xref: /openbmc/linux/fs/xfs/xfs_log.c (revision c16c6655)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog,
51 	bool			aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	int			len,
56 	struct xlog_in_core	**iclog,
57 	struct xlog_ticket	*ticket,
58 	int			*continued_write,
59 	int			*logoffsetp);
60 STATIC int
61 xlog_state_release_iclog(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_state_switch_iclogs(
66 	struct xlog		*log,
67 	struct xlog_in_core	*iclog,
68 	int			eventual_size);
69 STATIC void
70 xlog_state_want_sync(
71 	struct xlog		*log,
72 	struct xlog_in_core	*iclog);
73 
74 STATIC void
75 xlog_grant_push_ail(
76 	struct xlog		*log,
77 	int			need_bytes);
78 STATIC void
79 xlog_regrant_reserve_log_space(
80 	struct xlog		*log,
81 	struct xlog_ticket	*ticket);
82 STATIC void
83 xlog_ungrant_log_space(
84 	struct xlog		*log,
85 	struct xlog_ticket	*ticket);
86 
87 #if defined(DEBUG)
88 STATIC void
89 xlog_verify_dest_ptr(
90 	struct xlog		*log,
91 	void			*ptr);
92 STATIC void
93 xlog_verify_grant_tail(
94 	struct xlog *log);
95 STATIC void
96 xlog_verify_iclog(
97 	struct xlog		*log,
98 	struct xlog_in_core	*iclog,
99 	int			count);
100 STATIC void
101 xlog_verify_tail_lsn(
102 	struct xlog		*log,
103 	struct xlog_in_core	*iclog,
104 	xfs_lsn_t		tail_lsn);
105 #else
106 #define xlog_verify_dest_ptr(a,b)
107 #define xlog_verify_grant_tail(a)
108 #define xlog_verify_iclog(a,b,c)
109 #define xlog_verify_tail_lsn(a,b,c)
110 #endif
111 
112 STATIC int
113 xlog_iclogs_empty(
114 	struct xlog		*log);
115 
116 static void
117 xlog_grant_sub_space(
118 	struct xlog		*log,
119 	atomic64_t		*head,
120 	int			bytes)
121 {
122 	int64_t	head_val = atomic64_read(head);
123 	int64_t new, old;
124 
125 	do {
126 		int	cycle, space;
127 
128 		xlog_crack_grant_head_val(head_val, &cycle, &space);
129 
130 		space -= bytes;
131 		if (space < 0) {
132 			space += log->l_logsize;
133 			cycle--;
134 		}
135 
136 		old = head_val;
137 		new = xlog_assign_grant_head_val(cycle, space);
138 		head_val = atomic64_cmpxchg(head, old, new);
139 	} while (head_val != old);
140 }
141 
142 static void
143 xlog_grant_add_space(
144 	struct xlog		*log,
145 	atomic64_t		*head,
146 	int			bytes)
147 {
148 	int64_t	head_val = atomic64_read(head);
149 	int64_t new, old;
150 
151 	do {
152 		int		tmp;
153 		int		cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		tmp = log->l_logsize - space;
158 		if (tmp > bytes)
159 			space += bytes;
160 		else {
161 			space = bytes - tmp;
162 			cycle++;
163 		}
164 
165 		old = head_val;
166 		new = xlog_assign_grant_head_val(cycle, space);
167 		head_val = atomic64_cmpxchg(head, old, new);
168 	} while (head_val != old);
169 }
170 
171 STATIC void
172 xlog_grant_head_init(
173 	struct xlog_grant_head	*head)
174 {
175 	xlog_assign_grant_head(&head->grant, 1, 0);
176 	INIT_LIST_HEAD(&head->waiters);
177 	spin_lock_init(&head->lock);
178 }
179 
180 STATIC void
181 xlog_grant_head_wake_all(
182 	struct xlog_grant_head	*head)
183 {
184 	struct xlog_ticket	*tic;
185 
186 	spin_lock(&head->lock);
187 	list_for_each_entry(tic, &head->waiters, t_queue)
188 		wake_up_process(tic->t_task);
189 	spin_unlock(&head->lock);
190 }
191 
192 static inline int
193 xlog_ticket_reservation(
194 	struct xlog		*log,
195 	struct xlog_grant_head	*head,
196 	struct xlog_ticket	*tic)
197 {
198 	if (head == &log->l_write_head) {
199 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 		return tic->t_unit_res;
201 	} else {
202 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203 			return tic->t_unit_res * tic->t_cnt;
204 		else
205 			return tic->t_unit_res;
206 	}
207 }
208 
209 STATIC bool
210 xlog_grant_head_wake(
211 	struct xlog		*log,
212 	struct xlog_grant_head	*head,
213 	int			*free_bytes)
214 {
215 	struct xlog_ticket	*tic;
216 	int			need_bytes;
217 
218 	list_for_each_entry(tic, &head->waiters, t_queue) {
219 		need_bytes = xlog_ticket_reservation(log, head, tic);
220 		if (*free_bytes < need_bytes)
221 			return false;
222 
223 		*free_bytes -= need_bytes;
224 		trace_xfs_log_grant_wake_up(log, tic);
225 		wake_up_process(tic->t_task);
226 	}
227 
228 	return true;
229 }
230 
231 STATIC int
232 xlog_grant_head_wait(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	struct xlog_ticket	*tic,
236 	int			need_bytes) __releases(&head->lock)
237 					    __acquires(&head->lock)
238 {
239 	list_add_tail(&tic->t_queue, &head->waiters);
240 
241 	do {
242 		if (XLOG_FORCED_SHUTDOWN(log))
243 			goto shutdown;
244 		xlog_grant_push_ail(log, need_bytes);
245 
246 		__set_current_state(TASK_UNINTERRUPTIBLE);
247 		spin_unlock(&head->lock);
248 
249 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
250 
251 		trace_xfs_log_grant_sleep(log, tic);
252 		schedule();
253 		trace_xfs_log_grant_wake(log, tic);
254 
255 		spin_lock(&head->lock);
256 		if (XLOG_FORCED_SHUTDOWN(log))
257 			goto shutdown;
258 	} while (xlog_space_left(log, &head->grant) < need_bytes);
259 
260 	list_del_init(&tic->t_queue);
261 	return 0;
262 shutdown:
263 	list_del_init(&tic->t_queue);
264 	return -EIO;
265 }
266 
267 /*
268  * Atomically get the log space required for a log ticket.
269  *
270  * Once a ticket gets put onto head->waiters, it will only return after the
271  * needed reservation is satisfied.
272  *
273  * This function is structured so that it has a lock free fast path. This is
274  * necessary because every new transaction reservation will come through this
275  * path. Hence any lock will be globally hot if we take it unconditionally on
276  * every pass.
277  *
278  * As tickets are only ever moved on and off head->waiters under head->lock, we
279  * only need to take that lock if we are going to add the ticket to the queue
280  * and sleep. We can avoid taking the lock if the ticket was never added to
281  * head->waiters because the t_queue list head will be empty and we hold the
282  * only reference to it so it can safely be checked unlocked.
283  */
284 STATIC int
285 xlog_grant_head_check(
286 	struct xlog		*log,
287 	struct xlog_grant_head	*head,
288 	struct xlog_ticket	*tic,
289 	int			*need_bytes)
290 {
291 	int			free_bytes;
292 	int			error = 0;
293 
294 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
295 
296 	/*
297 	 * If there are other waiters on the queue then give them a chance at
298 	 * logspace before us.  Wake up the first waiters, if we do not wake
299 	 * up all the waiters then go to sleep waiting for more free space,
300 	 * otherwise try to get some space for this transaction.
301 	 */
302 	*need_bytes = xlog_ticket_reservation(log, head, tic);
303 	free_bytes = xlog_space_left(log, &head->grant);
304 	if (!list_empty_careful(&head->waiters)) {
305 		spin_lock(&head->lock);
306 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
307 		    free_bytes < *need_bytes) {
308 			error = xlog_grant_head_wait(log, head, tic,
309 						     *need_bytes);
310 		}
311 		spin_unlock(&head->lock);
312 	} else if (free_bytes < *need_bytes) {
313 		spin_lock(&head->lock);
314 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
315 		spin_unlock(&head->lock);
316 	}
317 
318 	return error;
319 }
320 
321 static void
322 xlog_tic_reset_res(xlog_ticket_t *tic)
323 {
324 	tic->t_res_num = 0;
325 	tic->t_res_arr_sum = 0;
326 	tic->t_res_num_ophdrs = 0;
327 }
328 
329 static void
330 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
331 {
332 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
333 		/* add to overflow and start again */
334 		tic->t_res_o_flow += tic->t_res_arr_sum;
335 		tic->t_res_num = 0;
336 		tic->t_res_arr_sum = 0;
337 	}
338 
339 	tic->t_res_arr[tic->t_res_num].r_len = len;
340 	tic->t_res_arr[tic->t_res_num].r_type = type;
341 	tic->t_res_arr_sum += len;
342 	tic->t_res_num++;
343 }
344 
345 /*
346  * Replenish the byte reservation required by moving the grant write head.
347  */
348 int
349 xfs_log_regrant(
350 	struct xfs_mount	*mp,
351 	struct xlog_ticket	*tic)
352 {
353 	struct xlog		*log = mp->m_log;
354 	int			need_bytes;
355 	int			error = 0;
356 
357 	if (XLOG_FORCED_SHUTDOWN(log))
358 		return -EIO;
359 
360 	XFS_STATS_INC(mp, xs_try_logspace);
361 
362 	/*
363 	 * This is a new transaction on the ticket, so we need to change the
364 	 * transaction ID so that the next transaction has a different TID in
365 	 * the log. Just add one to the existing tid so that we can see chains
366 	 * of rolling transactions in the log easily.
367 	 */
368 	tic->t_tid++;
369 
370 	xlog_grant_push_ail(log, tic->t_unit_res);
371 
372 	tic->t_curr_res = tic->t_unit_res;
373 	xlog_tic_reset_res(tic);
374 
375 	if (tic->t_cnt > 0)
376 		return 0;
377 
378 	trace_xfs_log_regrant(log, tic);
379 
380 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
381 				      &need_bytes);
382 	if (error)
383 		goto out_error;
384 
385 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
386 	trace_xfs_log_regrant_exit(log, tic);
387 	xlog_verify_grant_tail(log);
388 	return 0;
389 
390 out_error:
391 	/*
392 	 * If we are failing, make sure the ticket doesn't have any current
393 	 * reservations.  We don't want to add this back when the ticket/
394 	 * transaction gets cancelled.
395 	 */
396 	tic->t_curr_res = 0;
397 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
398 	return error;
399 }
400 
401 /*
402  * Reserve log space and return a ticket corresponding to the reservation.
403  *
404  * Each reservation is going to reserve extra space for a log record header.
405  * When writes happen to the on-disk log, we don't subtract the length of the
406  * log record header from any reservation.  By wasting space in each
407  * reservation, we prevent over allocation problems.
408  */
409 int
410 xfs_log_reserve(
411 	struct xfs_mount	*mp,
412 	int		 	unit_bytes,
413 	int		 	cnt,
414 	struct xlog_ticket	**ticp,
415 	uint8_t		 	client,
416 	bool			permanent)
417 {
418 	struct xlog		*log = mp->m_log;
419 	struct xlog_ticket	*tic;
420 	int			need_bytes;
421 	int			error = 0;
422 
423 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
424 
425 	if (XLOG_FORCED_SHUTDOWN(log))
426 		return -EIO;
427 
428 	XFS_STATS_INC(mp, xs_try_logspace);
429 
430 	ASSERT(*ticp == NULL);
431 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
432 				KM_SLEEP);
433 	*ticp = tic;
434 
435 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
436 					    : tic->t_unit_res);
437 
438 	trace_xfs_log_reserve(log, tic);
439 
440 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
441 				      &need_bytes);
442 	if (error)
443 		goto out_error;
444 
445 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
446 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
447 	trace_xfs_log_reserve_exit(log, tic);
448 	xlog_verify_grant_tail(log);
449 	return 0;
450 
451 out_error:
452 	/*
453 	 * If we are failing, make sure the ticket doesn't have any current
454 	 * reservations.  We don't want to add this back when the ticket/
455 	 * transaction gets cancelled.
456 	 */
457 	tic->t_curr_res = 0;
458 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
459 	return error;
460 }
461 
462 
463 /*
464  * NOTES:
465  *
466  *	1. currblock field gets updated at startup and after in-core logs
467  *		marked as with WANT_SYNC.
468  */
469 
470 /*
471  * This routine is called when a user of a log manager ticket is done with
472  * the reservation.  If the ticket was ever used, then a commit record for
473  * the associated transaction is written out as a log operation header with
474  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
475  * a given ticket.  If the ticket was one with a permanent reservation, then
476  * a few operations are done differently.  Permanent reservation tickets by
477  * default don't release the reservation.  They just commit the current
478  * transaction with the belief that the reservation is still needed.  A flag
479  * must be passed in before permanent reservations are actually released.
480  * When these type of tickets are not released, they need to be set into
481  * the inited state again.  By doing this, a start record will be written
482  * out when the next write occurs.
483  */
484 xfs_lsn_t
485 xfs_log_done(
486 	struct xfs_mount	*mp,
487 	struct xlog_ticket	*ticket,
488 	struct xlog_in_core	**iclog,
489 	bool			regrant)
490 {
491 	struct xlog		*log = mp->m_log;
492 	xfs_lsn_t		lsn = 0;
493 
494 	if (XLOG_FORCED_SHUTDOWN(log) ||
495 	    /*
496 	     * If nothing was ever written, don't write out commit record.
497 	     * If we get an error, just continue and give back the log ticket.
498 	     */
499 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
500 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
501 		lsn = (xfs_lsn_t) -1;
502 		regrant = false;
503 	}
504 
505 
506 	if (!regrant) {
507 		trace_xfs_log_done_nonperm(log, ticket);
508 
509 		/*
510 		 * Release ticket if not permanent reservation or a specific
511 		 * request has been made to release a permanent reservation.
512 		 */
513 		xlog_ungrant_log_space(log, ticket);
514 	} else {
515 		trace_xfs_log_done_perm(log, ticket);
516 
517 		xlog_regrant_reserve_log_space(log, ticket);
518 		/* If this ticket was a permanent reservation and we aren't
519 		 * trying to release it, reset the inited flags; so next time
520 		 * we write, a start record will be written out.
521 		 */
522 		ticket->t_flags |= XLOG_TIC_INITED;
523 	}
524 
525 	xfs_log_ticket_put(ticket);
526 	return lsn;
527 }
528 
529 int
530 xfs_log_release_iclog(
531 	struct xfs_mount	*mp,
532 	struct xlog_in_core	*iclog)
533 {
534 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
535 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
536 		return -EIO;
537 	}
538 
539 	return 0;
540 }
541 
542 /*
543  * Mount a log filesystem
544  *
545  * mp		- ubiquitous xfs mount point structure
546  * log_target	- buftarg of on-disk log device
547  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
548  * num_bblocks	- Number of BBSIZE blocks in on-disk log
549  *
550  * Return error or zero.
551  */
552 int
553 xfs_log_mount(
554 	xfs_mount_t	*mp,
555 	xfs_buftarg_t	*log_target,
556 	xfs_daddr_t	blk_offset,
557 	int		num_bblks)
558 {
559 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
560 	int		error = 0;
561 	int		min_logfsbs;
562 
563 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
564 		xfs_notice(mp, "Mounting V%d Filesystem",
565 			   XFS_SB_VERSION_NUM(&mp->m_sb));
566 	} else {
567 		xfs_notice(mp,
568 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
569 			   XFS_SB_VERSION_NUM(&mp->m_sb));
570 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
571 	}
572 
573 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
574 	if (IS_ERR(mp->m_log)) {
575 		error = PTR_ERR(mp->m_log);
576 		goto out;
577 	}
578 
579 	/*
580 	 * Validate the given log space and drop a critical message via syslog
581 	 * if the log size is too small that would lead to some unexpected
582 	 * situations in transaction log space reservation stage.
