xref: /openbmc/linux/fs/xfs/xfs_log.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
38 
39 kmem_zone_t	*xfs_log_ticket_zone;
40 
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 	struct xlog		*log,
45 	struct xlog_ticket	*ticket,
46 	struct xlog_in_core	**iclog,
47 	xfs_lsn_t		*commitlsnp);
48 
49 STATIC struct xlog *
50 xlog_alloc_log(
51 	struct xfs_mount	*mp,
52 	struct xfs_buftarg	*log_target,
53 	xfs_daddr_t		blk_offset,
54 	int			num_bblks);
55 STATIC int
56 xlog_space_left(
57 	struct xlog		*log,
58 	atomic64_t		*head);
59 STATIC int
60 xlog_sync(
61 	struct xlog		*log,
62 	struct xlog_in_core	*iclog);
63 STATIC void
64 xlog_dealloc_log(
65 	struct xlog		*log);
66 
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 	struct xlog		*log,
72 	int			aborted,
73 	struct xlog_in_core	*iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 	struct xlog		*log,
77 	int			len,
78 	struct xlog_in_core	**iclog,
79 	struct xlog_ticket	*ticket,
80 	int			*continued_write,
81 	int			*logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 	struct xlog		*log,
85 	struct xlog_in_core	*iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 	struct xlog		*log,
89 	struct xlog_in_core	*iclog,
90 	int			eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 	struct xlog		*log,
94 	struct xlog_in_core	*iclog);
95 
96 STATIC void
97 xlog_grant_push_ail(
98 	struct xlog		*log,
99 	int			need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 	struct xlog		*log,
103 	struct xlog_ticket	*ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 	struct xlog		*log,
107 	struct xlog_ticket	*ticket);
108 
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 	struct xlog		*log,
113 	void			*ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 	struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 	struct xlog		*log,
120 	struct xlog_in_core	*iclog,
121 	int			count,
122 	bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 	struct xlog		*log,
126 	struct xlog_in_core	*iclog,
127 	xfs_lsn_t		tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134 
135 STATIC int
136 xlog_iclogs_empty(
137 	struct xlog		*log);
138 
139 static void
140 xlog_grant_sub_space(
141 	struct xlog		*log,
142 	atomic64_t		*head,
143 	int			bytes)
144 {
145 	int64_t	head_val = atomic64_read(head);
146 	int64_t new, old;
147 
148 	do {
149 		int	cycle, space;
150 
151 		xlog_crack_grant_head_val(head_val, &cycle, &space);
152 
153 		space -= bytes;
154 		if (space < 0) {
155 			space += log->l_logsize;
156 			cycle--;
157 		}
158 
159 		old = head_val;
160 		new = xlog_assign_grant_head_val(cycle, space);
161 		head_val = atomic64_cmpxchg(head, old, new);
162 	} while (head_val != old);
163 }
164 
165 static void
166 xlog_grant_add_space(
167 	struct xlog		*log,
168 	atomic64_t		*head,
169 	int			bytes)
170 {
171 	int64_t	head_val = atomic64_read(head);
172 	int64_t new, old;
173 
174 	do {
175 		int		tmp;
176 		int		cycle, space;
177 
178 		xlog_crack_grant_head_val(head_val, &cycle, &space);
179 
180 		tmp = log->l_logsize - space;
181 		if (tmp > bytes)
182 			space += bytes;
183 		else {
184 			space = bytes - tmp;
185 			cycle++;
186 		}
187 
188 		old = head_val;
189 		new = xlog_assign_grant_head_val(cycle, space);
190 		head_val = atomic64_cmpxchg(head, old, new);
191 	} while (head_val != old);
192 }
193 
194 STATIC void
195 xlog_grant_head_init(
196 	struct xlog_grant_head	*head)
197 {
198 	xlog_assign_grant_head(&head->grant, 1, 0);
199 	INIT_LIST_HEAD(&head->waiters);
200 	spin_lock_init(&head->lock);
201 }
202 
203 STATIC void
204 xlog_grant_head_wake_all(
205 	struct xlog_grant_head	*head)
206 {
207 	struct xlog_ticket	*tic;
208 
209 	spin_lock(&head->lock);
210 	list_for_each_entry(tic, &head->waiters, t_queue)
211 		wake_up_process(tic->t_task);
212 	spin_unlock(&head->lock);
213 }
214 
215 static inline int
216 xlog_ticket_reservation(
217 	struct xlog		*log,
218 	struct xlog_grant_head	*head,
219 	struct xlog_ticket	*tic)
220 {
221 	if (head == &log->l_write_head) {
222 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 		return tic->t_unit_res;
224 	} else {
225 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 			return tic->t_unit_res * tic->t_cnt;
227 		else
228 			return tic->t_unit_res;
229 	}
230 }
231 
232 STATIC bool
233 xlog_grant_head_wake(
234 	struct xlog		*log,
235 	struct xlog_grant_head	*head,
236 	int			*free_bytes)
237 {
238 	struct xlog_ticket	*tic;
239 	int			need_bytes;
240 
241 	list_for_each_entry(tic, &head->waiters, t_queue) {
242 		need_bytes = xlog_ticket_reservation(log, head, tic);
243 		if (*free_bytes < need_bytes)
244 			return false;
245 
246 		*free_bytes -= need_bytes;
247 		trace_xfs_log_grant_wake_up(log, tic);
248 		wake_up_process(tic->t_task);
249 	}
250 
251 	return true;
252 }
253 
254 STATIC int
255 xlog_grant_head_wait(
256 	struct xlog		*log,
257 	struct xlog_grant_head	*head,
258 	struct xlog_ticket	*tic,
259 	int			need_bytes) __releases(&head->lock)
260 					    __acquires(&head->lock)
261 {
262 	list_add_tail(&tic->t_queue, &head->waiters);
263 
264 	do {
265 		if (XLOG_FORCED_SHUTDOWN(log))
266 			goto shutdown;
267 		xlog_grant_push_ail(log, need_bytes);
268 
269 		__set_current_state(TASK_UNINTERRUPTIBLE);
270 		spin_unlock(&head->lock);
271 
272 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273 
274 		trace_xfs_log_grant_sleep(log, tic);
275 		schedule();
276 		trace_xfs_log_grant_wake(log, tic);
277 
278 		spin_lock(&head->lock);
279 		if (XLOG_FORCED_SHUTDOWN(log))
280 			goto shutdown;
281 	} while (xlog_space_left(log, &head->grant) < need_bytes);
282 
283 	list_del_init(&tic->t_queue);
284 	return 0;
285 shutdown:
286 	list_del_init(&tic->t_queue);
287 	return -EIO;
288 }
289 
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309 	struct xlog		*log,
310 	struct xlog_grant_head	*head,
311 	struct xlog_ticket	*tic,
312 	int			*need_bytes)
313 {
314 	int			free_bytes;
315 	int			error = 0;
316 
317 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 
319 	/*
320 	 * If there are other waiters on the queue then give them a chance at
321 	 * logspace before us.  Wake up the first waiters, if we do not wake
322 	 * up all the waiters then go to sleep waiting for more free space,
323 	 * otherwise try to get some space for this transaction.
324 	 */
325 	*need_bytes = xlog_ticket_reservation(log, head, tic);
326 	free_bytes = xlog_space_left(log, &head->grant);
327 	if (!list_empty_careful(&head->waiters)) {
328 		spin_lock(&head->lock);
329 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 		    free_bytes < *need_bytes) {
331 			error = xlog_grant_head_wait(log, head, tic,
332 						     *need_bytes);
333 		}
334 		spin_unlock(&head->lock);
335 	} else if (free_bytes < *need_bytes) {
336 		spin_lock(&head->lock);
337 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 		spin_unlock(&head->lock);
339 	}
340 
341 	return error;
342 }
343 
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 	tic->t_res_num = 0;
348 	tic->t_res_arr_sum = 0;
349 	tic->t_res_num_ophdrs = 0;
350 }
351 
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 		/* add to overflow and start again */
357 		tic->t_res_o_flow += tic->t_res_arr_sum;
358 		tic->t_res_num = 0;
359 		tic->t_res_arr_sum = 0;
360 	}
361 
362 	tic->t_res_arr[tic->t_res_num].r_len = len;
363 	tic->t_res_arr[tic->t_res_num].r_type = type;
364 	tic->t_res_arr_sum += len;
365 	tic->t_res_num++;
366 }
367 
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373 	struct xfs_mount	*mp,
374 	struct xlog_ticket	*tic)
375 {
376 	struct xlog		*log = mp->m_log;
377 	int			need_bytes;
378 	int			error = 0;
379 
380 	if (XLOG_FORCED_SHUTDOWN(log))
381 		return -EIO;
382 
383 	XFS_STATS_INC(mp, xs_try_logspace);
384 
385 	/*
386 	 * This is a new transaction on the ticket, so we need to change the
387 	 * transaction ID so that the next transaction has a different TID in
388 	 * the log. Just add one to the existing tid so that we can see chains
389 	 * of rolling transactions in the log easily.
390 	 */
391 	tic->t_tid++;
392 
393 	xlog_grant_push_ail(log, tic->t_unit_res);
394 
395 	tic->t_curr_res = tic->t_unit_res;
396 	xlog_tic_reset_res(tic);
397 
398 	if (tic->t_cnt > 0)
399 		return 0;
400 
401 	trace_xfs_log_regrant(log, tic);
402 
403 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 				      &need_bytes);
405 	if (error)
406 		goto out_error;
407 
408 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 	trace_xfs_log_regrant_exit(log, tic);
410 	xlog_verify_grant_tail(log);
411 	return 0;
412 
413 out_error:
414 	/*
415 	 * If we are failing, make sure the ticket doesn't have any current
416 	 * reservations.  We don't want to add this back when the ticket/
417 	 * transaction gets cancelled.
418 	 */
419 	tic->t_curr_res = 0;
420 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421 	return error;
422 }
423 
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434 	struct xfs_mount	*mp,
435 	int		 	unit_bytes,
436 	int		 	cnt,
437 	struct xlog_ticket	**ticp,
438 	uint8_t		 	client,
439 	bool			permanent)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(mp, xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	*ticp = tic;
460 
461 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 					    : tic->t_unit_res);
463 
464 	trace_xfs_log_reserve(log, tic);
465 
466 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 				      &need_bytes);
468 	if (error)
469 		goto out_error;
470 
471 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 	trace_xfs_log_reserve_exit(log, tic);
474 	xlog_verify_grant_tail(log);
475 	return 0;
476 
477 out_error:
478 	/*
479 	 * If we are failing, make sure the ticket doesn't have any current
480 	 * reservations.  We don't want to add this back when the ticket/
481 	 * transaction gets cancelled.
482 	 */
483 	tic->t_curr_res = 0;
484 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
485 	return error;
486 }
487 
488 
489 /*
490  * NOTES:
491  *
492  *	1. currblock field gets updated at startup and after in-core logs
493  *		marked as with WANT_SYNC.
494  */
495 
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512 	struct xfs_mount	*mp,
513 	struct xlog_ticket	*ticket,
514 	struct xlog_in_core	**iclog,
515 	bool			regrant)
516 {
517 	struct xlog		*log = mp->m_log;
518 	xfs_lsn_t		lsn = 0;
519 
520 	if (XLOG_FORCED_SHUTDOWN(log) ||
521 	    /*
522 	     * If nothing was ever written, don't write out commit record.
523 	     * If we get an error, just continue and give back the log ticket.
524 	     */
525 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 		lsn = (xfs_lsn_t) -1;
528 		regrant = false;
529 	}
530 
531 
532 	if (!regrant) {
533 		trace_xfs_log_done_nonperm(log, ticket);
534 
535 		/*
536 		 * Release ticket if not permanent reservation or a specific
537 		 * request has been made to release a permanent reservation.
538 		 */
539 		xlog_ungrant_log_space(log, ticket);
540 	} else {
541 		trace_xfs_log_done_perm(log, ticket);
542 
543 		xlog_regrant_reserve_log_space(log, ticket);
544 		/* If this ticket was a permanent reservation and we aren't
545 		 * trying to release it, reset the inited flags; so next time
546 		 * we write, a start record will be written out.
547 		 */
548 		ticket->t_flags |= XLOG_TIC_INITED;
549 	}
550 
551 	xfs_log_ticket_put(ticket);
552 	return lsn;
553 }
554 
555 /*
556  * Attaches a new iclog I/O completion callback routine during
557  * transaction commit.  If the log is in error state, a non-zero
558  * return code is handed back and the caller is responsible for
559  * executing the callback at an appropriate time.
560  */
561 int
562 xfs_log_notify(
563 	struct xlog_in_core	*iclog,
564 	xfs_log_callback_t	*cb)
565 {
566 	int	abortflg;
567 
568 	spin_lock(&iclog->ic_callback_lock);
569 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 	if (!abortflg) {
571 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 		cb->cb_next = NULL;
574 		*(iclog->ic_callback_tail) = cb;
575 		iclog->ic_callback_tail = &(cb->cb_next);
576 	}
577 	spin_unlock(&iclog->ic_callback_lock);
578 	return abortflg;
579 }
580 
581 int
582 xfs_log_release_iclog(
583 	struct xfs_mount	*mp,
584 	struct xlog_in_core	*iclog)
585 {
586 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 		return -EIO;
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * Mount a log filesystem
596  *
597  * mp		- ubiquitous xfs mount point structure
598  * log_target	- buftarg of on-disk log device
599  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks	- Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606 	xfs_mount_t	*mp,
607 	xfs_buftarg_t	*log_target,
608 	xfs_daddr_t	blk_offset,
609 	int		num_bblks)
610 {
611 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
612 	int		error = 0;
613 	int		min_logfsbs;
614 
615 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
616 		xfs_notice(mp, "Mounting V%d Filesystem",
617 			   XFS_SB_VERSION_NUM(&mp->m_sb));
618 	} else {
619 		xfs_notice(mp,
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621 			   XFS_SB_VERSION_NUM(&mp->m_sb));
622 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
623 	}
624 
625 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626 	if (IS_ERR(mp->m_log)) {
627 		error = PTR_ERR(mp->m_log);
628 		goto out;
629 	}
630 
631 	/*
632 	 * Validate the given log space and drop a critical message via syslog
633 	 * if the log size is too small that would lead to some unexpected
634 	 * situations in transaction log space reservation stage.
635 	 *
636 	 * Note: we can't just reject the mount if the validation fails.  This
637 	 * would mean that people would have to downgrade their kernel just to
638 	 * remedy the situation as there is no way to grow the log (short of
639 	 * black magic surgery with xfs_db).
640 	 *
641 	 * We can, however, reject mounts for CRC format filesystems, as the
642 	 * mkfs binary being used to make the filesystem should never create a
643 	 * filesystem with a log that is too small.
644 	 */
645 	min_logfsbs = xfs_log_calc_minimum_size(mp);
646 
647 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
648 		xfs_warn(mp,
649 		"Log size %d blocks too small, minimum size is %d blocks",
650 			 mp->m_sb.sb_logblocks, min_logfsbs);
651 		error = -EINVAL;
652 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
653 		xfs_warn(mp,
654 		"Log size %d blocks too large, maximum size is %lld blocks",
655 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
656 		error = -EINVAL;
657 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
658 		xfs_warn(mp,
659 		"log size %lld bytes too large, maximum size is %lld bytes",
660 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
661 			 XFS_MAX_LOG_BYTES);
662 		error = -EINVAL;
663 	} else if (mp->m_sb.sb_logsunit > 1 &&
664 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
665 		xfs_warn(mp,
666 		"log stripe unit %u bytes must be a multiple of block size",
667 			 mp->m_sb.sb_logsunit);
668 		error = -EINVAL;
669 		fatal = true;
670 	}
671 	if (error) {
672 		/*
673 		 * Log check errors are always fatal on v5; or whenever bad
674 		 * metadata leads to a crash.
