1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_trans_priv.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_rw.h" 39 #include "xfs_trace.h" 40 41 kmem_zone_t *xfs_log_ticket_zone; 42 43 /* Local miscellaneous function prototypes */ 44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket, 45 xlog_in_core_t **, xfs_lsn_t *); 46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, 47 xfs_buftarg_t *log_target, 48 xfs_daddr_t blk_offset, 49 int num_bblks); 50 STATIC int xlog_space_left(xlog_t *log, int cycle, int bytes); 51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog); 52 STATIC void xlog_dealloc_log(xlog_t *log); 53 54 /* local state machine functions */ 55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog); 57 STATIC int xlog_state_get_iclog_space(xlog_t *log, 58 int len, 59 xlog_in_core_t **iclog, 60 xlog_ticket_t *ticket, 61 int *continued_write, 62 int *logoffsetp); 63 STATIC int xlog_state_release_iclog(xlog_t *log, 64 xlog_in_core_t *iclog); 65 STATIC void xlog_state_switch_iclogs(xlog_t *log, 66 xlog_in_core_t *iclog, 67 int eventual_size); 68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog); 69 70 /* local functions to manipulate grant head */ 71 STATIC int xlog_grant_log_space(xlog_t *log, 72 xlog_ticket_t *xtic); 73 STATIC void xlog_grant_push_ail(xfs_mount_t *mp, 74 int need_bytes); 75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log, 76 xlog_ticket_t *ticket); 77 STATIC int xlog_regrant_write_log_space(xlog_t *log, 78 xlog_ticket_t *ticket); 79 STATIC void xlog_ungrant_log_space(xlog_t *log, 80 xlog_ticket_t *ticket); 81 82 #if defined(DEBUG) 83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr); 84 STATIC void xlog_verify_grant_head(xlog_t *log, int equals); 85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, 86 int count, boolean_t syncing); 87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, 88 xfs_lsn_t tail_lsn); 89 #else 90 #define xlog_verify_dest_ptr(a,b) 91 #define xlog_verify_grant_head(a,b) 92 #define xlog_verify_iclog(a,b,c,d) 93 #define xlog_verify_tail_lsn(a,b,c) 94 #endif 95 96 STATIC int xlog_iclogs_empty(xlog_t *log); 97 98 99 static void 100 xlog_ins_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic) 101 { 102 if (*qp) { 103 tic->t_next = (*qp); 104 tic->t_prev = (*qp)->t_prev; 105 (*qp)->t_prev->t_next = tic; 106 (*qp)->t_prev = tic; 107 } else { 108 tic->t_prev = tic->t_next = tic; 109 *qp = tic; 110 } 111 112 tic->t_flags |= XLOG_TIC_IN_Q; 113 } 114 115 static void 116 xlog_del_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic) 117 { 118 if (tic == tic->t_next) { 119 *qp = NULL; 120 } else { 121 *qp = tic->t_next; 122 tic->t_next->t_prev = tic->t_prev; 123 tic->t_prev->t_next = tic->t_next; 124 } 125 126 tic->t_next = tic->t_prev = NULL; 127 tic->t_flags &= ~XLOG_TIC_IN_Q; 128 } 129 130 static void 131 xlog_grant_sub_space(struct log *log, int bytes) 132 { 133 log->l_grant_write_bytes -= bytes; 134 if (log->l_grant_write_bytes < 0) { 135 log->l_grant_write_bytes += log->l_logsize; 136 log->l_grant_write_cycle--; 137 } 138 139 log->l_grant_reserve_bytes -= bytes; 140 if ((log)->l_grant_reserve_bytes < 0) { 141 log->l_grant_reserve_bytes += log->l_logsize; 142 log->l_grant_reserve_cycle--; 143 } 144 145 } 146 147 static void 148 xlog_grant_add_space_write(struct log *log, int bytes) 149 { 150 int tmp = log->l_logsize - log->l_grant_write_bytes; 151 if (tmp > bytes) 152 log->l_grant_write_bytes += bytes; 153 else { 154 log->l_grant_write_cycle++; 155 log->l_grant_write_bytes = bytes - tmp; 156 } 157 } 158 159 static void 160 xlog_grant_add_space_reserve(struct log *log, int bytes) 161 { 162 int tmp = log->l_logsize - log->l_grant_reserve_bytes; 163 if (tmp > bytes) 164 log->l_grant_reserve_bytes += bytes; 165 else { 166 log->l_grant_reserve_cycle++; 167 log->l_grant_reserve_bytes = bytes - tmp; 168 } 169 } 170 171 static inline void 172 xlog_grant_add_space(struct log *log, int bytes) 173 { 174 xlog_grant_add_space_write(log, bytes); 175 xlog_grant_add_space_reserve(log, bytes); 176 } 177 178 static void 179 xlog_tic_reset_res(xlog_ticket_t *tic) 180 { 181 tic->t_res_num = 0; 182 tic->t_res_arr_sum = 0; 183 tic->t_res_num_ophdrs = 0; 184 } 185 186 static void 187 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 188 { 189 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 190 /* add to overflow and start again */ 191 tic->t_res_o_flow += tic->t_res_arr_sum; 192 tic->t_res_num = 0; 193 tic->t_res_arr_sum = 0; 194 } 195 196 tic->t_res_arr[tic->t_res_num].r_len = len; 197 tic->t_res_arr[tic->t_res_num].r_type = type; 198 tic->t_res_arr_sum += len; 199 tic->t_res_num++; 200 } 201 202 /* 203 * NOTES: 204 * 205 * 1. currblock field gets updated at startup and after in-core logs 206 * marked as with WANT_SYNC. 207 */ 208 209 /* 210 * This routine is called when a user of a log manager ticket is done with 211 * the reservation. If the ticket was ever used, then a commit record for 212 * the associated transaction is written out as a log operation header with 213 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 214 * a given ticket. If the ticket was one with a permanent reservation, then 215 * a few operations are done differently. Permanent reservation tickets by 216 * default don't release the reservation. They just commit the current 217 * transaction with the belief that the reservation is still needed. A flag 218 * must be passed in before permanent reservations are actually released. 219 * When these type of tickets are not released, they need to be set into 220 * the inited state again. By doing this, a start record will be written 221 * out when the next write occurs. 222 */ 223 xfs_lsn_t 224 xfs_log_done( 225 struct xfs_mount *mp, 226 struct xlog_ticket *ticket, 227 struct xlog_in_core **iclog, 228 uint flags) 229 { 230 struct log *log = mp->m_log; 231 xfs_lsn_t lsn = 0; 232 233 if (XLOG_FORCED_SHUTDOWN(log) || 234 /* 235 * If nothing was ever written, don't write out commit record. 236 * If we get an error, just continue and give back the log ticket. 237 */ 238 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 239 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 240 lsn = (xfs_lsn_t) -1; 241 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 242 flags |= XFS_LOG_REL_PERM_RESERV; 243 } 244 } 245 246 247 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 248 (flags & XFS_LOG_REL_PERM_RESERV)) { 249 trace_xfs_log_done_nonperm(log, ticket); 250 251 /* 252 * Release ticket if not permanent reservation or a specific 253 * request has been made to release a permanent reservation. 254 */ 255 xlog_ungrant_log_space(log, ticket); 256 xfs_log_ticket_put(ticket); 257 } else { 258 trace_xfs_log_done_perm(log, ticket); 259 260 xlog_regrant_reserve_log_space(log, ticket); 261 /* If this ticket was a permanent reservation and we aren't 262 * trying to release it, reset the inited flags; so next time 263 * we write, a start record will be written out. 264 */ 265 ticket->t_flags |= XLOG_TIC_INITED; 266 } 267 268 return lsn; 269 } 270 271 /* 272 * Attaches a new iclog I/O completion callback routine during 273 * transaction commit. If the log is in error state, a non-zero 274 * return code is handed back and the caller is responsible for 275 * executing the callback at an appropriate time. 276 */ 277 int 278 xfs_log_notify( 279 struct xfs_mount *mp, 280 struct xlog_in_core *iclog, 281 xfs_log_callback_t *cb) 282 { 283 int abortflg; 284 285 spin_lock(&iclog->ic_callback_lock); 286 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 287 if (!abortflg) { 288 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 289 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 290 cb->cb_next = NULL; 291 *(iclog->ic_callback_tail) = cb; 292 iclog->ic_callback_tail = &(cb->cb_next); 293 } 294 spin_unlock(&iclog->ic_callback_lock); 295 return abortflg; 296 } 297 298 int 299 xfs_log_release_iclog( 300 struct xfs_mount *mp, 301 struct xlog_in_core *iclog) 302 { 303 if (xlog_state_release_iclog(mp->m_log, iclog)) { 304 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 305 return EIO; 306 } 307 308 return 0; 309 } 310 311 /* 312 * 1. Reserve an amount of on-disk log space and return a ticket corresponding 313 * to the reservation. 314 * 2. Potentially, push buffers at tail of log to disk. 315 * 316 * Each reservation is going to reserve extra space for a log record header. 317 * When writes happen to the on-disk log, we don't subtract the length of the 318 * log record header from any reservation. By wasting space in each 319 * reservation, we prevent over allocation problems. 320 */ 321 int 322 xfs_log_reserve( 323 struct xfs_mount *mp, 324 int unit_bytes, 325 int cnt, 326 struct xlog_ticket **ticket, 327 __uint8_t client, 328 uint flags, 329 uint t_type) 330 { 331 struct log *log = mp->m_log; 332 struct xlog_ticket *internal_ticket; 333 int retval = 0; 334 335 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 336 337 if (XLOG_FORCED_SHUTDOWN(log)) 338 return XFS_ERROR(EIO); 339 340 XFS_STATS_INC(xs_try_logspace); 341 342 343 if (*ticket != NULL) { 344 ASSERT(flags & XFS_LOG_PERM_RESERV); 345 internal_ticket = *ticket; 346 347 /* 348 * this is a new transaction on the ticket, so we need to 349 * change the transaction ID so that the next transaction has a 350 * different TID in the log. Just add one to the existing tid 351 * so that we can see chains of rolling transactions in the log 352 * easily. 353 */ 354 internal_ticket->t_tid++; 355 356 trace_xfs_log_reserve(log, internal_ticket); 357 358 xlog_grant_push_ail(mp, internal_ticket->t_unit_res); 359 retval = xlog_regrant_write_log_space(log, internal_ticket); 360 } else { 361 /* may sleep if need to allocate more tickets */ 362 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt, 363 client, flags, 364 KM_SLEEP|KM_MAYFAIL); 365 if (!internal_ticket) 366 return XFS_ERROR(ENOMEM); 367 internal_ticket->t_trans_type = t_type; 368 *ticket = internal_ticket; 369 370 trace_xfs_log_reserve(log, internal_ticket); 371 372 xlog_grant_push_ail(mp, 373 (internal_ticket->t_unit_res * 374 internal_ticket->t_cnt)); 375 retval = xlog_grant_log_space(log, internal_ticket); 376 } 377 378 return retval; 379 } /* xfs_log_reserve */ 380 381 382 /* 383 * Mount a log filesystem 384 * 385 * mp - ubiquitous xfs mount point structure 386 * log_target - buftarg of on-disk log device 387 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 388 * num_bblocks - Number of BBSIZE blocks in on-disk log 389 * 390 * Return error or zero. 391 */ 392 int 393 xfs_log_mount( 394 xfs_mount_t *mp, 395 xfs_buftarg_t *log_target, 396 xfs_daddr_t blk_offset, 397 int num_bblks) 398 { 399 int error; 400 401 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 402 cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname); 403 else { 404 cmn_err(CE_NOTE, 405 "!Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.", 406 mp->m_fsname); 407 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 408 } 409 410 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 411 if (IS_ERR(mp->m_log)) { 412 error = -PTR_ERR(mp->m_log); 413 goto out; 414 } 415 416 /* 417 * Initialize the AIL now we have a log. 418 */ 419 error = xfs_trans_ail_init(mp); 420 if (error) { 421 cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error); 422 goto out_free_log; 423 } 424 mp->m_log->l_ailp = mp->m_ail; 425 426 /* 427 * skip log recovery on a norecovery mount. pretend it all 428 * just worked. 429 */ 430 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 431 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 432 433 if (readonly) 434 mp->m_flags &= ~XFS_MOUNT_RDONLY; 435 436 error = xlog_recover(mp->m_log); 437 438 if (readonly) 439 mp->m_flags |= XFS_MOUNT_RDONLY; 440 if (error) { 441 cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error); 442 goto out_destroy_ail; 443 } 444 } 445 446 /* Normal transactions can now occur */ 447 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 448 449 /* 450 * Now the log has been fully initialised and we know were our 451 * space grant counters are, we can initialise the permanent ticket 452 * needed for delayed logging to work. 453 */ 454 xlog_cil_init_post_recovery(mp->m_log); 455 456 return 0; 457 458 out_destroy_ail: 459 xfs_trans_ail_destroy(mp); 460 out_free_log: 461 xlog_dealloc_log(mp->m_log); 462 out: 463 return error; 464 } 465 466 /* 467 * Finish the recovery of the file system. This is separate from 468 * the xfs_log_mount() call, because it depends on the code in 469 * xfs_mountfs() to read in the root and real-time bitmap inodes 470 * between calling xfs_log_mount() and here. 471 * 472 * mp - ubiquitous xfs mount point structure 473 */ 474 int 475 xfs_log_mount_finish(xfs_mount_t *mp) 476 { 477 int error; 478 479 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 480 error = xlog_recover_finish(mp->m_log); 481 else { 482 error = 0; 483 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 484 } 485 486 return error; 487 } 488 489 /* 490 * Final log writes as part of unmount. 491 * 492 * Mark the filesystem clean as unmount happens. Note that during relocation 493 * this routine needs to be executed as part of source-bag while the 494 * deallocation must not be done until source-end. 495 */ 496 497 /* 498 * Unmount record used to have a string "Unmount filesystem--" in the 499 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 500 * We just write the magic number now since that particular field isn't 501 * currently architecture converted and "nUmount" is a bit foo. 502 * As far as I know, there weren't any dependencies on the old behaviour. 503 */ 504 505 int 506 xfs_log_unmount_write(xfs_mount_t *mp) 507 { 508 xlog_t *log = mp->m_log; 509 xlog_in_core_t *iclog; 510 #ifdef DEBUG 511 xlog_in_core_t *first_iclog; 512 #endif 513 xlog_ticket_t *tic = NULL; 514 xfs_lsn_t lsn; 515 int error; 516 517 /* 518 * Don't write out unmount record on read-only mounts. 519 * Or, if we are doing a forced umount (typically because of IO errors). 