583 	 *
584 	 * Note: we can't just reject the mount if the validation fails.  This
585 	 * would mean that people would have to downgrade their kernel just to
586 	 * remedy the situation as there is no way to grow the log (short of
587 	 * black magic surgery with xfs_db).
588 	 *
589 	 * We can, however, reject mounts for CRC format filesystems, as the
590 	 * mkfs binary being used to make the filesystem should never create a
591 	 * filesystem with a log that is too small.
592 	 */
593 	min_logfsbs = xfs_log_calc_minimum_size(mp);
594 
595 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
596 		xfs_warn(mp,
597 		"Log size %d blocks too small, minimum size is %d blocks",
598 			 mp->m_sb.sb_logblocks, min_logfsbs);
599 		error = -EINVAL;
600 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
601 		xfs_warn(mp,
602 		"Log size %d blocks too large, maximum size is %lld blocks",
603 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
604 		error = -EINVAL;
605 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
606 		xfs_warn(mp,
607 		"log size %lld bytes too large, maximum size is %lld bytes",
608 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
609 			 XFS_MAX_LOG_BYTES);
610 		error = -EINVAL;
611 	} else if (mp->m_sb.sb_logsunit > 1 &&
612 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
613 		xfs_warn(mp,
614 		"log stripe unit %u bytes must be a multiple of block size",
615 			 mp->m_sb.sb_logsunit);
616 		error = -EINVAL;
617 		fatal = true;
618 	}
619 	if (error) {
620 		/*
621 		 * Log check errors are always fatal on v5; or whenever bad
622 		 * metadata leads to a crash.
623 		 */
624 		if (fatal) {
625 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
626 			ASSERT(0);
627 			goto out_free_log;
628 		}
629 		xfs_crit(mp, "Log size out of supported range.");
630 		xfs_crit(mp,
631 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
632 	}
633 
634 	/*
635 	 * Initialize the AIL now we have a log.
636 	 */
637 	error = xfs_trans_ail_init(mp);
638 	if (error) {
639 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
640 		goto out_free_log;
641 	}
642 	mp->m_log->l_ailp = mp->m_ail;
643 
644 	/*
645 	 * skip log recovery on a norecovery mount.  pretend it all
646 	 * just worked.
647 	 */
648 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
649 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
650 
651 		if (readonly)
652 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
653 
654 		error = xlog_recover(mp->m_log);
655 
656 		if (readonly)
657 			mp->m_flags |= XFS_MOUNT_RDONLY;
658 		if (error) {
659 			xfs_warn(mp, "log mount/recovery failed: error %d",
660 				error);
661 			xlog_recover_cancel(mp->m_log);
662 			goto out_destroy_ail;
663 		}
664 	}
665 
666 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
667 			       "log");
668 	if (error)
669 		goto out_destroy_ail;
670 
671 	/* Normal transactions can now occur */
672 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
673 
674 	/*
675 	 * Now the log has been fully initialised and we know were our
676 	 * space grant counters are, we can initialise the permanent ticket
677 	 * needed for delayed logging to work.
678 	 */
679 	xlog_cil_init_post_recovery(mp->m_log);
680 
681 	return 0;
682 
683 out_destroy_ail:
684 	xfs_trans_ail_destroy(mp);
685 out_free_log:
686 	xlog_dealloc_log(mp->m_log);
687 out:
688 	return error;
689 }
690 
691 /*
692  * Finish the recovery of the file system.  This is separate from the
693  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
694  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
695  * here.
696  *
697  * If we finish recovery successfully, start the background log work. If we are
698  * not doing recovery, then we have a RO filesystem and we don't need to start
699  * it.
700  */
701 int
702 xfs_log_mount_finish(
703 	struct xfs_mount	*mp)
704 {
705 	int	error = 0;
706 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
707 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
708 
709 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
710 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
711 		return 0;
712 	} else if (readonly) {
713 		/* Allow unlinked processing to proceed */
714 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
715 	}
716 
717 	/*
718 	 * During the second phase of log recovery, we need iget and
719 	 * iput to behave like they do for an active filesystem.
720 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
721 	 * of inodes before we're done replaying log items on those
722 	 * inodes.  Turn it off immediately after recovery finishes
723 	 * so that we don't leak the quota inodes if subsequent mount
724 	 * activities fail.
725 	 *
726 	 * We let all inodes involved in redo item processing end up on
727 	 * the LRU instead of being evicted immediately so that if we do
728 	 * something to an unlinked inode, the irele won't cause
729 	 * premature truncation and freeing of the inode, which results
730 	 * in log recovery failure.  We have to evict the unreferenced
731 	 * lru inodes after clearing SB_ACTIVE because we don't
732 	 * otherwise clean up the lru if there's a subsequent failure in
733 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
734 	 * else (e.g. quotacheck) references the inodes before the
735 	 * mount failure occurs.
736 	 */
737 	mp->m_super->s_flags |= SB_ACTIVE;
738 	error = xlog_recover_finish(mp->m_log);
739 	if (!error)
740 		xfs_log_work_queue(mp);
741 	mp->m_super->s_flags &= ~SB_ACTIVE;
742 	evict_inodes(mp->m_super);
743 
744 	/*
745 	 * Drain the buffer LRU after log recovery. This is required for v4
746 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
747 	 * but we do it unconditionally to make sure we're always in a clean
748 	 * cache state after mount.
749 	 *
750 	 * Don't push in the error case because the AIL may have pending intents
751 	 * that aren't removed until recovery is cancelled.
752 	 */
753 	if (!error && recovered) {
754 		xfs_log_force(mp, XFS_LOG_SYNC);
755 		xfs_ail_push_all_sync(mp->m_ail);
756 	}
757 	xfs_wait_buftarg(mp->m_ddev_targp);
758 
759 	if (readonly)
760 		mp->m_flags |= XFS_MOUNT_RDONLY;
761 
762 	return error;
763 }
764 
765 /*
766  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
767  * the log.
768  */
769 void
770 xfs_log_mount_cancel(
771 	struct xfs_mount	*mp)
772 {
773 	xlog_recover_cancel(mp->m_log);
774 	xfs_log_unmount(mp);
775 }
776 
777 /*
778  * Final log writes as part of unmount.
779  *
780  * Mark the filesystem clean as unmount happens.  Note that during relocation
781  * this routine needs to be executed as part of source-bag while the
782  * deallocation must not be done until source-end.
783  */
784 
785 /* Actually write the unmount record to disk. */
786 static void
787 xfs_log_write_unmount_record(
788 	struct xfs_mount	*mp)
789 {
790 	/* the data section must be 32 bit size aligned */
791 	struct xfs_unmount_log_format magic = {
792 		.magic = XLOG_UNMOUNT_TYPE,
793 	};
794 	struct xfs_log_iovec reg = {
795 		.i_addr = &magic,
796 		.i_len = sizeof(magic),
797 		.i_type = XLOG_REG_TYPE_UNMOUNT,
798 	};
799 	struct xfs_log_vec vec = {
800 		.lv_niovecs = 1,
801 		.lv_iovecp = &reg,
802 	};
803 	struct xlog		*log = mp->m_log;
804 	struct xlog_in_core	*iclog;
805 	struct xlog_ticket	*tic = NULL;
806 	xfs_lsn_t		lsn;
807 	uint			flags = XLOG_UNMOUNT_TRANS;
808 	int			error;
809 
810 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
811 	if (error)
812 		goto out_err;
813 
814 	/*
815 	 * If we think the summary counters are bad, clear the unmount header
816 	 * flag in the unmount record so that the summary counters will be
817 	 * recalculated during log recovery at next mount.  Refer to
818 	 * xlog_check_unmount_rec for more details.
819 	 */
820 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
821 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
822 		xfs_alert(mp, "%s: will fix summary counters at next mount",
823 				__func__);
824 		flags &= ~XLOG_UNMOUNT_TRANS;
825 	}
826 
827 	/* remove inited flag, and account for space used */
828 	tic->t_flags = 0;
829 	tic->t_curr_res -= sizeof(magic);
830 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
831 	/*
832 	 * At this point, we're umounting anyway, so there's no point in
833 	 * transitioning log state to IOERROR. Just continue...
834 	 */
835 out_err:
836 	if (error)
837 		xfs_alert(mp, "%s: unmount record failed", __func__);
838 
839 	spin_lock(&log->l_icloglock);
840 	iclog = log->l_iclog;
841 	atomic_inc(&iclog->ic_refcnt);
842 	xlog_state_want_sync(log, iclog);
843 	spin_unlock(&log->l_icloglock);
844 	error = xlog_state_release_iclog(log, iclog);
845 
846 	spin_lock(&log->l_icloglock);
847 	switch (iclog->ic_state) {
848 	default:
849 		if (!XLOG_FORCED_SHUTDOWN(log)) {
850 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
851 			break;
852 		}
853 		/* fall through */
854 	case XLOG_STATE_ACTIVE:
855 	case XLOG_STATE_DIRTY:
856 		spin_unlock(&log->l_icloglock);
857 		break;
858 	}
859 
860 	if (tic) {
861 		trace_xfs_log_umount_write(log, tic);
862 		xlog_ungrant_log_space(log, tic);
863 		xfs_log_ticket_put(tic);
864 	}
865 }
866 
867 /*
868  * Unmount record used to have a string "Unmount filesystem--" in the
869  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
870  * We just write the magic number now since that particular field isn't
871  * currently architecture converted and "Unmount" is a bit foo.
872  * As far as I know, there weren't any dependencies on the old behaviour.
873  */
874 
875 static int
876 xfs_log_unmount_write(xfs_mount_t *mp)
877 {
878 	struct xlog	 *log = mp->m_log;
879 	xlog_in_core_t	 *iclog;
880 #ifdef DEBUG
881 	xlog_in_core_t	 *first_iclog;
882 #endif
883 	int		 error;
884 
885 	/*
886 	 * Don't write out unmount record on norecovery mounts or ro devices.
887 	 * Or, if we are doing a forced umount (typically because of IO errors).
888 	 */
889 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
890 	    xfs_readonly_buftarg(log->l_targ)) {
891 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
892 		return 0;
893 	}
894 
895 	error = xfs_log_force(mp, XFS_LOG_SYNC);
896 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
897 
898 #ifdef DEBUG
899 	first_iclog = iclog = log->l_iclog;
900 	do {
901 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
902 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
903 			ASSERT(iclog->ic_offset == 0);
904 		}
905 		iclog = iclog->ic_next;
906 	} while (iclog != first_iclog);
907 #endif
908 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
909 		xfs_log_write_unmount_record(mp);
910 	} else {
911 		/*
912 		 * We're already in forced_shutdown mode, couldn't
913 		 * even attempt to write out the unmount transaction.
914 		 *
915 		 * Go through the motions of sync'ing and releasing
916 		 * the iclog, even though no I/O will actually happen,
917 		 * we need to wait for other log I/Os that may already
918 		 * be in progress.  Do this as a separate section of
919 		 * code so we'll know if we ever get stuck here that
920 		 * we're in this odd situation of trying to unmount
921 		 * a file system that went into forced_shutdown as
922 		 * the result of an unmount..
923 		 */
924 		spin_lock(&log->l_icloglock);
925 		iclog = log->l_iclog;
926 		atomic_inc(&iclog->ic_refcnt);
927 
928 		xlog_state_want_sync(log, iclog);
929 		spin_unlock(&log->l_icloglock);
930 		error =  xlog_state_release_iclog(log, iclog);
931 
932 		spin_lock(&log->l_icloglock);
933 
934 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
935 			|| iclog->ic_state == XLOG_STATE_DIRTY
936 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
937 
938 				xlog_wait(&iclog->ic_force_wait,
939 							&log->l_icloglock);
940 		} else {
941 			spin_unlock(&log->l_icloglock);
942 		}
943 	}
944 
945 	return error;
946 }	/* xfs_log_unmount_write */
947 
948 /*
949  * Empty the log for unmount/freeze.
950  *
951  * To do this, we first need to shut down the background log work so it is not
952  * trying to cover the log as we clean up. We then need to unpin all objects in
953  * the log so we can then flush them out. Once they have completed their IO and
954  * run the callbacks removing themselves from the AIL, we can write the unmount
955  * record.
956  */
957 void
958 xfs_log_quiesce(
959 	struct xfs_mount	*mp)
960 {
961 	cancel_delayed_work_sync(&mp->m_log->l_work);
962 	xfs_log_force(mp, XFS_LOG_SYNC);
963 
964 	/*
965 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
966 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
967 	 * xfs_buf_iowait() cannot be used because it was pushed with the
968 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
969 	 * the IO to complete.
970 	 */
971 	xfs_ail_push_all_sync(mp->m_ail);
972 	xfs_wait_buftarg(mp->m_ddev_targp);
973 	xfs_buf_lock(mp->m_sb_bp);
974 	xfs_buf_unlock(mp->m_sb_bp);
975 
976 	xfs_log_unmount_write(mp);
977 }
978 
979 /*
980  * Shut down and release the AIL and Log.
981  *
982  * During unmount, we need to ensure we flush all the dirty metadata objects
983  * from the AIL so that the log is empty before we write the unmount record to
984  * the log. Once this is done, we can tear down the AIL and the log.
985  */
986 void
987 xfs_log_unmount(
988 	struct xfs_mount	*mp)
989 {
990 	xfs_log_quiesce(mp);
991 
992 	xfs_trans_ail_destroy(mp);
993 
994 	xfs_sysfs_del(&mp->m_log->l_kobj);
995 
996 	xlog_dealloc_log(mp->m_log);
997 }
998 
999 void
1000 xfs_log_item_init(
1001 	struct xfs_mount	*mp,
1002 	struct xfs_log_item	*item,
1003 	int			type,
1004 	const struct xfs_item_ops *ops)
1005 {
1006 	item->li_mountp = mp;
1007 	item->li_ailp = mp->m_ail;
1008 	item->li_type = type;
1009 	item->li_ops = ops;
1010 	item->li_lv = NULL;
1011 
1012 	INIT_LIST_HEAD(&item->li_ail);
1013 	INIT_LIST_HEAD(&item->li_cil);
1014 	INIT_LIST_HEAD(&item->li_bio_list);
1015 	INIT_LIST_HEAD(&item->li_trans);
1016 }
1017 
1018 /*
1019  * Wake up processes waiting for log space after we have moved the log tail.
1020  */
1021 void
1022 xfs_log_space_wake(
1023 	struct xfs_mount	*mp)
1024 {
1025 	struct xlog		*log = mp->m_log;
1026 	int			free_bytes;
1027 
1028 	if (XLOG_FORCED_SHUTDOWN(log))
1029 		return;
1030 
1031 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1032 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1033 
1034 		spin_lock(&log->l_write_head.lock);
1035 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1036 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1037 		spin_unlock(&log->l_write_head.lock);
1038 	}
1039 
1040 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1041 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1042 
1043 		spin_lock(&log->l_reserve_head.lock);
1044 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1045 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1046 		spin_unlock(&log->l_reserve_head.lock);
1047 	}
1048 }
1049 
1050 /*
1051  * Determine if we have a transaction that has gone to disk that needs to be
1052  * covered. To begin the transition to the idle state firstly the log needs to
1053  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1054  * we start attempting to cover the log.
1055  *
1056  * Only if we are then in a state where covering is needed, the caller is
1057  * informed that dummy transactions are required to move the log into the idle
1058  * state.
1059  *
1060  * If there are any items in the AIl or CIL, then we do not want to attempt to
1061  * cover the log as we may be in a situation where there isn't log space
1062  * available to run a dummy transaction and this can lead to deadlocks when the
1063  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1064  * there's no point in running a dummy transaction at this point because we
1065  * can't start trying to idle the log until both the CIL and AIL are empty.
