1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 37 kmem_zone_t *xfs_log_ticket_zone; 38 39 /* Local miscellaneous function prototypes */ 40 STATIC int 41 xlog_commit_record( 42 struct xlog *log, 43 struct xlog_ticket *ticket, 44 struct xlog_in_core **iclog, 45 xfs_lsn_t *commitlsnp); 46 47 STATIC struct xlog * 48 xlog_alloc_log( 49 struct xfs_mount *mp, 50 struct xfs_buftarg *log_target, 51 xfs_daddr_t blk_offset, 52 int num_bblks); 53 STATIC int 54 xlog_space_left( 55 struct xlog *log, 56 atomic64_t *head); 57 STATIC int 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog); 61 STATIC void 62 xlog_dealloc_log( 63 struct xlog *log); 64 65 /* local state machine functions */ 66 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 67 STATIC void 68 xlog_state_do_callback( 69 struct xlog *log, 70 int aborted, 71 struct xlog_in_core *iclog); 72 STATIC int 73 xlog_state_get_iclog_space( 74 struct xlog *log, 75 int len, 76 struct xlog_in_core **iclog, 77 struct xlog_ticket *ticket, 78 int *continued_write, 79 int *logoffsetp); 80 STATIC int 81 xlog_state_release_iclog( 82 struct xlog *log, 83 struct xlog_in_core *iclog); 84 STATIC void 85 xlog_state_switch_iclogs( 86 struct xlog *log, 87 struct xlog_in_core *iclog, 88 int eventual_size); 89 STATIC void 90 xlog_state_want_sync( 91 struct xlog *log, 92 struct xlog_in_core *iclog); 93 94 STATIC void 95 xlog_grant_push_ail( 96 struct xlog *log, 97 int need_bytes); 98 STATIC void 99 xlog_regrant_reserve_log_space( 100 struct xlog *log, 101 struct xlog_ticket *ticket); 102 STATIC void 103 xlog_ungrant_log_space( 104 struct xlog *log, 105 struct xlog_ticket *ticket); 106 107 #if defined(DEBUG) 108 STATIC void 109 xlog_verify_dest_ptr( 110 struct xlog *log, 111 char *ptr); 112 STATIC void 113 xlog_verify_grant_tail( 114 struct xlog *log); 115 STATIC void 116 xlog_verify_iclog( 117 struct xlog *log, 118 struct xlog_in_core *iclog, 119 int count, 120 bool syncing); 121 STATIC void 122 xlog_verify_tail_lsn( 123 struct xlog *log, 124 struct xlog_in_core *iclog, 125 xfs_lsn_t tail_lsn); 126 #else 127 #define xlog_verify_dest_ptr(a,b) 128 #define xlog_verify_grant_tail(a) 129 #define xlog_verify_iclog(a,b,c,d) 130 #define xlog_verify_tail_lsn(a,b,c) 131 #endif 132 133 STATIC int 134 xlog_iclogs_empty( 135 struct xlog *log); 136 137 static void 138 xlog_grant_sub_space( 139 struct xlog *log, 140 atomic64_t *head, 141 int bytes) 142 { 143 int64_t head_val = atomic64_read(head); 144 int64_t new, old; 145 146 do { 147 int cycle, space; 148 149 xlog_crack_grant_head_val(head_val, &cycle, &space); 150 151 space -= bytes; 152 if (space < 0) { 153 space += log->l_logsize; 154 cycle--; 155 } 156 157 old = head_val; 158 new = xlog_assign_grant_head_val(cycle, space); 159 head_val = atomic64_cmpxchg(head, old, new); 160 } while (head_val != old); 161 } 162 163 static void 164 xlog_grant_add_space( 165 struct xlog *log, 166 atomic64_t *head, 167 int bytes) 168 { 169 int64_t head_val = atomic64_read(head); 170 int64_t new, old; 171 172 do { 173 int tmp; 174 int cycle, space; 175 176 xlog_crack_grant_head_val(head_val, &cycle, &space); 177 178 tmp = log->l_logsize - space; 179 if (tmp > bytes) 180 space += bytes; 181 else { 182 space = bytes - tmp; 183 cycle++; 184 } 185 186 old = head_val; 187 new = xlog_assign_grant_head_val(cycle, space); 188 head_val = atomic64_cmpxchg(head, old, new); 189 } while (head_val != old); 190 } 191 192 STATIC void 193 xlog_grant_head_init( 194 struct xlog_grant_head *head) 195 { 196 xlog_assign_grant_head(&head->grant, 1, 0); 197 INIT_LIST_HEAD(&head->waiters); 198 spin_lock_init(&head->lock); 199 } 200 201 STATIC void 202 xlog_grant_head_wake_all( 203 struct xlog_grant_head *head) 204 { 205 struct xlog_ticket *tic; 206 207 spin_lock(&head->lock); 208 list_for_each_entry(tic, &head->waiters, t_queue) 209 wake_up_process(tic->t_task); 210 spin_unlock(&head->lock); 211 } 212 213 static inline int 214 xlog_ticket_reservation( 215 struct xlog *log, 216 struct xlog_grant_head *head, 217 struct xlog_ticket *tic) 218 { 219 if (head == &log->l_write_head) { 220 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 221 return tic->t_unit_res; 222 } else { 223 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 224 return tic->t_unit_res * tic->t_cnt; 225 else 226 return tic->t_unit_res; 227 } 228 } 229 230 STATIC bool 231 xlog_grant_head_wake( 232 struct xlog *log, 233 struct xlog_grant_head *head, 234 int *free_bytes) 235 { 236 struct xlog_ticket *tic; 237 int need_bytes; 238 239 list_for_each_entry(tic, &head->waiters, t_queue) { 240 need_bytes = xlog_ticket_reservation(log, head, tic); 241 if (*free_bytes < need_bytes) 242 return false; 243 244 *free_bytes -= need_bytes; 245 trace_xfs_log_grant_wake_up(log, tic); 246 wake_up_process(tic->t_task); 247 } 248 249 return true; 250 } 251 252 STATIC int 253 xlog_grant_head_wait( 254 struct xlog *log, 255 struct xlog_grant_head *head, 256 struct xlog_ticket *tic, 257 int need_bytes) __releases(&head->lock) 258 __acquires(&head->lock) 259 { 260 list_add_tail(&tic->t_queue, &head->waiters); 261 262 do { 263 if (XLOG_FORCED_SHUTDOWN(log)) 264 goto shutdown; 265 xlog_grant_push_ail(log, need_bytes); 266 267 __set_current_state(TASK_UNINTERRUPTIBLE); 268 spin_unlock(&head->lock); 269 270 XFS_STATS_INC(xs_sleep_logspace); 271 272 trace_xfs_log_grant_sleep(log, tic); 273 schedule(); 274 trace_xfs_log_grant_wake(log, tic); 275 276 spin_lock(&head->lock); 277 if (XLOG_FORCED_SHUTDOWN(log)) 278 goto shutdown; 279 } while (xlog_space_left(log, &head->grant) < need_bytes); 280 281 list_del_init(&tic->t_queue); 282 return 0; 283 shutdown: 284 list_del_init(&tic->t_queue); 285 return -EIO; 286 } 287 288 /* 289 * Atomically get the log space required for a log ticket. 290 * 291 * Once a ticket gets put onto head->waiters, it will only return after the 292 * needed reservation is satisfied. 293 * 294 * This function is structured so that it has a lock free fast path. This is 295 * necessary because every new transaction reservation will come through this 296 * path. Hence any lock will be globally hot if we take it unconditionally on 297 * every pass. 298 * 299 * As tickets are only ever moved on and off head->waiters under head->lock, we 300 * only need to take that lock if we are going to add the ticket to the queue 301 * and sleep. We can avoid taking the lock if the ticket was never added to 302 * head->waiters because the t_queue list head will be empty and we hold the 303 * only reference to it so it can safely be checked unlocked. 304 */ 305 STATIC int 306 xlog_grant_head_check( 307 struct xlog *log, 308 struct xlog_grant_head *head, 309 struct xlog_ticket *tic, 310 int *need_bytes) 311 { 312 int free_bytes; 313 int error = 0; 314 315 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 316 317 /* 318 * If there are other waiters on the queue then give them a chance at 319 * logspace before us. Wake up the first waiters, if we do not wake 320 * up all the waiters then go to sleep waiting for more free space, 321 * otherwise try to get some space for this transaction. 322 */ 323 *need_bytes = xlog_ticket_reservation(log, head, tic); 324 free_bytes = xlog_space_left(log, &head->grant); 325 if (!list_empty_careful(&head->waiters)) { 326 spin_lock(&head->lock); 327 if (!xlog_grant_head_wake(log, head, &free_bytes) || 328 free_bytes < *need_bytes) { 329 error = xlog_grant_head_wait(log, head, tic, 330 *need_bytes); 331 } 332 spin_unlock(&head->lock); 333 } else if (free_bytes < *need_bytes) { 334 spin_lock(&head->lock); 335 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 336 spin_unlock(&head->lock); 337 } 338 339 return error; 340 } 341 342 static void 343 xlog_tic_reset_res(xlog_ticket_t *tic) 344 { 345 tic->t_res_num = 0; 346 tic->t_res_arr_sum = 0; 347 tic->t_res_num_ophdrs = 0; 348 } 349 350 static void 351 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 352 { 353 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 354 /* add to overflow and start again */ 355 tic->t_res_o_flow += tic->t_res_arr_sum; 356 tic->t_res_num = 0; 357 tic->t_res_arr_sum = 0; 358 } 359 360 tic->t_res_arr[tic->t_res_num].r_len = len; 361 tic->t_res_arr[tic->t_res_num].r_type = type; 362 tic->t_res_arr_sum += len; 363 tic->t_res_num++; 364 } 365 366 /* 367 * Replenish the byte reservation required by moving the grant write head. 368 */ 369 int 370 xfs_log_regrant( 371 struct xfs_mount *mp, 372 struct xlog_ticket *tic) 373 { 374 struct xlog *log = mp->m_log; 375 int need_bytes; 376 int error = 0; 377 378 if (XLOG_FORCED_SHUTDOWN(log)) 379 return -EIO; 380 381 XFS_STATS_INC(xs_try_logspace); 382 383 /* 384 * This is a new transaction on the ticket, so we need to change the 385 * transaction ID so that the next transaction has a different TID in 386 * the log. Just add one to the existing tid so that we can see chains 387 * of rolling transactions in the log easily. 388 */ 389 tic->t_tid++; 390 391 xlog_grant_push_ail(log, tic->t_unit_res); 392 393 tic->t_curr_res = tic->t_unit_res; 394 xlog_tic_reset_res(tic); 395 396 if (tic->t_cnt > 0) 397 return 0; 398 399 trace_xfs_log_regrant(log, tic); 400 401 error = xlog_grant_head_check(log, &log->l_write_head, tic, 402 &need_bytes); 403 if (error) 404 goto out_error; 405 406 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 407 trace_xfs_log_regrant_exit(log, tic); 408 xlog_verify_grant_tail(log); 409 return 0; 410 411 out_error: 412 /* 413 * If we are failing, make sure the ticket doesn't have any current 414 * reservations. We don't want to add this back when the ticket/ 415 * transaction gets cancelled. 416 */ 417 tic->t_curr_res = 0; 418 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 419 return error; 420 } 421 422 /* 423 * Reserve log space and return a ticket corresponding the reservation. 424 * 425 * Each reservation is going to reserve extra space for a log record header. 426 * When writes happen to the on-disk log, we don't subtract the length of the 427 * log record header from any reservation. By wasting space in each 428 * reservation, we prevent over allocation problems. 429 */ 430 int 431 xfs_log_reserve( 432 struct xfs_mount *mp, 433 int unit_bytes, 434 int cnt, 435 struct xlog_ticket **ticp, 436 __uint8_t client, 437 bool permanent, 438 uint t_type) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 tic->t_trans_type = t_type; 459 *ticp = tic; 460 461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 462 : tic->t_unit_res); 463 464 trace_xfs_log_reserve(log, tic); 465 466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 467 &need_bytes); 468 if (error) 469 goto out_error; 470 471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 473 trace_xfs_log_reserve_exit(log, tic); 474 xlog_verify_grant_tail(log); 475 return 0; 476 477 out_error: 478 /* 479 * If we are failing, make sure the ticket doesn't have any current 480 * reservations. We don't want to add this back when the ticket/ 481 * transaction gets cancelled. 482 */ 483 tic->t_curr_res = 0; 484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 485 return error; 486 } 487 488 489 /* 490 * NOTES: 491 * 492 * 1. currblock field gets updated at startup and after in-core logs 493 * marked as with WANT_SYNC. 494 */ 495 496 /* 497 * This routine is called when a user of a log manager ticket is done with 498 * the reservation. If the ticket was ever used, then a commit record for 499 * the associated transaction is written out as a log operation header with 500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 501 * a given ticket. If the ticket was one with a permanent reservation, then 502 * a few operations are done differently. Permanent reservation tickets by 503 * default don't release the reservation. They just commit the current 504 * transaction with the belief that the reservation is still needed. A flag 505 * must be passed in before permanent reservations are actually released. 506 * When these type of tickets are not released, they need to be set into 507 * the inited state again. By doing this, a start record will be written 508 * out when the next write occurs. 509 */ 510 xfs_lsn_t 511 xfs_log_done( 512 struct xfs_mount *mp, 513 struct xlog_ticket *ticket, 514 struct xlog_in_core **iclog, 515 uint flags) 516 { 517 struct xlog *log = mp->m_log; 518 xfs_lsn_t lsn = 0; 519 520 if (XLOG_FORCED_SHUTDOWN(log) || 521 /* 522 * If nothing was ever written, don't write out commit record. 523 * If we get an error, just continue and give back the log ticket. 524 */ 525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 527 lsn = (xfs_lsn_t) -1; 528 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 529 flags |= XFS_LOG_REL_PERM_RESERV; 530 } 531 } 532 533 534 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 535 (flags & XFS_LOG_REL_PERM_RESERV)) { 536 trace_xfs_log_done_nonperm(log, ticket); 537 538 /* 539 * Release ticket if not permanent reservation or a specific 540 * request has been made to release a permanent reservation. 541 */ 542 xlog_ungrant_log_space(log, ticket); 543 xfs_log_ticket_put(ticket); 544 } else { 545 trace_xfs_log_done_perm(log, ticket); 546 547 xlog_regrant_reserve_log_space(log, ticket); 548 /* If this ticket was a permanent reservation and we aren't 549 * trying to release it, reset the inited flags; so next time 550 * we write, a start record will be written out. 551 */ 552 ticket->t_flags |= XLOG_TIC_INITED; 553 } 554 555 return lsn; 556 } 557 558 /* 559 * Attaches a new iclog I/O completion callback routine during 560 * transaction commit. If the log is in error state, a non-zero 561 * return code is handed back and the caller is responsible for 562 * executing the callback at an appropriate time. 563 */ 564 int 565 xfs_log_notify( 566 struct xfs_mount *mp, 567 struct xlog_in_core *iclog, 568 xfs_log_callback_t *cb) 569 { 570 int abortflg; 571 572 spin_lock(&iclog->ic_callback_lock); 573 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 574 if (!abortflg) { 575 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 576 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 577 cb->cb_next = NULL; 578 *(iclog->ic_callback_tail) = cb; 579 iclog->ic_callback_tail = &(cb->cb_next); 580 } 581 spin_unlock(&iclog->ic_callback_lock); 582 return abortflg; 583 } 584 585 int 586 xfs_log_release_iclog( 587 struct xfs_mount *mp, 588 struct xlog_in_core *iclog) 589 { 590 if (xlog_state_release_iclog(mp->m_log, iclog)) { 591 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 592 return -EIO; 593 } 594 595 return 0; 596 } 597 598 /* 599 * Mount a log filesystem 600 * 601 * mp - ubiquitous xfs mount point structure 602 * log_target - buftarg of on-disk log device 603 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 604 * num_bblocks - Number of BBSIZE blocks in on-disk log 605 * 606 * Return error or zero. 607 */ 608 int 609 xfs_log_mount( 610 xfs_mount_t *mp, 611 xfs_buftarg_t *log_target, 612 xfs_daddr_t blk_offset, 613 int num_bblks) 614 { 615 int error = 0; 616 int min_logfsbs; 617 618 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 619 xfs_notice(mp, "Mounting V%d Filesystem", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 } else { 622 xfs_notice(mp, 623 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 624 XFS_SB_VERSION_NUM(&mp->m_sb)); 625 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 626 } 627 628 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 629 if (IS_ERR(mp->m_log)) { 630 error = PTR_ERR(mp->m_log); 631 goto out; 632 } 633 634 /* 635 * Validate the given log space and drop a critical message via syslog 636 * if the log size is too small that would lead to some unexpected 637 * situations in transaction log space reservation stage. 