xref: /openbmc/linux/fs/xfs/xfs_log.c (revision be80507d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog,
51 	bool			aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	int			len,
56 	struct xlog_in_core	**iclog,
57 	struct xlog_ticket	*ticket,
58 	int			*continued_write,
59 	int			*logoffsetp);
60 STATIC int
61 xlog_state_release_iclog(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_state_switch_iclogs(
66 	struct xlog		*log,
67 	struct xlog_in_core	*iclog,
68 	int			eventual_size);
69 STATIC void
70 xlog_state_want_sync(
71 	struct xlog		*log,
72 	struct xlog_in_core	*iclog);
73 
74 STATIC void
75 xlog_grant_push_ail(
76 	struct xlog		*log,
77 	int			need_bytes);
78 STATIC void
79 xlog_regrant_reserve_log_space(
80 	struct xlog		*log,
81 	struct xlog_ticket	*ticket);
82 STATIC void
83 xlog_ungrant_log_space(
84 	struct xlog		*log,
85 	struct xlog_ticket	*ticket);
86 
87 #if defined(DEBUG)
88 STATIC void
89 xlog_verify_dest_ptr(
90 	struct xlog		*log,
91 	void			*ptr);
92 STATIC void
93 xlog_verify_grant_tail(
94 	struct xlog *log);
95 STATIC void
96 xlog_verify_iclog(
97 	struct xlog		*log,
98 	struct xlog_in_core	*iclog,
99 	int			count);
100 STATIC void
101 xlog_verify_tail_lsn(
102 	struct xlog		*log,
103 	struct xlog_in_core	*iclog,
104 	xfs_lsn_t		tail_lsn);
105 #else
106 #define xlog_verify_dest_ptr(a,b)
107 #define xlog_verify_grant_tail(a)
108 #define xlog_verify_iclog(a,b,c)
109 #define xlog_verify_tail_lsn(a,b,c)
110 #endif
111 
112 STATIC int
113 xlog_iclogs_empty(
114 	struct xlog		*log);
115 
116 static void
117 xlog_grant_sub_space(
118 	struct xlog		*log,
119 	atomic64_t		*head,
120 	int			bytes)
121 {
122 	int64_t	head_val = atomic64_read(head);
123 	int64_t new, old;
124 
125 	do {
126 		int	cycle, space;
127 
128 		xlog_crack_grant_head_val(head_val, &cycle, &space);
129 
130 		space -= bytes;
131 		if (space < 0) {
132 			space += log->l_logsize;
133 			cycle--;
134 		}
135 
136 		old = head_val;
137 		new = xlog_assign_grant_head_val(cycle, space);
138 		head_val = atomic64_cmpxchg(head, old, new);
139 	} while (head_val != old);
140 }
141 
142 static void
143 xlog_grant_add_space(
144 	struct xlog		*log,
145 	atomic64_t		*head,
146 	int			bytes)
147 {
148 	int64_t	head_val = atomic64_read(head);
149 	int64_t new, old;
150 
151 	do {
152 		int		tmp;
153 		int		cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		tmp = log->l_logsize - space;
158 		if (tmp > bytes)
159 			space += bytes;
160 		else {
161 			space = bytes - tmp;
162 			cycle++;
163 		}
164 
165 		old = head_val;
166 		new = xlog_assign_grant_head_val(cycle, space);
167 		head_val = atomic64_cmpxchg(head, old, new);
168 	} while (head_val != old);
169 }
170 
171 STATIC void
172 xlog_grant_head_init(
173 	struct xlog_grant_head	*head)
174 {
175 	xlog_assign_grant_head(&head->grant, 1, 0);
176 	INIT_LIST_HEAD(&head->waiters);
177 	spin_lock_init(&head->lock);
178 }
179 
180 STATIC void
181 xlog_grant_head_wake_all(
182 	struct xlog_grant_head	*head)
183 {
184 	struct xlog_ticket	*tic;
185 
186 	spin_lock(&head->lock);
187 	list_for_each_entry(tic, &head->waiters, t_queue)
188 		wake_up_process(tic->t_task);
189 	spin_unlock(&head->lock);
190 }
191 
192 static inline int
193 xlog_ticket_reservation(
194 	struct xlog		*log,
195 	struct xlog_grant_head	*head,
196 	struct xlog_ticket	*tic)
197 {
198 	if (head == &log->l_write_head) {
199 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 		return tic->t_unit_res;
201 	} else {
202 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203 			return tic->t_unit_res * tic->t_cnt;
204 		else
205 			return tic->t_unit_res;
206 	}
207 }
208 
209 STATIC bool
210 xlog_grant_head_wake(
211 	struct xlog		*log,
212 	struct xlog_grant_head	*head,
213 	int			*free_bytes)
214 {
215 	struct xlog_ticket	*tic;
216 	int			need_bytes;
217 	bool			woken_task = false;
218 
219 	list_for_each_entry(tic, &head->waiters, t_queue) {
220 
221 		/*
222 		 * There is a chance that the size of the CIL checkpoints in
223 		 * progress at the last AIL push target calculation resulted in
224 		 * limiting the target to the log head (l_last_sync_lsn) at the
225 		 * time. This may not reflect where the log head is now as the
226 		 * CIL checkpoints may have completed.
227 		 *
228 		 * Hence when we are woken here, it may be that the head of the
229 		 * log that has moved rather than the tail. As the tail didn't
230 		 * move, there still won't be space available for the
231 		 * reservation we require.  However, if the AIL has already
232 		 * pushed to the target defined by the old log head location, we
233 		 * will hang here waiting for something else to update the AIL
234 		 * push target.
235 		 *
236 		 * Therefore, if there isn't space to wake the first waiter on
237 		 * the grant head, we need to push the AIL again to ensure the
238 		 * target reflects both the current log tail and log head
239 		 * position before we wait for the tail to move again.
240 		 */
241 
242 		need_bytes = xlog_ticket_reservation(log, head, tic);
243 		if (*free_bytes < need_bytes) {
244 			if (!woken_task)
245 				xlog_grant_push_ail(log, need_bytes);
246 			return false;
247 		}
248 
249 		*free_bytes -= need_bytes;
250 		trace_xfs_log_grant_wake_up(log, tic);
251 		wake_up_process(tic->t_task);
252 		woken_task = true;
253 	}
254 
255 	return true;
256 }
257 
258 STATIC int
259 xlog_grant_head_wait(
260 	struct xlog		*log,
261 	struct xlog_grant_head	*head,
262 	struct xlog_ticket	*tic,
263 	int			need_bytes) __releases(&head->lock)
264 					    __acquires(&head->lock)
265 {
266 	list_add_tail(&tic->t_queue, &head->waiters);
267 
268 	do {
269 		if (XLOG_FORCED_SHUTDOWN(log))
270 			goto shutdown;
271 		xlog_grant_push_ail(log, need_bytes);
272 
273 		__set_current_state(TASK_UNINTERRUPTIBLE);
274 		spin_unlock(&head->lock);
275 
276 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277 
278 		trace_xfs_log_grant_sleep(log, tic);
279 		schedule();
280 		trace_xfs_log_grant_wake(log, tic);
281 
282 		spin_lock(&head->lock);
283 		if (XLOG_FORCED_SHUTDOWN(log))
284 			goto shutdown;
285 	} while (xlog_space_left(log, &head->grant) < need_bytes);
286 
287 	list_del_init(&tic->t_queue);
288 	return 0;
289 shutdown:
290 	list_del_init(&tic->t_queue);
291 	return -EIO;
292 }
293 
294 /*
295  * Atomically get the log space required for a log ticket.
296  *
297  * Once a ticket gets put onto head->waiters, it will only return after the
298  * needed reservation is satisfied.
299  *
300  * This function is structured so that it has a lock free fast path. This is
301  * necessary because every new transaction reservation will come through this
302  * path. Hence any lock will be globally hot if we take it unconditionally on
303  * every pass.
304  *
305  * As tickets are only ever moved on and off head->waiters under head->lock, we
306  * only need to take that lock if we are going to add the ticket to the queue
307  * and sleep. We can avoid taking the lock if the ticket was never added to
308  * head->waiters because the t_queue list head will be empty and we hold the
309  * only reference to it so it can safely be checked unlocked.
310  */
311 STATIC int
312 xlog_grant_head_check(
313 	struct xlog		*log,
314 	struct xlog_grant_head	*head,
315 	struct xlog_ticket	*tic,
316 	int			*need_bytes)
317 {
318 	int			free_bytes;
319 	int			error = 0;
320 
321 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
322 
323 	/*
324 	 * If there are other waiters on the queue then give them a chance at
325 	 * logspace before us.  Wake up the first waiters, if we do not wake
326 	 * up all the waiters then go to sleep waiting for more free space,
327 	 * otherwise try to get some space for this transaction.
328 	 */
329 	*need_bytes = xlog_ticket_reservation(log, head, tic);
330 	free_bytes = xlog_space_left(log, &head->grant);
331 	if (!list_empty_careful(&head->waiters)) {
332 		spin_lock(&head->lock);
333 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
334 		    free_bytes < *need_bytes) {
335 			error = xlog_grant_head_wait(log, head, tic,
336 						     *need_bytes);
337 		}
338 		spin_unlock(&head->lock);
339 	} else if (free_bytes < *need_bytes) {
340 		spin_lock(&head->lock);
341 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
342 		spin_unlock(&head->lock);
343 	}
344 
345 	return error;
346 }
347 
348 static void
349 xlog_tic_reset_res(xlog_ticket_t *tic)
350 {
351 	tic->t_res_num = 0;
352 	tic->t_res_arr_sum = 0;
353 	tic->t_res_num_ophdrs = 0;
354 }
355 
356 static void
357 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358 {
359 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
360 		/* add to overflow and start again */
361 		tic->t_res_o_flow += tic->t_res_arr_sum;
362 		tic->t_res_num = 0;
363 		tic->t_res_arr_sum = 0;
364 	}
365 
366 	tic->t_res_arr[tic->t_res_num].r_len = len;
367 	tic->t_res_arr[tic->t_res_num].r_type = type;
368 	tic->t_res_arr_sum += len;
369 	tic->t_res_num++;
370 }
371 
372 /*
373  * Replenish the byte reservation required by moving the grant write head.
374  */
375 int
376 xfs_log_regrant(
377 	struct xfs_mount	*mp,
378 	struct xlog_ticket	*tic)
379 {
380 	struct xlog		*log = mp->m_log;
381 	int			need_bytes;
382 	int			error = 0;
383 
384 	if (XLOG_FORCED_SHUTDOWN(log))
385 		return -EIO;
386 
387 	XFS_STATS_INC(mp, xs_try_logspace);
388 
389 	/*
390 	 * This is a new transaction on the ticket, so we need to change the
391 	 * transaction ID so that the next transaction has a different TID in
392 	 * the log. Just add one to the existing tid so that we can see chains
393 	 * of rolling transactions in the log easily.
394 	 */
395 	tic->t_tid++;
396 
397 	xlog_grant_push_ail(log, tic->t_unit_res);
398 
399 	tic->t_curr_res = tic->t_unit_res;
400 	xlog_tic_reset_res(tic);
401 
402 	if (tic->t_cnt > 0)
403 		return 0;
404 
405 	trace_xfs_log_regrant(log, tic);
406 
407 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
408 				      &need_bytes);
409 	if (error)
410 		goto out_error;
411 
412 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
413 	trace_xfs_log_regrant_exit(log, tic);
414 	xlog_verify_grant_tail(log);
415 	return 0;
416 
417 out_error:
418 	/*
419 	 * If we are failing, make sure the ticket doesn't have any current
420 	 * reservations.  We don't want to add this back when the ticket/
421 	 * transaction gets cancelled.
422 	 */
423 	tic->t_curr_res = 0;
424 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
425 	return error;
426 }
427 
428 /*
429  * Reserve log space and return a ticket corresponding to the reservation.
430  *
431  * Each reservation is going to reserve extra space for a log record header.
432  * When writes happen to the on-disk log, we don't subtract the length of the
433  * log record header from any reservation.  By wasting space in each
434  * reservation, we prevent over allocation problems.
435  */
436 int
437 xfs_log_reserve(
438 	struct xfs_mount	*mp,
439 	int		 	unit_bytes,
440 	int		 	cnt,
441 	struct xlog_ticket	**ticp,
442 	uint8_t		 	client,
443 	bool			permanent)
444 {
445 	struct xlog		*log = mp->m_log;
446 	struct xlog_ticket	*tic;
447 	int			need_bytes;
448 	int			error = 0;
449 
450 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451 
452 	if (XLOG_FORCED_SHUTDOWN(log))
453 		return -EIO;
454 
455 	XFS_STATS_INC(mp, xs_try_logspace);
456 
457 	ASSERT(*ticp == NULL);
458 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
459 	*ticp = tic;
460 
461 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 					    : tic->t_unit_res);
463 
464 	trace_xfs_log_reserve(log, tic);
465 
466 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 				      &need_bytes);
468 	if (error)
469 		goto out_error;
470 
471 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 	trace_xfs_log_reserve_exit(log, tic);
474 	xlog_verify_grant_tail(log);
475 	return 0;
476 
477 out_error:
478 	/*
479 	 * If we are failing, make sure the ticket doesn't have any current
480 	 * reservations.  We don't want to add this back when the ticket/
481 	 * transaction gets cancelled.
482 	 */
483 	tic->t_curr_res = 0;
484 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
485 	return error;
486 }
487 
488 
489 /*
490  * NOTES:
491  *
492  *	1. currblock field gets updated at startup and after in-core logs
493  *		marked as with WANT_SYNC.
494  */
495 
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512 	struct xfs_mount	*mp,
513 	struct xlog_ticket	*ticket,
514 	struct xlog_in_core	**iclog,
515 	bool			regrant)
516 {
517 	struct xlog		*log = mp->m_log;
518 	xfs_lsn_t		lsn = 0;
519 
520 	if (XLOG_FORCED_SHUTDOWN(log) ||
521 	    /*
522 	     * If nothing was ever written, don't write out commit record.
523 	     * If we get an error, just continue and give back the log ticket.
524 	     */
525 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 		lsn = (xfs_lsn_t) -1;
528 		regrant = false;
529 	}
530 
531 
532 	if (!regrant) {
533 		trace_xfs_log_done_nonperm(log, ticket);
534 
535 		/*
536 		 * Release ticket if not permanent reservation or a specific
537 		 * request has been made to release a permanent reservation.
538 		 */
539 		xlog_ungrant_log_space(log, ticket);
540 	} else {
541 		trace_xfs_log_done_perm(log, ticket);
542 
543 		xlog_regrant_reserve_log_space(log, ticket);
544 		/* If this ticket was a permanent reservation and we aren't
545 		 * trying to release it, reset the inited flags; so next time
546 		 * we write, a start record will be written out.
547 		 */
548 		ticket->t_flags |= XLOG_TIC_INITED;
549 	}
550 
551 	xfs_log_ticket_put(ticket);
552 	return lsn;
553 }
554 
555 int
556 xfs_log_release_iclog(
557 	struct xfs_mount	*mp,
558 	struct xlog_in_core	*iclog)
559 {
560 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
561 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
562 		return -EIO;
563 	}
564 
565 	return 0;
566 }
567 
568 /*
569  * Mount a log filesystem
570  *
571  * mp		- ubiquitous xfs mount point structure
572  * log_target	- buftarg of on-disk log device
573  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
574  * num_bblocks	- Number of BBSIZE blocks in on-disk log
575  *
576  * Return error or zero.
577  */
578 int
579 xfs_log_mount(
580 	xfs_mount_t	*mp,
581 	xfs_buftarg_t	*log_target,
582 	xfs_daddr_t	blk_offset,
583 	int		num_bblks)
584 {
585 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
586 	int		error = 0;
587 	int		min_logfsbs;
588 
589 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
590 		xfs_notice(mp, "Mounting V%d Filesystem",
591 			   XFS_SB_VERSION_NUM(&mp->m_sb));
592 	} else {
593 		xfs_notice(mp,
594 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
595 			   XFS_SB_VERSION_NUM(&mp->m_sb));
596 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
597 	}
598 
599 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
600 	if (IS_ERR(mp->m_log)) {
601 		error = PTR_ERR(mp->m_log);
602 		goto out;
603 	}
604 
605 	/*
606 	 * Validate the given log space and drop a critical message via syslog
607 	 * if the log size is too small that would lead to some unexpected
608 	 * situations in transaction log space reservation stage.
