync? */ 3002 3003 if (iclog->ic_state & XLOG_STATE_IOERROR) 3004 return XFS_ERROR(EIO); 3005 3006 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3007 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3008 return 0; 3009 3010 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3011 spin_unlock(&log->l_icloglock); 3012 return XFS_ERROR(EIO); 3013 } 3014 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3015 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3016 3017 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3018 /* update tail before writing to iclog */ 3019 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3020 sync++; 3021 iclog->ic_state = XLOG_STATE_SYNCING; 3022 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3023 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3024 /* cycle incremented when incrementing curr_block */ 3025 } 3026 spin_unlock(&log->l_icloglock); 3027 3028 /* 3029 * We let the log lock go, so it's possible that we hit a log I/O 3030 * error or some other SHUTDOWN condition that marks the iclog 3031 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3032 * this iclog has consistent data, so we ignore IOERROR 3033 * flags after this point. 3034 */ 3035 if (sync) 3036 return xlog_sync(log, iclog); 3037 return 0; 3038 } /* xlog_state_release_iclog */ 3039 3040 3041 /* 3042 * This routine will mark the current iclog in the ring as WANT_SYNC 3043 * and move the current iclog pointer to the next iclog in the ring. 3044 * When this routine is called from xlog_state_get_iclog_space(), the 3045 * exact size of the iclog has not yet been determined. All we know is 3046 * that every data block. We have run out of space in this log record. 3047 */ 3048 STATIC void 3049 xlog_state_switch_iclogs( 3050 struct xlog *log, 3051 struct xlog_in_core *iclog, 3052 int eventual_size) 3053 { 3054 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3055 if (!eventual_size) 3056 eventual_size = iclog->ic_offset; 3057 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3058 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3059 log->l_prev_block = log->l_curr_block; 3060 log->l_prev_cycle = log->l_curr_cycle; 3061 3062 /* roll log?: ic_offset changed later */ 3063 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3064 3065 /* Round up to next log-sunit */ 3066 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3067 log->l_mp->m_sb.sb_logsunit > 1) { 3068 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3069 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3070 } 3071 3072 if (log->l_curr_block >= log->l_logBBsize) { 3073 log->l_curr_cycle++; 3074 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3075 log->l_curr_cycle++; 3076 log->l_curr_block -= log->l_logBBsize; 3077 ASSERT(log->l_curr_block >= 0); 3078 } 3079 ASSERT(iclog == log->l_iclog); 3080 log->l_iclog = iclog->ic_next; 3081 } /* xlog_state_switch_iclogs */ 3082 3083 /* 3084 * Write out all data in the in-core log as of this exact moment in time. 3085 * 3086 * Data may be written to the in-core log during this call. However, 3087 * we don't guarantee this data will be written out. A change from past 3088 * implementation means this routine will *not* write out zero length LRs. 3089 * 3090 * Basically, we try and perform an intelligent scan of the in-core logs. 3091 * If we determine there is no flushable data, we just return. There is no 3092 * flushable data if: 3093 * 3094 * 1. the current iclog is active and has no data; the previous iclog 3095 * is in the active or dirty state. 3096 * 2. the current iclog is drity, and the previous iclog is in the 3097 * active or dirty state. 3098 * 3099 * We may sleep if: 3100 * 3101 * 1. the current iclog is not in the active nor dirty state. 3102 * 2. the current iclog dirty, and the previous iclog is not in the 3103 * active nor dirty state. 3104 * 3. the current iclog is active, and there is another thread writing 3105 * to this particular iclog. 3106 * 4. a) the current iclog is active and has no other writers 3107 * b) when we return from flushing out this iclog, it is still 3108 * not in the active nor dirty state. 