xref: /openbmc/linux/fs/xfs/xfs_log.c (revision cd5d5810)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
39 
40 kmem_zone_t	*xfs_log_ticket_zone;
41 
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 	struct xlog		*log,
46 	struct xlog_ticket	*ticket,
47 	struct xlog_in_core	**iclog,
48 	xfs_lsn_t		*commitlsnp);
49 
50 STATIC struct xlog *
51 xlog_alloc_log(
52 	struct xfs_mount	*mp,
53 	struct xfs_buftarg	*log_target,
54 	xfs_daddr_t		blk_offset,
55 	int			num_bblks);
56 STATIC int
57 xlog_space_left(
58 	struct xlog		*log,
59 	atomic64_t		*head);
60 STATIC int
61 xlog_sync(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_dealloc_log(
66 	struct xlog		*log);
67 
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 	struct xlog		*log,
73 	int			aborted,
74 	struct xlog_in_core	*iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 	struct xlog		*log,
78 	int			len,
79 	struct xlog_in_core	**iclog,
80 	struct xlog_ticket	*ticket,
81 	int			*continued_write,
82 	int			*logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 	struct xlog		*log,
86 	struct xlog_in_core	*iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 	struct xlog		*log,
90 	struct xlog_in_core	*iclog,
91 	int			eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 	struct xlog		*log,
95 	struct xlog_in_core	*iclog);
96 
97 STATIC void
98 xlog_grant_push_ail(
99 	struct xlog		*log,
100 	int			need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 	struct xlog		*log,
104 	struct xlog_ticket	*ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 	struct xlog		*log,
108 	struct xlog_ticket	*ticket);
109 
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 	struct xlog		*log,
114 	char			*ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 	struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 	struct xlog		*log,
121 	struct xlog_in_core	*iclog,
122 	int			count,
123 	bool                    syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 	struct xlog		*log,
127 	struct xlog_in_core	*iclog,
128 	xfs_lsn_t		tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
135 
136 STATIC int
137 xlog_iclogs_empty(
138 	struct xlog		*log);
139 
140 static void
141 xlog_grant_sub_space(
142 	struct xlog		*log,
143 	atomic64_t		*head,
144 	int			bytes)
145 {
146 	int64_t	head_val = atomic64_read(head);
147 	int64_t new, old;
148 
149 	do {
150 		int	cycle, space;
151 
152 		xlog_crack_grant_head_val(head_val, &cycle, &space);
153 
154 		space -= bytes;
155 		if (space < 0) {
156 			space += log->l_logsize;
157 			cycle--;
158 		}
159 
160 		old = head_val;
161 		new = xlog_assign_grant_head_val(cycle, space);
162 		head_val = atomic64_cmpxchg(head, old, new);
163 	} while (head_val != old);
164 }
165 
166 static void
167 xlog_grant_add_space(
168 	struct xlog		*log,
169 	atomic64_t		*head,
170 	int			bytes)
171 {
172 	int64_t	head_val = atomic64_read(head);
173 	int64_t new, old;
174 
175 	do {
176 		int		tmp;
177 		int		cycle, space;
178 
179 		xlog_crack_grant_head_val(head_val, &cycle, &space);
180 
181 		tmp = log->l_logsize - space;
182 		if (tmp > bytes)
183 			space += bytes;
184 		else {
185 			space = bytes - tmp;
186 			cycle++;
187 		}
188 
189 		old = head_val;
190 		new = xlog_assign_grant_head_val(cycle, space);
191 		head_val = atomic64_cmpxchg(head, old, new);
192 	} while (head_val != old);
193 }
194 
195 STATIC void
196 xlog_grant_head_init(
197 	struct xlog_grant_head	*head)
198 {
199 	xlog_assign_grant_head(&head->grant, 1, 0);
200 	INIT_LIST_HEAD(&head->waiters);
201 	spin_lock_init(&head->lock);
202 }
203 
204 STATIC void
205 xlog_grant_head_wake_all(
206 	struct xlog_grant_head	*head)
207 {
208 	struct xlog_ticket	*tic;
209 
210 	spin_lock(&head->lock);
211 	list_for_each_entry(tic, &head->waiters, t_queue)
212 		wake_up_process(tic->t_task);
213 	spin_unlock(&head->lock);
214 }
215 
216 static inline int
217 xlog_ticket_reservation(
218 	struct xlog		*log,
219 	struct xlog_grant_head	*head,
220 	struct xlog_ticket	*tic)
221 {
222 	if (head == &log->l_write_head) {
223 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 		return tic->t_unit_res;
225 	} else {
226 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 			return tic->t_unit_res * tic->t_cnt;
228 		else
229 			return tic->t_unit_res;
230 	}
231 }
232 
233 STATIC bool
234 xlog_grant_head_wake(
235 	struct xlog		*log,
236 	struct xlog_grant_head	*head,
237 	int			*free_bytes)
238 {
239 	struct xlog_ticket	*tic;
240 	int			need_bytes;
241 
242 	list_for_each_entry(tic, &head->waiters, t_queue) {
243 		need_bytes = xlog_ticket_reservation(log, head, tic);
244 		if (*free_bytes < need_bytes)
245 			return false;
246 
247 		*free_bytes -= need_bytes;
248 		trace_xfs_log_grant_wake_up(log, tic);
249 		wake_up_process(tic->t_task);
250 	}
251 
252 	return true;
253 }
254 
255 STATIC int
256 xlog_grant_head_wait(
257 	struct xlog		*log,
258 	struct xlog_grant_head	*head,
259 	struct xlog_ticket	*tic,
260 	int			need_bytes) __releases(&head->lock)
261 					    __acquires(&head->lock)
262 {
263 	list_add_tail(&tic->t_queue, &head->waiters);
264 
265 	do {
266 		if (XLOG_FORCED_SHUTDOWN(log))
267 			goto shutdown;
268 		xlog_grant_push_ail(log, need_bytes);
269 
270 		__set_current_state(TASK_UNINTERRUPTIBLE);
271 		spin_unlock(&head->lock);
272 
273 		XFS_STATS_INC(xs_sleep_logspace);
274 
275 		trace_xfs_log_grant_sleep(log, tic);
276 		schedule();
277 		trace_xfs_log_grant_wake(log, tic);
278 
279 		spin_lock(&head->lock);
280 		if (XLOG_FORCED_SHUTDOWN(log))
281 			goto shutdown;
282 	} while (xlog_space_left(log, &head->grant) < need_bytes);
283 
284 	list_del_init(&tic->t_queue);
285 	return 0;
286 shutdown:
287 	list_del_init(&tic->t_queue);
288 	return XFS_ERROR(EIO);
289 }
290 
291 /*
292  * Atomically get the log space required for a log ticket.
293  *
294  * Once a ticket gets put onto head->waiters, it will only return after the
295  * needed reservation is satisfied.
296  *
297  * This function is structured so that it has a lock free fast path. This is
298  * necessary because every new transaction reservation will come through this
299  * path. Hence any lock will be globally hot if we take it unconditionally on
300  * every pass.
301  *
302  * As tickets are only ever moved on and off head->waiters under head->lock, we
303  * only need to take that lock if we are going to add the ticket to the queue
304  * and sleep. We can avoid taking the lock if the ticket was never added to
305  * head->waiters because the t_queue list head will be empty and we hold the
306  * only reference to it so it can safely be checked unlocked.
307  */
308 STATIC int
309 xlog_grant_head_check(
310 	struct xlog		*log,
311 	struct xlog_grant_head	*head,
312 	struct xlog_ticket	*tic,
313 	int			*need_bytes)
314 {
315 	int			free_bytes;
316 	int			error = 0;
317 
318 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319 
320 	/*
321 	 * If there are other waiters on the queue then give them a chance at
322 	 * logspace before us.  Wake up the first waiters, if we do not wake
323 	 * up all the waiters then go to sleep waiting for more free space,
324 	 * otherwise try to get some space for this transaction.
325 	 */
326 	*need_bytes = xlog_ticket_reservation(log, head, tic);
327 	free_bytes = xlog_space_left(log, &head->grant);
328 	if (!list_empty_careful(&head->waiters)) {
329 		spin_lock(&head->lock);
330 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
331 		    free_bytes < *need_bytes) {
332 			error = xlog_grant_head_wait(log, head, tic,
333 						     *need_bytes);
334 		}
335 		spin_unlock(&head->lock);
336 	} else if (free_bytes < *need_bytes) {
337 		spin_lock(&head->lock);
338 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
339 		spin_unlock(&head->lock);
340 	}
341 
342 	return error;
343 }
344 
345 static void
346 xlog_tic_reset_res(xlog_ticket_t *tic)
347 {
348 	tic->t_res_num = 0;
349 	tic->t_res_arr_sum = 0;
350 	tic->t_res_num_ophdrs = 0;
351 }
352 
353 static void
354 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
355 {
356 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
357 		/* add to overflow and start again */
358 		tic->t_res_o_flow += tic->t_res_arr_sum;
359 		tic->t_res_num = 0;
360 		tic->t_res_arr_sum = 0;
361 	}
362 
363 	tic->t_res_arr[tic->t_res_num].r_len = len;
364 	tic->t_res_arr[tic->t_res_num].r_type = type;
365 	tic->t_res_arr_sum += len;
366 	tic->t_res_num++;
367 }
368 
369 /*
370  * Replenish the byte reservation required by moving the grant write head.
371  */
372 int
373 xfs_log_regrant(
374 	struct xfs_mount	*mp,
375 	struct xlog_ticket	*tic)
376 {
377 	struct xlog		*log = mp->m_log;
378 	int			need_bytes;
379 	int			error = 0;
380 
381 	if (XLOG_FORCED_SHUTDOWN(log))
382 		return XFS_ERROR(EIO);
383 
384 	XFS_STATS_INC(xs_try_logspace);
385 
386 	/*
387 	 * This is a new transaction on the ticket, so we need to change the
388 	 * transaction ID so that the next transaction has a different TID in
389 	 * the log. Just add one to the existing tid so that we can see chains
390 	 * of rolling transactions in the log easily.
391 	 */
392 	tic->t_tid++;
393 
394 	xlog_grant_push_ail(log, tic->t_unit_res);
395 
396 	tic->t_curr_res = tic->t_unit_res;
397 	xlog_tic_reset_res(tic);
398 
399 	if (tic->t_cnt > 0)
400 		return 0;
401 
402 	trace_xfs_log_regrant(log, tic);
403 
404 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
405 				      &need_bytes);
406 	if (error)
407 		goto out_error;
408 
409 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410 	trace_xfs_log_regrant_exit(log, tic);
411 	xlog_verify_grant_tail(log);
412 	return 0;
413 
414 out_error:
415 	/*
416 	 * If we are failing, make sure the ticket doesn't have any current
417 	 * reservations.  We don't want to add this back when the ticket/
418 	 * transaction gets cancelled.
419 	 */
420 	tic->t_curr_res = 0;
421 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
422 	return error;
423 }
424 
425 /*
426  * Reserve log space and return a ticket corresponding the reservation.
427  *
428  * Each reservation is going to reserve extra space for a log record header.
429  * When writes happen to the on-disk log, we don't subtract the length of the
430  * log record header from any reservation.  By wasting space in each
431  * reservation, we prevent over allocation problems.
432  */
433 int
434 xfs_log_reserve(
435 	struct xfs_mount	*mp,
436 	int		 	unit_bytes,
437 	int		 	cnt,
438 	struct xlog_ticket	**ticp,
439 	__uint8_t	 	client,
440 	bool			permanent,
441 	uint		 	t_type)
442 {
443 	struct xlog		*log = mp->m_log;
444 	struct xlog_ticket	*tic;
445 	int			need_bytes;
446 	int			error = 0;
447 
448 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449 
450 	if (XLOG_FORCED_SHUTDOWN(log))
451 		return XFS_ERROR(EIO);
452 
453 	XFS_STATS_INC(xs_try_logspace);
454 
455 	ASSERT(*ticp == NULL);
456 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
457 				KM_SLEEP | KM_MAYFAIL);
458 	if (!tic)
459 		return XFS_ERROR(ENOMEM);
460 
461 	tic->t_trans_type = t_type;
462 	*ticp = tic;
463 
464 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
465 					    : tic->t_unit_res);
466 
467 	trace_xfs_log_reserve(log, tic);
468 
469 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
470 				      &need_bytes);
471 	if (error)
472 		goto out_error;
473 
474 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
475 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
476 	trace_xfs_log_reserve_exit(log, tic);
477 	xlog_verify_grant_tail(log);
478 	return 0;
479 
480 out_error:
481 	/*
482 	 * If we are failing, make sure the ticket doesn't have any current
483 	 * reservations.  We don't want to add this back when the ticket/
484 	 * transaction gets cancelled.
485 	 */
486 	tic->t_curr_res = 0;
487 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
488 	return error;
489 }
490 
491 
492 /*
493  * NOTES:
494  *
495  *	1. currblock field gets updated at startup and after in-core logs
496  *		marked as with WANT_SYNC.
497  */
498 
499 /*
500  * This routine is called when a user of a log manager ticket is done with
501  * the reservation.  If the ticket was ever used, then a commit record for
502  * the associated transaction is written out as a log operation header with
503  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
504  * a given ticket.  If the ticket was one with a permanent reservation, then
505  * a few operations are done differently.  Permanent reservation tickets by
506  * default don't release the reservation.  They just commit the current
507  * transaction with the belief that the reservation is still needed.  A flag
508  * must be passed in before permanent reservations are actually released.
509  * When these type of tickets are not released, they need to be set into
510  * the inited state again.  By doing this, a start record will be written
511  * out when the next write occurs.
512  */
513 xfs_lsn_t
514 xfs_log_done(
515 	struct xfs_mount	*mp,
516 	struct xlog_ticket	*ticket,
517 	struct xlog_in_core	**iclog,
518 	uint			flags)
519 {
520 	struct xlog		*log = mp->m_log;
521 	xfs_lsn_t		lsn = 0;
522 
523 	if (XLOG_FORCED_SHUTDOWN(log) ||
524 	    /*
525 	     * If nothing was ever written, don't write out commit record.
526 	     * If we get an error, just continue and give back the log ticket.
527 	     */
528 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
529 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
530 		lsn = (xfs_lsn_t) -1;
531 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
532 			flags |= XFS_LOG_REL_PERM_RESERV;
533 		}
534 	}
535 
536 
537 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
538 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
539 		trace_xfs_log_done_nonperm(log, ticket);
540 
541 		/*
542 		 * Release ticket if not permanent reservation or a specific
543 		 * request has been made to release a permanent reservation.
544 		 */
545 		xlog_ungrant_log_space(log, ticket);
546 		xfs_log_ticket_put(ticket);
547 	} else {
548 		trace_xfs_log_done_perm(log, ticket);
549 
550 		xlog_regrant_reserve_log_space(log, ticket);
551 		/* If this ticket was a permanent reservation and we aren't
552 		 * trying to release it, reset the inited flags; so next time
553 		 * we write, a start record will be written out.
554 		 */
555 		ticket->t_flags |= XLOG_TIC_INITED;
556 	}
557 
558 	return lsn;
559 }
560 
561 /*
562  * Attaches a new iclog I/O completion callback routine during
563  * transaction commit.  If the log is in error state, a non-zero
564  * return code is handed back and the caller is responsible for
565  * executing the callback at an appropriate time.
