xref: /openbmc/linux/fs/xfs/xfs_log.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(xlog_t *log, int cycle, int bytes);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(xfs_mount_t	*mp,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_head(xlog_t *log, int equals);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_head(a,b)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 
99 static void
100 xlog_ins_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
101 {
102 	if (*qp) {
103 		tic->t_next	    = (*qp);
104 		tic->t_prev	    = (*qp)->t_prev;
105 		(*qp)->t_prev->t_next = tic;
106 		(*qp)->t_prev	    = tic;
107 	} else {
108 		tic->t_prev = tic->t_next = tic;
109 		*qp = tic;
110 	}
111 
112 	tic->t_flags |= XLOG_TIC_IN_Q;
113 }
114 
115 static void
116 xlog_del_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
117 {
118 	if (tic == tic->t_next) {
119 		*qp = NULL;
120 	} else {
121 		*qp = tic->t_next;
122 		tic->t_next->t_prev = tic->t_prev;
123 		tic->t_prev->t_next = tic->t_next;
124 	}
125 
126 	tic->t_next = tic->t_prev = NULL;
127 	tic->t_flags &= ~XLOG_TIC_IN_Q;
128 }
129 
130 static void
131 xlog_grant_sub_space(struct log *log, int bytes)
132 {
133 	log->l_grant_write_bytes -= bytes;
134 	if (log->l_grant_write_bytes < 0) {
135 		log->l_grant_write_bytes += log->l_logsize;
136 		log->l_grant_write_cycle--;
137 	}
138 
139 	log->l_grant_reserve_bytes -= bytes;
140 	if ((log)->l_grant_reserve_bytes < 0) {
141 		log->l_grant_reserve_bytes += log->l_logsize;
142 		log->l_grant_reserve_cycle--;
143 	}
144 
145 }
146 
147 static void
148 xlog_grant_add_space_write(struct log *log, int bytes)
149 {
150 	int tmp = log->l_logsize - log->l_grant_write_bytes;
151 	if (tmp > bytes)
152 		log->l_grant_write_bytes += bytes;
153 	else {
154 		log->l_grant_write_cycle++;
155 		log->l_grant_write_bytes = bytes - tmp;
156 	}
157 }
158 
159 static void
160 xlog_grant_add_space_reserve(struct log *log, int bytes)
161 {
162 	int tmp = log->l_logsize - log->l_grant_reserve_bytes;
163 	if (tmp > bytes)
164 		log->l_grant_reserve_bytes += bytes;
165 	else {
166 		log->l_grant_reserve_cycle++;
167 		log->l_grant_reserve_bytes = bytes - tmp;
168 	}
169 }
170 
171 static inline void
172 xlog_grant_add_space(struct log *log, int bytes)
173 {
174 	xlog_grant_add_space_write(log, bytes);
175 	xlog_grant_add_space_reserve(log, bytes);
176 }
177 
178 static void
179 xlog_tic_reset_res(xlog_ticket_t *tic)
180 {
181 	tic->t_res_num = 0;
182 	tic->t_res_arr_sum = 0;
183 	tic->t_res_num_ophdrs = 0;
184 }
185 
186 static void
187 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
188 {
189 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
190 		/* add to overflow and start again */
191 		tic->t_res_o_flow += tic->t_res_arr_sum;
192 		tic->t_res_num = 0;
193 		tic->t_res_arr_sum = 0;
194 	}
195 
196 	tic->t_res_arr[tic->t_res_num].r_len = len;
197 	tic->t_res_arr[tic->t_res_num].r_type = type;
198 	tic->t_res_arr_sum += len;
199 	tic->t_res_num++;
200 }
201 
202 /*
203  * NOTES:
204  *
205  *	1. currblock field gets updated at startup and after in-core logs
206  *		marked as with WANT_SYNC.
207  */
208 
209 /*
210  * This routine is called when a user of a log manager ticket is done with
211  * the reservation.  If the ticket was ever used, then a commit record for
212  * the associated transaction is written out as a log operation header with
213  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
214  * a given ticket.  If the ticket was one with a permanent reservation, then
215  * a few operations are done differently.  Permanent reservation tickets by
216  * default don't release the reservation.  They just commit the current
217  * transaction with the belief that the reservation is still needed.  A flag
218  * must be passed in before permanent reservations are actually released.
219  * When these type of tickets are not released, they need to be set into
220  * the inited state again.  By doing this, a start record will be written
221  * out when the next write occurs.
222  */
223 xfs_lsn_t
224 xfs_log_done(
225 	struct xfs_mount	*mp,
226 	struct xlog_ticket	*ticket,
227 	struct xlog_in_core	**iclog,
228 	uint			flags)
229 {
230 	struct log		*log = mp->m_log;
231 	xfs_lsn_t		lsn = 0;
232 
233 	if (XLOG_FORCED_SHUTDOWN(log) ||
234 	    /*
235 	     * If nothing was ever written, don't write out commit record.
236 	     * If we get an error, just continue and give back the log ticket.
237 	     */
238 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
239 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
240 		lsn = (xfs_lsn_t) -1;
241 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
242 			flags |= XFS_LOG_REL_PERM_RESERV;
243 		}
244 	}
245 
246 
247 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
248 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
249 		trace_xfs_log_done_nonperm(log, ticket);
250 
251 		/*
252 		 * Release ticket if not permanent reservation or a specific
253 		 * request has been made to release a permanent reservation.
254 		 */
255 		xlog_ungrant_log_space(log, ticket);
256 		xfs_log_ticket_put(ticket);
257 	} else {
258 		trace_xfs_log_done_perm(log, ticket);
259 
260 		xlog_regrant_reserve_log_space(log, ticket);
261 		/* If this ticket was a permanent reservation and we aren't
262 		 * trying to release it, reset the inited flags; so next time
263 		 * we write, a start record will be written out.
264 		 */
265 		ticket->t_flags |= XLOG_TIC_INITED;
266 	}
267 
268 	return lsn;
269 }
270 
271 /*
272  * Attaches a new iclog I/O completion callback routine during
273  * transaction commit.  If the log is in error state, a non-zero
274  * return code is handed back and the caller is responsible for
275  * executing the callback at an appropriate time.
276  */
277 int
278 xfs_log_notify(
279 	struct xfs_mount	*mp,
280 	struct xlog_in_core	*iclog,
281 	xfs_log_callback_t	*cb)
282 {
283 	int	abortflg;
284 
285 	spin_lock(&iclog->ic_callback_lock);
286 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
287 	if (!abortflg) {
288 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
289 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
290 		cb->cb_next = NULL;
291 		*(iclog->ic_callback_tail) = cb;
292 		iclog->ic_callback_tail = &(cb->cb_next);
293 	}
294 	spin_unlock(&iclog->ic_callback_lock);
295 	return abortflg;
296 }
297 
298 int
299 xfs_log_release_iclog(
300 	struct xfs_mount	*mp,
301 	struct xlog_in_core	*iclog)
302 {
303 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
304 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
305 		return EIO;
306 	}
307 
308 	return 0;
309 }
310 
311 /*
312  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
313  *	to the reservation.
314  *  2. Potentially, push buffers at tail of log to disk.
315  *
316  * Each reservation is going to reserve extra space for a log record header.
317  * When writes happen to the on-disk log, we don't subtract the length of the
318  * log record header from any reservation.  By wasting space in each
319  * reservation, we prevent over allocation problems.
320  */
321 int
322 xfs_log_reserve(
323 	struct xfs_mount	*mp,
324 	int		 	unit_bytes,
325 	int		 	cnt,
326 	struct xlog_ticket	**ticket,
327 	__uint8_t	 	client,
328 	uint		 	flags,
329 	uint		 	t_type)
330 {
331 	struct log		*log = mp->m_log;
332 	struct xlog_ticket	*internal_ticket;
333 	int			retval = 0;
334 
335 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
336 
337 	if (XLOG_FORCED_SHUTDOWN(log))
338 		return XFS_ERROR(EIO);
339 
340 	XFS_STATS_INC(xs_try_logspace);
341 
342 
343 	if (*ticket != NULL) {
344 		ASSERT(flags & XFS_LOG_PERM_RESERV);
345 		internal_ticket = *ticket;
346 
347 		/*
348 		 * this is a new transaction on the ticket, so we need to
349 		 * change the transaction ID so that the next transaction has a
350 		 * different TID in the log. Just add one to the existing tid
351 		 * so that we can see chains of rolling transactions in the log
352 		 * easily.
353 		 */
354 		internal_ticket->t_tid++;
355 
356 		trace_xfs_log_reserve(log, internal_ticket);
357 
358 		xlog_grant_push_ail(mp, internal_ticket->t_unit_res);
359 		retval = xlog_regrant_write_log_space(log, internal_ticket);
360 	} else {
361 		/* may sleep if need to allocate more tickets */
362 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
363 						  client, flags,
364 						  KM_SLEEP|KM_MAYFAIL);
365 		if (!internal_ticket)
366 			return XFS_ERROR(ENOMEM);
367 		internal_ticket->t_trans_type = t_type;
368 		*ticket = internal_ticket;
369 
370 		trace_xfs_log_reserve(log, internal_ticket);
371 
372 		xlog_grant_push_ail(mp,
373 				    (internal_ticket->t_unit_res *
374 				     internal_ticket->t_cnt));
375 		retval = xlog_grant_log_space(log, internal_ticket);
376 	}
377 
378 	return retval;
379 }	/* xfs_log_reserve */
380 
381 
382 /*
383  * Mount a log filesystem
384  *
385  * mp		- ubiquitous xfs mount point structure
386  * log_target	- buftarg of on-disk log device
387  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
388  * num_bblocks	- Number of BBSIZE blocks in on-disk log
389  *
390  * Return error or zero.
391  */
392 int
393 xfs_log_mount(
394 	xfs_mount_t	*mp,
395 	xfs_buftarg_t	*log_target,
396 	xfs_daddr_t	blk_offset,
397 	int		num_bblks)
398 {
399 	int		error;
400 
401 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
402 		cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname);
403 	else {
404 		cmn_err(CE_NOTE,
405 			"!Mounting filesystem \"%s\" in no-recovery mode.  Filesystem will be inconsistent.",
406 			mp->m_fsname);
407 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
408 	}
409 
410 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
411 	if (IS_ERR(mp->m_log)) {
412 		error = -PTR_ERR(mp->m_log);
413 		goto out;
414 	}
415 
416 	/*
417 	 * Initialize the AIL now we have a log.
418 	 */
419 	error = xfs_trans_ail_init(mp);
420 	if (error) {
421 		cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error);
422 		goto out_free_log;
423 	}
424 	mp->m_log->l_ailp = mp->m_ail;
425 
426 	/*
427 	 * skip log recovery on a norecovery mount.  pretend it all
428 	 * just worked.
429 	 */
430 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
431 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
432 
433 		if (readonly)
434 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
435 
436 		error = xlog_recover(mp->m_log);
437 
438 		if (readonly)
439 			mp->m_flags |= XFS_MOUNT_RDONLY;
440 		if (error) {
441 			cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error);
442 			goto out_destroy_ail;
443 		}
444 	}
445 
446 	/* Normal transactions can now occur */
447 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
448 
449 	/*
450 	 * Now the log has been fully initialised and we know were our
451 	 * space grant counters are, we can initialise the permanent ticket
452 	 * needed for delayed logging to work.
453 	 */
454 	xlog_cil_init_post_recovery(mp->m_log);
455 
456 	return 0;
457 
458 out_destroy_ail:
459 	xfs_trans_ail_destroy(mp);
460 out_free_log:
461 	xlog_dealloc_log(mp->m_log);
462 out:
463 	return error;
464 }
465 
466 /*
467  * Finish the recovery of the file system.  This is separate from
468  * the xfs_log_mount() call, because it depends on the code in
469  * xfs_mountfs() to read in the root and real-time bitmap inodes
470  * between calling xfs_log_mount() and here.
471  *
472  * mp		- ubiquitous xfs mount point structure
473  */
474 int
475 xfs_log_mount_finish(xfs_mount_t *mp)
476 {
477 	int	error;
478 
479 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
480 		error = xlog_recover_finish(mp->m_log);
481 	else {
482 		error = 0;
483 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
484 	}
485 
486 	return error;
487 }
488 
489 /*
490  * Final log writes as part of unmount.
491  *
492  * Mark the filesystem clean as unmount happens.  Note that during relocation
493  * this routine needs to be executed as part of source-bag while the
494  * deallocation must not be done until source-end.
495  */
496 
497 /*
498  * Unmount record used to have a string "Unmount filesystem--" in the
499  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
500  * We just write the magic number now since that particular field isn't
501  * currently architecture converted and "nUmount" is a bit foo.
502  * As far as I know, there weren't any dependencies on the old behaviour.
503  */
504 
505 int
506 xfs_log_unmount_write(xfs_mount_t *mp)
507 {
508 	xlog_t		 *log = mp->m_log;
509 	xlog_in_core_t	 *iclog;
510 #ifdef DEBUG
511 	xlog_in_core_t	 *first_iclog;
512 #endif
513 	xlog_ticket_t	*tic = NULL;
514 	xfs_lsn_t	 lsn;
515 	int		 error;
516 
517 	/*
518 	 * Don't write out unmount record on read-only mounts.
519 	 * Or, if we are doing a forced umount (typically because of IO errors).
520 	 */
521 	if (mp->m_flags & XFS_MOUNT_RDONLY)
522 		return 0;
523 
524 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
525 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
526 
527 #ifdef DEBUG
528 	first_iclog = iclog = log->l_iclog;
529 	do {
530 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
531 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
532 			ASSERT(iclog->ic_offset == 0);
533 		}
534 		iclog = iclog->ic_next;
535 	} while (iclog != first_iclog);
536 #endif
537 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
538 		error = xfs_log_reserve(mp, 600, 1, &tic,
539 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
540 		if (!error) {
541 			/* the data section must be 32 bit size aligned */
542 			struct {
543 			    __uint16_t magic;
544 			    __uint16_t pad1;
545 			    __uint32_t pad2; /* may as well make it 64 bits */
546 			} magic = {
547 				.magic = XLOG_UNMOUNT_TYPE,
548 			};
549 			struct xfs_log_iovec reg = {
550 				.i_addr = &magic,
551 				.i_len = sizeof(magic),
552 				.i_type = XLOG_REG_TYPE_UNMOUNT,
553 			};
554 			struct xfs_log_vec vec = {
555 				.lv_niovecs = 1,
556 				.lv_iovecp = &reg,
557 			};
558 
559 			/* remove inited flag */
560 			tic->t_flags = 0;
561 			error = xlog_write(log, &vec, tic, &lsn,
562 					   NULL, XLOG_UNMOUNT_TRANS);
563 			/*
564 			 * At this point, we're umounting anyway,
565 			 * so there's no point in transitioning log state
566 			 * to IOERROR. Just continue...
567 			 */
568 		}
569 
570 		if (error) {
571 			xfs_fs_cmn_err(CE_ALERT, mp,
572 				"xfs_log_unmount: unmount record failed");
573 		}
574 
575 
576 		spin_lock(&log->l_icloglock);
577 		iclog = log->l_iclog;
578 		atomic_inc(&iclog->ic_refcnt);
579 		xlog_state_want_sync(log, iclog);
580 		spin_unlock(&log->l_icloglock);
581 		error = xlog_state_release_iclog(log, iclog);
582 
583 		spin_lock(&log->l_icloglock);
584 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
585 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
586 			if (!XLOG_FORCED_SHUTDOWN(log)) {
587 				sv_wait(&iclog->ic_force_wait, PMEM,
588 					&log->l_icloglock, s);
589 			} else {
590 				spin_unlock(&log->l_icloglock);
591 			}
592 		} else {
593 			spin_unlock(&log->l_icloglock);
594 		}
595 		if (tic) {
596 			trace_xfs_log_umount_write(log, tic);
597 			xlog_ungrant_log_space(log, tic);
598 			xfs_log_ticket_put(tic);
599 		}
600 	} else {
601 		/*
602 		 * We're already in forced_shutdown mode, couldn't
603 		 * even attempt to write out the unmount transaction.