609 	 *
610 	 * Note: we can't just reject the mount if the validation fails.  This
611 	 * would mean that people would have to downgrade their kernel just to
612 	 * remedy the situation as there is no way to grow the log (short of
613 	 * black magic surgery with xfs_db).
614 	 *
615 	 * We can, however, reject mounts for CRC format filesystems, as the
616 	 * mkfs binary being used to make the filesystem should never create a
617 	 * filesystem with a log that is too small.
618 	 */
619 	min_logfsbs = xfs_log_calc_minimum_size(mp);
620 
621 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
622 		xfs_warn(mp,
623 		"Log size %d blocks too small, minimum size is %d blocks",
624 			 mp->m_sb.sb_logblocks, min_logfsbs);
625 		error = -EINVAL;
626 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
627 		xfs_warn(mp,
628 		"Log size %d blocks too large, maximum size is %lld blocks",
629 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
630 		error = -EINVAL;
631 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
632 		xfs_warn(mp,
633 		"log size %lld bytes too large, maximum size is %lld bytes",
634 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
635 			 XFS_MAX_LOG_BYTES);
636 		error = -EINVAL;
637 	} else if (mp->m_sb.sb_logsunit > 1 &&
638 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
639 		xfs_warn(mp,
640 		"log stripe unit %u bytes must be a multiple of block size",
641 			 mp->m_sb.sb_logsunit);
642 		error = -EINVAL;
643 		fatal = true;
644 	}
645 	if (error) {
646 		/*
647 		 * Log check errors are always fatal on v5; or whenever bad
648 		 * metadata leads to a crash.
649 		 */
650 		if (fatal) {
651 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
652 			ASSERT(0);
653 			goto out_free_log;
654 		}
655 		xfs_crit(mp, "Log size out of supported range.");
656 		xfs_crit(mp,
657 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
658 	}
659 
660 	/*
661 	 * Initialize the AIL now we have a log.
662 	 */
663 	error = xfs_trans_ail_init(mp);
664 	if (error) {
665 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
666 		goto out_free_log;
667 	}
668 	mp->m_log->l_ailp = mp->m_ail;
669 
670 	/*
671 	 * skip log recovery on a norecovery mount.  pretend it all
672 	 * just worked.
673 	 */
674 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
675 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
676 
677 		if (readonly)
678 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
679 
680 		error = xlog_recover(mp->m_log);
681 
682 		if (readonly)
683 			mp->m_flags |= XFS_MOUNT_RDONLY;
684 		if (error) {
685 			xfs_warn(mp, "log mount/recovery failed: error %d",
686 				error);
687 			xlog_recover_cancel(mp->m_log);
688 			goto out_destroy_ail;
689 		}
690 	}
691 
692 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
693 			       "log");
694 	if (error)
695 		goto out_destroy_ail;
696 
697 	/* Normal transactions can now occur */
698 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
699 
700 	/*
701 	 * Now the log has been fully initialised and we know were our
702 	 * space grant counters are, we can initialise the permanent ticket
703 	 * needed for delayed logging to work.
704 	 */
705 	xlog_cil_init_post_recovery(mp->m_log);
706 
707 	return 0;
708 
709 out_destroy_ail:
710 	xfs_trans_ail_destroy(mp);
711 out_free_log:
712 	xlog_dealloc_log(mp->m_log);
713 out:
714 	return error;
715 }
716 
717 /*
718  * Finish the recovery of the file system.  This is separate from the
719  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
720  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
721  * here.
722  *
723  * If we finish recovery successfully, start the background log work. If we are
724  * not doing recovery, then we have a RO filesystem and we don't need to start
725  * it.
726  */
727 int
728 xfs_log_mount_finish(
729 	struct xfs_mount	*mp)
730 {
731 	int	error = 0;
732 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
733 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
734 
735 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
736 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
737 		return 0;
738 	} else if (readonly) {
739 		/* Allow unlinked processing to proceed */
740 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
741 	}
742 
743 	/*
744 	 * During the second phase of log recovery, we need iget and
745 	 * iput to behave like they do for an active filesystem.
746 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
747 	 * of inodes before we're done replaying log items on those
748 	 * inodes.  Turn it off immediately after recovery finishes
749 	 * so that we don't leak the quota inodes if subsequent mount
750 	 * activities fail.
751 	 *
752 	 * We let all inodes involved in redo item processing end up on
753 	 * the LRU instead of being evicted immediately so that if we do
754 	 * something to an unlinked inode, the irele won't cause
755 	 * premature truncation and freeing of the inode, which results
756 	 * in log recovery failure.  We have to evict the unreferenced
757 	 * lru inodes after clearing SB_ACTIVE because we don't
758 	 * otherwise clean up the lru if there's a subsequent failure in
759 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
760 	 * else (e.g. quotacheck) references the inodes before the
761 	 * mount failure occurs.
762 	 */
763 	mp->m_super->s_flags |= SB_ACTIVE;
764 	error = xlog_recover_finish(mp->m_log);
765 	if (!error)
766 		xfs_log_work_queue(mp);
767 	mp->m_super->s_flags &= ~SB_ACTIVE;
768 	evict_inodes(mp->m_super);
769 
770 	/*
771 	 * Drain the buffer LRU after log recovery. This is required for v4
772 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
773 	 * but we do it unconditionally to make sure we're always in a clean
774 	 * cache state after mount.
775 	 *
776 	 * Don't push in the error case because the AIL may have pending intents
777 	 * that aren't removed until recovery is cancelled.
778 	 */
779 	if (!error && recovered) {
780 		xfs_log_force(mp, XFS_LOG_SYNC);
781 		xfs_ail_push_all_sync(mp->m_ail);
782 	}
783 	xfs_wait_buftarg(mp->m_ddev_targp);
784 
785 	if (readonly)
786 		mp->m_flags |= XFS_MOUNT_RDONLY;
787 
788 	return error;
789 }
790 
791 /*
792  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
793  * the log.
794  */
795 void
796 xfs_log_mount_cancel(
797 	struct xfs_mount	*mp)
798 {
799 	xlog_recover_cancel(mp->m_log);
800 	xfs_log_unmount(mp);
801 }
802 
803 /*
804  * Final log writes as part of unmount.
805  *
806  * Mark the filesystem clean as unmount happens.  Note that during relocation
807  * this routine needs to be executed as part of source-bag while the
808  * deallocation must not be done until source-end.
809  */
810 
811 /* Actually write the unmount record to disk. */
812 static void
813 xfs_log_write_unmount_record(
814 	struct xfs_mount	*mp)
815 {
816 	/* the data section must be 32 bit size aligned */
817 	struct xfs_unmount_log_format magic = {
818 		.magic = XLOG_UNMOUNT_TYPE,
819 	};
820 	struct xfs_log_iovec reg = {
821 		.i_addr = &magic,
822 		.i_len = sizeof(magic),
823 		.i_type = XLOG_REG_TYPE_UNMOUNT,
824 	};
825 	struct xfs_log_vec vec = {
826 		.lv_niovecs = 1,
827 		.lv_iovecp = &reg,
828 	};
829 	struct xlog		*log = mp->m_log;
830 	struct xlog_in_core	*iclog;
831 	struct xlog_ticket	*tic = NULL;
832 	xfs_lsn_t		lsn;
833 	uint			flags = XLOG_UNMOUNT_TRANS;
834 	int			error;
835 
836 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
837 	if (error)
838 		goto out_err;
839 
840 	/*
841 	 * If we think the summary counters are bad, clear the unmount header
842 	 * flag in the unmount record so that the summary counters will be
843 	 * recalculated during log recovery at next mount.  Refer to
844 	 * xlog_check_unmount_rec for more details.
845 	 */
846 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
847 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
848 		xfs_alert(mp, "%s: will fix summary counters at next mount",
849 				__func__);
850 		flags &= ~XLOG_UNMOUNT_TRANS;
851 	}
852 
853 	/* remove inited flag, and account for space used */
854 	tic->t_flags = 0;
855 	tic->t_curr_res -= sizeof(magic);
856 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
857 	/*
858 	 * At this point, we're umounting anyway, so there's no point in
859 	 * transitioning log state to IOERROR. Just continue...
860 	 */
861 out_err:
862 	if (error)
863 		xfs_alert(mp, "%s: unmount record failed", __func__);
864 
865 	spin_lock(&log->l_icloglock);
866 	iclog = log->l_iclog;
867 	atomic_inc(&iclog->ic_refcnt);
868 	xlog_state_want_sync(log, iclog);
869 	spin_unlock(&log->l_icloglock);
870 	error = xlog_state_release_iclog(log, iclog);
871 
872 	spin_lock(&log->l_icloglock);
873 	switch (iclog->ic_state) {
874 	default:
875 		if (!XLOG_FORCED_SHUTDOWN(log)) {
876 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
877 			break;
878 		}
879 		/* fall through */
880 	case XLOG_STATE_ACTIVE:
881 	case XLOG_STATE_DIRTY:
882 		spin_unlock(&log->l_icloglock);
883 		break;
884 	}
885 
886 	if (tic) {
887 		trace_xfs_log_umount_write(log, tic);
888 		xlog_ungrant_log_space(log, tic);
889 		xfs_log_ticket_put(tic);
890 	}
891 }
892 
893 /*
894  * Unmount record used to have a string "Unmount filesystem--" in the
895  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
896  * We just write the magic number now since that particular field isn't
897  * currently architecture converted and "Unmount" is a bit foo.
898  * As far as I know, there weren't any dependencies on the old behaviour.
899  */
900 
901 static int
902 xfs_log_unmount_write(xfs_mount_t *mp)
903 {
904 	struct xlog	 *log = mp->m_log;
905 	xlog_in_core_t	 *iclog;
906 #ifdef DEBUG
907 	xlog_in_core_t	 *first_iclog;
908 #endif
909 	int		 error;
910 
911 	/*
912 	 * Don't write out unmount record on norecovery mounts or ro devices.
913 	 * Or, if we are doing a forced umount (typically because of IO errors).
914 	 */
915 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
916 	    xfs_readonly_buftarg(log->l_targ)) {
917 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
918 		return 0;
919 	}
920 
921 	error = xfs_log_force(mp, XFS_LOG_SYNC);
922 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
923 
924 #ifdef DEBUG
925 	first_iclog = iclog = log->l_iclog;
926 	do {
927 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
928 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
929 			ASSERT(iclog->ic_offset == 0);
930 		}
931 		iclog = iclog->ic_next;
932 	} while (iclog != first_iclog);
933 #endif
934 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
935 		xfs_log_write_unmount_record(mp);
936 	} else {
937 		/*
938 		 * We're already in forced_shutdown mode, couldn't
939 		 * even attempt to write out the unmount transaction.
940 		 *
941 		 * Go through the motions of sync'ing and releasing
942 		 * the iclog, even though no I/O will actually happen,
943 		 * we need to wait for other log I/Os that may already
944 		 * be in progress.  Do this as a separate section of
945 		 * code so we'll know if we ever get stuck here that
946 		 * we're in this odd situation of trying to unmount
947 		 * a file system that went into forced_shutdown as
948 		 * the result of an unmount..
949 		 */
950 		spin_lock(&log->l_icloglock);
951 		iclog = log->l_iclog;
952 		atomic_inc(&iclog->ic_refcnt);
953 
954 		xlog_state_want_sync(log, iclog);
955 		spin_unlock(&log->l_icloglock);
956 		error =  xlog_state_release_iclog(log, iclog);
957 
958 		spin_lock(&log->l_icloglock);
959 
960 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
961 			|| iclog->ic_state == XLOG_STATE_DIRTY
962 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
963 
964 				xlog_wait(&iclog->ic_force_wait,
965 							&log->l_icloglock);
966 		} else {
967 			spin_unlock(&log->l_icloglock);
968 		}
969 	}
970 
971 	return error;
972 }	/* xfs_log_unmount_write */
973 
974 /*
975  * Empty the log for unmount/freeze.
976  *
977  * To do this, we first need to shut down the background log work so it is not
978  * trying to cover the log as we clean up. We then need to unpin all objects in
979  * the log so we can then flush them out. Once they have completed their IO and
980  * run the callbacks removing themselves from the AIL, we can write the unmount
981  * record.
982  */
983 void
984 xfs_log_quiesce(
985 	struct xfs_mount	*mp)
986 {
987 	cancel_delayed_work_sync(&mp->m_log->l_work);
988 	xfs_log_force(mp, XFS_LOG_SYNC);
989 
990 	/*
991 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
992 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
993 	 * xfs_buf_iowait() cannot be used because it was pushed with the
994 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
995 	 * the IO to complete.
996 	 */
997 	xfs_ail_push_all_sync(mp->m_ail);
998 	xfs_wait_buftarg(mp->m_ddev_targp);
999 	xfs_buf_lock(mp->m_sb_bp);
1000 	xfs_buf_unlock(mp->m_sb_bp);
1001 
1002 	xfs_log_unmount_write(mp);
1003 }
1004 
1005 /*
1006  * Shut down and release the AIL and Log.
1007  *
1008  * During unmount, we need to ensure we flush all the dirty metadata objects
1009  * from the AIL so that the log is empty before we write the unmount record to
1010  * the log. Once this is done, we can tear down the AIL and the log.
1011  */
1012 void
1013 xfs_log_unmount(
1014 	struct xfs_mount	*mp)
1015 {
1016 	xfs_log_quiesce(mp);
1017 
1018 	xfs_trans_ail_destroy(mp);
1019 
1020 	xfs_sysfs_del(&mp->m_log->l_kobj);
1021 
1022 	xlog_dealloc_log(mp->m_log);
1023 }
1024 
1025 void
1026 xfs_log_item_init(
1027 	struct xfs_mount	*mp,
1028 	struct xfs_log_item	*item,
1029 	int			type,
1030 	const struct xfs_item_ops *ops)
1031 {
1032 	item->li_mountp = mp;
1033 	item->li_ailp = mp->m_ail;
1034 	item->li_type = type;
1035 	item->li_ops = ops;
1036 	item->li_lv = NULL;
1037 
1038 	INIT_LIST_HEAD(&item->li_ail);
1039 	INIT_LIST_HEAD(&item->li_cil);
1040 	INIT_LIST_HEAD(&item->li_bio_list);
1041 	INIT_LIST_HEAD(&item->li_trans);
1042 }
1043 
1044 /*
1045  * Wake up processes waiting for log space after we have moved the log tail.
1046  */
1047 void
1048 xfs_log_space_wake(
1049 	struct xfs_mount	*mp)
1050 {
1051 	struct xlog		*log = mp->m_log;
1052 	int			free_bytes;
1053 
1054 	if (XLOG_FORCED_SHUTDOWN(log))
1055 		return;
1056 
1057 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1058 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059 
1060 		spin_lock(&log->l_write_head.lock);
1061 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1062 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1063 		spin_unlock(&log->l_write_head.lock);
1064 	}
1065 
1066 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1067 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068 
1069 		spin_lock(&log->l_reserve_head.lock);
1070 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1071 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1072 		spin_unlock(&log->l_reserve_head.lock);
1073 	}
1074 }
1075 
1076 /*
1077  * Determine if we have a transaction that has gone to disk that needs to be
1078  * covered. To begin the transition to the idle state firstly the log needs to
1079  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080  * we start attempting to cover the log.
1081  *
1082  * Only if we are then in a state where covering is needed, the caller is
1083  * informed that dummy transactions are required to move the log into the idle
1084  * state.
1085  *
1086  * If there are any items in the AIl or CIL, then we do not want to attempt to
1087  * cover the log as we may be in a situation where there isn't log space
1088  * available to run a dummy transaction and this can lead to deadlocks when the
1089  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1090  * there's no point in running a dummy transaction at this point because we
1091  * can't start trying to idle the log until both the CIL and AIL are empty.
