xref: /openbmc/linux/fs/xfs/xfs_log.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog,
51 	bool			aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	int			len,
56 	struct xlog_in_core	**iclog,
57 	struct xlog_ticket	*ticket,
58 	int			*continued_write,
59 	int			*logoffsetp);
60 STATIC int
61 xlog_state_release_iclog(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_state_switch_iclogs(
66 	struct xlog		*log,
67 	struct xlog_in_core	*iclog,
68 	int			eventual_size);
69 STATIC void
70 xlog_state_want_sync(
71 	struct xlog		*log,
72 	struct xlog_in_core	*iclog);
73 
74 STATIC void
75 xlog_grant_push_ail(
76 	struct xlog		*log,
77 	int			need_bytes);
78 STATIC void
79 xlog_regrant_reserve_log_space(
80 	struct xlog		*log,
81 	struct xlog_ticket	*ticket);
82 STATIC void
83 xlog_ungrant_log_space(
84 	struct xlog		*log,
85 	struct xlog_ticket	*ticket);
86 
87 #if defined(DEBUG)
88 STATIC void
89 xlog_verify_dest_ptr(
90 	struct xlog		*log,
91 	void			*ptr);
92 STATIC void
93 xlog_verify_grant_tail(
94 	struct xlog *log);
95 STATIC void
96 xlog_verify_iclog(
97 	struct xlog		*log,
98 	struct xlog_in_core	*iclog,
99 	int			count);
100 STATIC void
101 xlog_verify_tail_lsn(
102 	struct xlog		*log,
103 	struct xlog_in_core	*iclog,
104 	xfs_lsn_t		tail_lsn);
105 #else
106 #define xlog_verify_dest_ptr(a,b)
107 #define xlog_verify_grant_tail(a)
108 #define xlog_verify_iclog(a,b,c)
109 #define xlog_verify_tail_lsn(a,b,c)
110 #endif
111 
112 STATIC int
113 xlog_iclogs_empty(
114 	struct xlog		*log);
115 
116 static void
117 xlog_grant_sub_space(
118 	struct xlog		*log,
119 	atomic64_t		*head,
120 	int			bytes)
121 {
122 	int64_t	head_val = atomic64_read(head);
123 	int64_t new, old;
124 
125 	do {
126 		int	cycle, space;
127 
128 		xlog_crack_grant_head_val(head_val, &cycle, &space);
129 
130 		space -= bytes;
131 		if (space < 0) {
132 			space += log->l_logsize;
133 			cycle--;
134 		}
135 
136 		old = head_val;
137 		new = xlog_assign_grant_head_val(cycle, space);
138 		head_val = atomic64_cmpxchg(head, old, new);
139 	} while (head_val != old);
140 }
141 
142 static void
143 xlog_grant_add_space(
144 	struct xlog		*log,
145 	atomic64_t		*head,
146 	int			bytes)
147 {
148 	int64_t	head_val = atomic64_read(head);
149 	int64_t new, old;
150 
151 	do {
152 		int		tmp;
153 		int		cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		tmp = log->l_logsize - space;
158 		if (tmp > bytes)
159 			space += bytes;
160 		else {
161 			space = bytes - tmp;
162 			cycle++;
163 		}
164 
165 		old = head_val;
166 		new = xlog_assign_grant_head_val(cycle, space);
167 		head_val = atomic64_cmpxchg(head, old, new);
168 	} while (head_val != old);
169 }
170 
171 STATIC void
172 xlog_grant_head_init(
173 	struct xlog_grant_head	*head)
174 {
175 	xlog_assign_grant_head(&head->grant, 1, 0);
176 	INIT_LIST_HEAD(&head->waiters);
177 	spin_lock_init(&head->lock);
178 }
179 
180 STATIC void
181 xlog_grant_head_wake_all(
182 	struct xlog_grant_head	*head)
183 {
184 	struct xlog_ticket	*tic;
185 
186 	spin_lock(&head->lock);
187 	list_for_each_entry(tic, &head->waiters, t_queue)
188 		wake_up_process(tic->t_task);
189 	spin_unlock(&head->lock);
190 }
191 
192 static inline int
193 xlog_ticket_reservation(
194 	struct xlog		*log,
195 	struct xlog_grant_head	*head,
196 	struct xlog_ticket	*tic)
197 {
198 	if (head == &log->l_write_head) {
199 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 		return tic->t_unit_res;
201 	} else {
202 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203 			return tic->t_unit_res * tic->t_cnt;
204 		else
205 			return tic->t_unit_res;
206 	}
207 }
208 
209 STATIC bool
210 xlog_grant_head_wake(
211 	struct xlog		*log,
212 	struct xlog_grant_head	*head,
213 	int			*free_bytes)
214 {
215 	struct xlog_ticket	*tic;
216 	int			need_bytes;
217 
218 	list_for_each_entry(tic, &head->waiters, t_queue) {
219 		need_bytes = xlog_ticket_reservation(log, head, tic);
220 		if (*free_bytes < need_bytes)
221 			return false;
222 
223 		*free_bytes -= need_bytes;
224 		trace_xfs_log_grant_wake_up(log, tic);
225 		wake_up_process(tic->t_task);
226 	}
227 
228 	return true;
229 }
230 
231 STATIC int
232 xlog_grant_head_wait(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	struct xlog_ticket	*tic,
236 	int			need_bytes) __releases(&head->lock)
237 					    __acquires(&head->lock)
238 {
239 	list_add_tail(&tic->t_queue, &head->waiters);
240 
241 	do {
242 		if (XLOG_FORCED_SHUTDOWN(log))
243 			goto shutdown;
244 		xlog_grant_push_ail(log, need_bytes);
245 
246 		__set_current_state(TASK_UNINTERRUPTIBLE);
247 		spin_unlock(&head->lock);
248 
249 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
250 
251 		trace_xfs_log_grant_sleep(log, tic);
252 		schedule();
253 		trace_xfs_log_grant_wake(log, tic);
254 
255 		spin_lock(&head->lock);
256 		if (XLOG_FORCED_SHUTDOWN(log))
257 			goto shutdown;
258 	} while (xlog_space_left(log, &head->grant) < need_bytes);
259 
260 	list_del_init(&tic->t_queue);
261 	return 0;
262 shutdown:
263 	list_del_init(&tic->t_queue);
264 	return -EIO;
265 }
266 
267 /*
268  * Atomically get the log space required for a log ticket.
269  *
270  * Once a ticket gets put onto head->waiters, it will only return after the
271  * needed reservation is satisfied.
272  *
273  * This function is structured so that it has a lock free fast path. This is
274  * necessary because every new transaction reservation will come through this
275  * path. Hence any lock will be globally hot if we take it unconditionally on
276  * every pass.
277  *
278  * As tickets are only ever moved on and off head->waiters under head->lock, we
279  * only need to take that lock if we are going to add the ticket to the queue
280  * and sleep. We can avoid taking the lock if the ticket was never added to
281  * head->waiters because the t_queue list head will be empty and we hold the
282  * only reference to it so it can safely be checked unlocked.
283  */
284 STATIC int
285 xlog_grant_head_check(
286 	struct xlog		*log,
287 	struct xlog_grant_head	*head,
288 	struct xlog_ticket	*tic,
289 	int			*need_bytes)
290 {
291 	int			free_bytes;
292 	int			error = 0;
293 
294 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
295 
296 	/*
297 	 * If there are other waiters on the queue then give them a chance at
298 	 * logspace before us.  Wake up the first waiters, if we do not wake
299 	 * up all the waiters then go to sleep waiting for more free space,
300 	 * otherwise try to get some space for this transaction.