638 * 639 * Note: we can't just reject the mount if the validation fails. This 640 * would mean that people would have to downgrade their kernel just to 641 * remedy the situation as there is no way to grow the log (short of 642 * black magic surgery with xfs_db). 643 * 644 * We can, however, reject mounts for CRC format filesystems, as the 645 * mkfs binary being used to make the filesystem should never create a 646 * filesystem with a log that is too small. 647 */ 648 min_logfsbs = xfs_log_calc_minimum_size(mp); 649 650 if (mp->m_sb.sb_logblocks < min_logfsbs) { 651 xfs_warn(mp, 652 "Log size %d blocks too small, minimum size is %d blocks", 653 mp->m_sb.sb_logblocks, min_logfsbs); 654 error = -EINVAL; 655 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 656 xfs_warn(mp, 657 "Log size %d blocks too large, maximum size is %lld blocks", 658 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 659 error = -EINVAL; 660 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 661 xfs_warn(mp, 662 "log size %lld bytes too large, maximum size is %lld bytes", 663 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 664 XFS_MAX_LOG_BYTES); 665 error = -EINVAL; 666 } 667 if (error) { 668 if (xfs_sb_version_hascrc(&mp->m_sb)) { 669 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 670 ASSERT(0); 671 goto out_free_log; 672 } 673 xfs_crit(mp, 674 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 675 "experienced then please report this message in the bug report."); 676 } 677 678 /* 679 * Initialize the AIL now we have a log. 680 */ 681 error = xfs_trans_ail_init(mp); 682 if (error) { 683 xfs_warn(mp, "AIL initialisation failed: error %d", error); 684 goto out_free_log; 685 } 686 mp->m_log->l_ailp = mp->m_ail; 687 688 /* 689 * skip log recovery on a norecovery mount. pretend it all 690 * just worked. 691 */ 692 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 693 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 694 695 if (readonly) 696 mp->m_flags &= ~XFS_MOUNT_RDONLY; 697 698 error = xlog_recover(mp->m_log); 699 700 if (readonly) 701 mp->m_flags |= XFS_MOUNT_RDONLY; 702 if (error) { 703 xfs_warn(mp, "log mount/recovery failed: error %d", 704 error); 705 goto out_destroy_ail; 706 } 707 } 708 709 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 710 "log"); 711 if (error) 712 goto out_destroy_ail; 713 714 /* Normal transactions can now occur */ 715 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 716 717 /* 718 * Now the log has been fully initialised and we know were our 719 * space grant counters are, we can initialise the permanent ticket 720 * needed for delayed logging to work. 721 */ 722 xlog_cil_init_post_recovery(mp->m_log); 723 724 return 0; 725 726 out_destroy_ail: 727 xfs_trans_ail_destroy(mp); 728 out_free_log: 729 xlog_dealloc_log(mp->m_log); 730 out: 731 return error; 732 } 733 734 /* 735 * Finish the recovery of the file system. This is separate from the 736 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 737 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 738 * here. 739 * 740 * If we finish recovery successfully, start the background log work. If we are 741 * not doing recovery, then we have a RO filesystem and we don't need to start 742 * it. 743 */ 744 int 745 xfs_log_mount_finish(xfs_mount_t *mp) 746 { 747 int error = 0; 748 749 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 750 error = xlog_recover_finish(mp->m_log); 751 if (!error) 752 xfs_log_work_queue(mp); 753 } else { 754 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 755 } 756 757 758 return error; 759 } 760 761 /* 762 * Final log writes as part of unmount. 763 * 764 * Mark the filesystem clean as unmount happens. Note that during relocation 765 * this routine needs to be executed as part of source-bag while the 766 * deallocation must not be done until source-end. 767 */ 768 769 /* 770 * Unmount record used to have a string "Unmount filesystem--" in the 771 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 772 * We just write the magic number now since that particular field isn't 773 * currently architecture converted and "Unmount" is a bit foo. 774 * As far as I know, there weren't any dependencies on the old behaviour. 775 */ 776 777 int 778 xfs_log_unmount_write(xfs_mount_t *mp) 779 { 780 struct xlog *log = mp->m_log; 781 xlog_in_core_t *iclog; 782 #ifdef DEBUG 783 xlog_in_core_t *first_iclog; 784 #endif 785 xlog_ticket_t *tic = NULL; 786 xfs_lsn_t lsn; 787 int error; 788 789 /* 790 * Don't write out unmount record on read-only mounts. 791 * Or, if we are doing a forced umount (typically because of IO errors). 792 */ 793 if (mp->m_flags & XFS_MOUNT_RDONLY) 794 return 0; 795 796 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 797 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 798 799 #ifdef DEBUG 800 first_iclog = iclog = log->l_iclog; 801 do { 802 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 803 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 804 ASSERT(iclog->ic_offset == 0); 805 } 806 iclog = iclog->ic_next; 807 } while (iclog != first_iclog); 808 #endif 809 if (! (XLOG_FORCED_SHUTDOWN(log))) { 810 error = xfs_log_reserve(mp, 600, 1, &tic, 811 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 812 if (!error) { 813 /* the data section must be 32 bit size aligned */ 814 struct { 815 __uint16_t magic; 816 __uint16_t pad1; 817 __uint32_t pad2; /* may as well make it 64 bits */ 818 } magic = { 819 .magic = XLOG_UNMOUNT_TYPE, 820 }; 821 struct xfs_log_iovec reg = { 822 .i_addr = &magic, 823 .i_len = sizeof(magic), 824 .i_type = XLOG_REG_TYPE_UNMOUNT, 825 }; 826 struct xfs_log_vec vec = { 827 .lv_niovecs = 1, 828 .lv_iovecp = ®, 829 }; 830 831 /* remove inited flag, and account for space used */ 832 tic->t_flags = 0; 833 tic->t_curr_res -= sizeof(magic); 834 error = xlog_write(log, &vec, tic, &lsn, 835 NULL, XLOG_UNMOUNT_TRANS); 836 /* 837 * At this point, we're umounting anyway, 838 * so there's no point in transitioning log state 839 * to IOERROR. Just continue... 840 */ 841 } 842 843 if (error) 844 xfs_alert(mp, "%s: unmount record failed", __func__); 845 846 847 spin_lock(&log->l_icloglock); 848 iclog = log->l_iclog; 849 atomic_inc(&iclog->ic_refcnt); 850 xlog_state_want_sync(log, iclog); 851 spin_unlock(&log->l_icloglock); 852 error = xlog_state_release_iclog(log, iclog); 853 854 spin_lock(&log->l_icloglock); 855 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 856 iclog->ic_state == XLOG_STATE_DIRTY)) { 857 if (!XLOG_FORCED_SHUTDOWN(log)) { 858 xlog_wait(&iclog->ic_force_wait, 859 &log->l_icloglock); 860 } else { 861 spin_unlock(&log->l_icloglock); 862 } 863 } else { 864 spin_unlock(&log->l_icloglock); 865 } 866 if (tic) { 867 trace_xfs_log_umount_write(log, tic); 868 xlog_ungrant_log_space(log, tic); 869 xfs_log_ticket_put(tic); 870 } 871 } else { 872 /* 873 * We're already in forced_shutdown mode, couldn't 874 * even attempt to write out the unmount transaction. 875 * 876 * Go through the motions of sync'ing and releasing 877 * the iclog, even though no I/O will actually happen, 878 * we need to wait for other log I/Os that may already 879 * be in progress. Do this as a separate section of 880 * code so we'll know if we ever get stuck here that 881 * we're in this odd situation of trying to unmount 882 * a file system that went into forced_shutdown as 883 * the result of an unmount.. 884 */ 885 spin_lock(&log->l_icloglock); 886 iclog = log->l_iclog; 887 atomic_inc(&iclog->ic_refcnt); 888 889 xlog_state_want_sync(log, iclog); 890 spin_unlock(&log->l_icloglock); 891 error = xlog_state_release_iclog(log, iclog); 892 893 spin_lock(&log->l_icloglock); 894 895 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 896 || iclog->ic_state == XLOG_STATE_DIRTY 897 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 898 899 xlog_wait(&iclog->ic_force_wait, 900 &log->l_icloglock); 901 } else { 902 spin_unlock(&log->l_icloglock); 903 } 904 } 905 906 return error; 907 } /* xfs_log_unmount_write */ 908 909 /* 910 * Empty the log for unmount/freeze. 911 * 912 * To do this, we first need to shut down the background log work so it is not 913 * trying to cover the log as we clean up. We then need to unpin all objects in 914 * the log so we can then flush them out. Once they have completed their IO and 915 * run the callbacks removing themselves from the AIL, we can write the unmount 916 * record. 917 */ 918 void 919 xfs_log_quiesce( 920 struct xfs_mount *mp) 921 { 922 cancel_delayed_work_sync(&mp->m_log->l_work); 923 xfs_log_force(mp, XFS_LOG_SYNC); 924 925 /* 926 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 927 * will push it, xfs_wait_buftarg() will not wait for it. Further, 928 * xfs_buf_iowait() cannot be used because it was pushed with the 929 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 930 * the IO to complete. 931 */ 932 xfs_ail_push_all_sync(mp->m_ail); 933 xfs_wait_buftarg(mp->m_ddev_targp); 934 xfs_buf_lock(mp->m_sb_bp); 935 xfs_buf_unlock(mp->m_sb_bp); 936 937 xfs_log_unmount_write(mp); 938 } 939 940 /* 941 * Shut down and release the AIL and Log. 942 * 943 * During unmount, we need to ensure we flush all the dirty metadata objects 944 * from the AIL so that the log is empty before we write the unmount record to 945 * the log. Once this is done, we can tear down the AIL and the log. 946 */ 947 void 948 xfs_log_unmount( 949 struct xfs_mount *mp) 950 { 951 xfs_log_quiesce(mp); 952 953 xfs_trans_ail_destroy(mp); 954 955 xfs_sysfs_del(&mp->m_log->l_kobj); 956 957 xlog_dealloc_log(mp->m_log); 958 } 959 960 void 961 xfs_log_item_init( 962 struct xfs_mount *mp, 963 struct xfs_log_item *item, 964 int type, 965 const struct xfs_item_ops *ops) 966 { 967 item->li_mountp = mp; 968 item->li_ailp = mp->m_ail; 969 item->li_type = type; 970 item->li_ops = ops; 971 item->li_lv = NULL; 972 973 INIT_LIST_HEAD(&item->li_ail); 974 INIT_LIST_HEAD(&item->li_cil); 975 } 976 977 /* 978 * Wake up processes waiting for log space after we have moved the log tail. 979 */ 980 void 981 xfs_log_space_wake( 982 struct xfs_mount *mp) 983 { 984 struct xlog *log = mp->m_log; 985 int free_bytes; 986 987 if (XLOG_FORCED_SHUTDOWN(log)) 988 return; 989 990 if (!list_empty_careful(&log->l_write_head.waiters)) { 991 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 992 993 spin_lock(&log->l_write_head.lock); 994 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 995 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 996 spin_unlock(&log->l_write_head.lock); 997 } 998 999 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1000 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1001 1002 spin_lock(&log->l_reserve_head.lock); 1003 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1004 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1005 spin_unlock(&log->l_reserve_head.lock); 1006 } 1007 } 1008 1009 /* 1010 * Determine if we have a transaction that has gone to disk that needs to be 1011 * covered. To begin the transition to the idle state firstly the log needs to 1012 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1013 * we start attempting to cover the log. 1014 * 1015 * Only if we are then in a state where covering is needed, the caller is 1016 * informed that dummy transactions are required to move the log into the idle 1017 * state. 1018 * 1019 * If there are any items in the AIl or CIL, then we do not want to attempt to 1020 * cover the log as we may be in a situation where there isn't log space 1021 * available to run a dummy transaction and this can lead to deadlocks when the 1022 * tail of the log is pinned by an item that is modified in the CIL. Hence 1023 * there's no point in running a dummy transaction at this point because we 1024 * can't start trying to idle the log until both the CIL and AIL are empty. 1025 */ 1026 int 1027 xfs_log_need_covered(xfs_mount_t *mp) 1028 { 1029 struct xlog *log = mp->m_log; 1030 int needed = 0; 1031 1032 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1033 return 0; 1034 1035 if (!xlog_cil_empty(log)) 1036 return 0; 1037 1038 spin_lock(&log->l_icloglock); 1039 switch (log->l_covered_state) { 1040 case XLOG_STATE_COVER_DONE: 1041 case XLOG_STATE_COVER_DONE2: 1042 case XLOG_STATE_COVER_IDLE: 1043 break; 1044 case XLOG_STATE_COVER_NEED: 1045 case XLOG_STATE_COVER_NEED2: 1046 if (xfs_ail_min_lsn(log->l_ailp)) 1047 break; 1048 if (!xlog_iclogs_empty(log)) 1049 break; 1050 1051 needed = 1; 1052 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1053 log->l_covered_state = XLOG_STATE_COVER_DONE; 1054 else 1055 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1056 break; 1057 default: 1058 needed = 1; 1059 break; 1060 } 1061 spin_unlock(&log->l_icloglock); 1062 return needed; 1063 } 1064 1065 /* 1066 * We may be holding the log iclog lock upon entering this routine. 1067 */ 1068 xfs_lsn_t 1069 xlog_assign_tail_lsn_locked( 1070 struct xfs_mount *mp) 1071 { 1072 struct xlog *log = mp->m_log; 1073 struct xfs_log_item *lip; 1074 xfs_lsn_t tail_lsn; 1075 1076 assert_spin_locked(&mp->m_ail->xa_lock); 1077 1078 /* 1079 * To make sure we always have a valid LSN for the log tail we keep 1080 * track of the last LSN which was committed in log->l_last_sync_lsn, 1081 * and use that when the AIL was empty. 