1092  */
1093 static int
1094 xfs_log_need_covered(xfs_mount_t *mp)
1095 {
1096 	struct xlog	*log = mp->m_log;
1097 	int		needed = 0;
1098 
1099 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1100 		return 0;
1101 
1102 	if (!xlog_cil_empty(log))
1103 		return 0;
1104 
1105 	spin_lock(&log->l_icloglock);
1106 	switch (log->l_covered_state) {
1107 	case XLOG_STATE_COVER_DONE:
1108 	case XLOG_STATE_COVER_DONE2:
1109 	case XLOG_STATE_COVER_IDLE:
1110 		break;
1111 	case XLOG_STATE_COVER_NEED:
1112 	case XLOG_STATE_COVER_NEED2:
1113 		if (xfs_ail_min_lsn(log->l_ailp))
1114 			break;
1115 		if (!xlog_iclogs_empty(log))
1116 			break;
1117 
1118 		needed = 1;
1119 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1121 		else
1122 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123 		break;
1124 	default:
1125 		needed = 1;
1126 		break;
1127 	}
1128 	spin_unlock(&log->l_icloglock);
1129 	return needed;
1130 }
1131 
1132 /*
1133  * We may be holding the log iclog lock upon entering this routine.
1134  */
1135 xfs_lsn_t
1136 xlog_assign_tail_lsn_locked(
1137 	struct xfs_mount	*mp)
1138 {
1139 	struct xlog		*log = mp->m_log;
1140 	struct xfs_log_item	*lip;
1141 	xfs_lsn_t		tail_lsn;
1142 
1143 	assert_spin_locked(&mp->m_ail->ail_lock);
1144 
1145 	/*
1146 	 * To make sure we always have a valid LSN for the log tail we keep
1147 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1148 	 * and use that when the AIL was empty.
1149 	 */
1150 	lip = xfs_ail_min(mp->m_ail);
1151 	if (lip)
1152 		tail_lsn = lip->li_lsn;
1153 	else
1154 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1155 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1156 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1157 	return tail_lsn;
1158 }
1159 
1160 xfs_lsn_t
1161 xlog_assign_tail_lsn(
1162 	struct xfs_mount	*mp)
1163 {
1164 	xfs_lsn_t		tail_lsn;
1165 
1166 	spin_lock(&mp->m_ail->ail_lock);
1167 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1168 	spin_unlock(&mp->m_ail->ail_lock);
1169 
1170 	return tail_lsn;
1171 }
1172 
1173 /*
1174  * Return the space in the log between the tail and the head.  The head
1175  * is passed in the cycle/bytes formal parms.  In the special case where
1176  * the reserve head has wrapped passed the tail, this calculation is no
1177  * longer valid.  In this case, just return 0 which means there is no space
1178  * in the log.  This works for all places where this function is called
1179  * with the reserve head.  Of course, if the write head were to ever
1180  * wrap the tail, we should blow up.  Rather than catch this case here,
1181  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1182  *
1183  * This code also handles the case where the reservation head is behind
1184  * the tail.  The details of this case are described below, but the end
1185  * result is that we return the size of the log as the amount of space left.
1186  */
1187 STATIC int
1188 xlog_space_left(
1189 	struct xlog	*log,
1190 	atomic64_t	*head)
1191 {
1192 	int		free_bytes;
1193 	int		tail_bytes;
1194 	int		tail_cycle;
1195 	int		head_cycle;
1196 	int		head_bytes;
1197 
1198 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1199 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200 	tail_bytes = BBTOB(tail_bytes);
1201 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203 	else if (tail_cycle + 1 < head_cycle)
1204 		return 0;
1205 	else if (tail_cycle < head_cycle) {
1206 		ASSERT(tail_cycle == (head_cycle - 1));
1207 		free_bytes = tail_bytes - head_bytes;
1208 	} else {
1209 		/*
1210 		 * The reservation head is behind the tail.
1211 		 * In this case we just want to return the size of the
1212 		 * log as the amount of space left.
1213 		 */
1214 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1215 		xfs_alert(log->l_mp,
1216 			  "  tail_cycle = %d, tail_bytes = %d",
1217 			  tail_cycle, tail_bytes);
1218 		xfs_alert(log->l_mp,
1219 			  "  GH   cycle = %d, GH   bytes = %d",
1220 			  head_cycle, head_bytes);
1221 		ASSERT(0);
1222 		free_bytes = log->l_logsize;
1223 	}
1224 	return free_bytes;
1225 }
1226 
1227 
1228 static void
1229 xlog_ioend_work(
1230 	struct work_struct	*work)
1231 {
1232 	struct xlog_in_core     *iclog =
1233 		container_of(work, struct xlog_in_core, ic_end_io_work);
1234 	struct xlog		*log = iclog->ic_log;
1235 	bool			aborted = false;
1236 	int			error;
1237 
1238 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1239 #ifdef DEBUG
1240 	/* treat writes with injected CRC errors as failed */
1241 	if (iclog->ic_fail_crc)
1242 		error = -EIO;
1243 #endif
1244 
1245 	/*
1246 	 * Race to shutdown the filesystem if we see an error.
1247 	 */
1248 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249 		xfs_alert(log->l_mp, "log I/O error %d", error);
1250 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251 		/*
1252 		 * This flag will be propagated to the trans-committed
1253 		 * callback routines to let them know that the log-commit
1254 		 * didn't succeed.
1255 		 */
1256 		aborted = true;
1257 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258 		aborted = true;
1259 	}
1260 
1261 	xlog_state_done_syncing(iclog, aborted);
1262 	bio_uninit(&iclog->ic_bio);
1263 
1264 	/*
1265 	 * Drop the lock to signal that we are done. Nothing references the
1266 	 * iclog after this, so an unmount waiting on this lock can now tear it
1267 	 * down safely. As such, it is unsafe to reference the iclog after the
1268 	 * unlock as we could race with it being freed.
1269 	 */
1270 	up(&iclog->ic_sema);
1271 }
1272 
1273 /*
1274  * Return size of each in-core log record buffer.
1275  *
1276  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1277  *
1278  * If the filesystem blocksize is too large, we may need to choose a
1279  * larger size since the directory code currently logs entire blocks.
1280  */
1281 STATIC void
1282 xlog_get_iclog_buffer_size(
1283 	struct xfs_mount	*mp,
1284 	struct xlog		*log)
1285 {
1286 	if (mp->m_logbufs <= 0)
1287 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1288 	if (mp->m_logbsize <= 0)
1289 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290 
1291 	log->l_iclog_bufs = mp->m_logbufs;
1292 	log->l_iclog_size = mp->m_logbsize;
1293 
1294 	/*
1295 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1296 	 */
1297 	log->l_iclog_heads =
1298 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300 }
1301 
1302 void
1303 xfs_log_work_queue(
1304 	struct xfs_mount        *mp)
1305 {
1306 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308 }
1309 
1310 /*
1311  * Every sync period we need to unpin all items in the AIL and push them to
1312  * disk. If there is nothing dirty, then we might need to cover the log to
1313  * indicate that the filesystem is idle.
1314  */
1315 static void
1316 xfs_log_worker(
1317 	struct work_struct	*work)
1318 {
1319 	struct xlog		*log = container_of(to_delayed_work(work),
1320 						struct xlog, l_work);
1321 	struct xfs_mount	*mp = log->l_mp;
1322 
1323 	/* dgc: errors ignored - not fatal and nowhere to report them */
1324 	if (xfs_log_need_covered(mp)) {
1325 		/*
1326 		 * Dump a transaction into the log that contains no real change.
1327 		 * This is needed to stamp the current tail LSN into the log
1328 		 * during the covering operation.
1329 		 *
1330 		 * We cannot use an inode here for this - that will push dirty
1331 		 * state back up into the VFS and then periodic inode flushing
1332 		 * will prevent log covering from making progress. Hence we
1333 		 * synchronously log the superblock instead to ensure the
1334 		 * superblock is immediately unpinned and can be written back.
1335 		 */
1336 		xfs_sync_sb(mp, true);
1337 	} else
1338 		xfs_log_force(mp, 0);
1339 
1340 	/* start pushing all the metadata that is currently dirty */
1341 	xfs_ail_push_all(mp->m_ail);
1342 
1343 	/* queue us up again */
1344 	xfs_log_work_queue(mp);
1345 }
1346 
1347 /*
1348  * This routine initializes some of the log structure for a given mount point.
1349  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1350  * some other stuff may be filled in too.
1351  */
1352 STATIC struct xlog *
1353 xlog_alloc_log(
1354 	struct xfs_mount	*mp,
1355 	struct xfs_buftarg	*log_target,
1356 	xfs_daddr_t		blk_offset,
1357 	int			num_bblks)
1358 {
1359 	struct xlog		*log;
1360 	xlog_rec_header_t	*head;
1361 	xlog_in_core_t		**iclogp;
1362 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1363 	int			i;
1364 	int			error = -ENOMEM;
1365 	uint			log2_size = 0;
1366 
1367 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1368 	if (!log) {
1369 		xfs_warn(mp, "Log allocation failed: No memory!");
1370 		goto out;
1371 	}
1372 
1373 	log->l_mp	   = mp;
1374 	log->l_targ	   = log_target;
1375 	log->l_logsize     = BBTOB(num_bblks);
1376 	log->l_logBBstart  = blk_offset;
1377 	log->l_logBBsize   = num_bblks;
1378 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1380 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1381 
1382 	log->l_prev_block  = -1;
1383 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1384 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1386 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1387 
1388 	xlog_grant_head_init(&log->l_reserve_head);
1389 	xlog_grant_head_init(&log->l_write_head);
1390 
1391 	error = -EFSCORRUPTED;
1392 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1393 	        log2_size = mp->m_sb.sb_logsectlog;
1394 		if (log2_size < BBSHIFT) {
1395 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396 				log2_size, BBSHIFT);
1397 			goto out_free_log;
1398 		}
1399 
1400 	        log2_size -= BBSHIFT;
1401 		if (log2_size > mp->m_sectbb_log) {
1402 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403 				log2_size, mp->m_sectbb_log);
1404 			goto out_free_log;
1405 		}
1406 
1407 		/* for larger sector sizes, must have v2 or external log */
1408 		if (log2_size && log->l_logBBstart > 0 &&
1409 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1410 			xfs_warn(mp,
1411 		"log sector size (0x%x) invalid for configuration.",
1412 				log2_size);
1413 			goto out_free_log;
1414 		}
1415 	}
1416 	log->l_sectBBsize = 1 << log2_size;
1417 
1418 	xlog_get_iclog_buffer_size(mp, log);
1419 
1420 	spin_lock_init(&log->l_icloglock);
1421 	init_waitqueue_head(&log->l_flush_wait);
1422 
1423 	iclogp = &log->l_iclog;
1424 	/*
1425 	 * The amount of memory to allocate for the iclog structure is
1426 	 * rather funky due to the way the structure is defined.  It is
1427 	 * done this way so that we can use different sizes for machines
1428 	 * with different amounts of memory.  See the definition of
1429 	 * xlog_in_core_t in xfs_log_priv.h for details.
1430 	 */
1431 	ASSERT(log->l_iclog_size >= 4096);
1432 	for (i = 0; i < log->l_iclog_bufs; i++) {
1433 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1434 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435 				sizeof(struct bio_vec);
1436 
1437 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438 		if (!iclog)
1439 			goto out_free_iclog;
1440 
1441 		*iclogp = iclog;
1442 		iclog->ic_prev = prev_iclog;
1443 		prev_iclog = iclog;
1444 
1445 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1446 						KM_MAYFAIL);
1447 		if (!iclog->ic_data)
1448 			goto out_free_iclog;
1449 #ifdef DEBUG
1450 		log->l_iclog_bak[i] = &iclog->ic_header;
1451 #endif
1452 		head = &iclog->ic_header;
1453 		memset(head, 0, sizeof(xlog_rec_header_t));
1454 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455 		head->h_version = cpu_to_be32(
1456 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457 		head->h_size = cpu_to_be32(log->l_iclog_size);
1458 		/* new fields */
1459 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1460 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461 
1462 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1463 		iclog->ic_state = XLOG_STATE_ACTIVE;
1464 		iclog->ic_log = log;
1465 		atomic_set(&iclog->ic_refcnt, 0);
1466 		spin_lock_init(&iclog->ic_callback_lock);
1467 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1468 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469 
1470 		init_waitqueue_head(&iclog->ic_force_wait);
1471 		init_waitqueue_head(&iclog->ic_write_wait);
1472 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473 		sema_init(&iclog->ic_sema, 1);
1474 
1475 		iclogp = &iclog->ic_next;
1476 	}
1477 	*iclogp = log->l_iclog;			/* complete ring */
1478 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1479 
1480 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482 			mp->m_fsname);
1483 	if (!log->l_ioend_workqueue)
1484 		goto out_free_iclog;
1485 
1486 	error = xlog_cil_init(log);
1487 	if (error)
1488 		goto out_destroy_workqueue;
1489 	return log;
1490 
1491 out_destroy_workqueue:
1492 	destroy_workqueue(log->l_ioend_workqueue);
1493 out_free_iclog:
1494 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495 		prev_iclog = iclog->ic_next;
1496 		kmem_free(iclog->ic_data);
1497 		kmem_free(iclog);
1498 	}
1499 out_free_log:
1500 	kmem_free(log);
1501 out:
1502 	return ERR_PTR(error);
1503 }	/* xlog_alloc_log */
1504 
1505 
1506 /*
1507  * Write out the commit record of a transaction associated with the given
1508  * ticket.  Return the lsn of the commit record.
1509  */
1510 STATIC int
1511 xlog_commit_record(
1512 	struct xlog		*log,
1513 	struct xlog_ticket	*ticket,
1514 	struct xlog_in_core	**iclog,
1515 	xfs_lsn_t		*commitlsnp)
1516 {
1517 	struct xfs_mount *mp = log->l_mp;
1518 	int	error;
1519 	struct xfs_log_iovec reg = {
1520 		.i_addr = NULL,
1521 		.i_len = 0,
1522 		.i_type = XLOG_REG_TYPE_COMMIT,
1523 	};
1524 	struct xfs_log_vec vec = {
1525 		.lv_niovecs = 1,
1526 		.lv_iovecp = &reg,
1527 	};
1528 
1529 	ASSERT_ALWAYS(iclog);
1530 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1531 					XLOG_COMMIT_TRANS);
1532 	if (error)
1533 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1534 	return error;
1535 }
1536 
1537 /*
1538  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1539  * log space.  This code pushes on the lsn which would supposedly free up
1540  * the 25% which we want to leave free.  We may need to adopt a policy which
1541  * pushes on an lsn which is further along in the log once we reach the high
1542  * water mark.  In this manner, we would be creating a low water mark.
1543  */
1544 STATIC void
1545 xlog_grant_push_ail(
1546 	struct xlog	*log,
1547 	int		need_bytes)
1548 {
1549 	xfs_lsn_t	threshold_lsn = 0;
1550 	xfs_lsn_t	last_sync_lsn;
1551 	int		free_blocks;
1552 	int		free_bytes;
1553 	int		threshold_block;
1554 	int		threshold_cycle;
1555 	int		free_threshold;
1556 
1557 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1558 
1559 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1560 	free_blocks = BTOBBT(free_bytes);
1561 
1562 	/*
1563 	 * Set the threshold for the minimum number of free blocks in the
1564 	 * log to the maximum of what the caller needs, one quarter of the
1565 	 * log, and 256 blocks.
1566 	 */
1567 	free_threshold = BTOBB(need_bytes);
1568 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1569 	free_threshold = max(free_threshold, 256);
1570 	if (free_blocks >= free_threshold)
1571 		return;
1572 
1573 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1574 						&threshold_block);
1575 	threshold_block += free_threshold;
1576 	if (threshold_block >= log->l_logBBsize) {
1577 		threshold_block -= log->l_logBBsize;
1578 		threshold_cycle += 1;
1579 	}
1580 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1581 					threshold_block);
1582 	/*
1583 	 * Don't pass in an lsn greater than the lsn of the last
1584 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1585 	 * so that it doesn't change between the compare and the set.