1066  */
1067 static int
1068 xfs_log_need_covered(xfs_mount_t *mp)
1069 {
1070 	struct xlog	*log = mp->m_log;
1071 	int		needed = 0;
1072 
1073 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1074 		return 0;
1075 
1076 	if (!xlog_cil_empty(log))
1077 		return 0;
1078 
1079 	spin_lock(&log->l_icloglock);
1080 	switch (log->l_covered_state) {
1081 	case XLOG_STATE_COVER_DONE:
1082 	case XLOG_STATE_COVER_DONE2:
1083 	case XLOG_STATE_COVER_IDLE:
1084 		break;
1085 	case XLOG_STATE_COVER_NEED:
1086 	case XLOG_STATE_COVER_NEED2:
1087 		if (xfs_ail_min_lsn(log->l_ailp))
1088 			break;
1089 		if (!xlog_iclogs_empty(log))
1090 			break;
1091 
1092 		needed = 1;
1093 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1094 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1095 		else
1096 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1097 		break;
1098 	default:
1099 		needed = 1;
1100 		break;
1101 	}
1102 	spin_unlock(&log->l_icloglock);
1103 	return needed;
1104 }
1105 
1106 /*
1107  * We may be holding the log iclog lock upon entering this routine.
1108  */
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn_locked(
1111 	struct xfs_mount	*mp)
1112 {
1113 	struct xlog		*log = mp->m_log;
1114 	struct xfs_log_item	*lip;
1115 	xfs_lsn_t		tail_lsn;
1116 
1117 	assert_spin_locked(&mp->m_ail->ail_lock);
1118 
1119 	/*
1120 	 * To make sure we always have a valid LSN for the log tail we keep
1121 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1122 	 * and use that when the AIL was empty.
1123 	 */
1124 	lip = xfs_ail_min(mp->m_ail);
1125 	if (lip)
1126 		tail_lsn = lip->li_lsn;
1127 	else
1128 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1129 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1130 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1131 	return tail_lsn;
1132 }
1133 
1134 xfs_lsn_t
1135 xlog_assign_tail_lsn(
1136 	struct xfs_mount	*mp)
1137 {
1138 	xfs_lsn_t		tail_lsn;
1139 
1140 	spin_lock(&mp->m_ail->ail_lock);
1141 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1142 	spin_unlock(&mp->m_ail->ail_lock);
1143 
1144 	return tail_lsn;
1145 }
1146 
1147 /*
1148  * Return the space in the log between the tail and the head.  The head
1149  * is passed in the cycle/bytes formal parms.  In the special case where
1150  * the reserve head has wrapped passed the tail, this calculation is no
1151  * longer valid.  In this case, just return 0 which means there is no space
1152  * in the log.  This works for all places where this function is called
1153  * with the reserve head.  Of course, if the write head were to ever
1154  * wrap the tail, we should blow up.  Rather than catch this case here,
1155  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1156  *
1157  * This code also handles the case where the reservation head is behind
1158  * the tail.  The details of this case are described below, but the end
1159  * result is that we return the size of the log as the amount of space left.
1160  */
1161 STATIC int
1162 xlog_space_left(
1163 	struct xlog	*log,
1164 	atomic64_t	*head)
1165 {
1166 	int		free_bytes;
1167 	int		tail_bytes;
1168 	int		tail_cycle;
1169 	int		head_cycle;
1170 	int		head_bytes;
1171 
1172 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1173 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1174 	tail_bytes = BBTOB(tail_bytes);
1175 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1176 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1177 	else if (tail_cycle + 1 < head_cycle)
1178 		return 0;
1179 	else if (tail_cycle < head_cycle) {
1180 		ASSERT(tail_cycle == (head_cycle - 1));
1181 		free_bytes = tail_bytes - head_bytes;
1182 	} else {
1183 		/*
1184 		 * The reservation head is behind the tail.
1185 		 * In this case we just want to return the size of the
1186 		 * log as the amount of space left.
1187 		 */
1188 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1189 		xfs_alert(log->l_mp,
1190 			  "  tail_cycle = %d, tail_bytes = %d",
1191 			  tail_cycle, tail_bytes);
1192 		xfs_alert(log->l_mp,
1193 			  "  GH   cycle = %d, GH   bytes = %d",
1194 			  head_cycle, head_bytes);
1195 		ASSERT(0);
1196 		free_bytes = log->l_logsize;
1197 	}
1198 	return free_bytes;
1199 }
1200 
1201 
1202 static void
1203 xlog_ioend_work(
1204 	struct work_struct	*work)
1205 {
1206 	struct xlog_in_core     *iclog =
1207 		container_of(work, struct xlog_in_core, ic_end_io_work);
1208 	struct xlog		*log = iclog->ic_log;
1209 	bool			aborted = false;
1210 	int			error;
1211 
1212 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1213 #ifdef DEBUG
1214 	/* treat writes with injected CRC errors as failed */
1215 	if (iclog->ic_fail_crc)
1216 		error = -EIO;
1217 #endif
1218 
1219 	/*
1220 	 * Race to shutdown the filesystem if we see an error.
1221 	 */
1222 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1223 		xfs_alert(log->l_mp, "log I/O error %d", error);
1224 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1225 		/*
1226 		 * This flag will be propagated to the trans-committed
1227 		 * callback routines to let them know that the log-commit
1228 		 * didn't succeed.
1229 		 */
1230 		aborted = true;
1231 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1232 		aborted = true;
1233 	}
1234 
1235 	xlog_state_done_syncing(iclog, aborted);
1236 	bio_uninit(&iclog->ic_bio);
1237 
1238 	/*
1239 	 * Drop the lock to signal that we are done. Nothing references the
1240 	 * iclog after this, so an unmount waiting on this lock can now tear it
1241 	 * down safely. As such, it is unsafe to reference the iclog after the
1242 	 * unlock as we could race with it being freed.
1243 	 */
1244 	up(&iclog->ic_sema);
1245 }
1246 
1247 /*
1248  * Return size of each in-core log record buffer.
1249  *
1250  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1251  *
1252  * If the filesystem blocksize is too large, we may need to choose a
1253  * larger size since the directory code currently logs entire blocks.
1254  */
1255 STATIC void
1256 xlog_get_iclog_buffer_size(
1257 	struct xfs_mount	*mp,
1258 	struct xlog		*log)
1259 {
1260 	if (mp->m_logbufs <= 0)
1261 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1262 	if (mp->m_logbsize <= 0)
1263 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1264 
1265 	log->l_iclog_bufs = mp->m_logbufs;
1266 	log->l_iclog_size = mp->m_logbsize;
1267 
1268 	/*
1269 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1270 	 */
1271 	log->l_iclog_heads =
1272 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1273 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1274 }
1275 
1276 void
1277 xfs_log_work_queue(
1278 	struct xfs_mount        *mp)
1279 {
1280 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1281 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1282 }
1283 
1284 /*
1285  * Every sync period we need to unpin all items in the AIL and push them to
1286  * disk. If there is nothing dirty, then we might need to cover the log to
1287  * indicate that the filesystem is idle.
1288  */
1289 static void
1290 xfs_log_worker(
1291 	struct work_struct	*work)
1292 {
1293 	struct xlog		*log = container_of(to_delayed_work(work),
1294 						struct xlog, l_work);
1295 	struct xfs_mount	*mp = log->l_mp;
1296 
1297 	/* dgc: errors ignored - not fatal and nowhere to report them */
1298 	if (xfs_log_need_covered(mp)) {
1299 		/*
1300 		 * Dump a transaction into the log that contains no real change.
1301 		 * This is needed to stamp the current tail LSN into the log
1302 		 * during the covering operation.
1303 		 *
1304 		 * We cannot use an inode here for this - that will push dirty
1305 		 * state back up into the VFS and then periodic inode flushing
1306 		 * will prevent log covering from making progress. Hence we
1307 		 * synchronously log the superblock instead to ensure the
1308 		 * superblock is immediately unpinned and can be written back.
1309 		 */
1310 		xfs_sync_sb(mp, true);
1311 	} else
1312 		xfs_log_force(mp, 0);
1313 
1314 	/* start pushing all the metadata that is currently dirty */
1315 	xfs_ail_push_all(mp->m_ail);
1316 
1317 	/* queue us up again */
1318 	xfs_log_work_queue(mp);
1319 }
1320 
1321 /*
1322  * This routine initializes some of the log structure for a given mount point.
1323  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1324  * some other stuff may be filled in too.
1325  */
1326 STATIC struct xlog *
1327 xlog_alloc_log(
1328 	struct xfs_mount	*mp,
1329 	struct xfs_buftarg	*log_target,
1330 	xfs_daddr_t		blk_offset,
1331 	int			num_bblks)
1332 {
1333 	struct xlog		*log;
1334 	xlog_rec_header_t	*head;
1335 	xlog_in_core_t		**iclogp;
1336 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1337 	int			i;
1338 	int			error = -ENOMEM;
1339 	uint			log2_size = 0;
1340 
1341 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1342 	if (!log) {
1343 		xfs_warn(mp, "Log allocation failed: No memory!");
1344 		goto out;
1345 	}
1346 
1347 	log->l_mp	   = mp;
1348 	log->l_targ	   = log_target;
1349 	log->l_logsize     = BBTOB(num_bblks);
1350 	log->l_logBBstart  = blk_offset;
1351 	log->l_logBBsize   = num_bblks;
1352 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1353 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1354 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1355 
1356 	log->l_prev_block  = -1;
1357 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1358 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1359 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1360 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1361 
1362 	xlog_grant_head_init(&log->l_reserve_head);
1363 	xlog_grant_head_init(&log->l_write_head);
1364 
1365 	error = -EFSCORRUPTED;
1366 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1367 	        log2_size = mp->m_sb.sb_logsectlog;
1368 		if (log2_size < BBSHIFT) {
1369 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1370 				log2_size, BBSHIFT);
1371 			goto out_free_log;
1372 		}
1373 
1374 	        log2_size -= BBSHIFT;
1375 		if (log2_size > mp->m_sectbb_log) {
1376 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1377 				log2_size, mp->m_sectbb_log);
1378 			goto out_free_log;
1379 		}
1380 
1381 		/* for larger sector sizes, must have v2 or external log */
1382 		if (log2_size && log->l_logBBstart > 0 &&
1383 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1384 			xfs_warn(mp,
1385 		"log sector size (0x%x) invalid for configuration.",
1386 				log2_size);
1387 			goto out_free_log;
1388 		}
1389 	}
1390 	log->l_sectBBsize = 1 << log2_size;
1391 
1392 	xlog_get_iclog_buffer_size(mp, log);
1393 
1394 	spin_lock_init(&log->l_icloglock);
1395 	init_waitqueue_head(&log->l_flush_wait);
1396 
1397 	iclogp = &log->l_iclog;
1398 	/*
1399 	 * The amount of memory to allocate for the iclog structure is
1400 	 * rather funky due to the way the structure is defined.  It is
1401 	 * done this way so that we can use different sizes for machines
1402 	 * with different amounts of memory.  See the definition of
1403 	 * xlog_in_core_t in xfs_log_priv.h for details.
1404 	 */
1405 	ASSERT(log->l_iclog_size >= 4096);
1406 	for (i = 0; i < log->l_iclog_bufs; i++) {
1407 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1408 				sizeof(struct bio_vec);
1409 
1410 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1411 		if (!iclog)
1412 			goto out_free_iclog;
1413 
1414 		*iclogp = iclog;
1415 		iclog->ic_prev = prev_iclog;
1416 		prev_iclog = iclog;
1417 
1418 		iclog->ic_data = kmem_alloc_large(log->l_iclog_size,
1419 				KM_MAYFAIL);
1420 		if (!iclog->ic_data)
1421 			goto out_free_iclog;
1422 #ifdef DEBUG
1423 		log->l_iclog_bak[i] = &iclog->ic_header;
1424 #endif
1425 		head = &iclog->ic_header;
1426 		memset(head, 0, sizeof(xlog_rec_header_t));
1427 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1428 		head->h_version = cpu_to_be32(
1429 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1430 		head->h_size = cpu_to_be32(log->l_iclog_size);
1431 		/* new fields */
1432 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1433 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1434 
1435 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1436 		iclog->ic_state = XLOG_STATE_ACTIVE;
1437 		iclog->ic_log = log;
1438 		atomic_set(&iclog->ic_refcnt, 0);
1439 		spin_lock_init(&iclog->ic_callback_lock);
1440 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1441 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1442 
1443 		init_waitqueue_head(&iclog->ic_force_wait);
1444 		init_waitqueue_head(&iclog->ic_write_wait);
1445 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1446 		sema_init(&iclog->ic_sema, 1);
1447 
1448 		iclogp = &iclog->ic_next;
1449 	}
1450 	*iclogp = log->l_iclog;			/* complete ring */
1451 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1452 
1453 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1454 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1455 			mp->m_fsname);
1456 	if (!log->l_ioend_workqueue)
1457 		goto out_free_iclog;
1458 
1459 	error = xlog_cil_init(log);
1460 	if (error)
1461 		goto out_destroy_workqueue;
1462 	return log;
1463 
1464 out_destroy_workqueue:
1465 	destroy_workqueue(log->l_ioend_workqueue);
1466 out_free_iclog:
1467 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1468 		prev_iclog = iclog->ic_next;
1469 		kmem_free(iclog->ic_data);
1470 		kmem_free(iclog);
1471 	}
1472 out_free_log:
1473 	kmem_free(log);
1474 out:
1475 	return ERR_PTR(error);
1476 }	/* xlog_alloc_log */
1477 
1478 
1479 /*
1480  * Write out the commit record of a transaction associated with the given
1481  * ticket.  Return the lsn of the commit record.
1482  */
1483 STATIC int
1484 xlog_commit_record(
1485 	struct xlog		*log,
1486 	struct xlog_ticket	*ticket,
1487 	struct xlog_in_core	**iclog,
1488 	xfs_lsn_t		*commitlsnp)
1489 {
1490 	struct xfs_mount *mp = log->l_mp;
1491 	int	error;
1492 	struct xfs_log_iovec reg = {
1493 		.i_addr = NULL,
1494 		.i_len = 0,
1495 		.i_type = XLOG_REG_TYPE_COMMIT,
1496 	};
1497 	struct xfs_log_vec vec = {
1498 		.lv_niovecs = 1,
1499 		.lv_iovecp = &reg,
1500 	};
1501 
1502 	ASSERT_ALWAYS(iclog);
1503 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1504 					XLOG_COMMIT_TRANS);
1505 	if (error)
1506 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1507 	return error;
1508 }
1509 
1510 /*
1511  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1512  * log space.  This code pushes on the lsn which would supposedly free up
1513  * the 25% which we want to leave free.  We may need to adopt a policy which
1514  * pushes on an lsn which is further along in the log once we reach the high
1515  * water mark.  In this manner, we would be creating a low water mark.
1516  */
1517 STATIC void
1518 xlog_grant_push_ail(
1519 	struct xlog	*log,
1520 	int		need_bytes)
1521 {
1522 	xfs_lsn_t	threshold_lsn = 0;
1523 	xfs_lsn_t	last_sync_lsn;
1524 	int		free_blocks;
1525 	int		free_bytes;
1526 	int		threshold_block;
1527 	int		threshold_cycle;
1528 	int		free_threshold;
1529 
1530 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1531 
1532 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1533 	free_blocks = BTOBBT(free_bytes);
1534 
1535 	/*
1536 	 * Set the threshold for the minimum number of free blocks in the
1537 	 * log to the maximum of what the caller needs, one quarter of the
1538 	 * log, and 256 blocks.