1082 */ 1083 lip = xfs_ail_min(mp->m_ail); 1084 if (lip) 1085 tail_lsn = lip->li_lsn; 1086 else 1087 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1088 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1089 atomic64_set(&log->l_tail_lsn, tail_lsn); 1090 return tail_lsn; 1091 } 1092 1093 xfs_lsn_t 1094 xlog_assign_tail_lsn( 1095 struct xfs_mount *mp) 1096 { 1097 xfs_lsn_t tail_lsn; 1098 1099 spin_lock(&mp->m_ail->xa_lock); 1100 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1101 spin_unlock(&mp->m_ail->xa_lock); 1102 1103 return tail_lsn; 1104 } 1105 1106 /* 1107 * Return the space in the log between the tail and the head. The head 1108 * is passed in the cycle/bytes formal parms. In the special case where 1109 * the reserve head has wrapped passed the tail, this calculation is no 1110 * longer valid. In this case, just return 0 which means there is no space 1111 * in the log. This works for all places where this function is called 1112 * with the reserve head. Of course, if the write head were to ever 1113 * wrap the tail, we should blow up. Rather than catch this case here, 1114 * we depend on other ASSERTions in other parts of the code. XXXmiken 1115 * 1116 * This code also handles the case where the reservation head is behind 1117 * the tail. The details of this case are described below, but the end 1118 * result is that we return the size of the log as the amount of space left. 1119 */ 1120 STATIC int 1121 xlog_space_left( 1122 struct xlog *log, 1123 atomic64_t *head) 1124 { 1125 int free_bytes; 1126 int tail_bytes; 1127 int tail_cycle; 1128 int head_cycle; 1129 int head_bytes; 1130 1131 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1132 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1133 tail_bytes = BBTOB(tail_bytes); 1134 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1135 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1136 else if (tail_cycle + 1 < head_cycle) 1137 return 0; 1138 else if (tail_cycle < head_cycle) { 1139 ASSERT(tail_cycle == (head_cycle - 1)); 1140 free_bytes = tail_bytes - head_bytes; 1141 } else { 1142 /* 1143 * The reservation head is behind the tail. 1144 * In this case we just want to return the size of the 1145 * log as the amount of space left. 1146 */ 1147 xfs_alert(log->l_mp, 1148 "xlog_space_left: head behind tail\n" 1149 " tail_cycle = %d, tail_bytes = %d\n" 1150 " GH cycle = %d, GH bytes = %d", 1151 tail_cycle, tail_bytes, head_cycle, head_bytes); 1152 ASSERT(0); 1153 free_bytes = log->l_logsize; 1154 } 1155 return free_bytes; 1156 } 1157 1158 1159 /* 1160 * Log function which is called when an io completes. 1161 * 1162 * The log manager needs its own routine, in order to control what 1163 * happens with the buffer after the write completes. 1164 */ 1165 void 1166 xlog_iodone(xfs_buf_t *bp) 1167 { 1168 struct xlog_in_core *iclog = bp->b_fspriv; 1169 struct xlog *l = iclog->ic_log; 1170 int aborted = 0; 1171 1172 /* 1173 * Race to shutdown the filesystem if we see an error. 1174 */ 1175 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, 1176 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1177 xfs_buf_ioerror_alert(bp, __func__); 1178 xfs_buf_stale(bp); 1179 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1180 /* 1181 * This flag will be propagated to the trans-committed 1182 * callback routines to let them know that the log-commit 1183 * didn't succeed. 1184 */ 1185 aborted = XFS_LI_ABORTED; 1186 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1187 aborted = XFS_LI_ABORTED; 1188 } 1189 1190 /* log I/O is always issued ASYNC */ 1191 ASSERT(XFS_BUF_ISASYNC(bp)); 1192 xlog_state_done_syncing(iclog, aborted); 1193 1194 /* 1195 * drop the buffer lock now that we are done. Nothing references 1196 * the buffer after this, so an unmount waiting on this lock can now 1197 * tear it down safely. As such, it is unsafe to reference the buffer 1198 * (bp) after the unlock as we could race with it being freed. 1199 */ 1200 xfs_buf_unlock(bp); 1201 } 1202 1203 /* 1204 * Return size of each in-core log record buffer. 1205 * 1206 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1207 * 1208 * If the filesystem blocksize is too large, we may need to choose a 1209 * larger size since the directory code currently logs entire blocks. 1210 */ 1211 1212 STATIC void 1213 xlog_get_iclog_buffer_size( 1214 struct xfs_mount *mp, 1215 struct xlog *log) 1216 { 1217 int size; 1218 int xhdrs; 1219 1220 if (mp->m_logbufs <= 0) 1221 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1222 else 1223 log->l_iclog_bufs = mp->m_logbufs; 1224 1225 /* 1226 * Buffer size passed in from mount system call. 1227 */ 1228 if (mp->m_logbsize > 0) { 1229 size = log->l_iclog_size = mp->m_logbsize; 1230 log->l_iclog_size_log = 0; 1231 while (size != 1) { 1232 log->l_iclog_size_log++; 1233 size >>= 1; 1234 } 1235 1236 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1237 /* # headers = size / 32k 1238 * one header holds cycles from 32k of data 1239 */ 1240 1241 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1242 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1243 xhdrs++; 1244 log->l_iclog_hsize = xhdrs << BBSHIFT; 1245 log->l_iclog_heads = xhdrs; 1246 } else { 1247 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1248 log->l_iclog_hsize = BBSIZE; 1249 log->l_iclog_heads = 1; 1250 } 1251 goto done; 1252 } 1253 1254 /* All machines use 32kB buffers by default. */ 1255 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1256 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1257 1258 /* the default log size is 16k or 32k which is one header sector */ 1259 log->l_iclog_hsize = BBSIZE; 1260 log->l_iclog_heads = 1; 1261 1262 done: 1263 /* are we being asked to make the sizes selected above visible? */ 1264 if (mp->m_logbufs == 0) 1265 mp->m_logbufs = log->l_iclog_bufs; 1266 if (mp->m_logbsize == 0) 1267 mp->m_logbsize = log->l_iclog_size; 1268 } /* xlog_get_iclog_buffer_size */ 1269 1270 1271 void 1272 xfs_log_work_queue( 1273 struct xfs_mount *mp) 1274 { 1275 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1276 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1277 } 1278 1279 /* 1280 * Every sync period we need to unpin all items in the AIL and push them to 1281 * disk. If there is nothing dirty, then we might need to cover the log to 1282 * indicate that the filesystem is idle. 1283 */ 1284 void 1285 xfs_log_worker( 1286 struct work_struct *work) 1287 { 1288 struct xlog *log = container_of(to_delayed_work(work), 1289 struct xlog, l_work); 1290 struct xfs_mount *mp = log->l_mp; 1291 1292 /* dgc: errors ignored - not fatal and nowhere to report them */ 1293 if (xfs_log_need_covered(mp)) 1294 xfs_fs_log_dummy(mp); 1295 else 1296 xfs_log_force(mp, 0); 1297 1298 /* start pushing all the metadata that is currently dirty */ 1299 xfs_ail_push_all(mp->m_ail); 1300 1301 /* queue us up again */ 1302 xfs_log_work_queue(mp); 1303 } 1304 1305 /* 1306 * This routine initializes some of the log structure for a given mount point. 1307 * Its primary purpose is to fill in enough, so recovery can occur. However, 1308 * some other stuff may be filled in too. 1309 */ 1310 STATIC struct xlog * 1311 xlog_alloc_log( 1312 struct xfs_mount *mp, 1313 struct xfs_buftarg *log_target, 1314 xfs_daddr_t blk_offset, 1315 int num_bblks) 1316 { 1317 struct xlog *log; 1318 xlog_rec_header_t *head; 1319 xlog_in_core_t **iclogp; 1320 xlog_in_core_t *iclog, *prev_iclog=NULL; 1321 xfs_buf_t *bp; 1322 int i; 1323 int error = -ENOMEM; 1324 uint log2_size = 0; 1325 1326 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1327 if (!log) { 1328 xfs_warn(mp, "Log allocation failed: No memory!"); 1329 goto out; 1330 } 1331 1332 log->l_mp = mp; 1333 log->l_targ = log_target; 1334 log->l_logsize = BBTOB(num_bblks); 1335 log->l_logBBstart = blk_offset; 1336 log->l_logBBsize = num_bblks; 1337 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1338 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1339 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1340 1341 log->l_prev_block = -1; 1342 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1343 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1344 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1345 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1346 1347 xlog_grant_head_init(&log->l_reserve_head); 1348 xlog_grant_head_init(&log->l_write_head); 1349 1350 error = -EFSCORRUPTED; 1351 if (xfs_sb_version_hassector(&mp->m_sb)) { 1352 log2_size = mp->m_sb.sb_logsectlog; 1353 if (log2_size < BBSHIFT) { 1354 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1355 log2_size, BBSHIFT); 1356 goto out_free_log; 1357 } 1358 1359 log2_size -= BBSHIFT; 1360 if (log2_size > mp->m_sectbb_log) { 1361 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1362 log2_size, mp->m_sectbb_log); 1363 goto out_free_log; 1364 } 1365 1366 /* for larger sector sizes, must have v2 or external log */ 1367 if (log2_size && log->l_logBBstart > 0 && 1368 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1369 xfs_warn(mp, 1370 "log sector size (0x%x) invalid for configuration.", 1371 log2_size); 1372 goto out_free_log; 1373 } 1374 } 1375 log->l_sectBBsize = 1 << log2_size; 1376 1377 xlog_get_iclog_buffer_size(mp, log); 1378 1379 /* 1380 * Use a NULL block for the extra log buffer used during splits so that 1381 * it will trigger errors if we ever try to do IO on it without first 1382 * having set it up properly. 1383 */ 1384 error = -ENOMEM; 1385 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1386 BTOBB(log->l_iclog_size), 0); 1387 if (!bp) 1388 goto out_free_log; 1389 1390 /* 1391 * The iclogbuf buffer locks are held over IO but we are not going to do 1392 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1393 * when appropriately. 1394 */ 1395 ASSERT(xfs_buf_islocked(bp)); 1396 xfs_buf_unlock(bp); 1397 1398 bp->b_iodone = xlog_iodone; 1399 log->l_xbuf = bp; 1400 1401 spin_lock_init(&log->l_icloglock); 1402 init_waitqueue_head(&log->l_flush_wait); 1403 1404 iclogp = &log->l_iclog; 1405 /* 1406 * The amount of memory to allocate for the iclog structure is 1407 * rather funky due to the way the structure is defined. It is 1408 * done this way so that we can use different sizes for machines 1409 * with different amounts of memory. See the definition of 1410 * xlog_in_core_t in xfs_log_priv.h for details. 1411 */ 1412 ASSERT(log->l_iclog_size >= 4096); 1413 for (i=0; i < log->l_iclog_bufs; i++) { 1414 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1415 if (!*iclogp) 1416 goto out_free_iclog; 1417 1418 iclog = *iclogp; 1419 iclog->ic_prev = prev_iclog; 1420 prev_iclog = iclog; 1421 1422 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1423 BTOBB(log->l_iclog_size), 0); 1424 if (!bp) 1425 goto out_free_iclog; 1426 1427 ASSERT(xfs_buf_islocked(bp)); 1428 xfs_buf_unlock(bp); 1429 1430 bp->b_iodone = xlog_iodone; 1431 iclog->ic_bp = bp; 1432 iclog->ic_data = bp->b_addr; 1433 #ifdef DEBUG 1434 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1435 #endif 1436 head = &iclog->ic_header; 1437 memset(head, 0, sizeof(xlog_rec_header_t)); 1438 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1439 head->h_version = cpu_to_be32( 1440 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1441 head->h_size = cpu_to_be32(log->l_iclog_size); 1442 /* new fields */ 1443 head->h_fmt = cpu_to_be32(XLOG_FMT); 1444 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1445 1446 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1447 iclog->ic_state = XLOG_STATE_ACTIVE; 1448 iclog->ic_log = log; 1449 atomic_set(&iclog->ic_refcnt, 0); 1450 spin_lock_init(&iclog->ic_callback_lock); 1451 iclog->ic_callback_tail = &(iclog->ic_callback); 1452 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1453 1454 init_waitqueue_head(&iclog->ic_force_wait); 1455 init_waitqueue_head(&iclog->ic_write_wait); 1456 1457 iclogp = &iclog->ic_next; 1458 } 1459 *iclogp = log->l_iclog; /* complete ring */ 1460 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1461 1462 error = xlog_cil_init(log); 1463 if (error) 1464 goto out_free_iclog; 1465 return log; 1466 1467 out_free_iclog: 1468 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1469 prev_iclog = iclog->ic_next; 1470 if (iclog->ic_bp) 1471 xfs_buf_free(iclog->ic_bp); 1472 kmem_free(iclog); 1473 } 1474 spinlock_destroy(&log->l_icloglock); 1475 xfs_buf_free(log->l_xbuf); 1476 out_free_log: 1477 kmem_free(log); 1478 out: 1479 return ERR_PTR(error); 1480 } /* xlog_alloc_log */ 1481 1482 1483 /* 1484 * Write out the commit record of a transaction associated with the given 1485 * ticket. Return the lsn of the commit record. 1486 */ 1487 STATIC int 1488 xlog_commit_record( 1489 struct xlog *log, 1490 struct xlog_ticket *ticket, 1491 struct xlog_in_core **iclog, 1492 xfs_lsn_t *commitlsnp) 1493 { 1494 struct xfs_mount *mp = log->l_mp; 1495 int error; 1496 struct xfs_log_iovec reg = { 1497 .i_addr = NULL, 1498 .i_len = 0, 1499 .i_type = XLOG_REG_TYPE_COMMIT, 1500 }; 1501 struct xfs_log_vec vec = { 1502 .lv_niovecs = 1, 1503 .lv_iovecp = ®, 1504 }; 1505 1506 ASSERT_ALWAYS(iclog); 1507 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1508 XLOG_COMMIT_TRANS); 1509 if (error) 1510 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1511 return error; 1512 } 1513 1514 /* 1515 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1516 * log space. This code pushes on the lsn which would supposedly free up 1517 * the 25% which we want to leave free. We may need to adopt a policy which 1518 * pushes on an lsn which is further along in the log once we reach the high 1519 * water mark. In this manner, we would be creating a low water mark. 1520 */ 1521 STATIC void 1522 xlog_grant_push_ail( 1523 struct xlog *log, 1524 int need_bytes) 1525 { 1526 xfs_lsn_t threshold_lsn = 0; 1527 xfs_lsn_t last_sync_lsn; 1528 int free_blocks; 1529 int free_bytes; 1530 int threshold_block; 1531 int threshold_cycle; 1532 int free_threshold; 1533 1534 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1535 1536 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1537 free_blocks = BTOBBT(free_bytes); 1538 1539 /* 1540 * Set the threshold for the minimum number of free blocks in the 1541 * log to the maximum of what the caller needs, one quarter of the 1542 * log, and 256 blocks. 1543 */ 1544 free_threshold = BTOBB(need_bytes); 1545 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1546 free_threshold = MAX(free_threshold, 256); 1547 if (free_blocks >= free_threshold) 1548 return; 1549 1550 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1551 &threshold_block); 1552 threshold_block += free_threshold; 1553 if (threshold_block >= log->l_logBBsize) { 1554 threshold_block -= log->l_logBBsize; 1555 threshold_cycle += 1; 1556 } 1557 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1558 threshold_block); 1559 /* 1560 * Don't pass in an lsn greater than the lsn of the last 1561 * log record known to be on disk. Use a snapshot of the last sync lsn 1562 * so that it doesn't change between the compare and the set. 1563 */ 1564 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1565 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1566 threshold_lsn = last_sync_lsn; 1567 1568 /* 1569 * Get the transaction layer to kick the dirty buffers out to 1570 * disk asynchronously. No point in trying to do this if 1571 * the filesystem is shutting down. 1572 */ 1573 if (!XLOG_FORCED_SHUTDOWN(log)) 1574 xfs_ail_push(log->l_ailp, threshold_lsn); 1575 } 1576 1577 /* 1578 * Stamp cycle number in every block 1579 */ 1580 STATIC void 1581 xlog_pack_data( 1582 struct xlog *log, 1583 struct xlog_in_core *iclog, 1584 int roundoff) 1585 { 1586 int i, j, k; 1587 int size = iclog->ic_offset + roundoff; 1588 __be32 cycle_lsn; 1589 xfs_caddr_t dp; 1590 1591 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1592 1593 dp = iclog->ic_datap; 1594 for (i = 0; i < BTOBB(size); i++) { 1595 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1596 break; 1597 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1598 *(__be32 *)dp = cycle_lsn; 1599 dp += BBSIZE; 1600 } 1601 1602 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1603 xlog_in_core_2_t *xhdr = iclog->ic_data; 1604 1605 for ( ; i < BTOBB(size); i++) { 1606 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1607 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1608 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1609 *(__be32 *)dp = cycle_lsn; 1610 dp += BBSIZE; 1611 } 1612 1613 for (i = 1; i < log->l_iclog_heads; i++) 1614 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1615 } 1616 } 1617 1618 /* 1619 * Calculate the checksum for a log buffer. 