3109 */ 3110 int 3111 _xfs_log_force( 3112 struct xfs_mount *mp, 3113 uint flags, 3114 int *log_flushed) 3115 { 3116 struct xlog *log = mp->m_log; 3117 struct xlog_in_core *iclog; 3118 xfs_lsn_t lsn; 3119 3120 XFS_STATS_INC(xs_log_force); 3121 3122 xlog_cil_force(log); 3123 3124 spin_lock(&log->l_icloglock); 3125 3126 iclog = log->l_iclog; 3127 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3128 spin_unlock(&log->l_icloglock); 3129 return XFS_ERROR(EIO); 3130 } 3131 3132 /* If the head iclog is not active nor dirty, we just attach 3133 * ourselves to the head and go to sleep. 3134 */ 3135 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3136 iclog->ic_state == XLOG_STATE_DIRTY) { 3137 /* 3138 * If the head is dirty or (active and empty), then 3139 * we need to look at the previous iclog. If the previous 3140 * iclog is active or dirty we are done. There is nothing 3141 * to sync out. Otherwise, we attach ourselves to the 3142 * previous iclog and go to sleep. 3143 */ 3144 if (iclog->ic_state == XLOG_STATE_DIRTY || 3145 (atomic_read(&iclog->ic_refcnt) == 0 3146 && iclog->ic_offset == 0)) { 3147 iclog = iclog->ic_prev; 3148 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3149 iclog->ic_state == XLOG_STATE_DIRTY) 3150 goto no_sleep; 3151 else 3152 goto maybe_sleep; 3153 } else { 3154 if (atomic_read(&iclog->ic_refcnt) == 0) { 3155 /* We are the only one with access to this 3156 * iclog. Flush it out now. There should 3157 * be a roundoff of zero to show that someone 3158 * has already taken care of the roundoff from 3159 * the previous sync. 3160 */ 3161 atomic_inc(&iclog->ic_refcnt); 3162 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3163 xlog_state_switch_iclogs(log, iclog, 0); 3164 spin_unlock(&log->l_icloglock); 3165 3166 if (xlog_state_release_iclog(log, iclog)) 3167 return XFS_ERROR(EIO); 3168 3169 if (log_flushed) 3170 *log_flushed = 1; 3171 spin_lock(&log->l_icloglock); 3172 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3173 iclog->ic_state != XLOG_STATE_DIRTY) 3174 goto maybe_sleep; 3175 else 3176 goto no_sleep; 3177 } else { 3178 /* Someone else is writing to this iclog. 3179 * Use its call to flush out the data. However, 3180 * the other thread may not force out this LR, 3181 * so we mark it WANT_SYNC. 3182 */ 3183 xlog_state_switch_iclogs(log, iclog, 0); 3184 goto maybe_sleep; 3185 } 3186 } 3187 } 3188 3189 /* By the time we come around again, the iclog could've been filled 3190 * which would give it another lsn. If we have a new lsn, just 3191 * return because the relevant data has been flushed. 3192 */ 3193 maybe_sleep: 3194 if (flags & XFS_LOG_SYNC) { 3195 /* 3196 * We must check if we're shutting down here, before 3197 * we wait, while we're holding the l_icloglock. 3198 * Then we check again after waking up, in case our 3199 * sleep was disturbed by a bad news. 3200 */ 3201 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3202 spin_unlock(&log->l_icloglock); 3203 return XFS_ERROR(EIO); 3204 } 3205 XFS_STATS_INC(xs_log_force_sleep); 3206 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3207 /* 3208 * No need to grab the log lock here since we're 3209 * only deciding whether or not to return EIO 3210 * and the memory read should be atomic. 3211 */ 3212 if (iclog->ic_state & XLOG_STATE_IOERROR) 3213 return XFS_ERROR(EIO); 3214 if (log_flushed) 3215 *log_flushed = 1; 3216 } else { 3217 3218 no_sleep: 3219 spin_unlock(&log->l_icloglock); 3220 } 3221 return 0; 3222 } 3223 3224 /* 3225 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3226 * about errors or whether the log was flushed or not. This is the normal 3227 * interface to use when trying to unpin items or move the log forward. 3228 */ 3229 void 3230 xfs_log_force( 3231 xfs_mount_t *mp, 3232 uint flags) 3233 { 3234 int error; 3235 3236 trace_xfs_log_force(mp, 0); 3237 error = _xfs_log_force(mp, flags, NULL); 3238 if (error) 3239 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3240 } 3241 3242 /* 3243 * Force the in-core log to disk for a specific LSN. 3244 * 3245 * Find in-core log with lsn. 3246 * If it is in the DIRTY state, just return. 3247 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3248 * state and go to sleep or return. 3249 * If it is in any other state, go to sleep or return. 