1586 	 */
1587 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1588 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1589 		threshold_lsn = last_sync_lsn;
1590 
1591 	/*
1592 	 * Get the transaction layer to kick the dirty buffers out to
1593 	 * disk asynchronously. No point in trying to do this if
1594 	 * the filesystem is shutting down.
1595 	 */
1596 	if (!XLOG_FORCED_SHUTDOWN(log))
1597 		xfs_ail_push(log->l_ailp, threshold_lsn);
1598 }
1599 
1600 /*
1601  * Stamp cycle number in every block
1602  */
1603 STATIC void
1604 xlog_pack_data(
1605 	struct xlog		*log,
1606 	struct xlog_in_core	*iclog,
1607 	int			roundoff)
1608 {
1609 	int			i, j, k;
1610 	int			size = iclog->ic_offset + roundoff;
1611 	__be32			cycle_lsn;
1612 	char			*dp;
1613 
1614 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1615 
1616 	dp = iclog->ic_datap;
1617 	for (i = 0; i < BTOBB(size); i++) {
1618 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1619 			break;
1620 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1621 		*(__be32 *)dp = cycle_lsn;
1622 		dp += BBSIZE;
1623 	}
1624 
1625 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1626 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1627 
1628 		for ( ; i < BTOBB(size); i++) {
1629 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1630 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1631 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1632 			*(__be32 *)dp = cycle_lsn;
1633 			dp += BBSIZE;
1634 		}
1635 
1636 		for (i = 1; i < log->l_iclog_heads; i++)
1637 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1638 	}
1639 }
1640 
1641 /*
1642  * Calculate the checksum for a log buffer.
1643  *
1644  * This is a little more complicated than it should be because the various
1645  * headers and the actual data are non-contiguous.
1646  */
1647 __le32
1648 xlog_cksum(
1649 	struct xlog		*log,
1650 	struct xlog_rec_header	*rhead,
1651 	char			*dp,
1652 	int			size)
1653 {
1654 	uint32_t		crc;
1655 
1656 	/* first generate the crc for the record header ... */
1657 	crc = xfs_start_cksum_update((char *)rhead,
1658 			      sizeof(struct xlog_rec_header),
1659 			      offsetof(struct xlog_rec_header, h_crc));
1660 
1661 	/* ... then for additional cycle data for v2 logs ... */
1662 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1664 		int		i;
1665 		int		xheads;
1666 
1667 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1668 		if (size % XLOG_HEADER_CYCLE_SIZE)
1669 			xheads++;
1670 
1671 		for (i = 1; i < xheads; i++) {
1672 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1673 				     sizeof(struct xlog_rec_ext_header));
1674 		}
1675 	}
1676 
1677 	/* ... and finally for the payload */
1678 	crc = crc32c(crc, dp, size);
1679 
1680 	return xfs_end_cksum(crc);
1681 }
1682 
1683 static void
1684 xlog_bio_end_io(
1685 	struct bio		*bio)
1686 {
1687 	struct xlog_in_core	*iclog = bio->bi_private;
1688 
1689 	queue_work(iclog->ic_log->l_ioend_workqueue,
1690 		   &iclog->ic_end_io_work);
1691 }
1692 
1693 static void
1694 xlog_map_iclog_data(
1695 	struct bio		*bio,
1696 	void			*data,
1697 	size_t			count)
1698 {
1699 	do {
1700 		struct page	*page = kmem_to_page(data);
1701 		unsigned int	off = offset_in_page(data);
1702 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1703 
1704 		WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1705 
1706 		data += len;
1707 		count -= len;
1708 	} while (count);
1709 }
1710 
1711 STATIC void
1712 xlog_write_iclog(
1713 	struct xlog		*log,
1714 	struct xlog_in_core	*iclog,
1715 	uint64_t		bno,
1716 	unsigned int		count,
1717 	bool			need_flush)
1718 {
1719 	ASSERT(bno < log->l_logBBsize);
1720 
1721 	/*
1722 	 * We lock the iclogbufs here so that we can serialise against I/O
1723 	 * completion during unmount.  We might be processing a shutdown
1724 	 * triggered during unmount, and that can occur asynchronously to the
1725 	 * unmount thread, and hence we need to ensure that completes before
1726 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1727 	 * across the log IO to archieve that.
1728 	 */
1729 	down(&iclog->ic_sema);
1730 	if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1731 		/*
1732 		 * It would seem logical to return EIO here, but we rely on
1733 		 * the log state machine to propagate I/O errors instead of
1734 		 * doing it here.  We kick of the state machine and unlock
1735 		 * the buffer manually, the code needs to be kept in sync
1736 		 * with the I/O completion path.
1737 		 */
1738 		xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1739 		up(&iclog->ic_sema);
1740 		return;
1741 	}
1742 
1743 	iclog->ic_io_size = count;
1744 
1745 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1746 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1747 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1748 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1749 	iclog->ic_bio.bi_private = iclog;
1750 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1751 	if (need_flush)
1752 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1753 
1754 	xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1755 	if (is_vmalloc_addr(iclog->ic_data))
1756 		flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1757 
1758 	/*
1759 	 * If this log buffer would straddle the end of the log we will have
1760 	 * to split it up into two bios, so that we can continue at the start.
1761 	 */
1762 	if (bno + BTOBB(count) > log->l_logBBsize) {
1763 		struct bio *split;
1764 
1765 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1766 				  GFP_NOIO, &fs_bio_set);
1767 		bio_chain(split, &iclog->ic_bio);
1768 		submit_bio(split);
1769 
1770 		/* restart at logical offset zero for the remainder */
1771 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1772 	}
1773 
1774 	submit_bio(&iclog->ic_bio);
1775 }
1776 
1777 /*
1778  * We need to bump cycle number for the part of the iclog that is
1779  * written to the start of the log. Watch out for the header magic
1780  * number case, though.
1781  */
1782 static void
1783 xlog_split_iclog(
1784 	struct xlog		*log,
1785 	void			*data,
1786 	uint64_t		bno,
1787 	unsigned int		count)
1788 {
1789 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1790 	unsigned int		i;
1791 
1792 	for (i = split_offset; i < count; i += BBSIZE) {
1793 		uint32_t cycle = get_unaligned_be32(data + i);
1794 
1795 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1796 			cycle++;
1797 		put_unaligned_be32(cycle, data + i);
1798 	}
1799 }
1800 
1801 static int
1802 xlog_calc_iclog_size(
1803 	struct xlog		*log,
1804 	struct xlog_in_core	*iclog,
1805 	uint32_t		*roundoff)
1806 {
1807 	uint32_t		count_init, count;
1808 	bool			use_lsunit;
1809 
1810 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1811 			log->l_mp->m_sb.sb_logsunit > 1;
1812 
1813 	/* Add for LR header */
1814 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1815 
1816 	/* Round out the log write size */
1817 	if (use_lsunit) {
1818 		/* we have a v2 stripe unit to use */
1819 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1820 	} else {
1821 		count = BBTOB(BTOBB(count_init));
1822 	}
1823 
1824 	ASSERT(count >= count_init);
1825 	*roundoff = count - count_init;
1826 
1827 	if (use_lsunit)
1828 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1829 	else
1830 		ASSERT(*roundoff < BBTOB(1));
1831 	return count;
1832 }
1833 
1834 /*
1835  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1836  * fashion.  Previously, we should have moved the current iclog
1837  * ptr in the log to point to the next available iclog.  This allows further
1838  * write to continue while this code syncs out an iclog ready to go.
1839  * Before an in-core log can be written out, the data section must be scanned
1840  * to save away the 1st word of each BBSIZE block into the header.  We replace
1841  * it with the current cycle count.  Each BBSIZE block is tagged with the
1842  * cycle count because there in an implicit assumption that drives will
1843  * guarantee that entire 512 byte blocks get written at once.  In other words,
1844  * we can't have part of a 512 byte block written and part not written.  By
1845  * tagging each block, we will know which blocks are valid when recovering
1846  * after an unclean shutdown.
1847  *
1848  * This routine is single threaded on the iclog.  No other thread can be in
1849  * this routine with the same iclog.  Changing contents of iclog can there-
1850  * fore be done without grabbing the state machine lock.  Updating the global
1851  * log will require grabbing the lock though.
1852  *
1853  * The entire log manager uses a logical block numbering scheme.  Only
1854  * xlog_write_iclog knows about the fact that the log may not start with
1855  * block zero on a given device.
1856  */
1857 STATIC void
1858 xlog_sync(
1859 	struct xlog		*log,
1860 	struct xlog_in_core	*iclog)
1861 {
1862 	unsigned int		count;		/* byte count of bwrite */
1863 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1864 	uint64_t		bno;
1865 	unsigned int		size;
1866 	bool			need_flush = true, split = false;
1867 
1868 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1869 
1870 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1871 
1872 	/* move grant heads by roundoff in sync */
1873 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1874 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1875 
1876 	/* put cycle number in every block */
1877 	xlog_pack_data(log, iclog, roundoff);
1878 
1879 	/* real byte length */
1880 	size = iclog->ic_offset;
1881 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1882 		size += roundoff;
1883 	iclog->ic_header.h_len = cpu_to_be32(size);
1884 
1885 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1886 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1887 
1888 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1889 
1890 	/* Do we need to split this write into 2 parts? */
1891 	if (bno + BTOBB(count) > log->l_logBBsize) {
1892 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1893 		split = true;
1894 	}
1895 
1896 	/* calculcate the checksum */
1897 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1898 					    iclog->ic_datap, size);
1899 	/*
1900 	 * Intentionally corrupt the log record CRC based on the error injection
1901 	 * frequency, if defined. This facilitates testing log recovery in the
1902 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1903 	 * write on I/O completion and shutdown the fs. The subsequent mount
1904 	 * detects the bad CRC and attempts to recover.
1905 	 */
1906 #ifdef DEBUG
1907 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1908 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1909 		iclog->ic_fail_crc = true;
1910 		xfs_warn(log->l_mp,
1911 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1912 			 be64_to_cpu(iclog->ic_header.h_lsn));
1913 	}
1914 #endif
1915 
1916 	/*
1917 	 * Flush the data device before flushing the log to make sure all meta
1918 	 * data written back from the AIL actually made it to disk before
1919 	 * stamping the new log tail LSN into the log buffer.  For an external
1920 	 * log we need to issue the flush explicitly, and unfortunately
1921 	 * synchronously here; for an internal log we can simply use the block
1922 	 * layer state machine for preflushes.
1923 	 */
1924 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1925 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1926 		need_flush = false;
1927 	}
1928 
1929 	xlog_verify_iclog(log, iclog, count);
1930 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1931 }
1932 
1933 /*
1934  * Deallocate a log structure
1935  */
1936 STATIC void
1937 xlog_dealloc_log(
1938 	struct xlog	*log)
1939 {
1940 	xlog_in_core_t	*iclog, *next_iclog;
1941 	int		i;
1942 
1943 	xlog_cil_destroy(log);
1944 
1945 	/*
1946 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1947 	 * is done before we tear down these buffers.
1948 	 */
1949 	iclog = log->l_iclog;
1950 	for (i = 0; i < log->l_iclog_bufs; i++) {
1951 		down(&iclog->ic_sema);
1952 		up(&iclog->ic_sema);
1953 		iclog = iclog->ic_next;
1954 	}
1955 
1956 	iclog = log->l_iclog;
1957 	for (i = 0; i < log->l_iclog_bufs; i++) {
1958 		next_iclog = iclog->ic_next;
1959 		kmem_free(iclog->ic_data);
1960 		kmem_free(iclog);
1961 		iclog = next_iclog;
1962 	}
1963 
1964 	log->l_mp->m_log = NULL;
1965 	destroy_workqueue(log->l_ioend_workqueue);
1966 	kmem_free(log);
1967 }	/* xlog_dealloc_log */
1968 
1969 /*
1970  * Update counters atomically now that memcpy is done.
1971  */
1972 /* ARGSUSED */
1973 static inline void
1974 xlog_state_finish_copy(
1975 	struct xlog		*log,
1976 	struct xlog_in_core	*iclog,
1977 	int			record_cnt,
1978 	int			copy_bytes)
1979 {
1980 	spin_lock(&log->l_icloglock);
1981 
1982 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1983 	iclog->ic_offset += copy_bytes;
1984 
1985 	spin_unlock(&log->l_icloglock);
1986 }	/* xlog_state_finish_copy */
1987 
1988 
1989 
1990 
1991 /*
1992  * print out info relating to regions written which consume
1993  * the reservation
1994  */
1995 void
1996 xlog_print_tic_res(
1997 	struct xfs_mount	*mp,
1998 	struct xlog_ticket	*ticket)
1999 {
2000 	uint i;
2001 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2002 
2003 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2004 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2005 	static char *res_type_str[] = {
2006 	    REG_TYPE_STR(BFORMAT, "bformat"),
2007 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2008 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2009 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2010 	    REG_TYPE_STR(IFORMAT, "iformat"),
2011 	    REG_TYPE_STR(ICORE, "icore"),
2012 	    REG_TYPE_STR(IEXT, "iext"),
2013 	    REG_TYPE_STR(IBROOT, "ibroot"),
2014 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2015 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2016 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2017 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2018 	    REG_TYPE_STR(QFORMAT, "qformat"),
2019 	    REG_TYPE_STR(DQUOT, "dquot"),
2020 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2021 	    REG_TYPE_STR(LRHEADER, "LR header"),
2022 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2023 	    REG_TYPE_STR(COMMIT, "commit"),
2024 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2025 	    REG_TYPE_STR(ICREATE, "inode create"),
2026 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2027 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2028 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2029 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2030 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2031 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2032 	};
2033 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2034 #undef REG_TYPE_STR
2035 
2036 	xfs_warn(mp, "ticket reservation summary:");
2037 	xfs_warn(mp, "  unit res    = %d bytes",
2038 		 ticket->t_unit_res);
2039 	xfs_warn(mp, "  current res = %d bytes",
2040 		 ticket->t_curr_res);
2041 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2042 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2043 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2044 		 ticket->t_res_num_ophdrs, ophdr_spc);
2045 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2046 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2047 	xfs_warn(mp, "  num regions = %u",
2048 		 ticket->t_res_num);
2049 
2050 	for (i = 0; i < ticket->t_res_num; i++) {
2051 		uint r_type = ticket->t_res_arr[i].r_type;
2052 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2053 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2054 			    "bad-rtype" : res_type_str[r_type]),
2055 			    ticket->t_res_arr[i].r_len);
2056 	}
2057 }
2058 
2059 /*
2060  * Print a summary of the transaction.
2061  */
2062 void
2063 xlog_print_trans(
2064 	struct xfs_trans	*tp)
2065 {
2066 	struct xfs_mount	*mp = tp->t_mountp;
2067 	struct xfs_log_item	*lip;
2068 
2069 	/* dump core transaction and ticket info */
2070 	xfs_warn(mp, "transaction summary:");
2071 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2072 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2073 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2074 
2075 	xlog_print_tic_res(mp, tp->t_ticket);
2076 
2077 	/* dump each log item */
2078 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2079 		struct xfs_log_vec	*lv = lip->li_lv;
2080 		struct xfs_log_iovec	*vec;
2081 		int			i;
2082 
2083 		xfs_warn(mp, "log item: ");
2084 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2085 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2086 		if (!lv)
2087 			continue;
2088 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2089 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2090 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2091 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2092 
2093 		/* dump each iovec for the log item */
2094 		vec = lv->lv_iovecp;
2095 		for (i = 0; i < lv->lv_niovecs; i++) {
2096 			int dumplen = min(vec->i_len, 32);
2097 
2098 			xfs_warn(mp, "  iovec[%d]", i);
2099 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2100 			xfs_warn(mp, "    len	= %d", vec->i_len);
2101 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2102 			xfs_hex_dump(vec->i_addr, dumplen);
2103 
2104 			vec++;
2105 		}
2106 	}
2107 }
2108 
2109 /*
2110  * Calculate the potential space needed by the log vector.  Each region gets
2111  * its own xlog_op_header_t and may need to be double word aligned.