675 		 */
676 		if (fatal) {
677 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
678 			ASSERT(0);
679 			goto out_free_log;
680 		}
681 		xfs_crit(mp, "Log size out of supported range.");
682 		xfs_crit(mp,
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
684 	}
685 
686 	/*
687 	 * Initialize the AIL now we have a log.
688 	 */
689 	error = xfs_trans_ail_init(mp);
690 	if (error) {
691 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
692 		goto out_free_log;
693 	}
694 	mp->m_log->l_ailp = mp->m_ail;
695 
696 	/*
697 	 * skip log recovery on a norecovery mount.  pretend it all
698 	 * just worked.
699 	 */
700 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
701 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
702 
703 		if (readonly)
704 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
705 
706 		error = xlog_recover(mp->m_log);
707 
708 		if (readonly)
709 			mp->m_flags |= XFS_MOUNT_RDONLY;
710 		if (error) {
711 			xfs_warn(mp, "log mount/recovery failed: error %d",
712 				error);
713 			xlog_recover_cancel(mp->m_log);
714 			goto out_destroy_ail;
715 		}
716 	}
717 
718 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
719 			       "log");
720 	if (error)
721 		goto out_destroy_ail;
722 
723 	/* Normal transactions can now occur */
724 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
725 
726 	/*
727 	 * Now the log has been fully initialised and we know were our
728 	 * space grant counters are, we can initialise the permanent ticket
729 	 * needed for delayed logging to work.
730 	 */
731 	xlog_cil_init_post_recovery(mp->m_log);
732 
733 	return 0;
734 
735 out_destroy_ail:
736 	xfs_trans_ail_destroy(mp);
737 out_free_log:
738 	xlog_dealloc_log(mp->m_log);
739 out:
740 	return error;
741 }
742 
743 /*
744  * Finish the recovery of the file system.  This is separate from the
745  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
747  * here.
748  *
749  * If we finish recovery successfully, start the background log work. If we are
750  * not doing recovery, then we have a RO filesystem and we don't need to start
751  * it.
752  */
753 int
754 xfs_log_mount_finish(
755 	struct xfs_mount	*mp)
756 {
757 	int	error = 0;
758 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
759 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
760 
761 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
762 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
763 		return 0;
764 	} else if (readonly) {
765 		/* Allow unlinked processing to proceed */
766 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
767 	}
768 
769 	/*
770 	 * During the second phase of log recovery, we need iget and
771 	 * iput to behave like they do for an active filesystem.
772 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
773 	 * of inodes before we're done replaying log items on those
774 	 * inodes.  Turn it off immediately after recovery finishes
775 	 * so that we don't leak the quota inodes if subsequent mount
776 	 * activities fail.
777 	 *
778 	 * We let all inodes involved in redo item processing end up on
779 	 * the LRU instead of being evicted immediately so that if we do
780 	 * something to an unlinked inode, the irele won't cause
781 	 * premature truncation and freeing of the inode, which results
782 	 * in log recovery failure.  We have to evict the unreferenced
783 	 * lru inodes after clearing SB_ACTIVE because we don't
784 	 * otherwise clean up the lru if there's a subsequent failure in
785 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
786 	 * else (e.g. quotacheck) references the inodes before the
787 	 * mount failure occurs.
788 	 */
789 	mp->m_super->s_flags |= SB_ACTIVE;
790 	error = xlog_recover_finish(mp->m_log);
791 	if (!error)
792 		xfs_log_work_queue(mp);
793 	mp->m_super->s_flags &= ~SB_ACTIVE;
794 	evict_inodes(mp->m_super);
795 
796 	/*
797 	 * Drain the buffer LRU after log recovery. This is required for v4
798 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
799 	 * but we do it unconditionally to make sure we're always in a clean
800 	 * cache state after mount.
801 	 *
802 	 * Don't push in the error case because the AIL may have pending intents
803 	 * that aren't removed until recovery is cancelled.
804 	 */
805 	if (!error && recovered) {
806 		xfs_log_force(mp, XFS_LOG_SYNC);
807 		xfs_ail_push_all_sync(mp->m_ail);
808 	}
809 	xfs_wait_buftarg(mp->m_ddev_targp);
810 
811 	if (readonly)
812 		mp->m_flags |= XFS_MOUNT_RDONLY;
813 
814 	return error;
815 }
816 
817 /*
818  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
819  * the log.
820  */
821 int
822 xfs_log_mount_cancel(
823 	struct xfs_mount	*mp)
824 {
825 	int			error;
826 
827 	error = xlog_recover_cancel(mp->m_log);
828 	xfs_log_unmount(mp);
829 
830 	return error;
831 }
832 
833 /*
834  * Final log writes as part of unmount.
835  *
836  * Mark the filesystem clean as unmount happens.  Note that during relocation
837  * this routine needs to be executed as part of source-bag while the
838  * deallocation must not be done until source-end.
839  */
840 
841 /*
842  * Unmount record used to have a string "Unmount filesystem--" in the
843  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
844  * We just write the magic number now since that particular field isn't
845  * currently architecture converted and "Unmount" is a bit foo.
846  * As far as I know, there weren't any dependencies on the old behaviour.
847  */
848 
849 static int
850 xfs_log_unmount_write(xfs_mount_t *mp)
851 {
852 	struct xlog	 *log = mp->m_log;
853 	xlog_in_core_t	 *iclog;
854 #ifdef DEBUG
855 	xlog_in_core_t	 *first_iclog;
856 #endif
857 	xlog_ticket_t	*tic = NULL;
858 	xfs_lsn_t	 lsn;
859 	int		 error;
860 
861 	/*
862 	 * Don't write out unmount record on norecovery mounts or ro devices.
863 	 * Or, if we are doing a forced umount (typically because of IO errors).
864 	 */
865 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
866 	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
867 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
868 		return 0;
869 	}
870 
871 	error = xfs_log_force(mp, XFS_LOG_SYNC);
872 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
873 
874 #ifdef DEBUG
875 	first_iclog = iclog = log->l_iclog;
876 	do {
877 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
878 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
879 			ASSERT(iclog->ic_offset == 0);
880 		}
881 		iclog = iclog->ic_next;
882 	} while (iclog != first_iclog);
883 #endif
884 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
885 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
886 		if (!error) {
887 			/* the data section must be 32 bit size aligned */
888 			struct {
889 			    uint16_t magic;
890 			    uint16_t pad1;
891 			    uint32_t pad2; /* may as well make it 64 bits */
892 			} magic = {
893 				.magic = XLOG_UNMOUNT_TYPE,
894 			};
895 			struct xfs_log_iovec reg = {
896 				.i_addr = &magic,
897 				.i_len = sizeof(magic),
898 				.i_type = XLOG_REG_TYPE_UNMOUNT,
899 			};
900 			struct xfs_log_vec vec = {
901 				.lv_niovecs = 1,
902 				.lv_iovecp = &reg,
903 			};
904 
905 			/* remove inited flag, and account for space used */
906 			tic->t_flags = 0;
907 			tic->t_curr_res -= sizeof(magic);
908 			error = xlog_write(log, &vec, tic, &lsn,
909 					   NULL, XLOG_UNMOUNT_TRANS);
910 			/*
911 			 * At this point, we're umounting anyway,
912 			 * so there's no point in transitioning log state
913 			 * to IOERROR. Just continue...
914 			 */
915 		}
916 
917 		if (error)
918 			xfs_alert(mp, "%s: unmount record failed", __func__);
919 
920 
921 		spin_lock(&log->l_icloglock);
922 		iclog = log->l_iclog;
923 		atomic_inc(&iclog->ic_refcnt);
924 		xlog_state_want_sync(log, iclog);
925 		spin_unlock(&log->l_icloglock);
926 		error = xlog_state_release_iclog(log, iclog);
927 
928 		spin_lock(&log->l_icloglock);
929 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
930 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
931 			if (!XLOG_FORCED_SHUTDOWN(log)) {
932 				xlog_wait(&iclog->ic_force_wait,
933 							&log->l_icloglock);
934 			} else {
935 				spin_unlock(&log->l_icloglock);
936 			}
937 		} else {
938 			spin_unlock(&log->l_icloglock);
939 		}
940 		if (tic) {
941 			trace_xfs_log_umount_write(log, tic);
942 			xlog_ungrant_log_space(log, tic);
943 			xfs_log_ticket_put(tic);
944 		}
945 	} else {
946 		/*
947 		 * We're already in forced_shutdown mode, couldn't
948 		 * even attempt to write out the unmount transaction.
949 		 *
950 		 * Go through the motions of sync'ing and releasing
951 		 * the iclog, even though no I/O will actually happen,
952 		 * we need to wait for other log I/Os that may already
953 		 * be in progress.  Do this as a separate section of
954 		 * code so we'll know if we ever get stuck here that
955 		 * we're in this odd situation of trying to unmount
956 		 * a file system that went into forced_shutdown as
957 		 * the result of an unmount..
958 		 */
959 		spin_lock(&log->l_icloglock);
960 		iclog = log->l_iclog;
961 		atomic_inc(&iclog->ic_refcnt);
962 
963 		xlog_state_want_sync(log, iclog);
964 		spin_unlock(&log->l_icloglock);
965 		error =  xlog_state_release_iclog(log, iclog);
966 
967 		spin_lock(&log->l_icloglock);
968 
969 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
970 			|| iclog->ic_state == XLOG_STATE_DIRTY
971 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
972 
973 				xlog_wait(&iclog->ic_force_wait,
974 							&log->l_icloglock);
975 		} else {
976 			spin_unlock(&log->l_icloglock);
977 		}
978 	}
979 
980 	return error;
981 }	/* xfs_log_unmount_write */
982 
983 /*
984  * Empty the log for unmount/freeze.
985  *
986  * To do this, we first need to shut down the background log work so it is not
987  * trying to cover the log as we clean up. We then need to unpin all objects in
988  * the log so we can then flush them out. Once they have completed their IO and
989  * run the callbacks removing themselves from the AIL, we can write the unmount
990  * record.
991  */
992 void
993 xfs_log_quiesce(
994 	struct xfs_mount	*mp)
995 {
996 	cancel_delayed_work_sync(&mp->m_log->l_work);
997 	xfs_log_force(mp, XFS_LOG_SYNC);
998 
999 	/*
1000 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1001 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1002 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1003 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1004 	 * the IO to complete.
1005 	 */
1006 	xfs_ail_push_all_sync(mp->m_ail);
1007 	xfs_wait_buftarg(mp->m_ddev_targp);
1008 	xfs_buf_lock(mp->m_sb_bp);
1009 	xfs_buf_unlock(mp->m_sb_bp);
1010 
1011 	xfs_log_unmount_write(mp);
1012 }
1013 
1014 /*
1015  * Shut down and release the AIL and Log.
1016  *
1017  * During unmount, we need to ensure we flush all the dirty metadata objects
1018  * from the AIL so that the log is empty before we write the unmount record to
1019  * the log. Once this is done, we can tear down the AIL and the log.
1020  */
1021 void
1022 xfs_log_unmount(
1023 	struct xfs_mount	*mp)
1024 {
1025 	xfs_log_quiesce(mp);
1026 
1027 	xfs_trans_ail_destroy(mp);
1028 
1029 	xfs_sysfs_del(&mp->m_log->l_kobj);
1030 
1031 	xlog_dealloc_log(mp->m_log);
1032 }
1033 
1034 void
1035 xfs_log_item_init(
1036 	struct xfs_mount	*mp,
1037 	struct xfs_log_item	*item,
1038 	int			type,
1039 	const struct xfs_item_ops *ops)
1040 {
1041 	item->li_mountp = mp;
1042 	item->li_ailp = mp->m_ail;
1043 	item->li_type = type;
1044 	item->li_ops = ops;
1045 	item->li_lv = NULL;
1046 
1047 	INIT_LIST_HEAD(&item->li_ail);
1048 	INIT_LIST_HEAD(&item->li_cil);
1049 	INIT_LIST_HEAD(&item->li_bio_list);
1050 }
1051 
1052 /*
1053  * Wake up processes waiting for log space after we have moved the log tail.
1054  */
1055 void
1056 xfs_log_space_wake(
1057 	struct xfs_mount	*mp)
1058 {
1059 	struct xlog		*log = mp->m_log;
1060 	int			free_bytes;
1061 
1062 	if (XLOG_FORCED_SHUTDOWN(log))
1063 		return;
1064 
1065 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1066 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067 
1068 		spin_lock(&log->l_write_head.lock);
1069 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071 		spin_unlock(&log->l_write_head.lock);
1072 	}
1073 
1074 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076 
1077 		spin_lock(&log->l_reserve_head.lock);
1078 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080 		spin_unlock(&log->l_reserve_head.lock);
1081 	}
1082 }
1083 
1084 /*
1085  * Determine if we have a transaction that has gone to disk that needs to be
1086  * covered. To begin the transition to the idle state firstly the log needs to
1087  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088  * we start attempting to cover the log.
1089  *
1090  * Only if we are then in a state where covering is needed, the caller is
1091  * informed that dummy transactions are required to move the log into the idle
1092  * state.
1093  *
1094  * If there are any items in the AIl or CIL, then we do not want to attempt to
1095  * cover the log as we may be in a situation where there isn't log space
1096  * available to run a dummy transaction and this can lead to deadlocks when the
1097  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1098  * there's no point in running a dummy transaction at this point because we
1099  * can't start trying to idle the log until both the CIL and AIL are empty.
1100  */
1101 static int
1102 xfs_log_need_covered(xfs_mount_t *mp)
1103 {
1104 	struct xlog	*log = mp->m_log;
1105 	int		needed = 0;
1106 
1107 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108 		return 0;
1109 
1110 	if (!xlog_cil_empty(log))
1111 		return 0;
1112 
1113 	spin_lock(&log->l_icloglock);
1114 	switch (log->l_covered_state) {
1115 	case XLOG_STATE_COVER_DONE:
1116 	case XLOG_STATE_COVER_DONE2:
1117 	case XLOG_STATE_COVER_IDLE:
1118 		break;
1119 	case XLOG_STATE_COVER_NEED:
1120 	case XLOG_STATE_COVER_NEED2:
1121 		if (xfs_ail_min_lsn(log->l_ailp))
1122 			break;
1123 		if (!xlog_iclogs_empty(log))
1124 			break;
1125 
1126 		needed = 1;
1127 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1129 		else
1130 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131 		break;
1132 	default:
1133 		needed = 1;
1134 		break;
1135 	}
1136 	spin_unlock(&log->l_icloglock);
1137 	return needed;
1138 }
1139 
1140 /*
1141  * We may be holding the log iclog lock upon entering this routine.
1142  */
1143 xfs_lsn_t
1144 xlog_assign_tail_lsn_locked(
1145 	struct xfs_mount	*mp)
1146 {
1147 	struct xlog		*log = mp->m_log;
1148 	struct xfs_log_item	*lip;
1149 	xfs_lsn_t		tail_lsn;
1150 
1151 	assert_spin_locked(&mp->m_ail->ail_lock);
1152 
1153 	/*
1154 	 * To make sure we always have a valid LSN for the log tail we keep
1155 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1156 	 * and use that when the AIL was empty.
1157 	 */
1158 	lip = xfs_ail_min(mp->m_ail);
1159 	if (lip)
1160 		tail_lsn = lip->li_lsn;
1161 	else
1162 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1165 	return tail_lsn;
1166 }
1167 
1168 xfs_lsn_t
1169 xlog_assign_tail_lsn(
1170 	struct xfs_mount	*mp)
1171 {
1172 	xfs_lsn_t		tail_lsn;
1173 
1174 	spin_lock(&mp->m_ail->ail_lock);
1175 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176 	spin_unlock(&mp->m_ail->ail_lock);
1177 
1178 	return tail_lsn;
1179 }
1180 
1181 /*
1182  * Return the space in the log between the tail and the head.  The head
1183  * is passed in the cycle/bytes formal parms.  In the special case where
1184  * the reserve head has wrapped passed the tail, this calculation is no
1185  * longer valid.  In this case, just return 0 which means there is no space
1186  * in the log.  This works for all places where this function is called
1187  * with the reserve head.  Of course, if the write head were to ever
1188  * wrap the tail, we should blow up.  Rather than catch this case here,
1189  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1190  *
1191  * This code also handles the case where the reservation head is behind
1192  * the tail.  The details of this case are described below, but the end
1193  * result is that we return the size of the log as the amount of space left.