3250 * 3251 * Synchronous forces are implemented with a signal variable. All callers 3252 * to force a given lsn to disk will wait on a the sv attached to the 3253 * specific in-core log. When given in-core log finally completes its 3254 * write to disk, that thread will wake up all threads waiting on the 3255 * sv. 3256 */ 3257 int 3258 _xfs_log_force_lsn( 3259 struct xfs_mount *mp, 3260 xfs_lsn_t lsn, 3261 uint flags, 3262 int *log_flushed) 3263 { 3264 struct xlog *log = mp->m_log; 3265 struct xlog_in_core *iclog; 3266 int already_slept = 0; 3267 3268 ASSERT(lsn != 0); 3269 3270 XFS_STATS_INC(xs_log_force); 3271 3272 lsn = xlog_cil_force_lsn(log, lsn); 3273 if (lsn == NULLCOMMITLSN) 3274 return 0; 3275 3276 try_again: 3277 spin_lock(&log->l_icloglock); 3278 iclog = log->l_iclog; 3279 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3280 spin_unlock(&log->l_icloglock); 3281 return XFS_ERROR(EIO); 3282 } 3283 3284 do { 3285 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3286 iclog = iclog->ic_next; 3287 continue; 3288 } 3289 3290 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3291 spin_unlock(&log->l_icloglock); 3292 return 0; 3293 } 3294 3295 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3296 /* 3297 * We sleep here if we haven't already slept (e.g. 3298 * this is the first time we've looked at the correct 3299 * iclog buf) and the buffer before us is going to 3300 * be sync'ed. The reason for this is that if we 3301 * are doing sync transactions here, by waiting for 3302 * the previous I/O to complete, we can allow a few 3303 * more transactions into this iclog before we close 3304 * it down. 3305 * 3306 * Otherwise, we mark the buffer WANT_SYNC, and bump 3307 * up the refcnt so we can release the log (which 3308 * drops the ref count). The state switch keeps new 3309 * transaction commits from using this buffer. When 3310 * the current commits finish writing into the buffer, 3311 * the refcount will drop to zero and the buffer will 3312 * go out then. 3313 */ 3314 if (!already_slept && 3315 (iclog->ic_prev->ic_state & 3316 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3317 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3318 3319 XFS_STATS_INC(xs_log_force_sleep); 3320 3321 xlog_wait(&iclog->ic_prev->ic_write_wait, 3322 &log->l_icloglock); 3323 if (log_flushed) 3324 *log_flushed = 1; 3325 already_slept = 1; 3326 goto try_again; 3327 } 3328 atomic_inc(&iclog->ic_refcnt); 3329 xlog_state_switch_iclogs(log, iclog, 0); 3330 spin_unlock(&log->l_icloglock); 3331 if (xlog_state_release_iclog(log, iclog)) 3332 return XFS_ERROR(EIO); 3333 if (log_flushed) 3334 *log_flushed = 1; 3335 spin_lock(&log->l_icloglock); 3336 } 3337 3338 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3339 !(iclog->ic_state & 3340 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3341 /* 3342 * Don't wait on completion if we know that we've 3343 * gotten a log write error. 3344 */ 3345 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3346 spin_unlock(&log->l_icloglock); 3347 return XFS_ERROR(EIO); 3348 } 3349 XFS_STATS_INC(xs_log_force_sleep); 3350 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3351 /* 3352 * No need to grab the log lock here since we're 3353 * only deciding whether or not to return EIO 3354 * and the memory read should be atomic. 3355 */ 3356 if (iclog->ic_state & XLOG_STATE_IOERROR) 3357 return XFS_ERROR(EIO); 3358 3359 if (log_flushed) 3360 *log_flushed = 1; 3361 } else { /* just return */ 3362 spin_unlock(&log->l_icloglock); 3363 } 3364 3365 return 0; 3366 } while (iclog != log->l_iclog); 3367 3368 spin_unlock(&log->l_icloglock); 3369 return 0; 3370 } 3371 3372 /* 3373 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3374 * about errors or whether the log was flushed or not. This is the normal 3375 * interface to use when trying to unpin items or move the log forward. 3376 */ 3377 void 3378 xfs_log_force_lsn( 3379 xfs_mount_t *mp, 3380 xfs_lsn_t lsn, 3381 uint flags) 3382 { 3383 int error; 3384 3385 trace_xfs_log_force(mp, lsn); 3386 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3387 if (error) 3388 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3389 } 3390 3391 /* 3392 * Called when we want to mark the current iclog as being ready to sync to 3393 * disk. 3394 */ 3395 STATIC void 3396 xlog_state_want_sync( 3397 struct xlog *log, 3398 struct xlog_in_core *iclog) 3399 { 3400 assert_spin_locked(&log->l_icloglock); 3401 3402 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3403 xlog_state_switch_iclogs(log, iclog, 0); 3404 } else { 3405 ASSERT(iclog->ic_state & 3406 