1539 	 */
1540 	free_threshold = BTOBB(need_bytes);
1541 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1542 	free_threshold = max(free_threshold, 256);
1543 	if (free_blocks >= free_threshold)
1544 		return;
1545 
1546 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1547 						&threshold_block);
1548 	threshold_block += free_threshold;
1549 	if (threshold_block >= log->l_logBBsize) {
1550 		threshold_block -= log->l_logBBsize;
1551 		threshold_cycle += 1;
1552 	}
1553 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1554 					threshold_block);
1555 	/*
1556 	 * Don't pass in an lsn greater than the lsn of the last
1557 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1558 	 * so that it doesn't change between the compare and the set.
1559 	 */
1560 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1561 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1562 		threshold_lsn = last_sync_lsn;
1563 
1564 	/*
1565 	 * Get the transaction layer to kick the dirty buffers out to
1566 	 * disk asynchronously. No point in trying to do this if
1567 	 * the filesystem is shutting down.
1568 	 */
1569 	if (!XLOG_FORCED_SHUTDOWN(log))
1570 		xfs_ail_push(log->l_ailp, threshold_lsn);
1571 }
1572 
1573 /*
1574  * Stamp cycle number in every block
1575  */
1576 STATIC void
1577 xlog_pack_data(
1578 	struct xlog		*log,
1579 	struct xlog_in_core	*iclog,
1580 	int			roundoff)
1581 {
1582 	int			i, j, k;
1583 	int			size = iclog->ic_offset + roundoff;
1584 	__be32			cycle_lsn;
1585 	char			*dp;
1586 
1587 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1588 
1589 	dp = iclog->ic_datap;
1590 	for (i = 0; i < BTOBB(size); i++) {
1591 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1592 			break;
1593 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1594 		*(__be32 *)dp = cycle_lsn;
1595 		dp += BBSIZE;
1596 	}
1597 
1598 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1599 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1600 
1601 		for ( ; i < BTOBB(size); i++) {
1602 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1603 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1604 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1605 			*(__be32 *)dp = cycle_lsn;
1606 			dp += BBSIZE;
1607 		}
1608 
1609 		for (i = 1; i < log->l_iclog_heads; i++)
1610 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1611 	}
1612 }
1613 
1614 /*
1615  * Calculate the checksum for a log buffer.
1616  *
1617  * This is a little more complicated than it should be because the various
1618  * headers and the actual data are non-contiguous.
1619  */
1620 __le32
1621 xlog_cksum(
1622 	struct xlog		*log,
1623 	struct xlog_rec_header	*rhead,
1624 	char			*dp,
1625 	int			size)
1626 {
1627 	uint32_t		crc;
1628 
1629 	/* first generate the crc for the record header ... */
1630 	crc = xfs_start_cksum_update((char *)rhead,
1631 			      sizeof(struct xlog_rec_header),
1632 			      offsetof(struct xlog_rec_header, h_crc));
1633 
1634 	/* ... then for additional cycle data for v2 logs ... */
1635 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1636 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1637 		int		i;
1638 		int		xheads;
1639 
1640 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1641 		if (size % XLOG_HEADER_CYCLE_SIZE)
1642 			xheads++;
1643 
1644 		for (i = 1; i < xheads; i++) {
1645 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1646 				     sizeof(struct xlog_rec_ext_header));
1647 		}
1648 	}
1649 
1650 	/* ... and finally for the payload */
1651 	crc = crc32c(crc, dp, size);
1652 
1653 	return xfs_end_cksum(crc);
1654 }
1655 
1656 static void
1657 xlog_bio_end_io(
1658 	struct bio		*bio)
1659 {
1660 	struct xlog_in_core	*iclog = bio->bi_private;
1661 
1662 	queue_work(iclog->ic_log->l_ioend_workqueue,
1663 		   &iclog->ic_end_io_work);
1664 }
1665 
1666 static void
1667 xlog_map_iclog_data(
1668 	struct bio		*bio,
1669 	void			*data,
1670 	size_t			count)
1671 {
1672 	do {
1673 		struct page	*page = kmem_to_page(data);
1674 		unsigned int	off = offset_in_page(data);
1675 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1676 
1677 		WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1678 
1679 		data += len;
1680 		count -= len;
1681 	} while (count);
1682 }
1683 
1684 STATIC void
1685 xlog_write_iclog(
1686 	struct xlog		*log,
1687 	struct xlog_in_core	*iclog,
1688 	uint64_t		bno,
1689 	unsigned int		count,
1690 	bool			need_flush)
1691 {
1692 	ASSERT(bno < log->l_logBBsize);
1693 
1694 	/*
1695 	 * We lock the iclogbufs here so that we can serialise against I/O
1696 	 * completion during unmount.  We might be processing a shutdown
1697 	 * triggered during unmount, and that can occur asynchronously to the
1698 	 * unmount thread, and hence we need to ensure that completes before
1699 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1700 	 * across the log IO to archieve that.
1701 	 */
1702 	down(&iclog->ic_sema);
1703 	if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1704 		/*
1705 		 * It would seem logical to return EIO here, but we rely on
1706 		 * the log state machine to propagate I/O errors instead of
1707 		 * doing it here.  We kick of the state machine and unlock
1708 		 * the buffer manually, the code needs to be kept in sync
1709 		 * with the I/O completion path.
1710 		 */
1711 		xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1712 		up(&iclog->ic_sema);
1713 		return;
1714 	}
1715 
1716 	iclog->ic_io_size = count;
1717 
1718 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1719 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1720 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1721 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1722 	iclog->ic_bio.bi_private = iclog;
1723 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1724 	if (need_flush)
1725 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1726 
1727 	xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1728 	if (is_vmalloc_addr(iclog->ic_data))
1729 		flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1730 
1731 	/*
1732 	 * If this log buffer would straddle the end of the log we will have
1733 	 * to split it up into two bios, so that we can continue at the start.
1734 	 */
1735 	if (bno + BTOBB(count) > log->l_logBBsize) {
1736 		struct bio *split;
1737 
1738 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1739 				  GFP_NOIO, &fs_bio_set);
1740 		bio_chain(split, &iclog->ic_bio);
1741 		submit_bio(split);
1742 
1743 		/* restart at logical offset zero for the remainder */
1744 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1745 	}
1746 
1747 	submit_bio(&iclog->ic_bio);
1748 }
1749 
1750 /*
1751  * We need to bump cycle number for the part of the iclog that is
1752  * written to the start of the log. Watch out for the header magic
1753  * number case, though.
1754  */
1755 static void
1756 xlog_split_iclog(
1757 	struct xlog		*log,
1758 	void			*data,
1759 	uint64_t		bno,
1760 	unsigned int		count)
1761 {
1762 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1763 	unsigned int		i;
1764 
1765 	for (i = split_offset; i < count; i += BBSIZE) {
1766 		uint32_t cycle = get_unaligned_be32(data + i);
1767 
1768 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1769 			cycle++;
1770 		put_unaligned_be32(cycle, data + i);
1771 	}
1772 }
1773 
1774 static int
1775 xlog_calc_iclog_size(
1776 	struct xlog		*log,
1777 	struct xlog_in_core	*iclog,
1778 	uint32_t		*roundoff)
1779 {
1780 	uint32_t		count_init, count;
1781 	bool			use_lsunit;
1782 
1783 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1784 			log->l_mp->m_sb.sb_logsunit > 1;
1785 
1786 	/* Add for LR header */
1787 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1788 
1789 	/* Round out the log write size */
1790 	if (use_lsunit) {
1791 		/* we have a v2 stripe unit to use */
1792 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1793 	} else {
1794 		count = BBTOB(BTOBB(count_init));
1795 	}
1796 
1797 	ASSERT(count >= count_init);
1798 	*roundoff = count - count_init;
1799 
1800 	if (use_lsunit)
1801 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1802 	else
1803 		ASSERT(*roundoff < BBTOB(1));
1804 	return count;
1805 }
1806 
1807 /*
1808  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1809  * fashion.  Previously, we should have moved the current iclog
1810  * ptr in the log to point to the next available iclog.  This allows further
1811  * write to continue while this code syncs out an iclog ready to go.
1812  * Before an in-core log can be written out, the data section must be scanned
1813  * to save away the 1st word of each BBSIZE block into the header.  We replace
1814  * it with the current cycle count.  Each BBSIZE block is tagged with the
1815  * cycle count because there in an implicit assumption that drives will
1816  * guarantee that entire 512 byte blocks get written at once.  In other words,
1817  * we can't have part of a 512 byte block written and part not written.  By
1818  * tagging each block, we will know which blocks are valid when recovering
1819  * after an unclean shutdown.
1820  *
1821  * This routine is single threaded on the iclog.  No other thread can be in
1822  * this routine with the same iclog.  Changing contents of iclog can there-
1823  * fore be done without grabbing the state machine lock.  Updating the global
1824  * log will require grabbing the lock though.
1825  *
1826  * The entire log manager uses a logical block numbering scheme.  Only
1827  * xlog_write_iclog knows about the fact that the log may not start with
1828  * block zero on a given device.
1829  */
1830 STATIC void
1831 xlog_sync(
1832 	struct xlog		*log,
1833 	struct xlog_in_core	*iclog)
1834 {
1835 	unsigned int		count;		/* byte count of bwrite */
1836 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1837 	uint64_t		bno;
1838 	unsigned int		size;
1839 	bool			need_flush = true, split = false;
1840 
1841 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1842 
1843 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1844 
1845 	/* move grant heads by roundoff in sync */
1846 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1847 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1848 
1849 	/* put cycle number in every block */
1850 	xlog_pack_data(log, iclog, roundoff);
1851 
1852 	/* real byte length */
1853 	size = iclog->ic_offset;
1854 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1855 		size += roundoff;
1856 	iclog->ic_header.h_len = cpu_to_be32(size);
1857 
1858 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1859 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1860 
1861 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1862 
1863 	/* Do we need to split this write into 2 parts? */
1864 	if (bno + BTOBB(count) > log->l_logBBsize) {
1865 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1866 		split = true;
1867 	}
1868 
1869 	/* calculcate the checksum */
1870 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1871 					    iclog->ic_datap, size);
1872 	/*
1873 	 * Intentionally corrupt the log record CRC based on the error injection
1874 	 * frequency, if defined. This facilitates testing log recovery in the
1875 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1876 	 * write on I/O completion and shutdown the fs. The subsequent mount
1877 	 * detects the bad CRC and attempts to recover.
1878 	 */
1879 #ifdef DEBUG
1880 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1881 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1882 		iclog->ic_fail_crc = true;
1883 		xfs_warn(log->l_mp,
1884 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1885 			 be64_to_cpu(iclog->ic_header.h_lsn));
1886 	}
1887 #endif
1888 
1889 	/*
1890 	 * Flush the data device before flushing the log to make sure all meta
1891 	 * data written back from the AIL actually made it to disk before
1892 	 * stamping the new log tail LSN into the log buffer.  For an external
1893 	 * log we need to issue the flush explicitly, and unfortunately
1894 	 * synchronously here; for an internal log we can simply use the block
1895 	 * layer state machine for preflushes.
1896 	 */
1897 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1898 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1899 		need_flush = false;
1900 	}
1901 
1902 	xlog_verify_iclog(log, iclog, count);
1903 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1904 }
1905 
1906 /*
1907  * Deallocate a log structure
1908  */
1909 STATIC void
1910 xlog_dealloc_log(
1911 	struct xlog	*log)
1912 {
1913 	xlog_in_core_t	*iclog, *next_iclog;
1914 	int		i;
1915 
1916 	xlog_cil_destroy(log);
1917 
1918 	/*
1919 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1920 	 * is done before we tear down these buffers.
1921 	 */
1922 	iclog = log->l_iclog;
1923 	for (i = 0; i < log->l_iclog_bufs; i++) {
1924 		down(&iclog->ic_sema);
1925 		up(&iclog->ic_sema);
1926 		iclog = iclog->ic_next;
1927 	}
1928 
1929 	iclog = log->l_iclog;
1930 	for (i = 0; i < log->l_iclog_bufs; i++) {
1931 		next_iclog = iclog->ic_next;
1932 		kmem_free(iclog->ic_data);
1933 		kmem_free(iclog);
1934 		iclog = next_iclog;
1935 	}
1936 
1937 	log->l_mp->m_log = NULL;
1938 	destroy_workqueue(log->l_ioend_workqueue);
1939 	kmem_free(log);
1940 }	/* xlog_dealloc_log */
1941 
1942 /*
1943  * Update counters atomically now that memcpy is done.
1944  */
1945 /* ARGSUSED */
1946 static inline void
1947 xlog_state_finish_copy(
1948 	struct xlog		*log,
1949 	struct xlog_in_core	*iclog,
1950 	int			record_cnt,
1951 	int			copy_bytes)
1952 {
1953 	spin_lock(&log->l_icloglock);
1954 
1955 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1956 	iclog->ic_offset += copy_bytes;
1957 
1958 	spin_unlock(&log->l_icloglock);
1959 }	/* xlog_state_finish_copy */
1960 
1961 
1962 
1963 
1964 /*
1965  * print out info relating to regions written which consume
1966  * the reservation
1967  */
1968 void
1969 xlog_print_tic_res(
1970 	struct xfs_mount	*mp,
1971 	struct xlog_ticket	*ticket)
1972 {
1973 	uint i;
1974 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1975 
1976 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1977 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1978 	static char *res_type_str[] = {
1979 	    REG_TYPE_STR(BFORMAT, "bformat"),
1980 	    REG_TYPE_STR(BCHUNK, "bchunk"),
1981 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1982 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1983 	    REG_TYPE_STR(IFORMAT, "iformat"),
1984 	    REG_TYPE_STR(ICORE, "icore"),
1985 	    REG_TYPE_STR(IEXT, "iext"),
1986 	    REG_TYPE_STR(IBROOT, "ibroot"),
1987 	    REG_TYPE_STR(ILOCAL, "ilocal"),
1988 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1989 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1990 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1991 	    REG_TYPE_STR(QFORMAT, "qformat"),
1992 	    REG_TYPE_STR(DQUOT, "dquot"),
1993 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1994 	    REG_TYPE_STR(LRHEADER, "LR header"),
1995 	    REG_TYPE_STR(UNMOUNT, "unmount"),
1996 	    REG_TYPE_STR(COMMIT, "commit"),
1997 	    REG_TYPE_STR(TRANSHDR, "trans header"),
1998 	    REG_TYPE_STR(ICREATE, "inode create"),
1999 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2000 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2001 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2002 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2003 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2004 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2005 	};
2006 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2007 #undef REG_TYPE_STR
2008 
2009 	xfs_warn(mp, "ticket reservation summary:");
2010 	xfs_warn(mp, "  unit res    = %d bytes",
2011 		 ticket->t_unit_res);
2012 	xfs_warn(mp, "  current res = %d bytes",
2013 		 ticket->t_curr_res);
2014 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2015 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2016 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2017 		 ticket->t_res_num_ophdrs, ophdr_spc);
2018 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2019 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2020 	xfs_warn(mp, "  num regions = %u",
2021 		 ticket->t_res_num);
2022 
2023 	for (i = 0; i < ticket->t_res_num; i++) {
2024 		uint r_type = ticket->t_res_arr[i].r_type;
2025 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2026 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2027 			    "bad-rtype" : res_type_str[r_type]),
2028 			    ticket->t_res_arr[i].r_len);
2029 	}
2030 }
2031 
2032 /*
2033  * Print a summary of the transaction.