1194  */
1195 STATIC int
1196 xlog_space_left(
1197 	struct xlog	*log,
1198 	atomic64_t	*head)
1199 {
1200 	int		free_bytes;
1201 	int		tail_bytes;
1202 	int		tail_cycle;
1203 	int		head_cycle;
1204 	int		head_bytes;
1205 
1206 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208 	tail_bytes = BBTOB(tail_bytes);
1209 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211 	else if (tail_cycle + 1 < head_cycle)
1212 		return 0;
1213 	else if (tail_cycle < head_cycle) {
1214 		ASSERT(tail_cycle == (head_cycle - 1));
1215 		free_bytes = tail_bytes - head_bytes;
1216 	} else {
1217 		/*
1218 		 * The reservation head is behind the tail.
1219 		 * In this case we just want to return the size of the
1220 		 * log as the amount of space left.
1221 		 */
1222 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223 		xfs_alert(log->l_mp,
1224 			  "  tail_cycle = %d, tail_bytes = %d",
1225 			  tail_cycle, tail_bytes);
1226 		xfs_alert(log->l_mp,
1227 			  "  GH   cycle = %d, GH   bytes = %d",
1228 			  head_cycle, head_bytes);
1229 		ASSERT(0);
1230 		free_bytes = log->l_logsize;
1231 	}
1232 	return free_bytes;
1233 }
1234 
1235 
1236 /*
1237  * Log function which is called when an io completes.
1238  *
1239  * The log manager needs its own routine, in order to control what
1240  * happens with the buffer after the write completes.
1241  */
1242 static void
1243 xlog_iodone(xfs_buf_t *bp)
1244 {
1245 	struct xlog_in_core	*iclog = bp->b_log_item;
1246 	struct xlog		*l = iclog->ic_log;
1247 	int			aborted = 0;
1248 
1249 	/*
1250 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1251 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252 	 * CRC errors into log recovery.
1253 	 */
1254 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1256 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1257 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258 
1259 		xfs_buf_ioerror_alert(bp, __func__);
1260 		xfs_buf_stale(bp);
1261 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262 		/*
1263 		 * This flag will be propagated to the trans-committed
1264 		 * callback routines to let them know that the log-commit
1265 		 * didn't succeed.
1266 		 */
1267 		aborted = XFS_LI_ABORTED;
1268 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269 		aborted = XFS_LI_ABORTED;
1270 	}
1271 
1272 	/* log I/O is always issued ASYNC */
1273 	ASSERT(bp->b_flags & XBF_ASYNC);
1274 	xlog_state_done_syncing(iclog, aborted);
1275 
1276 	/*
1277 	 * drop the buffer lock now that we are done. Nothing references
1278 	 * the buffer after this, so an unmount waiting on this lock can now
1279 	 * tear it down safely. As such, it is unsafe to reference the buffer
1280 	 * (bp) after the unlock as we could race with it being freed.
1281 	 */
1282 	xfs_buf_unlock(bp);
1283 }
1284 
1285 /*
1286  * Return size of each in-core log record buffer.
1287  *
1288  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289  *
1290  * If the filesystem blocksize is too large, we may need to choose a
1291  * larger size since the directory code currently logs entire blocks.
1292  */
1293 
1294 STATIC void
1295 xlog_get_iclog_buffer_size(
1296 	struct xfs_mount	*mp,
1297 	struct xlog		*log)
1298 {
1299 	int size;
1300 	int xhdrs;
1301 
1302 	if (mp->m_logbufs <= 0)
1303 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304 	else
1305 		log->l_iclog_bufs = mp->m_logbufs;
1306 
1307 	/*
1308 	 * Buffer size passed in from mount system call.
1309 	 */
1310 	if (mp->m_logbsize > 0) {
1311 		size = log->l_iclog_size = mp->m_logbsize;
1312 		log->l_iclog_size_log = 0;
1313 		while (size != 1) {
1314 			log->l_iclog_size_log++;
1315 			size >>= 1;
1316 		}
1317 
1318 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319 			/* # headers = size / 32k
1320 			 * one header holds cycles from 32k of data
1321 			 */
1322 
1323 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325 				xhdrs++;
1326 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1327 			log->l_iclog_heads = xhdrs;
1328 		} else {
1329 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330 			log->l_iclog_hsize = BBSIZE;
1331 			log->l_iclog_heads = 1;
1332 		}
1333 		goto done;
1334 	}
1335 
1336 	/* All machines use 32kB buffers by default. */
1337 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339 
1340 	/* the default log size is 16k or 32k which is one header sector */
1341 	log->l_iclog_hsize = BBSIZE;
1342 	log->l_iclog_heads = 1;
1343 
1344 done:
1345 	/* are we being asked to make the sizes selected above visible? */
1346 	if (mp->m_logbufs == 0)
1347 		mp->m_logbufs = log->l_iclog_bufs;
1348 	if (mp->m_logbsize == 0)
1349 		mp->m_logbsize = log->l_iclog_size;
1350 }	/* xlog_get_iclog_buffer_size */
1351 
1352 
1353 void
1354 xfs_log_work_queue(
1355 	struct xfs_mount        *mp)
1356 {
1357 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359 }
1360 
1361 /*
1362  * Every sync period we need to unpin all items in the AIL and push them to
1363  * disk. If there is nothing dirty, then we might need to cover the log to
1364  * indicate that the filesystem is idle.
1365  */
1366 static void
1367 xfs_log_worker(
1368 	struct work_struct	*work)
1369 {
1370 	struct xlog		*log = container_of(to_delayed_work(work),
1371 						struct xlog, l_work);
1372 	struct xfs_mount	*mp = log->l_mp;
1373 
1374 	/* dgc: errors ignored - not fatal and nowhere to report them */
1375 	if (xfs_log_need_covered(mp)) {
1376 		/*
1377 		 * Dump a transaction into the log that contains no real change.
1378 		 * This is needed to stamp the current tail LSN into the log
1379 		 * during the covering operation.
1380 		 *
1381 		 * We cannot use an inode here for this - that will push dirty
1382 		 * state back up into the VFS and then periodic inode flushing
1383 		 * will prevent log covering from making progress. Hence we
1384 		 * synchronously log the superblock instead to ensure the
1385 		 * superblock is immediately unpinned and can be written back.
1386 		 */
1387 		xfs_sync_sb(mp, true);
1388 	} else
1389 		xfs_log_force(mp, 0);
1390 
1391 	/* start pushing all the metadata that is currently dirty */
1392 	xfs_ail_push_all(mp->m_ail);
1393 
1394 	/* queue us up again */
1395 	xfs_log_work_queue(mp);
1396 }
1397 
1398 /*
1399  * This routine initializes some of the log structure for a given mount point.
1400  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1401  * some other stuff may be filled in too.
1402  */
1403 STATIC struct xlog *
1404 xlog_alloc_log(
1405 	struct xfs_mount	*mp,
1406 	struct xfs_buftarg	*log_target,
1407 	xfs_daddr_t		blk_offset,
1408 	int			num_bblks)
1409 {
1410 	struct xlog		*log;
1411 	xlog_rec_header_t	*head;
1412 	xlog_in_core_t		**iclogp;
1413 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1414 	xfs_buf_t		*bp;
1415 	int			i;
1416 	int			error = -ENOMEM;
1417 	uint			log2_size = 0;
1418 
1419 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420 	if (!log) {
1421 		xfs_warn(mp, "Log allocation failed: No memory!");
1422 		goto out;
1423 	}
1424 
1425 	log->l_mp	   = mp;
1426 	log->l_targ	   = log_target;
1427 	log->l_logsize     = BBTOB(num_bblks);
1428 	log->l_logBBstart  = blk_offset;
1429 	log->l_logBBsize   = num_bblks;
1430 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1432 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433 
1434 	log->l_prev_block  = -1;
1435 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1439 
1440 	xlog_grant_head_init(&log->l_reserve_head);
1441 	xlog_grant_head_init(&log->l_write_head);
1442 
1443 	error = -EFSCORRUPTED;
1444 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1445 	        log2_size = mp->m_sb.sb_logsectlog;
1446 		if (log2_size < BBSHIFT) {
1447 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448 				log2_size, BBSHIFT);
1449 			goto out_free_log;
1450 		}
1451 
1452 	        log2_size -= BBSHIFT;
1453 		if (log2_size > mp->m_sectbb_log) {
1454 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455 				log2_size, mp->m_sectbb_log);
1456 			goto out_free_log;
1457 		}
1458 
1459 		/* for larger sector sizes, must have v2 or external log */
1460 		if (log2_size && log->l_logBBstart > 0 &&
1461 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462 			xfs_warn(mp,
1463 		"log sector size (0x%x) invalid for configuration.",
1464 				log2_size);
1465 			goto out_free_log;
1466 		}
1467 	}
1468 	log->l_sectBBsize = 1 << log2_size;
1469 
1470 	xlog_get_iclog_buffer_size(mp, log);
1471 
1472 	/*
1473 	 * Use a NULL block for the extra log buffer used during splits so that
1474 	 * it will trigger errors if we ever try to do IO on it without first
1475 	 * having set it up properly.
1476 	 */
1477 	error = -ENOMEM;
1478 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480 	if (!bp)
1481 		goto out_free_log;
1482 
1483 	/*
1484 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1485 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1486 	 * when appropriately.
1487 	 */
1488 	ASSERT(xfs_buf_islocked(bp));
1489 	xfs_buf_unlock(bp);
1490 
1491 	/* use high priority wq for log I/O completion */
1492 	bp->b_ioend_wq = mp->m_log_workqueue;
1493 	bp->b_iodone = xlog_iodone;
1494 	log->l_xbuf = bp;
1495 
1496 	spin_lock_init(&log->l_icloglock);
1497 	init_waitqueue_head(&log->l_flush_wait);
1498 
1499 	iclogp = &log->l_iclog;
1500 	/*
1501 	 * The amount of memory to allocate for the iclog structure is
1502 	 * rather funky due to the way the structure is defined.  It is
1503 	 * done this way so that we can use different sizes for machines
1504 	 * with different amounts of memory.  See the definition of
1505 	 * xlog_in_core_t in xfs_log_priv.h for details.
1506 	 */
1507 	ASSERT(log->l_iclog_size >= 4096);
1508 	for (i=0; i < log->l_iclog_bufs; i++) {
1509 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510 		if (!*iclogp)
1511 			goto out_free_iclog;
1512 
1513 		iclog = *iclogp;
1514 		iclog->ic_prev = prev_iclog;
1515 		prev_iclog = iclog;
1516 
1517 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518 					  BTOBB(log->l_iclog_size),
1519 					  XBF_NO_IOACCT);
1520 		if (!bp)
1521 			goto out_free_iclog;
1522 
1523 		ASSERT(xfs_buf_islocked(bp));
1524 		xfs_buf_unlock(bp);
1525 
1526 		/* use high priority wq for log I/O completion */
1527 		bp->b_ioend_wq = mp->m_log_workqueue;
1528 		bp->b_iodone = xlog_iodone;
1529 		iclog->ic_bp = bp;
1530 		iclog->ic_data = bp->b_addr;
1531 #ifdef DEBUG
1532 		log->l_iclog_bak[i] = &iclog->ic_header;
1533 #endif
1534 		head = &iclog->ic_header;
1535 		memset(head, 0, sizeof(xlog_rec_header_t));
1536 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537 		head->h_version = cpu_to_be32(
1538 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539 		head->h_size = cpu_to_be32(log->l_iclog_size);
1540 		/* new fields */
1541 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1542 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543 
1544 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545 		iclog->ic_state = XLOG_STATE_ACTIVE;
1546 		iclog->ic_log = log;
1547 		atomic_set(&iclog->ic_refcnt, 0);
1548 		spin_lock_init(&iclog->ic_callback_lock);
1549 		iclog->ic_callback_tail = &(iclog->ic_callback);
1550 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551 
1552 		init_waitqueue_head(&iclog->ic_force_wait);
1553 		init_waitqueue_head(&iclog->ic_write_wait);
1554 
1555 		iclogp = &iclog->ic_next;
1556 	}
1557 	*iclogp = log->l_iclog;			/* complete ring */
1558 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1559 
1560 	error = xlog_cil_init(log);
1561 	if (error)
1562 		goto out_free_iclog;
1563 	return log;
1564 
1565 out_free_iclog:
1566 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567 		prev_iclog = iclog->ic_next;
1568 		if (iclog->ic_bp)
1569 			xfs_buf_free(iclog->ic_bp);
1570 		kmem_free(iclog);
1571 	}
1572 	spinlock_destroy(&log->l_icloglock);
1573 	xfs_buf_free(log->l_xbuf);
1574 out_free_log:
1575 	kmem_free(log);
1576 out:
1577 	return ERR_PTR(error);
1578 }	/* xlog_alloc_log */
1579 
1580 
1581 /*
1582  * Write out the commit record of a transaction associated with the given
1583  * ticket.  Return the lsn of the commit record.
1584  */
1585 STATIC int
1586 xlog_commit_record(
1587 	struct xlog		*log,
1588 	struct xlog_ticket	*ticket,
1589 	struct xlog_in_core	**iclog,
1590 	xfs_lsn_t		*commitlsnp)
1591 {
1592 	struct xfs_mount *mp = log->l_mp;
1593 	int	error;
1594 	struct xfs_log_iovec reg = {
1595 		.i_addr = NULL,
1596 		.i_len = 0,
1597 		.i_type = XLOG_REG_TYPE_COMMIT,
1598 	};
1599 	struct xfs_log_vec vec = {
1600 		.lv_niovecs = 1,
1601 		.lv_iovecp = &reg,
1602 	};
1603 
1604 	ASSERT_ALWAYS(iclog);
1605 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606 					XLOG_COMMIT_TRANS);
1607 	if (error)
1608 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609 	return error;
1610 }
1611 
1612 /*
1613  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614  * log space.  This code pushes on the lsn which would supposedly free up
1615  * the 25% which we want to leave free.  We may need to adopt a policy which
1616  * pushes on an lsn which is further along in the log once we reach the high
1617  * water mark.  In this manner, we would be creating a low water mark.
1618  */
1619 STATIC void
1620 xlog_grant_push_ail(
1621 	struct xlog	*log,
1622 	int		need_bytes)
1623 {
1624 	xfs_lsn_t	threshold_lsn = 0;
1625 	xfs_lsn_t	last_sync_lsn;
1626 	int		free_blocks;
1627 	int		free_bytes;
1628 	int		threshold_block;
1629 	int		threshold_cycle;
1630 	int		free_threshold;
1631 
1632 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633 
1634 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635 	free_blocks = BTOBBT(free_bytes);
1636 
1637 	/*
1638 	 * Set the threshold for the minimum number of free blocks in the
1639 	 * log to the maximum of what the caller needs, one quarter of the
1640 	 * log, and 256 blocks.
1641 	 */
1642 	free_threshold = BTOBB(need_bytes);
1643 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644 	free_threshold = MAX(free_threshold, 256);
1645 	if (free_blocks >= free_threshold)
1646 		return;
1647 
1648 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649 						&threshold_block);
1650 	threshold_block += free_threshold;
1651 	if (threshold_block >= log->l_logBBsize) {
1652 		threshold_block -= log->l_logBBsize;
1653 		threshold_cycle += 1;
1654 	}
1655 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656 					threshold_block);
1657 	/*
1658 	 * Don't pass in an lsn greater than the lsn of the last
1659 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1660 	 * so that it doesn't change between the compare and the set.