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3407 } 3408 } 3409 3410 3411 /***************************************************************************** 3412 * 3413 * TICKET functions 3414 * 3415 ***************************************************************************** 3416 */ 3417 3418 /* 3419 * Free a used ticket when its refcount falls to zero. 3420 */ 3421 void 3422 xfs_log_ticket_put( 3423 xlog_ticket_t *ticket) 3424 { 3425 ASSERT(atomic_read(&ticket->t_ref) > 0); 3426 if (atomic_dec_and_test(&ticket->t_ref)) 3427 kmem_zone_free(xfs_log_ticket_zone, ticket); 3428 } 3429 3430 xlog_ticket_t * 3431 xfs_log_ticket_get( 3432 xlog_ticket_t *ticket) 3433 { 3434 ASSERT(atomic_read(&ticket->t_ref) > 0); 3435 atomic_inc(&ticket->t_ref); 3436 return ticket; 3437 } 3438 3439 /* 3440 * Figure out the total log space unit (in bytes) that would be 3441 * required for a log ticket. 3442 */ 3443 int 3444 xfs_log_calc_unit_res( 3445 struct xfs_mount *mp, 3446 int unit_bytes) 3447 { 3448 struct xlog *log = mp->m_log; 3449 int iclog_space; 3450 uint num_headers; 3451 3452 /* 3453 * Permanent reservations have up to 'cnt'-1 active log operations 3454 * in the log. A unit in this case is the amount of space for one 3455 * of these log operations. Normal reservations have a cnt of 1 3456 * and their unit amount is the total amount of space required. 3457 * 3458 * The following lines of code account for non-transaction data 3459 * which occupy space in the on-disk log. 3460 * 3461 * Normal form of a transaction is: 3462 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3463 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3464 * 3465 * We need to account for all the leadup data and trailer data 3466 * around the transaction data. 3467 * And then we need to account for the worst case in terms of using 3468 * more space. 3469 * The worst case will happen if: 3470 * - the placement of the transaction happens to be such that the 3471 * roundoff is at its maximum 3472 * - the transaction data is synced before the commit record is synced 3473 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3474 * Therefore the commit record is in its own Log Record. 3475 * This can happen as the commit record is called with its 3476 * own region to xlog_write(). 3477 * This then means that in the worst case, roundoff can happen for 3478 * the commit-rec as well. 3479 * The commit-rec is smaller than padding in this scenario and so it is 3480 * not added separately. 3481 */ 3482 3483 /* for trans header */ 3484 unit_bytes += sizeof(xlog_op_header_t); 3485 unit_bytes += sizeof(xfs_trans_header_t); 3486 3487 /* for start-rec */ 3488 unit_bytes += sizeof(xlog_op_header_t); 3489 3490 /* 3491 * for LR headers - the space for data in an iclog is the size minus 3492 * the space used for the headers. If we use the iclog size, then we 3493 * undercalculate the number of headers required. 3494 * 3495 * Furthermore - the addition of op headers for split-recs might 3496 * increase the space required enough to require more log and op 3497 * headers, so take that into account too. 3498 * 3499 * IMPORTANT: This reservation makes the assumption that if this 3500 * transaction is the first in an iclog and hence has the LR headers 3501 * accounted to it, then the remaining space in the iclog is 3502 * exclusively for this transaction. i.e. if the transaction is larger 3503 * than the iclog, it will be the only thing in that iclog. 3504 * Fundamentally, this means we must pass the entire log vector to 3505 * xlog_write to guarantee this. 3506 */ 3507 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3508 num_headers = howmany(unit_bytes, iclog_space); 3509 3510 /* for split-recs - ophdrs added when data split over LRs */ 3511 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3512 3513 /* add extra header reservations if we overrun */ 3514 while (!num_headers || 3515 howmany(unit_bytes, iclog_space) > num_headers) { 3516 unit_bytes += sizeof(xlog_op_header_t); 3517 num_headers++; 3518 } 3519 unit_bytes += log->l_iclog_hsize * num_headers; 3520 3521 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3522 unit_bytes += log->l_iclog_hsize; 3523 3524 /* for roundoff padding for transaction data and one for commit record */ 3525 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3526 /* log su roundoff */ 3527 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3528 } else { 3529 /* BB roundoff */ 3530 unit_bytes += 2 * BBSIZE; 3531 } 3532 3533 return unit_bytes; 3534 } 3535 3536 /* 3537 * Allocate and initialise a new log ticket. 