2034  */
2035 void
2036 xlog_print_trans(
2037 	struct xfs_trans	*tp)
2038 {
2039 	struct xfs_mount	*mp = tp->t_mountp;
2040 	struct xfs_log_item	*lip;
2041 
2042 	/* dump core transaction and ticket info */
2043 	xfs_warn(mp, "transaction summary:");
2044 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2045 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2046 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2047 
2048 	xlog_print_tic_res(mp, tp->t_ticket);
2049 
2050 	/* dump each log item */
2051 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2052 		struct xfs_log_vec	*lv = lip->li_lv;
2053 		struct xfs_log_iovec	*vec;
2054 		int			i;
2055 
2056 		xfs_warn(mp, "log item: ");
2057 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2058 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2059 		if (!lv)
2060 			continue;
2061 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2062 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2063 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2064 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2065 
2066 		/* dump each iovec for the log item */
2067 		vec = lv->lv_iovecp;
2068 		for (i = 0; i < lv->lv_niovecs; i++) {
2069 			int dumplen = min(vec->i_len, 32);
2070 
2071 			xfs_warn(mp, "  iovec[%d]", i);
2072 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2073 			xfs_warn(mp, "    len	= %d", vec->i_len);
2074 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2075 			xfs_hex_dump(vec->i_addr, dumplen);
2076 
2077 			vec++;
2078 		}
2079 	}
2080 }
2081 
2082 /*
2083  * Calculate the potential space needed by the log vector.  Each region gets
2084  * its own xlog_op_header_t and may need to be double word aligned.
2085  */
2086 static int
2087 xlog_write_calc_vec_length(
2088 	struct xlog_ticket	*ticket,
2089 	struct xfs_log_vec	*log_vector)
2090 {
2091 	struct xfs_log_vec	*lv;
2092 	int			headers = 0;
2093 	int			len = 0;
2094 	int			i;
2095 
2096 	/* acct for start rec of xact */
2097 	if (ticket->t_flags & XLOG_TIC_INITED)
2098 		headers++;
2099 
2100 	for (lv = log_vector; lv; lv = lv->lv_next) {
2101 		/* we don't write ordered log vectors */
2102 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2103 			continue;
2104 
2105 		headers += lv->lv_niovecs;
2106 
2107 		for (i = 0; i < lv->lv_niovecs; i++) {
2108 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2109 
2110 			len += vecp->i_len;
2111 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2112 		}
2113 	}
2114 
2115 	ticket->t_res_num_ophdrs += headers;
2116 	len += headers * sizeof(struct xlog_op_header);
2117 
2118 	return len;
2119 }
2120 
2121 /*
2122  * If first write for transaction, insert start record  We can't be trying to
2123  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2124  */
2125 static int
2126 xlog_write_start_rec(
2127 	struct xlog_op_header	*ophdr,
2128 	struct xlog_ticket	*ticket)
2129 {
2130 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2131 		return 0;
2132 
2133 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2134 	ophdr->oh_clientid = ticket->t_clientid;
2135 	ophdr->oh_len = 0;
2136 	ophdr->oh_flags = XLOG_START_TRANS;
2137 	ophdr->oh_res2 = 0;
2138 
2139 	ticket->t_flags &= ~XLOG_TIC_INITED;
2140 
2141 	return sizeof(struct xlog_op_header);
2142 }
2143 
2144 static xlog_op_header_t *
2145 xlog_write_setup_ophdr(
2146 	struct xlog		*log,
2147 	struct xlog_op_header	*ophdr,
2148 	struct xlog_ticket	*ticket,
2149 	uint			flags)
2150 {
2151 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2152 	ophdr->oh_clientid = ticket->t_clientid;
2153 	ophdr->oh_res2 = 0;
2154 
2155 	/* are we copying a commit or unmount record? */
2156 	ophdr->oh_flags = flags;
2157 
2158 	/*
2159 	 * We've seen logs corrupted with bad transaction client ids.  This
2160 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2161 	 * and shut down the filesystem.
2162 	 */
2163 	switch (ophdr->oh_clientid)  {
2164 	case XFS_TRANSACTION:
2165 	case XFS_VOLUME:
2166 	case XFS_LOG:
2167 		break;
2168 	default:
2169 		xfs_warn(log->l_mp,
2170 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2171 			ophdr->oh_clientid, ticket);
2172 		return NULL;
2173 	}
2174 
2175 	return ophdr;
2176 }
2177 
2178 /*
2179  * Set up the parameters of the region copy into the log. This has
2180  * to handle region write split across multiple log buffers - this
2181  * state is kept external to this function so that this code can
2182  * be written in an obvious, self documenting manner.
2183  */
2184 static int
2185 xlog_write_setup_copy(
2186 	struct xlog_ticket	*ticket,
2187 	struct xlog_op_header	*ophdr,
2188 	int			space_available,
2189 	int			space_required,
2190 	int			*copy_off,
2191 	int			*copy_len,
2192 	int			*last_was_partial_copy,
2193 	int			*bytes_consumed)
2194 {
2195 	int			still_to_copy;
2196 
2197 	still_to_copy = space_required - *bytes_consumed;
2198 	*copy_off = *bytes_consumed;
2199 
2200 	if (still_to_copy <= space_available) {
2201 		/* write of region completes here */
2202 		*copy_len = still_to_copy;
2203 		ophdr->oh_len = cpu_to_be32(*copy_len);
2204 		if (*last_was_partial_copy)
2205 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2206 		*last_was_partial_copy = 0;
2207 		*bytes_consumed = 0;
2208 		return 0;
2209 	}
2210 
2211 	/* partial write of region, needs extra log op header reservation */
2212 	*copy_len = space_available;
2213 	ophdr->oh_len = cpu_to_be32(*copy_len);
2214 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2215 	if (*last_was_partial_copy)
2216 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2217 	*bytes_consumed += *copy_len;
2218 	(*last_was_partial_copy)++;
2219 
2220 	/* account for new log op header */
2221 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2222 	ticket->t_res_num_ophdrs++;
2223 
2224 	return sizeof(struct xlog_op_header);
2225 }
2226 
2227 static int
2228 xlog_write_copy_finish(
2229 	struct xlog		*log,
2230 	struct xlog_in_core	*iclog,
2231 	uint			flags,
2232 	int			*record_cnt,
2233 	int			*data_cnt,
2234 	int			*partial_copy,
2235 	int			*partial_copy_len,
2236 	int			log_offset,
2237 	struct xlog_in_core	**commit_iclog)
2238 {
2239 	if (*partial_copy) {
2240 		/*
2241 		 * This iclog has already been marked WANT_SYNC by
2242 		 * xlog_state_get_iclog_space.
2243 		 */
2244 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2245 		*record_cnt = 0;
2246 		*data_cnt = 0;
2247 		return xlog_state_release_iclog(log, iclog);
2248 	}
2249 
2250 	*partial_copy = 0;
2251 	*partial_copy_len = 0;
2252 
2253 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2254 		/* no more space in this iclog - push it. */
2255 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2256 		*record_cnt = 0;
2257 		*data_cnt = 0;
2258 
2259 		spin_lock(&log->l_icloglock);
2260 		xlog_state_want_sync(log, iclog);
2261 		spin_unlock(&log->l_icloglock);
2262 
2263 		if (!commit_iclog)
2264 			return xlog_state_release_iclog(log, iclog);
2265 		ASSERT(flags & XLOG_COMMIT_TRANS);
2266 		*commit_iclog = iclog;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Write some region out to in-core log
2274  *
2275  * This will be called when writing externally provided regions or when
2276  * writing out a commit record for a given transaction.
2277  *
2278  * General algorithm:
2279  *	1. Find total length of this write.  This may include adding to the
2280  *		lengths passed in.
2281  *	2. Check whether we violate the tickets reservation.
2282  *	3. While writing to this iclog
2283  *	    A. Reserve as much space in this iclog as can get
2284  *	    B. If this is first write, save away start lsn
2285  *	    C. While writing this region:
2286  *		1. If first write of transaction, write start record
2287  *		2. Write log operation header (header per region)
2288  *		3. Find out if we can fit entire region into this iclog
2289  *		4. Potentially, verify destination memcpy ptr
2290  *		5. Memcpy (partial) region
2291  *		6. If partial copy, release iclog; otherwise, continue
2292  *			copying more regions into current iclog
2293  *	4. Mark want sync bit (in simulation mode)
2294  *	5. Release iclog for potential flush to on-disk log.
2295  *
2296  * ERRORS:
2297  * 1.	Panic if reservation is overrun.  This should never happen since
2298  *	reservation amounts are generated internal to the filesystem.
2299  * NOTES:
2300  * 1. Tickets are single threaded data structures.
2301  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2302  *	syncing routine.  When a single log_write region needs to span
2303  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2304  *	on all log operation writes which don't contain the end of the
2305  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2306  *	operation which contains the end of the continued log_write region.
2307  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2308  *	we don't really know exactly how much space will be used.  As a result,
2309  *	we don't update ic_offset until the end when we know exactly how many
2310  *	bytes have been written out.
2311  */
2312 int
2313 xlog_write(
2314 	struct xlog		*log,
2315 	struct xfs_log_vec	*log_vector,
2316 	struct xlog_ticket	*ticket,
2317 	xfs_lsn_t		*start_lsn,
2318 	struct xlog_in_core	**commit_iclog,
2319 	uint			flags)
2320 {
2321 	struct xlog_in_core	*iclog = NULL;
2322 	struct xfs_log_iovec	*vecp;
2323 	struct xfs_log_vec	*lv;
2324 	int			len;
2325 	int			index;
2326 	int			partial_copy = 0;
2327 	int			partial_copy_len = 0;
2328 	int			contwr = 0;
2329 	int			record_cnt = 0;
2330 	int			data_cnt = 0;
2331 	int			error;
2332 
2333 	*start_lsn = 0;
2334 
2335 	len = xlog_write_calc_vec_length(ticket, log_vector);
2336 
2337 	/*
2338 	 * Region headers and bytes are already accounted for.
2339 	 * We only need to take into account start records and
2340 	 * split regions in this function.
2341 	 */
2342 	if (ticket->t_flags & XLOG_TIC_INITED)
2343 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2344 
2345 	/*
2346 	 * Commit record headers need to be accounted for. These
2347 	 * come in as separate writes so are easy to detect.
2348 	 */
2349 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2350 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2351 
2352 	if (ticket->t_curr_res < 0) {
2353 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2354 		     "ctx ticket reservation ran out. Need to up reservation");
2355 		xlog_print_tic_res(log->l_mp, ticket);
2356 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2357 	}
2358 
2359 	index = 0;
2360 	lv = log_vector;
2361 	vecp = lv->lv_iovecp;
2362 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2363 		void		*ptr;
2364 		int		log_offset;
2365 
2366 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2367 						   &contwr, &log_offset);
2368 		if (error)
2369 			return error;
2370 
2371 		ASSERT(log_offset <= iclog->ic_size - 1);
2372 		ptr = iclog->ic_datap + log_offset;
2373 
2374 		/* start_lsn is the first lsn written to. That's all we need. */
2375 		if (!*start_lsn)
2376 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2377 
2378 		/*
2379 		 * This loop writes out as many regions as can fit in the amount
2380 		 * of space which was allocated by xlog_state_get_iclog_space().
2381 		 */
2382 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2383 			struct xfs_log_iovec	*reg;
2384 			struct xlog_op_header	*ophdr;
2385 			int			start_rec_copy;
2386 			int			copy_len;
2387 			int			copy_off;
2388 			bool			ordered = false;
2389 
2390 			/* ordered log vectors have no regions to write */
2391 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2392 				ASSERT(lv->lv_niovecs == 0);
2393 				ordered = true;
2394 				goto next_lv;
2395 			}
2396 
2397 			reg = &vecp[index];
2398 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2399 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2400 
2401 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2402 			if (start_rec_copy) {
2403 				record_cnt++;
2404 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2405 						   start_rec_copy);
2406 			}
2407 
2408 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2409 			if (!ophdr)
2410 				return -EIO;
2411 
2412 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2413 					   sizeof(struct xlog_op_header));
2414 
2415 			len += xlog_write_setup_copy(ticket, ophdr,
2416 						     iclog->ic_size-log_offset,
2417 						     reg->i_len,
2418 						     &copy_off, &copy_len,
2419 						     &partial_copy,
2420 						     &partial_copy_len);
2421 			xlog_verify_dest_ptr(log, ptr);
2422 
2423 			/*
2424 			 * Copy region.
2425 			 *
2426 			 * Unmount records just log an opheader, so can have
2427 			 * empty payloads with no data region to copy. Hence we
2428 			 * only copy the payload if the vector says it has data
2429 			 * to copy.
2430 			 */
2431 			ASSERT(copy_len >= 0);
2432 			if (copy_len > 0) {
2433 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2434 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2435 						   copy_len);
2436 			}
2437 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2438 			record_cnt++;
2439 			data_cnt += contwr ? copy_len : 0;
2440 
2441 			error = xlog_write_copy_finish(log, iclog, flags,
2442 						       &record_cnt, &data_cnt,
2443 						       &partial_copy,
2444 						       &partial_copy_len,
2445 						       log_offset,
2446 						       commit_iclog);
2447 			if (error)
2448 				return error;
2449 
2450 			/*
2451 			 * if we had a partial copy, we need to get more iclog
2452 			 * space but we don't want to increment the region
2453 			 * index because there is still more is this region to
2454 			 * write.
2455 			 *
2456 			 * If we completed writing this region, and we flushed
2457 			 * the iclog (indicated by resetting of the record
2458 			 * count), then we also need to get more log space. If
2459 			 * this was the last record, though, we are done and
2460 			 * can just return.
2461 			 */
2462 			if (partial_copy)
2463 				break;
2464 
2465 			if (++index == lv->lv_niovecs) {
2466 next_lv:
2467 				lv = lv->lv_next;
2468 				index = 0;
2469 				if (lv)
2470 					vecp = lv->lv_iovecp;
2471 			}
2472 			if (record_cnt == 0 && !ordered) {
2473 				if (!lv)
2474 					return 0;
2475 				break;
2476 			}
2477 		}
2478 	}
2479 
2480 	ASSERT(len == 0);
2481 
2482 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2483 	if (!commit_iclog)
2484 		return xlog_state_release_iclog(log, iclog);
2485 
2486 	ASSERT(flags & XLOG_COMMIT_TRANS);
2487 	*commit_iclog = iclog;
2488 	return 0;
2489 }
2490 
2491 
2492 /*****************************************************************************
2493  *
2494  *		State Machine functions
2495  *
2496  *****************************************************************************
2497  */
2498 
2499 /* Clean iclogs starting from the head.  This ordering must be
2500  * maintained, so an iclog doesn't become ACTIVE beyond one that
2501  * is SYNCING.  This is also required to maintain the notion that we use
2502  * a ordered wait queue to hold off would be writers to the log when every
2503  * iclog is trying to sync to disk.
2504  *
2505  * State Change: DIRTY -> ACTIVE
2506  */
2507 STATIC void
2508 xlog_state_clean_log(
2509 	struct xlog *log)
2510 {
2511 	xlog_in_core_t	*iclog;
2512 	int changed = 0;
2513 
2514 	iclog = log->l_iclog;
2515 	do {
2516 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2517 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2518 			iclog->ic_offset       = 0;
2519 			ASSERT(list_empty_careful(&iclog->ic_callbacks));
2520 			/*
2521 			 * If the number of ops in this iclog indicate it just
2522 			 * contains the dummy transaction, we can
2523 			 * change state into IDLE (the second time around).
2524 			 * Otherwise we should change the state into
2525 			 * NEED a dummy.
2526 			 * We don't need to cover the dummy.
2527 			 */
2528 			if (!changed &&
2529 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2530 			   		XLOG_COVER_OPS)) {
2531 				changed = 1;
2532 			} else {
2533 				/*
2534 				 * We have two dirty iclogs so start over
2535 				 * This could also be num of ops indicates
2536 				 * this is not the dummy going out.
2537 				 */
2538 				changed = 2;
2539 			}
2540 			iclog->ic_header.h_num_logops = 0;
2541 			memset(iclog->ic_header.h_cycle_data, 0,
2542 			      sizeof(iclog->ic_header.h_cycle_data));
2543 			iclog->ic_header.h_lsn = 0;
2544 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2545 			/* do nothing */;
2546 		else
2547 			break;	/* stop cleaning */
2548 		iclog = iclog->ic_next;
2549 	} while (iclog != log->l_iclog);
2550 
2551 	/* log is locked when we are called */
2552 	/*
2553 	 * Change state for the dummy log recording.