1661 	 */
1662 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664 		threshold_lsn = last_sync_lsn;
1665 
1666 	/*
1667 	 * Get the transaction layer to kick the dirty buffers out to
1668 	 * disk asynchronously. No point in trying to do this if
1669 	 * the filesystem is shutting down.
1670 	 */
1671 	if (!XLOG_FORCED_SHUTDOWN(log))
1672 		xfs_ail_push(log->l_ailp, threshold_lsn);
1673 }
1674 
1675 /*
1676  * Stamp cycle number in every block
1677  */
1678 STATIC void
1679 xlog_pack_data(
1680 	struct xlog		*log,
1681 	struct xlog_in_core	*iclog,
1682 	int			roundoff)
1683 {
1684 	int			i, j, k;
1685 	int			size = iclog->ic_offset + roundoff;
1686 	__be32			cycle_lsn;
1687 	char			*dp;
1688 
1689 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690 
1691 	dp = iclog->ic_datap;
1692 	for (i = 0; i < BTOBB(size); i++) {
1693 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694 			break;
1695 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696 		*(__be32 *)dp = cycle_lsn;
1697 		dp += BBSIZE;
1698 	}
1699 
1700 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1702 
1703 		for ( ; i < BTOBB(size); i++) {
1704 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707 			*(__be32 *)dp = cycle_lsn;
1708 			dp += BBSIZE;
1709 		}
1710 
1711 		for (i = 1; i < log->l_iclog_heads; i++)
1712 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713 	}
1714 }
1715 
1716 /*
1717  * Calculate the checksum for a log buffer.
1718  *
1719  * This is a little more complicated than it should be because the various
1720  * headers and the actual data are non-contiguous.
1721  */
1722 __le32
1723 xlog_cksum(
1724 	struct xlog		*log,
1725 	struct xlog_rec_header	*rhead,
1726 	char			*dp,
1727 	int			size)
1728 {
1729 	uint32_t		crc;
1730 
1731 	/* first generate the crc for the record header ... */
1732 	crc = xfs_start_cksum_update((char *)rhead,
1733 			      sizeof(struct xlog_rec_header),
1734 			      offsetof(struct xlog_rec_header, h_crc));
1735 
1736 	/* ... then for additional cycle data for v2 logs ... */
1737 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739 		int		i;
1740 		int		xheads;
1741 
1742 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743 		if (size % XLOG_HEADER_CYCLE_SIZE)
1744 			xheads++;
1745 
1746 		for (i = 1; i < xheads; i++) {
1747 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1748 				     sizeof(struct xlog_rec_ext_header));
1749 		}
1750 	}
1751 
1752 	/* ... and finally for the payload */
1753 	crc = crc32c(crc, dp, size);
1754 
1755 	return xfs_end_cksum(crc);
1756 }
1757 
1758 /*
1759  * The bdstrat callback function for log bufs. This gives us a central
1760  * place to trap bufs in case we get hit by a log I/O error and need to
1761  * shutdown. Actually, in practice, even when we didn't get a log error,
1762  * we transition the iclogs to IOERROR state *after* flushing all existing
1763  * iclogs to disk. This is because we don't want anymore new transactions to be
1764  * started or completed afterwards.
1765  *
1766  * We lock the iclogbufs here so that we can serialise against IO completion
1767  * during unmount. We might be processing a shutdown triggered during unmount,
1768  * and that can occur asynchronously to the unmount thread, and hence we need to
1769  * ensure that completes before tearing down the iclogbufs. Hence we need to
1770  * hold the buffer lock across the log IO to acheive that.
1771  */
1772 STATIC int
1773 xlog_bdstrat(
1774 	struct xfs_buf		*bp)
1775 {
1776 	struct xlog_in_core	*iclog = bp->b_log_item;
1777 
1778 	xfs_buf_lock(bp);
1779 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780 		xfs_buf_ioerror(bp, -EIO);
1781 		xfs_buf_stale(bp);
1782 		xfs_buf_ioend(bp);
1783 		/*
1784 		 * It would seem logical to return EIO here, but we rely on
1785 		 * the log state machine to propagate I/O errors instead of
1786 		 * doing it here. Similarly, IO completion will unlock the
1787 		 * buffer, so we don't do it here.
1788 		 */
1789 		return 0;
1790 	}
1791 
1792 	xfs_buf_submit(bp);
1793 	return 0;
1794 }
1795 
1796 /*
1797  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1798  * fashion.  Previously, we should have moved the current iclog
1799  * ptr in the log to point to the next available iclog.  This allows further
1800  * write to continue while this code syncs out an iclog ready to go.
1801  * Before an in-core log can be written out, the data section must be scanned
1802  * to save away the 1st word of each BBSIZE block into the header.  We replace
1803  * it with the current cycle count.  Each BBSIZE block is tagged with the
1804  * cycle count because there in an implicit assumption that drives will
1805  * guarantee that entire 512 byte blocks get written at once.  In other words,
1806  * we can't have part of a 512 byte block written and part not written.  By
1807  * tagging each block, we will know which blocks are valid when recovering
1808  * after an unclean shutdown.
1809  *
1810  * This routine is single threaded on the iclog.  No other thread can be in
1811  * this routine with the same iclog.  Changing contents of iclog can there-
1812  * fore be done without grabbing the state machine lock.  Updating the global
1813  * log will require grabbing the lock though.
1814  *
1815  * The entire log manager uses a logical block numbering scheme.  Only
1816  * log_sync (and then only bwrite()) know about the fact that the log may
1817  * not start with block zero on a given device.  The log block start offset
1818  * is added immediately before calling bwrite().
1819  */
1820 
1821 STATIC int
1822 xlog_sync(
1823 	struct xlog		*log,
1824 	struct xlog_in_core	*iclog)
1825 {
1826 	xfs_buf_t	*bp;
1827 	int		i;
1828 	uint		count;		/* byte count of bwrite */
1829 	uint		count_init;	/* initial count before roundup */
1830 	int		roundoff;       /* roundoff to BB or stripe */
1831 	int		split = 0;	/* split write into two regions */
1832 	int		error;
1833 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834 	int		size;
1835 
1836 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1837 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838 
1839 	/* Add for LR header */
1840 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1841 
1842 	/* Round out the log write size */
1843 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844 		/* we have a v2 stripe unit to use */
1845 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846 	} else {
1847 		count = BBTOB(BTOBB(count_init));
1848 	}
1849 	roundoff = count - count_init;
1850 	ASSERT(roundoff >= 0);
1851 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1852                 roundoff < log->l_mp->m_sb.sb_logsunit)
1853 		||
1854 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1855 		 roundoff < BBTOB(1)));
1856 
1857 	/* move grant heads by roundoff in sync */
1858 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860 
1861 	/* put cycle number in every block */
1862 	xlog_pack_data(log, iclog, roundoff);
1863 
1864 	/* real byte length */
1865 	size = iclog->ic_offset;
1866 	if (v2)
1867 		size += roundoff;
1868 	iclog->ic_header.h_len = cpu_to_be32(size);
1869 
1870 	bp = iclog->ic_bp;
1871 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872 
1873 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874 
1875 	/* Do we need to split this write into 2 parts? */
1876 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877 		char		*dptr;
1878 
1879 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881 		iclog->ic_bwritecnt = 2;
1882 
1883 		/*
1884 		 * Bump the cycle numbers at the start of each block in the
1885 		 * part of the iclog that ends up in the buffer that gets
1886 		 * written to the start of the log.
1887 		 *
1888 		 * Watch out for the header magic number case, though.
1889 		 */
1890 		dptr = (char *)&iclog->ic_header + count;
1891 		for (i = 0; i < split; i += BBSIZE) {
1892 			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894 				cycle++;
1895 			*(__be32 *)dptr = cpu_to_be32(cycle);
1896 
1897 			dptr += BBSIZE;
1898 		}
1899 	} else {
1900 		iclog->ic_bwritecnt = 1;
1901 	}
1902 
1903 	/* calculcate the checksum */
1904 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905 					    iclog->ic_datap, size);
1906 	/*
1907 	 * Intentionally corrupt the log record CRC based on the error injection
1908 	 * frequency, if defined. This facilitates testing log recovery in the
1909 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1910 	 * write on I/O completion and shutdown the fs. The subsequent mount
1911 	 * detects the bad CRC and attempts to recover.
1912 	 */
1913 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915 		iclog->ic_state |= XLOG_STATE_IOABORT;
1916 		xfs_warn(log->l_mp,
1917 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918 			 be64_to_cpu(iclog->ic_header.h_lsn));
1919 	}
1920 
1921 	bp->b_io_length = BTOBB(count);
1922 	bp->b_log_item = iclog;
1923 	bp->b_flags &= ~XBF_FLUSH;
1924 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925 
1926 	/*
1927 	 * Flush the data device before flushing the log to make sure all meta
1928 	 * data written back from the AIL actually made it to disk before
1929 	 * stamping the new log tail LSN into the log buffer.  For an external
1930 	 * log we need to issue the flush explicitly, and unfortunately
1931 	 * synchronously here; for an internal log we can simply use the block
1932 	 * layer state machine for preflushes.
1933 	 */
1934 	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936 	else
1937 		bp->b_flags |= XBF_FLUSH;
1938 
1939 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941 
1942 	xlog_verify_iclog(log, iclog, count, true);
1943 
1944 	/* account for log which doesn't start at block #0 */
1945 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946 
1947 	/*
1948 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949 	 * is shutting down.
1950 	 */
1951 	error = xlog_bdstrat(bp);
1952 	if (error) {
1953 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1954 		return error;
1955 	}
1956 	if (split) {
1957 		bp = iclog->ic_log->l_xbuf;
1958 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1959 		xfs_buf_associate_memory(bp,
1960 				(char *)&iclog->ic_header + count, split);
1961 		bp->b_log_item = iclog;
1962 		bp->b_flags &= ~XBF_FLUSH;
1963 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1964 
1965 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967 
1968 		/* account for internal log which doesn't start at block #0 */
1969 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1970 		error = xlog_bdstrat(bp);
1971 		if (error) {
1972 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973 			return error;
1974 		}
1975 	}
1976 	return 0;
1977 }	/* xlog_sync */
1978 
1979 /*
1980  * Deallocate a log structure
1981  */
1982 STATIC void
1983 xlog_dealloc_log(
1984 	struct xlog	*log)
1985 {
1986 	xlog_in_core_t	*iclog, *next_iclog;
1987 	int		i;
1988 
1989 	xlog_cil_destroy(log);
1990 
1991 	/*
1992 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1993 	 * is done before we tear down these buffers.
1994 	 */
1995 	iclog = log->l_iclog;
1996 	for (i = 0; i < log->l_iclog_bufs; i++) {
1997 		xfs_buf_lock(iclog->ic_bp);
1998 		xfs_buf_unlock(iclog->ic_bp);
1999 		iclog = iclog->ic_next;
2000 	}
2001 
2002 	/*
2003 	 * Always need to ensure that the extra buffer does not point to memory
2004 	 * owned by another log buffer before we free it. Also, cycle the lock
2005 	 * first to ensure we've completed IO on it.
2006 	 */
2007 	xfs_buf_lock(log->l_xbuf);
2008 	xfs_buf_unlock(log->l_xbuf);
2009 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010 	xfs_buf_free(log->l_xbuf);
2011 
2012 	iclog = log->l_iclog;
2013 	for (i = 0; i < log->l_iclog_bufs; i++) {
2014 		xfs_buf_free(iclog->ic_bp);
2015 		next_iclog = iclog->ic_next;
2016 		kmem_free(iclog);
2017 		iclog = next_iclog;
2018 	}
2019 	spinlock_destroy(&log->l_icloglock);
2020 
2021 	log->l_mp->m_log = NULL;
2022 	kmem_free(log);
2023 }	/* xlog_dealloc_log */
2024 
2025 /*
2026  * Update counters atomically now that memcpy is done.
2027  */
2028 /* ARGSUSED */
2029 static inline void
2030 xlog_state_finish_copy(
2031 	struct xlog		*log,
2032 	struct xlog_in_core	*iclog,
2033 	int			record_cnt,
2034 	int			copy_bytes)
2035 {
2036 	spin_lock(&log->l_icloglock);
2037 
2038 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039 	iclog->ic_offset += copy_bytes;
2040 
2041 	spin_unlock(&log->l_icloglock);
2042 }	/* xlog_state_finish_copy */
2043 
2044 
2045 
2046 
2047 /*
2048  * print out info relating to regions written which consume
2049  * the reservation
2050  */
2051 void
2052 xlog_print_tic_res(
2053 	struct xfs_mount	*mp,
2054 	struct xlog_ticket	*ticket)
2055 {
2056 	uint i;
2057 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058 
2059 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2061 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062 	    REG_TYPE_STR(BFORMAT, "bformat"),
2063 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2064 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066 	    REG_TYPE_STR(IFORMAT, "iformat"),
2067 	    REG_TYPE_STR(ICORE, "icore"),
2068 	    REG_TYPE_STR(IEXT, "iext"),
2069 	    REG_TYPE_STR(IBROOT, "ibroot"),
2070 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2071 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074 	    REG_TYPE_STR(QFORMAT, "qformat"),
2075 	    REG_TYPE_STR(DQUOT, "dquot"),
2076 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077 	    REG_TYPE_STR(LRHEADER, "LR header"),
2078 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2079 	    REG_TYPE_STR(COMMIT, "commit"),
2080 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2081 	    REG_TYPE_STR(ICREATE, "inode create")
2082 	};
2083 #undef REG_TYPE_STR
2084 
2085 	xfs_warn(mp, "ticket reservation summary:");
2086 	xfs_warn(mp, "  unit res    = %d bytes",
2087 		 ticket->t_unit_res);
2088 	xfs_warn(mp, "  current res = %d bytes",
2089 		 ticket->t_curr_res);
2090 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2091 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2093 		 ticket->t_res_num_ophdrs, ophdr_spc);
2094 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2095 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096 	xfs_warn(mp, "  num regions = %u",
2097 		 ticket->t_res_num);
2098 
2099 	for (i = 0; i < ticket->t_res_num; i++) {
2100 		uint r_type = ticket->t_res_arr[i].r_type;
2101 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103 			    "bad-rtype" : res_type_str[r_type]),
2104 			    ticket->t_res_arr[i].r_len);
2105 	}
2106 }
2107 
2108 /*
2109  * Print a summary of the transaction.
2110  */
2111 void
2112 xlog_print_trans(
2113 	struct xfs_trans		*tp)
2114 {
2115 	struct xfs_mount		*mp = tp->t_mountp;
2116 	struct xfs_log_item_desc	*lidp;
2117 
2118 	/* dump core transaction and ticket info */
2119 	xfs_warn(mp, "transaction summary:");
2120 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2121 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2122 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2123 
2124 	xlog_print_tic_res(mp, tp->t_ticket);
2125 
2126 	/* dump each log item */
2127 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2128 		struct xfs_log_item	*lip = lidp->lid_item;
2129 		struct xfs_log_vec	*lv = lip->li_lv;
2130 		struct xfs_log_iovec	*vec;
2131 		int			i;
2132 
2133 		xfs_warn(mp, "log item: ");
2134 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2135 		xfs_warn(mp, "  flags	= 0x%x", lip->li_flags);
2136 		if (!lv)
2137 			continue;
2138 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2139 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2140 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2141 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2142 
2143 		/* dump each iovec for the log item */
2144 		vec = lv->lv_iovecp;
2145 		for (i = 0; i < lv->lv_niovecs; i++) {
2146 			int dumplen = min(vec->i_len, 32);
2147 
2148 			xfs_warn(mp, "  iovec[%d]", i);
2149 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2150 			xfs_warn(mp, "    len	= %d", vec->i_len);
2151 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2152 			xfs_hex_dump(vec->i_addr, dumplen);
2153 
2154 			vec++;
2155 		}
2156 	}
2157 }
2158 
2159 /*
2160  * Calculate the potential space needed by the log vector.  Each region gets
2161  * its own xlog_op_header_t and may need to be double word aligned.