3538 */ 3539 struct xlog_ticket * 3540 xlog_ticket_alloc( 3541 struct xlog *log, 3542 int unit_bytes, 3543 int cnt, 3544 char client, 3545 bool permanent, 3546 xfs_km_flags_t alloc_flags) 3547 { 3548 struct xlog_ticket *tic; 3549 int unit_res; 3550 3551 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3552 if (!tic) 3553 return NULL; 3554 3555 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3556 3557 atomic_set(&tic->t_ref, 1); 3558 tic->t_task = current; 3559 INIT_LIST_HEAD(&tic->t_queue); 3560 tic->t_unit_res = unit_res; 3561 tic->t_curr_res = unit_res; 3562 tic->t_cnt = cnt; 3563 tic->t_ocnt = cnt; 3564 tic->t_tid = prandom_u32(); 3565 tic->t_clientid = client; 3566 tic->t_flags = XLOG_TIC_INITED; 3567 tic->t_trans_type = 0; 3568 if (permanent) 3569 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3570 3571 xlog_tic_reset_res(tic); 3572 3573 return tic; 3574 } 3575 3576 3577 /****************************************************************************** 3578 * 3579 * Log debug routines 3580 * 3581 ****************************************************************************** 3582 */ 3583 #if defined(DEBUG) 3584 /* 3585 * Make sure that the destination ptr is within the valid data region of 3586 * one of the iclogs. This uses backup pointers stored in a different 3587 * part of the log in case we trash the log structure. 3588 */ 3589 void 3590 xlog_verify_dest_ptr( 3591 struct xlog *log, 3592 char *ptr) 3593 { 3594 int i; 3595 int good_ptr = 0; 3596 3597 for (i = 0; i < log->l_iclog_bufs; i++) { 3598 if (ptr >= log->l_iclog_bak[i] && 3599 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3600 good_ptr++; 3601 } 3602 3603 if (!good_ptr) 3604 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3605 } 3606 3607 /* 3608 * Check to make sure the grant write head didn't just over lap the tail. If 3609 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3610 * the cycles differ by exactly one and check the byte count. 3611 * 3612 * This check is run unlocked, so can give false positives. Rather than assert 3613 * on failures, use a warn-once flag and a panic tag to allow the admin to 3614 * determine if they want to panic the machine when such an error occurs. For 3615 * debug kernels this will have the same effect as using an assert but, unlinke 3616 * an assert, it can be turned off at runtime. 3617 */ 3618 STATIC void 3619 xlog_verify_grant_tail( 3620 struct xlog *log) 3621 { 3622 int tail_cycle, tail_blocks; 3623 int cycle, space; 3624 3625 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3626 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3627 if (tail_cycle != cycle) { 3628 if (cycle - 1 != tail_cycle && 3629 !(log->l_flags & XLOG_TAIL_WARN)) { 3630 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3631 "%s: cycle - 1 != tail_cycle", __func__); 3632 log->l_flags |= XLOG_TAIL_WARN; 3633 } 3634 3635 if (space > BBTOB(tail_blocks) && 3636 !(log->l_flags & XLOG_TAIL_WARN)) { 3637 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3638 "%s: space > BBTOB(tail_blocks)", __func__); 3639 log->l_flags |= XLOG_TAIL_WARN; 3640 } 3641 } 3642 } 3643 3644 /* check if it will fit */ 3645 STATIC void 3646 xlog_verify_tail_lsn( 3647 struct xlog *log, 3648 struct xlog_in_core *iclog, 3649 xfs_lsn_t tail_lsn) 3650 { 3651 int blocks; 3652 3653 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3654 blocks = 3655 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3656 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3657 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3658 } else { 3659 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3660 3661 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3662 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3663 3664 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3665 if (blocks < BTOBB(iclog->ic_offset) + 1) 3666 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3667 } 3668 } /* xlog_verify_tail_lsn */ 3669 3670 /* 3671 * Perform a number of checks on the iclog before writing to disk. 3672 * 3673 * 1. Make sure the iclogs are still circular 3674 * 2. Make sure we have a good magic number 3675 * 3. Make sure we don't have magic numbers in the data 3676 * 4. Check fields of each log operation header for: 3677 * A. Valid client identifier 3678 * B. tid ptr value falls in valid ptr space (user space code) 3679 * C. Length in log record header is correct according to the 3680 * individual operation headers within record. 