566  */
567 int
568 xfs_log_notify(
569 	struct xfs_mount	*mp,
570 	struct xlog_in_core	*iclog,
571 	xfs_log_callback_t	*cb)
572 {
573 	int	abortflg;
574 
575 	spin_lock(&iclog->ic_callback_lock);
576 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
577 	if (!abortflg) {
578 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
579 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
580 		cb->cb_next = NULL;
581 		*(iclog->ic_callback_tail) = cb;
582 		iclog->ic_callback_tail = &(cb->cb_next);
583 	}
584 	spin_unlock(&iclog->ic_callback_lock);
585 	return abortflg;
586 }
587 
588 int
589 xfs_log_release_iclog(
590 	struct xfs_mount	*mp,
591 	struct xlog_in_core	*iclog)
592 {
593 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
594 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
595 		return EIO;
596 	}
597 
598 	return 0;
599 }
600 
601 /*
602  * Mount a log filesystem
603  *
604  * mp		- ubiquitous xfs mount point structure
605  * log_target	- buftarg of on-disk log device
606  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
607  * num_bblocks	- Number of BBSIZE blocks in on-disk log
608  *
609  * Return error or zero.
610  */
611 int
612 xfs_log_mount(
613 	xfs_mount_t	*mp,
614 	xfs_buftarg_t	*log_target,
615 	xfs_daddr_t	blk_offset,
616 	int		num_bblks)
617 {
618 	int		error = 0;
619 	int		min_logfsbs;
620 
621 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
622 		xfs_notice(mp, "Mounting Filesystem");
623 	else {
624 		xfs_notice(mp,
625 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
626 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 	}
628 
629 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 	if (IS_ERR(mp->m_log)) {
631 		error = -PTR_ERR(mp->m_log);
632 		goto out;
633 	}
634 
635 	/*
636 	 * Validate the given log space and drop a critical message via syslog
637 	 * if the log size is too small that would lead to some unexpected
638 	 * situations in transaction log space reservation stage.
639 	 *
640 	 * Note: we can't just reject the mount if the validation fails.  This
641 	 * would mean that people would have to downgrade their kernel just to
642 	 * remedy the situation as there is no way to grow the log (short of
643 	 * black magic surgery with xfs_db).
644 	 *
645 	 * We can, however, reject mounts for CRC format filesystems, as the
646 	 * mkfs binary being used to make the filesystem should never create a
647 	 * filesystem with a log that is too small.
648 	 */
649 	min_logfsbs = xfs_log_calc_minimum_size(mp);
650 
651 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too small, minimum size is %d blocks",
654 			 mp->m_sb.sb_logblocks, min_logfsbs);
655 		error = EINVAL;
656 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 		xfs_warn(mp,
658 		"Log size %d blocks too large, maximum size is %lld blocks",
659 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 		error = EINVAL;
661 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 		xfs_warn(mp,
663 		"log size %lld bytes too large, maximum size is %lld bytes",
664 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 			 XFS_MAX_LOG_BYTES);
666 		error = EINVAL;
667 	}
668 	if (error) {
669 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 			ASSERT(0);
672 			goto out_free_log;
673 		}
674 		xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677 	}
678 
679 	/*
680 	 * Initialize the AIL now we have a log.
681 	 */
682 	error = xfs_trans_ail_init(mp);
683 	if (error) {
684 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 		goto out_free_log;
686 	}
687 	mp->m_log->l_ailp = mp->m_ail;
688 
689 	/*
690 	 * skip log recovery on a norecovery mount.  pretend it all
691 	 * just worked.
692 	 */
693 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695 
696 		if (readonly)
697 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
698 
699 		error = xlog_recover(mp->m_log);
700 
701 		if (readonly)
702 			mp->m_flags |= XFS_MOUNT_RDONLY;
703 		if (error) {
704 			xfs_warn(mp, "log mount/recovery failed: error %d",
705 				error);
706 			goto out_destroy_ail;
707 		}
708 	}
709 
710 	/* Normal transactions can now occur */
711 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
712 
713 	/*
714 	 * Now the log has been fully initialised and we know were our
715 	 * space grant counters are, we can initialise the permanent ticket
716 	 * needed for delayed logging to work.
717 	 */
718 	xlog_cil_init_post_recovery(mp->m_log);
719 
720 	return 0;
721 
722 out_destroy_ail:
723 	xfs_trans_ail_destroy(mp);
724 out_free_log:
725 	xlog_dealloc_log(mp->m_log);
726 out:
727 	return error;
728 }
729 
730 /*
731  * Finish the recovery of the file system.  This is separate from the
732  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734  * here.
735  *
736  * If we finish recovery successfully, start the background log work. If we are
737  * not doing recovery, then we have a RO filesystem and we don't need to start
738  * it.
739  */
740 int
741 xfs_log_mount_finish(xfs_mount_t *mp)
742 {
743 	int	error = 0;
744 
745 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
746 		error = xlog_recover_finish(mp->m_log);
747 		if (!error)
748 			xfs_log_work_queue(mp);
749 	} else {
750 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 	}
752 
753 
754 	return error;
755 }
756 
757 /*
758  * Final log writes as part of unmount.
759  *
760  * Mark the filesystem clean as unmount happens.  Note that during relocation
761  * this routine needs to be executed as part of source-bag while the
762  * deallocation must not be done until source-end.
763  */
764 
765 /*
766  * Unmount record used to have a string "Unmount filesystem--" in the
767  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768  * We just write the magic number now since that particular field isn't
769  * currently architecture converted and "Unmount" is a bit foo.
770  * As far as I know, there weren't any dependencies on the old behaviour.
771  */
772 
773 int
774 xfs_log_unmount_write(xfs_mount_t *mp)
775 {
776 	struct xlog	 *log = mp->m_log;
777 	xlog_in_core_t	 *iclog;
778 #ifdef DEBUG
779 	xlog_in_core_t	 *first_iclog;
780 #endif
781 	xlog_ticket_t	*tic = NULL;
782 	xfs_lsn_t	 lsn;
783 	int		 error;
784 
785 	/*
786 	 * Don't write out unmount record on read-only mounts.
787 	 * Or, if we are doing a forced umount (typically because of IO errors).
788 	 */
789 	if (mp->m_flags & XFS_MOUNT_RDONLY)
790 		return 0;
791 
792 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
793 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
794 
795 #ifdef DEBUG
796 	first_iclog = iclog = log->l_iclog;
797 	do {
798 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
799 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
800 			ASSERT(iclog->ic_offset == 0);
801 		}
802 		iclog = iclog->ic_next;
803 	} while (iclog != first_iclog);
804 #endif
805 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
806 		error = xfs_log_reserve(mp, 600, 1, &tic,
807 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
808 		if (!error) {
809 			/* the data section must be 32 bit size aligned */
810 			struct {
811 			    __uint16_t magic;
812 			    __uint16_t pad1;
813 			    __uint32_t pad2; /* may as well make it 64 bits */
814 			} magic = {
815 				.magic = XLOG_UNMOUNT_TYPE,
816 			};
817 			struct xfs_log_iovec reg = {
818 				.i_addr = &magic,
819 				.i_len = sizeof(magic),
820 				.i_type = XLOG_REG_TYPE_UNMOUNT,
821 			};
822 			struct xfs_log_vec vec = {
823 				.lv_niovecs = 1,
824 				.lv_iovecp = &reg,
825 			};
826 
827 			/* remove inited flag, and account for space used */
828 			tic->t_flags = 0;
829 			tic->t_curr_res -= sizeof(magic);
830 			error = xlog_write(log, &vec, tic, &lsn,
831 					   NULL, XLOG_UNMOUNT_TRANS);
832 			/*
833 			 * At this point, we're umounting anyway,
834 			 * so there's no point in transitioning log state
835 			 * to IOERROR. Just continue...
836 			 */
837 		}
838 
839 		if (error)
840 			xfs_alert(mp, "%s: unmount record failed", __func__);
841 
842 
843 		spin_lock(&log->l_icloglock);
844 		iclog = log->l_iclog;
845 		atomic_inc(&iclog->ic_refcnt);
846 		xlog_state_want_sync(log, iclog);
847 		spin_unlock(&log->l_icloglock);
848 		error = xlog_state_release_iclog(log, iclog);
849 
850 		spin_lock(&log->l_icloglock);
851 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
852 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
853 			if (!XLOG_FORCED_SHUTDOWN(log)) {
854 				xlog_wait(&iclog->ic_force_wait,
855 							&log->l_icloglock);
856 			} else {
857 				spin_unlock(&log->l_icloglock);
858 			}
859 		} else {
860 			spin_unlock(&log->l_icloglock);
861 		}
862 		if (tic) {
863 			trace_xfs_log_umount_write(log, tic);
864 			xlog_ungrant_log_space(log, tic);
865 			xfs_log_ticket_put(tic);
866 		}
867 	} else {
868 		/*
869 		 * We're already in forced_shutdown mode, couldn't
870 		 * even attempt to write out the unmount transaction.
871 		 *
872 		 * Go through the motions of sync'ing and releasing
873 		 * the iclog, even though no I/O will actually happen,
874 		 * we need to wait for other log I/Os that may already
875 		 * be in progress.  Do this as a separate section of
876 		 * code so we'll know if we ever get stuck here that
877 		 * we're in this odd situation of trying to unmount
878 		 * a file system that went into forced_shutdown as
879 		 * the result of an unmount..
880 		 */
881 		spin_lock(&log->l_icloglock);
882 		iclog = log->l_iclog;
883 		atomic_inc(&iclog->ic_refcnt);
884 
885 		xlog_state_want_sync(log, iclog);
886 		spin_unlock(&log->l_icloglock);
887 		error =  xlog_state_release_iclog(log, iclog);
888 
889 		spin_lock(&log->l_icloglock);
890 
891 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
892 			|| iclog->ic_state == XLOG_STATE_DIRTY
893 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
894 
895 				xlog_wait(&iclog->ic_force_wait,
896 							&log->l_icloglock);
897 		} else {
898 			spin_unlock(&log->l_icloglock);
899 		}
900 	}
901 
902 	return error;
903 }	/* xfs_log_unmount_write */
904 
905 /*
906  * Empty the log for unmount/freeze.
907  *
908  * To do this, we first need to shut down the background log work so it is not
909  * trying to cover the log as we clean up. We then need to unpin all objects in
910  * the log so we can then flush them out. Once they have completed their IO and
911  * run the callbacks removing themselves from the AIL, we can write the unmount
912  * record.
913  */
914 void
915 xfs_log_quiesce(
916 	struct xfs_mount	*mp)
917 {
918 	cancel_delayed_work_sync(&mp->m_log->l_work);
919 	xfs_log_force(mp, XFS_LOG_SYNC);
920 
921 	/*
922 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 	 * xfs_buf_iowait() cannot be used because it was pushed with the
925 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 	 * the IO to complete.
927 	 */
928 	xfs_ail_push_all_sync(mp->m_ail);
929 	xfs_wait_buftarg(mp->m_ddev_targp);
930 	xfs_buf_lock(mp->m_sb_bp);
931 	xfs_buf_unlock(mp->m_sb_bp);
932 
933 	xfs_log_unmount_write(mp);
934 }
935 
936 /*
937  * Shut down and release the AIL and Log.
938  *
939  * During unmount, we need to ensure we flush all the dirty metadata objects
940  * from the AIL so that the log is empty before we write the unmount record to
941  * the log. Once this is done, we can tear down the AIL and the log.
942  */
943 void
944 xfs_log_unmount(
945 	struct xfs_mount	*mp)
946 {
947 	xfs_log_quiesce(mp);
948 
949 	xfs_trans_ail_destroy(mp);
950 	xlog_dealloc_log(mp->m_log);
951 }
952 
953 void
954 xfs_log_item_init(
955 	struct xfs_mount	*mp,
956 	struct xfs_log_item	*item,
957 	int			type,
958 	const struct xfs_item_ops *ops)
959 {
960 	item->li_mountp = mp;
961 	item->li_ailp = mp->m_ail;
962 	item->li_type = type;
963 	item->li_ops = ops;
964 	item->li_lv = NULL;
965 
966 	INIT_LIST_HEAD(&item->li_ail);
967 	INIT_LIST_HEAD(&item->li_cil);
968 }
969 
970 /*
971  * Wake up processes waiting for log space after we have moved the log tail.
972  */
973 void
974 xfs_log_space_wake(
975 	struct xfs_mount	*mp)
976 {
977 	struct xlog		*log = mp->m_log;
978 	int			free_bytes;
979 
980 	if (XLOG_FORCED_SHUTDOWN(log))
981 		return;
982 
983 	if (!list_empty_careful(&log->l_write_head.waiters)) {
984 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
985 
986 		spin_lock(&log->l_write_head.lock);
987 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
988 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
989 		spin_unlock(&log->l_write_head.lock);
990 	}
991 
992 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
993 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994 
995 		spin_lock(&log->l_reserve_head.lock);
996 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
997 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
998 		spin_unlock(&log->l_reserve_head.lock);
999 	}
1000 }
1001 
1002 /*
1003  * Determine if we have a transaction that has gone to disk
1004  * that needs to be covered. To begin the transition to the idle state
1005  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
1006  * If we are then in a state where covering is needed, the caller is informed
1007  * that dummy transactions are required to move the log into the idle state.
1008  *
1009  * Because this is called as part of the sync process, we should also indicate
1010  * that dummy transactions should be issued in anything but the covered or
1011  * idle states. This ensures that the log tail is accurately reflected in
1012  * the log at the end of the sync, hence if a crash occurrs avoids replay
1013  * of transactions where the metadata is already on disk.
1014  */
1015 int
1016 xfs_log_need_covered(xfs_mount_t *mp)
1017 {
1018 	int		needed = 0;
1019 	struct xlog	*log = mp->m_log;
1020 
1021 	if (!xfs_fs_writable(mp))
1022 		return 0;
1023 
1024 	spin_lock(&log->l_icloglock);
1025 	switch (log->l_covered_state) {
1026 	case XLOG_STATE_COVER_DONE:
1027 	case XLOG_STATE_COVER_DONE2:
1028 	case XLOG_STATE_COVER_IDLE:
1029 		break;
1030 	case XLOG_STATE_COVER_NEED:
1031 	case XLOG_STATE_COVER_NEED2:
1032 		if (!xfs_ail_min_lsn(log->l_ailp) &&
1033 		    xlog_iclogs_empty(log)) {
1034 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1035 				log->l_covered_state = XLOG_STATE_COVER_DONE;
1036 			else
1037 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
1038 		}
1039 		/* FALLTHRU */
1040 	default:
1041 		needed = 1;
1042 		break;
1043 	}
1044 	spin_unlock(&log->l_icloglock);
1045 	return needed;
1046 }
1047 
1048 /*
1049  * We may be holding the log iclog lock upon entering this routine.
1050  */
1051 xfs_lsn_t
1052 xlog_assign_tail_lsn_locked(
1053 	struct xfs_mount	*mp)
1054 {
1055 	struct xlog		*log = mp->m_log;
1056 	struct xfs_log_item	*lip;
1057 	xfs_lsn_t		tail_lsn;
1058 
1059 	assert_spin_locked(&mp->m_ail->xa_lock);
1060 
1061 	/*
1062 	 * To make sure we always have a valid LSN for the log tail we keep
1063 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1064 	 * and use that when the AIL was empty.