604 		 *
605 		 * Go through the motions of sync'ing and releasing
606 		 * the iclog, even though no I/O will actually happen,
607 		 * we need to wait for other log I/Os that may already
608 		 * be in progress.  Do this as a separate section of
609 		 * code so we'll know if we ever get stuck here that
610 		 * we're in this odd situation of trying to unmount
611 		 * a file system that went into forced_shutdown as
612 		 * the result of an unmount..
613 		 */
614 		spin_lock(&log->l_icloglock);
615 		iclog = log->l_iclog;
616 		atomic_inc(&iclog->ic_refcnt);
617 
618 		xlog_state_want_sync(log, iclog);
619 		spin_unlock(&log->l_icloglock);
620 		error =  xlog_state_release_iclog(log, iclog);
621 
622 		spin_lock(&log->l_icloglock);
623 
624 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
625 			|| iclog->ic_state == XLOG_STATE_DIRTY
626 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
627 
628 				sv_wait(&iclog->ic_force_wait, PMEM,
629 					&log->l_icloglock, s);
630 		} else {
631 			spin_unlock(&log->l_icloglock);
632 		}
633 	}
634 
635 	return error;
636 }	/* xfs_log_unmount_write */
637 
638 /*
639  * Deallocate log structures for unmount/relocation.
640  *
641  * We need to stop the aild from running before we destroy
642  * and deallocate the log as the aild references the log.
643  */
644 void
645 xfs_log_unmount(xfs_mount_t *mp)
646 {
647 	xfs_trans_ail_destroy(mp);
648 	xlog_dealloc_log(mp->m_log);
649 }
650 
651 void
652 xfs_log_item_init(
653 	struct xfs_mount	*mp,
654 	struct xfs_log_item	*item,
655 	int			type,
656 	struct xfs_item_ops	*ops)
657 {
658 	item->li_mountp = mp;
659 	item->li_ailp = mp->m_ail;
660 	item->li_type = type;
661 	item->li_ops = ops;
662 	item->li_lv = NULL;
663 
664 	INIT_LIST_HEAD(&item->li_ail);
665 	INIT_LIST_HEAD(&item->li_cil);
666 }
667 
668 /*
669  * Write region vectors to log.  The write happens using the space reservation
670  * of the ticket (tic).  It is not a requirement that all writes for a given
671  * transaction occur with one call to xfs_log_write(). However, it is important
672  * to note that the transaction reservation code makes an assumption about the
673  * number of log headers a transaction requires that may be violated if you
674  * don't pass all the transaction vectors in one call....
675  */
676 int
677 xfs_log_write(
678 	struct xfs_mount	*mp,
679 	struct xfs_log_iovec	reg[],
680 	int			nentries,
681 	struct xlog_ticket	*tic,
682 	xfs_lsn_t		*start_lsn)
683 {
684 	struct log		*log = mp->m_log;
685 	int			error;
686 	struct xfs_log_vec	vec = {
687 		.lv_niovecs = nentries,
688 		.lv_iovecp = reg,
689 	};
690 
691 	if (XLOG_FORCED_SHUTDOWN(log))
692 		return XFS_ERROR(EIO);
693 
694 	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
695 	if (error)
696 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
697 	return error;
698 }
699 
700 void
701 xfs_log_move_tail(xfs_mount_t	*mp,
702 		  xfs_lsn_t	tail_lsn)
703 {
704 	xlog_ticket_t	*tic;
705 	xlog_t		*log = mp->m_log;
706 	int		need_bytes, free_bytes, cycle, bytes;
707 
708 	if (XLOG_FORCED_SHUTDOWN(log))
709 		return;
710 
711 	if (tail_lsn == 0) {
712 		/* needed since sync_lsn is 64 bits */
713 		spin_lock(&log->l_icloglock);
714 		tail_lsn = log->l_last_sync_lsn;
715 		spin_unlock(&log->l_icloglock);
716 	}
717 
718 	spin_lock(&log->l_grant_lock);
719 
720 	/* Also an invalid lsn.  1 implies that we aren't passing in a valid
721 	 * tail_lsn.
722 	 */
723 	if (tail_lsn != 1) {
724 		log->l_tail_lsn = tail_lsn;
725 	}
726 
727 	if ((tic = log->l_write_headq)) {
728 #ifdef DEBUG
729 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
730 			panic("Recovery problem");
731 #endif
732 		cycle = log->l_grant_write_cycle;
733 		bytes = log->l_grant_write_bytes;
734 		free_bytes = xlog_space_left(log, cycle, bytes);
735 		do {
736 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
737 
738 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
739 				break;
740 			tail_lsn = 0;
741 			free_bytes -= tic->t_unit_res;
742 			sv_signal(&tic->t_wait);
743 			tic = tic->t_next;
744 		} while (tic != log->l_write_headq);
745 	}
746 	if ((tic = log->l_reserve_headq)) {
747 #ifdef DEBUG
748 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
749 			panic("Recovery problem");
750 #endif
751 		cycle = log->l_grant_reserve_cycle;
752 		bytes = log->l_grant_reserve_bytes;
753 		free_bytes = xlog_space_left(log, cycle, bytes);
754 		do {
755 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
756 				need_bytes = tic->t_unit_res*tic->t_cnt;
757 			else
758 				need_bytes = tic->t_unit_res;
759 			if (free_bytes < need_bytes && tail_lsn != 1)
760 				break;
761 			tail_lsn = 0;
762 			free_bytes -= need_bytes;
763 			sv_signal(&tic->t_wait);
764 			tic = tic->t_next;
765 		} while (tic != log->l_reserve_headq);
766 	}
767 	spin_unlock(&log->l_grant_lock);
768 }	/* xfs_log_move_tail */
769 
770 /*
771  * Determine if we have a transaction that has gone to disk
772  * that needs to be covered. To begin the transition to the idle state
773  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
774  * If we are then in a state where covering is needed, the caller is informed
775  * that dummy transactions are required to move the log into the idle state.
776  *
777  * Because this is called as part of the sync process, we should also indicate
778  * that dummy transactions should be issued in anything but the covered or
779  * idle states. This ensures that the log tail is accurately reflected in
780  * the log at the end of the sync, hence if a crash occurrs avoids replay
781  * of transactions where the metadata is already on disk.
782  */
783 int
784 xfs_log_need_covered(xfs_mount_t *mp)
785 {
786 	int		needed = 0;
787 	xlog_t		*log = mp->m_log;
788 
789 	if (!xfs_fs_writable(mp))
790 		return 0;
791 
792 	spin_lock(&log->l_icloglock);
793 	switch (log->l_covered_state) {
794 	case XLOG_STATE_COVER_DONE:
795 	case XLOG_STATE_COVER_DONE2:
796 	case XLOG_STATE_COVER_IDLE:
797 		break;
798 	case XLOG_STATE_COVER_NEED:
799 	case XLOG_STATE_COVER_NEED2:
800 		if (!xfs_trans_ail_tail(log->l_ailp) &&
801 		    xlog_iclogs_empty(log)) {
802 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
803 				log->l_covered_state = XLOG_STATE_COVER_DONE;
804 			else
805 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
806 		}
807 		/* FALLTHRU */
808 	default:
809 		needed = 1;
810 		break;
811 	}
812 	spin_unlock(&log->l_icloglock);
813 	return needed;
814 }
815 
816 /******************************************************************************
817  *
818  *	local routines
819  *
820  ******************************************************************************
821  */
822 
823 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
824  * The log manager must keep track of the last LR which was committed
825  * to disk.  The lsn of this LR will become the new tail_lsn whenever
826  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
827  * the situation where stuff could be written into the log but nothing
828  * was ever in the AIL when asked.  Eventually, we panic since the
829  * tail hits the head.
830  *
831  * We may be holding the log iclog lock upon entering this routine.
832  */
833 xfs_lsn_t
834 xlog_assign_tail_lsn(xfs_mount_t *mp)
835 {
836 	xfs_lsn_t tail_lsn;
837 	xlog_t	  *log = mp->m_log;
838 
839 	tail_lsn = xfs_trans_ail_tail(mp->m_ail);
840 	spin_lock(&log->l_grant_lock);
841 	if (tail_lsn != 0) {
842 		log->l_tail_lsn = tail_lsn;
843 	} else {
844 		tail_lsn = log->l_tail_lsn = log->l_last_sync_lsn;
845 	}
846 	spin_unlock(&log->l_grant_lock);
847 
848 	return tail_lsn;
849 }	/* xlog_assign_tail_lsn */
850 
851 
852 /*
853  * Return the space in the log between the tail and the head.  The head
854  * is passed in the cycle/bytes formal parms.  In the special case where
855  * the reserve head has wrapped passed the tail, this calculation is no
856  * longer valid.  In this case, just return 0 which means there is no space
857  * in the log.  This works for all places where this function is called
858  * with the reserve head.  Of course, if the write head were to ever
859  * wrap the tail, we should blow up.  Rather than catch this case here,
860  * we depend on other ASSERTions in other parts of the code.   XXXmiken
861  *
862  * This code also handles the case where the reservation head is behind
863  * the tail.  The details of this case are described below, but the end
864  * result is that we return the size of the log as the amount of space left.
865  */
866 STATIC int
867 xlog_space_left(xlog_t *log, int cycle, int bytes)
868 {
869 	int free_bytes;
870 	int tail_bytes;
871 	int tail_cycle;
872 
873 	tail_bytes = BBTOB(BLOCK_LSN(log->l_tail_lsn));
874 	tail_cycle = CYCLE_LSN(log->l_tail_lsn);
875 	if ((tail_cycle == cycle) && (bytes >= tail_bytes)) {
876 		free_bytes = log->l_logsize - (bytes - tail_bytes);
877 	} else if ((tail_cycle + 1) < cycle) {
878 		return 0;
879 	} else if (tail_cycle < cycle) {
880 		ASSERT(tail_cycle == (cycle - 1));
881 		free_bytes = tail_bytes - bytes;
882 	} else {
883 		/*
884 		 * The reservation head is behind the tail.
885 		 * In this case we just want to return the size of the
886 		 * log as the amount of space left.
887 		 */
888 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
889 			"xlog_space_left: head behind tail\n"
890 			"  tail_cycle = %d, tail_bytes = %d\n"
891 			"  GH   cycle = %d, GH   bytes = %d",
892 			tail_cycle, tail_bytes, cycle, bytes);
893 		ASSERT(0);
894 		free_bytes = log->l_logsize;
895 	}
896 	return free_bytes;
897 }	/* xlog_space_left */
898 
899 
900 /*
901  * Log function which is called when an io completes.
902  *
903  * The log manager needs its own routine, in order to control what
904  * happens with the buffer after the write completes.
905  */
906 void
907 xlog_iodone(xfs_buf_t *bp)
908 {
909 	xlog_in_core_t	*iclog;
910 	xlog_t		*l;
911 	int		aborted;
912 
913 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
914 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
915 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
916 	aborted = 0;
917 	l = iclog->ic_log;
918 
919 	/*
920 	 * Race to shutdown the filesystem if we see an error.
921 	 */
922 	if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
923 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
924 		xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
925 		XFS_BUF_STALE(bp);
926 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
927 		/*
928 		 * This flag will be propagated to the trans-committed
929 		 * callback routines to let them know that the log-commit
930 		 * didn't succeed.
931 		 */
932 		aborted = XFS_LI_ABORTED;
933 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
934 		aborted = XFS_LI_ABORTED;
935 	}
936 
937 	/* log I/O is always issued ASYNC */
938 	ASSERT(XFS_BUF_ISASYNC(bp));
939 	xlog_state_done_syncing(iclog, aborted);
940 	/*
941 	 * do not reference the buffer (bp) here as we could race
942 	 * with it being freed after writing the unmount record to the
943 	 * log.
944 	 */
945 
946 }	/* xlog_iodone */
947 
948 /*
949  * Return size of each in-core log record buffer.
950  *
951  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
952  *
953  * If the filesystem blocksize is too large, we may need to choose a
954  * larger size since the directory code currently logs entire blocks.
955  */
956 
957 STATIC void
958 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
959 			   xlog_t	*log)
960 {
961 	int size;
962 	int xhdrs;
963 
964 	if (mp->m_logbufs <= 0)
965 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
966 	else
967 		log->l_iclog_bufs = mp->m_logbufs;
968 
969 	/*
970 	 * Buffer size passed in from mount system call.
971 	 */
972 	if (mp->m_logbsize > 0) {
973 		size = log->l_iclog_size = mp->m_logbsize;
974 		log->l_iclog_size_log = 0;
975 		while (size != 1) {
976 			log->l_iclog_size_log++;
977 			size >>= 1;
978 		}
979 
980 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
981 			/* # headers = size / 32k
982 			 * one header holds cycles from 32k of data
983 			 */
984 
985 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
986 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
987 				xhdrs++;
988 			log->l_iclog_hsize = xhdrs << BBSHIFT;
989 			log->l_iclog_heads = xhdrs;
990 		} else {
991 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
992 			log->l_iclog_hsize = BBSIZE;
993 			log->l_iclog_heads = 1;
994 		}
995 		goto done;
996 	}
997 
998 	/* All machines use 32kB buffers by default. */
999 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1000 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1001 
1002 	/* the default log size is 16k or 32k which is one header sector */
1003 	log->l_iclog_hsize = BBSIZE;
1004 	log->l_iclog_heads = 1;
1005 
1006 done:
1007 	/* are we being asked to make the sizes selected above visible? */
1008 	if (mp->m_logbufs == 0)
1009 		mp->m_logbufs = log->l_iclog_bufs;
1010 	if (mp->m_logbsize == 0)
1011 		mp->m_logbsize = log->l_iclog_size;
1012 }	/* xlog_get_iclog_buffer_size */
1013 
1014 
1015 /*
1016  * This routine initializes some of the log structure for a given mount point.
1017  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1018  * some other stuff may be filled in too.
1019  */
1020 STATIC xlog_t *
1021 xlog_alloc_log(xfs_mount_t	*mp,
1022 	       xfs_buftarg_t	*log_target,
1023 	       xfs_daddr_t	blk_offset,
1024 	       int		num_bblks)
1025 {
1026 	xlog_t			*log;
1027 	xlog_rec_header_t	*head;
1028 	xlog_in_core_t		**iclogp;
1029 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1030 	xfs_buf_t		*bp;
1031 	int			i;
1032 	int			error = ENOMEM;
1033 	uint			log2_size = 0;
1034 
1035 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1036 	if (!log) {
1037 		xlog_warn("XFS: Log allocation failed: No memory!");
1038 		goto out;
1039 	}
1040 
1041 	log->l_mp	   = mp;
1042 	log->l_targ	   = log_target;
1043 	log->l_logsize     = BBTOB(num_bblks);
1044 	log->l_logBBstart  = blk_offset;
1045 	log->l_logBBsize   = num_bblks;
1046 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1047 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1048 
1049 	log->l_prev_block  = -1;
1050 	log->l_tail_lsn	   = xlog_assign_lsn(1, 0);
1051 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1052 	log->l_last_sync_lsn = log->l_tail_lsn;
1053 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1054 	log->l_grant_reserve_cycle = 1;
1055 	log->l_grant_write_cycle = 1;
1056 
1057 	error = EFSCORRUPTED;
1058 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1059 	        log2_size = mp->m_sb.sb_logsectlog;
1060 		if (log2_size < BBSHIFT) {
1061 			xlog_warn("XFS: Log sector size too small "
1062 				"(0x%x < 0x%x)", log2_size, BBSHIFT);
1063 			goto out_free_log;
1064 		}
1065 
1066 	        log2_size -= BBSHIFT;
1067 		if (log2_size > mp->m_sectbb_log) {
1068 			xlog_warn("XFS: Log sector size too large "
1069 				"(0x%x > 0x%x)", log2_size, mp->m_sectbb_log);
1070 			goto out_free_log;
1071 		}
1072 
1073 		/* for larger sector sizes, must have v2 or external log */
1074 		if (log2_size && log->l_logBBstart > 0 &&
1075 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1076 
1077 			xlog_warn("XFS: log sector size (0x%x) invalid "
1078 				  "for configuration.", log2_size);
1079 			goto out_free_log;
1080 		}
1081 	}
1082 	log->l_sectBBsize = 1 << log2_size;
1083 
1084 	xlog_get_iclog_buffer_size(mp, log);
1085 
1086 	error = ENOMEM;
1087 	bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1088 	if (!bp)
1089 		goto out_free_log;
1090 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1091 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1092 	ASSERT(XFS_BUF_ISBUSY(bp));
1093 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1094 	log->l_xbuf = bp;
1095 
1096 	spin_lock_init(&log->l_icloglock);
1097 	spin_lock_init(&log->l_grant_lock);
1098 	sv_init(&log->l_flush_wait, 0, "flush_wait");
1099 
1100 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1101 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1102 
1103 	iclogp = &log->l_iclog;
1104 	/*
1105 	 * The amount of memory to allocate for the iclog structure is
1106 	 * rather funky due to the way the structure is defined.  It is
1107 	 * done this way so that we can use different sizes for machines
1108 	 * with different amounts of memory.  See the definition of
1109 	 * xlog_in_core_t in xfs_log_priv.h for details.