520 */ 521 if (mp->m_flags & XFS_MOUNT_RDONLY) 522 return 0; 523 524 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 525 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 526 527 #ifdef DEBUG 528 first_iclog = iclog = log->l_iclog; 529 do { 530 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 531 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 532 ASSERT(iclog->ic_offset == 0); 533 } 534 iclog = iclog->ic_next; 535 } while (iclog != first_iclog); 536 #endif 537 if (! (XLOG_FORCED_SHUTDOWN(log))) { 538 error = xfs_log_reserve(mp, 600, 1, &tic, 539 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 540 if (!error) { 541 /* the data section must be 32 bit size aligned */ 542 struct { 543 __uint16_t magic; 544 __uint16_t pad1; 545 __uint32_t pad2; /* may as well make it 64 bits */ 546 } magic = { 547 .magic = XLOG_UNMOUNT_TYPE, 548 }; 549 struct xfs_log_iovec reg = { 550 .i_addr = &magic, 551 .i_len = sizeof(magic), 552 .i_type = XLOG_REG_TYPE_UNMOUNT, 553 }; 554 struct xfs_log_vec vec = { 555 .lv_niovecs = 1, 556 .lv_iovecp = ®, 557 }; 558 559 /* remove inited flag */ 560 tic->t_flags = 0; 561 error = xlog_write(log, &vec, tic, &lsn, 562 NULL, XLOG_UNMOUNT_TRANS); 563 /* 564 * At this point, we're umounting anyway, 565 * so there's no point in transitioning log state 566 * to IOERROR. Just continue... 567 */ 568 } 569 570 if (error) { 571 xfs_fs_cmn_err(CE_ALERT, mp, 572 "xfs_log_unmount: unmount record failed"); 573 } 574 575 576 spin_lock(&log->l_icloglock); 577 iclog = log->l_iclog; 578 atomic_inc(&iclog->ic_refcnt); 579 xlog_state_want_sync(log, iclog); 580 spin_unlock(&log->l_icloglock); 581 error = xlog_state_release_iclog(log, iclog); 582 583 spin_lock(&log->l_icloglock); 584 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 585 iclog->ic_state == XLOG_STATE_DIRTY)) { 586 if (!XLOG_FORCED_SHUTDOWN(log)) { 587 sv_wait(&iclog->ic_force_wait, PMEM, 588 &log->l_icloglock, s); 589 } else { 590 spin_unlock(&log->l_icloglock); 591 } 592 } else { 593 spin_unlock(&log->l_icloglock); 594 } 595 if (tic) { 596 trace_xfs_log_umount_write(log, tic); 597 xlog_ungrant_log_space(log, tic); 598 xfs_log_ticket_put(tic); 599 } 600 } else { 601 /* 602 * We're already in forced_shutdown mode, couldn't 603 * even attempt to write out the unmount transaction. 604 * 605 * Go through the motions of sync'ing and releasing 606 * the iclog, even though no I/O will actually happen, 607 * we need to wait for other log I/Os that may already 608 * be in progress. Do this as a separate section of 609 * code so we'll know if we ever get stuck here that 610 * we're in this odd situation of trying to unmount 611 * a file system that went into forced_shutdown as 612 * the result of an unmount.. 613 */ 614 spin_lock(&log->l_icloglock); 615 iclog = log->l_iclog; 616 atomic_inc(&iclog->ic_refcnt); 617 618 xlog_state_want_sync(log, iclog); 619 spin_unlock(&log->l_icloglock); 620 error = xlog_state_release_iclog(log, iclog); 621 622 spin_lock(&log->l_icloglock); 623 624 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 625 || iclog->ic_state == XLOG_STATE_DIRTY 626 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 627 628 sv_wait(&iclog->ic_force_wait, PMEM, 629 &log->l_icloglock, s); 630 } else { 631 spin_unlock(&log->l_icloglock); 632 } 633 } 634 635 return error; 636 } /* xfs_log_unmount_write */ 637 638 /* 639 * Deallocate log structures for unmount/relocation. 640 * 641 * We need to stop the aild from running before we destroy 642 * and deallocate the log as the aild references the log. 643 */ 644 void 645 xfs_log_unmount(xfs_mount_t *mp) 646 { 647 xfs_trans_ail_destroy(mp); 648 xlog_dealloc_log(mp->m_log); 649 } 650 651 void 652 xfs_log_item_init( 653 struct xfs_mount *mp, 654 struct xfs_log_item *item, 655 int type, 656 struct xfs_item_ops *ops) 657 { 658 item->li_mountp = mp; 659 item->li_ailp = mp->m_ail; 660 item->li_type = type; 661 item->li_ops = ops; 662 item->li_lv = NULL; 663 664 INIT_LIST_HEAD(&item->li_ail); 665 INIT_LIST_HEAD(&item->li_cil); 666 } 667 668 /* 669 * Write region vectors to log. The write happens using the space reservation 670 * of the ticket (tic). It is not a requirement that all writes for a given 671 * transaction occur with one call to xfs_log_write(). However, it is important 672 * to note that the transaction reservation code makes an assumption about the 673 * number of log headers a transaction requires that may be violated if you 674 * don't pass all the transaction vectors in one call.... 675 */ 676 int 677 xfs_log_write( 678 struct xfs_mount *mp, 679 struct xfs_log_iovec reg[], 680 int nentries, 681 struct xlog_ticket *tic, 682 xfs_lsn_t *start_lsn) 683 { 684 struct log *log = mp->m_log; 685 int error; 686 struct xfs_log_vec vec = { 687 .lv_niovecs = nentries, 688 .lv_iovecp = reg, 689 }; 690 691 if (XLOG_FORCED_SHUTDOWN(log)) 692 return XFS_ERROR(EIO); 693 694 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0); 695 if (error) 696 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 697 return error; 698 } 699 700 void 701 xfs_log_move_tail(xfs_mount_t *mp, 702 xfs_lsn_t tail_lsn) 703 { 704 xlog_ticket_t *tic; 705 xlog_t *log = mp->m_log; 706 int need_bytes, free_bytes, cycle, bytes; 707 708 if (XLOG_FORCED_SHUTDOWN(log)) 709 return; 710 711 if (tail_lsn == 0) { 712 /* needed since sync_lsn is 64 bits */ 713 spin_lock(&log->l_icloglock); 714 tail_lsn = log->l_last_sync_lsn; 715 spin_unlock(&log->l_icloglock); 716 } 717 718 spin_lock(&log->l_grant_lock); 719 720 /* Also an invalid lsn. 1 implies that we aren't passing in a valid 721 * tail_lsn. 722 */ 723 if (tail_lsn != 1) { 724 log->l_tail_lsn = tail_lsn; 725 } 726 727 if ((tic = log->l_write_headq)) { 728 #ifdef DEBUG 729 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 730 panic("Recovery problem"); 731 #endif 732 cycle = log->l_grant_write_cycle; 733 bytes = log->l_grant_write_bytes; 734 free_bytes = xlog_space_left(log, cycle, bytes); 735 do { 736 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 737 738 if (free_bytes < tic->t_unit_res && tail_lsn != 1) 739 break; 740 tail_lsn = 0; 741 free_bytes -= tic->t_unit_res; 742 sv_signal(&tic->t_wait); 743 tic = tic->t_next; 744 } while (tic != log->l_write_headq); 745 } 746 if ((tic = log->l_reserve_headq)) { 747 #ifdef DEBUG 748 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 749 panic("Recovery problem"); 750 #endif 751 cycle = log->l_grant_reserve_cycle; 752 bytes = log->l_grant_reserve_bytes; 753 free_bytes = xlog_space_left(log, cycle, bytes); 754 do { 755 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 756 need_bytes = tic->t_unit_res*tic->t_cnt; 757 else 758 need_bytes = tic->t_unit_res; 759 if (free_bytes < need_bytes && tail_lsn != 1) 760 break; 761 tail_lsn = 0; 762 free_bytes -= need_bytes; 763 sv_signal(&tic->t_wait); 764 tic = tic->t_next; 765 } while (tic != log->l_reserve_headq); 766 } 767 spin_unlock(&log->l_grant_lock); 768 } /* xfs_log_move_tail */ 769 770 /* 771 * Determine if we have a transaction that has gone to disk 772 * that needs to be covered. To begin the transition to the idle state 773 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 774 * If we are then in a state where covering is needed, the caller is informed 775 * that dummy transactions are required to move the log into the idle state. 776 * 777 * Because this is called as part of the sync process, we should also indicate 778 * that dummy transactions should be issued in anything but the covered or 779 * idle states. This ensures that the log tail is accurately reflected in 780 * the log at the end of the sync, hence if a crash occurrs avoids replay 781 * of transactions where the metadata is already on disk. 782 */ 783 int 784 xfs_log_need_covered(xfs_mount_t *mp) 785 { 786 int needed = 0; 787 xlog_t *log = mp->m_log; 788 789 if (!xfs_fs_writable(mp)) 790 return 0; 791 792 spin_lock(&log->l_icloglock); 793 switch (log->l_covered_state) { 794 case XLOG_STATE_COVER_DONE: 795 case XLOG_STATE_COVER_DONE2: 796 case XLOG_STATE_COVER_IDLE: 797 break; 798 case XLOG_STATE_COVER_NEED: 799 case XLOG_STATE_COVER_NEED2: 800 if (!xfs_trans_ail_tail(log->l_ailp) && 801 xlog_iclogs_empty(log)) { 802 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 803 log->l_covered_state = XLOG_STATE_COVER_DONE; 804 else 805 log->l_covered_state = XLOG_STATE_COVER_DONE2; 806 } 807 /* FALLTHRU */ 808 default: 809 needed = 1; 810 break; 811 } 812 spin_unlock(&log->l_icloglock); 813 return needed; 814 } 815 816 /****************************************************************************** 817 * 818 * local routines 819 * 820 ****************************************************************************** 821 */ 822 823 /* xfs_trans_tail_ail returns 0 when there is nothing in the list. 824 * The log manager must keep track of the last LR which was committed 825 * to disk. The lsn of this LR will become the new tail_lsn whenever 826 * xfs_trans_tail_ail returns 0. If we don't do this, we run into 827 * the situation where stuff could be written into the log but nothing 828 * was ever in the AIL when asked. Eventually, we panic since the 829 * tail hits the head. 830 * 831 * We may be holding the log iclog lock upon entering this routine. 832 */ 833 xfs_lsn_t 834 xlog_assign_tail_lsn(xfs_mount_t *mp) 835 { 836 xfs_lsn_t tail_lsn; 837 xlog_t *log = mp->m_log; 838 839 tail_lsn = xfs_trans_ail_tail(mp->m_ail); 840 spin_lock(&log->l_grant_lock); 841 if (tail_lsn != 0) { 842 log->l_tail_lsn = tail_lsn; 843 } else { 844 tail_lsn = log->l_tail_lsn = log->l_last_sync_lsn; 845 } 846 spin_unlock(&log->l_grant_lock); 847 848 return tail_lsn; 849 } /* xlog_assign_tail_lsn */ 850 851 852 /* 853 * Return the space in the log between the tail and the head. The head 854 * is passed in the cycle/bytes formal parms. In the special case where 855 * the reserve head has wrapped passed the tail, this calculation is no 856 * longer valid. In this case, just return 0 which means there is no space 857 * in the log. This works for all places where this function is called 858 * with the reserve head. Of course, if the write head were to ever 859 * wrap the tail, we should blow up. Rather than catch this case here, 860 * we depend on other ASSERTions in other parts of the code. XXXmiken 861 * 862 * This code also handles the case where the reservation head is behind 863 * the tail. The details of this case are described below, but the end 864 * result is that we return the size of the log as the amount of space left. 865 */ 866 STATIC int 867 xlog_space_left(xlog_t *log, int cycle, int bytes) 868 { 869 int free_bytes; 870 int tail_bytes; 871 int tail_cycle; 872 873 tail_bytes = BBTOB(BLOCK_LSN(log->l_tail_lsn)); 874 tail_cycle = CYCLE_LSN(log->l_tail_lsn); 875 if ((tail_cycle == cycle) && (bytes >= tail_bytes)) { 876 free_bytes = log->l_logsize - (bytes - tail_bytes); 877 } else if ((tail_cycle + 1) < cycle) { 878 return 0; 879 } else if (tail_cycle < cycle) { 880 ASSERT(tail_cycle == (cycle - 1)); 881 free_bytes = tail_bytes - bytes; 882 } else { 883 /* 884 * The reservation head is behind the tail. 885 * In this case we just want to return the size of the 886 * log as the amount of space left. 887 */ 888 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 889 "xlog_space_left: head behind tail\n" 890 " tail_cycle = %d, tail_bytes = %d\n" 891 " GH cycle = %d, GH bytes = %d", 892 tail_cycle, tail_bytes, cycle, bytes); 893 ASSERT(0); 894 free_bytes = log->l_logsize; 895 } 896 return free_bytes; 897 } /* xlog_space_left */ 898 899 900 /* 901 * Log function which is called when an io completes. 902 * 903 * The log manager needs its own routine, in order to control what 904 * happens with the buffer after the write completes. 905 */ 906 void 907 xlog_iodone(xfs_buf_t *bp) 908 { 909 xlog_in_core_t *iclog; 910 xlog_t *l; 911 int aborted; 912 913 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); 914 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2); 915 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 916 aborted = 0; 917 l = iclog->ic_log; 918 919 /* 920 * Race to shutdown the filesystem if we see an error. 921 */ 922 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp, 923 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 924 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp)); 925 XFS_BUF_STALE(bp); 926 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 927 /* 928 * This flag will be propagated to the trans-committed 929 * callback routines to let them know that the log-commit 930 * didn't succeed. 931 */ 932 aborted = XFS_LI_ABORTED; 933 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 934 aborted = XFS_LI_ABORTED; 935 } 936 937 /* log I/O is always issued ASYNC */ 938 ASSERT(XFS_BUF_ISASYNC(bp)); 939 xlog_state_done_syncing(iclog, aborted); 940 /* 941 * do not reference the buffer (bp) here as we could race 942 * with it being freed after writing the unmount record to the 943 * log. 944 */ 945 946 } /* xlog_iodone */ 947 948 /* 949 * Return size of each in-core log record buffer. 950 * 951 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 952 * 953 * If the filesystem blocksize is too large, we may need to choose a 954 * larger size since the directory code currently logs entire blocks. 955 */ 956 957 STATIC void 958 xlog_get_iclog_buffer_size(xfs_mount_t *mp, 959 xlog_t *log) 960 { 961 int size; 962 int xhdrs; 963 964 if (mp->m_logbufs <= 0) 965 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 966 else 967 log->l_iclog_bufs = mp->m_logbufs; 968 969 /* 970 * Buffer size passed in from mount system call. 971 */ 972 if (mp->m_logbsize > 0) { 973 size = log->l_iclog_size = mp->m_logbsize; 974 log->l_iclog_size_log = 0; 975 while (size != 1) { 976 log->l_iclog_size_log++; 977 size >>= 1; 978 } 979 980 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 981 /* # headers = size / 32k 982 * one header holds cycles from 32k of data 983 */ 984 985 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 986 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 987 xhdrs++; 988 log->l_iclog_hsize = xhdrs << BBSHIFT; 989 log->l_iclog_heads = xhdrs; 990 } else { 991 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 992 log->l_iclog_hsize = BBSIZE; 993 log->l_iclog_heads = 1; 994 } 995 goto done; 996 } 997 998 /* All machines use 32kB buffers by default. */ 999 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1000 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1001 1002 /* the default log size is 16k or 32k which is one header sector */ 1003 log->l_iclog_hsize = BBSIZE; 1004 log->l_iclog_heads = 1; 1005 1006 done: 1007 /* are we being asked to make the sizes selected above visible? */ 1008 if (mp->m_logbufs == 0) 1009 mp->m_logbufs = log->l_iclog_bufs; 1010 if (mp->m_logbsize == 0) 1011 mp->m_logbsize = log->l_iclog_size; 1012 } /* xlog_get_iclog_buffer_size */ 1013 1014 1015 /* 1016 * This routine initializes some of the log structure for a given mount point. 