301 	 */
302 	*need_bytes = xlog_ticket_reservation(log, head, tic);
303 	free_bytes = xlog_space_left(log, &head->grant);
304 	if (!list_empty_careful(&head->waiters)) {
305 		spin_lock(&head->lock);
306 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
307 		    free_bytes < *need_bytes) {
308 			error = xlog_grant_head_wait(log, head, tic,
309 						     *need_bytes);
310 		}
311 		spin_unlock(&head->lock);
312 	} else if (free_bytes < *need_bytes) {
313 		spin_lock(&head->lock);
314 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
315 		spin_unlock(&head->lock);
316 	}
317 
318 	return error;
319 }
320 
321 static void
322 xlog_tic_reset_res(xlog_ticket_t *tic)
323 {
324 	tic->t_res_num = 0;
325 	tic->t_res_arr_sum = 0;
326 	tic->t_res_num_ophdrs = 0;
327 }
328 
329 static void
330 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
331 {
332 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
333 		/* add to overflow and start again */
334 		tic->t_res_o_flow += tic->t_res_arr_sum;
335 		tic->t_res_num = 0;
336 		tic->t_res_arr_sum = 0;
337 	}
338 
339 	tic->t_res_arr[tic->t_res_num].r_len = len;
340 	tic->t_res_arr[tic->t_res_num].r_type = type;
341 	tic->t_res_arr_sum += len;
342 	tic->t_res_num++;
343 }
344 
345 /*
346  * Replenish the byte reservation required by moving the grant write head.
347  */
348 int
349 xfs_log_regrant(
350 	struct xfs_mount	*mp,
351 	struct xlog_ticket	*tic)
352 {
353 	struct xlog		*log = mp->m_log;
354 	int			need_bytes;
355 	int			error = 0;
356 
357 	if (XLOG_FORCED_SHUTDOWN(log))
358 		return -EIO;
359 
360 	XFS_STATS_INC(mp, xs_try_logspace);
361 
362 	/*
363 	 * This is a new transaction on the ticket, so we need to change the
364 	 * transaction ID so that the next transaction has a different TID in
365 	 * the log. Just add one to the existing tid so that we can see chains
366 	 * of rolling transactions in the log easily.
367 	 */
368 	tic->t_tid++;
369 
370 	xlog_grant_push_ail(log, tic->t_unit_res);
371 
372 	tic->t_curr_res = tic->t_unit_res;
373 	xlog_tic_reset_res(tic);
374 
375 	if (tic->t_cnt > 0)
376 		return 0;
377 
378 	trace_xfs_log_regrant(log, tic);
379 
380 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
381 				      &need_bytes);
382 	if (error)
383 		goto out_error;
384 
385 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
386 	trace_xfs_log_regrant_exit(log, tic);
387 	xlog_verify_grant_tail(log);
388 	return 0;
389 
390 out_error:
391 	/*
392 	 * If we are failing, make sure the ticket doesn't have any current
393 	 * reservations.  We don't want to add this back when the ticket/
394 	 * transaction gets cancelled.
395 	 */
396 	tic->t_curr_res = 0;
397 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
398 	return error;
399 }
400 
401 /*
402  * Reserve log space and return a ticket corresponding to the reservation.
403  *
404  * Each reservation is going to reserve extra space for a log record header.
405  * When writes happen to the on-disk log, we don't subtract the length of the
406  * log record header from any reservation.  By wasting space in each
407  * reservation, we prevent over allocation problems.
408  */
409 int
410 xfs_log_reserve(
411 	struct xfs_mount	*mp,
412 	int		 	unit_bytes,
413 	int		 	cnt,
414 	struct xlog_ticket	**ticp,
415 	uint8_t		 	client,
416 	bool			permanent)
417 {
418 	struct xlog		*log = mp->m_log;
419 	struct xlog_ticket	*tic;
420 	int			need_bytes;
421 	int			error = 0;
422 
423 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
424 
425 	if (XLOG_FORCED_SHUTDOWN(log))
426 		return -EIO;
427 
428 	XFS_STATS_INC(mp, xs_try_logspace);
429 
430 	ASSERT(*ticp == NULL);
431 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
432 				KM_SLEEP | KM_MAYFAIL);
433 	if (!tic)
434 		return -ENOMEM;
435 
436 	*ticp = tic;
437 
438 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
439 					    : tic->t_unit_res);
440 
441 	trace_xfs_log_reserve(log, tic);
442 
443 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
444 				      &need_bytes);
445 	if (error)
446 		goto out_error;
447 
448 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
449 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
450 	trace_xfs_log_reserve_exit(log, tic);
451 	xlog_verify_grant_tail(log);
452 	return 0;
453 
454 out_error:
455 	/*
456 	 * If we are failing, make sure the ticket doesn't have any current
457 	 * reservations.  We don't want to add this back when the ticket/
458 	 * transaction gets cancelled.
459 	 */
460 	tic->t_curr_res = 0;
461 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
462 	return error;
463 }
464 
465 
466 /*
467  * NOTES:
468  *
469  *	1. currblock field gets updated at startup and after in-core logs
470  *		marked as with WANT_SYNC.
471  */
472 
473 /*
474  * This routine is called when a user of a log manager ticket is done with
475  * the reservation.  If the ticket was ever used, then a commit record for
476  * the associated transaction is written out as a log operation header with
477  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
478  * a given ticket.  If the ticket was one with a permanent reservation, then
479  * a few operations are done differently.  Permanent reservation tickets by
480  * default don't release the reservation.  They just commit the current
481  * transaction with the belief that the reservation is still needed.  A flag
482  * must be passed in before permanent reservations are actually released.
483  * When these type of tickets are not released, they need to be set into
484  * the inited state again.  By doing this, a start record will be written
485  * out when the next write occurs.
486  */
487 xfs_lsn_t
488 xfs_log_done(
489 	struct xfs_mount	*mp,
490 	struct xlog_ticket	*ticket,
491 	struct xlog_in_core	**iclog,
492 	bool			regrant)
493 {
494 	struct xlog		*log = mp->m_log;
495 	xfs_lsn_t		lsn = 0;
496 
497 	if (XLOG_FORCED_SHUTDOWN(log) ||
498 	    /*
499 	     * If nothing was ever written, don't write out commit record.
500 	     * If we get an error, just continue and give back the log ticket.
501 	     */
502 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
503 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
504 		lsn = (xfs_lsn_t) -1;
505 		regrant = false;
506 	}
507 
508 
509 	if (!regrant) {
510 		trace_xfs_log_done_nonperm(log, ticket);
511 
512 		/*
513 		 * Release ticket if not permanent reservation or a specific
514 		 * request has been made to release a permanent reservation.
515 		 */
516 		xlog_ungrant_log_space(log, ticket);
517 	} else {
518 		trace_xfs_log_done_perm(log, ticket);
519 
520 		xlog_regrant_reserve_log_space(log, ticket);
521 		/* If this ticket was a permanent reservation and we aren't
522 		 * trying to release it, reset the inited flags; so next time
523 		 * we write, a start record will be written out.