2162  */
2163 static int
2164 xlog_write_calc_vec_length(
2165 	struct xlog_ticket	*ticket,
2166 	struct xfs_log_vec	*log_vector)
2167 {
2168 	struct xfs_log_vec	*lv;
2169 	int			headers = 0;
2170 	int			len = 0;
2171 	int			i;
2172 
2173 	/* acct for start rec of xact */
2174 	if (ticket->t_flags & XLOG_TIC_INITED)
2175 		headers++;
2176 
2177 	for (lv = log_vector; lv; lv = lv->lv_next) {
2178 		/* we don't write ordered log vectors */
2179 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2180 			continue;
2181 
2182 		headers += lv->lv_niovecs;
2183 
2184 		for (i = 0; i < lv->lv_niovecs; i++) {
2185 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2186 
2187 			len += vecp->i_len;
2188 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2189 		}
2190 	}
2191 
2192 	ticket->t_res_num_ophdrs += headers;
2193 	len += headers * sizeof(struct xlog_op_header);
2194 
2195 	return len;
2196 }
2197 
2198 /*
2199  * If first write for transaction, insert start record  We can't be trying to
2200  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2201  */
2202 static int
2203 xlog_write_start_rec(
2204 	struct xlog_op_header	*ophdr,
2205 	struct xlog_ticket	*ticket)
2206 {
2207 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2208 		return 0;
2209 
2210 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2211 	ophdr->oh_clientid = ticket->t_clientid;
2212 	ophdr->oh_len = 0;
2213 	ophdr->oh_flags = XLOG_START_TRANS;
2214 	ophdr->oh_res2 = 0;
2215 
2216 	ticket->t_flags &= ~XLOG_TIC_INITED;
2217 
2218 	return sizeof(struct xlog_op_header);
2219 }
2220 
2221 static xlog_op_header_t *
2222 xlog_write_setup_ophdr(
2223 	struct xlog		*log,
2224 	struct xlog_op_header	*ophdr,
2225 	struct xlog_ticket	*ticket,
2226 	uint			flags)
2227 {
2228 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2229 	ophdr->oh_clientid = ticket->t_clientid;
2230 	ophdr->oh_res2 = 0;
2231 
2232 	/* are we copying a commit or unmount record? */
2233 	ophdr->oh_flags = flags;
2234 
2235 	/*
2236 	 * We've seen logs corrupted with bad transaction client ids.  This
2237 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2238 	 * and shut down the filesystem.
2239 	 */
2240 	switch (ophdr->oh_clientid)  {
2241 	case XFS_TRANSACTION:
2242 	case XFS_VOLUME:
2243 	case XFS_LOG:
2244 		break;
2245 	default:
2246 		xfs_warn(log->l_mp,
2247 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2248 			ophdr->oh_clientid, ticket);
2249 		return NULL;
2250 	}
2251 
2252 	return ophdr;
2253 }
2254 
2255 /*
2256  * Set up the parameters of the region copy into the log. This has
2257  * to handle region write split across multiple log buffers - this
2258  * state is kept external to this function so that this code can
2259  * be written in an obvious, self documenting manner.
2260  */
2261 static int
2262 xlog_write_setup_copy(
2263 	struct xlog_ticket	*ticket,
2264 	struct xlog_op_header	*ophdr,
2265 	int			space_available,
2266 	int			space_required,
2267 	int			*copy_off,
2268 	int			*copy_len,
2269 	int			*last_was_partial_copy,
2270 	int			*bytes_consumed)
2271 {
2272 	int			still_to_copy;
2273 
2274 	still_to_copy = space_required - *bytes_consumed;
2275 	*copy_off = *bytes_consumed;
2276 
2277 	if (still_to_copy <= space_available) {
2278 		/* write of region completes here */
2279 		*copy_len = still_to_copy;
2280 		ophdr->oh_len = cpu_to_be32(*copy_len);
2281 		if (*last_was_partial_copy)
2282 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2283 		*last_was_partial_copy = 0;
2284 		*bytes_consumed = 0;
2285 		return 0;
2286 	}
2287 
2288 	/* partial write of region, needs extra log op header reservation */
2289 	*copy_len = space_available;
2290 	ophdr->oh_len = cpu_to_be32(*copy_len);
2291 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2292 	if (*last_was_partial_copy)
2293 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2294 	*bytes_consumed += *copy_len;
2295 	(*last_was_partial_copy)++;
2296 
2297 	/* account for new log op header */
2298 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2299 	ticket->t_res_num_ophdrs++;
2300 
2301 	return sizeof(struct xlog_op_header);
2302 }
2303 
2304 static int
2305 xlog_write_copy_finish(
2306 	struct xlog		*log,
2307 	struct xlog_in_core	*iclog,
2308 	uint			flags,
2309 	int			*record_cnt,
2310 	int			*data_cnt,
2311 	int			*partial_copy,
2312 	int			*partial_copy_len,
2313 	int			log_offset,
2314 	struct xlog_in_core	**commit_iclog)
2315 {
2316 	if (*partial_copy) {
2317 		/*
2318 		 * This iclog has already been marked WANT_SYNC by
2319 		 * xlog_state_get_iclog_space.
2320 		 */
2321 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2322 		*record_cnt = 0;
2323 		*data_cnt = 0;
2324 		return xlog_state_release_iclog(log, iclog);
2325 	}
2326 
2327 	*partial_copy = 0;
2328 	*partial_copy_len = 0;
2329 
2330 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2331 		/* no more space in this iclog - push it. */
2332 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2333 		*record_cnt = 0;
2334 		*data_cnt = 0;
2335 
2336 		spin_lock(&log->l_icloglock);
2337 		xlog_state_want_sync(log, iclog);
2338 		spin_unlock(&log->l_icloglock);
2339 
2340 		if (!commit_iclog)
2341 			return xlog_state_release_iclog(log, iclog);
2342 		ASSERT(flags & XLOG_COMMIT_TRANS);
2343 		*commit_iclog = iclog;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Write some region out to in-core log
2351  *
2352  * This will be called when writing externally provided regions or when
2353  * writing out a commit record for a given transaction.
2354  *
2355  * General algorithm:
2356  *	1. Find total length of this write.  This may include adding to the
2357  *		lengths passed in.
2358  *	2. Check whether we violate the tickets reservation.
2359  *	3. While writing to this iclog
2360  *	    A. Reserve as much space in this iclog as can get
2361  *	    B. If this is first write, save away start lsn
2362  *	    C. While writing this region:
2363  *		1. If first write of transaction, write start record
2364  *		2. Write log operation header (header per region)
2365  *		3. Find out if we can fit entire region into this iclog
2366  *		4. Potentially, verify destination memcpy ptr
2367  *		5. Memcpy (partial) region
2368  *		6. If partial copy, release iclog; otherwise, continue
2369  *			copying more regions into current iclog
2370  *	4. Mark want sync bit (in simulation mode)
2371  *	5. Release iclog for potential flush to on-disk log.
2372  *
2373  * ERRORS:
2374  * 1.	Panic if reservation is overrun.  This should never happen since
2375  *	reservation amounts are generated internal to the filesystem.
2376  * NOTES:
2377  * 1. Tickets are single threaded data structures.
2378  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2379  *	syncing routine.  When a single log_write region needs to span
2380  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2381  *	on all log operation writes which don't contain the end of the
2382  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2383  *	operation which contains the end of the continued log_write region.
2384  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2385  *	we don't really know exactly how much space will be used.  As a result,
2386  *	we don't update ic_offset until the end when we know exactly how many
2387  *	bytes have been written out.
2388  */
2389 int
2390 xlog_write(
2391 	struct xlog		*log,
2392 	struct xfs_log_vec	*log_vector,
2393 	struct xlog_ticket	*ticket,
2394 	xfs_lsn_t		*start_lsn,
2395 	struct xlog_in_core	**commit_iclog,
2396 	uint			flags)
2397 {
2398 	struct xlog_in_core	*iclog = NULL;
2399 	struct xfs_log_iovec	*vecp;
2400 	struct xfs_log_vec	*lv;
2401 	int			len;
2402 	int			index;
2403 	int			partial_copy = 0;
2404 	int			partial_copy_len = 0;
2405 	int			contwr = 0;
2406 	int			record_cnt = 0;
2407 	int			data_cnt = 0;
2408 	int			error;
2409 
2410 	*start_lsn = 0;
2411 
2412 	len = xlog_write_calc_vec_length(ticket, log_vector);
2413 
2414 	/*
2415 	 * Region headers and bytes are already accounted for.
2416 	 * We only need to take into account start records and
2417 	 * split regions in this function.
2418 	 */
2419 	if (ticket->t_flags & XLOG_TIC_INITED)
2420 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2421 
2422 	/*
2423 	 * Commit record headers need to be accounted for. These
2424 	 * come in as separate writes so are easy to detect.
2425 	 */
2426 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2427 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2428 
2429 	if (ticket->t_curr_res < 0) {
2430 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2431 		     "ctx ticket reservation ran out. Need to up reservation");
2432 		xlog_print_tic_res(log->l_mp, ticket);
2433 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2434 	}
2435 
2436 	index = 0;
2437 	lv = log_vector;
2438 	vecp = lv->lv_iovecp;
2439 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2440 		void		*ptr;
2441 		int		log_offset;
2442 
2443 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2444 						   &contwr, &log_offset);
2445 		if (error)
2446 			return error;
2447 
2448 		ASSERT(log_offset <= iclog->ic_size - 1);
2449 		ptr = iclog->ic_datap + log_offset;
2450 
2451 		/* start_lsn is the first lsn written to. That's all we need. */
2452 		if (!*start_lsn)
2453 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2454 
2455 		/*
2456 		 * This loop writes out as many regions as can fit in the amount
2457 		 * of space which was allocated by xlog_state_get_iclog_space().
2458 		 */
2459 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2460 			struct xfs_log_iovec	*reg;
2461 			struct xlog_op_header	*ophdr;
2462 			int			start_rec_copy;
2463 			int			copy_len;
2464 			int			copy_off;
2465 			bool			ordered = false;
2466 
2467 			/* ordered log vectors have no regions to write */
2468 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2469 				ASSERT(lv->lv_niovecs == 0);
2470 				ordered = true;
2471 				goto next_lv;
2472 			}
2473 
2474 			reg = &vecp[index];
2475 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2476 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2477 
2478 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2479 			if (start_rec_copy) {
2480 				record_cnt++;
2481 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2482 						   start_rec_copy);
2483 			}
2484 
2485 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2486 			if (!ophdr)
2487 				return -EIO;
2488 
2489 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2490 					   sizeof(struct xlog_op_header));
2491 
2492 			len += xlog_write_setup_copy(ticket, ophdr,
2493 						     iclog->ic_size-log_offset,
2494 						     reg->i_len,
2495 						     &copy_off, &copy_len,
2496 						     &partial_copy,
2497 						     &partial_copy_len);
2498 			xlog_verify_dest_ptr(log, ptr);
2499 
2500 			/*
2501 			 * Copy region.
2502 			 *
2503 			 * Unmount records just log an opheader, so can have
2504 			 * empty payloads with no data region to copy. Hence we
2505 			 * only copy the payload if the vector says it has data
2506 			 * to copy.
2507 			 */
2508 			ASSERT(copy_len >= 0);
2509 			if (copy_len > 0) {
2510 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2511 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2512 						   copy_len);
2513 			}
2514 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2515 			record_cnt++;
2516 			data_cnt += contwr ? copy_len : 0;
2517 
2518 			error = xlog_write_copy_finish(log, iclog, flags,
2519 						       &record_cnt, &data_cnt,
2520 						       &partial_copy,
2521 						       &partial_copy_len,
2522 						       log_offset,
2523 						       commit_iclog);
2524 			if (error)
2525 				return error;
2526 
2527 			/*
2528 			 * if we had a partial copy, we need to get more iclog
2529 			 * space but we don't want to increment the region
2530 			 * index because there is still more is this region to
2531 			 * write.
2532 			 *
2533 			 * If we completed writing this region, and we flushed
2534 			 * the iclog (indicated by resetting of the record
2535 			 * count), then we also need to get more log space. If
2536 			 * this was the last record, though, we are done and
2537 			 * can just return.
2538 			 */
2539 			if (partial_copy)
2540 				break;
2541 
2542 			if (++index == lv->lv_niovecs) {
2543 next_lv:
2544 				lv = lv->lv_next;
2545 				index = 0;
2546 				if (lv)
2547 					vecp = lv->lv_iovecp;
2548 			}
2549 			if (record_cnt == 0 && !ordered) {
2550 				if (!lv)
2551 					return 0;
2552 				break;
2553 			}
2554 		}
2555 	}
2556 
2557 	ASSERT(len == 0);
2558 
2559 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2560 	if (!commit_iclog)
2561 		return xlog_state_release_iclog(log, iclog);
2562 
2563 	ASSERT(flags & XLOG_COMMIT_TRANS);
2564 	*commit_iclog = iclog;
2565 	return 0;
2566 }
2567 
2568 
2569 /*****************************************************************************
2570  *
2571  *		State Machine functions
2572  *
2573  *****************************************************************************
2574  */
2575 
2576 /* Clean iclogs starting from the head.  This ordering must be
2577  * maintained, so an iclog doesn't become ACTIVE beyond one that
2578  * is SYNCING.  This is also required to maintain the notion that we use
2579  * a ordered wait queue to hold off would be writers to the log when every
2580  * iclog is trying to sync to disk.
2581  *
2582  * State Change: DIRTY -> ACTIVE
2583  */
2584 STATIC void
2585 xlog_state_clean_log(
2586 	struct xlog *log)
2587 {
2588 	xlog_in_core_t	*iclog;
2589 	int changed = 0;
2590 
2591 	iclog = log->l_iclog;
2592 	do {
2593 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2594 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2595 			iclog->ic_offset       = 0;
2596 			ASSERT(iclog->ic_callback == NULL);
2597 			/*
2598 			 * If the number of ops in this iclog indicate it just
2599 			 * contains the dummy transaction, we can
2600 			 * change state into IDLE (the second time around).
2601 			 * Otherwise we should change the state into
2602 			 * NEED a dummy.
2603 			 * We don't need to cover the dummy.
2604 			 */
2605 			if (!changed &&
2606 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2607 			   		XLOG_COVER_OPS)) {
2608 				changed = 1;
2609 			} else {
2610 				/*
2611 				 * We have two dirty iclogs so start over
2612 				 * This could also be num of ops indicates
2613 				 * this is not the dummy going out.
2614 				 */
2615 				changed = 2;
2616 			}
2617 			iclog->ic_header.h_num_logops = 0;
2618 			memset(iclog->ic_header.h_cycle_data, 0,
2619 			      sizeof(iclog->ic_header.h_cycle_data));
2620 			iclog->ic_header.h_lsn = 0;
2621 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2622 			/* do nothing */;
2623 		else
2624 			break;	/* stop cleaning */
2625 		iclog = iclog->ic_next;
2626 	} while (iclog != log->l_iclog);
2627 
2628 	/* log is locked when we are called */
2629 	/*
2630 	 * Change state for the dummy log recording.
2631 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2632 	 * we are done writing the dummy record.
2633 	 * If we are done with the second dummy recored (DONE2), then
2634 	 * we go to IDLE.