1065 	 */
1066 	lip = xfs_ail_min(mp->m_ail);
1067 	if (lip)
1068 		tail_lsn = lip->li_lsn;
1069 	else
1070 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1071 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1072 	return tail_lsn;
1073 }
1074 
1075 xfs_lsn_t
1076 xlog_assign_tail_lsn(
1077 	struct xfs_mount	*mp)
1078 {
1079 	xfs_lsn_t		tail_lsn;
1080 
1081 	spin_lock(&mp->m_ail->xa_lock);
1082 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1083 	spin_unlock(&mp->m_ail->xa_lock);
1084 
1085 	return tail_lsn;
1086 }
1087 
1088 /*
1089  * Return the space in the log between the tail and the head.  The head
1090  * is passed in the cycle/bytes formal parms.  In the special case where
1091  * the reserve head has wrapped passed the tail, this calculation is no
1092  * longer valid.  In this case, just return 0 which means there is no space
1093  * in the log.  This works for all places where this function is called
1094  * with the reserve head.  Of course, if the write head were to ever
1095  * wrap the tail, we should blow up.  Rather than catch this case here,
1096  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1097  *
1098  * This code also handles the case where the reservation head is behind
1099  * the tail.  The details of this case are described below, but the end
1100  * result is that we return the size of the log as the amount of space left.
1101  */
1102 STATIC int
1103 xlog_space_left(
1104 	struct xlog	*log,
1105 	atomic64_t	*head)
1106 {
1107 	int		free_bytes;
1108 	int		tail_bytes;
1109 	int		tail_cycle;
1110 	int		head_cycle;
1111 	int		head_bytes;
1112 
1113 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1114 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1115 	tail_bytes = BBTOB(tail_bytes);
1116 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1117 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1118 	else if (tail_cycle + 1 < head_cycle)
1119 		return 0;
1120 	else if (tail_cycle < head_cycle) {
1121 		ASSERT(tail_cycle == (head_cycle - 1));
1122 		free_bytes = tail_bytes - head_bytes;
1123 	} else {
1124 		/*
1125 		 * The reservation head is behind the tail.
1126 		 * In this case we just want to return the size of the
1127 		 * log as the amount of space left.
1128 		 */
1129 		xfs_alert(log->l_mp,
1130 			"xlog_space_left: head behind tail\n"
1131 			"  tail_cycle = %d, tail_bytes = %d\n"
1132 			"  GH   cycle = %d, GH   bytes = %d",
1133 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1134 		ASSERT(0);
1135 		free_bytes = log->l_logsize;
1136 	}
1137 	return free_bytes;
1138 }
1139 
1140 
1141 /*
1142  * Log function which is called when an io completes.
1143  *
1144  * The log manager needs its own routine, in order to control what
1145  * happens with the buffer after the write completes.
1146  */
1147 void
1148 xlog_iodone(xfs_buf_t *bp)
1149 {
1150 	struct xlog_in_core	*iclog = bp->b_fspriv;
1151 	struct xlog		*l = iclog->ic_log;
1152 	int			aborted = 0;
1153 
1154 	/*
1155 	 * Race to shutdown the filesystem if we see an error.
1156 	 */
1157 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1158 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1159 		xfs_buf_ioerror_alert(bp, __func__);
1160 		xfs_buf_stale(bp);
1161 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1162 		/*
1163 		 * This flag will be propagated to the trans-committed
1164 		 * callback routines to let them know that the log-commit
1165 		 * didn't succeed.
1166 		 */
1167 		aborted = XFS_LI_ABORTED;
1168 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1169 		aborted = XFS_LI_ABORTED;
1170 	}
1171 
1172 	/* log I/O is always issued ASYNC */
1173 	ASSERT(XFS_BUF_ISASYNC(bp));
1174 	xlog_state_done_syncing(iclog, aborted);
1175 	/*
1176 	 * do not reference the buffer (bp) here as we could race
1177 	 * with it being freed after writing the unmount record to the
1178 	 * log.
1179 	 */
1180 }
1181 
1182 /*
1183  * Return size of each in-core log record buffer.
1184  *
1185  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1186  *
1187  * If the filesystem blocksize is too large, we may need to choose a
1188  * larger size since the directory code currently logs entire blocks.
1189  */
1190 
1191 STATIC void
1192 xlog_get_iclog_buffer_size(
1193 	struct xfs_mount	*mp,
1194 	struct xlog		*log)
1195 {
1196 	int size;
1197 	int xhdrs;
1198 
1199 	if (mp->m_logbufs <= 0)
1200 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1201 	else
1202 		log->l_iclog_bufs = mp->m_logbufs;
1203 
1204 	/*
1205 	 * Buffer size passed in from mount system call.
1206 	 */
1207 	if (mp->m_logbsize > 0) {
1208 		size = log->l_iclog_size = mp->m_logbsize;
1209 		log->l_iclog_size_log = 0;
1210 		while (size != 1) {
1211 			log->l_iclog_size_log++;
1212 			size >>= 1;
1213 		}
1214 
1215 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1216 			/* # headers = size / 32k
1217 			 * one header holds cycles from 32k of data
1218 			 */
1219 
1220 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1221 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1222 				xhdrs++;
1223 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1224 			log->l_iclog_heads = xhdrs;
1225 		} else {
1226 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1227 			log->l_iclog_hsize = BBSIZE;
1228 			log->l_iclog_heads = 1;
1229 		}
1230 		goto done;
1231 	}
1232 
1233 	/* All machines use 32kB buffers by default. */
1234 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1235 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1236 
1237 	/* the default log size is 16k or 32k which is one header sector */
1238 	log->l_iclog_hsize = BBSIZE;
1239 	log->l_iclog_heads = 1;
1240 
1241 done:
1242 	/* are we being asked to make the sizes selected above visible? */
1243 	if (mp->m_logbufs == 0)
1244 		mp->m_logbufs = log->l_iclog_bufs;
1245 	if (mp->m_logbsize == 0)
1246 		mp->m_logbsize = log->l_iclog_size;
1247 }	/* xlog_get_iclog_buffer_size */
1248 
1249 
1250 void
1251 xfs_log_work_queue(
1252 	struct xfs_mount        *mp)
1253 {
1254 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1255 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1256 }
1257 
1258 /*
1259  * Every sync period we need to unpin all items in the AIL and push them to
1260  * disk. If there is nothing dirty, then we might need to cover the log to
1261  * indicate that the filesystem is idle.
1262  */
1263 void
1264 xfs_log_worker(
1265 	struct work_struct	*work)
1266 {
1267 	struct xlog		*log = container_of(to_delayed_work(work),
1268 						struct xlog, l_work);
1269 	struct xfs_mount	*mp = log->l_mp;
1270 
1271 	/* dgc: errors ignored - not fatal and nowhere to report them */
1272 	if (xfs_log_need_covered(mp))
1273 		xfs_fs_log_dummy(mp);
1274 	else
1275 		xfs_log_force(mp, 0);
1276 
1277 	/* start pushing all the metadata that is currently dirty */
1278 	xfs_ail_push_all(mp->m_ail);
1279 
1280 	/* queue us up again */
1281 	xfs_log_work_queue(mp);
1282 }
1283 
1284 /*
1285  * This routine initializes some of the log structure for a given mount point.
1286  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1287  * some other stuff may be filled in too.
1288  */
1289 STATIC struct xlog *
1290 xlog_alloc_log(
1291 	struct xfs_mount	*mp,
1292 	struct xfs_buftarg	*log_target,
1293 	xfs_daddr_t		blk_offset,
1294 	int			num_bblks)
1295 {
1296 	struct xlog		*log;
1297 	xlog_rec_header_t	*head;
1298 	xlog_in_core_t		**iclogp;
1299 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1300 	xfs_buf_t		*bp;
1301 	int			i;
1302 	int			error = ENOMEM;
1303 	uint			log2_size = 0;
1304 
1305 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306 	if (!log) {
1307 		xfs_warn(mp, "Log allocation failed: No memory!");
1308 		goto out;
1309 	}
1310 
1311 	log->l_mp	   = mp;
1312 	log->l_targ	   = log_target;
1313 	log->l_logsize     = BBTOB(num_bblks);
1314 	log->l_logBBstart  = blk_offset;
1315 	log->l_logBBsize   = num_bblks;
1316 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1318 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319 
1320 	log->l_prev_block  = -1;
1321 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1325 
1326 	xlog_grant_head_init(&log->l_reserve_head);
1327 	xlog_grant_head_init(&log->l_write_head);
1328 
1329 	error = EFSCORRUPTED;
1330 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1331 	        log2_size = mp->m_sb.sb_logsectlog;
1332 		if (log2_size < BBSHIFT) {
1333 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334 				log2_size, BBSHIFT);
1335 			goto out_free_log;
1336 		}
1337 
1338 	        log2_size -= BBSHIFT;
1339 		if (log2_size > mp->m_sectbb_log) {
1340 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341 				log2_size, mp->m_sectbb_log);
1342 			goto out_free_log;
1343 		}
1344 
1345 		/* for larger sector sizes, must have v2 or external log */
1346 		if (log2_size && log->l_logBBstart > 0 &&
1347 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348 			xfs_warn(mp,
1349 		"log sector size (0x%x) invalid for configuration.",
1350 				log2_size);
1351 			goto out_free_log;
1352 		}
1353 	}
1354 	log->l_sectBBsize = 1 << log2_size;
1355 
1356 	xlog_get_iclog_buffer_size(mp, log);
1357 
1358 	error = ENOMEM;
1359 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1360 	if (!bp)
1361 		goto out_free_log;
1362 	bp->b_iodone = xlog_iodone;
1363 	ASSERT(xfs_buf_islocked(bp));
1364 	log->l_xbuf = bp;
1365 
1366 	spin_lock_init(&log->l_icloglock);
1367 	init_waitqueue_head(&log->l_flush_wait);
1368 
1369 	iclogp = &log->l_iclog;
1370 	/*
1371 	 * The amount of memory to allocate for the iclog structure is
1372 	 * rather funky due to the way the structure is defined.  It is
1373 	 * done this way so that we can use different sizes for machines
1374 	 * with different amounts of memory.  See the definition of
1375 	 * xlog_in_core_t in xfs_log_priv.h for details.
1376 	 */
1377 	ASSERT(log->l_iclog_size >= 4096);
1378 	for (i=0; i < log->l_iclog_bufs; i++) {
1379 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1380 		if (!*iclogp)
1381 			goto out_free_iclog;
1382 
1383 		iclog = *iclogp;
1384 		iclog->ic_prev = prev_iclog;
1385 		prev_iclog = iclog;
1386 
1387 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1388 						BTOBB(log->l_iclog_size), 0);
1389 		if (!bp)
1390 			goto out_free_iclog;
1391 
1392 		bp->b_iodone = xlog_iodone;
1393 		iclog->ic_bp = bp;
1394 		iclog->ic_data = bp->b_addr;
1395 #ifdef DEBUG
1396 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1397 #endif
1398 		head = &iclog->ic_header;
1399 		memset(head, 0, sizeof(xlog_rec_header_t));
1400 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1401 		head->h_version = cpu_to_be32(
1402 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1403 		head->h_size = cpu_to_be32(log->l_iclog_size);
1404 		/* new fields */
1405 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1406 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1407 
1408 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1409 		iclog->ic_state = XLOG_STATE_ACTIVE;
1410 		iclog->ic_log = log;
1411 		atomic_set(&iclog->ic_refcnt, 0);
1412 		spin_lock_init(&iclog->ic_callback_lock);
1413 		iclog->ic_callback_tail = &(iclog->ic_callback);
1414 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1415 
1416 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1417 		init_waitqueue_head(&iclog->ic_force_wait);
1418 		init_waitqueue_head(&iclog->ic_write_wait);
1419 
1420 		iclogp = &iclog->ic_next;
1421 	}
1422 	*iclogp = log->l_iclog;			/* complete ring */
1423 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1424 
1425 	error = xlog_cil_init(log);
1426 	if (error)
1427 		goto out_free_iclog;
1428 	return log;
1429 
1430 out_free_iclog:
1431 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1432 		prev_iclog = iclog->ic_next;
1433 		if (iclog->ic_bp)
1434 			xfs_buf_free(iclog->ic_bp);
1435 		kmem_free(iclog);
1436 	}
1437 	spinlock_destroy(&log->l_icloglock);
1438 	xfs_buf_free(log->l_xbuf);
1439 out_free_log:
1440 	kmem_free(log);
1441 out:
1442 	return ERR_PTR(-error);
1443 }	/* xlog_alloc_log */
1444 
1445 
1446 /*
1447  * Write out the commit record of a transaction associated with the given
1448  * ticket.  Return the lsn of the commit record.
1449  */
1450 STATIC int
1451 xlog_commit_record(
1452 	struct xlog		*log,
1453 	struct xlog_ticket	*ticket,
1454 	struct xlog_in_core	**iclog,
1455 	xfs_lsn_t		*commitlsnp)
1456 {
1457 	struct xfs_mount *mp = log->l_mp;
1458 	int	error;
1459 	struct xfs_log_iovec reg = {
1460 		.i_addr = NULL,
1461 		.i_len = 0,
1462 		.i_type = XLOG_REG_TYPE_COMMIT,
1463 	};
1464 	struct xfs_log_vec vec = {
1465 		.lv_niovecs = 1,
1466 		.lv_iovecp = &reg,
1467 	};
1468 
1469 	ASSERT_ALWAYS(iclog);
1470 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1471 					XLOG_COMMIT_TRANS);
1472 	if (error)
1473 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1474 	return error;
1475 }
1476 
1477 /*
1478  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479  * log space.  This code pushes on the lsn which would supposedly free up
1480  * the 25% which we want to leave free.  We may need to adopt a policy which
1481  * pushes on an lsn which is further along in the log once we reach the high
1482  * water mark.  In this manner, we would be creating a low water mark.
1483  */
1484 STATIC void
1485 xlog_grant_push_ail(
1486 	struct xlog	*log,
1487 	int		need_bytes)
1488 {
1489 	xfs_lsn_t	threshold_lsn = 0;
1490 	xfs_lsn_t	last_sync_lsn;
1491 	int		free_blocks;
1492 	int		free_bytes;
1493 	int		threshold_block;
1494 	int		threshold_cycle;
1495 	int		free_threshold;
1496 
1497 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498 
1499 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500 	free_blocks = BTOBBT(free_bytes);
1501 
1502 	/*
1503 	 * Set the threshold for the minimum number of free blocks in the
1504 	 * log to the maximum of what the caller needs, one quarter of the
1505 	 * log, and 256 blocks.
1506 	 */
1507 	free_threshold = BTOBB(need_bytes);
1508 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1509 	free_threshold = MAX(free_threshold, 256);
1510 	if (free_blocks >= free_threshold)
1511 		return;
1512 
1513 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514 						&threshold_block);
1515 	threshold_block += free_threshold;
1516 	if (threshold_block >= log->l_logBBsize) {
1517 		threshold_block -= log->l_logBBsize;
1518 		threshold_cycle += 1;
1519 	}
1520 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521 					threshold_block);
1522 	/*
1523 	 * Don't pass in an lsn greater than the lsn of the last
1524 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1525 	 * so that it doesn't change between the compare and the set.
1526 	 */
1527 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529 		threshold_lsn = last_sync_lsn;
1530 
1531 	/*
1532 	 * Get the transaction layer to kick the dirty buffers out to
1533 	 * disk asynchronously. No point in trying to do this if
1534 	 * the filesystem is shutting down.
1535 	 */
1536 	if (!XLOG_FORCED_SHUTDOWN(log))
1537 		xfs_ail_push(log->l_ailp, threshold_lsn);
1538 }
1539 
1540 /*
1541  * Stamp cycle number in every block
1542  */
1543 STATIC void
1544 xlog_pack_data(
1545 	struct xlog		*log,
1546 	struct xlog_in_core	*iclog,
1547 	int			roundoff)
1548 {
1549 	int			i, j, k;
1550 	int			size = iclog->ic_offset + roundoff;
1551 	__be32			cycle_lsn;
1552 	xfs_caddr_t		dp;
1553 
1554 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1555 
1556 	dp = iclog->ic_datap;
1557 	for (i = 0; i < BTOBB(size); i++) {
1558 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1559 			break;
1560 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1561 		*(__be32 *)dp = cycle_lsn;
1562 		dp += BBSIZE;
1563 	}
1564 
1565 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1566 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1567 
1568 		for ( ; i < BTOBB(size); i++) {
1569 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1571 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1572 			*(__be32 *)dp = cycle_lsn;
1573 			dp += BBSIZE;
1574 		}
1575 
1576 		for (i = 1; i < log->l_iclog_heads; i++)
1577 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1578 	}
1579 }
1580 
1581 /*
1582  * Calculate the checksum for a log buffer.