1110 	 */
1111 	ASSERT(log->l_iclog_size >= 4096);
1112 	for (i=0; i < log->l_iclog_bufs; i++) {
1113 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1114 		if (!*iclogp)
1115 			goto out_free_iclog;
1116 
1117 		iclog = *iclogp;
1118 		iclog->ic_prev = prev_iclog;
1119 		prev_iclog = iclog;
1120 
1121 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1122 						log->l_iclog_size, 0);
1123 		if (!bp)
1124 			goto out_free_iclog;
1125 		if (!XFS_BUF_CPSEMA(bp))
1126 			ASSERT(0);
1127 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1128 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1129 		iclog->ic_bp = bp;
1130 		iclog->ic_data = bp->b_addr;
1131 #ifdef DEBUG
1132 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1133 #endif
1134 		head = &iclog->ic_header;
1135 		memset(head, 0, sizeof(xlog_rec_header_t));
1136 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1137 		head->h_version = cpu_to_be32(
1138 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1139 		head->h_size = cpu_to_be32(log->l_iclog_size);
1140 		/* new fields */
1141 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1142 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1143 
1144 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1145 		iclog->ic_state = XLOG_STATE_ACTIVE;
1146 		iclog->ic_log = log;
1147 		atomic_set(&iclog->ic_refcnt, 0);
1148 		spin_lock_init(&iclog->ic_callback_lock);
1149 		iclog->ic_callback_tail = &(iclog->ic_callback);
1150 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1151 
1152 		ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1153 		ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1154 		sv_init(&iclog->ic_force_wait, SV_DEFAULT, "iclog-force");
1155 		sv_init(&iclog->ic_write_wait, SV_DEFAULT, "iclog-write");
1156 
1157 		iclogp = &iclog->ic_next;
1158 	}
1159 	*iclogp = log->l_iclog;			/* complete ring */
1160 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1161 
1162 	error = xlog_cil_init(log);
1163 	if (error)
1164 		goto out_free_iclog;
1165 	return log;
1166 
1167 out_free_iclog:
1168 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1169 		prev_iclog = iclog->ic_next;
1170 		if (iclog->ic_bp) {
1171 			sv_destroy(&iclog->ic_force_wait);
1172 			sv_destroy(&iclog->ic_write_wait);
1173 			xfs_buf_free(iclog->ic_bp);
1174 		}
1175 		kmem_free(iclog);
1176 	}
1177 	spinlock_destroy(&log->l_icloglock);
1178 	spinlock_destroy(&log->l_grant_lock);
1179 	xfs_buf_free(log->l_xbuf);
1180 out_free_log:
1181 	kmem_free(log);
1182 out:
1183 	return ERR_PTR(-error);
1184 }	/* xlog_alloc_log */
1185 
1186 
1187 /*
1188  * Write out the commit record of a transaction associated with the given
1189  * ticket.  Return the lsn of the commit record.
1190  */
1191 STATIC int
1192 xlog_commit_record(
1193 	struct log		*log,
1194 	struct xlog_ticket	*ticket,
1195 	struct xlog_in_core	**iclog,
1196 	xfs_lsn_t		*commitlsnp)
1197 {
1198 	struct xfs_mount *mp = log->l_mp;
1199 	int	error;
1200 	struct xfs_log_iovec reg = {
1201 		.i_addr = NULL,
1202 		.i_len = 0,
1203 		.i_type = XLOG_REG_TYPE_COMMIT,
1204 	};
1205 	struct xfs_log_vec vec = {
1206 		.lv_niovecs = 1,
1207 		.lv_iovecp = &reg,
1208 	};
1209 
1210 	ASSERT_ALWAYS(iclog);
1211 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1212 					XLOG_COMMIT_TRANS);
1213 	if (error)
1214 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1215 	return error;
1216 }
1217 
1218 /*
1219  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1220  * log space.  This code pushes on the lsn which would supposedly free up
1221  * the 25% which we want to leave free.  We may need to adopt a policy which
1222  * pushes on an lsn which is further along in the log once we reach the high
1223  * water mark.  In this manner, we would be creating a low water mark.
1224  */
1225 STATIC void
1226 xlog_grant_push_ail(xfs_mount_t	*mp,
1227 		    int		need_bytes)
1228 {
1229     xlog_t	*log = mp->m_log;	/* pointer to the log */
1230     xfs_lsn_t	tail_lsn;		/* lsn of the log tail */
1231     xfs_lsn_t	threshold_lsn = 0;	/* lsn we'd like to be at */
1232     int		free_blocks;		/* free blocks left to write to */
1233     int		free_bytes;		/* free bytes left to write to */
1234     int		threshold_block;	/* block in lsn we'd like to be at */
1235     int		threshold_cycle;	/* lsn cycle we'd like to be at */
1236     int		free_threshold;
1237 
1238     ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1239 
1240     spin_lock(&log->l_grant_lock);
1241     free_bytes = xlog_space_left(log,
1242 				 log->l_grant_reserve_cycle,
1243 				 log->l_grant_reserve_bytes);
1244     tail_lsn = log->l_tail_lsn;
1245     free_blocks = BTOBBT(free_bytes);
1246 
1247     /*
1248      * Set the threshold for the minimum number of free blocks in the
1249      * log to the maximum of what the caller needs, one quarter of the
1250      * log, and 256 blocks.
1251      */
1252     free_threshold = BTOBB(need_bytes);
1253     free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1254     free_threshold = MAX(free_threshold, 256);
1255     if (free_blocks < free_threshold) {
1256 	threshold_block = BLOCK_LSN(tail_lsn) + free_threshold;
1257 	threshold_cycle = CYCLE_LSN(tail_lsn);
1258 	if (threshold_block >= log->l_logBBsize) {
1259 	    threshold_block -= log->l_logBBsize;
1260 	    threshold_cycle += 1;
1261 	}
1262 	threshold_lsn = xlog_assign_lsn(threshold_cycle, threshold_block);
1263 
1264 	/* Don't pass in an lsn greater than the lsn of the last
1265 	 * log record known to be on disk.
1266 	 */
1267 	if (XFS_LSN_CMP(threshold_lsn, log->l_last_sync_lsn) > 0)
1268 	    threshold_lsn = log->l_last_sync_lsn;
1269     }
1270     spin_unlock(&log->l_grant_lock);
1271 
1272     /*
1273      * Get the transaction layer to kick the dirty buffers out to
1274      * disk asynchronously. No point in trying to do this if
1275      * the filesystem is shutting down.
1276      */
1277     if (threshold_lsn &&
1278 	!XLOG_FORCED_SHUTDOWN(log))
1279 	    xfs_trans_ail_push(log->l_ailp, threshold_lsn);
1280 }	/* xlog_grant_push_ail */
1281 
1282 /*
1283  * The bdstrat callback function for log bufs. This gives us a central
1284  * place to trap bufs in case we get hit by a log I/O error and need to
1285  * shutdown. Actually, in practice, even when we didn't get a log error,
1286  * we transition the iclogs to IOERROR state *after* flushing all existing
1287  * iclogs to disk. This is because we don't want anymore new transactions to be
1288  * started or completed afterwards.
1289  */
1290 STATIC int
1291 xlog_bdstrat(
1292 	struct xfs_buf		*bp)
1293 {
1294 	struct xlog_in_core	*iclog;
1295 
1296 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1297 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1298 		XFS_BUF_ERROR(bp, EIO);
1299 		XFS_BUF_STALE(bp);
1300 		xfs_buf_ioend(bp, 0);
1301 		/*
1302 		 * It would seem logical to return EIO here, but we rely on
1303 		 * the log state machine to propagate I/O errors instead of
1304 		 * doing it here.
1305 		 */
1306 		return 0;
1307 	}
1308 
1309 	bp->b_flags |= _XBF_RUN_QUEUES;
1310 	xfs_buf_iorequest(bp);
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1316  * fashion.  Previously, we should have moved the current iclog
1317  * ptr in the log to point to the next available iclog.  This allows further
1318  * write to continue while this code syncs out an iclog ready to go.
1319  * Before an in-core log can be written out, the data section must be scanned
1320  * to save away the 1st word of each BBSIZE block into the header.  We replace
1321  * it with the current cycle count.  Each BBSIZE block is tagged with the
1322  * cycle count because there in an implicit assumption that drives will
1323  * guarantee that entire 512 byte blocks get written at once.  In other words,
1324  * we can't have part of a 512 byte block written and part not written.  By
1325  * tagging each block, we will know which blocks are valid when recovering
1326  * after an unclean shutdown.
1327  *
1328  * This routine is single threaded on the iclog.  No other thread can be in
1329  * this routine with the same iclog.  Changing contents of iclog can there-
1330  * fore be done without grabbing the state machine lock.  Updating the global
1331  * log will require grabbing the lock though.
1332  *
1333  * The entire log manager uses a logical block numbering scheme.  Only
1334  * log_sync (and then only bwrite()) know about the fact that the log may
1335  * not start with block zero on a given device.  The log block start offset
1336  * is added immediately before calling bwrite().
1337  */
1338 
1339 STATIC int
1340 xlog_sync(xlog_t		*log,
1341 	  xlog_in_core_t	*iclog)
1342 {
1343 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1344 	xfs_buf_t	*bp;
1345 	int		i;
1346 	uint		count;		/* byte count of bwrite */
1347 	uint		count_init;	/* initial count before roundup */
1348 	int		roundoff;       /* roundoff to BB or stripe */
1349 	int		split = 0;	/* split write into two regions */
1350 	int		error;
1351 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1352 
1353 	XFS_STATS_INC(xs_log_writes);
1354 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1355 
1356 	/* Add for LR header */
1357 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1358 
1359 	/* Round out the log write size */
1360 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1361 		/* we have a v2 stripe unit to use */
1362 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1363 	} else {
1364 		count = BBTOB(BTOBB(count_init));
1365 	}
1366 	roundoff = count - count_init;
1367 	ASSERT(roundoff >= 0);
1368 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1369                 roundoff < log->l_mp->m_sb.sb_logsunit)
1370 		||
1371 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1372 		 roundoff < BBTOB(1)));
1373 
1374 	/* move grant heads by roundoff in sync */
1375 	spin_lock(&log->l_grant_lock);
1376 	xlog_grant_add_space(log, roundoff);
1377 	spin_unlock(&log->l_grant_lock);
1378 
1379 	/* put cycle number in every block */
1380 	xlog_pack_data(log, iclog, roundoff);
1381 
1382 	/* real byte length */
1383 	if (v2) {
1384 		iclog->ic_header.h_len =
1385 			cpu_to_be32(iclog->ic_offset + roundoff);
1386 	} else {
1387 		iclog->ic_header.h_len =
1388 			cpu_to_be32(iclog->ic_offset);
1389 	}
1390 
1391 	bp = iclog->ic_bp;
1392 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1393 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1394 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1395 
1396 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1397 
1398 	/* Do we need to split this write into 2 parts? */
1399 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1400 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1401 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1402 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1403 	} else {
1404 		iclog->ic_bwritecnt = 1;
1405 	}
1406 	XFS_BUF_SET_COUNT(bp, count);
1407 	XFS_BUF_SET_FSPRIVATE(bp, iclog);	/* save for later */
1408 	XFS_BUF_ZEROFLAGS(bp);
1409 	XFS_BUF_BUSY(bp);
1410 	XFS_BUF_ASYNC(bp);
1411 	bp->b_flags |= XBF_LOG_BUFFER;
1412 
1413 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1414 		XFS_BUF_ORDERED(bp);
1415 
1416 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1417 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1418 
1419 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1420 
1421 	/* account for log which doesn't start at block #0 */
1422 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1423 	/*
1424 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1425 	 * is shutting down.
1426 	 */
1427 	XFS_BUF_WRITE(bp);
1428 
1429 	if ((error = xlog_bdstrat(bp))) {
1430 		xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1431 				  XFS_BUF_ADDR(bp));
1432 		return error;
1433 	}
1434 	if (split) {
1435 		bp = iclog->ic_log->l_xbuf;
1436 		ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1437 							(unsigned long)1);
1438 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1439 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1440 		XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1441 					    (__psint_t)count), split);
1442 		XFS_BUF_SET_FSPRIVATE(bp, iclog);
1443 		XFS_BUF_ZEROFLAGS(bp);
1444 		XFS_BUF_BUSY(bp);
1445 		XFS_BUF_ASYNC(bp);
1446 		bp->b_flags |= XBF_LOG_BUFFER;
1447 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1448 			XFS_BUF_ORDERED(bp);
1449 		dptr = XFS_BUF_PTR(bp);
1450 		/*
1451 		 * Bump the cycle numbers at the start of each block
1452 		 * since this part of the buffer is at the start of
1453 		 * a new cycle.  Watch out for the header magic number
1454 		 * case, though.
1455 		 */
1456 		for (i = 0; i < split; i += BBSIZE) {
1457 			be32_add_cpu((__be32 *)dptr, 1);
1458 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1459 				be32_add_cpu((__be32 *)dptr, 1);
1460 			dptr += BBSIZE;
1461 		}
1462 
1463 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1464 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1465 
1466 		/* account for internal log which doesn't start at block #0 */
1467 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1468 		XFS_BUF_WRITE(bp);
1469 		if ((error = xlog_bdstrat(bp))) {
1470 			xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1471 					  bp, XFS_BUF_ADDR(bp));
1472 			return error;
1473 		}
1474 	}
1475 	return 0;
1476 }	/* xlog_sync */
1477 
1478 
1479 /*
1480  * Deallocate a log structure
1481  */
1482 STATIC void
1483 xlog_dealloc_log(xlog_t *log)
1484 {
1485 	xlog_in_core_t	*iclog, *next_iclog;
1486 	int		i;
1487 
1488 	xlog_cil_destroy(log);
1489 
1490 	iclog = log->l_iclog;
1491 	for (i=0; i<log->l_iclog_bufs; i++) {
1492 		sv_destroy(&iclog->ic_force_wait);
1493 		sv_destroy(&iclog->ic_write_wait);
1494 		xfs_buf_free(iclog->ic_bp);
1495 		next_iclog = iclog->ic_next;
1496 		kmem_free(iclog);
1497 		iclog = next_iclog;
1498 	}
1499 	spinlock_destroy(&log->l_icloglock);
1500 	spinlock_destroy(&log->l_grant_lock);
1501 
1502 	xfs_buf_free(log->l_xbuf);
1503 	log->l_mp->m_log = NULL;
1504 	kmem_free(log);
1505 }	/* xlog_dealloc_log */
1506 
1507 /*
1508  * Update counters atomically now that memcpy is done.