3681 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3682 * log, check the preceding blocks of the physical log to make sure all 3683 * the cycle numbers agree with the current cycle number. 3684 */ 3685 STATIC void 3686 xlog_verify_iclog( 3687 struct xlog *log, 3688 struct xlog_in_core *iclog, 3689 int count, 3690 bool syncing) 3691 { 3692 xlog_op_header_t *ophead; 3693 xlog_in_core_t *icptr; 3694 xlog_in_core_2_t *xhdr; 3695 xfs_caddr_t ptr; 3696 xfs_caddr_t base_ptr; 3697 __psint_t field_offset; 3698 __uint8_t clientid; 3699 int len, i, j, k, op_len; 3700 int idx; 3701 3702 /* check validity of iclog pointers */ 3703 spin_lock(&log->l_icloglock); 3704 icptr = log->l_iclog; 3705 for (i=0; i < log->l_iclog_bufs; i++) { 3706 if (icptr == NULL) 3707 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3708 icptr = icptr->ic_next; 3709 } 3710 if (icptr != log->l_iclog) 3711 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3712 spin_unlock(&log->l_icloglock); 3713 3714 /* check log magic numbers */ 3715 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3716 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3717 3718 ptr = (xfs_caddr_t) &iclog->ic_header; 3719 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3720 ptr += BBSIZE) { 3721 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3722 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3723 __func__); 3724 } 3725 3726 /* check fields */ 3727 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3728 ptr = iclog->ic_datap; 3729 base_ptr = ptr; 3730 ophead = (xlog_op_header_t *)ptr; 3731 xhdr = iclog->ic_data; 3732 for (i = 0; i < len; i++) { 3733 ophead = (xlog_op_header_t *)ptr; 3734 3735 /* clientid is only 1 byte */ 3736 field_offset = (__psint_t) 3737 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3738 if (!syncing || (field_offset & 0x1ff)) { 3739 clientid = ophead->oh_clientid; 3740 } else { 3741 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3742 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3743 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3744 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3745 clientid = xlog_get_client_id( 3746 xhdr[j].hic_xheader.xh_cycle_data[k]); 3747 } else { 3748 clientid = xlog_get_client_id( 3749 iclog->ic_header.h_cycle_data[idx]); 3750 } 3751 } 3752 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3753 xfs_warn(log->l_mp, 3754 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3755 __func__, clientid, ophead, 3756 (unsigned long)field_offset); 3757 3758 /* check length */ 3759 field_offset = (__psint_t) 3760 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3761 if (!syncing || (field_offset & 0x1ff)) { 3762 op_len = be32_to_cpu(ophead->oh_len); 3763 } else { 3764 idx = BTOBBT((__psint_t)&ophead->oh_len - 3765 (__psint_t)iclog->ic_datap); 3766 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3767 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3768 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3769 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3770 } else { 3771 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3772 } 3773 } 3774 ptr += sizeof(xlog_op_header_t) + op_len; 3775 } 3776 } /* xlog_verify_iclog */ 3777 #endif 3778 3779 /* 3780 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3781 */ 3782 STATIC int 3783 xlog_state_ioerror( 3784 struct xlog *log) 3785 { 3786 xlog_in_core_t *iclog, *ic; 3787 3788 iclog = log->l_iclog; 3789 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3790 /* 3791 * Mark all the incore logs IOERROR. 3792 * From now on, no log flushes will result. 3793 */ 3794 ic = iclog; 3795 do { 3796 ic->ic_state = XLOG_STATE_IOERROR; 3797 ic = ic->ic_next; 3798 } while (ic != iclog); 3799 return 0; 3800 } 3801 /* 3802 * Return non-zero, if state transition has already happened. 3803 */ 3804 return 1; 3805 } 3806 3807 /* 3808 * This is called from xfs_force_shutdown, when we're forcibly 3809 * shutting down the filesystem, typically because of an IO error. 