1583  *
1584  * This is a little more complicated than it should be because the various
1585  * headers and the actual data are non-contiguous.
1586  */
1587 __le32
1588 xlog_cksum(
1589 	struct xlog		*log,
1590 	struct xlog_rec_header	*rhead,
1591 	char			*dp,
1592 	int			size)
1593 {
1594 	__uint32_t		crc;
1595 
1596 	/* first generate the crc for the record header ... */
1597 	crc = xfs_start_cksum((char *)rhead,
1598 			      sizeof(struct xlog_rec_header),
1599 			      offsetof(struct xlog_rec_header, h_crc));
1600 
1601 	/* ... then for additional cycle data for v2 logs ... */
1602 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1604 		int		i;
1605 
1606 		for (i = 1; i < log->l_iclog_heads; i++) {
1607 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1608 				     sizeof(struct xlog_rec_ext_header));
1609 		}
1610 	}
1611 
1612 	/* ... and finally for the payload */
1613 	crc = crc32c(crc, dp, size);
1614 
1615 	return xfs_end_cksum(crc);
1616 }
1617 
1618 /*
1619  * The bdstrat callback function for log bufs. This gives us a central
1620  * place to trap bufs in case we get hit by a log I/O error and need to
1621  * shutdown. Actually, in practice, even when we didn't get a log error,
1622  * we transition the iclogs to IOERROR state *after* flushing all existing
1623  * iclogs to disk. This is because we don't want anymore new transactions to be
1624  * started or completed afterwards.
1625  */
1626 STATIC int
1627 xlog_bdstrat(
1628 	struct xfs_buf		*bp)
1629 {
1630 	struct xlog_in_core	*iclog = bp->b_fspriv;
1631 
1632 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1633 		xfs_buf_ioerror(bp, EIO);
1634 		xfs_buf_stale(bp);
1635 		xfs_buf_ioend(bp, 0);
1636 		/*
1637 		 * It would seem logical to return EIO here, but we rely on
1638 		 * the log state machine to propagate I/O errors instead of
1639 		 * doing it here.
1640 		 */
1641 		return 0;
1642 	}
1643 
1644 	xfs_buf_iorequest(bp);
1645 	return 0;
1646 }
1647 
1648 /*
1649  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1650  * fashion.  Previously, we should have moved the current iclog
1651  * ptr in the log to point to the next available iclog.  This allows further
1652  * write to continue while this code syncs out an iclog ready to go.
1653  * Before an in-core log can be written out, the data section must be scanned
1654  * to save away the 1st word of each BBSIZE block into the header.  We replace
1655  * it with the current cycle count.  Each BBSIZE block is tagged with the
1656  * cycle count because there in an implicit assumption that drives will
1657  * guarantee that entire 512 byte blocks get written at once.  In other words,
1658  * we can't have part of a 512 byte block written and part not written.  By
1659  * tagging each block, we will know which blocks are valid when recovering
1660  * after an unclean shutdown.
1661  *
1662  * This routine is single threaded on the iclog.  No other thread can be in
1663  * this routine with the same iclog.  Changing contents of iclog can there-
1664  * fore be done without grabbing the state machine lock.  Updating the global
1665  * log will require grabbing the lock though.
1666  *
1667  * The entire log manager uses a logical block numbering scheme.  Only
1668  * log_sync (and then only bwrite()) know about the fact that the log may
1669  * not start with block zero on a given device.  The log block start offset
1670  * is added immediately before calling bwrite().
1671  */
1672 
1673 STATIC int
1674 xlog_sync(
1675 	struct xlog		*log,
1676 	struct xlog_in_core	*iclog)
1677 {
1678 	xfs_buf_t	*bp;
1679 	int		i;
1680 	uint		count;		/* byte count of bwrite */
1681 	uint		count_init;	/* initial count before roundup */
1682 	int		roundoff;       /* roundoff to BB or stripe */
1683 	int		split = 0;	/* split write into two regions */
1684 	int		error;
1685 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1686 	int		size;
1687 
1688 	XFS_STATS_INC(xs_log_writes);
1689 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1690 
1691 	/* Add for LR header */
1692 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1693 
1694 	/* Round out the log write size */
1695 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1696 		/* we have a v2 stripe unit to use */
1697 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1698 	} else {
1699 		count = BBTOB(BTOBB(count_init));
1700 	}
1701 	roundoff = count - count_init;
1702 	ASSERT(roundoff >= 0);
1703 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1704                 roundoff < log->l_mp->m_sb.sb_logsunit)
1705 		||
1706 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1707 		 roundoff < BBTOB(1)));
1708 
1709 	/* move grant heads by roundoff in sync */
1710 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1711 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1712 
1713 	/* put cycle number in every block */
1714 	xlog_pack_data(log, iclog, roundoff);
1715 
1716 	/* real byte length */
1717 	size = iclog->ic_offset;
1718 	if (v2)
1719 		size += roundoff;
1720 	iclog->ic_header.h_len = cpu_to_be32(size);
1721 
1722 	bp = iclog->ic_bp;
1723 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1724 
1725 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1726 
1727 	/* Do we need to split this write into 2 parts? */
1728 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1729 		char		*dptr;
1730 
1731 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1732 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1733 		iclog->ic_bwritecnt = 2;
1734 
1735 		/*
1736 		 * Bump the cycle numbers at the start of each block in the
1737 		 * part of the iclog that ends up in the buffer that gets
1738 		 * written to the start of the log.
1739 		 *
1740 		 * Watch out for the header magic number case, though.
1741 		 */
1742 		dptr = (char *)&iclog->ic_header + count;
1743 		for (i = 0; i < split; i += BBSIZE) {
1744 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1745 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1746 				cycle++;
1747 			*(__be32 *)dptr = cpu_to_be32(cycle);
1748 
1749 			dptr += BBSIZE;
1750 		}
1751 	} else {
1752 		iclog->ic_bwritecnt = 1;
1753 	}
1754 
1755 	/* calculcate the checksum */
1756 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1757 					    iclog->ic_datap, size);
1758 
1759 	bp->b_io_length = BTOBB(count);
1760 	bp->b_fspriv = iclog;
1761 	XFS_BUF_ZEROFLAGS(bp);
1762 	XFS_BUF_ASYNC(bp);
1763 	bp->b_flags |= XBF_SYNCIO;
1764 
1765 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1766 		bp->b_flags |= XBF_FUA;
1767 
1768 		/*
1769 		 * Flush the data device before flushing the log to make
1770 		 * sure all meta data written back from the AIL actually made
1771 		 * it to disk before stamping the new log tail LSN into the
1772 		 * log buffer.  For an external log we need to issue the
1773 		 * flush explicitly, and unfortunately synchronously here;
1774 		 * for an internal log we can simply use the block layer
1775 		 * state machine for preflushes.
1776 		 */
1777 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1778 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1779 		else
1780 			bp->b_flags |= XBF_FLUSH;
1781 	}
1782 
1783 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1784 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1785 
1786 	xlog_verify_iclog(log, iclog, count, true);
1787 
1788 	/* account for log which doesn't start at block #0 */
1789 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1790 	/*
1791 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1792 	 * is shutting down.
1793 	 */
1794 	XFS_BUF_WRITE(bp);
1795 
1796 	error = xlog_bdstrat(bp);
1797 	if (error) {
1798 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1799 		return error;
1800 	}
1801 	if (split) {
1802 		bp = iclog->ic_log->l_xbuf;
1803 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1804 		xfs_buf_associate_memory(bp,
1805 				(char *)&iclog->ic_header + count, split);
1806 		bp->b_fspriv = iclog;
1807 		XFS_BUF_ZEROFLAGS(bp);
1808 		XFS_BUF_ASYNC(bp);
1809 		bp->b_flags |= XBF_SYNCIO;
1810 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1811 			bp->b_flags |= XBF_FUA;
1812 
1813 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1814 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1815 
1816 		/* account for internal log which doesn't start at block #0 */
1817 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1818 		XFS_BUF_WRITE(bp);
1819 		error = xlog_bdstrat(bp);
1820 		if (error) {
1821 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1822 			return error;
1823 		}
1824 	}
1825 	return 0;
1826 }	/* xlog_sync */
1827 
1828 /*
1829  * Deallocate a log structure
1830  */
1831 STATIC void
1832 xlog_dealloc_log(
1833 	struct xlog	*log)
1834 {
1835 	xlog_in_core_t	*iclog, *next_iclog;
1836 	int		i;
1837 
1838 	xlog_cil_destroy(log);
1839 
1840 	/*
1841 	 * always need to ensure that the extra buffer does not point to memory
1842 	 * owned by another log buffer before we free it.
1843 	 */
1844 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1845 	xfs_buf_free(log->l_xbuf);
1846 
1847 	iclog = log->l_iclog;
1848 	for (i=0; i<log->l_iclog_bufs; i++) {
1849 		xfs_buf_free(iclog->ic_bp);
1850 		next_iclog = iclog->ic_next;
1851 		kmem_free(iclog);
1852 		iclog = next_iclog;
1853 	}
1854 	spinlock_destroy(&log->l_icloglock);
1855 
1856 	log->l_mp->m_log = NULL;
1857 	kmem_free(log);
1858 }	/* xlog_dealloc_log */
1859 
1860 /*
1861  * Update counters atomically now that memcpy is done.
1862  */
1863 /* ARGSUSED */
1864 static inline void
1865 xlog_state_finish_copy(
1866 	struct xlog		*log,
1867 	struct xlog_in_core	*iclog,
1868 	int			record_cnt,
1869 	int			copy_bytes)
1870 {
1871 	spin_lock(&log->l_icloglock);
1872 
1873 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1874 	iclog->ic_offset += copy_bytes;
1875 
1876 	spin_unlock(&log->l_icloglock);
1877 }	/* xlog_state_finish_copy */
1878 
1879 
1880 
1881 
1882 /*
1883  * print out info relating to regions written which consume
1884  * the reservation
1885  */
1886 void
1887 xlog_print_tic_res(
1888 	struct xfs_mount	*mp,
1889 	struct xlog_ticket	*ticket)
1890 {
1891 	uint i;
1892 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1893 
1894 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1895 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1896 	    "bformat",
1897 	    "bchunk",
1898 	    "efi_format",
1899 	    "efd_format",
1900 	    "iformat",
1901 	    "icore",
1902 	    "iext",
1903 	    "ibroot",
1904 	    "ilocal",
1905 	    "iattr_ext",
1906 	    "iattr_broot",
1907 	    "iattr_local",
1908 	    "qformat",
1909 	    "dquot",
1910 	    "quotaoff",
1911 	    "LR header",
1912 	    "unmount",
1913 	    "commit",
1914 	    "trans header"
1915 	};
1916 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1917 	    "SETATTR_NOT_SIZE",
1918 	    "SETATTR_SIZE",
1919 	    "INACTIVE",
1920 	    "CREATE",
1921 	    "CREATE_TRUNC",
1922 	    "TRUNCATE_FILE",
1923 	    "REMOVE",
1924 	    "LINK",
1925 	    "RENAME",
1926 	    "MKDIR",
1927 	    "RMDIR",
1928 	    "SYMLINK",
1929 	    "SET_DMATTRS",
1930 	    "GROWFS",
1931 	    "STRAT_WRITE",
1932 	    "DIOSTRAT",
1933 	    "WRITE_SYNC",
1934 	    "WRITEID",
1935 	    "ADDAFORK",
1936 	    "ATTRINVAL",
1937 	    "ATRUNCATE",
1938 	    "ATTR_SET",
1939 	    "ATTR_RM",
1940 	    "ATTR_FLAG",
1941 	    "CLEAR_AGI_BUCKET",
1942 	    "QM_SBCHANGE",
1943 	    "DUMMY1",
1944 	    "DUMMY2",
1945 	    "QM_QUOTAOFF",
1946 	    "QM_DQALLOC",
1947 	    "QM_SETQLIM",
1948 	    "QM_DQCLUSTER",
1949 	    "QM_QINOCREATE",
1950 	    "QM_QUOTAOFF_END",
1951 	    "SB_UNIT",
1952 	    "FSYNC_TS",
1953 	    "GROWFSRT_ALLOC",
1954 	    "GROWFSRT_ZERO",
1955 	    "GROWFSRT_FREE",
1956 	    "SWAPEXT"
1957 	};
1958 
1959 	xfs_warn(mp,
1960 		"xlog_write: reservation summary:\n"
1961 		"  trans type  = %s (%u)\n"
1962 		"  unit res    = %d bytes\n"
1963 		"  current res = %d bytes\n"
1964 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1965 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1966 		"  ophdr + reg = %u bytes\n"
1967 		"  num regions = %u\n",
1968 		((ticket->t_trans_type <= 0 ||
1969 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1970 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1971 		ticket->t_trans_type,
1972 		ticket->t_unit_res,
1973 		ticket->t_curr_res,
1974 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1975 		ticket->t_res_num_ophdrs, ophdr_spc,
1976 		ticket->t_res_arr_sum +
1977 		ticket->t_res_o_flow + ophdr_spc,
1978 		ticket->t_res_num);
1979 
1980 	for (i = 0; i < ticket->t_res_num; i++) {
1981 		uint r_type = ticket->t_res_arr[i].r_type;
1982 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1983 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1984 			    "bad-rtype" : res_type_str[r_type-1]),
1985 			    ticket->t_res_arr[i].r_len);
1986 	}
1987 
1988 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1989 		"xlog_write: reservation ran out. Need to up reservation");
1990 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1991 }
1992 
1993 /*
1994  * Calculate the potential space needed by the log vector.  Each region gets
1995  * its own xlog_op_header_t and may need to be double word aligned.
1996  */
1997 static int
1998 xlog_write_calc_vec_length(
1999 	struct xlog_ticket	*ticket,
2000 	struct xfs_log_vec	*log_vector)
2001 {
2002 	struct xfs_log_vec	*lv;
2003 	int			headers = 0;
2004 	int			len = 0;
2005 	int			i;
2006 
2007 	/* acct for start rec of xact */
2008 	if (ticket->t_flags & XLOG_TIC_INITED)
2009 		headers++;
2010 
2011 	for (lv = log_vector; lv; lv = lv->lv_next) {
2012 		/* we don't write ordered log vectors */
2013 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2014 			continue;
2015 
2016 		headers += lv->lv_niovecs;
2017 
2018 		for (i = 0; i < lv->lv_niovecs; i++) {
2019 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2020 
2021 			len += vecp->i_len;
2022 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2023 		}
2024 	}
2025 
2026 	ticket->t_res_num_ophdrs += headers;
2027 	len += headers * sizeof(struct xlog_op_header);
2028 
2029 	return len;
2030 }
2031 
2032 /*
2033  * If first write for transaction, insert start record  We can't be trying to
2034  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2035  */
2036 static int
2037 xlog_write_start_rec(
2038 	struct xlog_op_header	*ophdr,
2039 	struct xlog_ticket	*ticket)
2040 {
2041 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2042 		return 0;
2043 
2044 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2045 	ophdr->oh_clientid = ticket->t_clientid;
2046 	ophdr->oh_len = 0;
2047 	ophdr->oh_flags = XLOG_START_TRANS;
2048 	ophdr->oh_res2 = 0;
2049 
2050 	ticket->t_flags &= ~XLOG_TIC_INITED;
2051 
2052 	return sizeof(struct xlog_op_header);
2053 }
2054 
2055 static xlog_op_header_t *
2056 xlog_write_setup_ophdr(
2057 	struct xlog		*log,
2058 	struct xlog_op_header	*ophdr,
2059 	struct xlog_ticket	*ticket,
2060 	uint			flags)
2061 {
2062 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2063 	ophdr->oh_clientid = ticket->t_clientid;
2064 	ophdr->oh_res2 = 0;
2065 
2066 	/* are we copying a commit or unmount record? */
2067 	ophdr->oh_flags = flags;
2068 
2069 	/*
2070 	 * We've seen logs corrupted with bad transaction client ids.  This
2071 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2072 	 * and shut down the filesystem.