1509  */
1510 /* ARGSUSED */
1511 static inline void
1512 xlog_state_finish_copy(xlog_t		*log,
1513 		       xlog_in_core_t	*iclog,
1514 		       int		record_cnt,
1515 		       int		copy_bytes)
1516 {
1517 	spin_lock(&log->l_icloglock);
1518 
1519 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1520 	iclog->ic_offset += copy_bytes;
1521 
1522 	spin_unlock(&log->l_icloglock);
1523 }	/* xlog_state_finish_copy */
1524 
1525 
1526 
1527 
1528 /*
1529  * print out info relating to regions written which consume
1530  * the reservation
1531  */
1532 void
1533 xlog_print_tic_res(
1534 	struct xfs_mount	*mp,
1535 	struct xlog_ticket	*ticket)
1536 {
1537 	uint i;
1538 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1539 
1540 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1541 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1542 	    "bformat",
1543 	    "bchunk",
1544 	    "efi_format",
1545 	    "efd_format",
1546 	    "iformat",
1547 	    "icore",
1548 	    "iext",
1549 	    "ibroot",
1550 	    "ilocal",
1551 	    "iattr_ext",
1552 	    "iattr_broot",
1553 	    "iattr_local",
1554 	    "qformat",
1555 	    "dquot",
1556 	    "quotaoff",
1557 	    "LR header",
1558 	    "unmount",
1559 	    "commit",
1560 	    "trans header"
1561 	};
1562 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1563 	    "SETATTR_NOT_SIZE",
1564 	    "SETATTR_SIZE",
1565 	    "INACTIVE",
1566 	    "CREATE",
1567 	    "CREATE_TRUNC",
1568 	    "TRUNCATE_FILE",
1569 	    "REMOVE",
1570 	    "LINK",
1571 	    "RENAME",
1572 	    "MKDIR",
1573 	    "RMDIR",
1574 	    "SYMLINK",
1575 	    "SET_DMATTRS",
1576 	    "GROWFS",
1577 	    "STRAT_WRITE",
1578 	    "DIOSTRAT",
1579 	    "WRITE_SYNC",
1580 	    "WRITEID",
1581 	    "ADDAFORK",
1582 	    "ATTRINVAL",
1583 	    "ATRUNCATE",
1584 	    "ATTR_SET",
1585 	    "ATTR_RM",
1586 	    "ATTR_FLAG",
1587 	    "CLEAR_AGI_BUCKET",
1588 	    "QM_SBCHANGE",
1589 	    "DUMMY1",
1590 	    "DUMMY2",
1591 	    "QM_QUOTAOFF",
1592 	    "QM_DQALLOC",
1593 	    "QM_SETQLIM",
1594 	    "QM_DQCLUSTER",
1595 	    "QM_QINOCREATE",
1596 	    "QM_QUOTAOFF_END",
1597 	    "SB_UNIT",
1598 	    "FSYNC_TS",
1599 	    "GROWFSRT_ALLOC",
1600 	    "GROWFSRT_ZERO",
1601 	    "GROWFSRT_FREE",
1602 	    "SWAPEXT"
1603 	};
1604 
1605 	xfs_fs_cmn_err(CE_WARN, mp,
1606 			"xfs_log_write: reservation summary:\n"
1607 			"  trans type  = %s (%u)\n"
1608 			"  unit res    = %d bytes\n"
1609 			"  current res = %d bytes\n"
1610 			"  total reg   = %u bytes (o/flow = %u bytes)\n"
1611 			"  ophdrs      = %u (ophdr space = %u bytes)\n"
1612 			"  ophdr + reg = %u bytes\n"
1613 			"  num regions = %u\n",
1614 			((ticket->t_trans_type <= 0 ||
1615 			  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1616 			  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1617 			ticket->t_trans_type,
1618 			ticket->t_unit_res,
1619 			ticket->t_curr_res,
1620 			ticket->t_res_arr_sum, ticket->t_res_o_flow,
1621 			ticket->t_res_num_ophdrs, ophdr_spc,
1622 			ticket->t_res_arr_sum +
1623 			ticket->t_res_o_flow + ophdr_spc,
1624 			ticket->t_res_num);
1625 
1626 	for (i = 0; i < ticket->t_res_num; i++) {
1627 		uint r_type = ticket->t_res_arr[i].r_type;
1628 		cmn_err(CE_WARN,
1629 			    "region[%u]: %s - %u bytes\n",
1630 			    i,
1631 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1632 			    "bad-rtype" : res_type_str[r_type-1]),
1633 			    ticket->t_res_arr[i].r_len);
1634 	}
1635 
1636 	xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp,
1637 		"xfs_log_write: reservation ran out. Need to up reservation");
1638 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1639 }
1640 
1641 /*
1642  * Calculate the potential space needed by the log vector.  Each region gets
1643  * its own xlog_op_header_t and may need to be double word aligned.
1644  */
1645 static int
1646 xlog_write_calc_vec_length(
1647 	struct xlog_ticket	*ticket,
1648 	struct xfs_log_vec	*log_vector)
1649 {
1650 	struct xfs_log_vec	*lv;
1651 	int			headers = 0;
1652 	int			len = 0;
1653 	int			i;
1654 
1655 	/* acct for start rec of xact */
1656 	if (ticket->t_flags & XLOG_TIC_INITED)
1657 		headers++;
1658 
1659 	for (lv = log_vector; lv; lv = lv->lv_next) {
1660 		headers += lv->lv_niovecs;
1661 
1662 		for (i = 0; i < lv->lv_niovecs; i++) {
1663 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1664 
1665 			len += vecp->i_len;
1666 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1667 		}
1668 	}
1669 
1670 	ticket->t_res_num_ophdrs += headers;
1671 	len += headers * sizeof(struct xlog_op_header);
1672 
1673 	return len;
1674 }
1675 
1676 /*
1677  * If first write for transaction, insert start record  We can't be trying to
1678  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1679  */
1680 static int
1681 xlog_write_start_rec(
1682 	struct xlog_op_header	*ophdr,
1683 	struct xlog_ticket	*ticket)
1684 {
1685 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1686 		return 0;
1687 
1688 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1689 	ophdr->oh_clientid = ticket->t_clientid;
1690 	ophdr->oh_len = 0;
1691 	ophdr->oh_flags = XLOG_START_TRANS;
1692 	ophdr->oh_res2 = 0;
1693 
1694 	ticket->t_flags &= ~XLOG_TIC_INITED;
1695 
1696 	return sizeof(struct xlog_op_header);
1697 }
1698 
1699 static xlog_op_header_t *
1700 xlog_write_setup_ophdr(
1701 	struct log		*log,
1702 	struct xlog_op_header	*ophdr,
1703 	struct xlog_ticket	*ticket,
1704 	uint			flags)
1705 {
1706 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1707 	ophdr->oh_clientid = ticket->t_clientid;
1708 	ophdr->oh_res2 = 0;
1709 
1710 	/* are we copying a commit or unmount record? */
1711 	ophdr->oh_flags = flags;
1712 
1713 	/*
1714 	 * We've seen logs corrupted with bad transaction client ids.  This
1715 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1716 	 * and shut down the filesystem.
1717 	 */
1718 	switch (ophdr->oh_clientid)  {
1719 	case XFS_TRANSACTION:
1720 	case XFS_VOLUME:
1721 	case XFS_LOG:
1722 		break;
1723 	default:
1724 		xfs_fs_cmn_err(CE_WARN, log->l_mp,
1725 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1726 			ophdr->oh_clientid, ticket);
1727 		return NULL;
1728 	}
1729 
1730 	return ophdr;
1731 }
1732 
1733 /*
1734  * Set up the parameters of the region copy into the log. This has
1735  * to handle region write split across multiple log buffers - this
1736  * state is kept external to this function so that this code can
1737  * can be written in an obvious, self documenting manner.
1738  */
1739 static int
1740 xlog_write_setup_copy(
1741 	struct xlog_ticket	*ticket,
1742 	struct xlog_op_header	*ophdr,
1743 	int			space_available,
1744 	int			space_required,
1745 	int			*copy_off,
1746 	int			*copy_len,
1747 	int			*last_was_partial_copy,
1748 	int			*bytes_consumed)
1749 {
1750 	int			still_to_copy;
1751 
1752 	still_to_copy = space_required - *bytes_consumed;
1753 	*copy_off = *bytes_consumed;
1754 
1755 	if (still_to_copy <= space_available) {
1756 		/* write of region completes here */
1757 		*copy_len = still_to_copy;
1758 		ophdr->oh_len = cpu_to_be32(*copy_len);
1759 		if (*last_was_partial_copy)
1760 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1761 		*last_was_partial_copy = 0;
1762 		*bytes_consumed = 0;
1763 		return 0;
1764 	}
1765 
1766 	/* partial write of region, needs extra log op header reservation */
1767 	*copy_len = space_available;
1768 	ophdr->oh_len = cpu_to_be32(*copy_len);
1769 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1770 	if (*last_was_partial_copy)
1771 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1772 	*bytes_consumed += *copy_len;
1773 	(*last_was_partial_copy)++;
1774 
1775 	/* account for new log op header */
1776 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1777 	ticket->t_res_num_ophdrs++;
1778 
1779 	return sizeof(struct xlog_op_header);
1780 }
1781 
1782 static int
1783 xlog_write_copy_finish(
1784 	struct log		*log,
1785 	struct xlog_in_core	*iclog,
1786 	uint			flags,
1787 	int			*record_cnt,
1788 	int			*data_cnt,
1789 	int			*partial_copy,
1790 	int			*partial_copy_len,
1791 	int			log_offset,
1792 	struct xlog_in_core	**commit_iclog)
1793 {
1794 	if (*partial_copy) {
1795 		/*
1796 		 * This iclog has already been marked WANT_SYNC by
1797 		 * xlog_state_get_iclog_space.
1798 		 */
1799 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1800 		*record_cnt = 0;
1801 		*data_cnt = 0;
1802 		return xlog_state_release_iclog(log, iclog);
1803 	}
1804 
1805 	*partial_copy = 0;
1806 	*partial_copy_len = 0;
1807 
1808 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1809 		/* no more space in this iclog - push it. */
1810 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1811 		*record_cnt = 0;
1812 		*data_cnt = 0;
1813 
1814 		spin_lock(&log->l_icloglock);
1815 		xlog_state_want_sync(log, iclog);
1816 		spin_unlock(&log->l_icloglock);
1817 
1818 		if (!commit_iclog)
1819 			return xlog_state_release_iclog(log, iclog);
1820 		ASSERT(flags & XLOG_COMMIT_TRANS);
1821 		*commit_iclog = iclog;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * Write some region out to in-core log
1829  *
1830  * This will be called when writing externally provided regions or when
1831  * writing out a commit record for a given transaction.
1832  *
1833  * General algorithm:
1834  *	1. Find total length of this write.  This may include adding to the
1835  *		lengths passed in.
1836  *	2. Check whether we violate the tickets reservation.
1837  *	3. While writing to this iclog
1838  *	    A. Reserve as much space in this iclog as can get
1839  *	    B. If this is first write, save away start lsn
1840  *	    C. While writing this region:
1841  *		1. If first write of transaction, write start record
1842  *		2. Write log operation header (header per region)
1843  *		3. Find out if we can fit entire region into this iclog
1844  *		4. Potentially, verify destination memcpy ptr
1845  *		5. Memcpy (partial) region
1846  *		6. If partial copy, release iclog; otherwise, continue
1847  *			copying more regions into current iclog
1848  *	4. Mark want sync bit (in simulation mode)
1849  *	5. Release iclog for potential flush to on-disk log.
1850  *
1851  * ERRORS:
1852  * 1.	Panic if reservation is overrun.  This should never happen since
1853  *	reservation amounts are generated internal to the filesystem.
1854  * NOTES:
1855  * 1. Tickets are single threaded data structures.
1856  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1857  *	syncing routine.  When a single log_write region needs to span
1858  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1859  *	on all log operation writes which don't contain the end of the
1860  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1861  *	operation which contains the end of the continued log_write region.
1862  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1863  *	we don't really know exactly how much space will be used.  As a result,
1864  *	we don't update ic_offset until the end when we know exactly how many
1865  *	bytes have been written out.
1866  */
1867 int
1868 xlog_write(
1869 	struct log		*log,
1870 	struct xfs_log_vec	*log_vector,
1871 	struct xlog_ticket	*ticket,
1872 	xfs_lsn_t		*start_lsn,
1873 	struct xlog_in_core	**commit_iclog,
1874 	uint			flags)
1875 {
1876 	struct xlog_in_core	*iclog = NULL;
1877 	struct xfs_log_iovec	*vecp;
1878 	struct xfs_log_vec	*lv;
1879 	int			len;
1880 	int			index;
1881 	int			partial_copy = 0;
1882 	int			partial_copy_len = 0;
1883 	int			contwr = 0;
1884 	int			record_cnt = 0;
1885 	int			data_cnt = 0;
1886 	int			error;
1887 
1888 	*start_lsn = 0;
1889 
1890 	len = xlog_write_calc_vec_length(ticket, log_vector);
1891 	if (log->l_cilp) {
1892 		/*
1893 		 * Region headers and bytes are already accounted for.
1894 		 * We only need to take into account start records and
1895 		 * split regions in this function.
1896 		 */
1897 		if (ticket->t_flags & XLOG_TIC_INITED)
1898 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1899 
1900 		/*
1901 		 * Commit record headers need to be accounted for. These
1902 		 * come in as separate writes so are easy to detect.
1903 		 */
1904 		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1905 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1906 	} else
1907 		ticket->t_curr_res -= len;
1908 
1909 	if (ticket->t_curr_res < 0)
1910 		xlog_print_tic_res(log->l_mp, ticket);
1911 
1912 	index = 0;
1913 	lv = log_vector;
1914 	vecp = lv->lv_iovecp;
1915 	while (lv && index < lv->lv_niovecs) {
1916 		void		*ptr;
1917 		int		log_offset;
1918 
1919 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1920 						   &contwr, &log_offset);
1921 		if (error)
1922 			return error;
1923 
1924 		ASSERT(log_offset <= iclog->ic_size - 1);
1925 		ptr = iclog->ic_datap + log_offset;
1926 
1927 		/* start_lsn is the first lsn written to. That's all we need. */
1928 		if (!*start_lsn)
1929 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1930 
1931 		/*
1932 		 * This loop writes out as many regions as can fit in the amount
1933 		 * of space which was allocated by xlog_state_get_iclog_space().
1934 		 */
1935 		while (lv && index < lv->lv_niovecs) {
1936 			struct xfs_log_iovec	*reg = &vecp[index];
1937 			struct xlog_op_header	*ophdr;
1938 			int			start_rec_copy;
1939 			int			copy_len;
1940 			int			copy_off;
1941 
1942 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1943 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1944 
1945 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1946 			if (start_rec_copy) {
1947 				record_cnt++;
1948 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1949 						   start_rec_copy);
1950 			}
1951 
1952 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1953 			if (!ophdr)
1954 				return XFS_ERROR(EIO);
1955 
1956 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1957 					   sizeof(struct xlog_op_header));
1958 
1959 			len += xlog_write_setup_copy(ticket, ophdr,
1960 						     iclog->ic_size-log_offset,
1961 						     reg->i_len,
1962 						     &copy_off, &copy_len,
1963 						     &partial_copy,
1964 						     &partial_copy_len);
1965 			xlog_verify_dest_ptr(log, ptr);
1966 
1967 			/* copy region */
1968 			ASSERT(copy_len >= 0);
1969 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1970 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1971 
1972 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1973 			record_cnt++;
1974 			data_cnt += contwr ? copy_len : 0;
1975 
1976 			error = xlog_write_copy_finish(log, iclog, flags,
1977 						       &record_cnt, &data_cnt,
1978 						       &partial_copy,
1979 						       &partial_copy_len,
1980 						       log_offset,
1981 						       commit_iclog);
1982 			if (error)
1983 				return error;
1984 
1985 			/*
1986 			 * if we had a partial copy, we need to get more iclog
1987 			 * space but we don't want to increment the region
1988 			 * index because there is still more is this region to
1989 			 * write.