2554 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2555 	 * we are done writing the dummy record.
2556 	 * If we are done with the second dummy recored (DONE2), then
2557 	 * we go to IDLE.
2558 	 */
2559 	if (changed) {
2560 		switch (log->l_covered_state) {
2561 		case XLOG_STATE_COVER_IDLE:
2562 		case XLOG_STATE_COVER_NEED:
2563 		case XLOG_STATE_COVER_NEED2:
2564 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2565 			break;
2566 
2567 		case XLOG_STATE_COVER_DONE:
2568 			if (changed == 1)
2569 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2570 			else
2571 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2572 			break;
2573 
2574 		case XLOG_STATE_COVER_DONE2:
2575 			if (changed == 1)
2576 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2577 			else
2578 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2579 			break;
2580 
2581 		default:
2582 			ASSERT(0);
2583 		}
2584 	}
2585 }	/* xlog_state_clean_log */
2586 
2587 STATIC xfs_lsn_t
2588 xlog_get_lowest_lsn(
2589 	struct xlog		*log)
2590 {
2591 	struct xlog_in_core	*iclog = log->l_iclog;
2592 	xfs_lsn_t		lowest_lsn = 0, lsn;
2593 
2594 	do {
2595 		if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2596 			continue;
2597 
2598 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2599 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2600 			lowest_lsn = lsn;
2601 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2602 
2603 	return lowest_lsn;
2604 }
2605 
2606 STATIC void
2607 xlog_state_do_callback(
2608 	struct xlog		*log,
2609 	bool			aborted,
2610 	struct xlog_in_core	*ciclog)
2611 {
2612 	xlog_in_core_t	   *iclog;
2613 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2614 						 * processed all iclogs once */
2615 	int		   flushcnt = 0;
2616 	xfs_lsn_t	   lowest_lsn;
2617 	int		   ioerrors;	/* counter: iclogs with errors */
2618 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2619 	int		   funcdidcallbacks; /* flag: function did callbacks */
2620 	int		   repeats;	/* for issuing console warnings if
2621 					 * looping too many times */
2622 	int		   wake = 0;
2623 
2624 	spin_lock(&log->l_icloglock);
2625 	first_iclog = iclog = log->l_iclog;
2626 	ioerrors = 0;
2627 	funcdidcallbacks = 0;
2628 	repeats = 0;
2629 
2630 	do {
2631 		/*
2632 		 * Scan all iclogs starting with the one pointed to by the
2633 		 * log.  Reset this starting point each time the log is
2634 		 * unlocked (during callbacks).
2635 		 *
2636 		 * Keep looping through iclogs until one full pass is made
2637 		 * without running any callbacks.
2638 		 */
2639 		first_iclog = log->l_iclog;
2640 		iclog = log->l_iclog;
2641 		loopdidcallbacks = 0;
2642 		repeats++;
2643 
2644 		do {
2645 
2646 			/* skip all iclogs in the ACTIVE & DIRTY states */
2647 			if (iclog->ic_state &
2648 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2649 				iclog = iclog->ic_next;
2650 				continue;
2651 			}
2652 
2653 			/*
2654 			 * Between marking a filesystem SHUTDOWN and stopping
2655 			 * the log, we do flush all iclogs to disk (if there
2656 			 * wasn't a log I/O error). So, we do want things to
2657 			 * go smoothly in case of just a SHUTDOWN  w/o a
2658 			 * LOG_IO_ERROR.
2659 			 */
2660 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2661 				/*
2662 				 * Can only perform callbacks in order.  Since
2663 				 * this iclog is not in the DONE_SYNC/
2664 				 * DO_CALLBACK state, we skip the rest and
2665 				 * just try to clean up.  If we set our iclog
2666 				 * to DO_CALLBACK, we will not process it when
2667 				 * we retry since a previous iclog is in the
2668 				 * CALLBACK and the state cannot change since
2669 				 * we are holding the l_icloglock.
2670 				 */
2671 				if (!(iclog->ic_state &
2672 					(XLOG_STATE_DONE_SYNC |
2673 						 XLOG_STATE_DO_CALLBACK))) {
2674 					if (ciclog && (ciclog->ic_state ==
2675 							XLOG_STATE_DONE_SYNC)) {
2676 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2677 					}
2678 					break;
2679 				}
2680 				/*
2681 				 * We now have an iclog that is in either the
2682 				 * DO_CALLBACK or DONE_SYNC states. The other
2683 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2684 				 * caught by the above if and are going to
2685 				 * clean (i.e. we aren't doing their callbacks)
2686 				 * see the above if.
2687 				 */
2688 
2689 				/*
2690 				 * We will do one more check here to see if we
2691 				 * have chased our tail around.
2692 				 */
2693 
2694 				lowest_lsn = xlog_get_lowest_lsn(log);
2695 				if (lowest_lsn &&
2696 				    XFS_LSN_CMP(lowest_lsn,
2697 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2698 					iclog = iclog->ic_next;
2699 					continue; /* Leave this iclog for
2700 						   * another thread */
2701 				}
2702 
2703 				iclog->ic_state = XLOG_STATE_CALLBACK;
2704 
2705 
2706 				/*
2707 				 * Completion of a iclog IO does not imply that
2708 				 * a transaction has completed, as transactions
2709 				 * can be large enough to span many iclogs. We
2710 				 * cannot change the tail of the log half way
2711 				 * through a transaction as this may be the only
2712 				 * transaction in the log and moving th etail to
2713 				 * point to the middle of it will prevent
2714 				 * recovery from finding the start of the
2715 				 * transaction. Hence we should only update the
2716 				 * last_sync_lsn if this iclog contains
2717 				 * transaction completion callbacks on it.
2718 				 *
2719 				 * We have to do this before we drop the
2720 				 * icloglock to ensure we are the only one that
2721 				 * can update it.
2722 				 */
2723 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2724 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2725 				if (!list_empty_careful(&iclog->ic_callbacks))
2726 					atomic64_set(&log->l_last_sync_lsn,
2727 						be64_to_cpu(iclog->ic_header.h_lsn));
2728 
2729 			} else
2730 				ioerrors++;
2731 
2732 			spin_unlock(&log->l_icloglock);
2733 
2734 			/*
2735 			 * Keep processing entries in the callback list until
2736 			 * we come around and it is empty.  We need to
2737 			 * atomically see that the list is empty and change the
2738 			 * state to DIRTY so that we don't miss any more
2739 			 * callbacks being added.
2740 			 */
2741 			spin_lock(&iclog->ic_callback_lock);
2742 			while (!list_empty(&iclog->ic_callbacks)) {
2743 				LIST_HEAD(tmp);
2744 
2745 				list_splice_init(&iclog->ic_callbacks, &tmp);
2746 
2747 				spin_unlock(&iclog->ic_callback_lock);
2748 				xlog_cil_process_committed(&tmp, aborted);
2749 				spin_lock(&iclog->ic_callback_lock);
2750 			}
2751 
2752 			loopdidcallbacks++;
2753 			funcdidcallbacks++;
2754 
2755 			spin_lock(&log->l_icloglock);
2756 			spin_unlock(&iclog->ic_callback_lock);
2757 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2758 				iclog->ic_state = XLOG_STATE_DIRTY;
2759 
2760 			/*
2761 			 * Transition from DIRTY to ACTIVE if applicable.
2762 			 * NOP if STATE_IOERROR.
2763 			 */
2764 			xlog_state_clean_log(log);
2765 
2766 			/* wake up threads waiting in xfs_log_force() */
2767 			wake_up_all(&iclog->ic_force_wait);
2768 
2769 			iclog = iclog->ic_next;
2770 		} while (first_iclog != iclog);
2771 
2772 		if (repeats > 5000) {
2773 			flushcnt += repeats;
2774 			repeats = 0;
2775 			xfs_warn(log->l_mp,
2776 				"%s: possible infinite loop (%d iterations)",
2777 				__func__, flushcnt);
2778 		}
2779 	} while (!ioerrors && loopdidcallbacks);
2780 
2781 #ifdef DEBUG
2782 	/*
2783 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2784 	 * If the above loop finds an iclog earlier than the current iclog and
2785 	 * in one of the syncing states, the current iclog is put into
2786 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2787 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2788 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2789 	 * states.
2790 	 *
2791 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2792 	 * for ic_state == SYNCING.
2793 	 */
2794 	if (funcdidcallbacks) {
2795 		first_iclog = iclog = log->l_iclog;
2796 		do {
2797 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2798 			/*
2799 			 * Terminate the loop if iclogs are found in states
2800 			 * which will cause other threads to clean up iclogs.
2801 			 *
2802 			 * SYNCING - i/o completion will go through logs
2803 			 * DONE_SYNC - interrupt thread should be waiting for
2804 			 *              l_icloglock
2805 			 * IOERROR - give up hope all ye who enter here
2806 			 */
2807 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2808 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2809 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2810 			    iclog->ic_state == XLOG_STATE_IOERROR )
2811 				break;
2812 			iclog = iclog->ic_next;
2813 		} while (first_iclog != iclog);
2814 	}
2815 #endif
2816 
2817 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2818 		wake = 1;
2819 	spin_unlock(&log->l_icloglock);
2820 
2821 	if (wake)
2822 		wake_up_all(&log->l_flush_wait);
2823 }
2824 
2825 
2826 /*
2827  * Finish transitioning this iclog to the dirty state.
2828  *
2829  * Make sure that we completely execute this routine only when this is
2830  * the last call to the iclog.  There is a good chance that iclog flushes,
2831  * when we reach the end of the physical log, get turned into 2 separate
2832  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2833  * routine.  By using the reference count bwritecnt, we guarantee that only
2834  * the second completion goes through.
2835  *
2836  * Callbacks could take time, so they are done outside the scope of the
2837  * global state machine log lock.
2838  */
2839 STATIC void
2840 xlog_state_done_syncing(
2841 	struct xlog_in_core	*iclog,
2842 	bool			aborted)
2843 {
2844 	struct xlog		*log = iclog->ic_log;
2845 
2846 	spin_lock(&log->l_icloglock);
2847 
2848 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2849 	       iclog->ic_state == XLOG_STATE_IOERROR);
2850 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2851 
2852 	/*
2853 	 * If we got an error, either on the first buffer, or in the case of
2854 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2855 	 * and none should ever be attempted to be written to disk
2856 	 * again.
2857 	 */
2858 	if (iclog->ic_state != XLOG_STATE_IOERROR)
2859 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2860 
2861 	/*
2862 	 * Someone could be sleeping prior to writing out the next
2863 	 * iclog buffer, we wake them all, one will get to do the
2864 	 * I/O, the others get to wait for the result.
2865 	 */
2866 	wake_up_all(&iclog->ic_write_wait);
2867 	spin_unlock(&log->l_icloglock);
2868 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2869 }	/* xlog_state_done_syncing */
2870 
2871 
2872 /*
2873  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2874  * sleep.  We wait on the flush queue on the head iclog as that should be
2875  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2876  * we will wait here and all new writes will sleep until a sync completes.
2877  *
2878  * The in-core logs are used in a circular fashion. They are not used
2879  * out-of-order even when an iclog past the head is free.
2880  *
2881  * return:
2882  *	* log_offset where xlog_write() can start writing into the in-core
2883  *		log's data space.
2884  *	* in-core log pointer to which xlog_write() should write.
2885  *	* boolean indicating this is a continued write to an in-core log.
2886  *		If this is the last write, then the in-core log's offset field
2887  *		needs to be incremented, depending on the amount of data which
2888  *		is copied.
2889  */
2890 STATIC int
2891 xlog_state_get_iclog_space(
2892 	struct xlog		*log,
2893 	int			len,
2894 	struct xlog_in_core	**iclogp,
2895 	struct xlog_ticket	*ticket,
2896 	int			*continued_write,
2897 	int			*logoffsetp)
2898 {
2899 	int		  log_offset;
2900 	xlog_rec_header_t *head;
2901 	xlog_in_core_t	  *iclog;
2902 	int		  error;
2903 
2904 restart:
2905 	spin_lock(&log->l_icloglock);
2906 	if (XLOG_FORCED_SHUTDOWN(log)) {
2907 		spin_unlock(&log->l_icloglock);
2908 		return -EIO;
2909 	}
2910 
2911 	iclog = log->l_iclog;
2912 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2913 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2914 
2915 		/* Wait for log writes to have flushed */
2916 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2917 		goto restart;
2918 	}
2919 
2920 	head = &iclog->ic_header;
2921 
2922 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2923 	log_offset = iclog->ic_offset;
2924 
2925 	/* On the 1st write to an iclog, figure out lsn.  This works
2926 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2927 	 * committing to.  If the offset is set, that's how many blocks
2928 	 * must be written.
2929 	 */
2930 	if (log_offset == 0) {
2931 		ticket->t_curr_res -= log->l_iclog_hsize;
2932 		xlog_tic_add_region(ticket,
2933 				    log->l_iclog_hsize,
2934 				    XLOG_REG_TYPE_LRHEADER);
2935 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2936 		head->h_lsn = cpu_to_be64(
2937 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2938 		ASSERT(log->l_curr_block >= 0);
2939 	}
2940 
2941 	/* If there is enough room to write everything, then do it.  Otherwise,
2942 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2943 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2944 	 * until you know exactly how many bytes get copied.  Therefore, wait
2945 	 * until later to update ic_offset.
2946 	 *
2947 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2948 	 * can fit into remaining data section.
2949 	 */
2950 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2951 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2952 
2953 		/*
2954 		 * If I'm the only one writing to this iclog, sync it to disk.
2955 		 * We need to do an atomic compare and decrement here to avoid
2956 		 * racing with concurrent atomic_dec_and_lock() calls in
2957 		 * xlog_state_release_iclog() when there is more than one
2958 		 * reference to the iclog.
2959 		 */
2960 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2961 			/* we are the only one */
2962 			spin_unlock(&log->l_icloglock);
2963 			error = xlog_state_release_iclog(log, iclog);
2964 			if (error)
2965 				return error;
2966 		} else {
2967 			spin_unlock(&log->l_icloglock);
2968 		}
2969 		goto restart;
2970 	}
2971 
2972 	/* Do we have enough room to write the full amount in the remainder
2973 	 * of this iclog?  Or must we continue a write on the next iclog and
2974 	 * mark this iclog as completely taken?  In the case where we switch
2975 	 * iclogs (to mark it taken), this particular iclog will release/sync
2976 	 * to disk in xlog_write().
2977 	 */
2978 	if (len <= iclog->ic_size - iclog->ic_offset) {
2979 		*continued_write = 0;
2980 		iclog->ic_offset += len;
2981 	} else {
2982 		*continued_write = 1;
2983 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2984 	}
2985 	*iclogp = iclog;
2986 
2987 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2988 	spin_unlock(&log->l_icloglock);
2989 
2990 	*logoffsetp = log_offset;
2991 	return 0;
2992 }	/* xlog_state_get_iclog_space */
2993 
2994 /* The first cnt-1 times through here we don't need to
2995  * move the grant write head because the permanent
2996  * reservation has reserved cnt times the unit amount.
2997  * Release part of current permanent unit reservation and
2998  * reset current reservation to be one units worth.  Also
2999  * move grant reservation head forward.
3000  */
3001 STATIC void
3002 xlog_regrant_reserve_log_space(
3003 	struct xlog		*log,
3004 	struct xlog_ticket	*ticket)
3005 {
3006 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3007 
3008 	if (ticket->t_cnt > 0)
3009 		ticket->t_cnt--;
3010 
3011 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3012 					ticket->t_curr_res);
3013 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3014 					ticket->t_curr_res);
3015 	ticket->t_curr_res = ticket->t_unit_res;
3016 	xlog_tic_reset_res(ticket);
3017 
3018 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3019 
3020 	/* just return if we still have some of the pre-reserved space */
3021 	if (ticket->t_cnt > 0)
3022 		return;
3023 
3024 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3025 					ticket->t_unit_res);
3026 
3027 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3028 
3029 	ticket->t_curr_res = ticket->t_unit_res;
3030 	xlog_tic_reset_res(ticket);
3031 }	/* xlog_regrant_reserve_log_space */
3032 
3033 
3034 /*
3035  * Give back the space left from a reservation.