2073 	 */
2074 	switch (ophdr->oh_clientid)  {
2075 	case XFS_TRANSACTION:
2076 	case XFS_VOLUME:
2077 	case XFS_LOG:
2078 		break;
2079 	default:
2080 		xfs_warn(log->l_mp,
2081 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2082 			ophdr->oh_clientid, ticket);
2083 		return NULL;
2084 	}
2085 
2086 	return ophdr;
2087 }
2088 
2089 /*
2090  * Set up the parameters of the region copy into the log. This has
2091  * to handle region write split across multiple log buffers - this
2092  * state is kept external to this function so that this code can
2093  * be written in an obvious, self documenting manner.
2094  */
2095 static int
2096 xlog_write_setup_copy(
2097 	struct xlog_ticket	*ticket,
2098 	struct xlog_op_header	*ophdr,
2099 	int			space_available,
2100 	int			space_required,
2101 	int			*copy_off,
2102 	int			*copy_len,
2103 	int			*last_was_partial_copy,
2104 	int			*bytes_consumed)
2105 {
2106 	int			still_to_copy;
2107 
2108 	still_to_copy = space_required - *bytes_consumed;
2109 	*copy_off = *bytes_consumed;
2110 
2111 	if (still_to_copy <= space_available) {
2112 		/* write of region completes here */
2113 		*copy_len = still_to_copy;
2114 		ophdr->oh_len = cpu_to_be32(*copy_len);
2115 		if (*last_was_partial_copy)
2116 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2117 		*last_was_partial_copy = 0;
2118 		*bytes_consumed = 0;
2119 		return 0;
2120 	}
2121 
2122 	/* partial write of region, needs extra log op header reservation */
2123 	*copy_len = space_available;
2124 	ophdr->oh_len = cpu_to_be32(*copy_len);
2125 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2126 	if (*last_was_partial_copy)
2127 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2128 	*bytes_consumed += *copy_len;
2129 	(*last_was_partial_copy)++;
2130 
2131 	/* account for new log op header */
2132 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2133 	ticket->t_res_num_ophdrs++;
2134 
2135 	return sizeof(struct xlog_op_header);
2136 }
2137 
2138 static int
2139 xlog_write_copy_finish(
2140 	struct xlog		*log,
2141 	struct xlog_in_core	*iclog,
2142 	uint			flags,
2143 	int			*record_cnt,
2144 	int			*data_cnt,
2145 	int			*partial_copy,
2146 	int			*partial_copy_len,
2147 	int			log_offset,
2148 	struct xlog_in_core	**commit_iclog)
2149 {
2150 	if (*partial_copy) {
2151 		/*
2152 		 * This iclog has already been marked WANT_SYNC by
2153 		 * xlog_state_get_iclog_space.
2154 		 */
2155 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2156 		*record_cnt = 0;
2157 		*data_cnt = 0;
2158 		return xlog_state_release_iclog(log, iclog);
2159 	}
2160 
2161 	*partial_copy = 0;
2162 	*partial_copy_len = 0;
2163 
2164 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2165 		/* no more space in this iclog - push it. */
2166 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2167 		*record_cnt = 0;
2168 		*data_cnt = 0;
2169 
2170 		spin_lock(&log->l_icloglock);
2171 		xlog_state_want_sync(log, iclog);
2172 		spin_unlock(&log->l_icloglock);
2173 
2174 		if (!commit_iclog)
2175 			return xlog_state_release_iclog(log, iclog);
2176 		ASSERT(flags & XLOG_COMMIT_TRANS);
2177 		*commit_iclog = iclog;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Write some region out to in-core log
2185  *
2186  * This will be called when writing externally provided regions or when
2187  * writing out a commit record for a given transaction.
2188  *
2189  * General algorithm:
2190  *	1. Find total length of this write.  This may include adding to the
2191  *		lengths passed in.
2192  *	2. Check whether we violate the tickets reservation.
2193  *	3. While writing to this iclog
2194  *	    A. Reserve as much space in this iclog as can get
2195  *	    B. If this is first write, save away start lsn
2196  *	    C. While writing this region:
2197  *		1. If first write of transaction, write start record
2198  *		2. Write log operation header (header per region)
2199  *		3. Find out if we can fit entire region into this iclog
2200  *		4. Potentially, verify destination memcpy ptr
2201  *		5. Memcpy (partial) region
2202  *		6. If partial copy, release iclog; otherwise, continue
2203  *			copying more regions into current iclog
2204  *	4. Mark want sync bit (in simulation mode)
2205  *	5. Release iclog for potential flush to on-disk log.
2206  *
2207  * ERRORS:
2208  * 1.	Panic if reservation is overrun.  This should never happen since
2209  *	reservation amounts are generated internal to the filesystem.
2210  * NOTES:
2211  * 1. Tickets are single threaded data structures.
2212  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2213  *	syncing routine.  When a single log_write region needs to span
2214  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2215  *	on all log operation writes which don't contain the end of the
2216  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2217  *	operation which contains the end of the continued log_write region.
2218  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2219  *	we don't really know exactly how much space will be used.  As a result,
2220  *	we don't update ic_offset until the end when we know exactly how many
2221  *	bytes have been written out.
2222  */
2223 int
2224 xlog_write(
2225 	struct xlog		*log,
2226 	struct xfs_log_vec	*log_vector,
2227 	struct xlog_ticket	*ticket,
2228 	xfs_lsn_t		*start_lsn,
2229 	struct xlog_in_core	**commit_iclog,
2230 	uint			flags)
2231 {
2232 	struct xlog_in_core	*iclog = NULL;
2233 	struct xfs_log_iovec	*vecp;
2234 	struct xfs_log_vec	*lv;
2235 	int			len;
2236 	int			index;
2237 	int			partial_copy = 0;
2238 	int			partial_copy_len = 0;
2239 	int			contwr = 0;
2240 	int			record_cnt = 0;
2241 	int			data_cnt = 0;
2242 	int			error;
2243 
2244 	*start_lsn = 0;
2245 
2246 	len = xlog_write_calc_vec_length(ticket, log_vector);
2247 
2248 	/*
2249 	 * Region headers and bytes are already accounted for.
2250 	 * We only need to take into account start records and
2251 	 * split regions in this function.
2252 	 */
2253 	if (ticket->t_flags & XLOG_TIC_INITED)
2254 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2255 
2256 	/*
2257 	 * Commit record headers need to be accounted for. These
2258 	 * come in as separate writes so are easy to detect.
2259 	 */
2260 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2261 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2262 
2263 	if (ticket->t_curr_res < 0)
2264 		xlog_print_tic_res(log->l_mp, ticket);
2265 
2266 	index = 0;
2267 	lv = log_vector;
2268 	vecp = lv->lv_iovecp;
2269 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2270 		void		*ptr;
2271 		int		log_offset;
2272 
2273 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2274 						   &contwr, &log_offset);
2275 		if (error)
2276 			return error;
2277 
2278 		ASSERT(log_offset <= iclog->ic_size - 1);
2279 		ptr = iclog->ic_datap + log_offset;
2280 
2281 		/* start_lsn is the first lsn written to. That's all we need. */
2282 		if (!*start_lsn)
2283 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2284 
2285 		/*
2286 		 * This loop writes out as many regions as can fit in the amount
2287 		 * of space which was allocated by xlog_state_get_iclog_space().
2288 		 */
2289 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2290 			struct xfs_log_iovec	*reg;
2291 			struct xlog_op_header	*ophdr;
2292 			int			start_rec_copy;
2293 			int			copy_len;
2294 			int			copy_off;
2295 			bool			ordered = false;
2296 
2297 			/* ordered log vectors have no regions to write */
2298 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2299 				ASSERT(lv->lv_niovecs == 0);
2300 				ordered = true;
2301 				goto next_lv;
2302 			}
2303 
2304 			reg = &vecp[index];
2305 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2306 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2307 
2308 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2309 			if (start_rec_copy) {
2310 				record_cnt++;
2311 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2312 						   start_rec_copy);
2313 			}
2314 
2315 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2316 			if (!ophdr)
2317 				return XFS_ERROR(EIO);
2318 
2319 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2320 					   sizeof(struct xlog_op_header));
2321 
2322 			len += xlog_write_setup_copy(ticket, ophdr,
2323 						     iclog->ic_size-log_offset,
2324 						     reg->i_len,
2325 						     &copy_off, &copy_len,
2326 						     &partial_copy,
2327 						     &partial_copy_len);
2328 			xlog_verify_dest_ptr(log, ptr);
2329 
2330 			/* copy region */
2331 			ASSERT(copy_len >= 0);
2332 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2333 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2334 
2335 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2336 			record_cnt++;
2337 			data_cnt += contwr ? copy_len : 0;
2338 
2339 			error = xlog_write_copy_finish(log, iclog, flags,
2340 						       &record_cnt, &data_cnt,
2341 						       &partial_copy,
2342 						       &partial_copy_len,
2343 						       log_offset,
2344 						       commit_iclog);
2345 			if (error)
2346 				return error;
2347 
2348 			/*
2349 			 * if we had a partial copy, we need to get more iclog
2350 			 * space but we don't want to increment the region
2351 			 * index because there is still more is this region to
2352 			 * write.
2353 			 *
2354 			 * If we completed writing this region, and we flushed
2355 			 * the iclog (indicated by resetting of the record
2356 			 * count), then we also need to get more log space. If
2357 			 * this was the last record, though, we are done and
2358 			 * can just return.
2359 			 */
2360 			if (partial_copy)
2361 				break;
2362 
2363 			if (++index == lv->lv_niovecs) {
2364 next_lv:
2365 				lv = lv->lv_next;
2366 				index = 0;
2367 				if (lv)
2368 					vecp = lv->lv_iovecp;
2369 			}
2370 			if (record_cnt == 0 && ordered == false) {
2371 				if (!lv)
2372 					return 0;
2373 				break;
2374 			}
2375 		}
2376 	}
2377 
2378 	ASSERT(len == 0);
2379 
2380 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2381 	if (!commit_iclog)
2382 		return xlog_state_release_iclog(log, iclog);
2383 
2384 	ASSERT(flags & XLOG_COMMIT_TRANS);
2385 	*commit_iclog = iclog;
2386 	return 0;
2387 }
2388 
2389 
2390 /*****************************************************************************
2391  *
2392  *		State Machine functions
2393  *
2394  *****************************************************************************
2395  */
2396 
2397 /* Clean iclogs starting from the head.  This ordering must be
2398  * maintained, so an iclog doesn't become ACTIVE beyond one that
2399  * is SYNCING.  This is also required to maintain the notion that we use
2400  * a ordered wait queue to hold off would be writers to the log when every
2401  * iclog is trying to sync to disk.
2402  *
2403  * State Change: DIRTY -> ACTIVE
2404  */
2405 STATIC void
2406 xlog_state_clean_log(
2407 	struct xlog *log)
2408 {
2409 	xlog_in_core_t	*iclog;
2410 	int changed = 0;
2411 
2412 	iclog = log->l_iclog;
2413 	do {
2414 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2415 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2416 			iclog->ic_offset       = 0;
2417 			ASSERT(iclog->ic_callback == NULL);
2418 			/*
2419 			 * If the number of ops in this iclog indicate it just
2420 			 * contains the dummy transaction, we can
2421 			 * change state into IDLE (the second time around).
2422 			 * Otherwise we should change the state into
2423 			 * NEED a dummy.
2424 			 * We don't need to cover the dummy.
2425 			 */
2426 			if (!changed &&
2427 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2428 			   		XLOG_COVER_OPS)) {
2429 				changed = 1;
2430 			} else {
2431 				/*
2432 				 * We have two dirty iclogs so start over
2433 				 * This could also be num of ops indicates
2434 				 * this is not the dummy going out.
2435 				 */
2436 				changed = 2;
2437 			}
2438 			iclog->ic_header.h_num_logops = 0;
2439 			memset(iclog->ic_header.h_cycle_data, 0,
2440 			      sizeof(iclog->ic_header.h_cycle_data));
2441 			iclog->ic_header.h_lsn = 0;
2442 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2443 			/* do nothing */;
2444 		else
2445 			break;	/* stop cleaning */
2446 		iclog = iclog->ic_next;
2447 	} while (iclog != log->l_iclog);
2448 
2449 	/* log is locked when we are called */
2450 	/*
2451 	 * Change state for the dummy log recording.
2452 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2453 	 * we are done writing the dummy record.
2454 	 * If we are done with the second dummy recored (DONE2), then
2455 	 * we go to IDLE.
2456 	 */
2457 	if (changed) {
2458 		switch (log->l_covered_state) {
2459 		case XLOG_STATE_COVER_IDLE:
2460 		case XLOG_STATE_COVER_NEED:
2461 		case XLOG_STATE_COVER_NEED2:
2462 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2463 			break;
2464 
2465 		case XLOG_STATE_COVER_DONE:
2466 			if (changed == 1)
2467 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2468 			else
2469 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2470 			break;
2471 
2472 		case XLOG_STATE_COVER_DONE2:
2473 			if (changed == 1)
2474 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2475 			else
2476 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2477 			break;
2478 
2479 		default:
2480 			ASSERT(0);
2481 		}
2482 	}
2483 }	/* xlog_state_clean_log */
2484 
2485 STATIC xfs_lsn_t
2486 xlog_get_lowest_lsn(
2487 	struct xlog	*log)
2488 {
2489 	xlog_in_core_t  *lsn_log;
2490 	xfs_lsn_t	lowest_lsn, lsn;
2491 
2492 	lsn_log = log->l_iclog;
2493 	lowest_lsn = 0;
2494 	do {
2495 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2496 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2497 		if ((lsn && !lowest_lsn) ||
2498 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2499 			lowest_lsn = lsn;
2500 		}
2501 	    }
2502 	    lsn_log = lsn_log->ic_next;
2503 	} while (lsn_log != log->l_iclog);
2504 	return lowest_lsn;
2505 }
2506 
2507 
2508 STATIC void
2509 xlog_state_do_callback(
2510 	struct xlog		*log,
2511 	int			aborted,
2512 	struct xlog_in_core	*ciclog)
2513 {
2514 	xlog_in_core_t	   *iclog;
2515 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2516 						 * processed all iclogs once */
2517 	xfs_log_callback_t *cb, *cb_next;
2518 	int		   flushcnt = 0;
2519 	xfs_lsn_t	   lowest_lsn;
2520 	int		   ioerrors;	/* counter: iclogs with errors */
2521 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2522 	int		   funcdidcallbacks; /* flag: function did callbacks */
2523 	int		   repeats;	/* for issuing console warnings if
2524 					 * looping too many times */
2525 	int		   wake = 0;
2526 
2527 	spin_lock(&log->l_icloglock);
2528 	first_iclog = iclog = log->l_iclog;
2529 	ioerrors = 0;
2530 	funcdidcallbacks = 0;
2531 	repeats = 0;
2532 
2533 	do {
2534 		/*
2535 		 * Scan all iclogs starting with the one pointed to by the
2536 		 * log.  Reset this starting point each time the log is
2537 		 * unlocked (during callbacks).