1990 			 *
1991 			 * If we completed writing this region, and we flushed
1992 			 * the iclog (indicated by resetting of the record
1993 			 * count), then we also need to get more log space. If
1994 			 * this was the last record, though, we are done and
1995 			 * can just return.
1996 			 */
1997 			if (partial_copy)
1998 				break;
1999 
2000 			if (++index == lv->lv_niovecs) {
2001 				lv = lv->lv_next;
2002 				index = 0;
2003 				if (lv)
2004 					vecp = lv->lv_iovecp;
2005 			}
2006 			if (record_cnt == 0) {
2007 				if (!lv)
2008 					return 0;
2009 				break;
2010 			}
2011 		}
2012 	}
2013 
2014 	ASSERT(len == 0);
2015 
2016 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2017 	if (!commit_iclog)
2018 		return xlog_state_release_iclog(log, iclog);
2019 
2020 	ASSERT(flags & XLOG_COMMIT_TRANS);
2021 	*commit_iclog = iclog;
2022 	return 0;
2023 }
2024 
2025 
2026 /*****************************************************************************
2027  *
2028  *		State Machine functions
2029  *
2030  *****************************************************************************
2031  */
2032 
2033 /* Clean iclogs starting from the head.  This ordering must be
2034  * maintained, so an iclog doesn't become ACTIVE beyond one that
2035  * is SYNCING.  This is also required to maintain the notion that we use
2036  * a ordered wait queue to hold off would be writers to the log when every
2037  * iclog is trying to sync to disk.
2038  *
2039  * State Change: DIRTY -> ACTIVE
2040  */
2041 STATIC void
2042 xlog_state_clean_log(xlog_t *log)
2043 {
2044 	xlog_in_core_t	*iclog;
2045 	int changed = 0;
2046 
2047 	iclog = log->l_iclog;
2048 	do {
2049 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2050 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2051 			iclog->ic_offset       = 0;
2052 			ASSERT(iclog->ic_callback == NULL);
2053 			/*
2054 			 * If the number of ops in this iclog indicate it just
2055 			 * contains the dummy transaction, we can
2056 			 * change state into IDLE (the second time around).
2057 			 * Otherwise we should change the state into
2058 			 * NEED a dummy.
2059 			 * We don't need to cover the dummy.
2060 			 */
2061 			if (!changed &&
2062 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2063 			   		XLOG_COVER_OPS)) {
2064 				changed = 1;
2065 			} else {
2066 				/*
2067 				 * We have two dirty iclogs so start over
2068 				 * This could also be num of ops indicates
2069 				 * this is not the dummy going out.
2070 				 */
2071 				changed = 2;
2072 			}
2073 			iclog->ic_header.h_num_logops = 0;
2074 			memset(iclog->ic_header.h_cycle_data, 0,
2075 			      sizeof(iclog->ic_header.h_cycle_data));
2076 			iclog->ic_header.h_lsn = 0;
2077 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2078 			/* do nothing */;
2079 		else
2080 			break;	/* stop cleaning */
2081 		iclog = iclog->ic_next;
2082 	} while (iclog != log->l_iclog);
2083 
2084 	/* log is locked when we are called */
2085 	/*
2086 	 * Change state for the dummy log recording.
2087 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2088 	 * we are done writing the dummy record.
2089 	 * If we are done with the second dummy recored (DONE2), then
2090 	 * we go to IDLE.
2091 	 */
2092 	if (changed) {
2093 		switch (log->l_covered_state) {
2094 		case XLOG_STATE_COVER_IDLE:
2095 		case XLOG_STATE_COVER_NEED:
2096 		case XLOG_STATE_COVER_NEED2:
2097 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2098 			break;
2099 
2100 		case XLOG_STATE_COVER_DONE:
2101 			if (changed == 1)
2102 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2103 			else
2104 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2105 			break;
2106 
2107 		case XLOG_STATE_COVER_DONE2:
2108 			if (changed == 1)
2109 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2110 			else
2111 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2112 			break;
2113 
2114 		default:
2115 			ASSERT(0);
2116 		}
2117 	}
2118 }	/* xlog_state_clean_log */
2119 
2120 STATIC xfs_lsn_t
2121 xlog_get_lowest_lsn(
2122 	xlog_t		*log)
2123 {
2124 	xlog_in_core_t  *lsn_log;
2125 	xfs_lsn_t	lowest_lsn, lsn;
2126 
2127 	lsn_log = log->l_iclog;
2128 	lowest_lsn = 0;
2129 	do {
2130 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2131 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2132 		if ((lsn && !lowest_lsn) ||
2133 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2134 			lowest_lsn = lsn;
2135 		}
2136 	    }
2137 	    lsn_log = lsn_log->ic_next;
2138 	} while (lsn_log != log->l_iclog);
2139 	return lowest_lsn;
2140 }
2141 
2142 
2143 STATIC void
2144 xlog_state_do_callback(
2145 	xlog_t		*log,
2146 	int		aborted,
2147 	xlog_in_core_t	*ciclog)
2148 {
2149 	xlog_in_core_t	   *iclog;
2150 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2151 						 * processed all iclogs once */
2152 	xfs_log_callback_t *cb, *cb_next;
2153 	int		   flushcnt = 0;
2154 	xfs_lsn_t	   lowest_lsn;
2155 	int		   ioerrors;	/* counter: iclogs with errors */
2156 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2157 	int		   funcdidcallbacks; /* flag: function did callbacks */
2158 	int		   repeats;	/* for issuing console warnings if
2159 					 * looping too many times */
2160 	int		   wake = 0;
2161 
2162 	spin_lock(&log->l_icloglock);
2163 	first_iclog = iclog = log->l_iclog;
2164 	ioerrors = 0;
2165 	funcdidcallbacks = 0;
2166 	repeats = 0;
2167 
2168 	do {
2169 		/*
2170 		 * Scan all iclogs starting with the one pointed to by the
2171 		 * log.  Reset this starting point each time the log is
2172 		 * unlocked (during callbacks).
2173 		 *
2174 		 * Keep looping through iclogs until one full pass is made
2175 		 * without running any callbacks.
2176 		 */
2177 		first_iclog = log->l_iclog;
2178 		iclog = log->l_iclog;
2179 		loopdidcallbacks = 0;
2180 		repeats++;
2181 
2182 		do {
2183 
2184 			/* skip all iclogs in the ACTIVE & DIRTY states */
2185 			if (iclog->ic_state &
2186 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2187 				iclog = iclog->ic_next;
2188 				continue;
2189 			}
2190 
2191 			/*
2192 			 * Between marking a filesystem SHUTDOWN and stopping
2193 			 * the log, we do flush all iclogs to disk (if there
2194 			 * wasn't a log I/O error). So, we do want things to
2195 			 * go smoothly in case of just a SHUTDOWN  w/o a
2196 			 * LOG_IO_ERROR.
2197 			 */
2198 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2199 				/*
2200 				 * Can only perform callbacks in order.  Since
2201 				 * this iclog is not in the DONE_SYNC/
2202 				 * DO_CALLBACK state, we skip the rest and
2203 				 * just try to clean up.  If we set our iclog
2204 				 * to DO_CALLBACK, we will not process it when
2205 				 * we retry since a previous iclog is in the
2206 				 * CALLBACK and the state cannot change since
2207 				 * we are holding the l_icloglock.
2208 				 */
2209 				if (!(iclog->ic_state &
2210 					(XLOG_STATE_DONE_SYNC |
2211 						 XLOG_STATE_DO_CALLBACK))) {
2212 					if (ciclog && (ciclog->ic_state ==
2213 							XLOG_STATE_DONE_SYNC)) {
2214 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2215 					}
2216 					break;
2217 				}
2218 				/*
2219 				 * We now have an iclog that is in either the
2220 				 * DO_CALLBACK or DONE_SYNC states. The other
2221 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2222 				 * caught by the above if and are going to
2223 				 * clean (i.e. we aren't doing their callbacks)
2224 				 * see the above if.
2225 				 */
2226 
2227 				/*
2228 				 * We will do one more check here to see if we
2229 				 * have chased our tail around.
2230 				 */
2231 
2232 				lowest_lsn = xlog_get_lowest_lsn(log);
2233 				if (lowest_lsn &&
2234 				    XFS_LSN_CMP(lowest_lsn,
2235 				    		be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2236 					iclog = iclog->ic_next;
2237 					continue; /* Leave this iclog for
2238 						   * another thread */
2239 				}
2240 
2241 				iclog->ic_state = XLOG_STATE_CALLBACK;
2242 
2243 				spin_unlock(&log->l_icloglock);
2244 
2245 				/* l_last_sync_lsn field protected by
2246 				 * l_grant_lock. Don't worry about iclog's lsn.
2247 				 * No one else can be here except us.
2248 				 */
2249 				spin_lock(&log->l_grant_lock);
2250 				ASSERT(XFS_LSN_CMP(log->l_last_sync_lsn,
2251 				       be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2252 				log->l_last_sync_lsn =
2253 					be64_to_cpu(iclog->ic_header.h_lsn);
2254 				spin_unlock(&log->l_grant_lock);
2255 
2256 			} else {
2257 				spin_unlock(&log->l_icloglock);
2258 				ioerrors++;
2259 			}
2260 
2261 			/*
2262 			 * Keep processing entries in the callback list until
2263 			 * we come around and it is empty.  We need to
2264 			 * atomically see that the list is empty and change the
2265 			 * state to DIRTY so that we don't miss any more
2266 			 * callbacks being added.
2267 			 */
2268 			spin_lock(&iclog->ic_callback_lock);
2269 			cb = iclog->ic_callback;
2270 			while (cb) {
2271 				iclog->ic_callback_tail = &(iclog->ic_callback);
2272 				iclog->ic_callback = NULL;
2273 				spin_unlock(&iclog->ic_callback_lock);
2274 
2275 				/* perform callbacks in the order given */
2276 				for (; cb; cb = cb_next) {
2277 					cb_next = cb->cb_next;
2278 					cb->cb_func(cb->cb_arg, aborted);
2279 				}
2280 				spin_lock(&iclog->ic_callback_lock);
2281 				cb = iclog->ic_callback;
2282 			}
2283 
2284 			loopdidcallbacks++;
2285 			funcdidcallbacks++;
2286 
2287 			spin_lock(&log->l_icloglock);
2288 			ASSERT(iclog->ic_callback == NULL);
2289 			spin_unlock(&iclog->ic_callback_lock);
2290 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2291 				iclog->ic_state = XLOG_STATE_DIRTY;
2292 
2293 			/*
2294 			 * Transition from DIRTY to ACTIVE if applicable.
2295 			 * NOP if STATE_IOERROR.
2296 			 */
2297 			xlog_state_clean_log(log);
2298 
2299 			/* wake up threads waiting in xfs_log_force() */
2300 			sv_broadcast(&iclog->ic_force_wait);
2301 
2302 			iclog = iclog->ic_next;
2303 		} while (first_iclog != iclog);
2304 
2305 		if (repeats > 5000) {
2306 			flushcnt += repeats;
2307 			repeats = 0;
2308 			xfs_fs_cmn_err(CE_WARN, log->l_mp,
2309 				"%s: possible infinite loop (%d iterations)",
2310 				__func__, flushcnt);
2311 		}
2312 	} while (!ioerrors && loopdidcallbacks);
2313 
2314 	/*
2315 	 * make one last gasp attempt to see if iclogs are being left in
2316 	 * limbo..
2317 	 */
2318 #ifdef DEBUG
2319 	if (funcdidcallbacks) {
2320 		first_iclog = iclog = log->l_iclog;
2321 		do {
2322 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2323 			/*
2324 			 * Terminate the loop if iclogs are found in states
2325 			 * which will cause other threads to clean up iclogs.
2326 			 *
2327 			 * SYNCING - i/o completion will go through logs
2328 			 * DONE_SYNC - interrupt thread should be waiting for
2329 			 *              l_icloglock
2330 			 * IOERROR - give up hope all ye who enter here
2331 			 */
2332 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2333 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2334 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2335 			    iclog->ic_state == XLOG_STATE_IOERROR )
2336 				break;
2337 			iclog = iclog->ic_next;
2338 		} while (first_iclog != iclog);
2339 	}
2340 #endif
2341 
2342 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2343 		wake = 1;
2344 	spin_unlock(&log->l_icloglock);
2345 
2346 	if (wake)
2347 		sv_broadcast(&log->l_flush_wait);
2348 }
2349 
2350 
2351 /*
2352  * Finish transitioning this iclog to the dirty state.
2353  *
2354  * Make sure that we completely execute this routine only when this is
2355  * the last call to the iclog.  There is a good chance that iclog flushes,
2356  * when we reach the end of the physical log, get turned into 2 separate
2357  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2358  * routine.  By using the reference count bwritecnt, we guarantee that only
2359  * the second completion goes through.
2360  *
2361  * Callbacks could take time, so they are done outside the scope of the
2362  * global state machine log lock.
2363  */
2364 STATIC void
2365 xlog_state_done_syncing(
2366 	xlog_in_core_t	*iclog,
2367 	int		aborted)
2368 {
2369 	xlog_t		   *log = iclog->ic_log;
2370 
2371 	spin_lock(&log->l_icloglock);
2372 
2373 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2374 	       iclog->ic_state == XLOG_STATE_IOERROR);
2375 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2376 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2377 
2378 
2379 	/*
2380 	 * If we got an error, either on the first buffer, or in the case of
2381 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2382 	 * and none should ever be attempted to be written to disk
2383 	 * again.
2384 	 */
2385 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2386 		if (--iclog->ic_bwritecnt == 1) {
2387 			spin_unlock(&log->l_icloglock);
2388 			return;
2389 		}
2390 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2391 	}
2392 
2393 	/*
2394 	 * Someone could be sleeping prior to writing out the next
2395 	 * iclog buffer, we wake them all, one will get to do the
2396 	 * I/O, the others get to wait for the result.
2397 	 */
2398 	sv_broadcast(&iclog->ic_write_wait);
2399 	spin_unlock(&log->l_icloglock);
2400 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2401 }	/* xlog_state_done_syncing */
2402 
2403 
2404 /*
2405  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2406  * sleep.  We wait on the flush queue on the head iclog as that should be
2407  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2408  * we will wait here and all new writes will sleep until a sync completes.
2409  *
2410  * The in-core logs are used in a circular fashion. They are not used
2411  * out-of-order even when an iclog past the head is free.
2412  *
2413  * return:
2414  *	* log_offset where xlog_write() can start writing into the in-core
2415  *		log's data space.
2416  *	* in-core log pointer to which xlog_write() should write.
2417  *	* boolean indicating this is a continued write to an in-core log.
2418  *		If this is the last write, then the in-core log's offset field
2419  *		needs to be incremented, depending on the amount of data which
2420  *		is copied.
2421  */
2422 STATIC int
2423 xlog_state_get_iclog_space(xlog_t	  *log,
2424 			   int		  len,
2425 			   xlog_in_core_t **iclogp,
2426 			   xlog_ticket_t  *ticket,
2427 			   int		  *continued_write,
2428 			   int		  *logoffsetp)
2429 {
2430 	int		  log_offset;
2431 	xlog_rec_header_t *head;
2432 	xlog_in_core_t	  *iclog;
2433 	int		  error;
2434 
2435 restart:
2436 	spin_lock(&log->l_icloglock);
2437 	if (XLOG_FORCED_SHUTDOWN(log)) {
2438 		spin_unlock(&log->l_icloglock);
2439 		return XFS_ERROR(EIO);
2440 	}
2441 
2442 	iclog = log->l_iclog;
2443 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2444 		XFS_STATS_INC(xs_log_noiclogs);
2445 
2446 		/* Wait for log writes to have flushed */
2447 		sv_wait(&log->l_flush_wait, 0, &log->l_icloglock, 0);
2448 		goto restart;
2449 	}
2450 
2451 	head = &iclog->ic_header;
2452 
2453 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2454 	log_offset = iclog->ic_offset;
2455 
2456 	/* On the 1st write to an iclog, figure out lsn.  This works
2457 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2458 	 * committing to.  If the offset is set, that's how many blocks
2459 	 * must be written.