1620 * 1621 * This is a little more complicated than it should be because the various 1622 * headers and the actual data are non-contiguous. 1623 */ 1624 __le32 1625 xlog_cksum( 1626 struct xlog *log, 1627 struct xlog_rec_header *rhead, 1628 char *dp, 1629 int size) 1630 { 1631 __uint32_t crc; 1632 1633 /* first generate the crc for the record header ... */ 1634 crc = xfs_start_cksum((char *)rhead, 1635 sizeof(struct xlog_rec_header), 1636 offsetof(struct xlog_rec_header, h_crc)); 1637 1638 /* ... then for additional cycle data for v2 logs ... */ 1639 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1640 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1641 int i; 1642 1643 for (i = 1; i < log->l_iclog_heads; i++) { 1644 crc = crc32c(crc, &xhdr[i].hic_xheader, 1645 sizeof(struct xlog_rec_ext_header)); 1646 } 1647 } 1648 1649 /* ... and finally for the payload */ 1650 crc = crc32c(crc, dp, size); 1651 1652 return xfs_end_cksum(crc); 1653 } 1654 1655 /* 1656 * The bdstrat callback function for log bufs. This gives us a central 1657 * place to trap bufs in case we get hit by a log I/O error and need to 1658 * shutdown. Actually, in practice, even when we didn't get a log error, 1659 * we transition the iclogs to IOERROR state *after* flushing all existing 1660 * iclogs to disk. This is because we don't want anymore new transactions to be 1661 * started or completed afterwards. 1662 * 1663 * We lock the iclogbufs here so that we can serialise against IO completion 1664 * during unmount. We might be processing a shutdown triggered during unmount, 1665 * and that can occur asynchronously to the unmount thread, and hence we need to 1666 * ensure that completes before tearing down the iclogbufs. Hence we need to 1667 * hold the buffer lock across the log IO to acheive that. 1668 */ 1669 STATIC int 1670 xlog_bdstrat( 1671 struct xfs_buf *bp) 1672 { 1673 struct xlog_in_core *iclog = bp->b_fspriv; 1674 1675 xfs_buf_lock(bp); 1676 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1677 xfs_buf_ioerror(bp, -EIO); 1678 xfs_buf_stale(bp); 1679 xfs_buf_ioend(bp); 1680 /* 1681 * It would seem logical to return EIO here, but we rely on 1682 * the log state machine to propagate I/O errors instead of 1683 * doing it here. Similarly, IO completion will unlock the 1684 * buffer, so we don't do it here. 1685 */ 1686 return 0; 1687 } 1688 1689 xfs_buf_submit(bp); 1690 return 0; 1691 } 1692 1693 /* 1694 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1695 * fashion. Previously, we should have moved the current iclog 1696 * ptr in the log to point to the next available iclog. This allows further 1697 * write to continue while this code syncs out an iclog ready to go. 1698 * Before an in-core log can be written out, the data section must be scanned 1699 * to save away the 1st word of each BBSIZE block into the header. We replace 1700 * it with the current cycle count. Each BBSIZE block is tagged with the 1701 * cycle count because there in an implicit assumption that drives will 1702 * guarantee that entire 512 byte blocks get written at once. In other words, 1703 * we can't have part of a 512 byte block written and part not written. By 1704 * tagging each block, we will know which blocks are valid when recovering 1705 * after an unclean shutdown. 1706 * 1707 * This routine is single threaded on the iclog. No other thread can be in 1708 * this routine with the same iclog. Changing contents of iclog can there- 1709 * fore be done without grabbing the state machine lock. Updating the global 1710 * log will require grabbing the lock though. 1711 * 1712 * The entire log manager uses a logical block numbering scheme. Only 1713 * log_sync (and then only bwrite()) know about the fact that the log may 1714 * not start with block zero on a given device. The log block start offset 1715 * is added immediately before calling bwrite(). 1716 */ 1717 1718 STATIC int 1719 xlog_sync( 1720 struct xlog *log, 1721 struct xlog_in_core *iclog) 1722 { 1723 xfs_buf_t *bp; 1724 int i; 1725 uint count; /* byte count of bwrite */ 1726 uint count_init; /* initial count before roundup */ 1727 int roundoff; /* roundoff to BB or stripe */ 1728 int split = 0; /* split write into two regions */ 1729 int error; 1730 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1731 int size; 1732 1733 XFS_STATS_INC(xs_log_writes); 1734 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1735 1736 /* Add for LR header */ 1737 count_init = log->l_iclog_hsize + iclog->ic_offset; 1738 1739 /* Round out the log write size */ 1740 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1741 /* we have a v2 stripe unit to use */ 1742 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1743 } else { 1744 count = BBTOB(BTOBB(count_init)); 1745 } 1746 roundoff = count - count_init; 1747 ASSERT(roundoff >= 0); 1748 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1749 roundoff < log->l_mp->m_sb.sb_logsunit) 1750 || 1751 (log->l_mp->m_sb.sb_logsunit <= 1 && 1752 roundoff < BBTOB(1))); 1753 1754 /* move grant heads by roundoff in sync */ 1755 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1756 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1757 1758 /* put cycle number in every block */ 1759 xlog_pack_data(log, iclog, roundoff); 1760 1761 /* real byte length */ 1762 size = iclog->ic_offset; 1763 if (v2) 1764 size += roundoff; 1765 iclog->ic_header.h_len = cpu_to_be32(size); 1766 1767 bp = iclog->ic_bp; 1768 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1769 1770 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1771 1772 /* Do we need to split this write into 2 parts? */ 1773 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1774 char *dptr; 1775 1776 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1777 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1778 iclog->ic_bwritecnt = 2; 1779 1780 /* 1781 * Bump the cycle numbers at the start of each block in the 1782 * part of the iclog that ends up in the buffer that gets 1783 * written to the start of the log. 1784 * 1785 * Watch out for the header magic number case, though. 1786 */ 1787 dptr = (char *)&iclog->ic_header + count; 1788 for (i = 0; i < split; i += BBSIZE) { 1789 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1790 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1791 cycle++; 1792 *(__be32 *)dptr = cpu_to_be32(cycle); 1793 1794 dptr += BBSIZE; 1795 } 1796 } else { 1797 iclog->ic_bwritecnt = 1; 1798 } 1799 1800 /* calculcate the checksum */ 1801 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1802 iclog->ic_datap, size); 1803 1804 bp->b_io_length = BTOBB(count); 1805 bp->b_fspriv = iclog; 1806 XFS_BUF_ZEROFLAGS(bp); 1807 XFS_BUF_ASYNC(bp); 1808 bp->b_flags |= XBF_SYNCIO; 1809 /* use high priority completion wq */ 1810 bp->b_ioend_wq = log->l_mp->m_log_workqueue; 1811 1812 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1813 bp->b_flags |= XBF_FUA; 1814 1815 /* 1816 * Flush the data device before flushing the log to make 1817 * sure all meta data written back from the AIL actually made 1818 * it to disk before stamping the new log tail LSN into the 1819 * log buffer. For an external log we need to issue the 1820 * flush explicitly, and unfortunately synchronously here; 1821 * for an internal log we can simply use the block layer 1822 * state machine for preflushes. 1823 */ 1824 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1825 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1826 else 1827 bp->b_flags |= XBF_FLUSH; 1828 } 1829 1830 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1831 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1832 1833 xlog_verify_iclog(log, iclog, count, true); 1834 1835 /* account for log which doesn't start at block #0 */ 1836 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1837 /* 1838 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1839 * is shutting down. 1840 */ 1841 XFS_BUF_WRITE(bp); 1842 1843 error = xlog_bdstrat(bp); 1844 if (error) { 1845 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1846 return error; 1847 } 1848 if (split) { 1849 bp = iclog->ic_log->l_xbuf; 1850 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1851 xfs_buf_associate_memory(bp, 1852 (char *)&iclog->ic_header + count, split); 1853 bp->b_fspriv = iclog; 1854 XFS_BUF_ZEROFLAGS(bp); 1855 XFS_BUF_ASYNC(bp); 1856 bp->b_flags |= XBF_SYNCIO; 1857 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1858 bp->b_flags |= XBF_FUA; 1859 /* use high priority completion wq */ 1860 bp->b_ioend_wq = log->l_mp->m_log_workqueue; 1861 1862 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1863 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1864 1865 /* account for internal log which doesn't start at block #0 */ 1866 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1867 XFS_BUF_WRITE(bp); 1868 error = xlog_bdstrat(bp); 1869 if (error) { 1870 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1871 return error; 1872 } 1873 } 1874 return 0; 1875 } /* xlog_sync */ 1876 1877 /* 1878 * Deallocate a log structure 1879 */ 1880 STATIC void 1881 xlog_dealloc_log( 1882 struct xlog *log) 1883 { 1884 xlog_in_core_t *iclog, *next_iclog; 1885 int i; 1886 1887 xlog_cil_destroy(log); 1888 1889 /* 1890 * Cycle all the iclogbuf locks to make sure all log IO completion 1891 * is done before we tear down these buffers. 1892 */ 1893 iclog = log->l_iclog; 1894 for (i = 0; i < log->l_iclog_bufs; i++) { 1895 xfs_buf_lock(iclog->ic_bp); 1896 xfs_buf_unlock(iclog->ic_bp); 1897 iclog = iclog->ic_next; 1898 } 1899 1900 /* 1901 * Always need to ensure that the extra buffer does not point to memory 1902 * owned by another log buffer before we free it. Also, cycle the lock 1903 * first to ensure we've completed IO on it. 1904 */ 1905 xfs_buf_lock(log->l_xbuf); 1906 xfs_buf_unlock(log->l_xbuf); 1907 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1908 xfs_buf_free(log->l_xbuf); 1909 1910 iclog = log->l_iclog; 1911 for (i = 0; i < log->l_iclog_bufs; i++) { 1912 xfs_buf_free(iclog->ic_bp); 1913 next_iclog = iclog->ic_next; 1914 kmem_free(iclog); 1915 iclog = next_iclog; 1916 } 1917 spinlock_destroy(&log->l_icloglock); 1918 1919 log->l_mp->m_log = NULL; 1920 kmem_free(log); 1921 } /* xlog_dealloc_log */ 1922 1923 /* 1924 * Update counters atomically now that memcpy is done. 1925 */ 1926 /* ARGSUSED */ 1927 static inline void 1928 xlog_state_finish_copy( 1929 struct xlog *log, 1930 struct xlog_in_core *iclog, 1931 int record_cnt, 1932 int copy_bytes) 1933 { 1934 spin_lock(&log->l_icloglock); 1935 1936 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1937 iclog->ic_offset += copy_bytes; 1938 1939 spin_unlock(&log->l_icloglock); 1940 } /* xlog_state_finish_copy */ 1941 1942 1943 1944 1945 /* 1946 * print out info relating to regions written which consume 1947 * the reservation 1948 */ 1949 void 1950 xlog_print_tic_res( 1951 struct xfs_mount *mp, 1952 struct xlog_ticket *ticket) 1953 { 1954 uint i; 1955 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1956 1957 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1958 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1959 "bformat", 1960 "bchunk", 1961 "efi_format", 1962 "efd_format", 1963 "iformat", 1964 "icore", 1965 "iext", 1966 "ibroot", 1967 "ilocal", 1968 "iattr_ext", 1969 "iattr_broot", 1970 "iattr_local", 1971 "qformat", 1972 "dquot", 1973 "quotaoff", 1974 "LR header", 1975 "unmount", 1976 "commit", 1977 "trans header" 1978 }; 1979 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1980 "SETATTR_NOT_SIZE", 1981 "SETATTR_SIZE", 1982 "INACTIVE", 1983 "CREATE", 1984 "CREATE_TRUNC", 1985 "TRUNCATE_FILE", 1986 "REMOVE", 1987 "LINK", 1988 "RENAME", 1989 "MKDIR", 1990 "RMDIR", 1991 "SYMLINK", 1992 "SET_DMATTRS", 1993 "GROWFS", 1994 "STRAT_WRITE", 1995 "DIOSTRAT", 1996 "WRITE_SYNC", 1997 "WRITEID", 1998 "ADDAFORK", 1999 "ATTRINVAL", 2000 "ATRUNCATE", 2001 "ATTR_SET", 2002 "ATTR_RM", 2003 "ATTR_FLAG", 2004 "CLEAR_AGI_BUCKET", 2005 "QM_SBCHANGE", 2006 "DUMMY1", 2007 "DUMMY2", 2008 "QM_QUOTAOFF", 2009 "QM_DQALLOC", 2010 "QM_SETQLIM", 2011 "QM_DQCLUSTER", 2012 "QM_QINOCREATE", 2013 "QM_QUOTAOFF_END", 2014 "SB_UNIT", 2015 "FSYNC_TS", 2016 "GROWFSRT_ALLOC", 2017 "GROWFSRT_ZERO", 2018 "GROWFSRT_FREE", 2019 "SWAPEXT" 2020 }; 2021 2022 xfs_warn(mp, 2023 "xlog_write: reservation summary:\n" 2024 " trans type = %s (%u)\n" 2025 " unit res = %d bytes\n" 2026 " current res = %d bytes\n" 2027 " total reg = %u bytes (o/flow = %u bytes)\n" 2028 " ophdrs = %u (ophdr space = %u bytes)\n" 2029 " ophdr + reg = %u bytes\n" 2030 " num regions = %u\n", 2031 ((ticket->t_trans_type <= 0 || 2032 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 2033 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 2034 ticket->t_trans_type, 2035 ticket->t_unit_res, 2036 ticket->t_curr_res, 2037 ticket->t_res_arr_sum, ticket->t_res_o_flow, 2038 ticket->t_res_num_ophdrs, ophdr_spc, 2039 ticket->t_res_arr_sum + 2040 ticket->t_res_o_flow + ophdr_spc, 2041 ticket->t_res_num); 2042 2043 for (i = 0; i < ticket->t_res_num; i++) { 2044 uint r_type = ticket->t_res_arr[i].r_type; 2045 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2046 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2047 "bad-rtype" : res_type_str[r_type-1]), 2048 ticket->t_res_arr[i].r_len); 2049 } 2050 2051 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2052 "xlog_write: reservation ran out. Need to up reservation"); 2053 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2054 } 2055 2056 /* 2057 * Calculate the potential space needed by the log vector. Each region gets 2058 * its own xlog_op_header_t and may need to be double word aligned. 