3036  *
3037  * All the information we need to make a correct determination of space left
3038  * is present.  For non-permanent reservations, things are quite easy.  The
3039  * count should have been decremented to zero.  We only need to deal with the
3040  * space remaining in the current reservation part of the ticket.  If the
3041  * ticket contains a permanent reservation, there may be left over space which
3042  * needs to be released.  A count of N means that N-1 refills of the current
3043  * reservation can be done before we need to ask for more space.  The first
3044  * one goes to fill up the first current reservation.  Once we run out of
3045  * space, the count will stay at zero and the only space remaining will be
3046  * in the current reservation field.
3047  */
3048 STATIC void
3049 xlog_ungrant_log_space(
3050 	struct xlog		*log,
3051 	struct xlog_ticket	*ticket)
3052 {
3053 	int	bytes;
3054 
3055 	if (ticket->t_cnt > 0)
3056 		ticket->t_cnt--;
3057 
3058 	trace_xfs_log_ungrant_enter(log, ticket);
3059 	trace_xfs_log_ungrant_sub(log, ticket);
3060 
3061 	/*
3062 	 * If this is a permanent reservation ticket, we may be able to free
3063 	 * up more space based on the remaining count.
3064 	 */
3065 	bytes = ticket->t_curr_res;
3066 	if (ticket->t_cnt > 0) {
3067 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3068 		bytes += ticket->t_unit_res*ticket->t_cnt;
3069 	}
3070 
3071 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3072 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3073 
3074 	trace_xfs_log_ungrant_exit(log, ticket);
3075 
3076 	xfs_log_space_wake(log->l_mp);
3077 }
3078 
3079 /*
3080  * Flush iclog to disk if this is the last reference to the given iclog and
3081  * the WANT_SYNC bit is set.
3082  *
3083  * When this function is entered, the iclog is not necessarily in the
3084  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3085  *
3086  *
3087  */
3088 STATIC int
3089 xlog_state_release_iclog(
3090 	struct xlog		*log,
3091 	struct xlog_in_core	*iclog)
3092 {
3093 	int		sync = 0;	/* do we sync? */
3094 
3095 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3096 		return -EIO;
3097 
3098 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3099 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3100 		return 0;
3101 
3102 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3103 		spin_unlock(&log->l_icloglock);
3104 		return -EIO;
3105 	}
3106 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3107 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3108 
3109 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3110 		/* update tail before writing to iclog */
3111 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3112 		sync++;
3113 		iclog->ic_state = XLOG_STATE_SYNCING;
3114 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3115 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3116 		/* cycle incremented when incrementing curr_block */
3117 	}
3118 	spin_unlock(&log->l_icloglock);
3119 
3120 	/*
3121 	 * We let the log lock go, so it's possible that we hit a log I/O
3122 	 * error or some other SHUTDOWN condition that marks the iclog
3123 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3124 	 * this iclog has consistent data, so we ignore IOERROR
3125 	 * flags after this point.
3126 	 */
3127 	if (sync)
3128 		xlog_sync(log, iclog);
3129 	return 0;
3130 }	/* xlog_state_release_iclog */
3131 
3132 
3133 /*
3134  * This routine will mark the current iclog in the ring as WANT_SYNC
3135  * and move the current iclog pointer to the next iclog in the ring.
3136  * When this routine is called from xlog_state_get_iclog_space(), the
3137  * exact size of the iclog has not yet been determined.  All we know is
3138  * that every data block.  We have run out of space in this log record.
3139  */
3140 STATIC void
3141 xlog_state_switch_iclogs(
3142 	struct xlog		*log,
3143 	struct xlog_in_core	*iclog,
3144 	int			eventual_size)
3145 {
3146 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3147 	if (!eventual_size)
3148 		eventual_size = iclog->ic_offset;
3149 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3150 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3151 	log->l_prev_block = log->l_curr_block;
3152 	log->l_prev_cycle = log->l_curr_cycle;
3153 
3154 	/* roll log?: ic_offset changed later */
3155 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3156 
3157 	/* Round up to next log-sunit */
3158 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3159 	    log->l_mp->m_sb.sb_logsunit > 1) {
3160 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3161 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3162 	}
3163 
3164 	if (log->l_curr_block >= log->l_logBBsize) {
3165 		/*
3166 		 * Rewind the current block before the cycle is bumped to make
3167 		 * sure that the combined LSN never transiently moves forward
3168 		 * when the log wraps to the next cycle. This is to support the
3169 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3170 		 * other cases should acquire l_icloglock.
3171 		 */
3172 		log->l_curr_block -= log->l_logBBsize;
3173 		ASSERT(log->l_curr_block >= 0);
3174 		smp_wmb();
3175 		log->l_curr_cycle++;
3176 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3177 			log->l_curr_cycle++;
3178 	}
3179 	ASSERT(iclog == log->l_iclog);
3180 	log->l_iclog = iclog->ic_next;
3181 }	/* xlog_state_switch_iclogs */
3182 
3183 /*
3184  * Write out all data in the in-core log as of this exact moment in time.
3185  *
3186  * Data may be written to the in-core log during this call.  However,
3187  * we don't guarantee this data will be written out.  A change from past
3188  * implementation means this routine will *not* write out zero length LRs.
3189  *
3190  * Basically, we try and perform an intelligent scan of the in-core logs.
3191  * If we determine there is no flushable data, we just return.  There is no
3192  * flushable data if:
3193  *
3194  *	1. the current iclog is active and has no data; the previous iclog
3195  *		is in the active or dirty state.
3196  *	2. the current iclog is drity, and the previous iclog is in the
3197  *		active or dirty state.
3198  *
3199  * We may sleep if:
3200  *
3201  *	1. the current iclog is not in the active nor dirty state.
3202  *	2. the current iclog dirty, and the previous iclog is not in the
3203  *		active nor dirty state.
3204  *	3. the current iclog is active, and there is another thread writing
3205  *		to this particular iclog.
3206  *	4. a) the current iclog is active and has no other writers
3207  *	   b) when we return from flushing out this iclog, it is still
3208  *		not in the active nor dirty state.
3209  */
3210 int
3211 xfs_log_force(
3212 	struct xfs_mount	*mp,
3213 	uint			flags)
3214 {
3215 	struct xlog		*log = mp->m_log;
3216 	struct xlog_in_core	*iclog;
3217 	xfs_lsn_t		lsn;
3218 
3219 	XFS_STATS_INC(mp, xs_log_force);
3220 	trace_xfs_log_force(mp, 0, _RET_IP_);
3221 
3222 	xlog_cil_force(log);
3223 
3224 	spin_lock(&log->l_icloglock);
3225 	iclog = log->l_iclog;
3226 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3227 		goto out_error;
3228 
3229 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3230 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3231 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3232 		/*
3233 		 * If the head is dirty or (active and empty), then we need to
3234 		 * look at the previous iclog.
3235 		 *
3236 		 * If the previous iclog is active or dirty we are done.  There
3237 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3238 		 * previous iclog and go to sleep.
3239 		 */
3240 		iclog = iclog->ic_prev;
3241 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3242 		    iclog->ic_state == XLOG_STATE_DIRTY)
3243 			goto out_unlock;
3244 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3245 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3246 			/*
3247 			 * We are the only one with access to this iclog.
3248 			 *
3249 			 * Flush it out now.  There should be a roundoff of zero
3250 			 * to show that someone has already taken care of the
3251 			 * roundoff from the previous sync.
3252 			 */
3253 			atomic_inc(&iclog->ic_refcnt);
3254 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3255 			xlog_state_switch_iclogs(log, iclog, 0);
3256 			spin_unlock(&log->l_icloglock);
3257 
3258 			if (xlog_state_release_iclog(log, iclog))
3259 				return -EIO;
3260 
3261 			spin_lock(&log->l_icloglock);
3262 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3263 			    iclog->ic_state == XLOG_STATE_DIRTY)
3264 				goto out_unlock;
3265 		} else {
3266 			/*
3267 			 * Someone else is writing to this iclog.
3268 			 *
3269 			 * Use its call to flush out the data.  However, the
3270 			 * other thread may not force out this LR, so we mark
3271 			 * it WANT_SYNC.
3272 			 */
3273 			xlog_state_switch_iclogs(log, iclog, 0);
3274 		}
3275 	} else {
3276 		/*
3277 		 * If the head iclog is not active nor dirty, we just attach
3278 		 * ourselves to the head and go to sleep if necessary.
3279 		 */
3280 		;
3281 	}
3282 
3283 	if (!(flags & XFS_LOG_SYNC))
3284 		goto out_unlock;
3285 
3286 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3287 		goto out_error;
3288 	XFS_STATS_INC(mp, xs_log_force_sleep);
3289 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3290 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3291 		return -EIO;
3292 	return 0;
3293 
3294 out_unlock:
3295 	spin_unlock(&log->l_icloglock);
3296 	return 0;
3297 out_error:
3298 	spin_unlock(&log->l_icloglock);
3299 	return -EIO;
3300 }
3301 
3302 static int
3303 __xfs_log_force_lsn(
3304 	struct xfs_mount	*mp,
3305 	xfs_lsn_t		lsn,
3306 	uint			flags,
3307 	int			*log_flushed,
3308 	bool			already_slept)
3309 {
3310 	struct xlog		*log = mp->m_log;
3311 	struct xlog_in_core	*iclog;
3312 
3313 	spin_lock(&log->l_icloglock);
3314 	iclog = log->l_iclog;
3315 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3316 		goto out_error;
3317 
3318 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3319 		iclog = iclog->ic_next;
3320 		if (iclog == log->l_iclog)
3321 			goto out_unlock;
3322 	}
3323 
3324 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3325 		goto out_unlock;
3326 
3327 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3328 		/*
3329 		 * We sleep here if we haven't already slept (e.g. this is the
3330 		 * first time we've looked at the correct iclog buf) and the
3331 		 * buffer before us is going to be sync'ed.  The reason for this
3332 		 * is that if we are doing sync transactions here, by waiting
3333 		 * for the previous I/O to complete, we can allow a few more
3334 		 * transactions into this iclog before we close it down.
3335 		 *
3336 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3337 		 * refcnt so we can release the log (which drops the ref count).
3338 		 * The state switch keeps new transaction commits from using
3339 		 * this buffer.  When the current commits finish writing into
3340 		 * the buffer, the refcount will drop to zero and the buffer
3341 		 * will go out then.
3342 		 */
3343 		if (!already_slept &&
3344 		    (iclog->ic_prev->ic_state &
3345 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3346 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3347 
3348 			XFS_STATS_INC(mp, xs_log_force_sleep);
3349 
3350 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3351 					&log->l_icloglock);
3352 			return -EAGAIN;
3353 		}
3354 		atomic_inc(&iclog->ic_refcnt);
3355 		xlog_state_switch_iclogs(log, iclog, 0);
3356 		spin_unlock(&log->l_icloglock);
3357 		if (xlog_state_release_iclog(log, iclog))
3358 			return -EIO;
3359 		if (log_flushed)
3360 			*log_flushed = 1;
3361 		spin_lock(&log->l_icloglock);
3362 	}
3363 
3364 	if (!(flags & XFS_LOG_SYNC) ||
3365 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3366 		goto out_unlock;
3367 
3368 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3369 		goto out_error;
3370 
3371 	XFS_STATS_INC(mp, xs_log_force_sleep);
3372 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3374 		return -EIO;
3375 	return 0;
3376 
3377 out_unlock:
3378 	spin_unlock(&log->l_icloglock);
3379 	return 0;
3380 out_error:
3381 	spin_unlock(&log->l_icloglock);
3382 	return -EIO;
3383 }
3384 
3385 /*
3386  * Force the in-core log to disk for a specific LSN.
3387  *
3388  * Find in-core log with lsn.
3389  *	If it is in the DIRTY state, just return.
3390  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3391  *		state and go to sleep or return.
3392  *	If it is in any other state, go to sleep or return.
3393  *
3394  * Synchronous forces are implemented with a wait queue.  All callers trying
3395  * to force a given lsn to disk must wait on the queue attached to the
3396  * specific in-core log.  When given in-core log finally completes its write
3397  * to disk, that thread will wake up all threads waiting on the queue.
3398  */
3399 int
3400 xfs_log_force_lsn(
3401 	struct xfs_mount	*mp,
3402 	xfs_lsn_t		lsn,
3403 	uint			flags,
3404 	int			*log_flushed)
3405 {
3406 	int			ret;
3407 	ASSERT(lsn != 0);
3408 
3409 	XFS_STATS_INC(mp, xs_log_force);
3410 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3411 
3412 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3413 	if (lsn == NULLCOMMITLSN)
3414 		return 0;
3415 
3416 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3417 	if (ret == -EAGAIN)
3418 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3419 	return ret;
3420 }
3421 
3422 /*
3423  * Called when we want to mark the current iclog as being ready to sync to
3424  * disk.
3425  */
3426 STATIC void
3427 xlog_state_want_sync(
3428 	struct xlog		*log,
3429 	struct xlog_in_core	*iclog)
3430 {
3431 	assert_spin_locked(&log->l_icloglock);
3432 
3433 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3434 		xlog_state_switch_iclogs(log, iclog, 0);
3435 	} else {
3436 		ASSERT(iclog->ic_state &
3437 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3438 	}
3439 }
3440 
3441 
3442 /*****************************************************************************
3443  *
3444  *		TICKET functions
3445  *
3446  *****************************************************************************
3447  */
3448 
3449 /*
3450  * Free a used ticket when its refcount falls to zero.
3451  */
3452 void
3453 xfs_log_ticket_put(
3454 	xlog_ticket_t	*ticket)
3455 {
3456 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3457 	if (atomic_dec_and_test(&ticket->t_ref))
3458 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3459 }
3460 
3461 xlog_ticket_t *
3462 xfs_log_ticket_get(
3463 	xlog_ticket_t	*ticket)
3464 {
3465 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3466 	atomic_inc(&ticket->t_ref);
3467 	return ticket;
3468 }
3469 
3470 /*
3471  * Figure out the total log space unit (in bytes) that would be
3472  * required for a log ticket.
3473  */
3474 int
3475 xfs_log_calc_unit_res(
3476 	struct xfs_mount	*mp,
3477 	int			unit_bytes)
3478 {
3479 	struct xlog		*log = mp->m_log;
3480 	int			iclog_space;
3481 	uint			num_headers;
3482 
3483 	/*
3484 	 * Permanent reservations have up to 'cnt'-1 active log operations
3485 	 * in the log.  A unit in this case is the amount of space for one
3486 	 * of these log operations.  Normal reservations have a cnt of 1
3487 	 * and their unit amount is the total amount of space required.
3488 	 *
3489 	 * The following lines of code account for non-transaction data
3490 	 * which occupy space in the on-disk log.
3491 	 *
3492 	 * Normal form of a transaction is:
3493 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3494 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3495 	 *
3496 	 * We need to account for all the leadup data and trailer data
3497 	 * around the transaction data.
3498 	 * And then we need to account for the worst case in terms of using
3499 	 * more space.
3500 	 * The worst case will happen if:
3501 	 * - the placement of the transaction happens to be such that the
3502 	 *   roundoff is at its maximum
3503 	 * - the transaction data is synced before the commit record is synced
3504 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3505 	 *   Therefore the commit record is in its own Log Record.
3506 	 *   This can happen as the commit record is called with its
3507 	 *   own region to xlog_write().
3508 	 *   This then means that in the worst case, roundoff can happen for
3509 	 *   the commit-rec as well.
3510 	 *   The commit-rec is smaller than padding in this scenario and so it is
3511 	 *   not added separately.