2460 	 */
2461 	if (log_offset == 0) {
2462 		ticket->t_curr_res -= log->l_iclog_hsize;
2463 		xlog_tic_add_region(ticket,
2464 				    log->l_iclog_hsize,
2465 				    XLOG_REG_TYPE_LRHEADER);
2466 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2467 		head->h_lsn = cpu_to_be64(
2468 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2469 		ASSERT(log->l_curr_block >= 0);
2470 	}
2471 
2472 	/* If there is enough room to write everything, then do it.  Otherwise,
2473 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2474 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2475 	 * until you know exactly how many bytes get copied.  Therefore, wait
2476 	 * until later to update ic_offset.
2477 	 *
2478 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2479 	 * can fit into remaining data section.
2480 	 */
2481 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2482 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2483 
2484 		/*
2485 		 * If I'm the only one writing to this iclog, sync it to disk.
2486 		 * We need to do an atomic compare and decrement here to avoid
2487 		 * racing with concurrent atomic_dec_and_lock() calls in
2488 		 * xlog_state_release_iclog() when there is more than one
2489 		 * reference to the iclog.
2490 		 */
2491 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2492 			/* we are the only one */
2493 			spin_unlock(&log->l_icloglock);
2494 			error = xlog_state_release_iclog(log, iclog);
2495 			if (error)
2496 				return error;
2497 		} else {
2498 			spin_unlock(&log->l_icloglock);
2499 		}
2500 		goto restart;
2501 	}
2502 
2503 	/* Do we have enough room to write the full amount in the remainder
2504 	 * of this iclog?  Or must we continue a write on the next iclog and
2505 	 * mark this iclog as completely taken?  In the case where we switch
2506 	 * iclogs (to mark it taken), this particular iclog will release/sync
2507 	 * to disk in xlog_write().
2508 	 */
2509 	if (len <= iclog->ic_size - iclog->ic_offset) {
2510 		*continued_write = 0;
2511 		iclog->ic_offset += len;
2512 	} else {
2513 		*continued_write = 1;
2514 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2515 	}
2516 	*iclogp = iclog;
2517 
2518 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2519 	spin_unlock(&log->l_icloglock);
2520 
2521 	*logoffsetp = log_offset;
2522 	return 0;
2523 }	/* xlog_state_get_iclog_space */
2524 
2525 /*
2526  * Atomically get the log space required for a log ticket.
2527  *
2528  * Once a ticket gets put onto the reserveq, it will only return after
2529  * the needed reservation is satisfied.
2530  */
2531 STATIC int
2532 xlog_grant_log_space(xlog_t	   *log,
2533 		     xlog_ticket_t *tic)
2534 {
2535 	int		 free_bytes;
2536 	int		 need_bytes;
2537 #ifdef DEBUG
2538 	xfs_lsn_t	 tail_lsn;
2539 #endif
2540 
2541 
2542 #ifdef DEBUG
2543 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2544 		panic("grant Recovery problem");
2545 #endif
2546 
2547 	/* Is there space or do we need to sleep? */
2548 	spin_lock(&log->l_grant_lock);
2549 
2550 	trace_xfs_log_grant_enter(log, tic);
2551 
2552 	/* something is already sleeping; insert new transaction at end */
2553 	if (log->l_reserve_headq) {
2554 		xlog_ins_ticketq(&log->l_reserve_headq, tic);
2555 
2556 		trace_xfs_log_grant_sleep1(log, tic);
2557 
2558 		/*
2559 		 * Gotta check this before going to sleep, while we're
2560 		 * holding the grant lock.
2561 		 */
2562 		if (XLOG_FORCED_SHUTDOWN(log))
2563 			goto error_return;
2564 
2565 		XFS_STATS_INC(xs_sleep_logspace);
2566 		sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2567 		/*
2568 		 * If we got an error, and the filesystem is shutting down,
2569 		 * we'll catch it down below. So just continue...
2570 		 */
2571 		trace_xfs_log_grant_wake1(log, tic);
2572 		spin_lock(&log->l_grant_lock);
2573 	}
2574 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2575 		need_bytes = tic->t_unit_res*tic->t_ocnt;
2576 	else
2577 		need_bytes = tic->t_unit_res;
2578 
2579 redo:
2580 	if (XLOG_FORCED_SHUTDOWN(log))
2581 		goto error_return;
2582 
2583 	free_bytes = xlog_space_left(log, log->l_grant_reserve_cycle,
2584 				     log->l_grant_reserve_bytes);
2585 	if (free_bytes < need_bytes) {
2586 		if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2587 			xlog_ins_ticketq(&log->l_reserve_headq, tic);
2588 
2589 		trace_xfs_log_grant_sleep2(log, tic);
2590 
2591 		spin_unlock(&log->l_grant_lock);
2592 		xlog_grant_push_ail(log->l_mp, need_bytes);
2593 		spin_lock(&log->l_grant_lock);
2594 
2595 		XFS_STATS_INC(xs_sleep_logspace);
2596 		sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2597 
2598 		spin_lock(&log->l_grant_lock);
2599 		if (XLOG_FORCED_SHUTDOWN(log))
2600 			goto error_return;
2601 
2602 		trace_xfs_log_grant_wake2(log, tic);
2603 
2604 		goto redo;
2605 	} else if (tic->t_flags & XLOG_TIC_IN_Q)
2606 		xlog_del_ticketq(&log->l_reserve_headq, tic);
2607 
2608 	/* we've got enough space */
2609 	xlog_grant_add_space(log, need_bytes);
2610 #ifdef DEBUG
2611 	tail_lsn = log->l_tail_lsn;
2612 	/*
2613 	 * Check to make sure the grant write head didn't just over lap the
2614 	 * tail.  If the cycles are the same, we can't be overlapping.
2615 	 * Otherwise, make sure that the cycles differ by exactly one and
2616 	 * check the byte count.
2617 	 */
2618 	if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
2619 		ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
2620 		ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
2621 	}
2622 #endif
2623 	trace_xfs_log_grant_exit(log, tic);
2624 	xlog_verify_grant_head(log, 1);
2625 	spin_unlock(&log->l_grant_lock);
2626 	return 0;
2627 
2628  error_return:
2629 	if (tic->t_flags & XLOG_TIC_IN_Q)
2630 		xlog_del_ticketq(&log->l_reserve_headq, tic);
2631 
2632 	trace_xfs_log_grant_error(log, tic);
2633 
2634 	/*
2635 	 * If we are failing, make sure the ticket doesn't have any
2636 	 * current reservations. We don't want to add this back when
2637 	 * the ticket/transaction gets cancelled.
2638 	 */
2639 	tic->t_curr_res = 0;
2640 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2641 	spin_unlock(&log->l_grant_lock);
2642 	return XFS_ERROR(EIO);
2643 }	/* xlog_grant_log_space */
2644 
2645 
2646 /*
2647  * Replenish the byte reservation required by moving the grant write head.
2648  *
2649  *
2650  */
2651 STATIC int
2652 xlog_regrant_write_log_space(xlog_t	   *log,
2653 			     xlog_ticket_t *tic)
2654 {
2655 	int		free_bytes, need_bytes;
2656 	xlog_ticket_t	*ntic;
2657 #ifdef DEBUG
2658 	xfs_lsn_t	tail_lsn;
2659 #endif
2660 
2661 	tic->t_curr_res = tic->t_unit_res;
2662 	xlog_tic_reset_res(tic);
2663 
2664 	if (tic->t_cnt > 0)
2665 		return 0;
2666 
2667 #ifdef DEBUG
2668 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2669 		panic("regrant Recovery problem");
2670 #endif
2671 
2672 	spin_lock(&log->l_grant_lock);
2673 
2674 	trace_xfs_log_regrant_write_enter(log, tic);
2675 
2676 	if (XLOG_FORCED_SHUTDOWN(log))
2677 		goto error_return;
2678 
2679 	/* If there are other waiters on the queue then give them a
2680 	 * chance at logspace before us. Wake up the first waiters,
2681 	 * if we do not wake up all the waiters then go to sleep waiting
2682 	 * for more free space, otherwise try to get some space for
2683 	 * this transaction.
2684 	 */
2685 	need_bytes = tic->t_unit_res;
2686 	if ((ntic = log->l_write_headq)) {
2687 		free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
2688 					     log->l_grant_write_bytes);
2689 		do {
2690 			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2691 
2692 			if (free_bytes < ntic->t_unit_res)
2693 				break;
2694 			free_bytes -= ntic->t_unit_res;
2695 			sv_signal(&ntic->t_wait);
2696 			ntic = ntic->t_next;
2697 		} while (ntic != log->l_write_headq);
2698 
2699 		if (ntic != log->l_write_headq) {
2700 			if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2701 				xlog_ins_ticketq(&log->l_write_headq, tic);
2702 
2703 			trace_xfs_log_regrant_write_sleep1(log, tic);
2704 
2705 			spin_unlock(&log->l_grant_lock);
2706 			xlog_grant_push_ail(log->l_mp, need_bytes);
2707 			spin_lock(&log->l_grant_lock);
2708 
2709 			XFS_STATS_INC(xs_sleep_logspace);
2710 			sv_wait(&tic->t_wait, PINOD|PLTWAIT,
2711 				&log->l_grant_lock, s);
2712 
2713 			/* If we're shutting down, this tic is already
2714 			 * off the queue */
2715 			spin_lock(&log->l_grant_lock);
2716 			if (XLOG_FORCED_SHUTDOWN(log))
2717 				goto error_return;
2718 
2719 			trace_xfs_log_regrant_write_wake1(log, tic);
2720 		}
2721 	}
2722 
2723 redo:
2724 	if (XLOG_FORCED_SHUTDOWN(log))
2725 		goto error_return;
2726 
2727 	free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
2728 				     log->l_grant_write_bytes);
2729 	if (free_bytes < need_bytes) {
2730 		if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2731 			xlog_ins_ticketq(&log->l_write_headq, tic);
2732 		spin_unlock(&log->l_grant_lock);
2733 		xlog_grant_push_ail(log->l_mp, need_bytes);
2734 		spin_lock(&log->l_grant_lock);
2735 
2736 		XFS_STATS_INC(xs_sleep_logspace);
2737 		trace_xfs_log_regrant_write_sleep2(log, tic);
2738 
2739 		sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2740 
2741 		/* If we're shutting down, this tic is already off the queue */
2742 		spin_lock(&log->l_grant_lock);
2743 		if (XLOG_FORCED_SHUTDOWN(log))
2744 			goto error_return;
2745 
2746 		trace_xfs_log_regrant_write_wake2(log, tic);
2747 		goto redo;
2748 	} else if (tic->t_flags & XLOG_TIC_IN_Q)
2749 		xlog_del_ticketq(&log->l_write_headq, tic);
2750 
2751 	/* we've got enough space */
2752 	xlog_grant_add_space_write(log, need_bytes);
2753 #ifdef DEBUG
2754 	tail_lsn = log->l_tail_lsn;
2755 	if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
2756 		ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
2757 		ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
2758 	}
2759 #endif
2760 
2761 	trace_xfs_log_regrant_write_exit(log, tic);
2762 
2763 	xlog_verify_grant_head(log, 1);
2764 	spin_unlock(&log->l_grant_lock);
2765 	return 0;
2766 
2767 
2768  error_return:
2769 	if (tic->t_flags & XLOG_TIC_IN_Q)
2770 		xlog_del_ticketq(&log->l_reserve_headq, tic);
2771 
2772 	trace_xfs_log_regrant_write_error(log, tic);
2773 
2774 	/*
2775 	 * If we are failing, make sure the ticket doesn't have any
2776 	 * current reservations. We don't want to add this back when
2777 	 * the ticket/transaction gets cancelled.
2778 	 */
2779 	tic->t_curr_res = 0;
2780 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2781 	spin_unlock(&log->l_grant_lock);
2782 	return XFS_ERROR(EIO);
2783 }	/* xlog_regrant_write_log_space */
2784 
2785 
2786 /* The first cnt-1 times through here we don't need to
2787  * move the grant write head because the permanent
2788  * reservation has reserved cnt times the unit amount.
2789  * Release part of current permanent unit reservation and
2790  * reset current reservation to be one units worth.  Also
2791  * move grant reservation head forward.
2792  */
2793 STATIC void
2794 xlog_regrant_reserve_log_space(xlog_t	     *log,
2795 			       xlog_ticket_t *ticket)
2796 {
2797 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2798 
2799 	if (ticket->t_cnt > 0)
2800 		ticket->t_cnt--;
2801 
2802 	spin_lock(&log->l_grant_lock);
2803 	xlog_grant_sub_space(log, ticket->t_curr_res);
2804 	ticket->t_curr_res = ticket->t_unit_res;
2805 	xlog_tic_reset_res(ticket);
2806 
2807 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2808 
2809 	xlog_verify_grant_head(log, 1);
2810 
2811 	/* just return if we still have some of the pre-reserved space */
2812 	if (ticket->t_cnt > 0) {
2813 		spin_unlock(&log->l_grant_lock);
2814 		return;
2815 	}
2816 
2817 	xlog_grant_add_space_reserve(log, ticket->t_unit_res);
2818 
2819 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2820 
2821 	xlog_verify_grant_head(log, 0);
2822 	spin_unlock(&log->l_grant_lock);
2823 	ticket->t_curr_res = ticket->t_unit_res;
2824 	xlog_tic_reset_res(ticket);
2825 }	/* xlog_regrant_reserve_log_space */
2826 
2827 
2828 /*
2829  * Give back the space left from a reservation.
2830  *
2831  * All the information we need to make a correct determination of space left
2832  * is present.  For non-permanent reservations, things are quite easy.  The
2833  * count should have been decremented to zero.  We only need to deal with the
2834  * space remaining in the current reservation part of the ticket.  If the
2835  * ticket contains a permanent reservation, there may be left over space which
2836  * needs to be released.  A count of N means that N-1 refills of the current
2837  * reservation can be done before we need to ask for more space.  The first
2838  * one goes to fill up the first current reservation.  Once we run out of
2839  * space, the count will stay at zero and the only space remaining will be
2840  * in the current reservation field.
2841  */
2842 STATIC void
2843 xlog_ungrant_log_space(xlog_t	     *log,
2844 		       xlog_ticket_t *ticket)
2845 {
2846 	if (ticket->t_cnt > 0)
2847 		ticket->t_cnt--;
2848 
2849 	spin_lock(&log->l_grant_lock);
2850 	trace_xfs_log_ungrant_enter(log, ticket);
2851 
2852 	xlog_grant_sub_space(log, ticket->t_curr_res);
2853 
2854 	trace_xfs_log_ungrant_sub(log, ticket);
2855 
2856 	/* If this is a permanent reservation ticket, we may be able to free
2857 	 * up more space based on the remaining count.
2858 	 */
2859 	if (ticket->t_cnt > 0) {
2860 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2861 		xlog_grant_sub_space(log, ticket->t_unit_res*ticket->t_cnt);
2862 	}
2863 
2864 	trace_xfs_log_ungrant_exit(log, ticket);
2865 
2866 	xlog_verify_grant_head(log, 1);
2867 	spin_unlock(&log->l_grant_lock);
2868 	xfs_log_move_tail(log->l_mp, 1);
2869 }	/* xlog_ungrant_log_space */
2870 
2871 
2872 /*
2873  * Flush iclog to disk if this is the last reference to the given iclog and
2874  * the WANT_SYNC bit is set.