2635 	 */
2636 	if (changed) {
2637 		switch (log->l_covered_state) {
2638 		case XLOG_STATE_COVER_IDLE:
2639 		case XLOG_STATE_COVER_NEED:
2640 		case XLOG_STATE_COVER_NEED2:
2641 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2642 			break;
2643 
2644 		case XLOG_STATE_COVER_DONE:
2645 			if (changed == 1)
2646 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2647 			else
2648 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2649 			break;
2650 
2651 		case XLOG_STATE_COVER_DONE2:
2652 			if (changed == 1)
2653 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2654 			else
2655 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2656 			break;
2657 
2658 		default:
2659 			ASSERT(0);
2660 		}
2661 	}
2662 }	/* xlog_state_clean_log */
2663 
2664 STATIC xfs_lsn_t
2665 xlog_get_lowest_lsn(
2666 	struct xlog	*log)
2667 {
2668 	xlog_in_core_t  *lsn_log;
2669 	xfs_lsn_t	lowest_lsn, lsn;
2670 
2671 	lsn_log = log->l_iclog;
2672 	lowest_lsn = 0;
2673 	do {
2674 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2675 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2676 		if ((lsn && !lowest_lsn) ||
2677 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2678 			lowest_lsn = lsn;
2679 		}
2680 	    }
2681 	    lsn_log = lsn_log->ic_next;
2682 	} while (lsn_log != log->l_iclog);
2683 	return lowest_lsn;
2684 }
2685 
2686 
2687 STATIC void
2688 xlog_state_do_callback(
2689 	struct xlog		*log,
2690 	int			aborted,
2691 	struct xlog_in_core	*ciclog)
2692 {
2693 	xlog_in_core_t	   *iclog;
2694 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2695 						 * processed all iclogs once */
2696 	xfs_log_callback_t *cb, *cb_next;
2697 	int		   flushcnt = 0;
2698 	xfs_lsn_t	   lowest_lsn;
2699 	int		   ioerrors;	/* counter: iclogs with errors */
2700 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2701 	int		   funcdidcallbacks; /* flag: function did callbacks */
2702 	int		   repeats;	/* for issuing console warnings if
2703 					 * looping too many times */
2704 	int		   wake = 0;
2705 
2706 	spin_lock(&log->l_icloglock);
2707 	first_iclog = iclog = log->l_iclog;
2708 	ioerrors = 0;
2709 	funcdidcallbacks = 0;
2710 	repeats = 0;
2711 
2712 	do {
2713 		/*
2714 		 * Scan all iclogs starting with the one pointed to by the
2715 		 * log.  Reset this starting point each time the log is
2716 		 * unlocked (during callbacks).
2717 		 *
2718 		 * Keep looping through iclogs until one full pass is made
2719 		 * without running any callbacks.
2720 		 */
2721 		first_iclog = log->l_iclog;
2722 		iclog = log->l_iclog;
2723 		loopdidcallbacks = 0;
2724 		repeats++;
2725 
2726 		do {
2727 
2728 			/* skip all iclogs in the ACTIVE & DIRTY states */
2729 			if (iclog->ic_state &
2730 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2731 				iclog = iclog->ic_next;
2732 				continue;
2733 			}
2734 
2735 			/*
2736 			 * Between marking a filesystem SHUTDOWN and stopping
2737 			 * the log, we do flush all iclogs to disk (if there
2738 			 * wasn't a log I/O error). So, we do want things to
2739 			 * go smoothly in case of just a SHUTDOWN  w/o a
2740 			 * LOG_IO_ERROR.
2741 			 */
2742 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2743 				/*
2744 				 * Can only perform callbacks in order.  Since
2745 				 * this iclog is not in the DONE_SYNC/
2746 				 * DO_CALLBACK state, we skip the rest and
2747 				 * just try to clean up.  If we set our iclog
2748 				 * to DO_CALLBACK, we will not process it when
2749 				 * we retry since a previous iclog is in the
2750 				 * CALLBACK and the state cannot change since
2751 				 * we are holding the l_icloglock.
2752 				 */
2753 				if (!(iclog->ic_state &
2754 					(XLOG_STATE_DONE_SYNC |
2755 						 XLOG_STATE_DO_CALLBACK))) {
2756 					if (ciclog && (ciclog->ic_state ==
2757 							XLOG_STATE_DONE_SYNC)) {
2758 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2759 					}
2760 					break;
2761 				}
2762 				/*
2763 				 * We now have an iclog that is in either the
2764 				 * DO_CALLBACK or DONE_SYNC states. The other
2765 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2766 				 * caught by the above if and are going to
2767 				 * clean (i.e. we aren't doing their callbacks)
2768 				 * see the above if.
2769 				 */
2770 
2771 				/*
2772 				 * We will do one more check here to see if we
2773 				 * have chased our tail around.
2774 				 */
2775 
2776 				lowest_lsn = xlog_get_lowest_lsn(log);
2777 				if (lowest_lsn &&
2778 				    XFS_LSN_CMP(lowest_lsn,
2779 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2780 					iclog = iclog->ic_next;
2781 					continue; /* Leave this iclog for
2782 						   * another thread */
2783 				}
2784 
2785 				iclog->ic_state = XLOG_STATE_CALLBACK;
2786 
2787 
2788 				/*
2789 				 * Completion of a iclog IO does not imply that
2790 				 * a transaction has completed, as transactions
2791 				 * can be large enough to span many iclogs. We
2792 				 * cannot change the tail of the log half way
2793 				 * through a transaction as this may be the only
2794 				 * transaction in the log and moving th etail to
2795 				 * point to the middle of it will prevent
2796 				 * recovery from finding the start of the
2797 				 * transaction. Hence we should only update the
2798 				 * last_sync_lsn if this iclog contains
2799 				 * transaction completion callbacks on it.
2800 				 *
2801 				 * We have to do this before we drop the
2802 				 * icloglock to ensure we are the only one that
2803 				 * can update it.
2804 				 */
2805 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2806 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2807 				if (iclog->ic_callback)
2808 					atomic64_set(&log->l_last_sync_lsn,
2809 						be64_to_cpu(iclog->ic_header.h_lsn));
2810 
2811 			} else
2812 				ioerrors++;
2813 
2814 			spin_unlock(&log->l_icloglock);
2815 
2816 			/*
2817 			 * Keep processing entries in the callback list until
2818 			 * we come around and it is empty.  We need to
2819 			 * atomically see that the list is empty and change the
2820 			 * state to DIRTY so that we don't miss any more
2821 			 * callbacks being added.
2822 			 */
2823 			spin_lock(&iclog->ic_callback_lock);
2824 			cb = iclog->ic_callback;
2825 			while (cb) {
2826 				iclog->ic_callback_tail = &(iclog->ic_callback);
2827 				iclog->ic_callback = NULL;
2828 				spin_unlock(&iclog->ic_callback_lock);
2829 
2830 				/* perform callbacks in the order given */
2831 				for (; cb; cb = cb_next) {
2832 					cb_next = cb->cb_next;
2833 					cb->cb_func(cb->cb_arg, aborted);
2834 				}
2835 				spin_lock(&iclog->ic_callback_lock);
2836 				cb = iclog->ic_callback;
2837 			}
2838 
2839 			loopdidcallbacks++;
2840 			funcdidcallbacks++;
2841 
2842 			spin_lock(&log->l_icloglock);
2843 			ASSERT(iclog->ic_callback == NULL);
2844 			spin_unlock(&iclog->ic_callback_lock);
2845 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2846 				iclog->ic_state = XLOG_STATE_DIRTY;
2847 
2848 			/*
2849 			 * Transition from DIRTY to ACTIVE if applicable.
2850 			 * NOP if STATE_IOERROR.
2851 			 */
2852 			xlog_state_clean_log(log);
2853 
2854 			/* wake up threads waiting in xfs_log_force() */
2855 			wake_up_all(&iclog->ic_force_wait);
2856 
2857 			iclog = iclog->ic_next;
2858 		} while (first_iclog != iclog);
2859 
2860 		if (repeats > 5000) {
2861 			flushcnt += repeats;
2862 			repeats = 0;
2863 			xfs_warn(log->l_mp,
2864 				"%s: possible infinite loop (%d iterations)",
2865 				__func__, flushcnt);
2866 		}
2867 	} while (!ioerrors && loopdidcallbacks);
2868 
2869 #ifdef DEBUG
2870 	/*
2871 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2872 	 * If the above loop finds an iclog earlier than the current iclog and
2873 	 * in one of the syncing states, the current iclog is put into
2874 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2875 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2876 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2877 	 * states.
2878 	 *
2879 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2880 	 * for ic_state == SYNCING.
2881 	 */
2882 	if (funcdidcallbacks) {
2883 		first_iclog = iclog = log->l_iclog;
2884 		do {
2885 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2886 			/*
2887 			 * Terminate the loop if iclogs are found in states
2888 			 * which will cause other threads to clean up iclogs.
2889 			 *
2890 			 * SYNCING - i/o completion will go through logs
2891 			 * DONE_SYNC - interrupt thread should be waiting for
2892 			 *              l_icloglock
2893 			 * IOERROR - give up hope all ye who enter here
2894 			 */
2895 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2896 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2897 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2898 			    iclog->ic_state == XLOG_STATE_IOERROR )
2899 				break;
2900 			iclog = iclog->ic_next;
2901 		} while (first_iclog != iclog);
2902 	}
2903 #endif
2904 
2905 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2906 		wake = 1;
2907 	spin_unlock(&log->l_icloglock);
2908 
2909 	if (wake)
2910 		wake_up_all(&log->l_flush_wait);
2911 }
2912 
2913 
2914 /*
2915  * Finish transitioning this iclog to the dirty state.
2916  *
2917  * Make sure that we completely execute this routine only when this is
2918  * the last call to the iclog.  There is a good chance that iclog flushes,
2919  * when we reach the end of the physical log, get turned into 2 separate
2920  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2921  * routine.  By using the reference count bwritecnt, we guarantee that only
2922  * the second completion goes through.
2923  *
2924  * Callbacks could take time, so they are done outside the scope of the
2925  * global state machine log lock.
2926  */
2927 STATIC void
2928 xlog_state_done_syncing(
2929 	xlog_in_core_t	*iclog,
2930 	int		aborted)
2931 {
2932 	struct xlog	   *log = iclog->ic_log;
2933 
2934 	spin_lock(&log->l_icloglock);
2935 
2936 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2937 	       iclog->ic_state == XLOG_STATE_IOERROR);
2938 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2939 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2940 
2941 
2942 	/*
2943 	 * If we got an error, either on the first buffer, or in the case of
2944 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2945 	 * and none should ever be attempted to be written to disk
2946 	 * again.
2947 	 */
2948 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2949 		if (--iclog->ic_bwritecnt == 1) {
2950 			spin_unlock(&log->l_icloglock);
2951 			return;
2952 		}
2953 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2954 	}
2955 
2956 	/*
2957 	 * Someone could be sleeping prior to writing out the next
2958 	 * iclog buffer, we wake them all, one will get to do the
2959 	 * I/O, the others get to wait for the result.
2960 	 */
2961 	wake_up_all(&iclog->ic_write_wait);
2962 	spin_unlock(&log->l_icloglock);
2963 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2964 }	/* xlog_state_done_syncing */
2965 
2966 
2967 /*
2968  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2969  * sleep.  We wait on the flush queue on the head iclog as that should be
2970  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2971  * we will wait here and all new writes will sleep until a sync completes.
2972  *
2973  * The in-core logs are used in a circular fashion. They are not used
2974  * out-of-order even when an iclog past the head is free.
2975  *
2976  * return:
2977  *	* log_offset where xlog_write() can start writing into the in-core
2978  *		log's data space.
2979  *	* in-core log pointer to which xlog_write() should write.
2980  *	* boolean indicating this is a continued write to an in-core log.
2981  *		If this is the last write, then the in-core log's offset field
2982  *		needs to be incremented, depending on the amount of data which
2983  *		is copied.
2984  */
2985 STATIC int
2986 xlog_state_get_iclog_space(
2987 	struct xlog		*log,
2988 	int			len,
2989 	struct xlog_in_core	**iclogp,
2990 	struct xlog_ticket	*ticket,
2991 	int			*continued_write,
2992 	int			*logoffsetp)
2993 {
2994 	int		  log_offset;
2995 	xlog_rec_header_t *head;
2996 	xlog_in_core_t	  *iclog;
2997 	int		  error;
2998 
2999 restart:
3000 	spin_lock(&log->l_icloglock);
3001 	if (XLOG_FORCED_SHUTDOWN(log)) {
3002 		spin_unlock(&log->l_icloglock);
3003 		return -EIO;
3004 	}
3005 
3006 	iclog = log->l_iclog;
3007 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3008 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3009 
3010 		/* Wait for log writes to have flushed */
3011 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3012 		goto restart;
3013 	}
3014 
3015 	head = &iclog->ic_header;
3016 
3017 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3018 	log_offset = iclog->ic_offset;
3019 
3020 	/* On the 1st write to an iclog, figure out lsn.  This works
3021 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3022 	 * committing to.  If the offset is set, that's how many blocks
3023 	 * must be written.
3024 	 */
3025 	if (log_offset == 0) {
3026 		ticket->t_curr_res -= log->l_iclog_hsize;
3027 		xlog_tic_add_region(ticket,
3028 				    log->l_iclog_hsize,
3029 				    XLOG_REG_TYPE_LRHEADER);
3030 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3031 		head->h_lsn = cpu_to_be64(
3032 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3033 		ASSERT(log->l_curr_block >= 0);
3034 	}
3035 
3036 	/* If there is enough room to write everything, then do it.  Otherwise,
3037 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3038 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3039 	 * until you know exactly how many bytes get copied.  Therefore, wait
3040 	 * until later to update ic_offset.
3041 	 *
3042 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3043 	 * can fit into remaining data section.
3044 	 */
3045 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3046 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047 
3048 		/*
3049 		 * If I'm the only one writing to this iclog, sync it to disk.
3050 		 * We need to do an atomic compare and decrement here to avoid
3051 		 * racing with concurrent atomic_dec_and_lock() calls in
3052 		 * xlog_state_release_iclog() when there is more than one
3053 		 * reference to the iclog.
3054 		 */
3055 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3056 			/* we are the only one */
3057 			spin_unlock(&log->l_icloglock);
3058 			error = xlog_state_release_iclog(log, iclog);
3059 			if (error)
3060 				return error;
3061 		} else {
3062 			spin_unlock(&log->l_icloglock);
3063 		}
3064 		goto restart;
3065 	}
3066 
3067 	/* Do we have enough room to write the full amount in the remainder
3068 	 * of this iclog?  Or must we continue a write on the next iclog and
3069 	 * mark this iclog as completely taken?  In the case where we switch
3070 	 * iclogs (to mark it taken), this particular iclog will release/sync
3071 	 * to disk in xlog_write().
3072 	 */
3073 	if (len <= iclog->ic_size - iclog->ic_offset) {
3074 		*continued_write = 0;
3075 		iclog->ic_offset += len;
3076 	} else {
3077 		*continued_write = 1;
3078 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3079 	}
3080 	*iclogp = iclog;
3081 
3082 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3083 	spin_unlock(&log->l_icloglock);
3084 
3085 	*logoffsetp = log_offset;
3086 	return 0;
3087 }	/* xlog_state_get_iclog_space */
3088 
3089 /* The first cnt-1 times through here we don't need to
3090  * move the grant write head because the permanent
3091  * reservation has reserved cnt times the unit amount.
3092  * Release part of current permanent unit reservation and
3093  * reset current reservation to be one units worth.  Also
3094  * move grant reservation head forward.
3095  */
3096 STATIC void
3097 xlog_regrant_reserve_log_space(
3098 	struct xlog		*log,
3099 	struct xlog_ticket	*ticket)
3100 {
3101 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3102 
3103 	if (ticket->t_cnt > 0)
3104 		ticket->t_cnt--;
3105 
3106 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3107 					ticket->t_curr_res);
3108 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3109 					ticket->t_curr_res);
3110 	ticket->t_curr_res = ticket->t_unit_res;
3111 	xlog_tic_reset_res(ticket);
3112 
3113 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3114 
3115 	/* just return if we still have some of the pre-reserved space */
3116 	if (ticket->t_cnt > 0)
3117 		return;
3118 
3119 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3120 					ticket->t_unit_res);
3121 
3122 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3123 
3124 	ticket->t_curr_res = ticket->t_unit_res;
3125 	xlog_tic_reset_res(ticket);
3126 }	/* xlog_regrant_reserve_log_space */
3127 
3128 
3129 /*
3130  * Give back the space left from a reservation.