524 		 */
525 		ticket->t_flags |= XLOG_TIC_INITED;
526 	}
527 
528 	xfs_log_ticket_put(ticket);
529 	return lsn;
530 }
531 
532 int
533 xfs_log_release_iclog(
534 	struct xfs_mount	*mp,
535 	struct xlog_in_core	*iclog)
536 {
537 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
538 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
539 		return -EIO;
540 	}
541 
542 	return 0;
543 }
544 
545 /*
546  * Mount a log filesystem
547  *
548  * mp		- ubiquitous xfs mount point structure
549  * log_target	- buftarg of on-disk log device
550  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
551  * num_bblocks	- Number of BBSIZE blocks in on-disk log
552  *
553  * Return error or zero.
554  */
555 int
556 xfs_log_mount(
557 	xfs_mount_t	*mp,
558 	xfs_buftarg_t	*log_target,
559 	xfs_daddr_t	blk_offset,
560 	int		num_bblks)
561 {
562 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
563 	int		error = 0;
564 	int		min_logfsbs;
565 
566 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
567 		xfs_notice(mp, "Mounting V%d Filesystem",
568 			   XFS_SB_VERSION_NUM(&mp->m_sb));
569 	} else {
570 		xfs_notice(mp,
571 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
572 			   XFS_SB_VERSION_NUM(&mp->m_sb));
573 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
574 	}
575 
576 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
577 	if (IS_ERR(mp->m_log)) {
578 		error = PTR_ERR(mp->m_log);
579 		goto out;
580 	}
581 
582 	/*
583 	 * Validate the given log space and drop a critical message via syslog
584 	 * if the log size is too small that would lead to some unexpected
585 	 * situations in transaction log space reservation stage.
586 	 *
587 	 * Note: we can't just reject the mount if the validation fails.  This
588 	 * would mean that people would have to downgrade their kernel just to
589 	 * remedy the situation as there is no way to grow the log (short of
590 	 * black magic surgery with xfs_db).
591 	 *
592 	 * We can, however, reject mounts for CRC format filesystems, as the
593 	 * mkfs binary being used to make the filesystem should never create a
594 	 * filesystem with a log that is too small.
595 	 */
596 	min_logfsbs = xfs_log_calc_minimum_size(mp);
597 
598 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
599 		xfs_warn(mp,
600 		"Log size %d blocks too small, minimum size is %d blocks",
601 			 mp->m_sb.sb_logblocks, min_logfsbs);
602 		error = -EINVAL;
603 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
604 		xfs_warn(mp,
605 		"Log size %d blocks too large, maximum size is %lld blocks",
606 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
607 		error = -EINVAL;
608 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
609 		xfs_warn(mp,
610 		"log size %lld bytes too large, maximum size is %lld bytes",
611 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
612 			 XFS_MAX_LOG_BYTES);
613 		error = -EINVAL;
614 	} else if (mp->m_sb.sb_logsunit > 1 &&
615 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
616 		xfs_warn(mp,
617 		"log stripe unit %u bytes must be a multiple of block size",
618 			 mp->m_sb.sb_logsunit);
619 		error = -EINVAL;
620 		fatal = true;
621 	}
622 	if (error) {
623 		/*
624 		 * Log check errors are always fatal on v5; or whenever bad
625 		 * metadata leads to a crash.
626 		 */
627 		if (fatal) {
628 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
629 			ASSERT(0);
630 			goto out_free_log;
631 		}
632 		xfs_crit(mp, "Log size out of supported range.");
633 		xfs_crit(mp,
634 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
635 	}
636 
637 	/*
638 	 * Initialize the AIL now we have a log.
639 	 */
640 	error = xfs_trans_ail_init(mp);
641 	if (error) {
642 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
643 		goto out_free_log;
644 	}
645 	mp->m_log->l_ailp = mp->m_ail;
646 
647 	/*
648 	 * skip log recovery on a norecovery mount.  pretend it all
649 	 * just worked.
650 	 */
651 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
652 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
653 
654 		if (readonly)
655 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
656 
657 		error = xlog_recover(mp->m_log);
658 
659 		if (readonly)
660 			mp->m_flags |= XFS_MOUNT_RDONLY;
661 		if (error) {
662 			xfs_warn(mp, "log mount/recovery failed: error %d",
663 				error);
664 			xlog_recover_cancel(mp->m_log);
665 			goto out_destroy_ail;
666 		}
667 	}
668 
669 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
670 			       "log");
671 	if (error)
672 		goto out_destroy_ail;
673 
674 	/* Normal transactions can now occur */
675 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
676 
677 	/*
678 	 * Now the log has been fully initialised and we know were our
679 	 * space grant counters are, we can initialise the permanent ticket
680 	 * needed for delayed logging to work.
681 	 */
682 	xlog_cil_init_post_recovery(mp->m_log);
683 
684 	return 0;
685 
686 out_destroy_ail:
687 	xfs_trans_ail_destroy(mp);
688 out_free_log:
689 	xlog_dealloc_log(mp->m_log);
690 out:
691 	return error;
692 }
693 
694 /*
695  * Finish the recovery of the file system.  This is separate from the
696  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
697  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
698  * here.
699  *
700  * If we finish recovery successfully, start the background log work. If we are
701  * not doing recovery, then we have a RO filesystem and we don't need to start
702  * it.
703  */
704 int
705 xfs_log_mount_finish(
706 	struct xfs_mount	*mp)
707 {
708 	int	error = 0;
709 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
710 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
711 
712 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
713 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
714 		return 0;
715 	} else if (readonly) {
716 		/* Allow unlinked processing to proceed */
717 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
718 	}
719 
720 	/*
721 	 * During the second phase of log recovery, we need iget and
722 	 * iput to behave like they do for an active filesystem.
723 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
724 	 * of inodes before we're done replaying log items on those
725 	 * inodes.  Turn it off immediately after recovery finishes
726 	 * so that we don't leak the quota inodes if subsequent mount
727 	 * activities fail.
728 	 *
729 	 * We let all inodes involved in redo item processing end up on
730 	 * the LRU instead of being evicted immediately so that if we do
731 	 * something to an unlinked inode, the irele won't cause
732 	 * premature truncation and freeing of the inode, which results
733 	 * in log recovery failure.  We have to evict the unreferenced
734 	 * lru inodes after clearing SB_ACTIVE because we don't
735 	 * otherwise clean up the lru if there's a subsequent failure in
736 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
737 	 * else (e.g. quotacheck) references the inodes before the
738 	 * mount failure occurs.
739 	 */
740 	mp->m_super->s_flags |= SB_ACTIVE;
741 	error = xlog_recover_finish(mp->m_log);
742 	if (!error)
743 		xfs_log_work_queue(mp);
744 	mp->m_super->s_flags &= ~SB_ACTIVE;
745 	evict_inodes(mp->m_super);
746 
747 	/*
748 	 * Drain the buffer LRU after log recovery. This is required for v4
749 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
750 	 * but we do it unconditionally to make sure we're always in a clean
751 	 * cache state after mount.
752 	 *
753 	 * Don't push in the error case because the AIL may have pending intents
754 	 * that aren't removed until recovery is cancelled.
755 	 */
756 	if (!error && recovered) {
757 		xfs_log_force(mp, XFS_LOG_SYNC);
758 		xfs_ail_push_all_sync(mp->m_ail);
759 	}
760 	xfs_wait_buftarg(mp->m_ddev_targp);
761 
762 	if (readonly)
763 		mp->m_flags |= XFS_MOUNT_RDONLY;
764 
765 	return error;
766 }
767 
768 /*
769  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
770  * the log.