1017 * Its primary purpose is to fill in enough, so recovery can occur. However, 1018 * some other stuff may be filled in too. 1019 */ 1020 STATIC xlog_t * 1021 xlog_alloc_log(xfs_mount_t *mp, 1022 xfs_buftarg_t *log_target, 1023 xfs_daddr_t blk_offset, 1024 int num_bblks) 1025 { 1026 xlog_t *log; 1027 xlog_rec_header_t *head; 1028 xlog_in_core_t **iclogp; 1029 xlog_in_core_t *iclog, *prev_iclog=NULL; 1030 xfs_buf_t *bp; 1031 int i; 1032 int error = ENOMEM; 1033 uint log2_size = 0; 1034 1035 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL); 1036 if (!log) { 1037 xlog_warn("XFS: Log allocation failed: No memory!"); 1038 goto out; 1039 } 1040 1041 log->l_mp = mp; 1042 log->l_targ = log_target; 1043 log->l_logsize = BBTOB(num_bblks); 1044 log->l_logBBstart = blk_offset; 1045 log->l_logBBsize = num_bblks; 1046 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1047 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1048 1049 log->l_prev_block = -1; 1050 log->l_tail_lsn = xlog_assign_lsn(1, 0); 1051 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1052 log->l_last_sync_lsn = log->l_tail_lsn; 1053 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1054 log->l_grant_reserve_cycle = 1; 1055 log->l_grant_write_cycle = 1; 1056 1057 error = EFSCORRUPTED; 1058 if (xfs_sb_version_hassector(&mp->m_sb)) { 1059 log2_size = mp->m_sb.sb_logsectlog; 1060 if (log2_size < BBSHIFT) { 1061 xlog_warn("XFS: Log sector size too small " 1062 "(0x%x < 0x%x)", log2_size, BBSHIFT); 1063 goto out_free_log; 1064 } 1065 1066 log2_size -= BBSHIFT; 1067 if (log2_size > mp->m_sectbb_log) { 1068 xlog_warn("XFS: Log sector size too large " 1069 "(0x%x > 0x%x)", log2_size, mp->m_sectbb_log); 1070 goto out_free_log; 1071 } 1072 1073 /* for larger sector sizes, must have v2 or external log */ 1074 if (log2_size && log->l_logBBstart > 0 && 1075 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1076 1077 xlog_warn("XFS: log sector size (0x%x) invalid " 1078 "for configuration.", log2_size); 1079 goto out_free_log; 1080 } 1081 } 1082 log->l_sectBBsize = 1 << log2_size; 1083 1084 xlog_get_iclog_buffer_size(mp, log); 1085 1086 error = ENOMEM; 1087 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp); 1088 if (!bp) 1089 goto out_free_log; 1090 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); 1091 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 1092 ASSERT(XFS_BUF_ISBUSY(bp)); 1093 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 1094 log->l_xbuf = bp; 1095 1096 spin_lock_init(&log->l_icloglock); 1097 spin_lock_init(&log->l_grant_lock); 1098 sv_init(&log->l_flush_wait, 0, "flush_wait"); 1099 1100 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */ 1101 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0); 1102 1103 iclogp = &log->l_iclog; 1104 /* 1105 * The amount of memory to allocate for the iclog structure is 1106 * rather funky due to the way the structure is defined. It is 1107 * done this way so that we can use different sizes for machines 1108 * with different amounts of memory. See the definition of 1109 * xlog_in_core_t in xfs_log_priv.h for details. 1110 */ 1111 ASSERT(log->l_iclog_size >= 4096); 1112 for (i=0; i < log->l_iclog_bufs; i++) { 1113 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1114 if (!*iclogp) 1115 goto out_free_iclog; 1116 1117 iclog = *iclogp; 1118 iclog->ic_prev = prev_iclog; 1119 prev_iclog = iclog; 1120 1121 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1122 log->l_iclog_size, 0); 1123 if (!bp) 1124 goto out_free_iclog; 1125 if (!XFS_BUF_CPSEMA(bp)) 1126 ASSERT(0); 1127 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); 1128 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); 1129 iclog->ic_bp = bp; 1130 iclog->ic_data = bp->b_addr; 1131 #ifdef DEBUG 1132 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1133 #endif 1134 head = &iclog->ic_header; 1135 memset(head, 0, sizeof(xlog_rec_header_t)); 1136 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1137 head->h_version = cpu_to_be32( 1138 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1139 head->h_size = cpu_to_be32(log->l_iclog_size); 1140 /* new fields */ 1141 head->h_fmt = cpu_to_be32(XLOG_FMT); 1142 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1143 1144 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize; 1145 iclog->ic_state = XLOG_STATE_ACTIVE; 1146 iclog->ic_log = log; 1147 atomic_set(&iclog->ic_refcnt, 0); 1148 spin_lock_init(&iclog->ic_callback_lock); 1149 iclog->ic_callback_tail = &(iclog->ic_callback); 1150 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1151 1152 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp)); 1153 ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0); 1154 sv_init(&iclog->ic_force_wait, SV_DEFAULT, "iclog-force"); 1155 sv_init(&iclog->ic_write_wait, SV_DEFAULT, "iclog-write"); 1156 1157 iclogp = &iclog->ic_next; 1158 } 1159 *iclogp = log->l_iclog; /* complete ring */ 1160 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1161 1162 error = xlog_cil_init(log); 1163 if (error) 1164 goto out_free_iclog; 1165 return log; 1166 1167 out_free_iclog: 1168 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1169 prev_iclog = iclog->ic_next; 1170 if (iclog->ic_bp) { 1171 sv_destroy(&iclog->ic_force_wait); 1172 sv_destroy(&iclog->ic_write_wait); 1173 xfs_buf_free(iclog->ic_bp); 1174 } 1175 kmem_free(iclog); 1176 } 1177 spinlock_destroy(&log->l_icloglock); 1178 spinlock_destroy(&log->l_grant_lock); 1179 xfs_buf_free(log->l_xbuf); 1180 out_free_log: 1181 kmem_free(log); 1182 out: 1183 return ERR_PTR(-error); 1184 } /* xlog_alloc_log */ 1185 1186 1187 /* 1188 * Write out the commit record of a transaction associated with the given 1189 * ticket. Return the lsn of the commit record. 1190 */ 1191 STATIC int 1192 xlog_commit_record( 1193 struct log *log, 1194 struct xlog_ticket *ticket, 1195 struct xlog_in_core **iclog, 1196 xfs_lsn_t *commitlsnp) 1197 { 1198 struct xfs_mount *mp = log->l_mp; 1199 int error; 1200 struct xfs_log_iovec reg = { 1201 .i_addr = NULL, 1202 .i_len = 0, 1203 .i_type = XLOG_REG_TYPE_COMMIT, 1204 }; 1205 struct xfs_log_vec vec = { 1206 .lv_niovecs = 1, 1207 .lv_iovecp = ®, 1208 }; 1209 1210 ASSERT_ALWAYS(iclog); 1211 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1212 XLOG_COMMIT_TRANS); 1213 if (error) 1214 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1215 return error; 1216 } 1217 1218 /* 1219 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1220 * log space. This code pushes on the lsn which would supposedly free up 1221 * the 25% which we want to leave free. We may need to adopt a policy which 1222 * pushes on an lsn which is further along in the log once we reach the high 1223 * water mark. In this manner, we would be creating a low water mark. 1224 */ 1225 STATIC void 1226 xlog_grant_push_ail(xfs_mount_t *mp, 1227 int need_bytes) 1228 { 1229 xlog_t *log = mp->m_log; /* pointer to the log */ 1230 xfs_lsn_t tail_lsn; /* lsn of the log tail */ 1231 xfs_lsn_t threshold_lsn = 0; /* lsn we'd like to be at */ 1232 int free_blocks; /* free blocks left to write to */ 1233 int free_bytes; /* free bytes left to write to */ 1234 int threshold_block; /* block in lsn we'd like to be at */ 1235 int threshold_cycle; /* lsn cycle we'd like to be at */ 1236 int free_threshold; 1237 1238 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1239 1240 spin_lock(&log->l_grant_lock); 1241 free_bytes = xlog_space_left(log, 1242 log->l_grant_reserve_cycle, 1243 log->l_grant_reserve_bytes); 1244 tail_lsn = log->l_tail_lsn; 1245 free_blocks = BTOBBT(free_bytes); 1246 1247 /* 1248 * Set the threshold for the minimum number of free blocks in the 1249 * log to the maximum of what the caller needs, one quarter of the 1250 * log, and 256 blocks. 1251 */ 1252 free_threshold = BTOBB(need_bytes); 1253 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1254 free_threshold = MAX(free_threshold, 256); 1255 if (free_blocks < free_threshold) { 1256 threshold_block = BLOCK_LSN(tail_lsn) + free_threshold; 1257 threshold_cycle = CYCLE_LSN(tail_lsn); 1258 if (threshold_block >= log->l_logBBsize) { 1259 threshold_block -= log->l_logBBsize; 1260 threshold_cycle += 1; 1261 } 1262 threshold_lsn = xlog_assign_lsn(threshold_cycle, threshold_block); 1263 1264 /* Don't pass in an lsn greater than the lsn of the last 1265 * log record known to be on disk. 1266 */ 1267 if (XFS_LSN_CMP(threshold_lsn, log->l_last_sync_lsn) > 0) 1268 threshold_lsn = log->l_last_sync_lsn; 1269 } 1270 spin_unlock(&log->l_grant_lock); 1271 1272 /* 1273 * Get the transaction layer to kick the dirty buffers out to 1274 * disk asynchronously. No point in trying to do this if 1275 * the filesystem is shutting down. 1276 */ 1277 if (threshold_lsn && 1278 !XLOG_FORCED_SHUTDOWN(log)) 1279 xfs_trans_ail_push(log->l_ailp, threshold_lsn); 1280 } /* xlog_grant_push_ail */ 1281 1282 /* 1283 * The bdstrat callback function for log bufs. This gives us a central 1284 * place to trap bufs in case we get hit by a log I/O error and need to 1285 * shutdown. Actually, in practice, even when we didn't get a log error, 1286 * we transition the iclogs to IOERROR state *after* flushing all existing 1287 * iclogs to disk. This is because we don't want anymore new transactions to be 1288 * started or completed afterwards. 1289 */ 1290 STATIC int 1291 xlog_bdstrat( 1292 struct xfs_buf *bp) 1293 { 1294 struct xlog_in_core *iclog; 1295 1296 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); 1297 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1298 XFS_BUF_ERROR(bp, EIO); 1299 XFS_BUF_STALE(bp); 1300 xfs_buf_ioend(bp, 0); 1301 /* 1302 * It would seem logical to return EIO here, but we rely on 1303 * the log state machine to propagate I/O errors instead of 1304 * doing it here. 1305 */ 1306 return 0; 1307 } 1308 1309 bp->b_flags |= _XBF_RUN_QUEUES; 1310 xfs_buf_iorequest(bp); 1311 return 0; 1312 } 1313 1314 /* 1315 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1316 * fashion. Previously, we should have moved the current iclog 1317 * ptr in the log to point to the next available iclog. This allows further 1318 * write to continue while this code syncs out an iclog ready to go. 1319 * Before an in-core log can be written out, the data section must be scanned 1320 * to save away the 1st word of each BBSIZE block into the header. We replace 1321 * it with the current cycle count. Each BBSIZE block is tagged with the 1322 * cycle count because there in an implicit assumption that drives will 1323 * guarantee that entire 512 byte blocks get written at once. In other words, 1324 * we can't have part of a 512 byte block written and part not written. By 1325 * tagging each block, we will know which blocks are valid when recovering 1326 * after an unclean shutdown. 1327 * 1328 * This routine is single threaded on the iclog. No other thread can be in 1329 * this routine with the same iclog. Changing contents of iclog can there- 1330 * fore be done without grabbing the state machine lock. Updating the global 1331 * log will require grabbing the lock though. 1332 * 1333 * The entire log manager uses a logical block numbering scheme. Only 1334 * log_sync (and then only bwrite()) know about the fact that the log may 1335 * not start with block zero on a given device. The log block start offset 1336 * is added immediately before calling bwrite(). 1337 */ 1338 1339 STATIC int 1340 xlog_sync(xlog_t *log, 1341 xlog_in_core_t *iclog) 1342 { 1343 xfs_caddr_t dptr; /* pointer to byte sized element */ 1344 xfs_buf_t *bp; 1345 int i; 1346 uint count; /* byte count of bwrite */ 1347 uint count_init; /* initial count before roundup */ 1348 int roundoff; /* roundoff to BB or stripe */ 1349 int split = 0; /* split write into two regions */ 1350 int error; 1351 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1352 1353 XFS_STATS_INC(xs_log_writes); 1354 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1355 1356 /* Add for LR header */ 1357 count_init = log->l_iclog_hsize + iclog->ic_offset; 1358 1359 /* Round out the log write size */ 1360 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1361 /* we have a v2 stripe unit to use */ 1362 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1363 } else { 1364 count = BBTOB(BTOBB(count_init)); 1365 } 1366 roundoff = count - count_init; 1367 ASSERT(roundoff >= 0); 1368 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1369 roundoff < log->l_mp->m_sb.sb_logsunit) 1370 || 1371 (log->l_mp->m_sb.sb_logsunit <= 1 && 1372 roundoff < BBTOB(1))); 1373 1374 /* move grant heads by roundoff in sync */ 1375 spin_lock(&log->l_grant_lock); 1376 xlog_grant_add_space(log, roundoff); 1377 spin_unlock(&log->l_grant_lock); 1378 1379 /* put cycle number in every block */ 1380 xlog_pack_data(log, iclog, roundoff); 1381 1382 /* real byte length */ 1383 if (v2) { 1384 iclog->ic_header.h_len = 1385 cpu_to_be32(iclog->ic_offset + roundoff); 1386 } else { 1387 iclog->ic_header.h_len = 1388 cpu_to_be32(iclog->ic_offset); 1389 } 1390 1391 bp = iclog->ic_bp; 1392 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1); 1393 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); 1394 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1395 1396 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1397 1398 /* Do we need to split this write into 2 parts? */ 1399 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1400 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1401 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1402 iclog->ic_bwritecnt = 2; /* split into 2 writes */ 1403 } else { 1404 iclog->ic_bwritecnt = 1; 1405 } 1406 XFS_BUF_SET_COUNT(bp, count); 1407 XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */ 1408 XFS_BUF_ZEROFLAGS(bp); 1409 XFS_BUF_BUSY(bp); 1410 XFS_BUF_ASYNC(bp); 1411 bp->b_flags |= XBF_LOG_BUFFER; 1412 1413 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1414 XFS_BUF_ORDERED(bp); 1415 1416 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1417 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1418 1419 xlog_verify_iclog(log, iclog, count, B_TRUE); 1420 1421 /* account for log which doesn't start at block #0 */ 1422 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1423 /* 1424 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1425 * is shutting down. 1426 */ 1427 XFS_BUF_WRITE(bp); 1428 1429 if ((error = xlog_bdstrat(bp))) { 1430 xfs_ioerror_alert("xlog_sync", log->l_mp, bp, 1431 XFS_BUF_ADDR(bp)); 1432 return error; 1433 } 1434 if (split) { 1435 bp = iclog->ic_log->l_xbuf; 1436 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == 1437 (unsigned long)1); 1438 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); 1439 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1440 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+ 1441 (__psint_t)count), split); 1442 XFS_BUF_SET_FSPRIVATE(bp, iclog); 1443 XFS_BUF_ZEROFLAGS(bp); 1444 XFS_BUF_BUSY(bp); 1445 XFS_BUF_ASYNC(bp); 1446 bp->b_flags |= XBF_LOG_BUFFER; 1447 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1448 XFS_BUF_ORDERED(bp); 1449 dptr = XFS_BUF_PTR(bp); 1450 /* 1451 * Bump the cycle numbers at the start of each block 1452 * since this part of the buffer is at the start of 1453 * a new cycle. Watch out for the header magic number 1454 * case, though. 