2112  */
2113 static int
2114 xlog_write_calc_vec_length(
2115 	struct xlog_ticket	*ticket,
2116 	struct xfs_log_vec	*log_vector)
2117 {
2118 	struct xfs_log_vec	*lv;
2119 	int			headers = 0;
2120 	int			len = 0;
2121 	int			i;
2122 
2123 	/* acct for start rec of xact */
2124 	if (ticket->t_flags & XLOG_TIC_INITED)
2125 		headers++;
2126 
2127 	for (lv = log_vector; lv; lv = lv->lv_next) {
2128 		/* we don't write ordered log vectors */
2129 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2130 			continue;
2131 
2132 		headers += lv->lv_niovecs;
2133 
2134 		for (i = 0; i < lv->lv_niovecs; i++) {
2135 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2136 
2137 			len += vecp->i_len;
2138 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2139 		}
2140 	}
2141 
2142 	ticket->t_res_num_ophdrs += headers;
2143 	len += headers * sizeof(struct xlog_op_header);
2144 
2145 	return len;
2146 }
2147 
2148 /*
2149  * If first write for transaction, insert start record  We can't be trying to
2150  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2151  */
2152 static int
2153 xlog_write_start_rec(
2154 	struct xlog_op_header	*ophdr,
2155 	struct xlog_ticket	*ticket)
2156 {
2157 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2158 		return 0;
2159 
2160 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2161 	ophdr->oh_clientid = ticket->t_clientid;
2162 	ophdr->oh_len = 0;
2163 	ophdr->oh_flags = XLOG_START_TRANS;
2164 	ophdr->oh_res2 = 0;
2165 
2166 	ticket->t_flags &= ~XLOG_TIC_INITED;
2167 
2168 	return sizeof(struct xlog_op_header);
2169 }
2170 
2171 static xlog_op_header_t *
2172 xlog_write_setup_ophdr(
2173 	struct xlog		*log,
2174 	struct xlog_op_header	*ophdr,
2175 	struct xlog_ticket	*ticket,
2176 	uint			flags)
2177 {
2178 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2179 	ophdr->oh_clientid = ticket->t_clientid;
2180 	ophdr->oh_res2 = 0;
2181 
2182 	/* are we copying a commit or unmount record? */
2183 	ophdr->oh_flags = flags;
2184 
2185 	/*
2186 	 * We've seen logs corrupted with bad transaction client ids.  This
2187 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2188 	 * and shut down the filesystem.
2189 	 */
2190 	switch (ophdr->oh_clientid)  {
2191 	case XFS_TRANSACTION:
2192 	case XFS_VOLUME:
2193 	case XFS_LOG:
2194 		break;
2195 	default:
2196 		xfs_warn(log->l_mp,
2197 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2198 			ophdr->oh_clientid, ticket);
2199 		return NULL;
2200 	}
2201 
2202 	return ophdr;
2203 }
2204 
2205 /*
2206  * Set up the parameters of the region copy into the log. This has
2207  * to handle region write split across multiple log buffers - this
2208  * state is kept external to this function so that this code can
2209  * be written in an obvious, self documenting manner.
2210  */
2211 static int
2212 xlog_write_setup_copy(
2213 	struct xlog_ticket	*ticket,
2214 	struct xlog_op_header	*ophdr,
2215 	int			space_available,
2216 	int			space_required,
2217 	int			*copy_off,
2218 	int			*copy_len,
2219 	int			*last_was_partial_copy,
2220 	int			*bytes_consumed)
2221 {
2222 	int			still_to_copy;
2223 
2224 	still_to_copy = space_required - *bytes_consumed;
2225 	*copy_off = *bytes_consumed;
2226 
2227 	if (still_to_copy <= space_available) {
2228 		/* write of region completes here */
2229 		*copy_len = still_to_copy;
2230 		ophdr->oh_len = cpu_to_be32(*copy_len);
2231 		if (*last_was_partial_copy)
2232 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2233 		*last_was_partial_copy = 0;
2234 		*bytes_consumed = 0;
2235 		return 0;
2236 	}
2237 
2238 	/* partial write of region, needs extra log op header reservation */
2239 	*copy_len = space_available;
2240 	ophdr->oh_len = cpu_to_be32(*copy_len);
2241 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2242 	if (*last_was_partial_copy)
2243 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2244 	*bytes_consumed += *copy_len;
2245 	(*last_was_partial_copy)++;
2246 
2247 	/* account for new log op header */
2248 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2249 	ticket->t_res_num_ophdrs++;
2250 
2251 	return sizeof(struct xlog_op_header);
2252 }
2253 
2254 static int
2255 xlog_write_copy_finish(
2256 	struct xlog		*log,
2257 	struct xlog_in_core	*iclog,
2258 	uint			flags,
2259 	int			*record_cnt,
2260 	int			*data_cnt,
2261 	int			*partial_copy,
2262 	int			*partial_copy_len,
2263 	int			log_offset,
2264 	struct xlog_in_core	**commit_iclog)
2265 {
2266 	if (*partial_copy) {
2267 		/*
2268 		 * This iclog has already been marked WANT_SYNC by
2269 		 * xlog_state_get_iclog_space.
2270 		 */
2271 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2272 		*record_cnt = 0;
2273 		*data_cnt = 0;
2274 		return xlog_state_release_iclog(log, iclog);
2275 	}
2276 
2277 	*partial_copy = 0;
2278 	*partial_copy_len = 0;
2279 
2280 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2281 		/* no more space in this iclog - push it. */
2282 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283 		*record_cnt = 0;
2284 		*data_cnt = 0;
2285 
2286 		spin_lock(&log->l_icloglock);
2287 		xlog_state_want_sync(log, iclog);
2288 		spin_unlock(&log->l_icloglock);
2289 
2290 		if (!commit_iclog)
2291 			return xlog_state_release_iclog(log, iclog);
2292 		ASSERT(flags & XLOG_COMMIT_TRANS);
2293 		*commit_iclog = iclog;
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Write some region out to in-core log
2301  *
2302  * This will be called when writing externally provided regions or when
2303  * writing out a commit record for a given transaction.
2304  *
2305  * General algorithm:
2306  *	1. Find total length of this write.  This may include adding to the
2307  *		lengths passed in.
2308  *	2. Check whether we violate the tickets reservation.
2309  *	3. While writing to this iclog
2310  *	    A. Reserve as much space in this iclog as can get
2311  *	    B. If this is first write, save away start lsn
2312  *	    C. While writing this region:
2313  *		1. If first write of transaction, write start record
2314  *		2. Write log operation header (header per region)
2315  *		3. Find out if we can fit entire region into this iclog
2316  *		4. Potentially, verify destination memcpy ptr
2317  *		5. Memcpy (partial) region
2318  *		6. If partial copy, release iclog; otherwise, continue
2319  *			copying more regions into current iclog
2320  *	4. Mark want sync bit (in simulation mode)
2321  *	5. Release iclog for potential flush to on-disk log.
2322  *
2323  * ERRORS:
2324  * 1.	Panic if reservation is overrun.  This should never happen since
2325  *	reservation amounts are generated internal to the filesystem.
2326  * NOTES:
2327  * 1. Tickets are single threaded data structures.
2328  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2329  *	syncing routine.  When a single log_write region needs to span
2330  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2331  *	on all log operation writes which don't contain the end of the
2332  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2333  *	operation which contains the end of the continued log_write region.
2334  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2335  *	we don't really know exactly how much space will be used.  As a result,
2336  *	we don't update ic_offset until the end when we know exactly how many
2337  *	bytes have been written out.
2338  */
2339 int
2340 xlog_write(
2341 	struct xlog		*log,
2342 	struct xfs_log_vec	*log_vector,
2343 	struct xlog_ticket	*ticket,
2344 	xfs_lsn_t		*start_lsn,
2345 	struct xlog_in_core	**commit_iclog,
2346 	uint			flags)
2347 {
2348 	struct xlog_in_core	*iclog = NULL;
2349 	struct xfs_log_iovec	*vecp;
2350 	struct xfs_log_vec	*lv;
2351 	int			len;
2352 	int			index;
2353 	int			partial_copy = 0;
2354 	int			partial_copy_len = 0;
2355 	int			contwr = 0;
2356 	int			record_cnt = 0;
2357 	int			data_cnt = 0;
2358 	int			error;
2359 
2360 	*start_lsn = 0;
2361 
2362 	len = xlog_write_calc_vec_length(ticket, log_vector);
2363 
2364 	/*
2365 	 * Region headers and bytes are already accounted for.
2366 	 * We only need to take into account start records and
2367 	 * split regions in this function.
2368 	 */
2369 	if (ticket->t_flags & XLOG_TIC_INITED)
2370 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2371 
2372 	/*
2373 	 * Commit record headers need to be accounted for. These
2374 	 * come in as separate writes so are easy to detect.
2375 	 */
2376 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2377 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2378 
2379 	if (ticket->t_curr_res < 0) {
2380 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2381 		     "ctx ticket reservation ran out. Need to up reservation");
2382 		xlog_print_tic_res(log->l_mp, ticket);
2383 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2384 	}
2385 
2386 	index = 0;
2387 	lv = log_vector;
2388 	vecp = lv->lv_iovecp;
2389 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390 		void		*ptr;
2391 		int		log_offset;
2392 
2393 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394 						   &contwr, &log_offset);
2395 		if (error)
2396 			return error;
2397 
2398 		ASSERT(log_offset <= iclog->ic_size - 1);
2399 		ptr = iclog->ic_datap + log_offset;
2400 
2401 		/* start_lsn is the first lsn written to. That's all we need. */
2402 		if (!*start_lsn)
2403 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404 
2405 		/*
2406 		 * This loop writes out as many regions as can fit in the amount
2407 		 * of space which was allocated by xlog_state_get_iclog_space().
2408 		 */
2409 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410 			struct xfs_log_iovec	*reg;
2411 			struct xlog_op_header	*ophdr;
2412 			int			start_rec_copy;
2413 			int			copy_len;
2414 			int			copy_off;
2415 			bool			ordered = false;
2416 
2417 			/* ordered log vectors have no regions to write */
2418 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419 				ASSERT(lv->lv_niovecs == 0);
2420 				ordered = true;
2421 				goto next_lv;
2422 			}
2423 
2424 			reg = &vecp[index];
2425 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2426 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2427 
2428 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429 			if (start_rec_copy) {
2430 				record_cnt++;
2431 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432 						   start_rec_copy);
2433 			}
2434 
2435 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436 			if (!ophdr)
2437 				return -EIO;
2438 
2439 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440 					   sizeof(struct xlog_op_header));
2441 
2442 			len += xlog_write_setup_copy(ticket, ophdr,
2443 						     iclog->ic_size-log_offset,
2444 						     reg->i_len,
2445 						     &copy_off, &copy_len,
2446 						     &partial_copy,
2447 						     &partial_copy_len);
2448 			xlog_verify_dest_ptr(log, ptr);
2449 
2450 			/*
2451 			 * Copy region.
2452 			 *
2453 			 * Unmount records just log an opheader, so can have
2454 			 * empty payloads with no data region to copy. Hence we
2455 			 * only copy the payload if the vector says it has data
2456 			 * to copy.
2457 			 */
2458 			ASSERT(copy_len >= 0);
2459 			if (copy_len > 0) {
2460 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462 						   copy_len);
2463 			}
2464 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465 			record_cnt++;
2466 			data_cnt += contwr ? copy_len : 0;
2467 
2468 			error = xlog_write_copy_finish(log, iclog, flags,
2469 						       &record_cnt, &data_cnt,
2470 						       &partial_copy,
2471 						       &partial_copy_len,
2472 						       log_offset,
2473 						       commit_iclog);
2474 			if (error)
2475 				return error;
2476 
2477 			/*
2478 			 * if we had a partial copy, we need to get more iclog
2479 			 * space but we don't want to increment the region
2480 			 * index because there is still more is this region to
2481 			 * write.
2482 			 *
2483 			 * If we completed writing this region, and we flushed
2484 			 * the iclog (indicated by resetting of the record
2485 			 * count), then we also need to get more log space. If
2486 			 * this was the last record, though, we are done and
2487 			 * can just return.
2488 			 */
2489 			if (partial_copy)
2490 				break;
2491 
2492 			if (++index == lv->lv_niovecs) {
2493 next_lv:
2494 				lv = lv->lv_next;
2495 				index = 0;
2496 				if (lv)
2497 					vecp = lv->lv_iovecp;
2498 			}
2499 			if (record_cnt == 0 && !ordered) {
2500 				if (!lv)
2501 					return 0;
2502 				break;
2503 			}
2504 		}
2505 	}
2506 
2507 	ASSERT(len == 0);
2508 
2509 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510 	if (!commit_iclog)
2511 		return xlog_state_release_iclog(log, iclog);
2512 
2513 	ASSERT(flags & XLOG_COMMIT_TRANS);
2514 	*commit_iclog = iclog;
2515 	return 0;
2516 }
2517 
2518 
2519 /*****************************************************************************
2520  *
2521  *		State Machine functions
2522  *
2523  *****************************************************************************
2524  */
2525 
2526 /*
2527  * An iclog has just finished IO completion processing, so we need to update
2528  * the iclog state and propagate that up into the overall log state. Hence we
2529  * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2530  * starting from the head, and then wake up any threads that are waiting for the
2531  * iclog to be marked clean.
2532  *
2533  * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2534  * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2535  * maintain the notion that we use a ordered wait queue to hold off would be
2536  * writers to the log when every iclog is trying to sync to disk.
2537  *
2538  * Caller must hold the icloglock before calling us.
2539  *
2540  * State Change: !IOERROR -> DIRTY -> ACTIVE
2541  */
2542 STATIC void
2543 xlog_state_clean_iclog(
2544 	struct xlog		*log,
2545 	struct xlog_in_core	*dirty_iclog)
2546 {
2547 	struct xlog_in_core	*iclog;
2548 	int			changed = 0;
2549 
2550 	/* Prepare the completed iclog. */
2551 	if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2552 		dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2553 
2554 	/* Walk all the iclogs to update the ordered active state. */
2555 	iclog = log->l_iclog;
2556 	do {
2557 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2558 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2559 			iclog->ic_offset       = 0;
2560 			ASSERT(list_empty_careful(&iclog->ic_callbacks));
2561 			/*
2562 			 * If the number of ops in this iclog indicate it just
2563 			 * contains the dummy transaction, we can
2564 			 * change state into IDLE (the second time around).
2565 			 * Otherwise we should change the state into
2566 			 * NEED a dummy.
2567 			 * We don't need to cover the dummy.
2568 			 */
2569 			if (!changed &&
2570 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2571 			   		XLOG_COVER_OPS)) {
2572 				changed = 1;
2573 			} else {
2574 				/*
2575 				 * We have two dirty iclogs so start over
2576 				 * This could also be num of ops indicates
2577 				 * this is not the dummy going out.
2578 				 */
2579 				changed = 2;
2580 			}
2581 			iclog->ic_header.h_num_logops = 0;
2582 			memset(iclog->ic_header.h_cycle_data, 0,
2583 			      sizeof(iclog->ic_header.h_cycle_data));
2584 			iclog->ic_header.h_lsn = 0;
2585 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2586 			/* do nothing */;
2587 		else
2588 			break;	/* stop cleaning */
2589 		iclog = iclog->ic_next;
2590 	} while (iclog != log->l_iclog);
2591 
2592 
2593 	/*
2594 	 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2595 	 * to be cleaned.
2596 	 */
2597 	wake_up_all(&dirty_iclog->ic_force_wait);
2598 
2599 	/*
2600 	 * Change state for the dummy log recording.
2601 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2602 	 * we are done writing the dummy record.
2603 	 * If we are done with the second dummy recored (DONE2), then
2604 	 * we go to IDLE.