2538 		 *
2539 		 * Keep looping through iclogs until one full pass is made
2540 		 * without running any callbacks.
2541 		 */
2542 		first_iclog = log->l_iclog;
2543 		iclog = log->l_iclog;
2544 		loopdidcallbacks = 0;
2545 		repeats++;
2546 
2547 		do {
2548 
2549 			/* skip all iclogs in the ACTIVE & DIRTY states */
2550 			if (iclog->ic_state &
2551 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2552 				iclog = iclog->ic_next;
2553 				continue;
2554 			}
2555 
2556 			/*
2557 			 * Between marking a filesystem SHUTDOWN and stopping
2558 			 * the log, we do flush all iclogs to disk (if there
2559 			 * wasn't a log I/O error). So, we do want things to
2560 			 * go smoothly in case of just a SHUTDOWN  w/o a
2561 			 * LOG_IO_ERROR.
2562 			 */
2563 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2564 				/*
2565 				 * Can only perform callbacks in order.  Since
2566 				 * this iclog is not in the DONE_SYNC/
2567 				 * DO_CALLBACK state, we skip the rest and
2568 				 * just try to clean up.  If we set our iclog
2569 				 * to DO_CALLBACK, we will not process it when
2570 				 * we retry since a previous iclog is in the
2571 				 * CALLBACK and the state cannot change since
2572 				 * we are holding the l_icloglock.
2573 				 */
2574 				if (!(iclog->ic_state &
2575 					(XLOG_STATE_DONE_SYNC |
2576 						 XLOG_STATE_DO_CALLBACK))) {
2577 					if (ciclog && (ciclog->ic_state ==
2578 							XLOG_STATE_DONE_SYNC)) {
2579 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2580 					}
2581 					break;
2582 				}
2583 				/*
2584 				 * We now have an iclog that is in either the
2585 				 * DO_CALLBACK or DONE_SYNC states. The other
2586 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2587 				 * caught by the above if and are going to
2588 				 * clean (i.e. we aren't doing their callbacks)
2589 				 * see the above if.
2590 				 */
2591 
2592 				/*
2593 				 * We will do one more check here to see if we
2594 				 * have chased our tail around.
2595 				 */
2596 
2597 				lowest_lsn = xlog_get_lowest_lsn(log);
2598 				if (lowest_lsn &&
2599 				    XFS_LSN_CMP(lowest_lsn,
2600 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2601 					iclog = iclog->ic_next;
2602 					continue; /* Leave this iclog for
2603 						   * another thread */
2604 				}
2605 
2606 				iclog->ic_state = XLOG_STATE_CALLBACK;
2607 
2608 
2609 				/*
2610 				 * Completion of a iclog IO does not imply that
2611 				 * a transaction has completed, as transactions
2612 				 * can be large enough to span many iclogs. We
2613 				 * cannot change the tail of the log half way
2614 				 * through a transaction as this may be the only
2615 				 * transaction in the log and moving th etail to
2616 				 * point to the middle of it will prevent
2617 				 * recovery from finding the start of the
2618 				 * transaction. Hence we should only update the
2619 				 * last_sync_lsn if this iclog contains
2620 				 * transaction completion callbacks on it.
2621 				 *
2622 				 * We have to do this before we drop the
2623 				 * icloglock to ensure we are the only one that
2624 				 * can update it.
2625 				 */
2626 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2627 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2628 				if (iclog->ic_callback)
2629 					atomic64_set(&log->l_last_sync_lsn,
2630 						be64_to_cpu(iclog->ic_header.h_lsn));
2631 
2632 			} else
2633 				ioerrors++;
2634 
2635 			spin_unlock(&log->l_icloglock);
2636 
2637 			/*
2638 			 * Keep processing entries in the callback list until
2639 			 * we come around and it is empty.  We need to
2640 			 * atomically see that the list is empty and change the
2641 			 * state to DIRTY so that we don't miss any more
2642 			 * callbacks being added.
2643 			 */
2644 			spin_lock(&iclog->ic_callback_lock);
2645 			cb = iclog->ic_callback;
2646 			while (cb) {
2647 				iclog->ic_callback_tail = &(iclog->ic_callback);
2648 				iclog->ic_callback = NULL;
2649 				spin_unlock(&iclog->ic_callback_lock);
2650 
2651 				/* perform callbacks in the order given */
2652 				for (; cb; cb = cb_next) {
2653 					cb_next = cb->cb_next;
2654 					cb->cb_func(cb->cb_arg, aborted);
2655 				}
2656 				spin_lock(&iclog->ic_callback_lock);
2657 				cb = iclog->ic_callback;
2658 			}
2659 
2660 			loopdidcallbacks++;
2661 			funcdidcallbacks++;
2662 
2663 			spin_lock(&log->l_icloglock);
2664 			ASSERT(iclog->ic_callback == NULL);
2665 			spin_unlock(&iclog->ic_callback_lock);
2666 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2667 				iclog->ic_state = XLOG_STATE_DIRTY;
2668 
2669 			/*
2670 			 * Transition from DIRTY to ACTIVE if applicable.
2671 			 * NOP if STATE_IOERROR.
2672 			 */
2673 			xlog_state_clean_log(log);
2674 
2675 			/* wake up threads waiting in xfs_log_force() */
2676 			wake_up_all(&iclog->ic_force_wait);
2677 
2678 			iclog = iclog->ic_next;
2679 		} while (first_iclog != iclog);
2680 
2681 		if (repeats > 5000) {
2682 			flushcnt += repeats;
2683 			repeats = 0;
2684 			xfs_warn(log->l_mp,
2685 				"%s: possible infinite loop (%d iterations)",
2686 				__func__, flushcnt);
2687 		}
2688 	} while (!ioerrors && loopdidcallbacks);
2689 
2690 	/*
2691 	 * make one last gasp attempt to see if iclogs are being left in
2692 	 * limbo..
2693 	 */
2694 #ifdef DEBUG
2695 	if (funcdidcallbacks) {
2696 		first_iclog = iclog = log->l_iclog;
2697 		do {
2698 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2699 			/*
2700 			 * Terminate the loop if iclogs are found in states
2701 			 * which will cause other threads to clean up iclogs.
2702 			 *
2703 			 * SYNCING - i/o completion will go through logs
2704 			 * DONE_SYNC - interrupt thread should be waiting for
2705 			 *              l_icloglock
2706 			 * IOERROR - give up hope all ye who enter here
2707 			 */
2708 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2709 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2710 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2711 			    iclog->ic_state == XLOG_STATE_IOERROR )
2712 				break;
2713 			iclog = iclog->ic_next;
2714 		} while (first_iclog != iclog);
2715 	}
2716 #endif
2717 
2718 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2719 		wake = 1;
2720 	spin_unlock(&log->l_icloglock);
2721 
2722 	if (wake)
2723 		wake_up_all(&log->l_flush_wait);
2724 }
2725 
2726 
2727 /*
2728  * Finish transitioning this iclog to the dirty state.
2729  *
2730  * Make sure that we completely execute this routine only when this is
2731  * the last call to the iclog.  There is a good chance that iclog flushes,
2732  * when we reach the end of the physical log, get turned into 2 separate
2733  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2734  * routine.  By using the reference count bwritecnt, we guarantee that only
2735  * the second completion goes through.
2736  *
2737  * Callbacks could take time, so they are done outside the scope of the
2738  * global state machine log lock.
2739  */
2740 STATIC void
2741 xlog_state_done_syncing(
2742 	xlog_in_core_t	*iclog,
2743 	int		aborted)
2744 {
2745 	struct xlog	   *log = iclog->ic_log;
2746 
2747 	spin_lock(&log->l_icloglock);
2748 
2749 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2750 	       iclog->ic_state == XLOG_STATE_IOERROR);
2751 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2752 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2753 
2754 
2755 	/*
2756 	 * If we got an error, either on the first buffer, or in the case of
2757 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2758 	 * and none should ever be attempted to be written to disk
2759 	 * again.
2760 	 */
2761 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2762 		if (--iclog->ic_bwritecnt == 1) {
2763 			spin_unlock(&log->l_icloglock);
2764 			return;
2765 		}
2766 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2767 	}
2768 
2769 	/*
2770 	 * Someone could be sleeping prior to writing out the next
2771 	 * iclog buffer, we wake them all, one will get to do the
2772 	 * I/O, the others get to wait for the result.
2773 	 */
2774 	wake_up_all(&iclog->ic_write_wait);
2775 	spin_unlock(&log->l_icloglock);
2776 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2777 }	/* xlog_state_done_syncing */
2778 
2779 
2780 /*
2781  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2782  * sleep.  We wait on the flush queue on the head iclog as that should be
2783  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2784  * we will wait here and all new writes will sleep until a sync completes.
2785  *
2786  * The in-core logs are used in a circular fashion. They are not used
2787  * out-of-order even when an iclog past the head is free.
2788  *
2789  * return:
2790  *	* log_offset where xlog_write() can start writing into the in-core
2791  *		log's data space.
2792  *	* in-core log pointer to which xlog_write() should write.
2793  *	* boolean indicating this is a continued write to an in-core log.
2794  *		If this is the last write, then the in-core log's offset field
2795  *		needs to be incremented, depending on the amount of data which
2796  *		is copied.
2797  */
2798 STATIC int
2799 xlog_state_get_iclog_space(
2800 	struct xlog		*log,
2801 	int			len,
2802 	struct xlog_in_core	**iclogp,
2803 	struct xlog_ticket	*ticket,
2804 	int			*continued_write,
2805 	int			*logoffsetp)
2806 {
2807 	int		  log_offset;
2808 	xlog_rec_header_t *head;
2809 	xlog_in_core_t	  *iclog;
2810 	int		  error;
2811 
2812 restart:
2813 	spin_lock(&log->l_icloglock);
2814 	if (XLOG_FORCED_SHUTDOWN(log)) {
2815 		spin_unlock(&log->l_icloglock);
2816 		return XFS_ERROR(EIO);
2817 	}
2818 
2819 	iclog = log->l_iclog;
2820 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2821 		XFS_STATS_INC(xs_log_noiclogs);
2822 
2823 		/* Wait for log writes to have flushed */
2824 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2825 		goto restart;
2826 	}
2827 
2828 	head = &iclog->ic_header;
2829 
2830 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2831 	log_offset = iclog->ic_offset;
2832 
2833 	/* On the 1st write to an iclog, figure out lsn.  This works
2834 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2835 	 * committing to.  If the offset is set, that's how many blocks
2836 	 * must be written.
2837 	 */
2838 	if (log_offset == 0) {
2839 		ticket->t_curr_res -= log->l_iclog_hsize;
2840 		xlog_tic_add_region(ticket,
2841 				    log->l_iclog_hsize,
2842 				    XLOG_REG_TYPE_LRHEADER);
2843 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2844 		head->h_lsn = cpu_to_be64(
2845 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2846 		ASSERT(log->l_curr_block >= 0);
2847 	}
2848 
2849 	/* If there is enough room to write everything, then do it.  Otherwise,
2850 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2851 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2852 	 * until you know exactly how many bytes get copied.  Therefore, wait
2853 	 * until later to update ic_offset.
2854 	 *
2855 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2856 	 * can fit into remaining data section.
2857 	 */
2858 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2859 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2860 
2861 		/*
2862 		 * If I'm the only one writing to this iclog, sync it to disk.
2863 		 * We need to do an atomic compare and decrement here to avoid
2864 		 * racing with concurrent atomic_dec_and_lock() calls in
2865 		 * xlog_state_release_iclog() when there is more than one
2866 		 * reference to the iclog.
2867 		 */
2868 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2869 			/* we are the only one */
2870 			spin_unlock(&log->l_icloglock);
2871 			error = xlog_state_release_iclog(log, iclog);
2872 			if (error)
2873 				return error;
2874 		} else {
2875 			spin_unlock(&log->l_icloglock);
2876 		}
2877 		goto restart;
2878 	}
2879 
2880 	/* Do we have enough room to write the full amount in the remainder
2881 	 * of this iclog?  Or must we continue a write on the next iclog and
2882 	 * mark this iclog as completely taken?  In the case where we switch
2883 	 * iclogs (to mark it taken), this particular iclog will release/sync
2884 	 * to disk in xlog_write().
2885 	 */
2886 	if (len <= iclog->ic_size - iclog->ic_offset) {
2887 		*continued_write = 0;
2888 		iclog->ic_offset += len;
2889 	} else {
2890 		*continued_write = 1;
2891 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2892 	}
2893 	*iclogp = iclog;
2894 
2895 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2896 	spin_unlock(&log->l_icloglock);
2897 
2898 	*logoffsetp = log_offset;
2899 	return 0;
2900 }	/* xlog_state_get_iclog_space */
2901 
2902 /* The first cnt-1 times through here we don't need to
2903  * move the grant write head because the permanent
2904  * reservation has reserved cnt times the unit amount.
2905  * Release part of current permanent unit reservation and
2906  * reset current reservation to be one units worth.  Also
2907  * move grant reservation head forward.
2908  */
2909 STATIC void
2910 xlog_regrant_reserve_log_space(
2911 	struct xlog		*log,
2912 	struct xlog_ticket	*ticket)
2913 {
2914 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2915 
2916 	if (ticket->t_cnt > 0)
2917 		ticket->t_cnt--;
2918 
2919 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2920 					ticket->t_curr_res);
2921 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2922 					ticket->t_curr_res);
2923 	ticket->t_curr_res = ticket->t_unit_res;
2924 	xlog_tic_reset_res(ticket);
2925 
2926 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2927 
2928 	/* just return if we still have some of the pre-reserved space */
2929 	if (ticket->t_cnt > 0)
2930 		return;
2931 
2932 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2933 					ticket->t_unit_res);
2934 
2935 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2936 
2937 	ticket->t_curr_res = ticket->t_unit_res;
2938 	xlog_tic_reset_res(ticket);
2939 }	/* xlog_regrant_reserve_log_space */
2940 
2941 
2942 /*
2943  * Give back the space left from a reservation.
2944  *
2945  * All the information we need to make a correct determination of space left
2946  * is present.  For non-permanent reservations, things are quite easy.  The
2947  * count should have been decremented to zero.  We only need to deal with the
2948  * space remaining in the current reservation part of the ticket.  If the
2949  * ticket contains a permanent reservation, there may be left over space which
2950  * needs to be released.  A count of N means that N-1 refills of the current
2951  * reservation can be done before we need to ask for more space.  The first
2952  * one goes to fill up the first current reservation.  Once we run out of
2953  * space, the count will stay at zero and the only space remaining will be
2954  * in the current reservation field.
2955  */
2956 STATIC void
2957 xlog_ungrant_log_space(
2958 	struct xlog		*log,
2959 	struct xlog_ticket	*ticket)
2960 {
2961 	int	bytes;
2962 
2963 	if (ticket->t_cnt > 0)
2964 		ticket->t_cnt--;
2965 
2966 	trace_xfs_log_ungrant_enter(log, ticket);
2967 	trace_xfs_log_ungrant_sub(log, ticket);
2968 
2969 	/*
2970 	 * If this is a permanent reservation ticket, we may be able to free
2971 	 * up more space based on the remaining count.