2875  *
2876  * When this function is entered, the iclog is not necessarily in the
2877  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2878  *
2879  *
2880  */
2881 STATIC int
2882 xlog_state_release_iclog(
2883 	xlog_t		*log,
2884 	xlog_in_core_t	*iclog)
2885 {
2886 	int		sync = 0;	/* do we sync? */
2887 
2888 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2889 		return XFS_ERROR(EIO);
2890 
2891 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2892 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2893 		return 0;
2894 
2895 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2896 		spin_unlock(&log->l_icloglock);
2897 		return XFS_ERROR(EIO);
2898 	}
2899 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2900 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2901 
2902 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2903 		/* update tail before writing to iclog */
2904 		xlog_assign_tail_lsn(log->l_mp);
2905 		sync++;
2906 		iclog->ic_state = XLOG_STATE_SYNCING;
2907 		iclog->ic_header.h_tail_lsn = cpu_to_be64(log->l_tail_lsn);
2908 		xlog_verify_tail_lsn(log, iclog, log->l_tail_lsn);
2909 		/* cycle incremented when incrementing curr_block */
2910 	}
2911 	spin_unlock(&log->l_icloglock);
2912 
2913 	/*
2914 	 * We let the log lock go, so it's possible that we hit a log I/O
2915 	 * error or some other SHUTDOWN condition that marks the iclog
2916 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2917 	 * this iclog has consistent data, so we ignore IOERROR
2918 	 * flags after this point.
2919 	 */
2920 	if (sync)
2921 		return xlog_sync(log, iclog);
2922 	return 0;
2923 }	/* xlog_state_release_iclog */
2924 
2925 
2926 /*
2927  * This routine will mark the current iclog in the ring as WANT_SYNC
2928  * and move the current iclog pointer to the next iclog in the ring.
2929  * When this routine is called from xlog_state_get_iclog_space(), the
2930  * exact size of the iclog has not yet been determined.  All we know is
2931  * that every data block.  We have run out of space in this log record.
2932  */
2933 STATIC void
2934 xlog_state_switch_iclogs(xlog_t		*log,
2935 			 xlog_in_core_t *iclog,
2936 			 int		eventual_size)
2937 {
2938 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2939 	if (!eventual_size)
2940 		eventual_size = iclog->ic_offset;
2941 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2942 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2943 	log->l_prev_block = log->l_curr_block;
2944 	log->l_prev_cycle = log->l_curr_cycle;
2945 
2946 	/* roll log?: ic_offset changed later */
2947 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2948 
2949 	/* Round up to next log-sunit */
2950 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2951 	    log->l_mp->m_sb.sb_logsunit > 1) {
2952 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2953 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2954 	}
2955 
2956 	if (log->l_curr_block >= log->l_logBBsize) {
2957 		log->l_curr_cycle++;
2958 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2959 			log->l_curr_cycle++;
2960 		log->l_curr_block -= log->l_logBBsize;
2961 		ASSERT(log->l_curr_block >= 0);
2962 	}
2963 	ASSERT(iclog == log->l_iclog);
2964 	log->l_iclog = iclog->ic_next;
2965 }	/* xlog_state_switch_iclogs */
2966 
2967 /*
2968  * Write out all data in the in-core log as of this exact moment in time.
2969  *
2970  * Data may be written to the in-core log during this call.  However,
2971  * we don't guarantee this data will be written out.  A change from past
2972  * implementation means this routine will *not* write out zero length LRs.
2973  *
2974  * Basically, we try and perform an intelligent scan of the in-core logs.
2975  * If we determine there is no flushable data, we just return.  There is no
2976  * flushable data if:
2977  *
2978  *	1. the current iclog is active and has no data; the previous iclog
2979  *		is in the active or dirty state.
2980  *	2. the current iclog is drity, and the previous iclog is in the
2981  *		active or dirty state.
2982  *
2983  * We may sleep if:
2984  *
2985  *	1. the current iclog is not in the active nor dirty state.
2986  *	2. the current iclog dirty, and the previous iclog is not in the
2987  *		active nor dirty state.
2988  *	3. the current iclog is active, and there is another thread writing
2989  *		to this particular iclog.
2990  *	4. a) the current iclog is active and has no other writers
2991  *	   b) when we return from flushing out this iclog, it is still
2992  *		not in the active nor dirty state.
2993  */
2994 int
2995 _xfs_log_force(
2996 	struct xfs_mount	*mp,
2997 	uint			flags,
2998 	int			*log_flushed)
2999 {
3000 	struct log		*log = mp->m_log;
3001 	struct xlog_in_core	*iclog;
3002 	xfs_lsn_t		lsn;
3003 
3004 	XFS_STATS_INC(xs_log_force);
3005 
3006 	if (log->l_cilp)
3007 		xlog_cil_force(log);
3008 
3009 	spin_lock(&log->l_icloglock);
3010 
3011 	iclog = log->l_iclog;
3012 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3013 		spin_unlock(&log->l_icloglock);
3014 		return XFS_ERROR(EIO);
3015 	}
3016 
3017 	/* If the head iclog is not active nor dirty, we just attach
3018 	 * ourselves to the head and go to sleep.
3019 	 */
3020 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3021 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3022 		/*
3023 		 * If the head is dirty or (active and empty), then
3024 		 * we need to look at the previous iclog.  If the previous
3025 		 * iclog is active or dirty we are done.  There is nothing
3026 		 * to sync out.  Otherwise, we attach ourselves to the
3027 		 * previous iclog and go to sleep.
3028 		 */
3029 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3030 		    (atomic_read(&iclog->ic_refcnt) == 0
3031 		     && iclog->ic_offset == 0)) {
3032 			iclog = iclog->ic_prev;
3033 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3034 			    iclog->ic_state == XLOG_STATE_DIRTY)
3035 				goto no_sleep;
3036 			else
3037 				goto maybe_sleep;
3038 		} else {
3039 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3040 				/* We are the only one with access to this
3041 				 * iclog.  Flush it out now.  There should
3042 				 * be a roundoff of zero to show that someone
3043 				 * has already taken care of the roundoff from
3044 				 * the previous sync.
3045 				 */
3046 				atomic_inc(&iclog->ic_refcnt);
3047 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3048 				xlog_state_switch_iclogs(log, iclog, 0);
3049 				spin_unlock(&log->l_icloglock);
3050 
3051 				if (xlog_state_release_iclog(log, iclog))
3052 					return XFS_ERROR(EIO);
3053 
3054 				if (log_flushed)
3055 					*log_flushed = 1;
3056 				spin_lock(&log->l_icloglock);
3057 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3058 				    iclog->ic_state != XLOG_STATE_DIRTY)
3059 					goto maybe_sleep;
3060 				else
3061 					goto no_sleep;
3062 			} else {
3063 				/* Someone else is writing to this iclog.
3064 				 * Use its call to flush out the data.  However,
3065 				 * the other thread may not force out this LR,
3066 				 * so we mark it WANT_SYNC.
3067 				 */
3068 				xlog_state_switch_iclogs(log, iclog, 0);
3069 				goto maybe_sleep;
3070 			}
3071 		}
3072 	}
3073 
3074 	/* By the time we come around again, the iclog could've been filled
3075 	 * which would give it another lsn.  If we have a new lsn, just
3076 	 * return because the relevant data has been flushed.
3077 	 */
3078 maybe_sleep:
3079 	if (flags & XFS_LOG_SYNC) {
3080 		/*
3081 		 * We must check if we're shutting down here, before
3082 		 * we wait, while we're holding the l_icloglock.
3083 		 * Then we check again after waking up, in case our
3084 		 * sleep was disturbed by a bad news.
3085 		 */
3086 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3087 			spin_unlock(&log->l_icloglock);
3088 			return XFS_ERROR(EIO);
3089 		}
3090 		XFS_STATS_INC(xs_log_force_sleep);
3091 		sv_wait(&iclog->ic_force_wait, PINOD, &log->l_icloglock, s);
3092 		/*
3093 		 * No need to grab the log lock here since we're
3094 		 * only deciding whether or not to return EIO
3095 		 * and the memory read should be atomic.
3096 		 */
3097 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3098 			return XFS_ERROR(EIO);
3099 		if (log_flushed)
3100 			*log_flushed = 1;
3101 	} else {
3102 
3103 no_sleep:
3104 		spin_unlock(&log->l_icloglock);
3105 	}
3106 	return 0;
3107 }
3108 
3109 /*
3110  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3111  * about errors or whether the log was flushed or not. This is the normal
3112  * interface to use when trying to unpin items or move the log forward.
3113  */
3114 void
3115 xfs_log_force(
3116 	xfs_mount_t	*mp,
3117 	uint		flags)
3118 {
3119 	int	error;
3120 
3121 	error = _xfs_log_force(mp, flags, NULL);
3122 	if (error) {
3123 		xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3124 			"error %d returned.", error);
3125 	}
3126 }
3127 
3128 /*
3129  * Force the in-core log to disk for a specific LSN.
3130  *
3131  * Find in-core log with lsn.
3132  *	If it is in the DIRTY state, just return.
3133  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3134  *		state and go to sleep or return.
3135  *	If it is in any other state, go to sleep or return.
3136  *
3137  * Synchronous forces are implemented with a signal variable. All callers
3138  * to force a given lsn to disk will wait on a the sv attached to the
3139  * specific in-core log.  When given in-core log finally completes its
3140  * write to disk, that thread will wake up all threads waiting on the
3141  * sv.
3142  */
3143 int
3144 _xfs_log_force_lsn(
3145 	struct xfs_mount	*mp,
3146 	xfs_lsn_t		lsn,
3147 	uint			flags,
3148 	int			*log_flushed)
3149 {
3150 	struct log		*log = mp->m_log;
3151 	struct xlog_in_core	*iclog;
3152 	int			already_slept = 0;
3153 
3154 	ASSERT(lsn != 0);
3155 
3156 	XFS_STATS_INC(xs_log_force);
3157 
3158 	if (log->l_cilp) {
3159 		lsn = xlog_cil_force_lsn(log, lsn);
3160 		if (lsn == NULLCOMMITLSN)
3161 			return 0;
3162 	}
3163 
3164 try_again:
3165 	spin_lock(&log->l_icloglock);
3166 	iclog = log->l_iclog;
3167 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3168 		spin_unlock(&log->l_icloglock);
3169 		return XFS_ERROR(EIO);
3170 	}
3171 
3172 	do {
3173 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3174 			iclog = iclog->ic_next;
3175 			continue;
3176 		}
3177 
3178 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3179 			spin_unlock(&log->l_icloglock);
3180 			return 0;
3181 		}
3182 
3183 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3184 			/*
3185 			 * We sleep here if we haven't already slept (e.g.
3186 			 * this is the first time we've looked at the correct
3187 			 * iclog buf) and the buffer before us is going to
3188 			 * be sync'ed. The reason for this is that if we
3189 			 * are doing sync transactions here, by waiting for
3190 			 * the previous I/O to complete, we can allow a few
3191 			 * more transactions into this iclog before we close
3192 			 * it down.
3193 			 *
3194 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3195 			 * up the refcnt so we can release the log (which
3196 			 * drops the ref count).  The state switch keeps new
3197 			 * transaction commits from using this buffer.  When
3198 			 * the current commits finish writing into the buffer,
3199 			 * the refcount will drop to zero and the buffer will
3200 			 * go out then.
3201 			 */
3202 			if (!already_slept &&
3203 			    (iclog->ic_prev->ic_state &
3204 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3205 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3206 
3207 				XFS_STATS_INC(xs_log_force_sleep);
3208 
3209 				sv_wait(&iclog->ic_prev->ic_write_wait,
3210 					PSWP, &log->l_icloglock, s);
3211 				if (log_flushed)
3212 					*log_flushed = 1;
3213 				already_slept = 1;
3214 				goto try_again;
3215 			}
3216 			atomic_inc(&iclog->ic_refcnt);
3217 			xlog_state_switch_iclogs(log, iclog, 0);
3218 			spin_unlock(&log->l_icloglock);
3219 			if (xlog_state_release_iclog(log, iclog))
3220 				return XFS_ERROR(EIO);
3221 			if (log_flushed)
3222 				*log_flushed = 1;
3223 			spin_lock(&log->l_icloglock);
3224 		}
3225 
3226 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3227 		    !(iclog->ic_state &
3228 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3229 			/*
3230 			 * Don't wait on completion if we know that we've
3231 			 * gotten a log write error.
3232 			 */
3233 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3234 				spin_unlock(&log->l_icloglock);
3235 				return XFS_ERROR(EIO);
3236 			}
3237 			XFS_STATS_INC(xs_log_force_sleep);
3238 			sv_wait(&iclog->ic_force_wait, PSWP, &log->l_icloglock, s);
3239 			/*
3240 			 * No need to grab the log lock here since we're
3241 			 * only deciding whether or not to return EIO
3242 			 * and the memory read should be atomic.
3243 			 */
3244 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3245 				return XFS_ERROR(EIO);
3246 
3247 			if (log_flushed)
3248 				*log_flushed = 1;
3249 		} else {		/* just return */
3250 			spin_unlock(&log->l_icloglock);
3251 		}
3252 
3253 		return 0;
3254 	} while (iclog != log->l_iclog);
3255 
3256 	spin_unlock(&log->l_icloglock);
3257 	return 0;
3258 }
3259 
3260 /*
3261  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3262  * about errors or whether the log was flushed or not. This is the normal
3263  * interface to use when trying to unpin items or move the log forward.
3264  */
3265 void
3266 xfs_log_force_lsn(
3267 	xfs_mount_t	*mp,
3268 	xfs_lsn_t	lsn,
3269 	uint		flags)
3270 {
3271 	int	error;
3272 
3273 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3274 	if (error) {
3275 		xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3276 			"error %d returned.", error);
3277 	}
3278 }
3279 
3280 /*
3281  * Called when we want to mark the current iclog as being ready to sync to
3282  * disk.
3283  */
3284 STATIC void
3285 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3286 {
3287 	assert_spin_locked(&log->l_icloglock);
3288 
3289 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3290 		xlog_state_switch_iclogs(log, iclog, 0);
3291 	} else {
3292 		ASSERT(iclog->ic_state &
3293 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3294 	}
3295 }
3296 
3297 
3298 /*****************************************************************************
3299  *
3300  *		TICKET functions
3301  *
3302  *****************************************************************************
3303  */
3304 
3305 /*
3306  * Free a used ticket when its refcount falls to zero.
3307  */
3308 void
3309 xfs_log_ticket_put(
3310 	xlog_ticket_t	*ticket)
3311 {
3312 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3313 	if (atomic_dec_and_test(&ticket->t_ref)) {
3314 		sv_destroy(&ticket->t_wait);
3315 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3316 	}
3317 }
3318 
3319 xlog_ticket_t *
3320 xfs_log_ticket_get(
3321 	xlog_ticket_t	*ticket)
3322 {
3323 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3324 	atomic_inc(&ticket->t_ref);
3325 	return ticket;
3326 }
3327 
3328 xlog_tid_t
3329 xfs_log_get_trans_ident(
3330 	struct xfs_trans	*tp)
3331 {
3332 	return tp->t_ticket->t_tid;
3333 }
3334 
3335 /*
3336  * Allocate and initialise a new log ticket.
3337  */
3338 xlog_ticket_t *
3339 xlog_ticket_alloc(
3340 	struct log	*log,
3341 	int		unit_bytes,
3342 	int		cnt,
3343 	char		client,
3344 	uint		xflags,
3345 	int		alloc_flags)
3346 {
3347 	struct xlog_ticket *tic;
3348 	uint		num_headers;
3349 	int		iclog_space;
3350 
3351 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3352 	if (!tic)
3353 		return NULL;
3354 
3355 	/*
3356 	 * Permanent reservations have up to 'cnt'-1 active log operations
3357 	 * in the log.  A unit in this case is the amount of space for one
3358 	 * of these log operations.  Normal reservations have a cnt of 1
3359 	 * and their unit amount is the total amount of space required.