2605 	 */
2606 	if (changed) {
2607 		switch (log->l_covered_state) {
2608 		case XLOG_STATE_COVER_IDLE:
2609 		case XLOG_STATE_COVER_NEED:
2610 		case XLOG_STATE_COVER_NEED2:
2611 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2612 			break;
2613 
2614 		case XLOG_STATE_COVER_DONE:
2615 			if (changed == 1)
2616 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2617 			else
2618 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2619 			break;
2620 
2621 		case XLOG_STATE_COVER_DONE2:
2622 			if (changed == 1)
2623 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2624 			else
2625 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2626 			break;
2627 
2628 		default:
2629 			ASSERT(0);
2630 		}
2631 	}
2632 }
2633 
2634 STATIC xfs_lsn_t
2635 xlog_get_lowest_lsn(
2636 	struct xlog		*log)
2637 {
2638 	struct xlog_in_core	*iclog = log->l_iclog;
2639 	xfs_lsn_t		lowest_lsn = 0, lsn;
2640 
2641 	do {
2642 		if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2643 			continue;
2644 
2645 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2646 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2647 			lowest_lsn = lsn;
2648 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2649 
2650 	return lowest_lsn;
2651 }
2652 
2653 /*
2654  * Completion of a iclog IO does not imply that a transaction has completed, as
2655  * transactions can be large enough to span many iclogs. We cannot change the
2656  * tail of the log half way through a transaction as this may be the only
2657  * transaction in the log and moving the tail to point to the middle of it
2658  * will prevent recovery from finding the start of the transaction. Hence we
2659  * should only update the last_sync_lsn if this iclog contains transaction
2660  * completion callbacks on it.
2661  *
2662  * We have to do this before we drop the icloglock to ensure we are the only one
2663  * that can update it.
2664  *
2665  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2666  * the reservation grant head pushing. This is due to the fact that the push
2667  * target is bound by the current last_sync_lsn value. Hence if we have a large
2668  * amount of log space bound up in this committing transaction then the
2669  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2670  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2671  * should push the AIL to ensure the push target (and hence the grant head) is
2672  * no longer bound by the old log head location and can move forwards and make
2673  * progress again.
2674  */
2675 static void
2676 xlog_state_set_callback(
2677 	struct xlog		*log,
2678 	struct xlog_in_core	*iclog,
2679 	xfs_lsn_t		header_lsn)
2680 {
2681 	iclog->ic_state = XLOG_STATE_CALLBACK;
2682 
2683 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2684 			   header_lsn) <= 0);
2685 
2686 	if (list_empty_careful(&iclog->ic_callbacks))
2687 		return;
2688 
2689 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2690 	xlog_grant_push_ail(log, 0);
2691 }
2692 
2693 /*
2694  * Return true if we need to stop processing, false to continue to the next
2695  * iclog. The caller will need to run callbacks if the iclog is returned in the
2696  * XLOG_STATE_CALLBACK state.
2697  */
2698 static bool
2699 xlog_state_iodone_process_iclog(
2700 	struct xlog		*log,
2701 	struct xlog_in_core	*iclog,
2702 	struct xlog_in_core	*completed_iclog,
2703 	bool			*ioerror)
2704 {
2705 	xfs_lsn_t		lowest_lsn;
2706 	xfs_lsn_t		header_lsn;
2707 
2708 	/* Skip all iclogs in the ACTIVE & DIRTY states */
2709 	if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2710 		return false;
2711 
2712 	/*
2713 	 * Between marking a filesystem SHUTDOWN and stopping the log, we do
2714 	 * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2715 	 * want things to go smoothly in case of just a SHUTDOWN  w/o a
2716 	 * LOG_IO_ERROR.
2717 	 */
2718 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2719 		*ioerror = true;
2720 		return false;
2721 	}
2722 
2723 	/*
2724 	 * Can only perform callbacks in order.  Since this iclog is not in the
2725 	 * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2726 	 * up.  If we set our iclog to DO_CALLBACK, we will not process it when
2727 	 * we retry since a previous iclog is in the CALLBACK and the state
2728 	 * cannot change since we are holding the l_icloglock.
2729 	 */
2730 	if (!(iclog->ic_state &
2731 			(XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2732 		if (completed_iclog &&
2733 		    (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2734 			completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2735 		}
2736 		return true;
2737 	}
2738 
2739 	/*
2740 	 * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2741 	 * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2742 	 * by the above if and are going to clean (i.e. we aren't doing their
2743 	 * callbacks) see the above if.
2744 	 *
2745 	 * We will do one more check here to see if we have chased our tail
2746 	 * around. If this is not the lowest lsn iclog, then we will leave it
2747 	 * for another completion to process.
2748 	 */
2749 	header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2750 	lowest_lsn = xlog_get_lowest_lsn(log);
2751 	if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2752 		return false;
2753 
2754 	xlog_state_set_callback(log, iclog, header_lsn);
2755 	return false;
2756 
2757 }
2758 
2759 /*
2760  * Keep processing entries in the iclog callback list until we come around and
2761  * it is empty.  We need to atomically see that the list is empty and change the
2762  * state to DIRTY so that we don't miss any more callbacks being added.
2763  *
2764  * This function is called with the icloglock held and returns with it held. We
2765  * drop it while running callbacks, however, as holding it over thousands of
2766  * callbacks is unnecessary and causes excessive contention if we do.
2767  */
2768 static void
2769 xlog_state_do_iclog_callbacks(
2770 	struct xlog		*log,
2771 	struct xlog_in_core	*iclog,
2772 	bool			aborted)
2773 {
2774 	spin_unlock(&log->l_icloglock);
2775 	spin_lock(&iclog->ic_callback_lock);
2776 	while (!list_empty(&iclog->ic_callbacks)) {
2777 		LIST_HEAD(tmp);
2778 
2779 		list_splice_init(&iclog->ic_callbacks, &tmp);
2780 
2781 		spin_unlock(&iclog->ic_callback_lock);
2782 		xlog_cil_process_committed(&tmp, aborted);
2783 		spin_lock(&iclog->ic_callback_lock);
2784 	}
2785 
2786 	/*
2787 	 * Pick up the icloglock while still holding the callback lock so we
2788 	 * serialise against anyone trying to add more callbacks to this iclog
2789 	 * now we've finished processing.
2790 	 */
2791 	spin_lock(&log->l_icloglock);
2792 	spin_unlock(&iclog->ic_callback_lock);
2793 }
2794 
2795 #ifdef DEBUG
2796 /*
2797  * Make one last gasp attempt to see if iclogs are being left in limbo.  If the
2798  * above loop finds an iclog earlier than the current iclog and in one of the
2799  * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2800  * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2801  * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2802  * one of the syncing states.
2803  *
2804  * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2805  * ic_state == SYNCING.
2806  */
2807 static void
2808 xlog_state_callback_check_state(
2809 	struct xlog		*log)
2810 {
2811 	struct xlog_in_core	*first_iclog = log->l_iclog;
2812 	struct xlog_in_core	*iclog = first_iclog;
2813 
2814 	do {
2815 		ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2816 		/*
2817 		 * Terminate the loop if iclogs are found in states
2818 		 * which will cause other threads to clean up iclogs.
2819 		 *
2820 		 * SYNCING - i/o completion will go through logs
2821 		 * DONE_SYNC - interrupt thread should be waiting for
2822 		 *              l_icloglock
2823 		 * IOERROR - give up hope all ye who enter here
2824 		 */
2825 		if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2826 		    iclog->ic_state & XLOG_STATE_SYNCING ||
2827 		    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2828 		    iclog->ic_state == XLOG_STATE_IOERROR )
2829 			break;
2830 		iclog = iclog->ic_next;
2831 	} while (first_iclog != iclog);
2832 }
2833 #else
2834 #define xlog_state_callback_check_state(l)	((void)0)
2835 #endif
2836 
2837 STATIC void
2838 xlog_state_do_callback(
2839 	struct xlog		*log,
2840 	bool			aborted,
2841 	struct xlog_in_core	*ciclog)
2842 {
2843 	struct xlog_in_core	*iclog;
2844 	struct xlog_in_core	*first_iclog;
2845 	bool			did_callbacks = false;
2846 	bool			cycled_icloglock;
2847 	bool			ioerror;
2848 	int			flushcnt = 0;
2849 	int			repeats = 0;
2850 
2851 	spin_lock(&log->l_icloglock);
2852 	do {
2853 		/*
2854 		 * Scan all iclogs starting with the one pointed to by the
2855 		 * log.  Reset this starting point each time the log is
2856 		 * unlocked (during callbacks).
2857 		 *
2858 		 * Keep looping through iclogs until one full pass is made
2859 		 * without running any callbacks.
2860 		 */
2861 		first_iclog = log->l_iclog;
2862 		iclog = log->l_iclog;
2863 		cycled_icloglock = false;
2864 		ioerror = false;
2865 		repeats++;
2866 
2867 		do {
2868 			if (xlog_state_iodone_process_iclog(log, iclog,
2869 							ciclog, &ioerror))
2870 				break;
2871 
2872 			if (!(iclog->ic_state &
2873 			      (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
2874 				iclog = iclog->ic_next;
2875 				continue;
2876 			}
2877 
2878 			/*
2879 			 * Running callbacks will drop the icloglock which means
2880 			 * we'll have to run at least one more complete loop.
2881 			 */
2882 			cycled_icloglock = true;
2883 			xlog_state_do_iclog_callbacks(log, iclog, aborted);
2884 
2885 			xlog_state_clean_iclog(log, iclog);
2886 			iclog = iclog->ic_next;
2887 		} while (first_iclog != iclog);
2888 
2889 		did_callbacks |= cycled_icloglock;
2890 
2891 		if (repeats > 5000) {
2892 			flushcnt += repeats;
2893 			repeats = 0;
2894 			xfs_warn(log->l_mp,
2895 				"%s: possible infinite loop (%d iterations)",
2896 				__func__, flushcnt);
2897 		}
2898 	} while (!ioerror && cycled_icloglock);
2899 
2900 	if (did_callbacks)
2901 		xlog_state_callback_check_state(log);
2902 
2903 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2904 		wake_up_all(&log->l_flush_wait);
2905 
2906 	spin_unlock(&log->l_icloglock);
2907 }
2908 
2909 
2910 /*
2911  * Finish transitioning this iclog to the dirty state.
2912  *
2913  * Make sure that we completely execute this routine only when this is
2914  * the last call to the iclog.  There is a good chance that iclog flushes,
2915  * when we reach the end of the physical log, get turned into 2 separate
2916  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2917  * routine.  By using the reference count bwritecnt, we guarantee that only
2918  * the second completion goes through.
2919  *
2920  * Callbacks could take time, so they are done outside the scope of the
2921  * global state machine log lock.
2922  */
2923 STATIC void
2924 xlog_state_done_syncing(
2925 	struct xlog_in_core	*iclog,
2926 	bool			aborted)
2927 {
2928 	struct xlog		*log = iclog->ic_log;
2929 
2930 	spin_lock(&log->l_icloglock);
2931 
2932 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2933 	       iclog->ic_state == XLOG_STATE_IOERROR);
2934 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2935 
2936 	/*
2937 	 * If we got an error, either on the first buffer, or in the case of
2938 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2939 	 * and none should ever be attempted to be written to disk
2940 	 * again.
2941 	 */
2942 	if (iclog->ic_state != XLOG_STATE_IOERROR)
2943 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2944 
2945 	/*
2946 	 * Someone could be sleeping prior to writing out the next
2947 	 * iclog buffer, we wake them all, one will get to do the
2948 	 * I/O, the others get to wait for the result.
2949 	 */
2950 	wake_up_all(&iclog->ic_write_wait);
2951 	spin_unlock(&log->l_icloglock);
2952 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2953 }	/* xlog_state_done_syncing */
2954 
2955 
2956 /*
2957  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2958  * sleep.  We wait on the flush queue on the head iclog as that should be
2959  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960  * we will wait here and all new writes will sleep until a sync completes.
2961  *
2962  * The in-core logs are used in a circular fashion. They are not used
2963  * out-of-order even when an iclog past the head is free.
2964  *
2965  * return:
2966  *	* log_offset where xlog_write() can start writing into the in-core
2967  *		log's data space.
2968  *	* in-core log pointer to which xlog_write() should write.
2969  *	* boolean indicating this is a continued write to an in-core log.
2970  *		If this is the last write, then the in-core log's offset field
2971  *		needs to be incremented, depending on the amount of data which
2972  *		is copied.
2973  */
2974 STATIC int
2975 xlog_state_get_iclog_space(
2976 	struct xlog		*log,
2977 	int			len,
2978 	struct xlog_in_core	**iclogp,
2979 	struct xlog_ticket	*ticket,
2980 	int			*continued_write,
2981 	int			*logoffsetp)
2982 {
2983 	int		  log_offset;
2984 	xlog_rec_header_t *head;
2985 	xlog_in_core_t	  *iclog;
2986 	int		  error;
2987 
2988 restart:
2989 	spin_lock(&log->l_icloglock);
2990 	if (XLOG_FORCED_SHUTDOWN(log)) {
2991 		spin_unlock(&log->l_icloglock);
2992 		return -EIO;
2993 	}
2994 
2995 	iclog = log->l_iclog;
2996 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2997 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2998 
2999 		/* Wait for log writes to have flushed */
3000 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3001 		goto restart;
3002 	}
3003 
3004 	head = &iclog->ic_header;
3005 
3006 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3007 	log_offset = iclog->ic_offset;
3008 
3009 	/* On the 1st write to an iclog, figure out lsn.  This works
3010 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3011 	 * committing to.  If the offset is set, that's how many blocks
3012 	 * must be written.
3013 	 */
3014 	if (log_offset == 0) {
3015 		ticket->t_curr_res -= log->l_iclog_hsize;
3016 		xlog_tic_add_region(ticket,
3017 				    log->l_iclog_hsize,
3018 				    XLOG_REG_TYPE_LRHEADER);
3019 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3020 		head->h_lsn = cpu_to_be64(
3021 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3022 		ASSERT(log->l_curr_block >= 0);
3023 	}
3024 
3025 	/* If there is enough room to write everything, then do it.  Otherwise,
3026 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3027 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3028 	 * until you know exactly how many bytes get copied.  Therefore, wait
3029 	 * until later to update ic_offset.
3030 	 *
3031 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3032 	 * can fit into remaining data section.
3033 	 */
3034 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3035 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3036 
3037 		/*
3038 		 * If I'm the only one writing to this iclog, sync it to disk.
3039 		 * We need to do an atomic compare and decrement here to avoid
3040 		 * racing with concurrent atomic_dec_and_lock() calls in
3041 		 * xlog_state_release_iclog() when there is more than one
3042 		 * reference to the iclog.
3043 		 */
3044 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3045 			/* we are the only one */
3046 			spin_unlock(&log->l_icloglock);
3047 			error = xlog_state_release_iclog(log, iclog);
3048 			if (error)
3049 				return error;
3050 		} else {
3051 			spin_unlock(&log->l_icloglock);
3052 		}
3053 		goto restart;
3054 	}
3055 
3056 	/* Do we have enough room to write the full amount in the remainder
3057 	 * of this iclog?  Or must we continue a write on the next iclog and
3058 	 * mark this iclog as completely taken?  In the case where we switch
3059 	 * iclogs (to mark it taken), this particular iclog will release/sync
3060 	 * to disk in xlog_write().
3061 	 */
3062 	if (len <= iclog->ic_size - iclog->ic_offset) {
3063 		*continued_write = 0;
3064 		iclog->ic_offset += len;
3065 	} else {
3066 		*continued_write = 1;
3067 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3068 	}
3069 	*iclogp = iclog;
3070 
3071 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3072 	spin_unlock(&log->l_icloglock);
3073 
3074 	*logoffsetp = log_offset;
3075 	return 0;
3076 }	/* xlog_state_get_iclog_space */
3077 
3078 /* The first cnt-1 times through here we don't need to
3079  * move the grant write head because the permanent
3080  * reservation has reserved cnt times the unit amount.
3081  * Release part of current permanent unit reservation and
3082  * reset current reservation to be one units worth.  Also
3083  * move grant reservation head forward.