2972 	 */
2973 	bytes = ticket->t_curr_res;
2974 	if (ticket->t_cnt > 0) {
2975 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2976 		bytes += ticket->t_unit_res*ticket->t_cnt;
2977 	}
2978 
2979 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2980 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2981 
2982 	trace_xfs_log_ungrant_exit(log, ticket);
2983 
2984 	xfs_log_space_wake(log->l_mp);
2985 }
2986 
2987 /*
2988  * Flush iclog to disk if this is the last reference to the given iclog and
2989  * the WANT_SYNC bit is set.
2990  *
2991  * When this function is entered, the iclog is not necessarily in the
2992  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2993  *
2994  *
2995  */
2996 STATIC int
2997 xlog_state_release_iclog(
2998 	struct xlog		*log,
2999 	struct xlog_in_core	*iclog)
3000 {
3001 	int		sync = 0;	/* do we sync? */
3002 
3003 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3004 		return XFS_ERROR(EIO);
3005 
3006 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3007 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3008 		return 0;
3009 
3010 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3011 		spin_unlock(&log->l_icloglock);
3012 		return XFS_ERROR(EIO);
3013 	}
3014 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3015 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3016 
3017 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3018 		/* update tail before writing to iclog */
3019 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3020 		sync++;
3021 		iclog->ic_state = XLOG_STATE_SYNCING;
3022 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3023 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3024 		/* cycle incremented when incrementing curr_block */
3025 	}
3026 	spin_unlock(&log->l_icloglock);
3027 
3028 	/*
3029 	 * We let the log lock go, so it's possible that we hit a log I/O
3030 	 * error or some other SHUTDOWN condition that marks the iclog
3031 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3032 	 * this iclog has consistent data, so we ignore IOERROR
3033 	 * flags after this point.
3034 	 */
3035 	if (sync)
3036 		return xlog_sync(log, iclog);
3037 	return 0;
3038 }	/* xlog_state_release_iclog */
3039 
3040 
3041 /*
3042  * This routine will mark the current iclog in the ring as WANT_SYNC
3043  * and move the current iclog pointer to the next iclog in the ring.
3044  * When this routine is called from xlog_state_get_iclog_space(), the
3045  * exact size of the iclog has not yet been determined.  All we know is
3046  * that every data block.  We have run out of space in this log record.
3047  */
3048 STATIC void
3049 xlog_state_switch_iclogs(
3050 	struct xlog		*log,
3051 	struct xlog_in_core	*iclog,
3052 	int			eventual_size)
3053 {
3054 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3055 	if (!eventual_size)
3056 		eventual_size = iclog->ic_offset;
3057 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3058 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3059 	log->l_prev_block = log->l_curr_block;
3060 	log->l_prev_cycle = log->l_curr_cycle;
3061 
3062 	/* roll log?: ic_offset changed later */
3063 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3064 
3065 	/* Round up to next log-sunit */
3066 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3067 	    log->l_mp->m_sb.sb_logsunit > 1) {
3068 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3069 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3070 	}
3071 
3072 	if (log->l_curr_block >= log->l_logBBsize) {
3073 		log->l_curr_cycle++;
3074 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3075 			log->l_curr_cycle++;
3076 		log->l_curr_block -= log->l_logBBsize;
3077 		ASSERT(log->l_curr_block >= 0);
3078 	}
3079 	ASSERT(iclog == log->l_iclog);
3080 	log->l_iclog = iclog->ic_next;
3081 }	/* xlog_state_switch_iclogs */
3082 
3083 /*
3084  * Write out all data in the in-core log as of this exact moment in time.
3085  *
3086  * Data may be written to the in-core log during this call.  However,
3087  * we don't guarantee this data will be written out.  A change from past
3088  * implementation means this routine will *not* write out zero length LRs.
3089  *
3090  * Basically, we try and perform an intelligent scan of the in-core logs.
3091  * If we determine there is no flushable data, we just return.  There is no
3092  * flushable data if:
3093  *
3094  *	1. the current iclog is active and has no data; the previous iclog
3095  *		is in the active or dirty state.
3096  *	2. the current iclog is drity, and the previous iclog is in the
3097  *		active or dirty state.
3098  *
3099  * We may sleep if:
3100  *
3101  *	1. the current iclog is not in the active nor dirty state.
3102  *	2. the current iclog dirty, and the previous iclog is not in the
3103  *		active nor dirty state.
3104  *	3. the current iclog is active, and there is another thread writing
3105  *		to this particular iclog.
3106  *	4. a) the current iclog is active and has no other writers
3107  *	   b) when we return from flushing out this iclog, it is still
3108  *		not in the active nor dirty state.
3109  */
3110 int
3111 _xfs_log_force(
3112 	struct xfs_mount	*mp,
3113 	uint			flags,
3114 	int			*log_flushed)
3115 {
3116 	struct xlog		*log = mp->m_log;
3117 	struct xlog_in_core	*iclog;
3118 	xfs_lsn_t		lsn;
3119 
3120 	XFS_STATS_INC(xs_log_force);
3121 
3122 	xlog_cil_force(log);
3123 
3124 	spin_lock(&log->l_icloglock);
3125 
3126 	iclog = log->l_iclog;
3127 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3128 		spin_unlock(&log->l_icloglock);
3129 		return XFS_ERROR(EIO);
3130 	}
3131 
3132 	/* If the head iclog is not active nor dirty, we just attach
3133 	 * ourselves to the head and go to sleep.
3134 	 */
3135 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3136 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3137 		/*
3138 		 * If the head is dirty or (active and empty), then
3139 		 * we need to look at the previous iclog.  If the previous
3140 		 * iclog is active or dirty we are done.  There is nothing
3141 		 * to sync out.  Otherwise, we attach ourselves to the
3142 		 * previous iclog and go to sleep.
3143 		 */
3144 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3145 		    (atomic_read(&iclog->ic_refcnt) == 0
3146 		     && iclog->ic_offset == 0)) {
3147 			iclog = iclog->ic_prev;
3148 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3149 			    iclog->ic_state == XLOG_STATE_DIRTY)
3150 				goto no_sleep;
3151 			else
3152 				goto maybe_sleep;
3153 		} else {
3154 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3155 				/* We are the only one with access to this
3156 				 * iclog.  Flush it out now.  There should
3157 				 * be a roundoff of zero to show that someone
3158 				 * has already taken care of the roundoff from
3159 				 * the previous sync.
3160 				 */
3161 				atomic_inc(&iclog->ic_refcnt);
3162 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3163 				xlog_state_switch_iclogs(log, iclog, 0);
3164 				spin_unlock(&log->l_icloglock);
3165 
3166 				if (xlog_state_release_iclog(log, iclog))
3167 					return XFS_ERROR(EIO);
3168 
3169 				if (log_flushed)
3170 					*log_flushed = 1;
3171 				spin_lock(&log->l_icloglock);
3172 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3173 				    iclog->ic_state != XLOG_STATE_DIRTY)
3174 					goto maybe_sleep;
3175 				else
3176 					goto no_sleep;
3177 			} else {
3178 				/* Someone else is writing to this iclog.
3179 				 * Use its call to flush out the data.  However,
3180 				 * the other thread may not force out this LR,
3181 				 * so we mark it WANT_SYNC.
3182 				 */
3183 				xlog_state_switch_iclogs(log, iclog, 0);
3184 				goto maybe_sleep;
3185 			}
3186 		}
3187 	}
3188 
3189 	/* By the time we come around again, the iclog could've been filled
3190 	 * which would give it another lsn.  If we have a new lsn, just
3191 	 * return because the relevant data has been flushed.
3192 	 */
3193 maybe_sleep:
3194 	if (flags & XFS_LOG_SYNC) {
3195 		/*
3196 		 * We must check if we're shutting down here, before
3197 		 * we wait, while we're holding the l_icloglock.
3198 		 * Then we check again after waking up, in case our
3199 		 * sleep was disturbed by a bad news.
3200 		 */
3201 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3202 			spin_unlock(&log->l_icloglock);
3203 			return XFS_ERROR(EIO);
3204 		}
3205 		XFS_STATS_INC(xs_log_force_sleep);
3206 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3207 		/*
3208 		 * No need to grab the log lock here since we're
3209 		 * only deciding whether or not to return EIO
3210 		 * and the memory read should be atomic.
3211 		 */
3212 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3213 			return XFS_ERROR(EIO);
3214 		if (log_flushed)
3215 			*log_flushed = 1;
3216 	} else {
3217 
3218 no_sleep:
3219 		spin_unlock(&log->l_icloglock);
3220 	}
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3226  * about errors or whether the log was flushed or not. This is the normal
3227  * interface to use when trying to unpin items or move the log forward.
3228  */
3229 void
3230 xfs_log_force(
3231 	xfs_mount_t	*mp,
3232 	uint		flags)
3233 {
3234 	int	error;
3235 
3236 	trace_xfs_log_force(mp, 0);
3237 	error = _xfs_log_force(mp, flags, NULL);
3238 	if (error)
3239 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3240 }
3241 
3242 /*
3243  * Force the in-core log to disk for a specific LSN.
3244  *
3245  * Find in-core log with lsn.
3246  *	If it is in the DIRTY state, just return.
3247  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3248  *		state and go to sleep or return.
3249  *	If it is in any other state, go to sleep or return.
3250  *
3251  * Synchronous forces are implemented with a signal variable. All callers
3252  * to force a given lsn to disk will wait on a the sv attached to the
3253  * specific in-core log.  When given in-core log finally completes its
3254  * write to disk, that thread will wake up all threads waiting on the
3255  * sv.
3256  */
3257 int
3258 _xfs_log_force_lsn(
3259 	struct xfs_mount	*mp,
3260 	xfs_lsn_t		lsn,
3261 	uint			flags,
3262 	int			*log_flushed)
3263 {
3264 	struct xlog		*log = mp->m_log;
3265 	struct xlog_in_core	*iclog;
3266 	int			already_slept = 0;
3267 
3268 	ASSERT(lsn != 0);
3269 
3270 	XFS_STATS_INC(xs_log_force);
3271 
3272 	lsn = xlog_cil_force_lsn(log, lsn);
3273 	if (lsn == NULLCOMMITLSN)
3274 		return 0;
3275 
3276 try_again:
3277 	spin_lock(&log->l_icloglock);
3278 	iclog = log->l_iclog;
3279 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3280 		spin_unlock(&log->l_icloglock);
3281 		return XFS_ERROR(EIO);
3282 	}
3283 
3284 	do {
3285 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3286 			iclog = iclog->ic_next;
3287 			continue;
3288 		}
3289 
3290 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3291 			spin_unlock(&log->l_icloglock);
3292 			return 0;
3293 		}
3294 
3295 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3296 			/*
3297 			 * We sleep here if we haven't already slept (e.g.
3298 			 * this is the first time we've looked at the correct
3299 			 * iclog buf) and the buffer before us is going to
3300 			 * be sync'ed. The reason for this is that if we
3301 			 * are doing sync transactions here, by waiting for
3302 			 * the previous I/O to complete, we can allow a few
3303 			 * more transactions into this iclog before we close
3304 			 * it down.
3305 			 *
3306 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3307 			 * up the refcnt so we can release the log (which
3308 			 * drops the ref count).  The state switch keeps new
3309 			 * transaction commits from using this buffer.  When
3310 			 * the current commits finish writing into the buffer,
3311 			 * the refcount will drop to zero and the buffer will
3312 			 * go out then.
3313 			 */
3314 			if (!already_slept &&
3315 			    (iclog->ic_prev->ic_state &
3316 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3317 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3318 
3319 				XFS_STATS_INC(xs_log_force_sleep);
3320 
3321 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3322 							&log->l_icloglock);
3323 				if (log_flushed)
3324 					*log_flushed = 1;
3325 				already_slept = 1;
3326 				goto try_again;
3327 			}
3328 			atomic_inc(&iclog->ic_refcnt);
3329 			xlog_state_switch_iclogs(log, iclog, 0);
3330 			spin_unlock(&log->l_icloglock);
3331 			if (xlog_state_release_iclog(log, iclog))
3332 				return XFS_ERROR(EIO);
3333 			if (log_flushed)
3334 				*log_flushed = 1;
3335 			spin_lock(&log->l_icloglock);
3336 		}
3337 
3338 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3339 		    !(iclog->ic_state &
3340 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3341 			/*
3342 			 * Don't wait on completion if we know that we've
3343 			 * gotten a log write error.
3344 			 */
3345 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3346 				spin_unlock(&log->l_icloglock);
3347 				return XFS_ERROR(EIO);
3348 			}
3349 			XFS_STATS_INC(xs_log_force_sleep);
3350 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3351 			/*
3352 			 * No need to grab the log lock here since we're
3353 			 * only deciding whether or not to return EIO
3354 			 * and the memory read should be atomic.
3355 			 */
3356 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3357 				return XFS_ERROR(EIO);
3358 
3359 			if (log_flushed)
3360 				*log_flushed = 1;
3361 		} else {		/* just return */
3362 			spin_unlock(&log->l_icloglock);
3363 		}
3364 
3365 		return 0;
3366 	} while (iclog != log->l_iclog);
3367 
3368 	spin_unlock(&log->l_icloglock);
3369 	return 0;
3370 }
3371 
3372 /*
3373  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3374  * about errors or whether the log was flushed or not. This is the normal
3375  * interface to use when trying to unpin items or move the log forward.
3376  */
3377 void
3378 xfs_log_force_lsn(
3379 	xfs_mount_t	*mp,
3380 	xfs_lsn_t	lsn,
3381 	uint		flags)
3382 {
3383 	int	error;
3384 
3385 	trace_xfs_log_force(mp, lsn);
3386 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3387 	if (error)
3388 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3389 }
3390 
3391 /*
3392  * Called when we want to mark the current iclog as being ready to sync to
3393  * disk.
3394  */
3395 STATIC void
3396 xlog_state_want_sync(
3397 	struct xlog		*log,
3398 	struct xlog_in_core	*iclog)
3399 {
3400 	assert_spin_locked(&log->l_icloglock);
3401 
3402 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3403 		xlog_state_switch_iclogs(log, iclog, 0);
3404 	} else {
3405 		ASSERT(iclog->ic_state &
3406 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3407 	}
3408 }
3409 
3410 
3411 /*****************************************************************************
3412  *
3413  *		TICKET functions
3414  *
3415  *****************************************************************************
3416  */
3417 
3418 /*
3419  * Free a used ticket when its refcount falls to zero.
3420  */
3421 void
3422 xfs_log_ticket_put(
3423 	xlog_ticket_t	*ticket)
3424 {
3425 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3426 	if (atomic_dec_and_test(&ticket->t_ref))
3427 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3428 }
3429 
3430 xlog_ticket_t *
3431 xfs_log_ticket_get(
3432 	xlog_ticket_t	*ticket)
3433 {
3434 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3435 	atomic_inc(&ticket->t_ref);
3436 	return ticket;
3437 }
3438 
3439 /*
3440  * Figure out the total log space unit (in bytes) that would be
3441  * required for a log ticket.
3442  */
3443 int
3444 xfs_log_calc_unit_res(
3445 	struct xfs_mount	*mp,
3446 	int			unit_bytes)
3447 {
3448 	struct xlog		*log = mp->m_log;
3449 	int			iclog_space;
3450 	uint			num_headers;
3451 
3452 	/*
3453 	 * Permanent reservations have up to 'cnt'-1 active log operations
3454 	 * in the log.  A unit in this case is the amount of space for one
3455 	 * of these log operations.  Normal reservations have a cnt of 1
3456 	 * and their unit amount is the total amount of space required.
3457 	 *
3458 	 * The following lines of code account for non-transaction data
3459 	 * which occupy space in the on-disk log.
3460 	 *
3461 	 * Normal form of a transaction is:
3462 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3463 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3464 	 *
3465 	 * We need to account for all the leadup data and trailer data
3466 	 * around the transaction data.