3131  *
3132  * All the information we need to make a correct determination of space left
3133  * is present.  For non-permanent reservations, things are quite easy.  The
3134  * count should have been decremented to zero.  We only need to deal with the
3135  * space remaining in the current reservation part of the ticket.  If the
3136  * ticket contains a permanent reservation, there may be left over space which
3137  * needs to be released.  A count of N means that N-1 refills of the current
3138  * reservation can be done before we need to ask for more space.  The first
3139  * one goes to fill up the first current reservation.  Once we run out of
3140  * space, the count will stay at zero and the only space remaining will be
3141  * in the current reservation field.
3142  */
3143 STATIC void
3144 xlog_ungrant_log_space(
3145 	struct xlog		*log,
3146 	struct xlog_ticket	*ticket)
3147 {
3148 	int	bytes;
3149 
3150 	if (ticket->t_cnt > 0)
3151 		ticket->t_cnt--;
3152 
3153 	trace_xfs_log_ungrant_enter(log, ticket);
3154 	trace_xfs_log_ungrant_sub(log, ticket);
3155 
3156 	/*
3157 	 * If this is a permanent reservation ticket, we may be able to free
3158 	 * up more space based on the remaining count.
3159 	 */
3160 	bytes = ticket->t_curr_res;
3161 	if (ticket->t_cnt > 0) {
3162 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3163 		bytes += ticket->t_unit_res*ticket->t_cnt;
3164 	}
3165 
3166 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3167 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3168 
3169 	trace_xfs_log_ungrant_exit(log, ticket);
3170 
3171 	xfs_log_space_wake(log->l_mp);
3172 }
3173 
3174 /*
3175  * Flush iclog to disk if this is the last reference to the given iclog and
3176  * the WANT_SYNC bit is set.
3177  *
3178  * When this function is entered, the iclog is not necessarily in the
3179  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3180  *
3181  *
3182  */
3183 STATIC int
3184 xlog_state_release_iclog(
3185 	struct xlog		*log,
3186 	struct xlog_in_core	*iclog)
3187 {
3188 	int		sync = 0;	/* do we sync? */
3189 
3190 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3191 		return -EIO;
3192 
3193 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3194 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3195 		return 0;
3196 
3197 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3198 		spin_unlock(&log->l_icloglock);
3199 		return -EIO;
3200 	}
3201 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3202 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3203 
3204 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3205 		/* update tail before writing to iclog */
3206 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3207 		sync++;
3208 		iclog->ic_state = XLOG_STATE_SYNCING;
3209 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3210 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3211 		/* cycle incremented when incrementing curr_block */
3212 	}
3213 	spin_unlock(&log->l_icloglock);
3214 
3215 	/*
3216 	 * We let the log lock go, so it's possible that we hit a log I/O
3217 	 * error or some other SHUTDOWN condition that marks the iclog
3218 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3219 	 * this iclog has consistent data, so we ignore IOERROR
3220 	 * flags after this point.
3221 	 */
3222 	if (sync)
3223 		return xlog_sync(log, iclog);
3224 	return 0;
3225 }	/* xlog_state_release_iclog */
3226 
3227 
3228 /*
3229  * This routine will mark the current iclog in the ring as WANT_SYNC
3230  * and move the current iclog pointer to the next iclog in the ring.
3231  * When this routine is called from xlog_state_get_iclog_space(), the
3232  * exact size of the iclog has not yet been determined.  All we know is
3233  * that every data block.  We have run out of space in this log record.
3234  */
3235 STATIC void
3236 xlog_state_switch_iclogs(
3237 	struct xlog		*log,
3238 	struct xlog_in_core	*iclog,
3239 	int			eventual_size)
3240 {
3241 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3242 	if (!eventual_size)
3243 		eventual_size = iclog->ic_offset;
3244 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3245 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3246 	log->l_prev_block = log->l_curr_block;
3247 	log->l_prev_cycle = log->l_curr_cycle;
3248 
3249 	/* roll log?: ic_offset changed later */
3250 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3251 
3252 	/* Round up to next log-sunit */
3253 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3254 	    log->l_mp->m_sb.sb_logsunit > 1) {
3255 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3256 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3257 	}
3258 
3259 	if (log->l_curr_block >= log->l_logBBsize) {
3260 		/*
3261 		 * Rewind the current block before the cycle is bumped to make
3262 		 * sure that the combined LSN never transiently moves forward
3263 		 * when the log wraps to the next cycle. This is to support the
3264 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3265 		 * other cases should acquire l_icloglock.
3266 		 */
3267 		log->l_curr_block -= log->l_logBBsize;
3268 		ASSERT(log->l_curr_block >= 0);
3269 		smp_wmb();
3270 		log->l_curr_cycle++;
3271 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3272 			log->l_curr_cycle++;
3273 	}
3274 	ASSERT(iclog == log->l_iclog);
3275 	log->l_iclog = iclog->ic_next;
3276 }	/* xlog_state_switch_iclogs */
3277 
3278 /*
3279  * Write out all data in the in-core log as of this exact moment in time.
3280  *
3281  * Data may be written to the in-core log during this call.  However,
3282  * we don't guarantee this data will be written out.  A change from past
3283  * implementation means this routine will *not* write out zero length LRs.
3284  *
3285  * Basically, we try and perform an intelligent scan of the in-core logs.
3286  * If we determine there is no flushable data, we just return.  There is no
3287  * flushable data if:
3288  *
3289  *	1. the current iclog is active and has no data; the previous iclog
3290  *		is in the active or dirty state.
3291  *	2. the current iclog is drity, and the previous iclog is in the
3292  *		active or dirty state.
3293  *
3294  * We may sleep if:
3295  *
3296  *	1. the current iclog is not in the active nor dirty state.
3297  *	2. the current iclog dirty, and the previous iclog is not in the
3298  *		active nor dirty state.
3299  *	3. the current iclog is active, and there is another thread writing
3300  *		to this particular iclog.
3301  *	4. a) the current iclog is active and has no other writers
3302  *	   b) when we return from flushing out this iclog, it is still
3303  *		not in the active nor dirty state.
3304  */
3305 int
3306 xfs_log_force(
3307 	struct xfs_mount	*mp,
3308 	uint			flags)
3309 {
3310 	struct xlog		*log = mp->m_log;
3311 	struct xlog_in_core	*iclog;
3312 	xfs_lsn_t		lsn;
3313 
3314 	XFS_STATS_INC(mp, xs_log_force);
3315 	trace_xfs_log_force(mp, 0, _RET_IP_);
3316 
3317 	xlog_cil_force(log);
3318 
3319 	spin_lock(&log->l_icloglock);
3320 	iclog = log->l_iclog;
3321 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3322 		goto out_error;
3323 
3324 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3325 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3326 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3327 		/*
3328 		 * If the head is dirty or (active and empty), then we need to
3329 		 * look at the previous iclog.
3330 		 *
3331 		 * If the previous iclog is active or dirty we are done.  There
3332 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3333 		 * previous iclog and go to sleep.
3334 		 */
3335 		iclog = iclog->ic_prev;
3336 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3337 		    iclog->ic_state == XLOG_STATE_DIRTY)
3338 			goto out_unlock;
3339 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3341 			/*
3342 			 * We are the only one with access to this iclog.
3343 			 *
3344 			 * Flush it out now.  There should be a roundoff of zero
3345 			 * to show that someone has already taken care of the
3346 			 * roundoff from the previous sync.
3347 			 */
3348 			atomic_inc(&iclog->ic_refcnt);
3349 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3350 			xlog_state_switch_iclogs(log, iclog, 0);
3351 			spin_unlock(&log->l_icloglock);
3352 
3353 			if (xlog_state_release_iclog(log, iclog))
3354 				return -EIO;
3355 
3356 			spin_lock(&log->l_icloglock);
3357 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3358 			    iclog->ic_state == XLOG_STATE_DIRTY)
3359 				goto out_unlock;
3360 		} else {
3361 			/*
3362 			 * Someone else is writing to this iclog.
3363 			 *
3364 			 * Use its call to flush out the data.  However, the
3365 			 * other thread may not force out this LR, so we mark
3366 			 * it WANT_SYNC.
3367 			 */
3368 			xlog_state_switch_iclogs(log, iclog, 0);
3369 		}
3370 	} else {
3371 		/*
3372 		 * If the head iclog is not active nor dirty, we just attach
3373 		 * ourselves to the head and go to sleep if necessary.
3374 		 */
3375 		;
3376 	}
3377 
3378 	if (!(flags & XFS_LOG_SYNC))
3379 		goto out_unlock;
3380 
3381 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3382 		goto out_error;
3383 	XFS_STATS_INC(mp, xs_log_force_sleep);
3384 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3385 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3386 		return -EIO;
3387 	return 0;
3388 
3389 out_unlock:
3390 	spin_unlock(&log->l_icloglock);
3391 	return 0;
3392 out_error:
3393 	spin_unlock(&log->l_icloglock);
3394 	return -EIO;
3395 }
3396 
3397 static int
3398 __xfs_log_force_lsn(
3399 	struct xfs_mount	*mp,
3400 	xfs_lsn_t		lsn,
3401 	uint			flags,
3402 	int			*log_flushed,
3403 	bool			already_slept)
3404 {
3405 	struct xlog		*log = mp->m_log;
3406 	struct xlog_in_core	*iclog;
3407 
3408 	spin_lock(&log->l_icloglock);
3409 	iclog = log->l_iclog;
3410 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3411 		goto out_error;
3412 
3413 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3414 		iclog = iclog->ic_next;
3415 		if (iclog == log->l_iclog)
3416 			goto out_unlock;
3417 	}
3418 
3419 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3420 		goto out_unlock;
3421 
3422 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3423 		/*
3424 		 * We sleep here if we haven't already slept (e.g. this is the
3425 		 * first time we've looked at the correct iclog buf) and the
3426 		 * buffer before us is going to be sync'ed.  The reason for this
3427 		 * is that if we are doing sync transactions here, by waiting
3428 		 * for the previous I/O to complete, we can allow a few more
3429 		 * transactions into this iclog before we close it down.
3430 		 *
3431 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3432 		 * refcnt so we can release the log (which drops the ref count).
3433 		 * The state switch keeps new transaction commits from using
3434 		 * this buffer.  When the current commits finish writing into
3435 		 * the buffer, the refcount will drop to zero and the buffer
3436 		 * will go out then.
3437 		 */
3438 		if (!already_slept &&
3439 		    (iclog->ic_prev->ic_state &
3440 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3441 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3442 
3443 			XFS_STATS_INC(mp, xs_log_force_sleep);
3444 
3445 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3446 					&log->l_icloglock);
3447 			return -EAGAIN;
3448 		}
3449 		atomic_inc(&iclog->ic_refcnt);
3450 		xlog_state_switch_iclogs(log, iclog, 0);
3451 		spin_unlock(&log->l_icloglock);
3452 		if (xlog_state_release_iclog(log, iclog))
3453 			return -EIO;
3454 		if (log_flushed)
3455 			*log_flushed = 1;
3456 		spin_lock(&log->l_icloglock);
3457 	}
3458 
3459 	if (!(flags & XFS_LOG_SYNC) ||
3460 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3461 		goto out_unlock;
3462 
3463 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3464 		goto out_error;
3465 
3466 	XFS_STATS_INC(mp, xs_log_force_sleep);
3467 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3468 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3469 		return -EIO;
3470 	return 0;
3471 
3472 out_unlock:
3473 	spin_unlock(&log->l_icloglock);
3474 	return 0;
3475 out_error:
3476 	spin_unlock(&log->l_icloglock);
3477 	return -EIO;
3478 }
3479 
3480 /*
3481  * Force the in-core log to disk for a specific LSN.
3482  *
3483  * Find in-core log with lsn.
3484  *	If it is in the DIRTY state, just return.
3485  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3486  *		state and go to sleep or return.
3487  *	If it is in any other state, go to sleep or return.
3488  *
3489  * Synchronous forces are implemented with a wait queue.  All callers trying
3490  * to force a given lsn to disk must wait on the queue attached to the
3491  * specific in-core log.  When given in-core log finally completes its write
3492  * to disk, that thread will wake up all threads waiting on the queue.
3493  */
3494 int
3495 xfs_log_force_lsn(
3496 	struct xfs_mount	*mp,
3497 	xfs_lsn_t		lsn,
3498 	uint			flags,
3499 	int			*log_flushed)
3500 {
3501 	int			ret;
3502 	ASSERT(lsn != 0);
3503 
3504 	XFS_STATS_INC(mp, xs_log_force);
3505 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3506 
3507 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3508 	if (lsn == NULLCOMMITLSN)
3509 		return 0;
3510 
3511 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3512 	if (ret == -EAGAIN)
3513 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3514 	return ret;
3515 }
3516 
3517 /*
3518  * Called when we want to mark the current iclog as being ready to sync to
3519  * disk.
3520  */
3521 STATIC void
3522 xlog_state_want_sync(
3523 	struct xlog		*log,
3524 	struct xlog_in_core	*iclog)
3525 {
3526 	assert_spin_locked(&log->l_icloglock);
3527 
3528 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3529 		xlog_state_switch_iclogs(log, iclog, 0);
3530 	} else {
3531 		ASSERT(iclog->ic_state &
3532 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3533 	}
3534 }
3535 
3536 
3537 /*****************************************************************************
3538  *
3539  *		TICKET functions
3540  *
3541  *****************************************************************************
3542  */
3543 
3544 /*
3545  * Free a used ticket when its refcount falls to zero.
3546  */
3547 void
3548 xfs_log_ticket_put(
3549 	xlog_ticket_t	*ticket)
3550 {
3551 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3552 	if (atomic_dec_and_test(&ticket->t_ref))
3553 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3554 }
3555 
3556 xlog_ticket_t *
3557 xfs_log_ticket_get(
3558 	xlog_ticket_t	*ticket)
3559 {
3560 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3561 	atomic_inc(&ticket->t_ref);
3562 	return ticket;
3563 }
3564 
3565 /*
3566  * Figure out the total log space unit (in bytes) that would be
3567  * required for a log ticket.
3568  */
3569 int
3570 xfs_log_calc_unit_res(
3571 	struct xfs_mount	*mp,
3572 	int			unit_bytes)
3573 {
3574 	struct xlog		*log = mp->m_log;
3575 	int			iclog_space;
3576 	uint			num_headers;
3577 
3578 	/*
3579 	 * Permanent reservations have up to 'cnt'-1 active log operations
3580 	 * in the log.  A unit in this case is the amount of space for one
3581 	 * of these log operations.  Normal reservations have a cnt of 1
3582 	 * and their unit amount is the total amount of space required.
3583 	 *
3584 	 * The following lines of code account for non-transaction data
3585 	 * which occupy space in the on-disk log.
3586 	 *
3587 	 * Normal form of a transaction is:
3588 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3589 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3590 	 *
3591 	 * We need to account for all the leadup data and trailer data
3592 	 * around the transaction data.
3593 	 * And then we need to account for the worst case in terms of using
3594 	 * more space.
3595 	 * The worst case will happen if:
3596 	 * - the placement of the transaction happens to be such that the
3597 	 *   roundoff is at its maximum
3598 	 * - the transaction data is synced before the commit record is synced
3599 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3600 	 *   Therefore the commit record is in its own Log Record.
3601 	 *   This can happen as the commit record is called with its
3602 	 *   own region to xlog_write().
3603 	 *   This then means that in the worst case, roundoff can happen for
3604 	 *   the commit-rec as well.