771  */
772 void
773 xfs_log_mount_cancel(
774 	struct xfs_mount	*mp)
775 {
776 	xlog_recover_cancel(mp->m_log);
777 	xfs_log_unmount(mp);
778 }
779 
780 /*
781  * Final log writes as part of unmount.
782  *
783  * Mark the filesystem clean as unmount happens.  Note that during relocation
784  * this routine needs to be executed as part of source-bag while the
785  * deallocation must not be done until source-end.
786  */
787 
788 /* Actually write the unmount record to disk. */
789 static void
790 xfs_log_write_unmount_record(
791 	struct xfs_mount	*mp)
792 {
793 	/* the data section must be 32 bit size aligned */
794 	struct xfs_unmount_log_format magic = {
795 		.magic = XLOG_UNMOUNT_TYPE,
796 	};
797 	struct xfs_log_iovec reg = {
798 		.i_addr = &magic,
799 		.i_len = sizeof(magic),
800 		.i_type = XLOG_REG_TYPE_UNMOUNT,
801 	};
802 	struct xfs_log_vec vec = {
803 		.lv_niovecs = 1,
804 		.lv_iovecp = &reg,
805 	};
806 	struct xlog		*log = mp->m_log;
807 	struct xlog_in_core	*iclog;
808 	struct xlog_ticket	*tic = NULL;
809 	xfs_lsn_t		lsn;
810 	uint			flags = XLOG_UNMOUNT_TRANS;
811 	int			error;
812 
813 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
814 	if (error)
815 		goto out_err;
816 
817 	/*
818 	 * If we think the summary counters are bad, clear the unmount header
819 	 * flag in the unmount record so that the summary counters will be
820 	 * recalculated during log recovery at next mount.  Refer to
821 	 * xlog_check_unmount_rec for more details.
822 	 */
823 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
824 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
825 		xfs_alert(mp, "%s: will fix summary counters at next mount",
826 				__func__);
827 		flags &= ~XLOG_UNMOUNT_TRANS;
828 	}
829 
830 	/* remove inited flag, and account for space used */
831 	tic->t_flags = 0;
832 	tic->t_curr_res -= sizeof(magic);
833 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
834 	/*
835 	 * At this point, we're umounting anyway, so there's no point in
836 	 * transitioning log state to IOERROR. Just continue...
837 	 */
838 out_err:
839 	if (error)
840 		xfs_alert(mp, "%s: unmount record failed", __func__);
841 
842 	spin_lock(&log->l_icloglock);
843 	iclog = log->l_iclog;
844 	atomic_inc(&iclog->ic_refcnt);
845 	xlog_state_want_sync(log, iclog);
846 	spin_unlock(&log->l_icloglock);
847 	error = xlog_state_release_iclog(log, iclog);
848 
849 	spin_lock(&log->l_icloglock);
850 	switch (iclog->ic_state) {
851 	default:
852 		if (!XLOG_FORCED_SHUTDOWN(log)) {
853 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
854 			break;
855 		}
856 		/* fall through */
857 	case XLOG_STATE_ACTIVE:
858 	case XLOG_STATE_DIRTY:
859 		spin_unlock(&log->l_icloglock);
860 		break;
861 	}
862 
863 	if (tic) {
864 		trace_xfs_log_umount_write(log, tic);
865 		xlog_ungrant_log_space(log, tic);
866 		xfs_log_ticket_put(tic);
867 	}
868 }
869 
870 /*
871  * Unmount record used to have a string "Unmount filesystem--" in the
872  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
873  * We just write the magic number now since that particular field isn't
874  * currently architecture converted and "Unmount" is a bit foo.
875  * As far as I know, there weren't any dependencies on the old behaviour.
876  */
877 
878 static int
879 xfs_log_unmount_write(xfs_mount_t *mp)
880 {
881 	struct xlog	 *log = mp->m_log;
882 	xlog_in_core_t	 *iclog;
883 #ifdef DEBUG
884 	xlog_in_core_t	 *first_iclog;
885 #endif
886 	int		 error;
887 
888 	/*
889 	 * Don't write out unmount record on norecovery mounts or ro devices.
890 	 * Or, if we are doing a forced umount (typically because of IO errors).
891 	 */
892 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
893 	    xfs_readonly_buftarg(log->l_targ)) {
894 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
895 		return 0;
896 	}
897 
898 	error = xfs_log_force(mp, XFS_LOG_SYNC);
899 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
900 
901 #ifdef DEBUG
902 	first_iclog = iclog = log->l_iclog;
903 	do {
904 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
905 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
906 			ASSERT(iclog->ic_offset == 0);
907 		}
908 		iclog = iclog->ic_next;
909 	} while (iclog != first_iclog);
910 #endif
911 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
912 		xfs_log_write_unmount_record(mp);
913 	} else {
914 		/*
915 		 * We're already in forced_shutdown mode, couldn't
916 		 * even attempt to write out the unmount transaction.
917 		 *
918 		 * Go through the motions of sync'ing and releasing
919 		 * the iclog, even though no I/O will actually happen,
920 		 * we need to wait for other log I/Os that may already
921 		 * be in progress.  Do this as a separate section of
922 		 * code so we'll know if we ever get stuck here that
923 		 * we're in this odd situation of trying to unmount
924 		 * a file system that went into forced_shutdown as
925 		 * the result of an unmount..
926 		 */
927 		spin_lock(&log->l_icloglock);
928 		iclog = log->l_iclog;
929 		atomic_inc(&iclog->ic_refcnt);
930 
931 		xlog_state_want_sync(log, iclog);
932 		spin_unlock(&log->l_icloglock);
933 		error =  xlog_state_release_iclog(log, iclog);
934 
935 		spin_lock(&log->l_icloglock);
936 
937 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
938 			|| iclog->ic_state == XLOG_STATE_DIRTY
939 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
940 
941 				xlog_wait(&iclog->ic_force_wait,
942 							&log->l_icloglock);
943 		} else {
944 			spin_unlock(&log->l_icloglock);
945 		}
946 	}
947 
948 	return error;
949 }	/* xfs_log_unmount_write */
950 
951 /*
952  * Empty the log for unmount/freeze.
953  *
954  * To do this, we first need to shut down the background log work so it is not
955  * trying to cover the log as we clean up. We then need to unpin all objects in
956  * the log so we can then flush them out. Once they have completed their IO and
957  * run the callbacks removing themselves from the AIL, we can write the unmount
958  * record.
959  */
960 void
961 xfs_log_quiesce(
962 	struct xfs_mount	*mp)
963 {
964 	cancel_delayed_work_sync(&mp->m_log->l_work);
965 	xfs_log_force(mp, XFS_LOG_SYNC);
966 
967 	/*
968 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
969 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
970 	 * xfs_buf_iowait() cannot be used because it was pushed with the
971 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
972 	 * the IO to complete.
973 	 */
974 	xfs_ail_push_all_sync(mp->m_ail);
975 	xfs_wait_buftarg(mp->m_ddev_targp);
976 	xfs_buf_lock(mp->m_sb_bp);
977 	xfs_buf_unlock(mp->m_sb_bp);
978 
979 	xfs_log_unmount_write(mp);
980 }
981 
982 /*
983  * Shut down and release the AIL and Log.