1455 */ 1456 for (i = 0; i < split; i += BBSIZE) { 1457 be32_add_cpu((__be32 *)dptr, 1); 1458 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM) 1459 be32_add_cpu((__be32 *)dptr, 1); 1460 dptr += BBSIZE; 1461 } 1462 1463 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1464 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1465 1466 /* account for internal log which doesn't start at block #0 */ 1467 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1468 XFS_BUF_WRITE(bp); 1469 if ((error = xlog_bdstrat(bp))) { 1470 xfs_ioerror_alert("xlog_sync (split)", log->l_mp, 1471 bp, XFS_BUF_ADDR(bp)); 1472 return error; 1473 } 1474 } 1475 return 0; 1476 } /* xlog_sync */ 1477 1478 1479 /* 1480 * Deallocate a log structure 1481 */ 1482 STATIC void 1483 xlog_dealloc_log(xlog_t *log) 1484 { 1485 xlog_in_core_t *iclog, *next_iclog; 1486 int i; 1487 1488 xlog_cil_destroy(log); 1489 1490 iclog = log->l_iclog; 1491 for (i=0; i<log->l_iclog_bufs; i++) { 1492 sv_destroy(&iclog->ic_force_wait); 1493 sv_destroy(&iclog->ic_write_wait); 1494 xfs_buf_free(iclog->ic_bp); 1495 next_iclog = iclog->ic_next; 1496 kmem_free(iclog); 1497 iclog = next_iclog; 1498 } 1499 spinlock_destroy(&log->l_icloglock); 1500 spinlock_destroy(&log->l_grant_lock); 1501 1502 xfs_buf_free(log->l_xbuf); 1503 log->l_mp->m_log = NULL; 1504 kmem_free(log); 1505 } /* xlog_dealloc_log */ 1506 1507 /* 1508 * Update counters atomically now that memcpy is done. 1509 */ 1510 /* ARGSUSED */ 1511 static inline void 1512 xlog_state_finish_copy(xlog_t *log, 1513 xlog_in_core_t *iclog, 1514 int record_cnt, 1515 int copy_bytes) 1516 { 1517 spin_lock(&log->l_icloglock); 1518 1519 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1520 iclog->ic_offset += copy_bytes; 1521 1522 spin_unlock(&log->l_icloglock); 1523 } /* xlog_state_finish_copy */ 1524 1525 1526 1527 1528 /* 1529 * print out info relating to regions written which consume 1530 * the reservation 1531 */ 1532 void 1533 xlog_print_tic_res( 1534 struct xfs_mount *mp, 1535 struct xlog_ticket *ticket) 1536 { 1537 uint i; 1538 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1539 1540 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1541 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1542 "bformat", 1543 "bchunk", 1544 "efi_format", 1545 "efd_format", 1546 "iformat", 1547 "icore", 1548 "iext", 1549 "ibroot", 1550 "ilocal", 1551 "iattr_ext", 1552 "iattr_broot", 1553 "iattr_local", 1554 "qformat", 1555 "dquot", 1556 "quotaoff", 1557 "LR header", 1558 "unmount", 1559 "commit", 1560 "trans header" 1561 }; 1562 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1563 "SETATTR_NOT_SIZE", 1564 "SETATTR_SIZE", 1565 "INACTIVE", 1566 "CREATE", 1567 "CREATE_TRUNC", 1568 "TRUNCATE_FILE", 1569 "REMOVE", 1570 "LINK", 1571 "RENAME", 1572 "MKDIR", 1573 "RMDIR", 1574 "SYMLINK", 1575 "SET_DMATTRS", 1576 "GROWFS", 1577 "STRAT_WRITE", 1578 "DIOSTRAT", 1579 "WRITE_SYNC", 1580 "WRITEID", 1581 "ADDAFORK", 1582 "ATTRINVAL", 1583 "ATRUNCATE", 1584 "ATTR_SET", 1585 "ATTR_RM", 1586 "ATTR_FLAG", 1587 "CLEAR_AGI_BUCKET", 1588 "QM_SBCHANGE", 1589 "DUMMY1", 1590 "DUMMY2", 1591 "QM_QUOTAOFF", 1592 "QM_DQALLOC", 1593 "QM_SETQLIM", 1594 "QM_DQCLUSTER", 1595 "QM_QINOCREATE", 1596 "QM_QUOTAOFF_END", 1597 "SB_UNIT", 1598 "FSYNC_TS", 1599 "GROWFSRT_ALLOC", 1600 "GROWFSRT_ZERO", 1601 "GROWFSRT_FREE", 1602 "SWAPEXT" 1603 }; 1604 1605 xfs_fs_cmn_err(CE_WARN, mp, 1606 "xfs_log_write: reservation summary:\n" 1607 " trans type = %s (%u)\n" 1608 " unit res = %d bytes\n" 1609 " current res = %d bytes\n" 1610 " total reg = %u bytes (o/flow = %u bytes)\n" 1611 " ophdrs = %u (ophdr space = %u bytes)\n" 1612 " ophdr + reg = %u bytes\n" 1613 " num regions = %u\n", 1614 ((ticket->t_trans_type <= 0 || 1615 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1616 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1617 ticket->t_trans_type, 1618 ticket->t_unit_res, 1619 ticket->t_curr_res, 1620 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1621 ticket->t_res_num_ophdrs, ophdr_spc, 1622 ticket->t_res_arr_sum + 1623 ticket->t_res_o_flow + ophdr_spc, 1624 ticket->t_res_num); 1625 1626 for (i = 0; i < ticket->t_res_num; i++) { 1627 uint r_type = ticket->t_res_arr[i].r_type; 1628 cmn_err(CE_WARN, 1629 "region[%u]: %s - %u bytes\n", 1630 i, 1631 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1632 "bad-rtype" : res_type_str[r_type-1]), 1633 ticket->t_res_arr[i].r_len); 1634 } 1635 1636 xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp, 1637 "xfs_log_write: reservation ran out. Need to up reservation"); 1638 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1639 } 1640 1641 /* 1642 * Calculate the potential space needed by the log vector. Each region gets 1643 * its own xlog_op_header_t and may need to be double word aligned. 1644 */ 1645 static int 1646 xlog_write_calc_vec_length( 1647 struct xlog_ticket *ticket, 1648 struct xfs_log_vec *log_vector) 1649 { 1650 struct xfs_log_vec *lv; 1651 int headers = 0; 1652 int len = 0; 1653 int i; 1654 1655 /* acct for start rec of xact */ 1656 if (ticket->t_flags & XLOG_TIC_INITED) 1657 headers++; 1658 1659 for (lv = log_vector; lv; lv = lv->lv_next) { 1660 headers += lv->lv_niovecs; 1661 1662 for (i = 0; i < lv->lv_niovecs; i++) { 1663 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 1664 1665 len += vecp->i_len; 1666 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 1667 } 1668 } 1669 1670 ticket->t_res_num_ophdrs += headers; 1671 len += headers * sizeof(struct xlog_op_header); 1672 1673 return len; 1674 } 1675 1676 /* 1677 * If first write for transaction, insert start record We can't be trying to 1678 * commit if we are inited. We can't have any "partial_copy" if we are inited. 1679 */ 1680 static int 1681 xlog_write_start_rec( 1682 struct xlog_op_header *ophdr, 1683 struct xlog_ticket *ticket) 1684 { 1685 if (!(ticket->t_flags & XLOG_TIC_INITED)) 1686 return 0; 1687 1688 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1689 ophdr->oh_clientid = ticket->t_clientid; 1690 ophdr->oh_len = 0; 1691 ophdr->oh_flags = XLOG_START_TRANS; 1692 ophdr->oh_res2 = 0; 1693 1694 ticket->t_flags &= ~XLOG_TIC_INITED; 1695 1696 return sizeof(struct xlog_op_header); 1697 } 1698 1699 static xlog_op_header_t * 1700 xlog_write_setup_ophdr( 1701 struct log *log, 1702 struct xlog_op_header *ophdr, 1703 struct xlog_ticket *ticket, 1704 uint flags) 1705 { 1706 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1707 ophdr->oh_clientid = ticket->t_clientid; 1708 ophdr->oh_res2 = 0; 1709 1710 /* are we copying a commit or unmount record? */ 1711 ophdr->oh_flags = flags; 1712 1713 /* 1714 * We've seen logs corrupted with bad transaction client ids. This 1715 * makes sure that XFS doesn't generate them on. Turn this into an EIO 1716 * and shut down the filesystem. 1717 */ 1718 switch (ophdr->oh_clientid) { 1719 case XFS_TRANSACTION: 1720 case XFS_VOLUME: 1721 case XFS_LOG: 1722 break; 1723 default: 1724 xfs_fs_cmn_err(CE_WARN, log->l_mp, 1725 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 1726 ophdr->oh_clientid, ticket); 1727 return NULL; 1728 } 1729 1730 return ophdr; 1731 } 1732 1733 /* 1734 * Set up the parameters of the region copy into the log. This has 1735 * to handle region write split across multiple log buffers - this 1736 * state is kept external to this function so that this code can 1737 * can be written in an obvious, self documenting manner. 1738 */ 1739 static int 1740 xlog_write_setup_copy( 1741 struct xlog_ticket *ticket, 1742 struct xlog_op_header *ophdr, 1743 int space_available, 1744 int space_required, 1745 int *copy_off, 1746 int *copy_len, 1747 int *last_was_partial_copy, 1748 int *bytes_consumed) 1749 { 1750 int still_to_copy; 1751 1752 still_to_copy = space_required - *bytes_consumed; 1753 *copy_off = *bytes_consumed; 1754 1755 if (still_to_copy <= space_available) { 1756 /* write of region completes here */ 1757 *copy_len = still_to_copy; 1758 ophdr->oh_len = cpu_to_be32(*copy_len); 1759 if (*last_was_partial_copy) 1760 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 1761 *last_was_partial_copy = 0; 1762 *bytes_consumed = 0; 1763 return 0; 1764 } 1765 1766 /* partial write of region, needs extra log op header reservation */ 1767 *copy_len = space_available; 1768 ophdr->oh_len = cpu_to_be32(*copy_len); 1769 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 1770 if (*last_was_partial_copy) 1771 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 1772 *bytes_consumed += *copy_len; 1773 (*last_was_partial_copy)++; 1774 1775 /* account for new log op header */ 1776 ticket->t_curr_res -= sizeof(struct xlog_op_header); 1777 ticket->t_res_num_ophdrs++; 1778 1779 return sizeof(struct xlog_op_header); 1780 } 1781 1782 static int 1783 xlog_write_copy_finish( 1784 struct log *log, 1785 struct xlog_in_core *iclog, 1786 uint flags, 1787 int *record_cnt, 1788 int *data_cnt, 1789 int *partial_copy, 1790 int *partial_copy_len, 1791 int log_offset, 1792 struct xlog_in_core **commit_iclog) 1793 { 1794 if (*partial_copy) { 1795 /* 1796 * This iclog has already been marked WANT_SYNC by 1797 * xlog_state_get_iclog_space. 1798 */ 1799 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1800 *record_cnt = 0; 1801 *data_cnt = 0; 1802 return xlog_state_release_iclog(log, iclog); 1803 } 1804 1805 *partial_copy = 0; 1806 *partial_copy_len = 0; 1807 1808 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 1809 /* no more space in this iclog - push it. */ 1810 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1811 *record_cnt = 0; 1812 *data_cnt = 0; 1813 1814 spin_lock(&log->l_icloglock); 1815 xlog_state_want_sync(log, iclog); 1816 spin_unlock(&log->l_icloglock); 1817 1818 if (!commit_iclog) 1819 return xlog_state_release_iclog(log, iclog); 1820 ASSERT(flags & XLOG_COMMIT_TRANS); 1821 *commit_iclog = iclog; 1822 } 1823 1824 return 0; 1825 } 1826 1827 /* 1828 * Write some region out to in-core log 1829 * 1830 * This will be called when writing externally provided regions or when 1831 * writing out a commit record for a given transaction. 1832 * 1833 * General algorithm: 1834 * 1. Find total length of this write. This may include adding to the 1835 * lengths passed in. 1836 * 2. Check whether we violate the tickets reservation. 1837 * 3. While writing to this iclog 1838 * A. Reserve as much space in this iclog as can get 1839 * B. If this is first write, save away start lsn 1840 * C. While writing this region: 1841 * 1. If first write of transaction, write start record 1842 * 2. Write log operation header (header per region) 1843 * 3. Find out if we can fit entire region into this iclog 1844 * 4. Potentially, verify destination memcpy ptr 1845 * 5. Memcpy (partial) region 1846 * 6. If partial copy, release iclog; otherwise, continue 1847 * copying more regions into current iclog 1848 * 4. Mark want sync bit (in simulation mode) 1849 * 5. Release iclog for potential flush to on-disk log. 1850 * 1851 * ERRORS: 1852 * 1. Panic if reservation is overrun. This should never happen since 1853 * reservation amounts are generated internal to the filesystem. 1854 * NOTES: 1855 * 1. Tickets are single threaded data structures. 1856 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 1857 * syncing routine. When a single log_write region needs to span 1858 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 1859 * on all log operation writes which don't contain the end of the 1860 * region. The XLOG_END_TRANS bit is used for the in-core log 1861 * operation which contains the end of the continued log_write region. 1862 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 1863 * we don't really know exactly how much space will be used. As a result, 1864 * we don't update ic_offset until the end when we know exactly how many 1865 * bytes have been written out. 1866 */ 1867 int 1868 xlog_write( 1869 struct log *log, 1870 struct xfs_log_vec *log_vector, 1871 struct xlog_ticket *ticket, 1872 xfs_lsn_t *start_lsn, 1873 struct xlog_in_core **commit_iclog, 1874 uint flags) 1875 { 1876 struct xlog_in_core *iclog = NULL; 1877 struct xfs_log_iovec *vecp; 1878 struct xfs_log_vec *lv; 1879 int len; 1880 int index; 1881 int partial_copy = 0; 1882 int partial_copy_len = 0; 1883 int contwr = 0; 1884 int record_cnt = 0; 1885 int data_cnt = 0; 1886 int error; 1887 1888 *start_lsn = 0; 1889 1890 len = xlog_write_calc_vec_length(ticket, log_vector); 1891 if (log->l_cilp) { 1892 /* 1893 * Region headers and bytes are already accounted for. 1894 * We only need to take into account start records and 1895 * split regions in this function. 1896 */ 1897 if (ticket->t_flags & XLOG_TIC_INITED) 1898 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1899 1900 /* 1901 * Commit record headers need to be accounted for. These 1902 * come in as separate writes so are easy to detect. 1903 */ 1904 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 1905 ticket->t_curr_res -= sizeof(xlog_op_header_t); 1906 } else 1907 ticket->t_curr_res -= len; 1908 1909 if (ticket->t_curr_res < 0) 1910 xlog_print_tic_res(log->l_mp, ticket); 1911 1912 index = 0; 1913 lv = log_vector; 1914 vecp = lv->lv_iovecp; 1915 while (lv && index < lv->lv_niovecs) { 1916 void *ptr; 1917 int log_offset; 1918 1919 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 1920 &contwr, &log_offset); 1921 if (error) 1922 return error; 1923 1924 ASSERT(log_offset <= iclog->ic_size - 1); 1925 ptr = iclog->ic_datap + log_offset; 1926 1927 /* start_lsn is the first lsn written to. That's all we need. */ 1928 if (!*start_lsn) 1929 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 1930 1931 /* 1932 * This loop writes out as many regions as can fit in the amount 1933 * of space which was allocated by xlog_state_get_iclog_space(). 