3360 	 *
3361 	 * The following lines of code account for non-transaction data
3362 	 * which occupy space in the on-disk log.
3363 	 *
3364 	 * Normal form of a transaction is:
3365 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3366 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3367 	 *
3368 	 * We need to account for all the leadup data and trailer data
3369 	 * around the transaction data.
3370 	 * And then we need to account for the worst case in terms of using
3371 	 * more space.
3372 	 * The worst case will happen if:
3373 	 * - the placement of the transaction happens to be such that the
3374 	 *   roundoff is at its maximum
3375 	 * - the transaction data is synced before the commit record is synced
3376 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3377 	 *   Therefore the commit record is in its own Log Record.
3378 	 *   This can happen as the commit record is called with its
3379 	 *   own region to xlog_write().
3380 	 *   This then means that in the worst case, roundoff can happen for
3381 	 *   the commit-rec as well.
3382 	 *   The commit-rec is smaller than padding in this scenario and so it is
3383 	 *   not added separately.
3384 	 */
3385 
3386 	/* for trans header */
3387 	unit_bytes += sizeof(xlog_op_header_t);
3388 	unit_bytes += sizeof(xfs_trans_header_t);
3389 
3390 	/* for start-rec */
3391 	unit_bytes += sizeof(xlog_op_header_t);
3392 
3393 	/*
3394 	 * for LR headers - the space for data in an iclog is the size minus
3395 	 * the space used for the headers. If we use the iclog size, then we
3396 	 * undercalculate the number of headers required.
3397 	 *
3398 	 * Furthermore - the addition of op headers for split-recs might
3399 	 * increase the space required enough to require more log and op
3400 	 * headers, so take that into account too.
3401 	 *
3402 	 * IMPORTANT: This reservation makes the assumption that if this
3403 	 * transaction is the first in an iclog and hence has the LR headers
3404 	 * accounted to it, then the remaining space in the iclog is
3405 	 * exclusively for this transaction.  i.e. if the transaction is larger
3406 	 * than the iclog, it will be the only thing in that iclog.
3407 	 * Fundamentally, this means we must pass the entire log vector to
3408 	 * xlog_write to guarantee this.
3409 	 */
3410 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3411 	num_headers = howmany(unit_bytes, iclog_space);
3412 
3413 	/* for split-recs - ophdrs added when data split over LRs */
3414 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3415 
3416 	/* add extra header reservations if we overrun */
3417 	while (!num_headers ||
3418 	       howmany(unit_bytes, iclog_space) > num_headers) {
3419 		unit_bytes += sizeof(xlog_op_header_t);
3420 		num_headers++;
3421 	}
3422 	unit_bytes += log->l_iclog_hsize * num_headers;
3423 
3424 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3425 	unit_bytes += log->l_iclog_hsize;
3426 
3427 	/* for roundoff padding for transaction data and one for commit record */
3428 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3429 	    log->l_mp->m_sb.sb_logsunit > 1) {
3430 		/* log su roundoff */
3431 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3432 	} else {
3433 		/* BB roundoff */
3434 		unit_bytes += 2*BBSIZE;
3435         }
3436 
3437 	atomic_set(&tic->t_ref, 1);
3438 	tic->t_unit_res		= unit_bytes;
3439 	tic->t_curr_res		= unit_bytes;
3440 	tic->t_cnt		= cnt;
3441 	tic->t_ocnt		= cnt;
3442 	tic->t_tid		= random32();
3443 	tic->t_clientid		= client;
3444 	tic->t_flags		= XLOG_TIC_INITED;
3445 	tic->t_trans_type	= 0;
3446 	if (xflags & XFS_LOG_PERM_RESERV)
3447 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3448 	sv_init(&tic->t_wait, SV_DEFAULT, "logtick");
3449 
3450 	xlog_tic_reset_res(tic);
3451 
3452 	return tic;
3453 }
3454 
3455 
3456 /******************************************************************************
3457  *
3458  *		Log debug routines
3459  *
3460  ******************************************************************************
3461  */
3462 #if defined(DEBUG)
3463 /*
3464  * Make sure that the destination ptr is within the valid data region of
3465  * one of the iclogs.  This uses backup pointers stored in a different
3466  * part of the log in case we trash the log structure.
3467  */
3468 void
3469 xlog_verify_dest_ptr(
3470 	struct log	*log,
3471 	char		*ptr)
3472 {
3473 	int i;
3474 	int good_ptr = 0;
3475 
3476 	for (i = 0; i < log->l_iclog_bufs; i++) {
3477 		if (ptr >= log->l_iclog_bak[i] &&
3478 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3479 			good_ptr++;
3480 	}
3481 
3482 	if (!good_ptr)
3483 		xlog_panic("xlog_verify_dest_ptr: invalid ptr");
3484 }
3485 
3486 STATIC void
3487 xlog_verify_grant_head(xlog_t *log, int equals)
3488 {
3489     if (log->l_grant_reserve_cycle == log->l_grant_write_cycle) {
3490 	if (equals)
3491 	    ASSERT(log->l_grant_reserve_bytes >= log->l_grant_write_bytes);
3492 	else
3493 	    ASSERT(log->l_grant_reserve_bytes > log->l_grant_write_bytes);
3494     } else {
3495 	ASSERT(log->l_grant_reserve_cycle-1 == log->l_grant_write_cycle);
3496 	ASSERT(log->l_grant_write_bytes >= log->l_grant_reserve_bytes);
3497     }
3498 }	/* xlog_verify_grant_head */
3499 
3500 /* check if it will fit */
3501 STATIC void
3502 xlog_verify_tail_lsn(xlog_t	    *log,
3503 		     xlog_in_core_t *iclog,
3504 		     xfs_lsn_t	    tail_lsn)
3505 {
3506     int blocks;
3507 
3508     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3509 	blocks =
3510 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3511 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3512 	    xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3513     } else {
3514 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3515 
3516 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3517 	    xlog_panic("xlog_verify_tail_lsn: tail wrapped");
3518 
3519 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3520 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3521 	    xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3522     }
3523 }	/* xlog_verify_tail_lsn */
3524 
3525 /*
3526  * Perform a number of checks on the iclog before writing to disk.
3527  *
3528  * 1. Make sure the iclogs are still circular
3529  * 2. Make sure we have a good magic number
3530  * 3. Make sure we don't have magic numbers in the data
3531  * 4. Check fields of each log operation header for:
3532  *	A. Valid client identifier
3533  *	B. tid ptr value falls in valid ptr space (user space code)
3534  *	C. Length in log record header is correct according to the
3535  *		individual operation headers within record.
3536  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3537  *	log, check the preceding blocks of the physical log to make sure all
3538  *	the cycle numbers agree with the current cycle number.
3539  */
3540 STATIC void
3541 xlog_verify_iclog(xlog_t	 *log,
3542 		  xlog_in_core_t *iclog,
3543 		  int		 count,
3544 		  boolean_t	 syncing)
3545 {
3546 	xlog_op_header_t	*ophead;
3547 	xlog_in_core_t		*icptr;
3548 	xlog_in_core_2_t	*xhdr;
3549 	xfs_caddr_t		ptr;
3550 	xfs_caddr_t		base_ptr;
3551 	__psint_t		field_offset;
3552 	__uint8_t		clientid;
3553 	int			len, i, j, k, op_len;
3554 	int			idx;
3555 
3556 	/* check validity of iclog pointers */
3557 	spin_lock(&log->l_icloglock);
3558 	icptr = log->l_iclog;
3559 	for (i=0; i < log->l_iclog_bufs; i++) {
3560 		if (icptr == NULL)
3561 			xlog_panic("xlog_verify_iclog: invalid ptr");
3562 		icptr = icptr->ic_next;
3563 	}
3564 	if (icptr != log->l_iclog)
3565 		xlog_panic("xlog_verify_iclog: corrupt iclog ring");
3566 	spin_unlock(&log->l_icloglock);
3567 
3568 	/* check log magic numbers */
3569 	if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3570 		xlog_panic("xlog_verify_iclog: invalid magic num");
3571 
3572 	ptr = (xfs_caddr_t) &iclog->ic_header;
3573 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3574 	     ptr += BBSIZE) {
3575 		if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3576 			xlog_panic("xlog_verify_iclog: unexpected magic num");
3577 	}
3578 
3579 	/* check fields */
3580 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3581 	ptr = iclog->ic_datap;
3582 	base_ptr = ptr;
3583 	ophead = (xlog_op_header_t *)ptr;
3584 	xhdr = iclog->ic_data;
3585 	for (i = 0; i < len; i++) {
3586 		ophead = (xlog_op_header_t *)ptr;
3587 
3588 		/* clientid is only 1 byte */
3589 		field_offset = (__psint_t)
3590 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3591 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3592 			clientid = ophead->oh_clientid;
3593 		} else {
3594 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3595 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3596 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3597 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3598 				clientid = xlog_get_client_id(
3599 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3600 			} else {
3601 				clientid = xlog_get_client_id(
3602 					iclog->ic_header.h_cycle_data[idx]);
3603 			}
3604 		}
3605 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3606 			cmn_err(CE_WARN, "xlog_verify_iclog: "
3607 				"invalid clientid %d op 0x%p offset 0x%lx",
3608 				clientid, ophead, (unsigned long)field_offset);
3609 
3610 		/* check length */
3611 		field_offset = (__psint_t)
3612 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3613 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3614 			op_len = be32_to_cpu(ophead->oh_len);
3615 		} else {
3616 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3617 				    (__psint_t)iclog->ic_datap);
3618 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3619 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3620 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3621 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3622 			} else {
3623 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3624 			}
3625 		}
3626 		ptr += sizeof(xlog_op_header_t) + op_len;
3627 	}
3628 }	/* xlog_verify_iclog */
3629 #endif
3630 
3631 /*
3632  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3633  */
3634 STATIC int
3635 xlog_state_ioerror(
3636 	xlog_t	*log)
3637 {
3638 	xlog_in_core_t	*iclog, *ic;
3639 
3640 	iclog = log->l_iclog;
3641 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3642 		/*
3643 		 * Mark all the incore logs IOERROR.
3644 		 * From now on, no log flushes will result.
3645 		 */
3646 		ic = iclog;
3647 		do {
3648 			ic->ic_state = XLOG_STATE_IOERROR;
3649 			ic = ic->ic_next;
3650 		} while (ic != iclog);
3651 		return 0;
3652 	}
3653 	/*
3654 	 * Return non-zero, if state transition has already happened.
3655 	 */
3656 	return 1;
3657 }
3658 
3659 /*
3660  * This is called from xfs_force_shutdown, when we're forcibly
3661  * shutting down the filesystem, typically because of an IO error.
3662  * Our main objectives here are to make sure that:
3663  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3664  *	   parties to find out, 'atomically'.
3665  *	b. those who're sleeping on log reservations, pinned objects and
3666  *	    other resources get woken up, and be told the bad news.
3667  *	c. nothing new gets queued up after (a) and (b) are done.
3668  *	d. if !logerror, flush the iclogs to disk, then seal them off
3669  *	   for business.
3670  *
3671  * Note: for delayed logging the !logerror case needs to flush the regions
3672  * held in memory out to the iclogs before flushing them to disk. This needs
3673  * to be done before the log is marked as shutdown, otherwise the flush to the
3674  * iclogs will fail.
3675  */
3676 int
3677 xfs_log_force_umount(
3678 	struct xfs_mount	*mp,
3679 	int			logerror)
3680 {
3681 	xlog_ticket_t	*tic;
3682 	xlog_t		*log;
3683 	int		retval;
3684 
3685 	log = mp->m_log;
3686 
3687 	/*
3688 	 * If this happens during log recovery, don't worry about
3689 	 * locking; the log isn't open for business yet.
3690 	 */
3691 	if (!log ||
3692 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3693 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3694 		if (mp->m_sb_bp)
3695 			XFS_BUF_DONE(mp->m_sb_bp);
3696 		return 0;
3697 	}
3698 
3699 	/*
3700 	 * Somebody could've already done the hard work for us.
3701 	 * No need to get locks for this.
3702 	 */
3703 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3704 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3705 		return 1;
3706 	}
3707 	retval = 0;
3708 
3709 	/*
3710 	 * Flush the in memory commit item list before marking the log as
3711 	 * being shut down. We need to do it in this order to ensure all the
3712 	 * completed transactions are flushed to disk with the xfs_log_force()
3713 	 * call below.
3714 	 */
3715 	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3716 		xlog_cil_force(log);
3717 
3718 	/*
3719 	 * We must hold both the GRANT lock and the LOG lock,
3720 	 * before we mark the filesystem SHUTDOWN and wake
3721 	 * everybody up to tell the bad news.
3722 	 */
3723 	spin_lock(&log->l_icloglock);
3724 	spin_lock(&log->l_grant_lock);
3725 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3726 	if (mp->m_sb_bp)
3727 		XFS_BUF_DONE(mp->m_sb_bp);
3728 
3729 	/*
3730 	 * This flag is sort of redundant because of the mount flag, but
3731 	 * it's good to maintain the separation between the log and the rest
3732 	 * of XFS.
3733 	 */
3734 	log->l_flags |= XLOG_IO_ERROR;
3735 
3736 	/*
3737 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3738 	 * while we're still holding the loglock.
3739 	 */
3740 	if (logerror)
3741 		retval = xlog_state_ioerror(log);
3742 	spin_unlock(&log->l_icloglock);
3743 
3744 	/*
3745 	 * We don't want anybody waiting for log reservations
3746 	 * after this. That means we have to wake up everybody
3747 	 * queued up on reserve_headq as well as write_headq.
3748 	 * In addition, we make sure in xlog_{re}grant_log_space
3749 	 * that we don't enqueue anything once the SHUTDOWN flag
3750 	 * is set, and this action is protected by the GRANTLOCK.
3751 	 */
3752 	if ((tic = log->l_reserve_headq)) {
3753 		do {
3754 			sv_signal(&tic->t_wait);
3755 			tic = tic->t_next;
3756 		} while (tic != log->l_reserve_headq);
3757 	}
3758 
3759 	if ((tic = log->l_write_headq)) {
3760 		do {
3761 			sv_signal(&tic->t_wait);
3762 			tic = tic->t_next;
3763 		} while (tic != log->l_write_headq);
3764 	}
3765 	spin_unlock(&log->l_grant_lock);
3766 
3767 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3768 		ASSERT(!logerror);
3769 		/*
3770 		 * Force the incore logs to disk before shutting the
3771 		 * log down completely.
3772 		 */
3773 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3774 
3775 		spin_lock(&log->l_icloglock);
3776 		retval = xlog_state_ioerror(log);
3777 		spin_unlock(&log->l_icloglock);
3778 	}
3779 	/*
3780 	 * Wake up everybody waiting on xfs_log_force.
3781 	 * Callback all log item committed functions as if the
3782 	 * log writes were completed.
3783 	 */
3784 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3785 
3786 #ifdef XFSERRORDEBUG
3787 	{
3788 		xlog_in_core_t	*iclog;
3789 
3790 		spin_lock(&log->l_icloglock);
3791 		iclog = log->l_iclog;
3792 		do {
3793 			ASSERT(iclog->ic_callback == 0);
3794 			iclog = iclog->ic_next;
3795 		} while (iclog != log->l_iclog);
3796 		spin_unlock(&log->l_icloglock);
3797 	}
3798 #endif
3799 	/* return non-zero if log IOERROR transition had already happened */
3800 	return retval;
3801 }
3802 
3803 STATIC int
3804 xlog_iclogs_empty(xlog_t *log)
3805 {
3806 	xlog_in_core_t	*iclog;
3807 
3808 	iclog = log->l_iclog;
3809 	do {
3810 		/* endianness does not matter here, zero is zero in
3811 		 * any language.
3812 		 */
3813 		if (iclog->ic_header.h_num_logops)
3814 			return 0;
3815 		iclog = iclog->ic_next;
3816 	} while (iclog != log->l_iclog);
3817 	return 1;
3818 }
3819