984  *
985  * During unmount, we need to ensure we flush all the dirty metadata objects
986  * from the AIL so that the log is empty before we write the unmount record to
987  * the log. Once this is done, we can tear down the AIL and the log.
988  */
989 void
990 xfs_log_unmount(
991 	struct xfs_mount	*mp)
992 {
993 	xfs_log_quiesce(mp);
994 
995 	xfs_trans_ail_destroy(mp);
996 
997 	xfs_sysfs_del(&mp->m_log->l_kobj);
998 
999 	xlog_dealloc_log(mp->m_log);
1000 }
1001 
1002 void
1003 xfs_log_item_init(
1004 	struct xfs_mount	*mp,
1005 	struct xfs_log_item	*item,
1006 	int			type,
1007 	const struct xfs_item_ops *ops)
1008 {
1009 	item->li_mountp = mp;
1010 	item->li_ailp = mp->m_ail;
1011 	item->li_type = type;
1012 	item->li_ops = ops;
1013 	item->li_lv = NULL;
1014 
1015 	INIT_LIST_HEAD(&item->li_ail);
1016 	INIT_LIST_HEAD(&item->li_cil);
1017 	INIT_LIST_HEAD(&item->li_bio_list);
1018 	INIT_LIST_HEAD(&item->li_trans);
1019 }
1020 
1021 /*
1022  * Wake up processes waiting for log space after we have moved the log tail.
1023  */
1024 void
1025 xfs_log_space_wake(
1026 	struct xfs_mount	*mp)
1027 {
1028 	struct xlog		*log = mp->m_log;
1029 	int			free_bytes;
1030 
1031 	if (XLOG_FORCED_SHUTDOWN(log))
1032 		return;
1033 
1034 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1035 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1036 
1037 		spin_lock(&log->l_write_head.lock);
1038 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1039 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1040 		spin_unlock(&log->l_write_head.lock);
1041 	}
1042 
1043 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1044 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1045 
1046 		spin_lock(&log->l_reserve_head.lock);
1047 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1048 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1049 		spin_unlock(&log->l_reserve_head.lock);
1050 	}
1051 }
1052 
1053 /*
1054  * Determine if we have a transaction that has gone to disk that needs to be
1055  * covered. To begin the transition to the idle state firstly the log needs to
1056  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1057  * we start attempting to cover the log.
1058  *
1059  * Only if we are then in a state where covering is needed, the caller is
1060  * informed that dummy transactions are required to move the log into the idle
1061  * state.
1062  *
1063  * If there are any items in the AIl or CIL, then we do not want to attempt to
1064  * cover the log as we may be in a situation where there isn't log space
1065  * available to run a dummy transaction and this can lead to deadlocks when the
1066  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1067  * there's no point in running a dummy transaction at this point because we
1068  * can't start trying to idle the log until both the CIL and AIL are empty.
1069  */
1070 static int
1071 xfs_log_need_covered(xfs_mount_t *mp)
1072 {
1073 	struct xlog	*log = mp->m_log;
1074 	int		needed = 0;
1075 
1076 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1077 		return 0;
1078 
1079 	if (!xlog_cil_empty(log))
1080 		return 0;
1081 
1082 	spin_lock(&log->l_icloglock);
1083 	switch (log->l_covered_state) {
1084 	case XLOG_STATE_COVER_DONE:
1085 	case XLOG_STATE_COVER_DONE2:
1086 	case XLOG_STATE_COVER_IDLE:
1087 		break;
1088 	case XLOG_STATE_COVER_NEED:
1089 	case XLOG_STATE_COVER_NEED2:
1090 		if (xfs_ail_min_lsn(log->l_ailp))
1091 			break;
1092 		if (!xlog_iclogs_empty(log))
1093 			break;
1094 
1095 		needed = 1;
1096 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1097 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1098 		else
1099 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1100 		break;
1101 	default:
1102 		needed = 1;
1103 		break;
1104 	}
1105 	spin_unlock(&log->l_icloglock);
1106 	return needed;
1107 }
1108 
1109 /*
1110  * We may be holding the log iclog lock upon entering this routine.
1111  */
1112 xfs_lsn_t
1113 xlog_assign_tail_lsn_locked(
1114 	struct xfs_mount	*mp)
1115 {
1116 	struct xlog		*log = mp->m_log;
1117 	struct xfs_log_item	*lip;
1118 	xfs_lsn_t		tail_lsn;
1119 
1120 	assert_spin_locked(&mp->m_ail->ail_lock);
1121 
1122 	/*
1123 	 * To make sure we always have a valid LSN for the log tail we keep
1124 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1125 	 * and use that when the AIL was empty.
1126 	 */
1127 	lip = xfs_ail_min(mp->m_ail);
1128 	if (lip)
1129 		tail_lsn = lip->li_lsn;
1130 	else
1131 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1132 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1133 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1134 	return tail_lsn;
1135 }
1136 
1137 xfs_lsn_t
1138 xlog_assign_tail_lsn(
1139 	struct xfs_mount	*mp)
1140 {
1141 	xfs_lsn_t		tail_lsn;
1142 
1143 	spin_lock(&mp->m_ail->ail_lock);
1144 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1145 	spin_unlock(&mp->m_ail->ail_lock);
1146 
1147 	return tail_lsn;
1148 }
1149 
1150 /*
1151  * Return the space in the log between the tail and the head.  The head
1152  * is passed in the cycle/bytes formal parms.  In the special case where
1153  * the reserve head has wrapped passed the tail, this calculation is no
1154  * longer valid.  In this case, just return 0 which means there is no space
1155  * in the log.  This works for all places where this function is called
1156  * with the reserve head.  Of course, if the write head were to ever
1157  * wrap the tail, we should blow up.  Rather than catch this case here,
1158  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1159  *
1160  * This code also handles the case where the reservation head is behind
1161  * the tail.  The details of this case are described below, but the end
1162  * result is that we return the size of the log as the amount of space left.
1163  */
1164 STATIC int
1165 xlog_space_left(
1166 	struct xlog	*log,
1167 	atomic64_t	*head)
1168 {
1169 	int		free_bytes;
1170 	int		tail_bytes;
1171 	int		tail_cycle;
1172 	int		head_cycle;
1173 	int		head_bytes;
1174 
1175 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1176 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1177 	tail_bytes = BBTOB(tail_bytes);
1178 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1179 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1180 	else if (tail_cycle + 1 < head_cycle)
1181 		return 0;
1182 	else if (tail_cycle < head_cycle) {
1183 		ASSERT(tail_cycle == (head_cycle - 1));
1184 		free_bytes = tail_bytes - head_bytes;
1185 	} else {
1186 		/*
1187 		 * The reservation head is behind the tail.
1188 		 * In this case we just want to return the size of the
1189 		 * log as the amount of space left.