1934 */ 1935 while (lv && index < lv->lv_niovecs) { 1936 struct xfs_log_iovec *reg = &vecp[index]; 1937 struct xlog_op_header *ophdr; 1938 int start_rec_copy; 1939 int copy_len; 1940 int copy_off; 1941 1942 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 1943 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 1944 1945 start_rec_copy = xlog_write_start_rec(ptr, ticket); 1946 if (start_rec_copy) { 1947 record_cnt++; 1948 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1949 start_rec_copy); 1950 } 1951 1952 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 1953 if (!ophdr) 1954 return XFS_ERROR(EIO); 1955 1956 xlog_write_adv_cnt(&ptr, &len, &log_offset, 1957 sizeof(struct xlog_op_header)); 1958 1959 len += xlog_write_setup_copy(ticket, ophdr, 1960 iclog->ic_size-log_offset, 1961 reg->i_len, 1962 ©_off, ©_len, 1963 &partial_copy, 1964 &partial_copy_len); 1965 xlog_verify_dest_ptr(log, ptr); 1966 1967 /* copy region */ 1968 ASSERT(copy_len >= 0); 1969 memcpy(ptr, reg->i_addr + copy_off, copy_len); 1970 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 1971 1972 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 1973 record_cnt++; 1974 data_cnt += contwr ? copy_len : 0; 1975 1976 error = xlog_write_copy_finish(log, iclog, flags, 1977 &record_cnt, &data_cnt, 1978 &partial_copy, 1979 &partial_copy_len, 1980 log_offset, 1981 commit_iclog); 1982 if (error) 1983 return error; 1984 1985 /* 1986 * if we had a partial copy, we need to get more iclog 1987 * space but we don't want to increment the region 1988 * index because there is still more is this region to 1989 * write. 1990 * 1991 * If we completed writing this region, and we flushed 1992 * the iclog (indicated by resetting of the record 1993 * count), then we also need to get more log space. If 1994 * this was the last record, though, we are done and 1995 * can just return. 1996 */ 1997 if (partial_copy) 1998 break; 1999 2000 if (++index == lv->lv_niovecs) { 2001 lv = lv->lv_next; 2002 index = 0; 2003 if (lv) 2004 vecp = lv->lv_iovecp; 2005 } 2006 if (record_cnt == 0) { 2007 if (!lv) 2008 return 0; 2009 break; 2010 } 2011 } 2012 } 2013 2014 ASSERT(len == 0); 2015 2016 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2017 if (!commit_iclog) 2018 return xlog_state_release_iclog(log, iclog); 2019 2020 ASSERT(flags & XLOG_COMMIT_TRANS); 2021 *commit_iclog = iclog; 2022 return 0; 2023 } 2024 2025 2026 /***************************************************************************** 2027 * 2028 * State Machine functions 2029 * 2030 ***************************************************************************** 2031 */ 2032 2033 /* Clean iclogs starting from the head. This ordering must be 2034 * maintained, so an iclog doesn't become ACTIVE beyond one that 2035 * is SYNCING. This is also required to maintain the notion that we use 2036 * a ordered wait queue to hold off would be writers to the log when every 2037 * iclog is trying to sync to disk. 2038 * 2039 * State Change: DIRTY -> ACTIVE 2040 */ 2041 STATIC void 2042 xlog_state_clean_log(xlog_t *log) 2043 { 2044 xlog_in_core_t *iclog; 2045 int changed = 0; 2046 2047 iclog = log->l_iclog; 2048 do { 2049 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2050 iclog->ic_state = XLOG_STATE_ACTIVE; 2051 iclog->ic_offset = 0; 2052 ASSERT(iclog->ic_callback == NULL); 2053 /* 2054 * If the number of ops in this iclog indicate it just 2055 * contains the dummy transaction, we can 2056 * change state into IDLE (the second time around). 2057 * Otherwise we should change the state into 2058 * NEED a dummy. 2059 * We don't need to cover the dummy. 2060 */ 2061 if (!changed && 2062 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2063 XLOG_COVER_OPS)) { 2064 changed = 1; 2065 } else { 2066 /* 2067 * We have two dirty iclogs so start over 2068 * This could also be num of ops indicates 2069 * this is not the dummy going out. 2070 */ 2071 changed = 2; 2072 } 2073 iclog->ic_header.h_num_logops = 0; 2074 memset(iclog->ic_header.h_cycle_data, 0, 2075 sizeof(iclog->ic_header.h_cycle_data)); 2076 iclog->ic_header.h_lsn = 0; 2077 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2078 /* do nothing */; 2079 else 2080 break; /* stop cleaning */ 2081 iclog = iclog->ic_next; 2082 } while (iclog != log->l_iclog); 2083 2084 /* log is locked when we are called */ 2085 /* 2086 * Change state for the dummy log recording. 2087 * We usually go to NEED. But we go to NEED2 if the changed indicates 2088 * we are done writing the dummy record. 2089 * If we are done with the second dummy recored (DONE2), then 2090 * we go to IDLE. 2091 */ 2092 if (changed) { 2093 switch (log->l_covered_state) { 2094 case XLOG_STATE_COVER_IDLE: 2095 case XLOG_STATE_COVER_NEED: 2096 case XLOG_STATE_COVER_NEED2: 2097 log->l_covered_state = XLOG_STATE_COVER_NEED; 2098 break; 2099 2100 case XLOG_STATE_COVER_DONE: 2101 if (changed == 1) 2102 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2103 else 2104 log->l_covered_state = XLOG_STATE_COVER_NEED; 2105 break; 2106 2107 case XLOG_STATE_COVER_DONE2: 2108 if (changed == 1) 2109 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2110 else 2111 log->l_covered_state = XLOG_STATE_COVER_NEED; 2112 break; 2113 2114 default: 2115 ASSERT(0); 2116 } 2117 } 2118 } /* xlog_state_clean_log */ 2119 2120 STATIC xfs_lsn_t 2121 xlog_get_lowest_lsn( 2122 xlog_t *log) 2123 { 2124 xlog_in_core_t *lsn_log; 2125 xfs_lsn_t lowest_lsn, lsn; 2126 2127 lsn_log = log->l_iclog; 2128 lowest_lsn = 0; 2129 do { 2130 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2131 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2132 if ((lsn && !lowest_lsn) || 2133 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2134 lowest_lsn = lsn; 2135 } 2136 } 2137 lsn_log = lsn_log->ic_next; 2138 } while (lsn_log != log->l_iclog); 2139 return lowest_lsn; 2140 } 2141 2142 2143 STATIC void 2144 xlog_state_do_callback( 2145 xlog_t *log, 2146 int aborted, 2147 xlog_in_core_t *ciclog) 2148 { 2149 xlog_in_core_t *iclog; 2150 xlog_in_core_t *first_iclog; /* used to know when we've 2151 * processed all iclogs once */ 2152 xfs_log_callback_t *cb, *cb_next; 2153 int flushcnt = 0; 2154 xfs_lsn_t lowest_lsn; 2155 int ioerrors; /* counter: iclogs with errors */ 2156 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2157 int funcdidcallbacks; /* flag: function did callbacks */ 2158 int repeats; /* for issuing console warnings if 2159 * looping too many times */ 2160 int wake = 0; 2161 2162 spin_lock(&log->l_icloglock); 2163 first_iclog = iclog = log->l_iclog; 2164 ioerrors = 0; 2165 funcdidcallbacks = 0; 2166 repeats = 0; 2167 2168 do { 2169 /* 2170 * Scan all iclogs starting with the one pointed to by the 2171 * log. Reset this starting point each time the log is 2172 * unlocked (during callbacks). 2173 * 2174 * Keep looping through iclogs until one full pass is made 2175 * without running any callbacks. 2176 */ 2177 first_iclog = log->l_iclog; 2178 iclog = log->l_iclog; 2179 loopdidcallbacks = 0; 2180 repeats++; 2181 2182 do { 2183 2184 /* skip all iclogs in the ACTIVE & DIRTY states */ 2185 if (iclog->ic_state & 2186 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2187 iclog = iclog->ic_next; 2188 continue; 2189 } 2190 2191 /* 2192 * Between marking a filesystem SHUTDOWN and stopping 2193 * the log, we do flush all iclogs to disk (if there 2194 * wasn't a log I/O error). So, we do want things to 2195 * go smoothly in case of just a SHUTDOWN w/o a 2196 * LOG_IO_ERROR. 2197 */ 2198 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2199 /* 2200 * Can only perform callbacks in order. Since 2201 * this iclog is not in the DONE_SYNC/ 2202 * DO_CALLBACK state, we skip the rest and 2203 * just try to clean up. If we set our iclog 2204 * to DO_CALLBACK, we will not process it when 2205 * we retry since a previous iclog is in the 2206 * CALLBACK and the state cannot change since 2207 * we are holding the l_icloglock. 2208 */ 2209 if (!(iclog->ic_state & 2210 (XLOG_STATE_DONE_SYNC | 2211 XLOG_STATE_DO_CALLBACK))) { 2212 if (ciclog && (ciclog->ic_state == 2213 XLOG_STATE_DONE_SYNC)) { 2214 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2215 } 2216 break; 2217 } 2218 /* 2219 * We now have an iclog that is in either the 2220 * DO_CALLBACK or DONE_SYNC states. The other 2221 * states (WANT_SYNC, SYNCING, or CALLBACK were 2222 * caught by the above if and are going to 2223 * clean (i.e. we aren't doing their callbacks) 2224 * see the above if. 2225 */ 2226 2227 /* 2228 * We will do one more check here to see if we 2229 * have chased our tail around. 2230 */ 2231 2232 lowest_lsn = xlog_get_lowest_lsn(log); 2233 if (lowest_lsn && 2234 XFS_LSN_CMP(lowest_lsn, 2235 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2236 iclog = iclog->ic_next; 2237 continue; /* Leave this iclog for 2238 * another thread */ 2239 } 2240 2241 iclog->ic_state = XLOG_STATE_CALLBACK; 2242 2243 spin_unlock(&log->l_icloglock); 2244 2245 /* l_last_sync_lsn field protected by 2246 * l_grant_lock. Don't worry about iclog's lsn. 2247 * No one else can be here except us. 2248 */ 2249 spin_lock(&log->l_grant_lock); 2250 ASSERT(XFS_LSN_CMP(log->l_last_sync_lsn, 2251 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2252 log->l_last_sync_lsn = 2253 be64_to_cpu(iclog->ic_header.h_lsn); 2254 spin_unlock(&log->l_grant_lock); 2255 2256 } else { 2257 spin_unlock(&log->l_icloglock); 2258 ioerrors++; 2259 } 2260 2261 /* 2262 * Keep processing entries in the callback list until 2263 * we come around and it is empty. We need to 2264 * atomically see that the list is empty and change the 2265 * state to DIRTY so that we don't miss any more 2266 * callbacks being added. 2267 */ 2268 spin_lock(&iclog->ic_callback_lock); 2269 cb = iclog->ic_callback; 2270 while (cb) { 2271 iclog->ic_callback_tail = &(iclog->ic_callback); 2272 iclog->ic_callback = NULL; 2273 spin_unlock(&iclog->ic_callback_lock); 2274 2275 /* perform callbacks in the order given */ 2276 for (; cb; cb = cb_next) { 2277 cb_next = cb->cb_next; 2278 cb->cb_func(cb->cb_arg, aborted); 2279 } 2280 spin_lock(&iclog->ic_callback_lock); 2281 cb = iclog->ic_callback; 2282 } 2283 2284 loopdidcallbacks++; 2285 funcdidcallbacks++; 2286 2287 spin_lock(&log->l_icloglock); 2288 ASSERT(iclog->ic_callback == NULL); 2289 spin_unlock(&iclog->ic_callback_lock); 2290 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2291 iclog->ic_state = XLOG_STATE_DIRTY; 2292 2293 /* 2294 * Transition from DIRTY to ACTIVE if applicable. 2295 * NOP if STATE_IOERROR. 2296 */ 2297 xlog_state_clean_log(log); 2298 2299 /* wake up threads waiting in xfs_log_force() */ 2300 sv_broadcast(&iclog->ic_force_wait); 2301 2302 iclog = iclog->ic_next; 2303 } while (first_iclog != iclog); 2304 2305 if (repeats > 5000) { 2306 flushcnt += repeats; 2307 repeats = 0; 2308 xfs_fs_cmn_err(CE_WARN, log->l_mp, 2309 "%s: possible infinite loop (%d iterations)", 2310 __func__, flushcnt); 2311 } 2312 } while (!ioerrors && loopdidcallbacks); 2313 2314 /* 2315 * make one last gasp attempt to see if iclogs are being left in 2316 * limbo.. 2317 */ 2318 #ifdef DEBUG 2319 if (funcdidcallbacks) { 2320 first_iclog = iclog = log->l_iclog; 2321 do { 2322 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2323 /* 2324 * Terminate the loop if iclogs are found in states 2325 * which will cause other threads to clean up iclogs. 2326 * 2327 * SYNCING - i/o completion will go through logs 2328 * DONE_SYNC - interrupt thread should be waiting for 2329 * l_icloglock 2330 * IOERROR - give up hope all ye who enter here 2331 */ 2332 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2333 iclog->ic_state == XLOG_STATE_SYNCING || 2334 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2335 iclog->ic_state == XLOG_STATE_IOERROR ) 2336 break; 2337 iclog = iclog->ic_next; 2338 } while (first_iclog != iclog); 2339 } 2340 #endif 2341 2342 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2343 wake = 1; 2344 spin_unlock(&log->l_icloglock); 2345 2346 if (wake) 2347 sv_broadcast(&log->l_flush_wait); 2348 } 2349 2350 2351 /* 2352 * Finish transitioning this iclog to the dirty state. 2353 * 2354 * Make sure that we completely execute this routine only when this is 2355 * the last call to the iclog. There is a good chance that iclog flushes, 2356 * when we reach the end of the physical log, get turned into 2 separate 2357 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2358 * routine. By using the reference count bwritecnt, we guarantee that only 2359 * the second completion goes through. 2360 * 2361 * Callbacks could take time, so they are done outside the scope of the 2362 * global state machine log lock. 2363 */ 2364 STATIC void 2365 xlog_state_done_syncing( 2366 xlog_in_core_t *iclog, 2367 int aborted) 2368 { 2369 xlog_t *log = iclog->ic_log; 2370 2371 spin_lock(&log->l_icloglock); 2372 2373 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2374 iclog->ic_state == XLOG_STATE_IOERROR); 2375 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2376 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2377 2378 2379 /* 2380 * If we got an error, either on the first buffer, or in the case of 2381 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2382 * and none should ever be attempted to be written to disk 2383 * again. 2384 */ 2385 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2386 if (--iclog->ic_bwritecnt == 1) { 2387 spin_unlock(&log->l_icloglock); 2388 return; 2389 } 2390 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2391 } 2392 2393 /* 2394 * Someone could be sleeping prior to writing out the next 2395 * iclog buffer, we wake them all, one will get to do the 2396 * I/O, the others get to wait for the result. 2397 */ 2398 sv_broadcast(&iclog->ic_write_wait); 2399 spin_unlock(&log->l_icloglock); 2400 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2401 } /* xlog_state_done_syncing */ 2402 2403 2404 /* 2405 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2406 * sleep. We wait on the flush queue on the head iclog as that should be 2407 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2408 * we will wait here and all new writes will sleep until a sync completes. 2409 * 2410 * The in-core logs are used in a circular fashion. They are not used 2411 * out-of-order even when an iclog past the head is free. 2412 * 2413 * return: 2414 * * log_offset where xlog_write() can start writing into the in-core 2415 * log's data space. 2416 * * in-core log pointer to which xlog_write() should write. 2417 * * boolean indicating this is a continued write to an in-core log. 2418 * If this is the last write, then the in-core log's offset field 2419 * needs to be incremented, depending on the amount of data which 2420 * is copied. 