3084  */
3085 STATIC void
3086 xlog_regrant_reserve_log_space(
3087 	struct xlog		*log,
3088 	struct xlog_ticket	*ticket)
3089 {
3090 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3091 
3092 	if (ticket->t_cnt > 0)
3093 		ticket->t_cnt--;
3094 
3095 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3096 					ticket->t_curr_res);
3097 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3098 					ticket->t_curr_res);
3099 	ticket->t_curr_res = ticket->t_unit_res;
3100 	xlog_tic_reset_res(ticket);
3101 
3102 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3103 
3104 	/* just return if we still have some of the pre-reserved space */
3105 	if (ticket->t_cnt > 0)
3106 		return;
3107 
3108 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3109 					ticket->t_unit_res);
3110 
3111 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3112 
3113 	ticket->t_curr_res = ticket->t_unit_res;
3114 	xlog_tic_reset_res(ticket);
3115 }	/* xlog_regrant_reserve_log_space */
3116 
3117 
3118 /*
3119  * Give back the space left from a reservation.
3120  *
3121  * All the information we need to make a correct determination of space left
3122  * is present.  For non-permanent reservations, things are quite easy.  The
3123  * count should have been decremented to zero.  We only need to deal with the
3124  * space remaining in the current reservation part of the ticket.  If the
3125  * ticket contains a permanent reservation, there may be left over space which
3126  * needs to be released.  A count of N means that N-1 refills of the current
3127  * reservation can be done before we need to ask for more space.  The first
3128  * one goes to fill up the first current reservation.  Once we run out of
3129  * space, the count will stay at zero and the only space remaining will be
3130  * in the current reservation field.
3131  */
3132 STATIC void
3133 xlog_ungrant_log_space(
3134 	struct xlog		*log,
3135 	struct xlog_ticket	*ticket)
3136 {
3137 	int	bytes;
3138 
3139 	if (ticket->t_cnt > 0)
3140 		ticket->t_cnt--;
3141 
3142 	trace_xfs_log_ungrant_enter(log, ticket);
3143 	trace_xfs_log_ungrant_sub(log, ticket);
3144 
3145 	/*
3146 	 * If this is a permanent reservation ticket, we may be able to free
3147 	 * up more space based on the remaining count.
3148 	 */
3149 	bytes = ticket->t_curr_res;
3150 	if (ticket->t_cnt > 0) {
3151 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3152 		bytes += ticket->t_unit_res*ticket->t_cnt;
3153 	}
3154 
3155 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3156 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3157 
3158 	trace_xfs_log_ungrant_exit(log, ticket);
3159 
3160 	xfs_log_space_wake(log->l_mp);
3161 }
3162 
3163 /*
3164  * Flush iclog to disk if this is the last reference to the given iclog and
3165  * the WANT_SYNC bit is set.
3166  *
3167  * When this function is entered, the iclog is not necessarily in the
3168  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3169  *
3170  *
3171  */
3172 STATIC int
3173 xlog_state_release_iclog(
3174 	struct xlog		*log,
3175 	struct xlog_in_core	*iclog)
3176 {
3177 	int		sync = 0;	/* do we sync? */
3178 
3179 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3180 		return -EIO;
3181 
3182 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3183 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3184 		return 0;
3185 
3186 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3187 		spin_unlock(&log->l_icloglock);
3188 		return -EIO;
3189 	}
3190 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3191 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3192 
3193 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3194 		/* update tail before writing to iclog */
3195 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3196 		sync++;
3197 		iclog->ic_state = XLOG_STATE_SYNCING;
3198 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3199 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3200 		/* cycle incremented when incrementing curr_block */
3201 	}
3202 	spin_unlock(&log->l_icloglock);
3203 
3204 	/*
3205 	 * We let the log lock go, so it's possible that we hit a log I/O
3206 	 * error or some other SHUTDOWN condition that marks the iclog
3207 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3208 	 * this iclog has consistent data, so we ignore IOERROR
3209 	 * flags after this point.
3210 	 */
3211 	if (sync)
3212 		xlog_sync(log, iclog);
3213 	return 0;
3214 }	/* xlog_state_release_iclog */
3215 
3216 
3217 /*
3218  * This routine will mark the current iclog in the ring as WANT_SYNC
3219  * and move the current iclog pointer to the next iclog in the ring.
3220  * When this routine is called from xlog_state_get_iclog_space(), the
3221  * exact size of the iclog has not yet been determined.  All we know is
3222  * that every data block.  We have run out of space in this log record.
3223  */
3224 STATIC void
3225 xlog_state_switch_iclogs(
3226 	struct xlog		*log,
3227 	struct xlog_in_core	*iclog,
3228 	int			eventual_size)
3229 {
3230 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3231 	if (!eventual_size)
3232 		eventual_size = iclog->ic_offset;
3233 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3234 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3235 	log->l_prev_block = log->l_curr_block;
3236 	log->l_prev_cycle = log->l_curr_cycle;
3237 
3238 	/* roll log?: ic_offset changed later */
3239 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3240 
3241 	/* Round up to next log-sunit */
3242 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3243 	    log->l_mp->m_sb.sb_logsunit > 1) {
3244 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3245 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3246 	}
3247 
3248 	if (log->l_curr_block >= log->l_logBBsize) {
3249 		/*
3250 		 * Rewind the current block before the cycle is bumped to make
3251 		 * sure that the combined LSN never transiently moves forward
3252 		 * when the log wraps to the next cycle. This is to support the
3253 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3254 		 * other cases should acquire l_icloglock.
3255 		 */
3256 		log->l_curr_block -= log->l_logBBsize;
3257 		ASSERT(log->l_curr_block >= 0);
3258 		smp_wmb();
3259 		log->l_curr_cycle++;
3260 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3261 			log->l_curr_cycle++;
3262 	}
3263 	ASSERT(iclog == log->l_iclog);
3264 	log->l_iclog = iclog->ic_next;
3265 }	/* xlog_state_switch_iclogs */
3266 
3267 /*
3268  * Write out all data in the in-core log as of this exact moment in time.
3269  *
3270  * Data may be written to the in-core log during this call.  However,
3271  * we don't guarantee this data will be written out.  A change from past
3272  * implementation means this routine will *not* write out zero length LRs.
3273  *
3274  * Basically, we try and perform an intelligent scan of the in-core logs.
3275  * If we determine there is no flushable data, we just return.  There is no
3276  * flushable data if:
3277  *
3278  *	1. the current iclog is active and has no data; the previous iclog
3279  *		is in the active or dirty state.
3280  *	2. the current iclog is drity, and the previous iclog is in the
3281  *		active or dirty state.
3282  *
3283  * We may sleep if:
3284  *
3285  *	1. the current iclog is not in the active nor dirty state.
3286  *	2. the current iclog dirty, and the previous iclog is not in the
3287  *		active nor dirty state.
3288  *	3. the current iclog is active, and there is another thread writing
3289  *		to this particular iclog.
3290  *	4. a) the current iclog is active and has no other writers
3291  *	   b) when we return from flushing out this iclog, it is still
3292  *		not in the active nor dirty state.
3293  */
3294 int
3295 xfs_log_force(
3296 	struct xfs_mount	*mp,
3297 	uint			flags)
3298 {
3299 	struct xlog		*log = mp->m_log;
3300 	struct xlog_in_core	*iclog;
3301 	xfs_lsn_t		lsn;
3302 
3303 	XFS_STATS_INC(mp, xs_log_force);
3304 	trace_xfs_log_force(mp, 0, _RET_IP_);
3305 
3306 	xlog_cil_force(log);
3307 
3308 	spin_lock(&log->l_icloglock);
3309 	iclog = log->l_iclog;
3310 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3311 		goto out_error;
3312 
3313 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3314 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3315 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3316 		/*
3317 		 * If the head is dirty or (active and empty), then we need to
3318 		 * look at the previous iclog.
3319 		 *
3320 		 * If the previous iclog is active or dirty we are done.  There
3321 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3322 		 * previous iclog and go to sleep.
3323 		 */
3324 		iclog = iclog->ic_prev;
3325 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3326 		    iclog->ic_state == XLOG_STATE_DIRTY)
3327 			goto out_unlock;
3328 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3329 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3330 			/*
3331 			 * We are the only one with access to this iclog.
3332 			 *
3333 			 * Flush it out now.  There should be a roundoff of zero
3334 			 * to show that someone has already taken care of the
3335 			 * roundoff from the previous sync.
3336 			 */
3337 			atomic_inc(&iclog->ic_refcnt);
3338 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3339 			xlog_state_switch_iclogs(log, iclog, 0);
3340 			spin_unlock(&log->l_icloglock);
3341 
3342 			if (xlog_state_release_iclog(log, iclog))
3343 				return -EIO;
3344 
3345 			spin_lock(&log->l_icloglock);
3346 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3347 			    iclog->ic_state == XLOG_STATE_DIRTY)
3348 				goto out_unlock;
3349 		} else {
3350 			/*
3351 			 * Someone else is writing to this iclog.
3352 			 *
3353 			 * Use its call to flush out the data.  However, the
3354 			 * other thread may not force out this LR, so we mark
3355 			 * it WANT_SYNC.
3356 			 */
3357 			xlog_state_switch_iclogs(log, iclog, 0);
3358 		}
3359 	} else {
3360 		/*
3361 		 * If the head iclog is not active nor dirty, we just attach
3362 		 * ourselves to the head and go to sleep if necessary.
3363 		 */
3364 		;
3365 	}
3366 
3367 	if (!(flags & XFS_LOG_SYNC))
3368 		goto out_unlock;
3369 
3370 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3371 		goto out_error;
3372 	XFS_STATS_INC(mp, xs_log_force_sleep);
3373 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3374 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3375 		return -EIO;
3376 	return 0;
3377 
3378 out_unlock:
3379 	spin_unlock(&log->l_icloglock);
3380 	return 0;
3381 out_error:
3382 	spin_unlock(&log->l_icloglock);
3383 	return -EIO;
3384 }
3385 
3386 static int
3387 __xfs_log_force_lsn(
3388 	struct xfs_mount	*mp,
3389 	xfs_lsn_t		lsn,
3390 	uint			flags,
3391 	int			*log_flushed,
3392 	bool			already_slept)
3393 {
3394 	struct xlog		*log = mp->m_log;
3395 	struct xlog_in_core	*iclog;
3396 
3397 	spin_lock(&log->l_icloglock);
3398 	iclog = log->l_iclog;
3399 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3400 		goto out_error;
3401 
3402 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3403 		iclog = iclog->ic_next;
3404 		if (iclog == log->l_iclog)
3405 			goto out_unlock;
3406 	}
3407 
3408 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3409 		goto out_unlock;
3410 
3411 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3412 		/*
3413 		 * We sleep here if we haven't already slept (e.g. this is the
3414 		 * first time we've looked at the correct iclog buf) and the
3415 		 * buffer before us is going to be sync'ed.  The reason for this
3416 		 * is that if we are doing sync transactions here, by waiting
3417 		 * for the previous I/O to complete, we can allow a few more
3418 		 * transactions into this iclog before we close it down.
3419 		 *
3420 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3421 		 * refcnt so we can release the log (which drops the ref count).
3422 		 * The state switch keeps new transaction commits from using
3423 		 * this buffer.  When the current commits finish writing into
3424 		 * the buffer, the refcount will drop to zero and the buffer
3425 		 * will go out then.
3426 		 */
3427 		if (!already_slept &&
3428 		    (iclog->ic_prev->ic_state &
3429 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3430 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3431 
3432 			XFS_STATS_INC(mp, xs_log_force_sleep);
3433 
3434 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3435 					&log->l_icloglock);
3436 			return -EAGAIN;
3437 		}
3438 		atomic_inc(&iclog->ic_refcnt);
3439 		xlog_state_switch_iclogs(log, iclog, 0);
3440 		spin_unlock(&log->l_icloglock);
3441 		if (xlog_state_release_iclog(log, iclog))
3442 			return -EIO;
3443 		if (log_flushed)
3444 			*log_flushed = 1;
3445 		spin_lock(&log->l_icloglock);
3446 	}
3447 
3448 	if (!(flags & XFS_LOG_SYNC) ||
3449 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3450 		goto out_unlock;
3451 
3452 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3453 		goto out_error;
3454 
3455 	XFS_STATS_INC(mp, xs_log_force_sleep);
3456 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3457 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3458 		return -EIO;
3459 	return 0;
3460 
3461 out_unlock:
3462 	spin_unlock(&log->l_icloglock);
3463 	return 0;
3464 out_error:
3465 	spin_unlock(&log->l_icloglock);
3466 	return -EIO;
3467 }
3468 
3469 /*
3470  * Force the in-core log to disk for a specific LSN.
3471  *
3472  * Find in-core log with lsn.
3473  *	If it is in the DIRTY state, just return.
3474  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3475  *		state and go to sleep or return.
3476  *	If it is in any other state, go to sleep or return.
3477  *
3478  * Synchronous forces are implemented with a wait queue.  All callers trying
3479  * to force a given lsn to disk must wait on the queue attached to the
3480  * specific in-core log.  When given in-core log finally completes its write
3481  * to disk, that thread will wake up all threads waiting on the queue.
3482  */
3483 int
3484 xfs_log_force_lsn(
3485 	struct xfs_mount	*mp,
3486 	xfs_lsn_t		lsn,
3487 	uint			flags,
3488 	int			*log_flushed)
3489 {
3490 	int			ret;
3491 	ASSERT(lsn != 0);
3492 
3493 	XFS_STATS_INC(mp, xs_log_force);
3494 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3495 
3496 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3497 	if (lsn == NULLCOMMITLSN)
3498 		return 0;
3499 
3500 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3501 	if (ret == -EAGAIN)
3502 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3503 	return ret;
3504 }
3505 
3506 /*
3507  * Called when we want to mark the current iclog as being ready to sync to
3508  * disk.
3509  */
3510 STATIC void
3511 xlog_state_want_sync(
3512 	struct xlog		*log,
3513 	struct xlog_in_core	*iclog)
3514 {
3515 	assert_spin_locked(&log->l_icloglock);
3516 
3517 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3518 		xlog_state_switch_iclogs(log, iclog, 0);
3519 	} else {
3520 		ASSERT(iclog->ic_state &
3521 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3522 	}
3523 }
3524 
3525 
3526 /*****************************************************************************
3527  *
3528  *		TICKET functions
3529  *
3530  *****************************************************************************
3531  */
3532 
3533 /*
3534  * Free a used ticket when its refcount falls to zero.
3535  */
3536 void
3537 xfs_log_ticket_put(
3538 	xlog_ticket_t	*ticket)
3539 {
3540 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3541 	if (atomic_dec_and_test(&ticket->t_ref))
3542 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3543 }
3544 
3545 xlog_ticket_t *
3546 xfs_log_ticket_get(
3547 	xlog_ticket_t	*ticket)
3548 {
3549 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3550 	atomic_inc(&ticket->t_ref);
3551 	return ticket;
3552 }
3553 
3554 /*
3555  * Figure out the total log space unit (in bytes) that would be
3556  * required for a log ticket.
3557  */
3558 int
3559 xfs_log_calc_unit_res(
3560 	struct xfs_mount	*mp,
3561 	int			unit_bytes)
3562 {
3563 	struct xlog		*log = mp->m_log;
3564 	int			iclog_space;
3565 	uint			num_headers;
3566 
3567 	/*
3568 	 * Permanent reservations have up to 'cnt'-1 active log operations
3569 	 * in the log.  A unit in this case is the amount of space for one
3570 	 * of these log operations.  Normal reservations have a cnt of 1
3571 	 * and their unit amount is the total amount of space required.
3572 	 *
3573 	 * The following lines of code account for non-transaction data
3574 	 * which occupy space in the on-disk log.
3575 	 *
3576 	 * Normal form of a transaction is:
3577 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3578 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3579 	 *
3580 	 * We need to account for all the leadup data and trailer data
3581 	 * around the transaction data.
3582 	 * And then we need to account for the worst case in terms of using
3583 	 * more space.
3584 	 * The worst case will happen if:
3585 	 * - the placement of the transaction happens to be such that the
3586 	 *   roundoff is at its maximum
3587 	 * - the transaction data is synced before the commit record is synced
3588 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3589 	 *   Therefore the commit record is in its own Log Record.
3590 	 *   This can happen as the commit record is called with its
3591 	 *   own region to xlog_write().
3592 	 *   This then means that in the worst case, roundoff can happen for
3593 	 *   the commit-rec as well.