1190 		 */
1191 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1192 		xfs_alert(log->l_mp,
1193 			  "  tail_cycle = %d, tail_bytes = %d",
1194 			  tail_cycle, tail_bytes);
1195 		xfs_alert(log->l_mp,
1196 			  "  GH   cycle = %d, GH   bytes = %d",
1197 			  head_cycle, head_bytes);
1198 		ASSERT(0);
1199 		free_bytes = log->l_logsize;
1200 	}
1201 	return free_bytes;
1202 }
1203 
1204 
1205 static void
1206 xlog_ioend_work(
1207 	struct work_struct	*work)
1208 {
1209 	struct xlog_in_core     *iclog =
1210 		container_of(work, struct xlog_in_core, ic_end_io_work);
1211 	struct xlog		*log = iclog->ic_log;
1212 	bool			aborted = false;
1213 	int			error;
1214 
1215 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1216 #ifdef DEBUG
1217 	/* treat writes with injected CRC errors as failed */
1218 	if (iclog->ic_fail_crc)
1219 		error = -EIO;
1220 #endif
1221 
1222 	/*
1223 	 * Race to shutdown the filesystem if we see an error.
1224 	 */
1225 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1226 		xfs_alert(log->l_mp, "log I/O error %d", error);
1227 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1228 		/*
1229 		 * This flag will be propagated to the trans-committed
1230 		 * callback routines to let them know that the log-commit
1231 		 * didn't succeed.
1232 		 */
1233 		aborted = true;
1234 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1235 		aborted = true;
1236 	}
1237 
1238 	xlog_state_done_syncing(iclog, aborted);
1239 	bio_uninit(&iclog->ic_bio);
1240 
1241 	/*
1242 	 * Drop the lock to signal that we are done. Nothing references the
1243 	 * iclog after this, so an unmount waiting on this lock can now tear it
1244 	 * down safely. As such, it is unsafe to reference the iclog after the
1245 	 * unlock as we could race with it being freed.
1246 	 */
1247 	up(&iclog->ic_sema);
1248 }
1249 
1250 /*
1251  * Return size of each in-core log record buffer.
1252  *
1253  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1254  *
1255  * If the filesystem blocksize is too large, we may need to choose a
1256  * larger size since the directory code currently logs entire blocks.
1257  */
1258 STATIC void
1259 xlog_get_iclog_buffer_size(
1260 	struct xfs_mount	*mp,
1261 	struct xlog		*log)
1262 {
1263 	if (mp->m_logbufs <= 0)
1264 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1265 	if (mp->m_logbsize <= 0)
1266 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1267 
1268 	log->l_iclog_bufs = mp->m_logbufs;
1269 	log->l_iclog_size = mp->m_logbsize;
1270 
1271 	/*
1272 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1273 	 */
1274 	log->l_iclog_heads =
1275 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1276 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1277 }
1278 
1279 void
1280 xfs_log_work_queue(
1281 	struct xfs_mount        *mp)
1282 {
1283 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1284 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1285 }
1286 
1287 /*
1288  * Every sync period we need to unpin all items in the AIL and push them to
1289  * disk. If there is nothing dirty, then we might need to cover the log to
1290  * indicate that the filesystem is idle.
1291  */
1292 static void
1293 xfs_log_worker(
1294 	struct work_struct	*work)
1295 {
1296 	struct xlog		*log = container_of(to_delayed_work(work),
1297 						struct xlog, l_work);
1298 	struct xfs_mount	*mp = log->l_mp;
1299 
1300 	/* dgc: errors ignored - not fatal and nowhere to report them */
1301 	if (xfs_log_need_covered(mp)) {
1302 		/*
1303 		 * Dump a transaction into the log that contains no real change.
1304 		 * This is needed to stamp the current tail LSN into the log
1305 		 * during the covering operation.
1306 		 *
1307 		 * We cannot use an inode here for this - that will push dirty
1308 		 * state back up into the VFS and then periodic inode flushing
1309 		 * will prevent log covering from making progress. Hence we
1310 		 * synchronously log the superblock instead to ensure the
1311 		 * superblock is immediately unpinned and can be written back.
1312 		 */
1313 		xfs_sync_sb(mp, true);
1314 	} else
1315 		xfs_log_force(mp, 0);
1316 
1317 	/* start pushing all the metadata that is currently dirty */
1318 	xfs_ail_push_all(mp->m_ail);
1319 
1320 	/* queue us up again */
1321 	xfs_log_work_queue(mp);
1322 }
1323 
1324 /*
1325  * This routine initializes some of the log structure for a given mount point.
1326  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1327  * some other stuff may be filled in too.
1328  */
1329 STATIC struct xlog *
1330 xlog_alloc_log(
1331 	struct xfs_mount	*mp,
1332 	struct xfs_buftarg	*log_target,
1333 	xfs_daddr_t		blk_offset,
1334 	int			num_bblks)
1335 {
1336 	struct xlog		*log;
1337 	xlog_rec_header_t	*head;
1338 	xlog_in_core_t		**iclogp;
1339 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1340 	int			i;
1341 	int			error = -ENOMEM;
1342 	uint			log2_size = 0;
1343 
1344 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1345 	if (!log) {
1346 		xfs_warn(mp, "Log allocation failed: No memory!");
1347 		goto out;
1348 	}
1349 
1350 	log->l_mp	   = mp;
1351 	log->l_targ	   = log_target;
1352 	log->l_logsize     = BBTOB(num_bblks);
1353 	log->l_logBBstart  = blk_offset;
1354 	log->l_logBBsize   = num_bblks;
1355 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1356 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1357 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1358 
1359 	log->l_prev_block  = -1;
1360 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1361 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1362 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1363 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1364 
1365 	xlog_grant_head_init(&log->l_reserve_head);
1366 	xlog_grant_head_init(&log->l_write_head);
1367 
1368 	error = -EFSCORRUPTED;
1369 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1370 	        log2_size = mp->m_sb.sb_logsectlog;
1371 		if (log2_size < BBSHIFT) {
1372 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1373 				log2_size, BBSHIFT);
1374 			goto out_free_log;
1375 		}
1376 
1377 	        log2_size -= BBSHIFT;
1378 		if (log2_size > mp->m_sectbb_log) {
1379 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1380 				log2_size, mp->m_sectbb_log);
1381 			goto out_free_log;
1382 		}
1383 
1384 		/* for larger sector sizes, must have v2 or external log */
1385 		if (log2_size && log->l_logBBstart > 0 &&
1386 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1387 			xfs_warn(mp,
1388 		"log sector size (0x%x) invalid for configuration.",
1389 				log2_size);
1390 			goto out_free_log;
1391 		}
1392 	}
1393 	log->l_sectBBsize = 1 << log2_size;
1394 
1395 	xlog_get_iclog_buffer_size(mp, log);
1396 
1397 	spin_lock_init(&log->l_icloglock);
1398 	init_waitqueue_head(&log->l_flush_wait);
1399 
1400 	iclogp = &log->l_iclog;
1401 	/*
1402 	 * The amount of memory to allocate for the iclog structure is
1403 	 * rather funky due to the way the structure is defined.  It is
1404 	 * done this way so that we can use different sizes for machines
1405 	 * with different amounts of memory.  See the definition of
1406 	 * xlog_in_core_t in xfs_log_priv.h for details.