2421 */ 2422 STATIC int 2423 xlog_state_get_iclog_space(xlog_t *log, 2424 int len, 2425 xlog_in_core_t **iclogp, 2426 xlog_ticket_t *ticket, 2427 int *continued_write, 2428 int *logoffsetp) 2429 { 2430 int log_offset; 2431 xlog_rec_header_t *head; 2432 xlog_in_core_t *iclog; 2433 int error; 2434 2435 restart: 2436 spin_lock(&log->l_icloglock); 2437 if (XLOG_FORCED_SHUTDOWN(log)) { 2438 spin_unlock(&log->l_icloglock); 2439 return XFS_ERROR(EIO); 2440 } 2441 2442 iclog = log->l_iclog; 2443 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2444 XFS_STATS_INC(xs_log_noiclogs); 2445 2446 /* Wait for log writes to have flushed */ 2447 sv_wait(&log->l_flush_wait, 0, &log->l_icloglock, 0); 2448 goto restart; 2449 } 2450 2451 head = &iclog->ic_header; 2452 2453 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2454 log_offset = iclog->ic_offset; 2455 2456 /* On the 1st write to an iclog, figure out lsn. This works 2457 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2458 * committing to. If the offset is set, that's how many blocks 2459 * must be written. 2460 */ 2461 if (log_offset == 0) { 2462 ticket->t_curr_res -= log->l_iclog_hsize; 2463 xlog_tic_add_region(ticket, 2464 log->l_iclog_hsize, 2465 XLOG_REG_TYPE_LRHEADER); 2466 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2467 head->h_lsn = cpu_to_be64( 2468 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2469 ASSERT(log->l_curr_block >= 0); 2470 } 2471 2472 /* If there is enough room to write everything, then do it. Otherwise, 2473 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2474 * bit is on, so this will get flushed out. Don't update ic_offset 2475 * until you know exactly how many bytes get copied. Therefore, wait 2476 * until later to update ic_offset. 2477 * 2478 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2479 * can fit into remaining data section. 2480 */ 2481 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2482 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2483 2484 /* 2485 * If I'm the only one writing to this iclog, sync it to disk. 2486 * We need to do an atomic compare and decrement here to avoid 2487 * racing with concurrent atomic_dec_and_lock() calls in 2488 * xlog_state_release_iclog() when there is more than one 2489 * reference to the iclog. 2490 */ 2491 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2492 /* we are the only one */ 2493 spin_unlock(&log->l_icloglock); 2494 error = xlog_state_release_iclog(log, iclog); 2495 if (error) 2496 return error; 2497 } else { 2498 spin_unlock(&log->l_icloglock); 2499 } 2500 goto restart; 2501 } 2502 2503 /* Do we have enough room to write the full amount in the remainder 2504 * of this iclog? Or must we continue a write on the next iclog and 2505 * mark this iclog as completely taken? In the case where we switch 2506 * iclogs (to mark it taken), this particular iclog will release/sync 2507 * to disk in xlog_write(). 2508 */ 2509 if (len <= iclog->ic_size - iclog->ic_offset) { 2510 *continued_write = 0; 2511 iclog->ic_offset += len; 2512 } else { 2513 *continued_write = 1; 2514 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2515 } 2516 *iclogp = iclog; 2517 2518 ASSERT(iclog->ic_offset <= iclog->ic_size); 2519 spin_unlock(&log->l_icloglock); 2520 2521 *logoffsetp = log_offset; 2522 return 0; 2523 } /* xlog_state_get_iclog_space */ 2524 2525 /* 2526 * Atomically get the log space required for a log ticket. 2527 * 2528 * Once a ticket gets put onto the reserveq, it will only return after 2529 * the needed reservation is satisfied. 2530 */ 2531 STATIC int 2532 xlog_grant_log_space(xlog_t *log, 2533 xlog_ticket_t *tic) 2534 { 2535 int free_bytes; 2536 int need_bytes; 2537 #ifdef DEBUG 2538 xfs_lsn_t tail_lsn; 2539 #endif 2540 2541 2542 #ifdef DEBUG 2543 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2544 panic("grant Recovery problem"); 2545 #endif 2546 2547 /* Is there space or do we need to sleep? */ 2548 spin_lock(&log->l_grant_lock); 2549 2550 trace_xfs_log_grant_enter(log, tic); 2551 2552 /* something is already sleeping; insert new transaction at end */ 2553 if (log->l_reserve_headq) { 2554 xlog_ins_ticketq(&log->l_reserve_headq, tic); 2555 2556 trace_xfs_log_grant_sleep1(log, tic); 2557 2558 /* 2559 * Gotta check this before going to sleep, while we're 2560 * holding the grant lock. 2561 */ 2562 if (XLOG_FORCED_SHUTDOWN(log)) 2563 goto error_return; 2564 2565 XFS_STATS_INC(xs_sleep_logspace); 2566 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s); 2567 /* 2568 * If we got an error, and the filesystem is shutting down, 2569 * we'll catch it down below. So just continue... 2570 */ 2571 trace_xfs_log_grant_wake1(log, tic); 2572 spin_lock(&log->l_grant_lock); 2573 } 2574 if (tic->t_flags & XFS_LOG_PERM_RESERV) 2575 need_bytes = tic->t_unit_res*tic->t_ocnt; 2576 else 2577 need_bytes = tic->t_unit_res; 2578 2579 redo: 2580 if (XLOG_FORCED_SHUTDOWN(log)) 2581 goto error_return; 2582 2583 free_bytes = xlog_space_left(log, log->l_grant_reserve_cycle, 2584 log->l_grant_reserve_bytes); 2585 if (free_bytes < need_bytes) { 2586 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0) 2587 xlog_ins_ticketq(&log->l_reserve_headq, tic); 2588 2589 trace_xfs_log_grant_sleep2(log, tic); 2590 2591 spin_unlock(&log->l_grant_lock); 2592 xlog_grant_push_ail(log->l_mp, need_bytes); 2593 spin_lock(&log->l_grant_lock); 2594 2595 XFS_STATS_INC(xs_sleep_logspace); 2596 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s); 2597 2598 spin_lock(&log->l_grant_lock); 2599 if (XLOG_FORCED_SHUTDOWN(log)) 2600 goto error_return; 2601 2602 trace_xfs_log_grant_wake2(log, tic); 2603 2604 goto redo; 2605 } else if (tic->t_flags & XLOG_TIC_IN_Q) 2606 xlog_del_ticketq(&log->l_reserve_headq, tic); 2607 2608 /* we've got enough space */ 2609 xlog_grant_add_space(log, need_bytes); 2610 #ifdef DEBUG 2611 tail_lsn = log->l_tail_lsn; 2612 /* 2613 * Check to make sure the grant write head didn't just over lap the 2614 * tail. If the cycles are the same, we can't be overlapping. 2615 * Otherwise, make sure that the cycles differ by exactly one and 2616 * check the byte count. 2617 */ 2618 if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) { 2619 ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn)); 2620 ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn))); 2621 } 2622 #endif 2623 trace_xfs_log_grant_exit(log, tic); 2624 xlog_verify_grant_head(log, 1); 2625 spin_unlock(&log->l_grant_lock); 2626 return 0; 2627 2628 error_return: 2629 if (tic->t_flags & XLOG_TIC_IN_Q) 2630 xlog_del_ticketq(&log->l_reserve_headq, tic); 2631 2632 trace_xfs_log_grant_error(log, tic); 2633 2634 /* 2635 * If we are failing, make sure the ticket doesn't have any 2636 * current reservations. We don't want to add this back when 2637 * the ticket/transaction gets cancelled. 2638 */ 2639 tic->t_curr_res = 0; 2640 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2641 spin_unlock(&log->l_grant_lock); 2642 return XFS_ERROR(EIO); 2643 } /* xlog_grant_log_space */ 2644 2645 2646 /* 2647 * Replenish the byte reservation required by moving the grant write head. 2648 * 2649 * 2650 */ 2651 STATIC int 2652 xlog_regrant_write_log_space(xlog_t *log, 2653 xlog_ticket_t *tic) 2654 { 2655 int free_bytes, need_bytes; 2656 xlog_ticket_t *ntic; 2657 #ifdef DEBUG 2658 xfs_lsn_t tail_lsn; 2659 #endif 2660 2661 tic->t_curr_res = tic->t_unit_res; 2662 xlog_tic_reset_res(tic); 2663 2664 if (tic->t_cnt > 0) 2665 return 0; 2666 2667 #ifdef DEBUG 2668 if (log->l_flags & XLOG_ACTIVE_RECOVERY) 2669 panic("regrant Recovery problem"); 2670 #endif 2671 2672 spin_lock(&log->l_grant_lock); 2673 2674 trace_xfs_log_regrant_write_enter(log, tic); 2675 2676 if (XLOG_FORCED_SHUTDOWN(log)) 2677 goto error_return; 2678 2679 /* If there are other waiters on the queue then give them a 2680 * chance at logspace before us. Wake up the first waiters, 2681 * if we do not wake up all the waiters then go to sleep waiting 2682 * for more free space, otherwise try to get some space for 2683 * this transaction. 2684 */ 2685 need_bytes = tic->t_unit_res; 2686 if ((ntic = log->l_write_headq)) { 2687 free_bytes = xlog_space_left(log, log->l_grant_write_cycle, 2688 log->l_grant_write_bytes); 2689 do { 2690 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV); 2691 2692 if (free_bytes < ntic->t_unit_res) 2693 break; 2694 free_bytes -= ntic->t_unit_res; 2695 sv_signal(&ntic->t_wait); 2696 ntic = ntic->t_next; 2697 } while (ntic != log->l_write_headq); 2698 2699 if (ntic != log->l_write_headq) { 2700 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0) 2701 xlog_ins_ticketq(&log->l_write_headq, tic); 2702 2703 trace_xfs_log_regrant_write_sleep1(log, tic); 2704 2705 spin_unlock(&log->l_grant_lock); 2706 xlog_grant_push_ail(log->l_mp, need_bytes); 2707 spin_lock(&log->l_grant_lock); 2708 2709 XFS_STATS_INC(xs_sleep_logspace); 2710 sv_wait(&tic->t_wait, PINOD|PLTWAIT, 2711 &log->l_grant_lock, s); 2712 2713 /* If we're shutting down, this tic is already 2714 * off the queue */ 2715 spin_lock(&log->l_grant_lock); 2716 if (XLOG_FORCED_SHUTDOWN(log)) 2717 goto error_return; 2718 2719 trace_xfs_log_regrant_write_wake1(log, tic); 2720 } 2721 } 2722 2723 redo: 2724 if (XLOG_FORCED_SHUTDOWN(log)) 2725 goto error_return; 2726 2727 free_bytes = xlog_space_left(log, log->l_grant_write_cycle, 2728 log->l_grant_write_bytes); 2729 if (free_bytes < need_bytes) { 2730 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0) 2731 xlog_ins_ticketq(&log->l_write_headq, tic); 2732 spin_unlock(&log->l_grant_lock); 2733 xlog_grant_push_ail(log->l_mp, need_bytes); 2734 spin_lock(&log->l_grant_lock); 2735 2736 XFS_STATS_INC(xs_sleep_logspace); 2737 trace_xfs_log_regrant_write_sleep2(log, tic); 2738 2739 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s); 2740 2741 /* If we're shutting down, this tic is already off the queue */ 2742 spin_lock(&log->l_grant_lock); 2743 if (XLOG_FORCED_SHUTDOWN(log)) 2744 goto error_return; 2745 2746 trace_xfs_log_regrant_write_wake2(log, tic); 2747 goto redo; 2748 } else if (tic->t_flags & XLOG_TIC_IN_Q) 2749 xlog_del_ticketq(&log->l_write_headq, tic); 2750 2751 /* we've got enough space */ 2752 xlog_grant_add_space_write(log, need_bytes); 2753 #ifdef DEBUG 2754 tail_lsn = log->l_tail_lsn; 2755 if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) { 2756 ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn)); 2757 ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn))); 2758 } 2759 #endif 2760 2761 trace_xfs_log_regrant_write_exit(log, tic); 2762 2763 xlog_verify_grant_head(log, 1); 2764 spin_unlock(&log->l_grant_lock); 2765 return 0; 2766 2767 2768 error_return: 2769 if (tic->t_flags & XLOG_TIC_IN_Q) 2770 xlog_del_ticketq(&log->l_reserve_headq, tic); 2771 2772 trace_xfs_log_regrant_write_error(log, tic); 2773 2774 /* 2775 * If we are failing, make sure the ticket doesn't have any 2776 * current reservations. We don't want to add this back when 2777 * the ticket/transaction gets cancelled. 2778 */ 2779 tic->t_curr_res = 0; 2780 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 2781 spin_unlock(&log->l_grant_lock); 2782 return XFS_ERROR(EIO); 2783 } /* xlog_regrant_write_log_space */ 2784 2785 2786 /* The first cnt-1 times through here we don't need to 2787 * move the grant write head because the permanent 2788 * reservation has reserved cnt times the unit amount. 2789 * Release part of current permanent unit reservation and 2790 * reset current reservation to be one units worth. Also 2791 * move grant reservation head forward. 2792 */ 2793 STATIC void 2794 xlog_regrant_reserve_log_space(xlog_t *log, 2795 xlog_ticket_t *ticket) 2796 { 2797 trace_xfs_log_regrant_reserve_enter(log, ticket); 2798 2799 if (ticket->t_cnt > 0) 2800 ticket->t_cnt--; 2801 2802 spin_lock(&log->l_grant_lock); 2803 xlog_grant_sub_space(log, ticket->t_curr_res); 2804 ticket->t_curr_res = ticket->t_unit_res; 2805 xlog_tic_reset_res(ticket); 2806 2807 trace_xfs_log_regrant_reserve_sub(log, ticket); 2808 2809 xlog_verify_grant_head(log, 1); 2810 2811 /* just return if we still have some of the pre-reserved space */ 2812 if (ticket->t_cnt > 0) { 2813 spin_unlock(&log->l_grant_lock); 2814 return; 2815 } 2816 2817 xlog_grant_add_space_reserve(log, ticket->t_unit_res); 2818 2819 trace_xfs_log_regrant_reserve_exit(log, ticket); 2820 2821 xlog_verify_grant_head(log, 0); 2822 spin_unlock(&log->l_grant_lock); 2823 ticket->t_curr_res = ticket->t_unit_res; 2824 xlog_tic_reset_res(ticket); 2825 } /* xlog_regrant_reserve_log_space */ 2826 2827 2828 /* 2829 * Give back the space left from a reservation. 2830 * 2831 * All the information we need to make a correct determination of space left 2832 * is present. For non-permanent reservations, things are quite easy. The 2833 * count should have been decremented to zero. We only need to deal with the 2834 * space remaining in the current reservation part of the ticket. If the 2835 * ticket contains a permanent reservation, there may be left over space which 2836 * needs to be released. A count of N means that N-1 refills of the current 2837 * reservation can be done before we need to ask for more space. The first 2838 * one goes to fill up the first current reservation. Once we run out of 2839 * space, the count will stay at zero and the only space remaining will be 2840 * in the current reservation field. 2841 */ 2842 STATIC void 2843 xlog_ungrant_log_space(xlog_t *log, 2844 xlog_ticket_t *ticket) 2845 { 2846 if (ticket->t_cnt > 0) 2847 ticket->t_cnt--; 2848 2849 spin_lock(&log->l_grant_lock); 2850 trace_xfs_log_ungrant_enter(log, ticket); 2851 2852 xlog_grant_sub_space(log, ticket->t_curr_res); 2853 2854 trace_xfs_log_ungrant_sub(log, ticket); 2855 2856 /* If this is a permanent reservation ticket, we may be able to free 2857 * up more space based on the remaining count. 2858 */ 2859 if (ticket->t_cnt > 0) { 2860 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2861 xlog_grant_sub_space(log, ticket->t_unit_res*ticket->t_cnt); 2862 } 2863 2864 trace_xfs_log_ungrant_exit(log, ticket); 2865 2866 xlog_verify_grant_head(log, 1); 2867 spin_unlock(&log->l_grant_lock); 2868 xfs_log_move_tail(log->l_mp, 1); 2869 } /* xlog_ungrant_log_space */ 2870 2871 2872 /* 2873 * Flush iclog to disk if this is the last reference to the given iclog and 2874 * the WANT_SYNC bit is set. 2875 * 2876 * When this function is entered, the iclog is not necessarily in the 2877 * WANT_SYNC state. It may be sitting around waiting to get filled. 2878 * 2879 * 2880 */ 2881 STATIC int 2882 xlog_state_release_iclog( 2883 xlog_t *log, 2884 xlog_in_core_t *iclog) 2885 { 2886 int sync = 0; /* do we sync? */ 2887 2888 if (iclog->ic_state & XLOG_STATE_IOERROR) 2889 return XFS_ERROR(EIO); 2890 2891 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 2892 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 2893 return 0; 2894 2895 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2896 spin_unlock(&log->l_icloglock); 2897 return XFS_ERROR(EIO); 2898 } 2899 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 2900 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2901 2902 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 2903 /* update tail before writing to iclog */ 2904 xlog_assign_tail_lsn(log->l_mp); 2905 sync++; 2906 iclog->ic_state = XLOG_STATE_SYNCING; 2907 iclog->ic_header.h_tail_lsn = cpu_to_be64(log->l_tail_lsn); 2908 xlog_verify_tail_lsn(log, iclog, log->l_tail_lsn); 2909 /* cycle incremented when incrementing curr_block */ 2910 } 2911 spin_unlock(&log->l_icloglock); 2912 2913 /* 2914 * We let the log lock go, so it's possible that we hit a log I/O 2915 * error or some other SHUTDOWN condition that marks the iclog 2916 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 2917 * this iclog has consistent data, so we ignore IOERROR 2918 * flags after this point. 