3810 * Our main objectives here are to make sure that: 3811 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3812 * parties to find out, 'atomically'. 3813 * b. those who're sleeping on log reservations, pinned objects and 3814 * other resources get woken up, and be told the bad news. 3815 * c. nothing new gets queued up after (a) and (b) are done. 3816 * d. if !logerror, flush the iclogs to disk, then seal them off 3817 * for business. 3818 * 3819 * Note: for delayed logging the !logerror case needs to flush the regions 3820 * held in memory out to the iclogs before flushing them to disk. This needs 3821 * to be done before the log is marked as shutdown, otherwise the flush to the 3822 * iclogs will fail. 3823 */ 3824 int 3825 xfs_log_force_umount( 3826 struct xfs_mount *mp, 3827 int logerror) 3828 { 3829 struct xlog *log; 3830 int retval; 3831 3832 log = mp->m_log; 3833 3834 /* 3835 * If this happens during log recovery, don't worry about 3836 * locking; the log isn't open for business yet. 3837 */ 3838 if (!log || 3839 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3840 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3841 if (mp->m_sb_bp) 3842 XFS_BUF_DONE(mp->m_sb_bp); 3843 return 0; 3844 } 3845 3846 /* 3847 * Somebody could've already done the hard work for us. 3848 * No need to get locks for this. 3849 */ 3850 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3851 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3852 return 1; 3853 } 3854 retval = 0; 3855 3856 /* 3857 * Flush the in memory commit item list before marking the log as 3858 * being shut down. We need to do it in this order to ensure all the 3859 * completed transactions are flushed to disk with the xfs_log_force() 3860 * call below. 3861 */ 3862 if (!logerror) 3863 xlog_cil_force(log); 3864 3865 /* 3866 * mark the filesystem and the as in a shutdown state and wake 3867 * everybody up to tell them the bad news. 3868 */ 3869 spin_lock(&log->l_icloglock); 3870 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3871 if (mp->m_sb_bp) 3872 XFS_BUF_DONE(mp->m_sb_bp); 3873 3874 /* 3875 * This flag is sort of redundant because of the mount flag, but 3876 * it's good to maintain the separation between the log and the rest 3877 * of XFS. 3878 */ 3879 log->l_flags |= XLOG_IO_ERROR; 3880 3881 /* 3882 * If we hit a log error, we want to mark all the iclogs IOERROR 3883 * while we're still holding the loglock. 3884 */ 3885 if (logerror) 3886 retval = xlog_state_ioerror(log); 3887 spin_unlock(&log->l_icloglock); 3888 3889 /* 3890 * We don't want anybody waiting for log reservations after this. That 3891 * means we have to wake up everybody queued up on reserveq as well as 3892 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3893 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3894 * action is protected by the grant locks. 3895 */ 3896 xlog_grant_head_wake_all(&log->l_reserve_head); 3897 xlog_grant_head_wake_all(&log->l_write_head); 3898 3899 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3900 ASSERT(!logerror); 3901 /* 3902 * Force the incore logs to disk before shutting the 3903 * log down completely. 3904 */ 3905 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3906 3907 spin_lock(&log->l_icloglock); 3908 retval = xlog_state_ioerror(log); 3909 spin_unlock(&log->l_icloglock); 3910 } 3911 /* 3912 * Wake up everybody waiting on xfs_log_force. 3913 * Callback all log item committed functions as if the 3914 * log writes were completed. 3915 */ 3916 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3917 3918 #ifdef XFSERRORDEBUG 3919 { 3920 xlog_in_core_t *iclog; 3921 3922 spin_lock(&log->l_icloglock); 3923 iclog = log->l_iclog; 3924 do { 3925 ASSERT(iclog->ic_callback == 0); 3926 iclog = iclog->ic_next; 3927 } while (iclog != log->l_iclog); 3928 spin_unlock(&log->l_icloglock); 3929 } 3930 #endif 3931 /* return non-zero if log IOERROR transition had already happened */ 3932 return retval; 3933 } 3934 3935 STATIC int 3936 xlog_iclogs_empty( 3937 struct xlog *log) 3938 { 3939 xlog_in_core_t *iclog; 3940 3941 iclog = log->l_iclog; 3942 do { 3943 /* endianness does not matter here, zero is zero in 3944 * any language. 3945 */ 3946 if (iclog->ic_header.h_num_logops) 3947 return 0; 3948 iclog = iclog->ic_next; 3949 } while (iclog != log->l_iclog); 3950 return 1; 3951 } 3952 3953