1407 	 */
1408 	ASSERT(log->l_iclog_size >= 4096);
1409 	for (i = 0; i < log->l_iclog_bufs; i++) {
1410 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1411 				sizeof(struct bio_vec);
1412 
1413 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1414 		if (!iclog)
1415 			goto out_free_iclog;
1416 
1417 		*iclogp = iclog;
1418 		iclog->ic_prev = prev_iclog;
1419 		prev_iclog = iclog;
1420 
1421 		iclog->ic_data = kmem_alloc_large(log->l_iclog_size,
1422 				KM_MAYFAIL);
1423 		if (!iclog->ic_data)
1424 			goto out_free_iclog;
1425 #ifdef DEBUG
1426 		log->l_iclog_bak[i] = &iclog->ic_header;
1427 #endif
1428 		head = &iclog->ic_header;
1429 		memset(head, 0, sizeof(xlog_rec_header_t));
1430 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1431 		head->h_version = cpu_to_be32(
1432 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1433 		head->h_size = cpu_to_be32(log->l_iclog_size);
1434 		/* new fields */
1435 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1436 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1437 
1438 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1439 		iclog->ic_state = XLOG_STATE_ACTIVE;
1440 		iclog->ic_log = log;
1441 		atomic_set(&iclog->ic_refcnt, 0);
1442 		spin_lock_init(&iclog->ic_callback_lock);
1443 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1444 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1445 
1446 		init_waitqueue_head(&iclog->ic_force_wait);
1447 		init_waitqueue_head(&iclog->ic_write_wait);
1448 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1449 		sema_init(&iclog->ic_sema, 1);
1450 
1451 		iclogp = &iclog->ic_next;
1452 	}
1453 	*iclogp = log->l_iclog;			/* complete ring */
1454 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1455 
1456 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1457 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1458 			mp->m_fsname);
1459 	if (!log->l_ioend_workqueue)
1460 		goto out_free_iclog;
1461 
1462 	error = xlog_cil_init(log);
1463 	if (error)
1464 		goto out_destroy_workqueue;
1465 	return log;
1466 
1467 out_destroy_workqueue:
1468 	destroy_workqueue(log->l_ioend_workqueue);
1469 out_free_iclog:
1470 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1471 		prev_iclog = iclog->ic_next;
1472 		kmem_free(iclog->ic_data);
1473 		kmem_free(iclog);
1474 	}
1475 out_free_log:
1476 	kmem_free(log);
1477 out:
1478 	return ERR_PTR(error);
1479 }	/* xlog_alloc_log */
1480 
1481 
1482 /*
1483  * Write out the commit record of a transaction associated with the given
1484  * ticket.  Return the lsn of the commit record.
1485  */
1486 STATIC int
1487 xlog_commit_record(
1488 	struct xlog		*log,
1489 	struct xlog_ticket	*ticket,
1490 	struct xlog_in_core	**iclog,
1491 	xfs_lsn_t		*commitlsnp)
1492 {
1493 	struct xfs_mount *mp = log->l_mp;
1494 	int	error;
1495 	struct xfs_log_iovec reg = {
1496 		.i_addr = NULL,
1497 		.i_len = 0,
1498 		.i_type = XLOG_REG_TYPE_COMMIT,
1499 	};
1500 	struct xfs_log_vec vec = {
1501 		.lv_niovecs = 1,
1502 		.lv_iovecp = &reg,
1503 	};
1504 
1505 	ASSERT_ALWAYS(iclog);
1506 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1507 					XLOG_COMMIT_TRANS);
1508 	if (error)
1509 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1510 	return error;
1511 }
1512 
1513 /*
1514  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1515  * log space.  This code pushes on the lsn which would supposedly free up
1516  * the 25% which we want to leave free.  We may need to adopt a policy which
1517  * pushes on an lsn which is further along in the log once we reach the high
1518  * water mark.  In this manner, we would be creating a low water mark.
1519  */
1520 STATIC void
1521 xlog_grant_push_ail(
1522 	struct xlog	*log,
1523 	int		need_bytes)
1524 {
1525 	xfs_lsn_t	threshold_lsn = 0;
1526 	xfs_lsn_t	last_sync_lsn;
1527 	int		free_blocks;
1528 	int		free_bytes;
1529 	int		threshold_block;
1530 	int		threshold_cycle;
1531 	int		free_threshold;
1532 
1533 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1534 
1535 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1536 	free_blocks = BTOBBT(free_bytes);
1537 
1538 	/*
1539 	 * Set the threshold for the minimum number of free blocks in the
1540 	 * log to the maximum of what the caller needs, one quarter of the
1541 	 * log, and 256 blocks.
1542 	 */
1543 	free_threshold = BTOBB(need_bytes);
1544 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1545 	free_threshold = max(free_threshold, 256);
1546 	if (free_blocks >= free_threshold)
1547 		return;
1548 
1549 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1550 						&threshold_block);
1551 	threshold_block += free_threshold;
1552 	if (threshold_block >= log->l_logBBsize) {
1553 		threshold_block -= log->l_logBBsize;
1554 		threshold_cycle += 1;
1555 	}
1556 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1557 					threshold_block);
1558 	/*
1559 	 * Don't pass in an lsn greater than the lsn of the last
1560 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1561 	 * so that it doesn't change between the compare and the set.
1562 	 */
1563 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1564 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1565 		threshold_lsn = last_sync_lsn;
1566 
1567 	/*
1568 	 * Get the transaction layer to kick the dirty buffers out to
1569 	 * disk asynchronously. No point in trying to do this if
1570 	 * the filesystem is shutting down.
1571 	 */
1572 	if (!XLOG_FORCED_SHUTDOWN(log))
1573 		xfs_ail_push(log->l_ailp, threshold_lsn);
1574 }
1575 
1576 /*
1577  * Stamp cycle number in every block
1578  */
1579 STATIC void
1580 xlog_pack_data(
1581 	struct xlog		*log,
1582 	struct xlog_in_core	*iclog,
1583 	int			roundoff)
1584 {
1585 	int			i, j, k;
1586 	int			size = iclog->ic_offset + roundoff;
1587 	__be32			cycle_lsn;
1588 	char			*dp;
1589 
1590 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1591 
1592 	dp = iclog->ic_datap;
1593 	for (i = 0; i < BTOBB(size); i++) {
1594 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1595 			break;
1596 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1597 		*(__be32 *)dp = cycle_lsn;
1598 		dp += BBSIZE;
1599 	}
1600 
1601 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1602 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1603 
1604 		for ( ; i < BTOBB(size); i++) {
1605 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1606 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1607 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1608 			*(__be32 *)dp = cycle_lsn;
1609 			dp += BBSIZE;
1610 		}
1611 
1612 		for (i = 1; i < log->l_iclog_heads; i++)
1613 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1614 	}
1615 }
1616 
1617 /*
1618  * Calculate the checksum for a log buffer.
1619  *
1620  * This is a little more complicated than it should be because the various
1621  * headers and the actual data are non-contiguous.