3467 	 * And then we need to account for the worst case in terms of using
3468 	 * more space.
3469 	 * The worst case will happen if:
3470 	 * - the placement of the transaction happens to be such that the
3471 	 *   roundoff is at its maximum
3472 	 * - the transaction data is synced before the commit record is synced
3473 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3474 	 *   Therefore the commit record is in its own Log Record.
3475 	 *   This can happen as the commit record is called with its
3476 	 *   own region to xlog_write().
3477 	 *   This then means that in the worst case, roundoff can happen for
3478 	 *   the commit-rec as well.
3479 	 *   The commit-rec is smaller than padding in this scenario and so it is
3480 	 *   not added separately.
3481 	 */
3482 
3483 	/* for trans header */
3484 	unit_bytes += sizeof(xlog_op_header_t);
3485 	unit_bytes += sizeof(xfs_trans_header_t);
3486 
3487 	/* for start-rec */
3488 	unit_bytes += sizeof(xlog_op_header_t);
3489 
3490 	/*
3491 	 * for LR headers - the space for data in an iclog is the size minus
3492 	 * the space used for the headers. If we use the iclog size, then we
3493 	 * undercalculate the number of headers required.
3494 	 *
3495 	 * Furthermore - the addition of op headers for split-recs might
3496 	 * increase the space required enough to require more log and op
3497 	 * headers, so take that into account too.
3498 	 *
3499 	 * IMPORTANT: This reservation makes the assumption that if this
3500 	 * transaction is the first in an iclog and hence has the LR headers
3501 	 * accounted to it, then the remaining space in the iclog is
3502 	 * exclusively for this transaction.  i.e. if the transaction is larger
3503 	 * than the iclog, it will be the only thing in that iclog.
3504 	 * Fundamentally, this means we must pass the entire log vector to
3505 	 * xlog_write to guarantee this.
3506 	 */
3507 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3508 	num_headers = howmany(unit_bytes, iclog_space);
3509 
3510 	/* for split-recs - ophdrs added when data split over LRs */
3511 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3512 
3513 	/* add extra header reservations if we overrun */
3514 	while (!num_headers ||
3515 	       howmany(unit_bytes, iclog_space) > num_headers) {
3516 		unit_bytes += sizeof(xlog_op_header_t);
3517 		num_headers++;
3518 	}
3519 	unit_bytes += log->l_iclog_hsize * num_headers;
3520 
3521 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3522 	unit_bytes += log->l_iclog_hsize;
3523 
3524 	/* for roundoff padding for transaction data and one for commit record */
3525 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3526 		/* log su roundoff */
3527 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3528 	} else {
3529 		/* BB roundoff */
3530 		unit_bytes += 2 * BBSIZE;
3531         }
3532 
3533 	return unit_bytes;
3534 }
3535 
3536 /*
3537  * Allocate and initialise a new log ticket.
3538  */
3539 struct xlog_ticket *
3540 xlog_ticket_alloc(
3541 	struct xlog		*log,
3542 	int			unit_bytes,
3543 	int			cnt,
3544 	char			client,
3545 	bool			permanent,
3546 	xfs_km_flags_t		alloc_flags)
3547 {
3548 	struct xlog_ticket	*tic;
3549 	int			unit_res;
3550 
3551 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3552 	if (!tic)
3553 		return NULL;
3554 
3555 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3556 
3557 	atomic_set(&tic->t_ref, 1);
3558 	tic->t_task		= current;
3559 	INIT_LIST_HEAD(&tic->t_queue);
3560 	tic->t_unit_res		= unit_res;
3561 	tic->t_curr_res		= unit_res;
3562 	tic->t_cnt		= cnt;
3563 	tic->t_ocnt		= cnt;
3564 	tic->t_tid		= prandom_u32();
3565 	tic->t_clientid		= client;
3566 	tic->t_flags		= XLOG_TIC_INITED;
3567 	tic->t_trans_type	= 0;
3568 	if (permanent)
3569 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3570 
3571 	xlog_tic_reset_res(tic);
3572 
3573 	return tic;
3574 }
3575 
3576 
3577 /******************************************************************************
3578  *
3579  *		Log debug routines
3580  *
3581  ******************************************************************************
3582  */
3583 #if defined(DEBUG)
3584 /*
3585  * Make sure that the destination ptr is within the valid data region of
3586  * one of the iclogs.  This uses backup pointers stored in a different
3587  * part of the log in case we trash the log structure.
3588  */
3589 void
3590 xlog_verify_dest_ptr(
3591 	struct xlog	*log,
3592 	char		*ptr)
3593 {
3594 	int i;
3595 	int good_ptr = 0;
3596 
3597 	for (i = 0; i < log->l_iclog_bufs; i++) {
3598 		if (ptr >= log->l_iclog_bak[i] &&
3599 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3600 			good_ptr++;
3601 	}
3602 
3603 	if (!good_ptr)
3604 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3605 }
3606 
3607 /*
3608  * Check to make sure the grant write head didn't just over lap the tail.  If
3609  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3610  * the cycles differ by exactly one and check the byte count.
3611  *
3612  * This check is run unlocked, so can give false positives. Rather than assert
3613  * on failures, use a warn-once flag and a panic tag to allow the admin to
3614  * determine if they want to panic the machine when such an error occurs. For
3615  * debug kernels this will have the same effect as using an assert but, unlinke
3616  * an assert, it can be turned off at runtime.
3617  */
3618 STATIC void
3619 xlog_verify_grant_tail(
3620 	struct xlog	*log)
3621 {
3622 	int		tail_cycle, tail_blocks;
3623 	int		cycle, space;
3624 
3625 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3626 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3627 	if (tail_cycle != cycle) {
3628 		if (cycle - 1 != tail_cycle &&
3629 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3630 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3631 				"%s: cycle - 1 != tail_cycle", __func__);
3632 			log->l_flags |= XLOG_TAIL_WARN;
3633 		}
3634 
3635 		if (space > BBTOB(tail_blocks) &&
3636 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3637 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3638 				"%s: space > BBTOB(tail_blocks)", __func__);
3639 			log->l_flags |= XLOG_TAIL_WARN;
3640 		}
3641 	}
3642 }
3643 
3644 /* check if it will fit */
3645 STATIC void
3646 xlog_verify_tail_lsn(
3647 	struct xlog		*log,
3648 	struct xlog_in_core	*iclog,
3649 	xfs_lsn_t		tail_lsn)
3650 {
3651     int blocks;
3652 
3653     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3654 	blocks =
3655 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3656 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3657 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3658     } else {
3659 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3660 
3661 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3662 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3663 
3664 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3665 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3666 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3667     }
3668 }	/* xlog_verify_tail_lsn */
3669 
3670 /*
3671  * Perform a number of checks on the iclog before writing to disk.
3672  *
3673  * 1. Make sure the iclogs are still circular
3674  * 2. Make sure we have a good magic number
3675  * 3. Make sure we don't have magic numbers in the data
3676  * 4. Check fields of each log operation header for:
3677  *	A. Valid client identifier
3678  *	B. tid ptr value falls in valid ptr space (user space code)
3679  *	C. Length in log record header is correct according to the
3680  *		individual operation headers within record.
3681  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3682  *	log, check the preceding blocks of the physical log to make sure all
3683  *	the cycle numbers agree with the current cycle number.
3684  */
3685 STATIC void
3686 xlog_verify_iclog(
3687 	struct xlog		*log,
3688 	struct xlog_in_core	*iclog,
3689 	int			count,
3690 	bool                    syncing)
3691 {
3692 	xlog_op_header_t	*ophead;
3693 	xlog_in_core_t		*icptr;
3694 	xlog_in_core_2_t	*xhdr;
3695 	xfs_caddr_t		ptr;
3696 	xfs_caddr_t		base_ptr;
3697 	__psint_t		field_offset;
3698 	__uint8_t		clientid;
3699 	int			len, i, j, k, op_len;
3700 	int			idx;
3701 
3702 	/* check validity of iclog pointers */
3703 	spin_lock(&log->l_icloglock);
3704 	icptr = log->l_iclog;
3705 	for (i=0; i < log->l_iclog_bufs; i++) {
3706 		if (icptr == NULL)
3707 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3708 		icptr = icptr->ic_next;
3709 	}
3710 	if (icptr != log->l_iclog)
3711 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3712 	spin_unlock(&log->l_icloglock);
3713 
3714 	/* check log magic numbers */
3715 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3716 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3717 
3718 	ptr = (xfs_caddr_t) &iclog->ic_header;
3719 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3720 	     ptr += BBSIZE) {
3721 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3722 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3723 				__func__);
3724 	}
3725 
3726 	/* check fields */
3727 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3728 	ptr = iclog->ic_datap;
3729 	base_ptr = ptr;
3730 	ophead = (xlog_op_header_t *)ptr;
3731 	xhdr = iclog->ic_data;
3732 	for (i = 0; i < len; i++) {
3733 		ophead = (xlog_op_header_t *)ptr;
3734 
3735 		/* clientid is only 1 byte */
3736 		field_offset = (__psint_t)
3737 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3738 		if (!syncing || (field_offset & 0x1ff)) {
3739 			clientid = ophead->oh_clientid;
3740 		} else {
3741 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3742 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3743 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3744 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3745 				clientid = xlog_get_client_id(
3746 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3747 			} else {
3748 				clientid = xlog_get_client_id(
3749 					iclog->ic_header.h_cycle_data[idx]);
3750 			}
3751 		}
3752 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3753 			xfs_warn(log->l_mp,
3754 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3755 				__func__, clientid, ophead,
3756 				(unsigned long)field_offset);
3757 
3758 		/* check length */
3759 		field_offset = (__psint_t)
3760 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3761 		if (!syncing || (field_offset & 0x1ff)) {
3762 			op_len = be32_to_cpu(ophead->oh_len);
3763 		} else {
3764 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3765 				    (__psint_t)iclog->ic_datap);
3766 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3767 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3768 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3769 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3770 			} else {
3771 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3772 			}
3773 		}
3774 		ptr += sizeof(xlog_op_header_t) + op_len;
3775 	}
3776 }	/* xlog_verify_iclog */
3777 #endif
3778 
3779 /*
3780  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3781  */
3782 STATIC int
3783 xlog_state_ioerror(
3784 	struct xlog	*log)
3785 {
3786 	xlog_in_core_t	*iclog, *ic;
3787 
3788 	iclog = log->l_iclog;
3789 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3790 		/*
3791 		 * Mark all the incore logs IOERROR.
3792 		 * From now on, no log flushes will result.
3793 		 */
3794 		ic = iclog;
3795 		do {
3796 			ic->ic_state = XLOG_STATE_IOERROR;
3797 			ic = ic->ic_next;
3798 		} while (ic != iclog);
3799 		return 0;
3800 	}
3801 	/*
3802 	 * Return non-zero, if state transition has already happened.
3803 	 */
3804 	return 1;
3805 }
3806 
3807 /*
3808  * This is called from xfs_force_shutdown, when we're forcibly
3809  * shutting down the filesystem, typically because of an IO error.
3810  * Our main objectives here are to make sure that:
3811  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3812  *	   parties to find out, 'atomically'.
3813  *	b. those who're sleeping on log reservations, pinned objects and
3814  *	    other resources get woken up, and be told the bad news.
3815  *	c. nothing new gets queued up after (a) and (b) are done.
3816  *	d. if !logerror, flush the iclogs to disk, then seal them off
3817  *	   for business.
3818  *
3819  * Note: for delayed logging the !logerror case needs to flush the regions
3820  * held in memory out to the iclogs before flushing them to disk. This needs
3821  * to be done before the log is marked as shutdown, otherwise the flush to the
3822  * iclogs will fail.
3823  */
3824 int
3825 xfs_log_force_umount(
3826 	struct xfs_mount	*mp,
3827 	int			logerror)
3828 {
3829 	struct xlog	*log;
3830 	int		retval;
3831 
3832 	log = mp->m_log;
3833 
3834 	/*
3835 	 * If this happens during log recovery, don't worry about
3836 	 * locking; the log isn't open for business yet.
3837 	 */
3838 	if (!log ||
3839 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3840 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3841 		if (mp->m_sb_bp)
3842 			XFS_BUF_DONE(mp->m_sb_bp);
3843 		return 0;
3844 	}
3845 
3846 	/*
3847 	 * Somebody could've already done the hard work for us.
3848 	 * No need to get locks for this.
3849 	 */
3850 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3851 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3852 		return 1;
3853 	}
3854 	retval = 0;
3855 
3856 	/*
3857 	 * Flush the in memory commit item list before marking the log as
3858 	 * being shut down. We need to do it in this order to ensure all the
3859 	 * completed transactions are flushed to disk with the xfs_log_force()
3860 	 * call below.
3861 	 */
3862 	if (!logerror)
3863 		xlog_cil_force(log);
3864 
3865 	/*
3866 	 * mark the filesystem and the as in a shutdown state and wake
3867 	 * everybody up to tell them the bad news.
3868 	 */
3869 	spin_lock(&log->l_icloglock);
3870 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3871 	if (mp->m_sb_bp)
3872 		XFS_BUF_DONE(mp->m_sb_bp);
3873 
3874 	/*
3875 	 * This flag is sort of redundant because of the mount flag, but
3876 	 * it's good to maintain the separation between the log and the rest
3877 	 * of XFS.
3878 	 */
3879 	log->l_flags |= XLOG_IO_ERROR;
3880 
3881 	/*
3882 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3883 	 * while we're still holding the loglock.
3884 	 */
3885 	if (logerror)
3886 		retval = xlog_state_ioerror(log);
3887 	spin_unlock(&log->l_icloglock);
3888 
3889 	/*
3890 	 * We don't want anybody waiting for log reservations after this. That
3891 	 * means we have to wake up everybody queued up on reserveq as well as
3892 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3893 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3894 	 * action is protected by the grant locks.
3895 	 */
3896 	xlog_grant_head_wake_all(&log->l_reserve_head);
3897 	xlog_grant_head_wake_all(&log->l_write_head);
3898 
3899 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3900 		ASSERT(!logerror);
3901 		/*
3902 		 * Force the incore logs to disk before shutting the
3903 		 * log down completely.
3904 		 */
3905 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3906 
3907 		spin_lock(&log->l_icloglock);
3908 		retval = xlog_state_ioerror(log);
3909 		spin_unlock(&log->l_icloglock);
3910 	}
3911 	/*
3912 	 * Wake up everybody waiting on xfs_log_force.
3913 	 * Callback all log item committed functions as if the
3914 	 * log writes were completed.
3915 	 */
3916 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3917 
3918 #ifdef XFSERRORDEBUG
3919 	{
3920 		xlog_in_core_t	*iclog;
3921 
3922 		spin_lock(&log->l_icloglock);
3923 		iclog = log->l_iclog;
3924 		do {
3925 			ASSERT(iclog->ic_callback == 0);
3926 			iclog = iclog->ic_next;
3927 		} while (iclog != log->l_iclog);
3928 		spin_unlock(&log->l_icloglock);
3929 	}
3930 #endif
3931 	/* return non-zero if log IOERROR transition had already happened */
3932 	return retval;
3933 }
3934 
3935 STATIC int
3936 xlog_iclogs_empty(
3937 	struct xlog	*log)
3938 {
3939 	xlog_in_core_t	*iclog;
3940 
3941 	iclog = log->l_iclog;
3942 	do {
3943 		/* endianness does not matter here, zero is zero in
3944 		 * any language.
3945 		 */
3946 		if (iclog->ic_header.h_num_logops)
3947 			return 0;
3948 		iclog = iclog->ic_next;
3949 	} while (iclog != log->l_iclog);
3950 	return 1;
3951 }
3952 
3953