2059 */ 2060 static int 2061 xlog_write_calc_vec_length( 2062 struct xlog_ticket *ticket, 2063 struct xfs_log_vec *log_vector) 2064 { 2065 struct xfs_log_vec *lv; 2066 int headers = 0; 2067 int len = 0; 2068 int i; 2069 2070 /* acct for start rec of xact */ 2071 if (ticket->t_flags & XLOG_TIC_INITED) 2072 headers++; 2073 2074 for (lv = log_vector; lv; lv = lv->lv_next) { 2075 /* we don't write ordered log vectors */ 2076 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2077 continue; 2078 2079 headers += lv->lv_niovecs; 2080 2081 for (i = 0; i < lv->lv_niovecs; i++) { 2082 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2083 2084 len += vecp->i_len; 2085 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2086 } 2087 } 2088 2089 ticket->t_res_num_ophdrs += headers; 2090 len += headers * sizeof(struct xlog_op_header); 2091 2092 return len; 2093 } 2094 2095 /* 2096 * If first write for transaction, insert start record We can't be trying to 2097 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2098 */ 2099 static int 2100 xlog_write_start_rec( 2101 struct xlog_op_header *ophdr, 2102 struct xlog_ticket *ticket) 2103 { 2104 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2105 return 0; 2106 2107 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2108 ophdr->oh_clientid = ticket->t_clientid; 2109 ophdr->oh_len = 0; 2110 ophdr->oh_flags = XLOG_START_TRANS; 2111 ophdr->oh_res2 = 0; 2112 2113 ticket->t_flags &= ~XLOG_TIC_INITED; 2114 2115 return sizeof(struct xlog_op_header); 2116 } 2117 2118 static xlog_op_header_t * 2119 xlog_write_setup_ophdr( 2120 struct xlog *log, 2121 struct xlog_op_header *ophdr, 2122 struct xlog_ticket *ticket, 2123 uint flags) 2124 { 2125 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2126 ophdr->oh_clientid = ticket->t_clientid; 2127 ophdr->oh_res2 = 0; 2128 2129 /* are we copying a commit or unmount record? */ 2130 ophdr->oh_flags = flags; 2131 2132 /* 2133 * We've seen logs corrupted with bad transaction client ids. This 2134 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2135 * and shut down the filesystem. 2136 */ 2137 switch (ophdr->oh_clientid) { 2138 case XFS_TRANSACTION: 2139 case XFS_VOLUME: 2140 case XFS_LOG: 2141 break; 2142 default: 2143 xfs_warn(log->l_mp, 2144 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2145 ophdr->oh_clientid, ticket); 2146 return NULL; 2147 } 2148 2149 return ophdr; 2150 } 2151 2152 /* 2153 * Set up the parameters of the region copy into the log. This has 2154 * to handle region write split across multiple log buffers - this 2155 * state is kept external to this function so that this code can 2156 * be written in an obvious, self documenting manner. 2157 */ 2158 static int 2159 xlog_write_setup_copy( 2160 struct xlog_ticket *ticket, 2161 struct xlog_op_header *ophdr, 2162 int space_available, 2163 int space_required, 2164 int *copy_off, 2165 int *copy_len, 2166 int *last_was_partial_copy, 2167 int *bytes_consumed) 2168 { 2169 int still_to_copy; 2170 2171 still_to_copy = space_required - *bytes_consumed; 2172 *copy_off = *bytes_consumed; 2173 2174 if (still_to_copy <= space_available) { 2175 /* write of region completes here */ 2176 *copy_len = still_to_copy; 2177 ophdr->oh_len = cpu_to_be32(*copy_len); 2178 if (*last_was_partial_copy) 2179 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2180 *last_was_partial_copy = 0; 2181 *bytes_consumed = 0; 2182 return 0; 2183 } 2184 2185 /* partial write of region, needs extra log op header reservation */ 2186 *copy_len = space_available; 2187 ophdr->oh_len = cpu_to_be32(*copy_len); 2188 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2189 if (*last_was_partial_copy) 2190 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2191 *bytes_consumed += *copy_len; 2192 (*last_was_partial_copy)++; 2193 2194 /* account for new log op header */ 2195 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2196 ticket->t_res_num_ophdrs++; 2197 2198 return sizeof(struct xlog_op_header); 2199 } 2200 2201 static int 2202 xlog_write_copy_finish( 2203 struct xlog *log, 2204 struct xlog_in_core *iclog, 2205 uint flags, 2206 int *record_cnt, 2207 int *data_cnt, 2208 int *partial_copy, 2209 int *partial_copy_len, 2210 int log_offset, 2211 struct xlog_in_core **commit_iclog) 2212 { 2213 if (*partial_copy) { 2214 /* 2215 * This iclog has already been marked WANT_SYNC by 2216 * xlog_state_get_iclog_space. 2217 */ 2218 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2219 *record_cnt = 0; 2220 *data_cnt = 0; 2221 return xlog_state_release_iclog(log, iclog); 2222 } 2223 2224 *partial_copy = 0; 2225 *partial_copy_len = 0; 2226 2227 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2228 /* no more space in this iclog - push it. */ 2229 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2230 *record_cnt = 0; 2231 *data_cnt = 0; 2232 2233 spin_lock(&log->l_icloglock); 2234 xlog_state_want_sync(log, iclog); 2235 spin_unlock(&log->l_icloglock); 2236 2237 if (!commit_iclog) 2238 return xlog_state_release_iclog(log, iclog); 2239 ASSERT(flags & XLOG_COMMIT_TRANS); 2240 *commit_iclog = iclog; 2241 } 2242 2243 return 0; 2244 } 2245 2246 /* 2247 * Write some region out to in-core log 2248 * 2249 * This will be called when writing externally provided regions or when 2250 * writing out a commit record for a given transaction. 2251 * 2252 * General algorithm: 2253 * 1. Find total length of this write. This may include adding to the 2254 * lengths passed in. 2255 * 2. Check whether we violate the tickets reservation. 2256 * 3. While writing to this iclog 2257 * A. Reserve as much space in this iclog as can get 2258 * B. If this is first write, save away start lsn 2259 * C. While writing this region: 2260 * 1. If first write of transaction, write start record 2261 * 2. Write log operation header (header per region) 2262 * 3. Find out if we can fit entire region into this iclog 2263 * 4. Potentially, verify destination memcpy ptr 2264 * 5. Memcpy (partial) region 2265 * 6. If partial copy, release iclog; otherwise, continue 2266 * copying more regions into current iclog 2267 * 4. Mark want sync bit (in simulation mode) 2268 * 5. Release iclog for potential flush to on-disk log. 2269 * 2270 * ERRORS: 2271 * 1. Panic if reservation is overrun. This should never happen since 2272 * reservation amounts are generated internal to the filesystem. 2273 * NOTES: 2274 * 1. Tickets are single threaded data structures. 2275 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2276 * syncing routine. When a single log_write region needs to span 2277 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2278 * on all log operation writes which don't contain the end of the 2279 * region. The XLOG_END_TRANS bit is used for the in-core log 2280 * operation which contains the end of the continued log_write region. 2281 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2282 * we don't really know exactly how much space will be used. As a result, 2283 * we don't update ic_offset until the end when we know exactly how many 2284 * bytes have been written out. 2285 */ 2286 int 2287 xlog_write( 2288 struct xlog *log, 2289 struct xfs_log_vec *log_vector, 2290 struct xlog_ticket *ticket, 2291 xfs_lsn_t *start_lsn, 2292 struct xlog_in_core **commit_iclog, 2293 uint flags) 2294 { 2295 struct xlog_in_core *iclog = NULL; 2296 struct xfs_log_iovec *vecp; 2297 struct xfs_log_vec *lv; 2298 int len; 2299 int index; 2300 int partial_copy = 0; 2301 int partial_copy_len = 0; 2302 int contwr = 0; 2303 int record_cnt = 0; 2304 int data_cnt = 0; 2305 int error; 2306 2307 *start_lsn = 0; 2308 2309 len = xlog_write_calc_vec_length(ticket, log_vector); 2310 2311 /* 2312 * Region headers and bytes are already accounted for. 2313 * We only need to take into account start records and 2314 * split regions in this function. 2315 */ 2316 if (ticket->t_flags & XLOG_TIC_INITED) 2317 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2318 2319 /* 2320 * Commit record headers need to be accounted for. These 2321 * come in as separate writes so are easy to detect. 2322 */ 2323 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2324 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2325 2326 if (ticket->t_curr_res < 0) 2327 xlog_print_tic_res(log->l_mp, ticket); 2328 2329 index = 0; 2330 lv = log_vector; 2331 vecp = lv->lv_iovecp; 2332 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2333 void *ptr; 2334 int log_offset; 2335 2336 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2337 &contwr, &log_offset); 2338 if (error) 2339 return error; 2340 2341 ASSERT(log_offset <= iclog->ic_size - 1); 2342 ptr = iclog->ic_datap + log_offset; 2343 2344 /* start_lsn is the first lsn written to. That's all we need. */ 2345 if (!*start_lsn) 2346 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2347 2348 /* 2349 * This loop writes out as many regions as can fit in the amount 2350 * of space which was allocated by xlog_state_get_iclog_space(). 2351 */ 2352 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2353 struct xfs_log_iovec *reg; 2354 struct xlog_op_header *ophdr; 2355 int start_rec_copy; 2356 int copy_len; 2357 int copy_off; 2358 bool ordered = false; 2359 2360 /* ordered log vectors have no regions to write */ 2361 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2362 ASSERT(lv->lv_niovecs == 0); 2363 ordered = true; 2364 goto next_lv; 2365 } 2366 2367 reg = &vecp[index]; 2368 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2369 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2370 2371 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2372 if (start_rec_copy) { 2373 record_cnt++; 2374 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2375 start_rec_copy); 2376 } 2377 2378 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2379 if (!ophdr) 2380 return -EIO; 2381 2382 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2383 sizeof(struct xlog_op_header)); 2384 2385 len += xlog_write_setup_copy(ticket, ophdr, 2386 iclog->ic_size-log_offset, 2387 reg->i_len, 2388 ©_off, ©_len, 2389 &partial_copy, 2390 &partial_copy_len); 2391 xlog_verify_dest_ptr(log, ptr); 2392 2393 /* copy region */ 2394 ASSERT(copy_len >= 0); 2395 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2396 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2397 2398 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2399 record_cnt++; 2400 data_cnt += contwr ? copy_len : 0; 2401 2402 error = xlog_write_copy_finish(log, iclog, flags, 2403 &record_cnt, &data_cnt, 2404 &partial_copy, 2405 &partial_copy_len, 2406 log_offset, 2407 commit_iclog); 2408 if (error) 2409 return error; 2410 2411 /* 2412 * if we had a partial copy, we need to get more iclog 2413 * space but we don't want to increment the region 2414 * index because there is still more is this region to 2415 * write. 2416 * 2417 * If we completed writing this region, and we flushed 2418 * the iclog (indicated by resetting of the record 2419 * count), then we also need to get more log space. If 2420 * this was the last record, though, we are done and 2421 * can just return. 2422 */ 2423 if (partial_copy) 2424 break; 2425 2426 if (++index == lv->lv_niovecs) { 2427 next_lv: 2428 lv = lv->lv_next; 2429 index = 0; 2430 if (lv) 2431 vecp = lv->lv_iovecp; 2432 } 2433 if (record_cnt == 0 && ordered == false) { 2434 if (!lv) 2435 return 0; 2436 break; 2437 } 2438 } 2439 } 2440 2441 ASSERT(len == 0); 2442 2443 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2444 if (!commit_iclog) 2445 return xlog_state_release_iclog(log, iclog); 2446 2447 ASSERT(flags & XLOG_COMMIT_TRANS); 2448 *commit_iclog = iclog; 2449 return 0; 2450 } 2451 2452 2453 /***************************************************************************** 2454 * 2455 * State Machine functions 2456 * 2457 ***************************************************************************** 2458 */ 2459 2460 /* Clean iclogs starting from the head. This ordering must be 2461 * maintained, so an iclog doesn't become ACTIVE beyond one that 2462 * is SYNCING. This is also required to maintain the notion that we use 2463 * a ordered wait queue to hold off would be writers to the log when every 2464 * iclog is trying to sync to disk. 2465 * 2466 * State Change: DIRTY -> ACTIVE 2467 */ 2468 STATIC void 2469 xlog_state_clean_log( 2470 struct xlog *log) 2471 { 2472 xlog_in_core_t *iclog; 2473 int changed = 0; 2474 2475 iclog = log->l_iclog; 2476 do { 2477 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2478 iclog->ic_state = XLOG_STATE_ACTIVE; 2479 iclog->ic_offset = 0; 2480 ASSERT(iclog->ic_callback == NULL); 2481 /* 2482 * If the number of ops in this iclog indicate it just 2483 * contains the dummy transaction, we can 2484 * change state into IDLE (the second time around). 2485 * Otherwise we should change the state into 2486 * NEED a dummy. 2487 * We don't need to cover the dummy. 2488 */ 2489 if (!changed && 2490 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2491 XLOG_COVER_OPS)) { 2492 changed = 1; 2493 } else { 2494 /* 2495 * We have two dirty iclogs so start over 2496 * This could also be num of ops indicates 2497 * this is not the dummy going out. 2498 */ 2499 changed = 2; 2500 } 2501 iclog->ic_header.h_num_logops = 0; 2502 memset(iclog->ic_header.h_cycle_data, 0, 2503 sizeof(iclog->ic_header.h_cycle_data)); 2504 iclog->ic_header.h_lsn = 0; 2505 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2506 /* do nothing */; 2507 else 2508 break; /* stop cleaning */ 2509 iclog = iclog->ic_next; 2510 } while (iclog != log->l_iclog); 2511 2512 /* log is locked when we are called */ 2513 /* 2514 * Change state for the dummy log recording. 2515 * We usually go to NEED. But we go to NEED2 if the changed indicates 2516 * we are done writing the dummy record. 2517 * If we are done with the second dummy recored (DONE2), then 2518 * we go to IDLE. 2519 */ 2520 if (changed) { 2521 switch (log->l_covered_state) { 2522 case XLOG_STATE_COVER_IDLE: 2523 case XLOG_STATE_COVER_NEED: 2524 case XLOG_STATE_COVER_NEED2: 2525 log->l_covered_state = XLOG_STATE_COVER_NEED; 2526 break; 2527 2528 case XLOG_STATE_COVER_DONE: 2529 if (changed == 1) 2530 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2531 else 2532 log->l_covered_state = XLOG_STATE_COVER_NEED; 2533 break; 2534 2535 case XLOG_STATE_COVER_DONE2: 2536 if (changed == 1) 2537 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2538 else 2539 log->l_covered_state = XLOG_STATE_COVER_NEED; 2540 break; 2541 2542 default: 2543 ASSERT(0); 2544 } 2545 } 2546 } /* xlog_state_clean_log */ 2547 2548 STATIC xfs_lsn_t 2549 xlog_get_lowest_lsn( 2550 struct xlog *log) 2551 { 2552 xlog_in_core_t *lsn_log; 2553 xfs_lsn_t lowest_lsn, lsn; 2554 2555 lsn_log = log->l_iclog; 2556 lowest_lsn = 0; 2557 do { 2558 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2559 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2560 if ((lsn && !lowest_lsn) || 2561 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2562 lowest_lsn = lsn; 2563 } 2564 } 2565 lsn_log = lsn_log->ic_next; 2566 } while (lsn_log != log->l_iclog); 2567 return lowest_lsn; 2568 } 2569 2570 2571 STATIC void 2572 xlog_state_do_callback( 2573 struct xlog *log, 2574 int aborted, 2575 struct xlog_in_core *ciclog) 2576 { 2577 xlog_in_core_t *iclog; 2578 xlog_in_core_t *first_iclog; /* used to know when we've 2579 * processed all iclogs once */ 2580 xfs_log_callback_t *cb, *cb_next; 2581 int flushcnt = 0; 2582 xfs_lsn_t lowest_lsn; 2583 int ioerrors; /* counter: iclogs with errors */ 2584 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2585 int funcdidcallbacks; /* flag: function did callbacks */ 2586 int repeats; /* for issuing console warnings if 2587 * looping too many times */ 2588 int wake = 0; 2589 2590 spin_lock(&log->l_icloglock); 2591 first_iclog = iclog = log->l_iclog; 2592 ioerrors = 0; 2593 funcdidcallbacks = 0; 2594 repeats = 0; 2595 2596 do { 2597 /* 2598 * Scan all iclogs starting with the one pointed to by the 2599 * log. Reset this starting point each time the log is 2600 * unlocked (during callbacks). 