3512 	 */
3513 
3514 	/* for trans header */
3515 	unit_bytes += sizeof(xlog_op_header_t);
3516 	unit_bytes += sizeof(xfs_trans_header_t);
3517 
3518 	/* for start-rec */
3519 	unit_bytes += sizeof(xlog_op_header_t);
3520 
3521 	/*
3522 	 * for LR headers - the space for data in an iclog is the size minus
3523 	 * the space used for the headers. If we use the iclog size, then we
3524 	 * undercalculate the number of headers required.
3525 	 *
3526 	 * Furthermore - the addition of op headers for split-recs might
3527 	 * increase the space required enough to require more log and op
3528 	 * headers, so take that into account too.
3529 	 *
3530 	 * IMPORTANT: This reservation makes the assumption that if this
3531 	 * transaction is the first in an iclog and hence has the LR headers
3532 	 * accounted to it, then the remaining space in the iclog is
3533 	 * exclusively for this transaction.  i.e. if the transaction is larger
3534 	 * than the iclog, it will be the only thing in that iclog.
3535 	 * Fundamentally, this means we must pass the entire log vector to
3536 	 * xlog_write to guarantee this.
3537 	 */
3538 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3539 	num_headers = howmany(unit_bytes, iclog_space);
3540 
3541 	/* for split-recs - ophdrs added when data split over LRs */
3542 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3543 
3544 	/* add extra header reservations if we overrun */
3545 	while (!num_headers ||
3546 	       howmany(unit_bytes, iclog_space) > num_headers) {
3547 		unit_bytes += sizeof(xlog_op_header_t);
3548 		num_headers++;
3549 	}
3550 	unit_bytes += log->l_iclog_hsize * num_headers;
3551 
3552 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3553 	unit_bytes += log->l_iclog_hsize;
3554 
3555 	/* for roundoff padding for transaction data and one for commit record */
3556 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3557 		/* log su roundoff */
3558 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3559 	} else {
3560 		/* BB roundoff */
3561 		unit_bytes += 2 * BBSIZE;
3562         }
3563 
3564 	return unit_bytes;
3565 }
3566 
3567 /*
3568  * Allocate and initialise a new log ticket.
3569  */
3570 struct xlog_ticket *
3571 xlog_ticket_alloc(
3572 	struct xlog		*log,
3573 	int			unit_bytes,
3574 	int			cnt,
3575 	char			client,
3576 	bool			permanent,
3577 	xfs_km_flags_t		alloc_flags)
3578 {
3579 	struct xlog_ticket	*tic;
3580 	int			unit_res;
3581 
3582 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3583 	if (!tic)
3584 		return NULL;
3585 
3586 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3587 
3588 	atomic_set(&tic->t_ref, 1);
3589 	tic->t_task		= current;
3590 	INIT_LIST_HEAD(&tic->t_queue);
3591 	tic->t_unit_res		= unit_res;
3592 	tic->t_curr_res		= unit_res;
3593 	tic->t_cnt		= cnt;
3594 	tic->t_ocnt		= cnt;
3595 	tic->t_tid		= prandom_u32();
3596 	tic->t_clientid		= client;
3597 	tic->t_flags		= XLOG_TIC_INITED;
3598 	if (permanent)
3599 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3600 
3601 	xlog_tic_reset_res(tic);
3602 
3603 	return tic;
3604 }
3605 
3606 
3607 /******************************************************************************
3608  *
3609  *		Log debug routines
3610  *
3611  ******************************************************************************
3612  */
3613 #if defined(DEBUG)
3614 /*
3615  * Make sure that the destination ptr is within the valid data region of
3616  * one of the iclogs.  This uses backup pointers stored in a different
3617  * part of the log in case we trash the log structure.
3618  */
3619 STATIC void
3620 xlog_verify_dest_ptr(
3621 	struct xlog	*log,
3622 	void		*ptr)
3623 {
3624 	int i;
3625 	int good_ptr = 0;
3626 
3627 	for (i = 0; i < log->l_iclog_bufs; i++) {
3628 		if (ptr >= log->l_iclog_bak[i] &&
3629 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3630 			good_ptr++;
3631 	}
3632 
3633 	if (!good_ptr)
3634 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3635 }
3636 
3637 /*
3638  * Check to make sure the grant write head didn't just over lap the tail.  If
3639  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3640  * the cycles differ by exactly one and check the byte count.
3641  *
3642  * This check is run unlocked, so can give false positives. Rather than assert
3643  * on failures, use a warn-once flag and a panic tag to allow the admin to
3644  * determine if they want to panic the machine when such an error occurs. For
3645  * debug kernels this will have the same effect as using an assert but, unlinke
3646  * an assert, it can be turned off at runtime.
3647  */
3648 STATIC void
3649 xlog_verify_grant_tail(
3650 	struct xlog	*log)
3651 {
3652 	int		tail_cycle, tail_blocks;
3653 	int		cycle, space;
3654 
3655 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3656 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3657 	if (tail_cycle != cycle) {
3658 		if (cycle - 1 != tail_cycle &&
3659 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3660 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3661 				"%s: cycle - 1 != tail_cycle", __func__);
3662 			log->l_flags |= XLOG_TAIL_WARN;
3663 		}
3664 
3665 		if (space > BBTOB(tail_blocks) &&
3666 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3667 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3668 				"%s: space > BBTOB(tail_blocks)", __func__);
3669 			log->l_flags |= XLOG_TAIL_WARN;
3670 		}
3671 	}
3672 }
3673 
3674 /* check if it will fit */
3675 STATIC void
3676 xlog_verify_tail_lsn(
3677 	struct xlog		*log,
3678 	struct xlog_in_core	*iclog,
3679 	xfs_lsn_t		tail_lsn)
3680 {
3681     int blocks;
3682 
3683     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3684 	blocks =
3685 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3686 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3687 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3688     } else {
3689 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3690 
3691 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3692 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3693 
3694 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3695 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3696 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3697     }
3698 }	/* xlog_verify_tail_lsn */
3699 
3700 /*
3701  * Perform a number of checks on the iclog before writing to disk.
3702  *
3703  * 1. Make sure the iclogs are still circular
3704  * 2. Make sure we have a good magic number
3705  * 3. Make sure we don't have magic numbers in the data
3706  * 4. Check fields of each log operation header for:
3707  *	A. Valid client identifier
3708  *	B. tid ptr value falls in valid ptr space (user space code)
3709  *	C. Length in log record header is correct according to the
3710  *		individual operation headers within record.
3711  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3712  *	log, check the preceding blocks of the physical log to make sure all
3713  *	the cycle numbers agree with the current cycle number.
3714  */
3715 STATIC void
3716 xlog_verify_iclog(
3717 	struct xlog		*log,
3718 	struct xlog_in_core	*iclog,
3719 	int			count)
3720 {
3721 	xlog_op_header_t	*ophead;
3722 	xlog_in_core_t		*icptr;
3723 	xlog_in_core_2_t	*xhdr;
3724 	void			*base_ptr, *ptr, *p;
3725 	ptrdiff_t		field_offset;
3726 	uint8_t			clientid;
3727 	int			len, i, j, k, op_len;
3728 	int			idx;
3729 
3730 	/* check validity of iclog pointers */
3731 	spin_lock(&log->l_icloglock);
3732 	icptr = log->l_iclog;
3733 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3734 		ASSERT(icptr);
3735 
3736 	if (icptr != log->l_iclog)
3737 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3738 	spin_unlock(&log->l_icloglock);
3739 
3740 	/* check log magic numbers */
3741 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3742 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3743 
3744 	base_ptr = ptr = &iclog->ic_header;
3745 	p = &iclog->ic_header;
3746 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3747 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3748 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3749 				__func__);
3750 	}
3751 
3752 	/* check fields */
3753 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3754 	base_ptr = ptr = iclog->ic_datap;
3755 	ophead = ptr;
3756 	xhdr = iclog->ic_data;
3757 	for (i = 0; i < len; i++) {
3758 		ophead = ptr;
3759 
3760 		/* clientid is only 1 byte */
3761 		p = &ophead->oh_clientid;
3762 		field_offset = p - base_ptr;
3763 		if (field_offset & 0x1ff) {
3764 			clientid = ophead->oh_clientid;
3765 		} else {
3766 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3767 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3768 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3769 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3770 				clientid = xlog_get_client_id(
3771 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3772 			} else {
3773 				clientid = xlog_get_client_id(
3774 					iclog->ic_header.h_cycle_data[idx]);
3775 			}
3776 		}
3777 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3778 			xfs_warn(log->l_mp,
3779 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3780 				__func__, clientid, ophead,
3781 				(unsigned long)field_offset);
3782 
3783 		/* check length */
3784 		p = &ophead->oh_len;
3785 		field_offset = p - base_ptr;
3786 		if (field_offset & 0x1ff) {
3787 			op_len = be32_to_cpu(ophead->oh_len);
3788 		} else {
3789 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3790 				    (uintptr_t)iclog->ic_datap);
3791 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3792 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3793 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3794 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3795 			} else {
3796 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3797 			}
3798 		}
3799 		ptr += sizeof(xlog_op_header_t) + op_len;
3800 	}
3801 }	/* xlog_verify_iclog */
3802 #endif
3803 
3804 /*
3805  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3806  */
3807 STATIC int
3808 xlog_state_ioerror(
3809 	struct xlog	*log)
3810 {
3811 	xlog_in_core_t	*iclog, *ic;
3812 
3813 	iclog = log->l_iclog;
3814 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3815 		/*
3816 		 * Mark all the incore logs IOERROR.
3817 		 * From now on, no log flushes will result.
3818 		 */
3819 		ic = iclog;
3820 		do {
3821 			ic->ic_state = XLOG_STATE_IOERROR;
3822 			ic = ic->ic_next;
3823 		} while (ic != iclog);
3824 		return 0;
3825 	}
3826 	/*
3827 	 * Return non-zero, if state transition has already happened.
3828 	 */
3829 	return 1;
3830 }
3831 
3832 /*
3833  * This is called from xfs_force_shutdown, when we're forcibly
3834  * shutting down the filesystem, typically because of an IO error.
3835  * Our main objectives here are to make sure that:
3836  *	a. if !logerror, flush the logs to disk. Anything modified
3837  *	   after this is ignored.
3838  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3839  *	   parties to find out, 'atomically'.
3840  *	c. those who're sleeping on log reservations, pinned objects and
3841  *	    other resources get woken up, and be told the bad news.
3842  *	d. nothing new gets queued up after (b) and (c) are done.
3843  *
3844  * Note: for the !logerror case we need to flush the regions held in memory out
3845  * to disk first. This needs to be done before the log is marked as shutdown,
3846  * otherwise the iclog writes will fail.
3847  */
3848 int
3849 xfs_log_force_umount(
3850 	struct xfs_mount	*mp,
3851 	int			logerror)
3852 {
3853 	struct xlog	*log;
3854 	int		retval;
3855 
3856 	log = mp->m_log;
3857 
3858 	/*
3859 	 * If this happens during log recovery, don't worry about
3860 	 * locking; the log isn't open for business yet.
3861 	 */
3862 	if (!log ||
3863 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3864 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3865 		if (mp->m_sb_bp)
3866 			mp->m_sb_bp->b_flags |= XBF_DONE;
3867 		return 0;
3868 	}
3869 
3870 	/*
3871 	 * Somebody could've already done the hard work for us.
3872 	 * No need to get locks for this.
3873 	 */
3874 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3875 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3876 		return 1;
3877 	}
3878 
3879 	/*
3880 	 * Flush all the completed transactions to disk before marking the log
3881 	 * being shut down. We need to do it in this order to ensure that
3882 	 * completed operations are safely on disk before we shut down, and that
3883 	 * we don't have to issue any buffer IO after the shutdown flags are set
3884 	 * to guarantee this.
3885 	 */
3886 	if (!logerror)
3887 		xfs_log_force(mp, XFS_LOG_SYNC);
3888 
3889 	/*
3890 	 * mark the filesystem and the as in a shutdown state and wake
3891 	 * everybody up to tell them the bad news.
3892 	 */
3893 	spin_lock(&log->l_icloglock);
3894 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3895 	if (mp->m_sb_bp)
3896 		mp->m_sb_bp->b_flags |= XBF_DONE;
3897 
3898 	/*
3899 	 * Mark the log and the iclogs with IO error flags to prevent any
3900 	 * further log IO from being issued or completed.
3901 	 */
3902 	log->l_flags |= XLOG_IO_ERROR;
3903 	retval = xlog_state_ioerror(log);
3904 	spin_unlock(&log->l_icloglock);
3905 
3906 	/*
3907 	 * We don't want anybody waiting for log reservations after this. That
3908 	 * means we have to wake up everybody queued up on reserveq as well as
3909 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3910 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3911 	 * action is protected by the grant locks.
3912 	 */
3913 	xlog_grant_head_wake_all(&log->l_reserve_head);
3914 	xlog_grant_head_wake_all(&log->l_write_head);
3915 
3916 	/*
3917 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3918 	 * as if the log writes were completed. The abort handling in the log
3919 	 * item committed callback functions will do this again under lock to
3920 	 * avoid races.
3921 	 */
3922 	wake_up_all(&log->l_cilp->xc_commit_wait);
3923 	xlog_state_do_callback(log, true, NULL);
3924 
3925 #ifdef XFSERRORDEBUG
3926 	{
3927 		xlog_in_core_t	*iclog;
3928 
3929 		spin_lock(&log->l_icloglock);
3930 		iclog = log->l_iclog;
3931 		do {
3932 			ASSERT(iclog->ic_callback == 0);
3933 			iclog = iclog->ic_next;
3934 		} while (iclog != log->l_iclog);
3935 		spin_unlock(&log->l_icloglock);
3936 	}
3937 #endif
3938 	/* return non-zero if log IOERROR transition had already happened */
3939 	return retval;
3940 }
3941 
3942 STATIC int
3943 xlog_iclogs_empty(
3944 	struct xlog	*log)
3945 {
3946 	xlog_in_core_t	*iclog;
3947 
3948 	iclog = log->l_iclog;
3949 	do {
3950 		/* endianness does not matter here, zero is zero in
3951 		 * any language.
3952 		 */
3953 		if (iclog->ic_header.h_num_logops)
3954 			return 0;
3955 		iclog = iclog->ic_next;
3956 	} while (iclog != log->l_iclog);
3957 	return 1;
3958 }
3959 
3960 /*
3961  * Verify that an LSN stamped into a piece of metadata is valid. This is
3962  * intended for use in read verifiers on v5 superblocks.
3963  */
3964 bool
3965 xfs_log_check_lsn(
3966 	struct xfs_mount	*mp,
3967 	xfs_lsn_t		lsn)
3968 {
3969 	struct xlog		*log = mp->m_log;
3970 	bool			valid;
3971 
3972 	/*
3973 	 * norecovery mode skips mount-time log processing and unconditionally
3974 	 * resets the in-core LSN. We can't validate in this mode, but
3975 	 * modifications are not allowed anyways so just return true.
3976 	 */
3977 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3978 		return true;
3979 
3980 	/*
3981 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3982 	 * handled by recovery and thus safe to ignore here.
3983 	 */
3984 	if (lsn == NULLCOMMITLSN)
3985 		return true;
3986 
3987 	valid = xlog_valid_lsn(mp->m_log, lsn);
3988 
3989 	/* warn the user about what's gone wrong before verifier failure */
3990 	if (!valid) {
3991 		spin_lock(&log->l_icloglock);
3992 		xfs_warn(mp,
3993 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3994 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3995 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3996 			 log->l_curr_cycle, log->l_curr_block);
3997 		spin_unlock(&log->l_icloglock);
3998 	}
3999 
4000 	return valid;
4001 }
4002 
4003 bool
4004 xfs_log_in_recovery(
4005 	struct xfs_mount	*mp)
4006 {
4007 	struct xlog		*log = mp->m_log;
4008 
4009 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
4010 }
4011