3594 	 *   The commit-rec is smaller than padding in this scenario and so it is
3595 	 *   not added separately.
3596 	 */
3597 
3598 	/* for trans header */
3599 	unit_bytes += sizeof(xlog_op_header_t);
3600 	unit_bytes += sizeof(xfs_trans_header_t);
3601 
3602 	/* for start-rec */
3603 	unit_bytes += sizeof(xlog_op_header_t);
3604 
3605 	/*
3606 	 * for LR headers - the space for data in an iclog is the size minus
3607 	 * the space used for the headers. If we use the iclog size, then we
3608 	 * undercalculate the number of headers required.
3609 	 *
3610 	 * Furthermore - the addition of op headers for split-recs might
3611 	 * increase the space required enough to require more log and op
3612 	 * headers, so take that into account too.
3613 	 *
3614 	 * IMPORTANT: This reservation makes the assumption that if this
3615 	 * transaction is the first in an iclog and hence has the LR headers
3616 	 * accounted to it, then the remaining space in the iclog is
3617 	 * exclusively for this transaction.  i.e. if the transaction is larger
3618 	 * than the iclog, it will be the only thing in that iclog.
3619 	 * Fundamentally, this means we must pass the entire log vector to
3620 	 * xlog_write to guarantee this.
3621 	 */
3622 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3623 	num_headers = howmany(unit_bytes, iclog_space);
3624 
3625 	/* for split-recs - ophdrs added when data split over LRs */
3626 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3627 
3628 	/* add extra header reservations if we overrun */
3629 	while (!num_headers ||
3630 	       howmany(unit_bytes, iclog_space) > num_headers) {
3631 		unit_bytes += sizeof(xlog_op_header_t);
3632 		num_headers++;
3633 	}
3634 	unit_bytes += log->l_iclog_hsize * num_headers;
3635 
3636 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3637 	unit_bytes += log->l_iclog_hsize;
3638 
3639 	/* for roundoff padding for transaction data and one for commit record */
3640 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3641 		/* log su roundoff */
3642 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3643 	} else {
3644 		/* BB roundoff */
3645 		unit_bytes += 2 * BBSIZE;
3646         }
3647 
3648 	return unit_bytes;
3649 }
3650 
3651 /*
3652  * Allocate and initialise a new log ticket.
3653  */
3654 struct xlog_ticket *
3655 xlog_ticket_alloc(
3656 	struct xlog		*log,
3657 	int			unit_bytes,
3658 	int			cnt,
3659 	char			client,
3660 	bool			permanent,
3661 	xfs_km_flags_t		alloc_flags)
3662 {
3663 	struct xlog_ticket	*tic;
3664 	int			unit_res;
3665 
3666 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3667 	if (!tic)
3668 		return NULL;
3669 
3670 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3671 
3672 	atomic_set(&tic->t_ref, 1);
3673 	tic->t_task		= current;
3674 	INIT_LIST_HEAD(&tic->t_queue);
3675 	tic->t_unit_res		= unit_res;
3676 	tic->t_curr_res		= unit_res;
3677 	tic->t_cnt		= cnt;
3678 	tic->t_ocnt		= cnt;
3679 	tic->t_tid		= prandom_u32();
3680 	tic->t_clientid		= client;
3681 	tic->t_flags		= XLOG_TIC_INITED;
3682 	if (permanent)
3683 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3684 
3685 	xlog_tic_reset_res(tic);
3686 
3687 	return tic;
3688 }
3689 
3690 
3691 /******************************************************************************
3692  *
3693  *		Log debug routines
3694  *
3695  ******************************************************************************
3696  */
3697 #if defined(DEBUG)
3698 /*
3699  * Make sure that the destination ptr is within the valid data region of
3700  * one of the iclogs.  This uses backup pointers stored in a different
3701  * part of the log in case we trash the log structure.
3702  */
3703 STATIC void
3704 xlog_verify_dest_ptr(
3705 	struct xlog	*log,
3706 	void		*ptr)
3707 {
3708 	int i;
3709 	int good_ptr = 0;
3710 
3711 	for (i = 0; i < log->l_iclog_bufs; i++) {
3712 		if (ptr >= log->l_iclog_bak[i] &&
3713 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3714 			good_ptr++;
3715 	}
3716 
3717 	if (!good_ptr)
3718 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3719 }
3720 
3721 /*
3722  * Check to make sure the grant write head didn't just over lap the tail.  If
3723  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3724  * the cycles differ by exactly one and check the byte count.
3725  *
3726  * This check is run unlocked, so can give false positives. Rather than assert
3727  * on failures, use a warn-once flag and a panic tag to allow the admin to
3728  * determine if they want to panic the machine when such an error occurs. For
3729  * debug kernels this will have the same effect as using an assert but, unlinke
3730  * an assert, it can be turned off at runtime.
3731  */
3732 STATIC void
3733 xlog_verify_grant_tail(
3734 	struct xlog	*log)
3735 {
3736 	int		tail_cycle, tail_blocks;
3737 	int		cycle, space;
3738 
3739 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3740 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3741 	if (tail_cycle != cycle) {
3742 		if (cycle - 1 != tail_cycle &&
3743 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3744 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3745 				"%s: cycle - 1 != tail_cycle", __func__);
3746 			log->l_flags |= XLOG_TAIL_WARN;
3747 		}
3748 
3749 		if (space > BBTOB(tail_blocks) &&
3750 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3751 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3752 				"%s: space > BBTOB(tail_blocks)", __func__);
3753 			log->l_flags |= XLOG_TAIL_WARN;
3754 		}
3755 	}
3756 }
3757 
3758 /* check if it will fit */
3759 STATIC void
3760 xlog_verify_tail_lsn(
3761 	struct xlog		*log,
3762 	struct xlog_in_core	*iclog,
3763 	xfs_lsn_t		tail_lsn)
3764 {
3765     int blocks;
3766 
3767     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3768 	blocks =
3769 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3770 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3771 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3772     } else {
3773 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3774 
3775 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3776 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3777 
3778 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3779 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3780 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3781     }
3782 }	/* xlog_verify_tail_lsn */
3783 
3784 /*
3785  * Perform a number of checks on the iclog before writing to disk.
3786  *
3787  * 1. Make sure the iclogs are still circular
3788  * 2. Make sure we have a good magic number
3789  * 3. Make sure we don't have magic numbers in the data
3790  * 4. Check fields of each log operation header for:
3791  *	A. Valid client identifier
3792  *	B. tid ptr value falls in valid ptr space (user space code)
3793  *	C. Length in log record header is correct according to the
3794  *		individual operation headers within record.
3795  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3796  *	log, check the preceding blocks of the physical log to make sure all
3797  *	the cycle numbers agree with the current cycle number.
3798  */
3799 STATIC void
3800 xlog_verify_iclog(
3801 	struct xlog		*log,
3802 	struct xlog_in_core	*iclog,
3803 	int			count)
3804 {
3805 	xlog_op_header_t	*ophead;
3806 	xlog_in_core_t		*icptr;
3807 	xlog_in_core_2_t	*xhdr;
3808 	void			*base_ptr, *ptr, *p;
3809 	ptrdiff_t		field_offset;
3810 	uint8_t			clientid;
3811 	int			len, i, j, k, op_len;
3812 	int			idx;
3813 
3814 	/* check validity of iclog pointers */
3815 	spin_lock(&log->l_icloglock);
3816 	icptr = log->l_iclog;
3817 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3818 		ASSERT(icptr);
3819 
3820 	if (icptr != log->l_iclog)
3821 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3822 	spin_unlock(&log->l_icloglock);
3823 
3824 	/* check log magic numbers */
3825 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827 
3828 	base_ptr = ptr = &iclog->ic_header;
3829 	p = &iclog->ic_header;
3830 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3831 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3832 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3833 				__func__);
3834 	}
3835 
3836 	/* check fields */
3837 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3838 	base_ptr = ptr = iclog->ic_datap;
3839 	ophead = ptr;
3840 	xhdr = iclog->ic_data;
3841 	for (i = 0; i < len; i++) {
3842 		ophead = ptr;
3843 
3844 		/* clientid is only 1 byte */
3845 		p = &ophead->oh_clientid;
3846 		field_offset = p - base_ptr;
3847 		if (field_offset & 0x1ff) {
3848 			clientid = ophead->oh_clientid;
3849 		} else {
3850 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3851 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3852 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3854 				clientid = xlog_get_client_id(
3855 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3856 			} else {
3857 				clientid = xlog_get_client_id(
3858 					iclog->ic_header.h_cycle_data[idx]);
3859 			}
3860 		}
3861 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3862 			xfs_warn(log->l_mp,
3863 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3864 				__func__, clientid, ophead,
3865 				(unsigned long)field_offset);
3866 
3867 		/* check length */
3868 		p = &ophead->oh_len;
3869 		field_offset = p - base_ptr;
3870 		if (field_offset & 0x1ff) {
3871 			op_len = be32_to_cpu(ophead->oh_len);
3872 		} else {
3873 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3874 				    (uintptr_t)iclog->ic_datap);
3875 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3876 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3878 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3879 			} else {
3880 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3881 			}
3882 		}
3883 		ptr += sizeof(xlog_op_header_t) + op_len;
3884 	}
3885 }	/* xlog_verify_iclog */
3886 #endif
3887 
3888 /*
3889  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890  */
3891 STATIC int
3892 xlog_state_ioerror(
3893 	struct xlog	*log)
3894 {
3895 	xlog_in_core_t	*iclog, *ic;
3896 
3897 	iclog = log->l_iclog;
3898 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 		/*
3900 		 * Mark all the incore logs IOERROR.
3901 		 * From now on, no log flushes will result.
3902 		 */
3903 		ic = iclog;
3904 		do {
3905 			ic->ic_state = XLOG_STATE_IOERROR;
3906 			ic = ic->ic_next;
3907 		} while (ic != iclog);
3908 		return 0;
3909 	}
3910 	/*
3911 	 * Return non-zero, if state transition has already happened.
3912 	 */
3913 	return 1;
3914 }
3915 
3916 /*
3917  * This is called from xfs_force_shutdown, when we're forcibly
3918  * shutting down the filesystem, typically because of an IO error.
3919  * Our main objectives here are to make sure that:
3920  *	a. if !logerror, flush the logs to disk. Anything modified
3921  *	   after this is ignored.
3922  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3923  *	   parties to find out, 'atomically'.
3924  *	c. those who're sleeping on log reservations, pinned objects and
3925  *	    other resources get woken up, and be told the bad news.
3926  *	d. nothing new gets queued up after (b) and (c) are done.
3927  *
3928  * Note: for the !logerror case we need to flush the regions held in memory out
3929  * to disk first. This needs to be done before the log is marked as shutdown,
3930  * otherwise the iclog writes will fail.
3931  */
3932 int
3933 xfs_log_force_umount(
3934 	struct xfs_mount	*mp,
3935 	int			logerror)
3936 {
3937 	struct xlog	*log;
3938 	int		retval;
3939 
3940 	log = mp->m_log;
3941 
3942 	/*
3943 	 * If this happens during log recovery, don't worry about
3944 	 * locking; the log isn't open for business yet.
3945 	 */
3946 	if (!log ||
3947 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3948 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3949 		if (mp->m_sb_bp)
3950 			mp->m_sb_bp->b_flags |= XBF_DONE;
3951 		return 0;
3952 	}
3953 
3954 	/*
3955 	 * Somebody could've already done the hard work for us.
3956 	 * No need to get locks for this.
3957 	 */
3958 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3959 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3960 		return 1;
3961 	}
3962 
3963 	/*
3964 	 * Flush all the completed transactions to disk before marking the log
3965 	 * being shut down. We need to do it in this order to ensure that
3966 	 * completed operations are safely on disk before we shut down, and that
3967 	 * we don't have to issue any buffer IO after the shutdown flags are set
3968 	 * to guarantee this.
3969 	 */
3970 	if (!logerror)
3971 		xfs_log_force(mp, XFS_LOG_SYNC);
3972 
3973 	/*
3974 	 * mark the filesystem and the as in a shutdown state and wake
3975 	 * everybody up to tell them the bad news.
3976 	 */
3977 	spin_lock(&log->l_icloglock);
3978 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979 	if (mp->m_sb_bp)
3980 		mp->m_sb_bp->b_flags |= XBF_DONE;
3981 
3982 	/*
3983 	 * Mark the log and the iclogs with IO error flags to prevent any
3984 	 * further log IO from being issued or completed.
3985 	 */
3986 	log->l_flags |= XLOG_IO_ERROR;
3987 	retval = xlog_state_ioerror(log);
3988 	spin_unlock(&log->l_icloglock);
3989 
3990 	/*
3991 	 * We don't want anybody waiting for log reservations after this. That
3992 	 * means we have to wake up everybody queued up on reserveq as well as
3993 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3994 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3995 	 * action is protected by the grant locks.
3996 	 */
3997 	xlog_grant_head_wake_all(&log->l_reserve_head);
3998 	xlog_grant_head_wake_all(&log->l_write_head);
3999 
4000 	/*
4001 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4002 	 * as if the log writes were completed. The abort handling in the log
4003 	 * item committed callback functions will do this again under lock to
4004 	 * avoid races.
4005 	 */
4006 	spin_lock(&log->l_cilp->xc_push_lock);
4007 	wake_up_all(&log->l_cilp->xc_commit_wait);
4008 	spin_unlock(&log->l_cilp->xc_push_lock);
4009 	xlog_state_do_callback(log, true, NULL);
4010 
4011 #ifdef XFSERRORDEBUG
4012 	{
4013 		xlog_in_core_t	*iclog;
4014 
4015 		spin_lock(&log->l_icloglock);
4016 		iclog = log->l_iclog;
4017 		do {
4018 			ASSERT(iclog->ic_callback == 0);
4019 			iclog = iclog->ic_next;
4020 		} while (iclog != log->l_iclog);
4021 		spin_unlock(&log->l_icloglock);
4022 	}
4023 #endif
4024 	/* return non-zero if log IOERROR transition had already happened */
4025 	return retval;
4026 }
4027 
4028 STATIC int
4029 xlog_iclogs_empty(
4030 	struct xlog	*log)
4031 {
4032 	xlog_in_core_t	*iclog;
4033 
4034 	iclog = log->l_iclog;
4035 	do {
4036 		/* endianness does not matter here, zero is zero in
4037 		 * any language.
4038 		 */
4039 		if (iclog->ic_header.h_num_logops)
4040 			return 0;
4041 		iclog = iclog->ic_next;
4042 	} while (iclog != log->l_iclog);
4043 	return 1;
4044 }
4045 
4046 /*
4047  * Verify that an LSN stamped into a piece of metadata is valid. This is
4048  * intended for use in read verifiers on v5 superblocks.
4049  */
4050 bool
4051 xfs_log_check_lsn(
4052 	struct xfs_mount	*mp,
4053 	xfs_lsn_t		lsn)
4054 {
4055 	struct xlog		*log = mp->m_log;
4056 	bool			valid;
4057 
4058 	/*
4059 	 * norecovery mode skips mount-time log processing and unconditionally
4060 	 * resets the in-core LSN. We can't validate in this mode, but
4061 	 * modifications are not allowed anyways so just return true.
4062 	 */
4063 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4064 		return true;
4065 
4066 	/*
4067 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4068 	 * handled by recovery and thus safe to ignore here.
4069 	 */
4070 	if (lsn == NULLCOMMITLSN)
4071 		return true;
4072 
4073 	valid = xlog_valid_lsn(mp->m_log, lsn);
4074 
4075 	/* warn the user about what's gone wrong before verifier failure */
4076 	if (!valid) {
4077 		spin_lock(&log->l_icloglock);
4078 		xfs_warn(mp,
4079 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4080 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4081 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4082 			 log->l_curr_cycle, log->l_curr_block);
4083 		spin_unlock(&log->l_icloglock);
4084 	}
4085 
4086 	return valid;
4087 }
4088 
4089 bool
4090 xfs_log_in_recovery(
4091 	struct xfs_mount	*mp)
4092 {
4093 	struct xlog		*log = mp->m_log;
4094 
4095 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
4096 }
4097