2601 * 2602 * Keep looping through iclogs until one full pass is made 2603 * without running any callbacks. 2604 */ 2605 first_iclog = log->l_iclog; 2606 iclog = log->l_iclog; 2607 loopdidcallbacks = 0; 2608 repeats++; 2609 2610 do { 2611 2612 /* skip all iclogs in the ACTIVE & DIRTY states */ 2613 if (iclog->ic_state & 2614 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2615 iclog = iclog->ic_next; 2616 continue; 2617 } 2618 2619 /* 2620 * Between marking a filesystem SHUTDOWN and stopping 2621 * the log, we do flush all iclogs to disk (if there 2622 * wasn't a log I/O error). So, we do want things to 2623 * go smoothly in case of just a SHUTDOWN w/o a 2624 * LOG_IO_ERROR. 2625 */ 2626 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2627 /* 2628 * Can only perform callbacks in order. Since 2629 * this iclog is not in the DONE_SYNC/ 2630 * DO_CALLBACK state, we skip the rest and 2631 * just try to clean up. If we set our iclog 2632 * to DO_CALLBACK, we will not process it when 2633 * we retry since a previous iclog is in the 2634 * CALLBACK and the state cannot change since 2635 * we are holding the l_icloglock. 2636 */ 2637 if (!(iclog->ic_state & 2638 (XLOG_STATE_DONE_SYNC | 2639 XLOG_STATE_DO_CALLBACK))) { 2640 if (ciclog && (ciclog->ic_state == 2641 XLOG_STATE_DONE_SYNC)) { 2642 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2643 } 2644 break; 2645 } 2646 /* 2647 * We now have an iclog that is in either the 2648 * DO_CALLBACK or DONE_SYNC states. The other 2649 * states (WANT_SYNC, SYNCING, or CALLBACK were 2650 * caught by the above if and are going to 2651 * clean (i.e. we aren't doing their callbacks) 2652 * see the above if. 2653 */ 2654 2655 /* 2656 * We will do one more check here to see if we 2657 * have chased our tail around. 2658 */ 2659 2660 lowest_lsn = xlog_get_lowest_lsn(log); 2661 if (lowest_lsn && 2662 XFS_LSN_CMP(lowest_lsn, 2663 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2664 iclog = iclog->ic_next; 2665 continue; /* Leave this iclog for 2666 * another thread */ 2667 } 2668 2669 iclog->ic_state = XLOG_STATE_CALLBACK; 2670 2671 2672 /* 2673 * Completion of a iclog IO does not imply that 2674 * a transaction has completed, as transactions 2675 * can be large enough to span many iclogs. We 2676 * cannot change the tail of the log half way 2677 * through a transaction as this may be the only 2678 * transaction in the log and moving th etail to 2679 * point to the middle of it will prevent 2680 * recovery from finding the start of the 2681 * transaction. Hence we should only update the 2682 * last_sync_lsn if this iclog contains 2683 * transaction completion callbacks on it. 2684 * 2685 * We have to do this before we drop the 2686 * icloglock to ensure we are the only one that 2687 * can update it. 2688 */ 2689 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2690 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2691 if (iclog->ic_callback) 2692 atomic64_set(&log->l_last_sync_lsn, 2693 be64_to_cpu(iclog->ic_header.h_lsn)); 2694 2695 } else 2696 ioerrors++; 2697 2698 spin_unlock(&log->l_icloglock); 2699 2700 /* 2701 * Keep processing entries in the callback list until 2702 * we come around and it is empty. We need to 2703 * atomically see that the list is empty and change the 2704 * state to DIRTY so that we don't miss any more 2705 * callbacks being added. 2706 */ 2707 spin_lock(&iclog->ic_callback_lock); 2708 cb = iclog->ic_callback; 2709 while (cb) { 2710 iclog->ic_callback_tail = &(iclog->ic_callback); 2711 iclog->ic_callback = NULL; 2712 spin_unlock(&iclog->ic_callback_lock); 2713 2714 /* perform callbacks in the order given */ 2715 for (; cb; cb = cb_next) { 2716 cb_next = cb->cb_next; 2717 cb->cb_func(cb->cb_arg, aborted); 2718 } 2719 spin_lock(&iclog->ic_callback_lock); 2720 cb = iclog->ic_callback; 2721 } 2722 2723 loopdidcallbacks++; 2724 funcdidcallbacks++; 2725 2726 spin_lock(&log->l_icloglock); 2727 ASSERT(iclog->ic_callback == NULL); 2728 spin_unlock(&iclog->ic_callback_lock); 2729 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2730 iclog->ic_state = XLOG_STATE_DIRTY; 2731 2732 /* 2733 * Transition from DIRTY to ACTIVE if applicable. 2734 * NOP if STATE_IOERROR. 2735 */ 2736 xlog_state_clean_log(log); 2737 2738 /* wake up threads waiting in xfs_log_force() */ 2739 wake_up_all(&iclog->ic_force_wait); 2740 2741 iclog = iclog->ic_next; 2742 } while (first_iclog != iclog); 2743 2744 if (repeats > 5000) { 2745 flushcnt += repeats; 2746 repeats = 0; 2747 xfs_warn(log->l_mp, 2748 "%s: possible infinite loop (%d iterations)", 2749 __func__, flushcnt); 2750 } 2751 } while (!ioerrors && loopdidcallbacks); 2752 2753 /* 2754 * make one last gasp attempt to see if iclogs are being left in 2755 * limbo.. 2756 */ 2757 #ifdef DEBUG 2758 if (funcdidcallbacks) { 2759 first_iclog = iclog = log->l_iclog; 2760 do { 2761 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2762 /* 2763 * Terminate the loop if iclogs are found in states 2764 * which will cause other threads to clean up iclogs. 2765 * 2766 * SYNCING - i/o completion will go through logs 2767 * DONE_SYNC - interrupt thread should be waiting for 2768 * l_icloglock 2769 * IOERROR - give up hope all ye who enter here 2770 */ 2771 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2772 iclog->ic_state == XLOG_STATE_SYNCING || 2773 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2774 iclog->ic_state == XLOG_STATE_IOERROR ) 2775 break; 2776 iclog = iclog->ic_next; 2777 } while (first_iclog != iclog); 2778 } 2779 #endif 2780 2781 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2782 wake = 1; 2783 spin_unlock(&log->l_icloglock); 2784 2785 if (wake) 2786 wake_up_all(&log->l_flush_wait); 2787 } 2788 2789 2790 /* 2791 * Finish transitioning this iclog to the dirty state. 2792 * 2793 * Make sure that we completely execute this routine only when this is 2794 * the last call to the iclog. There is a good chance that iclog flushes, 2795 * when we reach the end of the physical log, get turned into 2 separate 2796 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2797 * routine. By using the reference count bwritecnt, we guarantee that only 2798 * the second completion goes through. 2799 * 2800 * Callbacks could take time, so they are done outside the scope of the 2801 * global state machine log lock. 2802 */ 2803 STATIC void 2804 xlog_state_done_syncing( 2805 xlog_in_core_t *iclog, 2806 int aborted) 2807 { 2808 struct xlog *log = iclog->ic_log; 2809 2810 spin_lock(&log->l_icloglock); 2811 2812 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2813 iclog->ic_state == XLOG_STATE_IOERROR); 2814 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2815 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2816 2817 2818 /* 2819 * If we got an error, either on the first buffer, or in the case of 2820 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2821 * and none should ever be attempted to be written to disk 2822 * again. 2823 */ 2824 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2825 if (--iclog->ic_bwritecnt == 1) { 2826 spin_unlock(&log->l_icloglock); 2827 return; 2828 } 2829 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2830 } 2831 2832 /* 2833 * Someone could be sleeping prior to writing out the next 2834 * iclog buffer, we wake them all, one will get to do the 2835 * I/O, the others get to wait for the result. 2836 */ 2837 wake_up_all(&iclog->ic_write_wait); 2838 spin_unlock(&log->l_icloglock); 2839 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2840 } /* xlog_state_done_syncing */ 2841 2842 2843 /* 2844 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2845 * sleep. We wait on the flush queue on the head iclog as that should be 2846 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2847 * we will wait here and all new writes will sleep until a sync completes. 2848 * 2849 * The in-core logs are used in a circular fashion. They are not used 2850 * out-of-order even when an iclog past the head is free. 2851 * 2852 * return: 2853 * * log_offset where xlog_write() can start writing into the in-core 2854 * log's data space. 2855 * * in-core log pointer to which xlog_write() should write. 2856 * * boolean indicating this is a continued write to an in-core log. 2857 * If this is the last write, then the in-core log's offset field 2858 * needs to be incremented, depending on the amount of data which 2859 * is copied. 2860 */ 2861 STATIC int 2862 xlog_state_get_iclog_space( 2863 struct xlog *log, 2864 int len, 2865 struct xlog_in_core **iclogp, 2866 struct xlog_ticket *ticket, 2867 int *continued_write, 2868 int *logoffsetp) 2869 { 2870 int log_offset; 2871 xlog_rec_header_t *head; 2872 xlog_in_core_t *iclog; 2873 int error; 2874 2875 restart: 2876 spin_lock(&log->l_icloglock); 2877 if (XLOG_FORCED_SHUTDOWN(log)) { 2878 spin_unlock(&log->l_icloglock); 2879 return -EIO; 2880 } 2881 2882 iclog = log->l_iclog; 2883 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2884 XFS_STATS_INC(xs_log_noiclogs); 2885 2886 /* Wait for log writes to have flushed */ 2887 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2888 goto restart; 2889 } 2890 2891 head = &iclog->ic_header; 2892 2893 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2894 log_offset = iclog->ic_offset; 2895 2896 /* On the 1st write to an iclog, figure out lsn. This works 2897 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2898 * committing to. If the offset is set, that's how many blocks 2899 * must be written. 2900 */ 2901 if (log_offset == 0) { 2902 ticket->t_curr_res -= log->l_iclog_hsize; 2903 xlog_tic_add_region(ticket, 2904 log->l_iclog_hsize, 2905 XLOG_REG_TYPE_LRHEADER); 2906 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2907 head->h_lsn = cpu_to_be64( 2908 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2909 ASSERT(log->l_curr_block >= 0); 2910 } 2911 2912 /* If there is enough room to write everything, then do it. Otherwise, 2913 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2914 * bit is on, so this will get flushed out. Don't update ic_offset 2915 * until you know exactly how many bytes get copied. Therefore, wait 2916 * until later to update ic_offset. 2917 * 2918 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2919 * can fit into remaining data section. 2920 */ 2921 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2922 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2923 2924 /* 2925 * If I'm the only one writing to this iclog, sync it to disk. 2926 * We need to do an atomic compare and decrement here to avoid 2927 * racing with concurrent atomic_dec_and_lock() calls in 2928 * xlog_state_release_iclog() when there is more than one 2929 * reference to the iclog. 2930 */ 2931 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2932 /* we are the only one */ 2933 spin_unlock(&log->l_icloglock); 2934 error = xlog_state_release_iclog(log, iclog); 2935 if (error) 2936 return error; 2937 } else { 2938 spin_unlock(&log->l_icloglock); 2939 } 2940 goto restart; 2941 } 2942 2943 /* Do we have enough room to write the full amount in the remainder 2944 * of this iclog? Or must we continue a write on the next iclog and 2945 * mark this iclog as completely taken? In the case where we switch 2946 * iclogs (to mark it taken), this particular iclog will release/sync 2947 * to disk in xlog_write(). 2948 */ 2949 if (len <= iclog->ic_size - iclog->ic_offset) { 2950 *continued_write = 0; 2951 iclog->ic_offset += len; 2952 } else { 2953 *continued_write = 1; 2954 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2955 } 2956 *iclogp = iclog; 2957 2958 ASSERT(iclog->ic_offset <= iclog->ic_size); 2959 spin_unlock(&log->l_icloglock); 2960 2961 *logoffsetp = log_offset; 2962 return 0; 2963 } /* xlog_state_get_iclog_space */ 2964 2965 /* The first cnt-1 times through here we don't need to 2966 * move the grant write head because the permanent 2967 * reservation has reserved cnt times the unit amount. 2968 * Release part of current permanent unit reservation and 2969 * reset current reservation to be one units worth. Also 2970 * move grant reservation head forward. 2971 */ 2972 STATIC void 2973 xlog_regrant_reserve_log_space( 2974 struct xlog *log, 2975 struct xlog_ticket *ticket) 2976 { 2977 trace_xfs_log_regrant_reserve_enter(log, ticket); 2978 2979 if (ticket->t_cnt > 0) 2980 ticket->t_cnt--; 2981 2982 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2983 ticket->t_curr_res); 2984 xlog_grant_sub_space(log, &log->l_write_head.grant, 2985 ticket->t_curr_res); 2986 ticket->t_curr_res = ticket->t_unit_res; 2987 xlog_tic_reset_res(ticket); 2988 2989 trace_xfs_log_regrant_reserve_sub(log, ticket); 2990 2991 /* just return if we still have some of the pre-reserved space */ 2992 if (ticket->t_cnt > 0) 2993 return; 2994 2995 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2996 ticket->t_unit_res); 2997 2998 trace_xfs_log_regrant_reserve_exit(log, ticket); 2999 3000 ticket->t_curr_res = ticket->t_unit_res; 3001 xlog_tic_reset_res(ticket); 3002 } /* xlog_regrant_reserve_log_space */ 3003 3004 3005 /* 3006 * Give back the space left from a reservation. 3007 * 3008 * All the information we need to make a correct determination of space left 3009 * is present. For non-permanent reservations, things are quite easy. The 3010 * count should have been decremented to zero. We only need to deal with the 3011 * space remaining in the current reservation part of the ticket. If the 3012 * ticket contains a permanent reservation, there may be left over space which 3013 * needs to be released. A count of N means that N-1 refills of the current 3014 * reservation can be done before we need to ask for more space. The first 3015 * one goes to fill up the first current reservation. Once we run out of 3016 * space, the count will stay at zero and the only space remaining will be 3017 * in the current reservation field. 3018 */ 3019 STATIC void 3020 xlog_ungrant_log_space( 3021 struct xlog *log, 3022 struct xlog_ticket *ticket) 3023 { 3024 int bytes; 3025 3026 if (ticket->t_cnt > 0) 3027 ticket->t_cnt--; 3028 3029 trace_xfs_log_ungrant_enter(log, ticket); 3030 trace_xfs_log_ungrant_sub(log, ticket); 3031 3032 /* 3033 * If this is a permanent reservation ticket, we may be able to free 3034 * up more space based on the remaining count. 3035 */ 3036 bytes = ticket->t_curr_res; 3037 if (ticket->t_cnt > 0) { 3038 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3039 bytes += ticket->t_unit_res*ticket->t_cnt; 3040 } 3041 3042 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3043 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3044 3045 trace_xfs_log_ungrant_exit(log, ticket); 3046 3047 xfs_log_space_wake(log->l_mp); 3048 } 3049 3050 /* 3051 * Flush iclog to disk if this is the last reference to the given iclog and 3052 * the WANT_SYNC bit is set. 3053 * 3054 * When this function is entered, the iclog is not necessarily in the 3055 * WANT_SYNC state. It may be sitting around waiting to get filled. 