2919 */ 2920 if (sync) 2921 return xlog_sync(log, iclog); 2922 return 0; 2923 } /* xlog_state_release_iclog */ 2924 2925 2926 /* 2927 * This routine will mark the current iclog in the ring as WANT_SYNC 2928 * and move the current iclog pointer to the next iclog in the ring. 2929 * When this routine is called from xlog_state_get_iclog_space(), the 2930 * exact size of the iclog has not yet been determined. All we know is 2931 * that every data block. We have run out of space in this log record. 2932 */ 2933 STATIC void 2934 xlog_state_switch_iclogs(xlog_t *log, 2935 xlog_in_core_t *iclog, 2936 int eventual_size) 2937 { 2938 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2939 if (!eventual_size) 2940 eventual_size = iclog->ic_offset; 2941 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2942 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 2943 log->l_prev_block = log->l_curr_block; 2944 log->l_prev_cycle = log->l_curr_cycle; 2945 2946 /* roll log?: ic_offset changed later */ 2947 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2948 2949 /* Round up to next log-sunit */ 2950 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 2951 log->l_mp->m_sb.sb_logsunit > 1) { 2952 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 2953 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2954 } 2955 2956 if (log->l_curr_block >= log->l_logBBsize) { 2957 log->l_curr_cycle++; 2958 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2959 log->l_curr_cycle++; 2960 log->l_curr_block -= log->l_logBBsize; 2961 ASSERT(log->l_curr_block >= 0); 2962 } 2963 ASSERT(iclog == log->l_iclog); 2964 log->l_iclog = iclog->ic_next; 2965 } /* xlog_state_switch_iclogs */ 2966 2967 /* 2968 * Write out all data in the in-core log as of this exact moment in time. 2969 * 2970 * Data may be written to the in-core log during this call. However, 2971 * we don't guarantee this data will be written out. A change from past 2972 * implementation means this routine will *not* write out zero length LRs. 2973 * 2974 * Basically, we try and perform an intelligent scan of the in-core logs. 2975 * If we determine there is no flushable data, we just return. There is no 2976 * flushable data if: 2977 * 2978 * 1. the current iclog is active and has no data; the previous iclog 2979 * is in the active or dirty state. 2980 * 2. the current iclog is drity, and the previous iclog is in the 2981 * active or dirty state. 2982 * 2983 * We may sleep if: 2984 * 2985 * 1. the current iclog is not in the active nor dirty state. 2986 * 2. the current iclog dirty, and the previous iclog is not in the 2987 * active nor dirty state. 2988 * 3. the current iclog is active, and there is another thread writing 2989 * to this particular iclog. 2990 * 4. a) the current iclog is active and has no other writers 2991 * b) when we return from flushing out this iclog, it is still 2992 * not in the active nor dirty state. 2993 */ 2994 int 2995 _xfs_log_force( 2996 struct xfs_mount *mp, 2997 uint flags, 2998 int *log_flushed) 2999 { 3000 struct log *log = mp->m_log; 3001 struct xlog_in_core *iclog; 3002 xfs_lsn_t lsn; 3003 3004 XFS_STATS_INC(xs_log_force); 3005 3006 if (log->l_cilp) 3007 xlog_cil_force(log); 3008 3009 spin_lock(&log->l_icloglock); 3010 3011 iclog = log->l_iclog; 3012 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3013 spin_unlock(&log->l_icloglock); 3014 return XFS_ERROR(EIO); 3015 } 3016 3017 /* If the head iclog is not active nor dirty, we just attach 3018 * ourselves to the head and go to sleep. 3019 */ 3020 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3021 iclog->ic_state == XLOG_STATE_DIRTY) { 3022 /* 3023 * If the head is dirty or (active and empty), then 3024 * we need to look at the previous iclog. If the previous 3025 * iclog is active or dirty we are done. There is nothing 3026 * to sync out. Otherwise, we attach ourselves to the 3027 * previous iclog and go to sleep. 3028 */ 3029 if (iclog->ic_state == XLOG_STATE_DIRTY || 3030 (atomic_read(&iclog->ic_refcnt) == 0 3031 && iclog->ic_offset == 0)) { 3032 iclog = iclog->ic_prev; 3033 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3034 iclog->ic_state == XLOG_STATE_DIRTY) 3035 goto no_sleep; 3036 else 3037 goto maybe_sleep; 3038 } else { 3039 if (atomic_read(&iclog->ic_refcnt) == 0) { 3040 /* We are the only one with access to this 3041 * iclog. Flush it out now. There should 3042 * be a roundoff of zero to show that someone 3043 * has already taken care of the roundoff from 3044 * the previous sync. 3045 */ 3046 atomic_inc(&iclog->ic_refcnt); 3047 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3048 xlog_state_switch_iclogs(log, iclog, 0); 3049 spin_unlock(&log->l_icloglock); 3050 3051 if (xlog_state_release_iclog(log, iclog)) 3052 return XFS_ERROR(EIO); 3053 3054 if (log_flushed) 3055 *log_flushed = 1; 3056 spin_lock(&log->l_icloglock); 3057 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3058 iclog->ic_state != XLOG_STATE_DIRTY) 3059 goto maybe_sleep; 3060 else 3061 goto no_sleep; 3062 } else { 3063 /* Someone else is writing to this iclog. 3064 * Use its call to flush out the data. However, 3065 * the other thread may not force out this LR, 3066 * so we mark it WANT_SYNC. 3067 */ 3068 xlog_state_switch_iclogs(log, iclog, 0); 3069 goto maybe_sleep; 3070 } 3071 } 3072 } 3073 3074 /* By the time we come around again, the iclog could've been filled 3075 * which would give it another lsn. If we have a new lsn, just 3076 * return because the relevant data has been flushed. 3077 */ 3078 maybe_sleep: 3079 if (flags & XFS_LOG_SYNC) { 3080 /* 3081 * We must check if we're shutting down here, before 3082 * we wait, while we're holding the l_icloglock. 3083 * Then we check again after waking up, in case our 3084 * sleep was disturbed by a bad news. 3085 */ 3086 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3087 spin_unlock(&log->l_icloglock); 3088 return XFS_ERROR(EIO); 3089 } 3090 XFS_STATS_INC(xs_log_force_sleep); 3091 sv_wait(&iclog->ic_force_wait, PINOD, &log->l_icloglock, s); 3092 /* 3093 * No need to grab the log lock here since we're 3094 * only deciding whether or not to return EIO 3095 * and the memory read should be atomic. 3096 */ 3097 if (iclog->ic_state & XLOG_STATE_IOERROR) 3098 return XFS_ERROR(EIO); 3099 if (log_flushed) 3100 *log_flushed = 1; 3101 } else { 3102 3103 no_sleep: 3104 spin_unlock(&log->l_icloglock); 3105 } 3106 return 0; 3107 } 3108 3109 /* 3110 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3111 * about errors or whether the log was flushed or not. This is the normal 3112 * interface to use when trying to unpin items or move the log forward. 3113 */ 3114 void 3115 xfs_log_force( 3116 xfs_mount_t *mp, 3117 uint flags) 3118 { 3119 int error; 3120 3121 error = _xfs_log_force(mp, flags, NULL); 3122 if (error) { 3123 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: " 3124 "error %d returned.", error); 3125 } 3126 } 3127 3128 /* 3129 * Force the in-core log to disk for a specific LSN. 3130 * 3131 * Find in-core log with lsn. 3132 * If it is in the DIRTY state, just return. 3133 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3134 * state and go to sleep or return. 3135 * If it is in any other state, go to sleep or return. 3136 * 3137 * Synchronous forces are implemented with a signal variable. All callers 3138 * to force a given lsn to disk will wait on a the sv attached to the 3139 * specific in-core log. When given in-core log finally completes its 3140 * write to disk, that thread will wake up all threads waiting on the 3141 * sv. 3142 */ 3143 int 3144 _xfs_log_force_lsn( 3145 struct xfs_mount *mp, 3146 xfs_lsn_t lsn, 3147 uint flags, 3148 int *log_flushed) 3149 { 3150 struct log *log = mp->m_log; 3151 struct xlog_in_core *iclog; 3152 int already_slept = 0; 3153 3154 ASSERT(lsn != 0); 3155 3156 XFS_STATS_INC(xs_log_force); 3157 3158 if (log->l_cilp) { 3159 lsn = xlog_cil_force_lsn(log, lsn); 3160 if (lsn == NULLCOMMITLSN) 3161 return 0; 3162 } 3163 3164 try_again: 3165 spin_lock(&log->l_icloglock); 3166 iclog = log->l_iclog; 3167 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3168 spin_unlock(&log->l_icloglock); 3169 return XFS_ERROR(EIO); 3170 } 3171 3172 do { 3173 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3174 iclog = iclog->ic_next; 3175 continue; 3176 } 3177 3178 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3179 spin_unlock(&log->l_icloglock); 3180 return 0; 3181 } 3182 3183 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3184 /* 3185 * We sleep here if we haven't already slept (e.g. 3186 * this is the first time we've looked at the correct 3187 * iclog buf) and the buffer before us is going to 3188 * be sync'ed. The reason for this is that if we 3189 * are doing sync transactions here, by waiting for 3190 * the previous I/O to complete, we can allow a few 3191 * more transactions into this iclog before we close 3192 * it down. 3193 * 3194 * Otherwise, we mark the buffer WANT_SYNC, and bump 3195 * up the refcnt so we can release the log (which 3196 * drops the ref count). The state switch keeps new 3197 * transaction commits from using this buffer. When 3198 * the current commits finish writing into the buffer, 3199 * the refcount will drop to zero and the buffer will 3200 * go out then. 3201 */ 3202 if (!already_slept && 3203 (iclog->ic_prev->ic_state & 3204 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3205 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3206 3207 XFS_STATS_INC(xs_log_force_sleep); 3208 3209 sv_wait(&iclog->ic_prev->ic_write_wait, 3210 PSWP, &log->l_icloglock, s); 3211 if (log_flushed) 3212 *log_flushed = 1; 3213 already_slept = 1; 3214 goto try_again; 3215 } 3216 atomic_inc(&iclog->ic_refcnt); 3217 xlog_state_switch_iclogs(log, iclog, 0); 3218 spin_unlock(&log->l_icloglock); 3219 if (xlog_state_release_iclog(log, iclog)) 3220 return XFS_ERROR(EIO); 3221 if (log_flushed) 3222 *log_flushed = 1; 3223 spin_lock(&log->l_icloglock); 3224 } 3225 3226 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3227 !(iclog->ic_state & 3228 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3229 /* 3230 * Don't wait on completion if we know that we've 3231 * gotten a log write error. 3232 */ 3233 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3234 spin_unlock(&log->l_icloglock); 3235 return XFS_ERROR(EIO); 3236 } 3237 XFS_STATS_INC(xs_log_force_sleep); 3238 sv_wait(&iclog->ic_force_wait, PSWP, &log->l_icloglock, s); 3239 /* 3240 * No need to grab the log lock here since we're 3241 * only deciding whether or not to return EIO 3242 * and the memory read should be atomic. 3243 */ 3244 if (iclog->ic_state & XLOG_STATE_IOERROR) 3245 return XFS_ERROR(EIO); 3246 3247 if (log_flushed) 3248 *log_flushed = 1; 3249 } else { /* just return */ 3250 spin_unlock(&log->l_icloglock); 3251 } 3252 3253 return 0; 3254 } while (iclog != log->l_iclog); 3255 3256 spin_unlock(&log->l_icloglock); 3257 return 0; 3258 } 3259 3260 /* 3261 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3262 * about errors or whether the log was flushed or not. This is the normal 3263 * interface to use when trying to unpin items or move the log forward. 3264 */ 3265 void 3266 xfs_log_force_lsn( 3267 xfs_mount_t *mp, 3268 xfs_lsn_t lsn, 3269 uint flags) 3270 { 3271 int error; 3272 3273 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3274 if (error) { 3275 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: " 3276 "error %d returned.", error); 3277 } 3278 } 3279 3280 /* 3281 * Called when we want to mark the current iclog as being ready to sync to 3282 * disk. 3283 */ 3284 STATIC void 3285 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog) 3286 { 3287 assert_spin_locked(&log->l_icloglock); 3288 3289 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3290 xlog_state_switch_iclogs(log, iclog, 0); 3291 } else { 3292 ASSERT(iclog->ic_state & 3293 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3294 } 3295 } 3296 3297 3298 /***************************************************************************** 3299 * 3300 * TICKET functions 3301 * 3302 ***************************************************************************** 3303 */ 3304 3305 /* 3306 * Free a used ticket when its refcount falls to zero. 3307 */ 3308 void 3309 xfs_log_ticket_put( 3310 xlog_ticket_t *ticket) 3311 { 3312 ASSERT(atomic_read(&ticket->t_ref) > 0); 3313 if (atomic_dec_and_test(&ticket->t_ref)) { 3314 sv_destroy(&ticket->t_wait); 3315 kmem_zone_free(xfs_log_ticket_zone, ticket); 3316 } 3317 } 3318 3319 xlog_ticket_t * 3320 xfs_log_ticket_get( 3321 xlog_ticket_t *ticket) 3322 { 3323 ASSERT(atomic_read(&ticket->t_ref) > 0); 3324 atomic_inc(&ticket->t_ref); 3325 return ticket; 3326 } 3327 3328 xlog_tid_t 3329 xfs_log_get_trans_ident( 3330 struct xfs_trans *tp) 3331 { 3332 return tp->t_ticket->t_tid; 3333 } 3334 3335 /* 3336 * Allocate and initialise a new log ticket. 3337 */ 3338 xlog_ticket_t * 3339 xlog_ticket_alloc( 3340 struct log *log, 3341 int unit_bytes, 3342 int cnt, 3343 char client, 3344 uint xflags, 3345 int alloc_flags) 3346 { 3347 struct xlog_ticket *tic; 3348 uint num_headers; 3349 int iclog_space; 3350 3351 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3352 if (!tic) 3353 return NULL; 3354 3355 /* 3356 * Permanent reservations have up to 'cnt'-1 active log operations 3357 * in the log. A unit in this case is the amount of space for one 3358 * of these log operations. Normal reservations have a cnt of 1 3359 * and their unit amount is the total amount of space required. 3360 * 3361 * The following lines of code account for non-transaction data 3362 * which occupy space in the on-disk log. 3363 * 3364 * Normal form of a transaction is: 3365 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3366 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3367 * 3368 * We need to account for all the leadup data and trailer data 3369 * around the transaction data. 3370 * And then we need to account for the worst case in terms of using 3371 * more space. 