3605 	 *   The commit-rec is smaller than padding in this scenario and so it is
3606 	 *   not added separately.
3607 	 */
3608 
3609 	/* for trans header */
3610 	unit_bytes += sizeof(xlog_op_header_t);
3611 	unit_bytes += sizeof(xfs_trans_header_t);
3612 
3613 	/* for start-rec */
3614 	unit_bytes += sizeof(xlog_op_header_t);
3615 
3616 	/*
3617 	 * for LR headers - the space for data in an iclog is the size minus
3618 	 * the space used for the headers. If we use the iclog size, then we
3619 	 * undercalculate the number of headers required.
3620 	 *
3621 	 * Furthermore - the addition of op headers for split-recs might
3622 	 * increase the space required enough to require more log and op
3623 	 * headers, so take that into account too.
3624 	 *
3625 	 * IMPORTANT: This reservation makes the assumption that if this
3626 	 * transaction is the first in an iclog and hence has the LR headers
3627 	 * accounted to it, then the remaining space in the iclog is
3628 	 * exclusively for this transaction.  i.e. if the transaction is larger
3629 	 * than the iclog, it will be the only thing in that iclog.
3630 	 * Fundamentally, this means we must pass the entire log vector to
3631 	 * xlog_write to guarantee this.
3632 	 */
3633 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3634 	num_headers = howmany(unit_bytes, iclog_space);
3635 
3636 	/* for split-recs - ophdrs added when data split over LRs */
3637 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3638 
3639 	/* add extra header reservations if we overrun */
3640 	while (!num_headers ||
3641 	       howmany(unit_bytes, iclog_space) > num_headers) {
3642 		unit_bytes += sizeof(xlog_op_header_t);
3643 		num_headers++;
3644 	}
3645 	unit_bytes += log->l_iclog_hsize * num_headers;
3646 
3647 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3648 	unit_bytes += log->l_iclog_hsize;
3649 
3650 	/* for roundoff padding for transaction data and one for commit record */
3651 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3652 		/* log su roundoff */
3653 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3654 	} else {
3655 		/* BB roundoff */
3656 		unit_bytes += 2 * BBSIZE;
3657         }
3658 
3659 	return unit_bytes;
3660 }
3661 
3662 /*
3663  * Allocate and initialise a new log ticket.
3664  */
3665 struct xlog_ticket *
3666 xlog_ticket_alloc(
3667 	struct xlog		*log,
3668 	int			unit_bytes,
3669 	int			cnt,
3670 	char			client,
3671 	bool			permanent,
3672 	xfs_km_flags_t		alloc_flags)
3673 {
3674 	struct xlog_ticket	*tic;
3675 	int			unit_res;
3676 
3677 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3678 	if (!tic)
3679 		return NULL;
3680 
3681 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3682 
3683 	atomic_set(&tic->t_ref, 1);
3684 	tic->t_task		= current;
3685 	INIT_LIST_HEAD(&tic->t_queue);
3686 	tic->t_unit_res		= unit_res;
3687 	tic->t_curr_res		= unit_res;
3688 	tic->t_cnt		= cnt;
3689 	tic->t_ocnt		= cnt;
3690 	tic->t_tid		= prandom_u32();
3691 	tic->t_clientid		= client;
3692 	tic->t_flags		= XLOG_TIC_INITED;
3693 	if (permanent)
3694 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3695 
3696 	xlog_tic_reset_res(tic);
3697 
3698 	return tic;
3699 }
3700 
3701 
3702 /******************************************************************************
3703  *
3704  *		Log debug routines
3705  *
3706  ******************************************************************************
3707  */
3708 #if defined(DEBUG)
3709 /*
3710  * Make sure that the destination ptr is within the valid data region of
3711  * one of the iclogs.  This uses backup pointers stored in a different
3712  * part of the log in case we trash the log structure.
3713  */
3714 STATIC void
3715 xlog_verify_dest_ptr(
3716 	struct xlog	*log,
3717 	void		*ptr)
3718 {
3719 	int i;
3720 	int good_ptr = 0;
3721 
3722 	for (i = 0; i < log->l_iclog_bufs; i++) {
3723 		if (ptr >= log->l_iclog_bak[i] &&
3724 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3725 			good_ptr++;
3726 	}
3727 
3728 	if (!good_ptr)
3729 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3730 }
3731 
3732 /*
3733  * Check to make sure the grant write head didn't just over lap the tail.  If
3734  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3735  * the cycles differ by exactly one and check the byte count.
3736  *
3737  * This check is run unlocked, so can give false positives. Rather than assert
3738  * on failures, use a warn-once flag and a panic tag to allow the admin to
3739  * determine if they want to panic the machine when such an error occurs. For
3740  * debug kernels this will have the same effect as using an assert but, unlinke
3741  * an assert, it can be turned off at runtime.
3742  */
3743 STATIC void
3744 xlog_verify_grant_tail(
3745 	struct xlog	*log)
3746 {
3747 	int		tail_cycle, tail_blocks;
3748 	int		cycle, space;
3749 
3750 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3751 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3752 	if (tail_cycle != cycle) {
3753 		if (cycle - 1 != tail_cycle &&
3754 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3755 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3756 				"%s: cycle - 1 != tail_cycle", __func__);
3757 			log->l_flags |= XLOG_TAIL_WARN;
3758 		}
3759 
3760 		if (space > BBTOB(tail_blocks) &&
3761 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3762 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3763 				"%s: space > BBTOB(tail_blocks)", __func__);
3764 			log->l_flags |= XLOG_TAIL_WARN;
3765 		}
3766 	}
3767 }
3768 
3769 /* check if it will fit */
3770 STATIC void
3771 xlog_verify_tail_lsn(
3772 	struct xlog		*log,
3773 	struct xlog_in_core	*iclog,
3774 	xfs_lsn_t		tail_lsn)
3775 {
3776     int blocks;
3777 
3778     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3779 	blocks =
3780 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3781 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3782 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3783     } else {
3784 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3785 
3786 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3787 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3788 
3789 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3790 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3791 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3792     }
3793 }	/* xlog_verify_tail_lsn */
3794 
3795 /*
3796  * Perform a number of checks on the iclog before writing to disk.
3797  *
3798  * 1. Make sure the iclogs are still circular
3799  * 2. Make sure we have a good magic number
3800  * 3. Make sure we don't have magic numbers in the data
3801  * 4. Check fields of each log operation header for:
3802  *	A. Valid client identifier
3803  *	B. tid ptr value falls in valid ptr space (user space code)
3804  *	C. Length in log record header is correct according to the
3805  *		individual operation headers within record.
3806  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3807  *	log, check the preceding blocks of the physical log to make sure all
3808  *	the cycle numbers agree with the current cycle number.
3809  */
3810 STATIC void
3811 xlog_verify_iclog(
3812 	struct xlog		*log,
3813 	struct xlog_in_core	*iclog,
3814 	int			count,
3815 	bool                    syncing)
3816 {
3817 	xlog_op_header_t	*ophead;
3818 	xlog_in_core_t		*icptr;
3819 	xlog_in_core_2_t	*xhdr;
3820 	void			*base_ptr, *ptr, *p;
3821 	ptrdiff_t		field_offset;
3822 	uint8_t			clientid;
3823 	int			len, i, j, k, op_len;
3824 	int			idx;
3825 
3826 	/* check validity of iclog pointers */
3827 	spin_lock(&log->l_icloglock);
3828 	icptr = log->l_iclog;
3829 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3830 		ASSERT(icptr);
3831 
3832 	if (icptr != log->l_iclog)
3833 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3834 	spin_unlock(&log->l_icloglock);
3835 
3836 	/* check log magic numbers */
3837 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3838 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3839 
3840 	base_ptr = ptr = &iclog->ic_header;
3841 	p = &iclog->ic_header;
3842 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3843 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3844 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3845 				__func__);
3846 	}
3847 
3848 	/* check fields */
3849 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3850 	base_ptr = ptr = iclog->ic_datap;
3851 	ophead = ptr;
3852 	xhdr = iclog->ic_data;
3853 	for (i = 0; i < len; i++) {
3854 		ophead = ptr;
3855 
3856 		/* clientid is only 1 byte */
3857 		p = &ophead->oh_clientid;
3858 		field_offset = p - base_ptr;
3859 		if (!syncing || (field_offset & 0x1ff)) {
3860 			clientid = ophead->oh_clientid;
3861 		} else {
3862 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3863 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3864 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3865 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3866 				clientid = xlog_get_client_id(
3867 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3868 			} else {
3869 				clientid = xlog_get_client_id(
3870 					iclog->ic_header.h_cycle_data[idx]);
3871 			}
3872 		}
3873 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3874 			xfs_warn(log->l_mp,
3875 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3876 				__func__, clientid, ophead,
3877 				(unsigned long)field_offset);
3878 
3879 		/* check length */
3880 		p = &ophead->oh_len;
3881 		field_offset = p - base_ptr;
3882 		if (!syncing || (field_offset & 0x1ff)) {
3883 			op_len = be32_to_cpu(ophead->oh_len);
3884 		} else {
3885 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3886 				    (uintptr_t)iclog->ic_datap);
3887 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3888 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3889 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3891 			} else {
3892 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3893 			}
3894 		}
3895 		ptr += sizeof(xlog_op_header_t) + op_len;
3896 	}
3897 }	/* xlog_verify_iclog */
3898 #endif
3899 
3900 /*
3901  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3902  */
3903 STATIC int
3904 xlog_state_ioerror(
3905 	struct xlog	*log)
3906 {
3907 	xlog_in_core_t	*iclog, *ic;
3908 
3909 	iclog = log->l_iclog;
3910 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3911 		/*
3912 		 * Mark all the incore logs IOERROR.
3913 		 * From now on, no log flushes will result.
3914 		 */
3915 		ic = iclog;
3916 		do {
3917 			ic->ic_state = XLOG_STATE_IOERROR;
3918 			ic = ic->ic_next;
3919 		} while (ic != iclog);
3920 		return 0;
3921 	}
3922 	/*
3923 	 * Return non-zero, if state transition has already happened.
3924 	 */
3925 	return 1;
3926 }
3927 
3928 /*
3929  * This is called from xfs_force_shutdown, when we're forcibly
3930  * shutting down the filesystem, typically because of an IO error.
3931  * Our main objectives here are to make sure that:
3932  *	a. if !logerror, flush the logs to disk. Anything modified
3933  *	   after this is ignored.
3934  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3935  *	   parties to find out, 'atomically'.
3936  *	c. those who're sleeping on log reservations, pinned objects and
3937  *	    other resources get woken up, and be told the bad news.
3938  *	d. nothing new gets queued up after (b) and (c) are done.
3939  *
3940  * Note: for the !logerror case we need to flush the regions held in memory out
3941  * to disk first. This needs to be done before the log is marked as shutdown,
3942  * otherwise the iclog writes will fail.
3943  */
3944 int
3945 xfs_log_force_umount(
3946 	struct xfs_mount	*mp,
3947 	int			logerror)
3948 {
3949 	struct xlog	*log;
3950 	int		retval;
3951 
3952 	log = mp->m_log;
3953 
3954 	/*
3955 	 * If this happens during log recovery, don't worry about
3956 	 * locking; the log isn't open for business yet.
3957 	 */
3958 	if (!log ||
3959 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3960 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3961 		if (mp->m_sb_bp)
3962 			mp->m_sb_bp->b_flags |= XBF_DONE;
3963 		return 0;
3964 	}
3965 
3966 	/*
3967 	 * Somebody could've already done the hard work for us.
3968 	 * No need to get locks for this.
3969 	 */
3970 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3971 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3972 		return 1;
3973 	}
3974 
3975 	/*
3976 	 * Flush all the completed transactions to disk before marking the log
3977 	 * being shut down. We need to do it in this order to ensure that
3978 	 * completed operations are safely on disk before we shut down, and that
3979 	 * we don't have to issue any buffer IO after the shutdown flags are set
3980 	 * to guarantee this.
3981 	 */
3982 	if (!logerror)
3983 		xfs_log_force(mp, XFS_LOG_SYNC);
3984 
3985 	/*
3986 	 * mark the filesystem and the as in a shutdown state and wake
3987 	 * everybody up to tell them the bad news.
3988 	 */
3989 	spin_lock(&log->l_icloglock);
3990 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3991 	if (mp->m_sb_bp)
3992 		mp->m_sb_bp->b_flags |= XBF_DONE;
3993 
3994 	/*
3995 	 * Mark the log and the iclogs with IO error flags to prevent any
3996 	 * further log IO from being issued or completed.
3997 	 */
3998 	log->l_flags |= XLOG_IO_ERROR;
3999 	retval = xlog_state_ioerror(log);
4000 	spin_unlock(&log->l_icloglock);
4001 
4002 	/*
4003 	 * We don't want anybody waiting for log reservations after this. That
4004 	 * means we have to wake up everybody queued up on reserveq as well as
4005 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4006 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4007 	 * action is protected by the grant locks.
4008 	 */
4009 	xlog_grant_head_wake_all(&log->l_reserve_head);
4010 	xlog_grant_head_wake_all(&log->l_write_head);
4011 
4012 	/*
4013 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4014 	 * as if the log writes were completed. The abort handling in the log
4015 	 * item committed callback functions will do this again under lock to
4016 	 * avoid races.
4017 	 */
4018 	wake_up_all(&log->l_cilp->xc_commit_wait);
4019 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4020 
4021 #ifdef XFSERRORDEBUG
4022 	{
4023 		xlog_in_core_t	*iclog;
4024 
4025 		spin_lock(&log->l_icloglock);
4026 		iclog = log->l_iclog;
4027 		do {
4028 			ASSERT(iclog->ic_callback == 0);
4029 			iclog = iclog->ic_next;
4030 		} while (iclog != log->l_iclog);
4031 		spin_unlock(&log->l_icloglock);
4032 	}
4033 #endif
4034 	/* return non-zero if log IOERROR transition had already happened */
4035 	return retval;
4036 }
4037 
4038 STATIC int
4039 xlog_iclogs_empty(
4040 	struct xlog	*log)
4041 {
4042 	xlog_in_core_t	*iclog;
4043 
4044 	iclog = log->l_iclog;
4045 	do {
4046 		/* endianness does not matter here, zero is zero in
4047 		 * any language.
4048 		 */
4049 		if (iclog->ic_header.h_num_logops)
4050 			return 0;
4051 		iclog = iclog->ic_next;
4052 	} while (iclog != log->l_iclog);
4053 	return 1;
4054 }
4055 
4056 /*
4057  * Verify that an LSN stamped into a piece of metadata is valid. This is
4058  * intended for use in read verifiers on v5 superblocks.
4059  */
4060 bool
4061 xfs_log_check_lsn(
4062 	struct xfs_mount	*mp,
4063 	xfs_lsn_t		lsn)
4064 {
4065 	struct xlog		*log = mp->m_log;
4066 	bool			valid;
4067 
4068 	/*
4069 	 * norecovery mode skips mount-time log processing and unconditionally
4070 	 * resets the in-core LSN. We can't validate in this mode, but
4071 	 * modifications are not allowed anyways so just return true.
4072 	 */
4073 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4074 		return true;
4075 
4076 	/*
4077 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4078 	 * handled by recovery and thus safe to ignore here.
4079 	 */
4080 	if (lsn == NULLCOMMITLSN)
4081 		return true;
4082 
4083 	valid = xlog_valid_lsn(mp->m_log, lsn);
4084 
4085 	/* warn the user about what's gone wrong before verifier failure */
4086 	if (!valid) {
4087 		spin_lock(&log->l_icloglock);
4088 		xfs_warn(mp,
4089 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4090 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4091 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4092 			 log->l_curr_cycle, log->l_curr_block);
4093 		spin_unlock(&log->l_icloglock);
4094 	}
4095 
4096 	return valid;
4097 }
4098