3056 * 3057 * 3058 */ 3059 STATIC int 3060 xlog_state_release_iclog( 3061 struct xlog *log, 3062 struct xlog_in_core *iclog) 3063 { 3064 int sync = 0; /* do we sync? */ 3065 3066 if (iclog->ic_state & XLOG_STATE_IOERROR) 3067 return -EIO; 3068 3069 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3070 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3071 return 0; 3072 3073 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3074 spin_unlock(&log->l_icloglock); 3075 return -EIO; 3076 } 3077 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3078 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3079 3080 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3081 /* update tail before writing to iclog */ 3082 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3083 sync++; 3084 iclog->ic_state = XLOG_STATE_SYNCING; 3085 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3086 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3087 /* cycle incremented when incrementing curr_block */ 3088 } 3089 spin_unlock(&log->l_icloglock); 3090 3091 /* 3092 * We let the log lock go, so it's possible that we hit a log I/O 3093 * error or some other SHUTDOWN condition that marks the iclog 3094 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3095 * this iclog has consistent data, so we ignore IOERROR 3096 * flags after this point. 3097 */ 3098 if (sync) 3099 return xlog_sync(log, iclog); 3100 return 0; 3101 } /* xlog_state_release_iclog */ 3102 3103 3104 /* 3105 * This routine will mark the current iclog in the ring as WANT_SYNC 3106 * and move the current iclog pointer to the next iclog in the ring. 3107 * When this routine is called from xlog_state_get_iclog_space(), the 3108 * exact size of the iclog has not yet been determined. All we know is 3109 * that every data block. We have run out of space in this log record. 3110 */ 3111 STATIC void 3112 xlog_state_switch_iclogs( 3113 struct xlog *log, 3114 struct xlog_in_core *iclog, 3115 int eventual_size) 3116 { 3117 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3118 if (!eventual_size) 3119 eventual_size = iclog->ic_offset; 3120 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3121 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3122 log->l_prev_block = log->l_curr_block; 3123 log->l_prev_cycle = log->l_curr_cycle; 3124 3125 /* roll log?: ic_offset changed later */ 3126 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3127 3128 /* Round up to next log-sunit */ 3129 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3130 log->l_mp->m_sb.sb_logsunit > 1) { 3131 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3132 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3133 } 3134 3135 if (log->l_curr_block >= log->l_logBBsize) { 3136 log->l_curr_cycle++; 3137 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3138 log->l_curr_cycle++; 3139 log->l_curr_block -= log->l_logBBsize; 3140 ASSERT(log->l_curr_block >= 0); 3141 } 3142 ASSERT(iclog == log->l_iclog); 3143 log->l_iclog = iclog->ic_next; 3144 } /* xlog_state_switch_iclogs */ 3145 3146 /* 3147 * Write out all data in the in-core log as of this exact moment in time. 3148 * 3149 * Data may be written to the in-core log during this call. However, 3150 * we don't guarantee this data will be written out. A change from past 3151 * implementation means this routine will *not* write out zero length LRs. 3152 * 3153 * Basically, we try and perform an intelligent scan of the in-core logs. 3154 * If we determine there is no flushable data, we just return. There is no 3155 * flushable data if: 3156 * 3157 * 1. the current iclog is active and has no data; the previous iclog 3158 * is in the active or dirty state. 3159 * 2. the current iclog is drity, and the previous iclog is in the 3160 * active or dirty state. 3161 * 3162 * We may sleep if: 3163 * 3164 * 1. the current iclog is not in the active nor dirty state. 3165 * 2. the current iclog dirty, and the previous iclog is not in the 3166 * active nor dirty state. 3167 * 3. the current iclog is active, and there is another thread writing 3168 * to this particular iclog. 3169 * 4. a) the current iclog is active and has no other writers 3170 * b) when we return from flushing out this iclog, it is still 3171 * not in the active nor dirty state. 3172 */ 3173 int 3174 _xfs_log_force( 3175 struct xfs_mount *mp, 3176 uint flags, 3177 int *log_flushed) 3178 { 3179 struct xlog *log = mp->m_log; 3180 struct xlog_in_core *iclog; 3181 xfs_lsn_t lsn; 3182 3183 XFS_STATS_INC(xs_log_force); 3184 3185 xlog_cil_force(log); 3186 3187 spin_lock(&log->l_icloglock); 3188 3189 iclog = log->l_iclog; 3190 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3191 spin_unlock(&log->l_icloglock); 3192 return -EIO; 3193 } 3194 3195 /* If the head iclog is not active nor dirty, we just attach 3196 * ourselves to the head and go to sleep. 3197 */ 3198 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3199 iclog->ic_state == XLOG_STATE_DIRTY) { 3200 /* 3201 * If the head is dirty or (active and empty), then 3202 * we need to look at the previous iclog. If the previous 3203 * iclog is active or dirty we are done. There is nothing 3204 * to sync out. Otherwise, we attach ourselves to the 3205 * previous iclog and go to sleep. 3206 */ 3207 if (iclog->ic_state == XLOG_STATE_DIRTY || 3208 (atomic_read(&iclog->ic_refcnt) == 0 3209 && iclog->ic_offset == 0)) { 3210 iclog = iclog->ic_prev; 3211 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3212 iclog->ic_state == XLOG_STATE_DIRTY) 3213 goto no_sleep; 3214 else 3215 goto maybe_sleep; 3216 } else { 3217 if (atomic_read(&iclog->ic_refcnt) == 0) { 3218 /* We are the only one with access to this 3219 * iclog. Flush it out now. There should 3220 * be a roundoff of zero to show that someone 3221 * has already taken care of the roundoff from 3222 * the previous sync. 3223 */ 3224 atomic_inc(&iclog->ic_refcnt); 3225 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3226 xlog_state_switch_iclogs(log, iclog, 0); 3227 spin_unlock(&log->l_icloglock); 3228 3229 if (xlog_state_release_iclog(log, iclog)) 3230 return -EIO; 3231 3232 if (log_flushed) 3233 *log_flushed = 1; 3234 spin_lock(&log->l_icloglock); 3235 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3236 iclog->ic_state != XLOG_STATE_DIRTY) 3237 goto maybe_sleep; 3238 else 3239 goto no_sleep; 3240 } else { 3241 /* Someone else is writing to this iclog. 3242 * Use its call to flush out the data. However, 3243 * the other thread may not force out this LR, 3244 * so we mark it WANT_SYNC. 3245 */ 3246 xlog_state_switch_iclogs(log, iclog, 0); 3247 goto maybe_sleep; 3248 } 3249 } 3250 } 3251 3252 /* By the time we come around again, the iclog could've been filled 3253 * which would give it another lsn. If we have a new lsn, just 3254 * return because the relevant data has been flushed. 3255 */ 3256 maybe_sleep: 3257 if (flags & XFS_LOG_SYNC) { 3258 /* 3259 * We must check if we're shutting down here, before 3260 * we wait, while we're holding the l_icloglock. 3261 * Then we check again after waking up, in case our 3262 * sleep was disturbed by a bad news. 3263 */ 3264 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3265 spin_unlock(&log->l_icloglock); 3266 return -EIO; 3267 } 3268 XFS_STATS_INC(xs_log_force_sleep); 3269 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3270 /* 3271 * No need to grab the log lock here since we're 3272 * only deciding whether or not to return EIO 3273 * and the memory read should be atomic. 3274 */ 3275 if (iclog->ic_state & XLOG_STATE_IOERROR) 3276 return -EIO; 3277 if (log_flushed) 3278 *log_flushed = 1; 3279 } else { 3280 3281 no_sleep: 3282 spin_unlock(&log->l_icloglock); 3283 } 3284 return 0; 3285 } 3286 3287 /* 3288 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3289 * about errors or whether the log was flushed or not. This is the normal 3290 * interface to use when trying to unpin items or move the log forward. 3291 */ 3292 void 3293 xfs_log_force( 3294 xfs_mount_t *mp, 3295 uint flags) 3296 { 3297 int error; 3298 3299 trace_xfs_log_force(mp, 0); 3300 error = _xfs_log_force(mp, flags, NULL); 3301 if (error) 3302 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3303 } 3304 3305 /* 3306 * Force the in-core log to disk for a specific LSN. 3307 * 3308 * Find in-core log with lsn. 3309 * If it is in the DIRTY state, just return. 3310 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3311 * state and go to sleep or return. 3312 * If it is in any other state, go to sleep or return. 3313 * 3314 * Synchronous forces are implemented with a signal variable. All callers 3315 * to force a given lsn to disk will wait on a the sv attached to the 3316 * specific in-core log. When given in-core log finally completes its 3317 * write to disk, that thread will wake up all threads waiting on the 3318 * sv. 3319 */ 3320 int 3321 _xfs_log_force_lsn( 3322 struct xfs_mount *mp, 3323 xfs_lsn_t lsn, 3324 uint flags, 3325 int *log_flushed) 3326 { 3327 struct xlog *log = mp->m_log; 3328 struct xlog_in_core *iclog; 3329 int already_slept = 0; 3330 3331 ASSERT(lsn != 0); 3332 3333 XFS_STATS_INC(xs_log_force); 3334 3335 lsn = xlog_cil_force_lsn(log, lsn); 3336 if (lsn == NULLCOMMITLSN) 3337 return 0; 3338 3339 try_again: 3340 spin_lock(&log->l_icloglock); 3341 iclog = log->l_iclog; 3342 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3343 spin_unlock(&log->l_icloglock); 3344 return -EIO; 3345 } 3346 3347 do { 3348 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3349 iclog = iclog->ic_next; 3350 continue; 3351 } 3352 3353 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3354 spin_unlock(&log->l_icloglock); 3355 return 0; 3356 } 3357 3358 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3359 /* 3360 * We sleep here if we haven't already slept (e.g. 3361 * this is the first time we've looked at the correct 3362 * iclog buf) and the buffer before us is going to 3363 * be sync'ed. The reason for this is that if we 3364 * are doing sync transactions here, by waiting for 3365 * the previous I/O to complete, we can allow a few 3366 * more transactions into this iclog before we close 3367 * it down. 3368 * 3369 * Otherwise, we mark the buffer WANT_SYNC, and bump 3370 * up the refcnt so we can release the log (which 3371 * drops the ref count). The state switch keeps new 3372 * transaction commits from using this buffer. When 3373 * the current commits finish writing into the buffer, 3374 * the refcount will drop to zero and the buffer will 3375 * go out then. 3376 */ 3377 if (!already_slept && 3378 (iclog->ic_prev->ic_state & 3379 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3380 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3381 3382 XFS_STATS_INC(xs_log_force_sleep); 3383 3384 xlog_wait(&iclog->ic_prev->ic_write_wait, 3385 &log->l_icloglock); 3386 if (log_flushed) 3387 *log_flushed = 1; 3388 already_slept = 1; 3389 goto try_again; 3390 } 3391 atomic_inc(&iclog->ic_refcnt); 3392 xlog_state_switch_iclogs(log, iclog, 0); 3393 spin_unlock(&log->l_icloglock); 3394 if (xlog_state_release_iclog(log, iclog)) 3395 return -EIO; 3396 if (log_flushed) 3397 *log_flushed = 1; 3398 spin_lock(&log->l_icloglock); 3399 } 3400 3401 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3402 !(iclog->ic_state & 3403 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3404 /* 3405 * Don't wait on completion if we know that we've 3406 * gotten a log write error. 3407 */ 3408 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3409 spin_unlock(&log->l_icloglock); 3410 return -EIO; 3411 } 3412 XFS_STATS_INC(xs_log_force_sleep); 3413 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3414 /* 3415 * No need to grab the log lock here since we're 3416 * only deciding whether or not to return EIO 3417 * and the memory read should be atomic. 3418 */ 3419 if (iclog->ic_state & XLOG_STATE_IOERROR) 3420 return -EIO; 3421 3422 if (log_flushed) 3423 *log_flushed = 1; 3424 } else { /* just return */ 3425 spin_unlock(&log->l_icloglock); 3426 } 3427 3428 return 0; 3429 } while (iclog != log->l_iclog); 3430 3431 spin_unlock(&log->l_icloglock); 3432 return 0; 3433 } 3434 3435 /* 3436 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3437 * about errors or whether the log was flushed or not. This is the normal 3438 * interface to use when trying to unpin items or move the log forward. 3439 */ 3440 void 3441 xfs_log_force_lsn( 3442 xfs_mount_t *mp, 3443 xfs_lsn_t lsn, 3444 uint flags) 3445 { 3446 int error; 3447 3448 trace_xfs_log_force(mp, lsn); 3449 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3450 if (error) 3451 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3452 } 3453 3454 /* 3455 * Called when we want to mark the current iclog as being ready to sync to 3456 * disk. 3457 */ 3458 STATIC void 3459 xlog_state_want_sync( 3460 struct xlog *log, 3461 struct xlog_in_core *iclog) 3462 { 3463 assert_spin_locked(&log->l_icloglock); 3464 3465 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3466 xlog_state_switch_iclogs(log, iclog, 0); 3467 } else { 3468 ASSERT(iclog->ic_state & 3469 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3470 } 3471 } 3472 3473 3474 /***************************************************************************** 3475 * 3476 * TICKET functions 3477 * 3478 ***************************************************************************** 3479 */ 3480 3481 /* 3482 * Free a used ticket when its refcount falls to zero. 3483 */ 3484 void 3485 xfs_log_ticket_put( 3486 xlog_ticket_t *ticket) 3487 { 3488 ASSERT(atomic_read(&ticket->t_ref) > 0); 3489 if (atomic_dec_and_test(&ticket->t_ref)) 3490 kmem_zone_free(xfs_log_ticket_zone, ticket); 3491 } 3492 3493 xlog_ticket_t * 3494 xfs_log_ticket_get( 3495 xlog_ticket_t *ticket) 3496 { 3497 ASSERT(atomic_read(&ticket->t_ref) > 0); 3498 atomic_inc(&ticket->t_ref); 3499 return ticket; 3500 } 3501 3502 /* 3503 * Figure out the total log space unit (in bytes) that would be 3504 * required for a log ticket. 3505 */ 3506 int 3507 xfs_log_calc_unit_res( 3508 struct xfs_mount *mp, 3509 int unit_bytes) 3510 { 3511 struct xlog *log = mp->m_log; 3512 int iclog_space; 3513 uint num_headers; 3514 3515 /* 3516 * Permanent reservations have up to 'cnt'-1 active log operations 3517 * in the log. A unit in this case is the amount of space for one 3518 * of these log operations. Normal reservations have a cnt of 1 3519 * and their unit amount is the total amount of space required. 3520 * 3521 * The following lines of code account for non-transaction data 3522 * which occupy space in the on-disk log. 3523 * 3524 * Normal form of a transaction is: 3525 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3526 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3527 * 3528 * We need to account for all the leadup data and trailer data 3529 * around the transaction data. 3530 * And then we need to account for the worst case in terms of using 3531 * more space. 