3372 * The worst case will happen if: 3373 * - the placement of the transaction happens to be such that the 3374 * roundoff is at its maximum 3375 * - the transaction data is synced before the commit record is synced 3376 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3377 * Therefore the commit record is in its own Log Record. 3378 * This can happen as the commit record is called with its 3379 * own region to xlog_write(). 3380 * This then means that in the worst case, roundoff can happen for 3381 * the commit-rec as well. 3382 * The commit-rec is smaller than padding in this scenario and so it is 3383 * not added separately. 3384 */ 3385 3386 /* for trans header */ 3387 unit_bytes += sizeof(xlog_op_header_t); 3388 unit_bytes += sizeof(xfs_trans_header_t); 3389 3390 /* for start-rec */ 3391 unit_bytes += sizeof(xlog_op_header_t); 3392 3393 /* 3394 * for LR headers - the space for data in an iclog is the size minus 3395 * the space used for the headers. If we use the iclog size, then we 3396 * undercalculate the number of headers required. 3397 * 3398 * Furthermore - the addition of op headers for split-recs might 3399 * increase the space required enough to require more log and op 3400 * headers, so take that into account too. 3401 * 3402 * IMPORTANT: This reservation makes the assumption that if this 3403 * transaction is the first in an iclog and hence has the LR headers 3404 * accounted to it, then the remaining space in the iclog is 3405 * exclusively for this transaction. i.e. if the transaction is larger 3406 * than the iclog, it will be the only thing in that iclog. 3407 * Fundamentally, this means we must pass the entire log vector to 3408 * xlog_write to guarantee this. 3409 */ 3410 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3411 num_headers = howmany(unit_bytes, iclog_space); 3412 3413 /* for split-recs - ophdrs added when data split over LRs */ 3414 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3415 3416 /* add extra header reservations if we overrun */ 3417 while (!num_headers || 3418 howmany(unit_bytes, iclog_space) > num_headers) { 3419 unit_bytes += sizeof(xlog_op_header_t); 3420 num_headers++; 3421 } 3422 unit_bytes += log->l_iclog_hsize * num_headers; 3423 3424 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3425 unit_bytes += log->l_iclog_hsize; 3426 3427 /* for roundoff padding for transaction data and one for commit record */ 3428 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3429 log->l_mp->m_sb.sb_logsunit > 1) { 3430 /* log su roundoff */ 3431 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit; 3432 } else { 3433 /* BB roundoff */ 3434 unit_bytes += 2*BBSIZE; 3435 } 3436 3437 atomic_set(&tic->t_ref, 1); 3438 tic->t_unit_res = unit_bytes; 3439 tic->t_curr_res = unit_bytes; 3440 tic->t_cnt = cnt; 3441 tic->t_ocnt = cnt; 3442 tic->t_tid = random32(); 3443 tic->t_clientid = client; 3444 tic->t_flags = XLOG_TIC_INITED; 3445 tic->t_trans_type = 0; 3446 if (xflags & XFS_LOG_PERM_RESERV) 3447 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3448 sv_init(&tic->t_wait, SV_DEFAULT, "logtick"); 3449 3450 xlog_tic_reset_res(tic); 3451 3452 return tic; 3453 } 3454 3455 3456 /****************************************************************************** 3457 * 3458 * Log debug routines 3459 * 3460 ****************************************************************************** 3461 */ 3462 #if defined(DEBUG) 3463 /* 3464 * Make sure that the destination ptr is within the valid data region of 3465 * one of the iclogs. This uses backup pointers stored in a different 3466 * part of the log in case we trash the log structure. 3467 */ 3468 void 3469 xlog_verify_dest_ptr( 3470 struct log *log, 3471 char *ptr) 3472 { 3473 int i; 3474 int good_ptr = 0; 3475 3476 for (i = 0; i < log->l_iclog_bufs; i++) { 3477 if (ptr >= log->l_iclog_bak[i] && 3478 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3479 good_ptr++; 3480 } 3481 3482 if (!good_ptr) 3483 xlog_panic("xlog_verify_dest_ptr: invalid ptr"); 3484 } 3485 3486 STATIC void 3487 xlog_verify_grant_head(xlog_t *log, int equals) 3488 { 3489 if (log->l_grant_reserve_cycle == log->l_grant_write_cycle) { 3490 if (equals) 3491 ASSERT(log->l_grant_reserve_bytes >= log->l_grant_write_bytes); 3492 else 3493 ASSERT(log->l_grant_reserve_bytes > log->l_grant_write_bytes); 3494 } else { 3495 ASSERT(log->l_grant_reserve_cycle-1 == log->l_grant_write_cycle); 3496 ASSERT(log->l_grant_write_bytes >= log->l_grant_reserve_bytes); 3497 } 3498 } /* xlog_verify_grant_head */ 3499 3500 /* check if it will fit */ 3501 STATIC void 3502 xlog_verify_tail_lsn(xlog_t *log, 3503 xlog_in_core_t *iclog, 3504 xfs_lsn_t tail_lsn) 3505 { 3506 int blocks; 3507 3508 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3509 blocks = 3510 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3511 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3512 xlog_panic("xlog_verify_tail_lsn: ran out of log space"); 3513 } else { 3514 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3515 3516 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3517 xlog_panic("xlog_verify_tail_lsn: tail wrapped"); 3518 3519 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3520 if (blocks < BTOBB(iclog->ic_offset) + 1) 3521 xlog_panic("xlog_verify_tail_lsn: ran out of log space"); 3522 } 3523 } /* xlog_verify_tail_lsn */ 3524 3525 /* 3526 * Perform a number of checks on the iclog before writing to disk. 3527 * 3528 * 1. Make sure the iclogs are still circular 3529 * 2. Make sure we have a good magic number 3530 * 3. Make sure we don't have magic numbers in the data 3531 * 4. Check fields of each log operation header for: 3532 * A. Valid client identifier 3533 * B. tid ptr value falls in valid ptr space (user space code) 3534 * C. Length in log record header is correct according to the 3535 * individual operation headers within record. 3536 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3537 * log, check the preceding blocks of the physical log to make sure all 3538 * the cycle numbers agree with the current cycle number. 3539 */ 3540 STATIC void 3541 xlog_verify_iclog(xlog_t *log, 3542 xlog_in_core_t *iclog, 3543 int count, 3544 boolean_t syncing) 3545 { 3546 xlog_op_header_t *ophead; 3547 xlog_in_core_t *icptr; 3548 xlog_in_core_2_t *xhdr; 3549 xfs_caddr_t ptr; 3550 xfs_caddr_t base_ptr; 3551 __psint_t field_offset; 3552 __uint8_t clientid; 3553 int len, i, j, k, op_len; 3554 int idx; 3555 3556 /* check validity of iclog pointers */ 3557 spin_lock(&log->l_icloglock); 3558 icptr = log->l_iclog; 3559 for (i=0; i < log->l_iclog_bufs; i++) { 3560 if (icptr == NULL) 3561 xlog_panic("xlog_verify_iclog: invalid ptr"); 3562 icptr = icptr->ic_next; 3563 } 3564 if (icptr != log->l_iclog) 3565 xlog_panic("xlog_verify_iclog: corrupt iclog ring"); 3566 spin_unlock(&log->l_icloglock); 3567 3568 /* check log magic numbers */ 3569 if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM) 3570 xlog_panic("xlog_verify_iclog: invalid magic num"); 3571 3572 ptr = (xfs_caddr_t) &iclog->ic_header; 3573 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3574 ptr += BBSIZE) { 3575 if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) 3576 xlog_panic("xlog_verify_iclog: unexpected magic num"); 3577 } 3578 3579 /* check fields */ 3580 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3581 ptr = iclog->ic_datap; 3582 base_ptr = ptr; 3583 ophead = (xlog_op_header_t *)ptr; 3584 xhdr = iclog->ic_data; 3585 for (i = 0; i < len; i++) { 3586 ophead = (xlog_op_header_t *)ptr; 3587 3588 /* clientid is only 1 byte */ 3589 field_offset = (__psint_t) 3590 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3591 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3592 clientid = ophead->oh_clientid; 3593 } else { 3594 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3595 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3596 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3597 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3598 clientid = xlog_get_client_id( 3599 xhdr[j].hic_xheader.xh_cycle_data[k]); 3600 } else { 3601 clientid = xlog_get_client_id( 3602 iclog->ic_header.h_cycle_data[idx]); 3603 } 3604 } 3605 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3606 cmn_err(CE_WARN, "xlog_verify_iclog: " 3607 "invalid clientid %d op 0x%p offset 0x%lx", 3608 clientid, ophead, (unsigned long)field_offset); 3609 3610 /* check length */ 3611 field_offset = (__psint_t) 3612 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3613 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3614 op_len = be32_to_cpu(ophead->oh_len); 3615 } else { 3616 idx = BTOBBT((__psint_t)&ophead->oh_len - 3617 (__psint_t)iclog->ic_datap); 3618 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3619 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3620 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3621 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3622 } else { 3623 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3624 } 3625 } 3626 ptr += sizeof(xlog_op_header_t) + op_len; 3627 } 3628 } /* xlog_verify_iclog */ 3629 #endif 3630 3631 /* 3632 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3633 */ 3634 STATIC int 3635 xlog_state_ioerror( 3636 xlog_t *log) 3637 { 3638 xlog_in_core_t *iclog, *ic; 3639 3640 iclog = log->l_iclog; 3641 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3642 /* 3643 * Mark all the incore logs IOERROR. 3644 * From now on, no log flushes will result. 3645 */ 3646 ic = iclog; 3647 do { 3648 ic->ic_state = XLOG_STATE_IOERROR; 3649 ic = ic->ic_next; 3650 } while (ic != iclog); 3651 return 0; 3652 } 3653 /* 3654 * Return non-zero, if state transition has already happened. 3655 */ 3656 return 1; 3657 } 3658 3659 /* 3660 * This is called from xfs_force_shutdown, when we're forcibly 3661 * shutting down the filesystem, typically because of an IO error. 3662 * Our main objectives here are to make sure that: 3663 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3664 * parties to find out, 'atomically'. 3665 * b. those who're sleeping on log reservations, pinned objects and 3666 * other resources get woken up, and be told the bad news. 3667 * c. nothing new gets queued up after (a) and (b) are done. 3668 * d. if !logerror, flush the iclogs to disk, then seal them off 3669 * for business. 3670 * 3671 * Note: for delayed logging the !logerror case needs to flush the regions 3672 * held in memory out to the iclogs before flushing them to disk. This needs 3673 * to be done before the log is marked as shutdown, otherwise the flush to the 3674 * iclogs will fail. 3675 */ 3676 int 3677 xfs_log_force_umount( 3678 struct xfs_mount *mp, 3679 int logerror) 3680 { 3681 xlog_ticket_t *tic; 3682 xlog_t *log; 3683 int retval; 3684 3685 log = mp->m_log; 3686 3687 /* 3688 * If this happens during log recovery, don't worry about 3689 * locking; the log isn't open for business yet. 3690 */ 3691 if (!log || 3692 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3693 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3694 if (mp->m_sb_bp) 3695 XFS_BUF_DONE(mp->m_sb_bp); 3696 return 0; 3697 } 3698 3699 /* 3700 * Somebody could've already done the hard work for us. 3701 * No need to get locks for this. 3702 */ 3703 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3704 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3705 return 1; 3706 } 3707 retval = 0; 3708 3709 /* 3710 * Flush the in memory commit item list before marking the log as 3711 * being shut down. We need to do it in this order to ensure all the 3712 * completed transactions are flushed to disk with the xfs_log_force() 3713 * call below. 3714 */ 3715 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG)) 3716 xlog_cil_force(log); 3717 3718 /* 3719 * We must hold both the GRANT lock and the LOG lock, 3720 * before we mark the filesystem SHUTDOWN and wake 3721 * everybody up to tell the bad news. 3722 */ 3723 spin_lock(&log->l_icloglock); 3724 spin_lock(&log->l_grant_lock); 3725 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3726 if (mp->m_sb_bp) 3727 XFS_BUF_DONE(mp->m_sb_bp); 3728 3729 /* 3730 * This flag is sort of redundant because of the mount flag, but 3731 * it's good to maintain the separation between the log and the rest 3732 * of XFS. 3733 */ 3734 log->l_flags |= XLOG_IO_ERROR; 3735 3736 /* 3737 * If we hit a log error, we want to mark all the iclogs IOERROR 3738 * while we're still holding the loglock. 3739 */ 3740 if (logerror) 3741 retval = xlog_state_ioerror(log); 3742 spin_unlock(&log->l_icloglock); 3743 3744 /* 3745 * We don't want anybody waiting for log reservations 3746 * after this. That means we have to wake up everybody 3747 * queued up on reserve_headq as well as write_headq. 3748 * In addition, we make sure in xlog_{re}grant_log_space 3749 * that we don't enqueue anything once the SHUTDOWN flag 3750 * is set, and this action is protected by the GRANTLOCK. 3751 */ 3752 if ((tic = log->l_reserve_headq)) { 3753 do { 3754 sv_signal(&tic->t_wait); 3755 tic = tic->t_next; 3756 } while (tic != log->l_reserve_headq); 3757 } 3758 3759 if ((tic = log->l_write_headq)) { 3760 do { 3761 sv_signal(&tic->t_wait); 3762 tic = tic->t_next; 3763 } while (tic != log->l_write_headq); 3764 } 3765 spin_unlock(&log->l_grant_lock); 3766 3767 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3768 ASSERT(!logerror); 3769 /* 3770 * Force the incore logs to disk before shutting the 3771 * log down completely. 3772 */ 3773 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3774 3775 spin_lock(&log->l_icloglock); 3776 retval = xlog_state_ioerror(log); 3777 spin_unlock(&log->l_icloglock); 3778 } 3779 /* 3780 * Wake up everybody waiting on xfs_log_force. 3781 * Callback all log item committed functions as if the 3782 * log writes were completed. 3783 */ 3784 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3785 3786 #ifdef XFSERRORDEBUG 3787 { 3788 xlog_in_core_t *iclog; 3789 3790 spin_lock(&log->l_icloglock); 3791 iclog = log->l_iclog; 3792 do { 3793 ASSERT(iclog->ic_callback == 0); 3794 iclog = iclog->ic_next; 3795 } while (iclog != log->l_iclog); 3796 spin_unlock(&log->l_icloglock); 3797 } 3798 #endif 3799 /* return non-zero if log IOERROR transition had already happened */ 3800 return retval; 3801 } 3802 3803 STATIC int 3804 xlog_iclogs_empty(xlog_t *log) 3805 { 3806 xlog_in_core_t *iclog; 3807 3808 iclog = log->l_iclog; 3809 do { 3810 /* endianness does not matter here, zero is zero in 3811 * any language. 3812 */ 3813 if (iclog->ic_header.h_num_logops) 3814 return 0; 3815 iclog = iclog->ic_next; 3816 } while (iclog != log->l_iclog); 3817 return 1; 3818 } 3819