3532 * The worst case will happen if: 3533 * - the placement of the transaction happens to be such that the 3534 * roundoff is at its maximum 3535 * - the transaction data is synced before the commit record is synced 3536 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3537 * Therefore the commit record is in its own Log Record. 3538 * This can happen as the commit record is called with its 3539 * own region to xlog_write(). 3540 * This then means that in the worst case, roundoff can happen for 3541 * the commit-rec as well. 3542 * The commit-rec is smaller than padding in this scenario and so it is 3543 * not added separately. 3544 */ 3545 3546 /* for trans header */ 3547 unit_bytes += sizeof(xlog_op_header_t); 3548 unit_bytes += sizeof(xfs_trans_header_t); 3549 3550 /* for start-rec */ 3551 unit_bytes += sizeof(xlog_op_header_t); 3552 3553 /* 3554 * for LR headers - the space for data in an iclog is the size minus 3555 * the space used for the headers. If we use the iclog size, then we 3556 * undercalculate the number of headers required. 3557 * 3558 * Furthermore - the addition of op headers for split-recs might 3559 * increase the space required enough to require more log and op 3560 * headers, so take that into account too. 3561 * 3562 * IMPORTANT: This reservation makes the assumption that if this 3563 * transaction is the first in an iclog and hence has the LR headers 3564 * accounted to it, then the remaining space in the iclog is 3565 * exclusively for this transaction. i.e. if the transaction is larger 3566 * than the iclog, it will be the only thing in that iclog. 3567 * Fundamentally, this means we must pass the entire log vector to 3568 * xlog_write to guarantee this. 3569 */ 3570 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3571 num_headers = howmany(unit_bytes, iclog_space); 3572 3573 /* for split-recs - ophdrs added when data split over LRs */ 3574 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3575 3576 /* add extra header reservations if we overrun */ 3577 while (!num_headers || 3578 howmany(unit_bytes, iclog_space) > num_headers) { 3579 unit_bytes += sizeof(xlog_op_header_t); 3580 num_headers++; 3581 } 3582 unit_bytes += log->l_iclog_hsize * num_headers; 3583 3584 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3585 unit_bytes += log->l_iclog_hsize; 3586 3587 /* for roundoff padding for transaction data and one for commit record */ 3588 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3589 /* log su roundoff */ 3590 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3591 } else { 3592 /* BB roundoff */ 3593 unit_bytes += 2 * BBSIZE; 3594 } 3595 3596 return unit_bytes; 3597 } 3598 3599 /* 3600 * Allocate and initialise a new log ticket. 3601 */ 3602 struct xlog_ticket * 3603 xlog_ticket_alloc( 3604 struct xlog *log, 3605 int unit_bytes, 3606 int cnt, 3607 char client, 3608 bool permanent, 3609 xfs_km_flags_t alloc_flags) 3610 { 3611 struct xlog_ticket *tic; 3612 int unit_res; 3613 3614 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3615 if (!tic) 3616 return NULL; 3617 3618 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3619 3620 atomic_set(&tic->t_ref, 1); 3621 tic->t_task = current; 3622 INIT_LIST_HEAD(&tic->t_queue); 3623 tic->t_unit_res = unit_res; 3624 tic->t_curr_res = unit_res; 3625 tic->t_cnt = cnt; 3626 tic->t_ocnt = cnt; 3627 tic->t_tid = prandom_u32(); 3628 tic->t_clientid = client; 3629 tic->t_flags = XLOG_TIC_INITED; 3630 tic->t_trans_type = 0; 3631 if (permanent) 3632 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3633 3634 xlog_tic_reset_res(tic); 3635 3636 return tic; 3637 } 3638 3639 3640 /****************************************************************************** 3641 * 3642 * Log debug routines 3643 * 3644 ****************************************************************************** 3645 */ 3646 #if defined(DEBUG) 3647 /* 3648 * Make sure that the destination ptr is within the valid data region of 3649 * one of the iclogs. This uses backup pointers stored in a different 3650 * part of the log in case we trash the log structure. 3651 */ 3652 void 3653 xlog_verify_dest_ptr( 3654 struct xlog *log, 3655 char *ptr) 3656 { 3657 int i; 3658 int good_ptr = 0; 3659 3660 for (i = 0; i < log->l_iclog_bufs; i++) { 3661 if (ptr >= log->l_iclog_bak[i] && 3662 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3663 good_ptr++; 3664 } 3665 3666 if (!good_ptr) 3667 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3668 } 3669 3670 /* 3671 * Check to make sure the grant write head didn't just over lap the tail. If 3672 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3673 * the cycles differ by exactly one and check the byte count. 3674 * 3675 * This check is run unlocked, so can give false positives. Rather than assert 3676 * on failures, use a warn-once flag and a panic tag to allow the admin to 3677 * determine if they want to panic the machine when such an error occurs. For 3678 * debug kernels this will have the same effect as using an assert but, unlinke 3679 * an assert, it can be turned off at runtime. 3680 */ 3681 STATIC void 3682 xlog_verify_grant_tail( 3683 struct xlog *log) 3684 { 3685 int tail_cycle, tail_blocks; 3686 int cycle, space; 3687 3688 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3689 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3690 if (tail_cycle != cycle) { 3691 if (cycle - 1 != tail_cycle && 3692 !(log->l_flags & XLOG_TAIL_WARN)) { 3693 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3694 "%s: cycle - 1 != tail_cycle", __func__); 3695 log->l_flags |= XLOG_TAIL_WARN; 3696 } 3697 3698 if (space > BBTOB(tail_blocks) && 3699 !(log->l_flags & XLOG_TAIL_WARN)) { 3700 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3701 "%s: space > BBTOB(tail_blocks)", __func__); 3702 log->l_flags |= XLOG_TAIL_WARN; 3703 } 3704 } 3705 } 3706 3707 /* check if it will fit */ 3708 STATIC void 3709 xlog_verify_tail_lsn( 3710 struct xlog *log, 3711 struct xlog_in_core *iclog, 3712 xfs_lsn_t tail_lsn) 3713 { 3714 int blocks; 3715 3716 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3717 blocks = 3718 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3719 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3720 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3721 } else { 3722 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3723 3724 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3725 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3726 3727 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3728 if (blocks < BTOBB(iclog->ic_offset) + 1) 3729 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3730 } 3731 } /* xlog_verify_tail_lsn */ 3732 3733 /* 3734 * Perform a number of checks on the iclog before writing to disk. 3735 * 3736 * 1. Make sure the iclogs are still circular 3737 * 2. Make sure we have a good magic number 3738 * 3. Make sure we don't have magic numbers in the data 3739 * 4. Check fields of each log operation header for: 3740 * A. Valid client identifier 3741 * B. tid ptr value falls in valid ptr space (user space code) 3742 * C. Length in log record header is correct according to the 3743 * individual operation headers within record. 3744 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3745 * log, check the preceding blocks of the physical log to make sure all 3746 * the cycle numbers agree with the current cycle number. 3747 */ 3748 STATIC void 3749 xlog_verify_iclog( 3750 struct xlog *log, 3751 struct xlog_in_core *iclog, 3752 int count, 3753 bool syncing) 3754 { 3755 xlog_op_header_t *ophead; 3756 xlog_in_core_t *icptr; 3757 xlog_in_core_2_t *xhdr; 3758 xfs_caddr_t ptr; 3759 xfs_caddr_t base_ptr; 3760 __psint_t field_offset; 3761 __uint8_t clientid; 3762 int len, i, j, k, op_len; 3763 int idx; 3764 3765 /* check validity of iclog pointers */ 3766 spin_lock(&log->l_icloglock); 3767 icptr = log->l_iclog; 3768 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3769 ASSERT(icptr); 3770 3771 if (icptr != log->l_iclog) 3772 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3773 spin_unlock(&log->l_icloglock); 3774 3775 /* check log magic numbers */ 3776 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3777 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3778 3779 ptr = (xfs_caddr_t) &iclog->ic_header; 3780 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3781 ptr += BBSIZE) { 3782 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3783 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3784 __func__); 3785 } 3786 3787 /* check fields */ 3788 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3789 ptr = iclog->ic_datap; 3790 base_ptr = ptr; 3791 ophead = (xlog_op_header_t *)ptr; 3792 xhdr = iclog->ic_data; 3793 for (i = 0; i < len; i++) { 3794 ophead = (xlog_op_header_t *)ptr; 3795 3796 /* clientid is only 1 byte */ 3797 field_offset = (__psint_t) 3798 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3799 if (!syncing || (field_offset & 0x1ff)) { 3800 clientid = ophead->oh_clientid; 3801 } else { 3802 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3803 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3804 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3805 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3806 clientid = xlog_get_client_id( 3807 xhdr[j].hic_xheader.xh_cycle_data[k]); 3808 } else { 3809 clientid = xlog_get_client_id( 3810 iclog->ic_header.h_cycle_data[idx]); 3811 } 3812 } 3813 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3814 xfs_warn(log->l_mp, 3815 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3816 __func__, clientid, ophead, 3817 (unsigned long)field_offset); 3818 3819 /* check length */ 3820 field_offset = (__psint_t) 3821 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3822 if (!syncing || (field_offset & 0x1ff)) { 3823 op_len = be32_to_cpu(ophead->oh_len); 3824 } else { 3825 idx = BTOBBT((__psint_t)&ophead->oh_len - 3826 (__psint_t)iclog->ic_datap); 3827 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3828 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3829 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3830 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3831 } else { 3832 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3833 } 3834 } 3835 ptr += sizeof(xlog_op_header_t) + op_len; 3836 } 3837 } /* xlog_verify_iclog */ 3838 #endif 3839 3840 /* 3841 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3842 */ 3843 STATIC int 3844 xlog_state_ioerror( 3845 struct xlog *log) 3846 { 3847 xlog_in_core_t *iclog, *ic; 3848 3849 iclog = log->l_iclog; 3850 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3851 /* 3852 * Mark all the incore logs IOERROR. 3853 * From now on, no log flushes will result. 3854 */ 3855 ic = iclog; 3856 do { 3857 ic->ic_state = XLOG_STATE_IOERROR; 3858 ic = ic->ic_next; 3859 } while (ic != iclog); 3860 return 0; 3861 } 3862 /* 3863 * Return non-zero, if state transition has already happened. 3864 */ 3865 return 1; 3866 } 3867 3868 /* 3869 * This is called from xfs_force_shutdown, when we're forcibly 3870 * shutting down the filesystem, typically because of an IO error. 3871 * Our main objectives here are to make sure that: 3872 * a. if !logerror, flush the logs to disk. Anything modified 3873 * after this is ignored. 3874 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3875 * parties to find out, 'atomically'. 3876 * c. those who're sleeping on log reservations, pinned objects and 3877 * other resources get woken up, and be told the bad news. 3878 * d. nothing new gets queued up after (b) and (c) are done. 3879 * 3880 * Note: for the !logerror case we need to flush the regions held in memory out 3881 * to disk first. This needs to be done before the log is marked as shutdown, 3882 * otherwise the iclog writes will fail. 3883 */ 3884 int 3885 xfs_log_force_umount( 3886 struct xfs_mount *mp, 3887 int logerror) 3888 { 3889 struct xlog *log; 3890 int retval; 3891 3892 log = mp->m_log; 3893 3894 /* 3895 * If this happens during log recovery, don't worry about 3896 * locking; the log isn't open for business yet. 3897 */ 3898 if (!log || 3899 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3900 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3901 if (mp->m_sb_bp) 3902 XFS_BUF_DONE(mp->m_sb_bp); 3903 return 0; 3904 } 3905 3906 /* 3907 * Somebody could've already done the hard work for us. 3908 * No need to get locks for this. 3909 */ 3910 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3911 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3912 return 1; 3913 } 3914 3915 /* 3916 * Flush all the completed transactions to disk before marking the log 3917 * being shut down. We need to do it in this order to ensure that 3918 * completed operations are safely on disk before we shut down, and that 3919 * we don't have to issue any buffer IO after the shutdown flags are set 3920 * to guarantee this. 3921 */ 3922 if (!logerror) 3923 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3924 3925 /* 3926 * mark the filesystem and the as in a shutdown state and wake 3927 * everybody up to tell them the bad news. 3928 */ 3929 spin_lock(&log->l_icloglock); 3930 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3931 if (mp->m_sb_bp) 3932 XFS_BUF_DONE(mp->m_sb_bp); 3933 3934 /* 3935 * Mark the log and the iclogs with IO error flags to prevent any 3936 * further log IO from being issued or completed. 3937 */ 3938 log->l_flags |= XLOG_IO_ERROR; 3939 retval = xlog_state_ioerror(log); 3940 spin_unlock(&log->l_icloglock); 3941 3942 /* 3943 * We don't want anybody waiting for log reservations after this. That 3944 * means we have to wake up everybody queued up on reserveq as well as 3945 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3946 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3947 * action is protected by the grant locks. 3948 */ 3949 xlog_grant_head_wake_all(&log->l_reserve_head); 3950 xlog_grant_head_wake_all(&log->l_write_head); 3951 3952 /* 3953 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3954 * as if the log writes were completed. The abort handling in the log 3955 * item committed callback functions will do this again under lock to 3956 * avoid races. 3957 */ 3958 wake_up_all(&log->l_cilp->xc_commit_wait); 3959 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3960 3961 #ifdef XFSERRORDEBUG 3962 { 3963 xlog_in_core_t *iclog; 3964 3965 spin_lock(&log->l_icloglock); 3966 iclog = log->l_iclog; 3967 do { 3968 ASSERT(iclog->ic_callback == 0); 3969 iclog = iclog->ic_next; 3970 } while (iclog != log->l_iclog); 3971 spin_unlock(&log->l_icloglock); 3972 } 3973 #endif 3974 /* return non-zero if log IOERROR transition had already happened */ 3975 return retval; 3976 } 3977 3978 STATIC int 3979 xlog_iclogs_empty( 3980 struct xlog *log) 3981 { 3982 xlog_in_core_t *iclog; 3983 3984 iclog = log->l_iclog; 3985 do { 3986 /* endianness does not matter here, zero is zero in 3987 * any language. 3988 */ 3989 if (iclog->ic_header.h_num_logops) 3990 return 0; 3991 iclog = iclog->ic_next; 3992 } while (iclog != log->l_iclog); 3993 return 1; 3994 } 3995 3996