1622  */
1623 __le32
1624 xlog_cksum(
1625 	struct xlog		*log,
1626 	struct xlog_rec_header	*rhead,
1627 	char			*dp,
1628 	int			size)
1629 {
1630 	uint32_t		crc;
1631 
1632 	/* first generate the crc for the record header ... */
1633 	crc = xfs_start_cksum_update((char *)rhead,
1634 			      sizeof(struct xlog_rec_header),
1635 			      offsetof(struct xlog_rec_header, h_crc));
1636 
1637 	/* ... then for additional cycle data for v2 logs ... */
1638 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1639 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1640 		int		i;
1641 		int		xheads;
1642 
1643 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1644 		if (size % XLOG_HEADER_CYCLE_SIZE)
1645 			xheads++;
1646 
1647 		for (i = 1; i < xheads; i++) {
1648 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1649 				     sizeof(struct xlog_rec_ext_header));
1650 		}
1651 	}
1652 
1653 	/* ... and finally for the payload */
1654 	crc = crc32c(crc, dp, size);
1655 
1656 	return xfs_end_cksum(crc);
1657 }
1658 
1659 static void
1660 xlog_bio_end_io(
1661 	struct bio		*bio)
1662 {
1663 	struct xlog_in_core	*iclog = bio->bi_private;
1664 
1665 	queue_work(iclog->ic_log->l_ioend_workqueue,
1666 		   &iclog->ic_end_io_work);
1667 }
1668 
1669 static void
1670 xlog_map_iclog_data(
1671 	struct bio		*bio,
1672 	void			*data,
1673 	size_t			count)
1674 {
1675 	do {
1676 		struct page	*page = kmem_to_page(data);
1677 		unsigned int	off = offset_in_page(data);
1678 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1679 
1680 		WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1681 
1682 		data += len;
1683 		count -= len;
1684 	} while (count);
1685 }
1686 
1687 STATIC void
1688 xlog_write_iclog(
1689 	struct xlog		*log,
1690 	struct xlog_in_core	*iclog,
1691 	uint64_t		bno,
1692 	unsigned int		count,
1693 	bool			need_flush)
1694 {
1695 	ASSERT(bno < log->l_logBBsize);
1696 
1697 	/*
1698 	 * We lock the iclogbufs here so that we can serialise against I/O
1699 	 * completion during unmount.  We might be processing a shutdown
1700 	 * triggered during unmount, and that can occur asynchronously to the
1701 	 * unmount thread, and hence we need to ensure that completes before
1702 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1703 	 * across the log IO to archieve that.
1704 	 */
1705 	down(&iclog->ic_sema);
1706 	if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1707 		/*
1708 		 * It would seem logical to return EIO here, but we rely on
1709 		 * the log state machine to propagate I/O errors instead of
1710 		 * doing it here.  We kick of the state machine and unlock
1711 		 * the buffer manually, the code needs to be kept in sync
1712 		 * with the I/O completion path.
1713 		 */
1714 		xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1715 		up(&iclog->ic_sema);
1716 		return;
1717 	}
1718 
1719 	iclog->ic_io_size = count;
1720 
1721 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1722 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1723 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1724 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1725 	iclog->ic_bio.bi_private = iclog;
1726 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1727 	if (need_flush)
1728 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1729 
1730 	xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1731 	if (is_vmalloc_addr(iclog->ic_data))
1732 		flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1733 
1734 	/*
1735 	 * If this log buffer would straddle the end of the log we will have
1736 	 * to split it up into two bios, so that we can continue at the start.
1737 	 */
1738 	if (bno + BTOBB(count) > log->l_logBBsize) {
1739 		struct bio *split;
1740 
1741 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1742 				  GFP_NOIO, &fs_bio_set);
1743 		bio_chain(split, &iclog->ic_bio);
1744 		submit_bio(split);
1745 
1746 		/* restart at logical offset zero for the remainder */
1747 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1748 	}
1749 
1750 	submit_bio(&iclog->ic_bio);
1751 }
1752 
1753 /*
1754  * We need to bump cycle number for the part of the iclog that is
1755  * written to the start of the log. Watch out for the header magic
1756  * number case, though.
1757  */
1758 static void
1759 xlog_split_iclog(
1760 	struct xlog		*log,
1761 	void			*data,
1762 	uint64_t		bno,
1763 	unsigned int		count)
1764 {
1765 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1766 	unsigned int		i;
1767 
1768 	for (i = split_offset; i < count; i += BBSIZE) {
1769 		uint32_t cycle = get_unaligned_be32(data + i);
1770 
1771 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1772 			cycle++;
1773 		put_unaligned_be32(cycle, data + i);
1774 	}
1775 }
1776 
1777 static int
1778 xlog_calc_iclog_size(
1779 	struct xlog		*log,
1780 	struct xlog_in_core	*iclog,
1781 	uint32_t		*roundoff)
1782 {
1783 	uint32_t		count_init, count;
1784 	bool			use_lsunit;
1785 
1786 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1787 			log->l_mp->m_sb.sb_logsunit > 1;
1788 
1789 	/* Add for LR header */
1790 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1791 
1792 	/* Round out the log write size */
1793 	if (use_lsunit) {
1794 		/* we have a v2 stripe unit to use */
1795 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1796 	} else {
1797 		count = BBTOB(BTOBB(count_init));
1798 	}
1799 
1800 	ASSERT(count >= count_init);
1801 	*roundoff = count - count_init;
1802 
1803 	if (use_lsunit)
1804 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1805 	else
1806 		ASSERT(*roundoff < BBTOB(1));
1807 	return count;
1808 }
1809 
1810 /*
1811  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1812  * fashion.  Previously, we should have moved the current iclog
1813  * ptr in the log to point to the next available iclog.  This allows further
1814  * write to continue while this code syncs out an iclog ready to go.
1815  * Before an in-core log can be written out, the data section must be scanned
1816  * to save away the 1st word of each BBSIZE block into the header.  We replace
1817  * it with the current cycle count.  Each BBSIZE block is tagged with the
1818  * cycle count because there in an implicit assumption that drives will
1819  * guarantee that entire 512 byte blocks get written at once.  In other words,
1820  * we can't have part of a 512 byte block written and part not written.  By
1821  * tagging each block, we will know which blocks are valid when recovering
1822  * after an unclean shutdown.
1823  *
1824  * This routine is single threaded on the iclog.  No other thread can be in
1825  * this routine with the same iclog.  Changing contents of iclog can there-
1826  * fore be done without grabbing the state machine lock.  Updating the global
1827  * log will require grabbing the lock though.
1828  *
1829  * The entire log manager uses a logical block numbering scheme.  Only
1830  * xlog_write_iclog knows about the fact that the log may not start with
1831  * block zero on a given device.
1832  */
1833 STATIC void
1834 xlog_sync(
1835 	struct xlog		*log,
1836 	struct xlog_in_core	*iclog)
1837 {
1838 	unsigned int		count;		/* byte count of bwrite */
1839 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1840 	uint64_t		bno;
1841 	unsigned int		size;
1842 	bool			need_flush = true, split = false;
1843 
1844 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1845 
1846 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1847 
1848 	/* move grant heads by roundoff in sync */
1849 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1850 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1851 
1852 	/* put cycle number in every block */
1853 	xlog_pack_data(log, iclog, roundoff);
1854 
1855 	/* real byte length */
1856 	size = iclog->ic_offset;
1857 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1858 		size += roundoff;
1859 	iclog->ic_header.h_len = cpu_to_be32(size);
1860 
1861 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1862 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1863 
1864 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1865 
1866 	/* Do we need to split this write into 2 parts? */
1867 	if (bno + BTOBB(count) > log->l_logBBsize) {
1868 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1869 		split = true;
1870 	}
1871 
1872 	/* calculcate the checksum */
1873 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1874 					    iclog->ic_datap, size);
1875 	/*
1876 	 * Intentionally corrupt the log record CRC based on the error injection
1877 	 * frequency, if defined. This facilitates testing log recovery in the
1878 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1879 	 * write on I/O completion and shutdown the fs. The subsequent mount
1880 	 * detects the bad CRC and attempts to recover.
1881 	 */
1882 #ifdef DEBUG
1883 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1884 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1885 		iclog->ic_fail_crc = true;
1886 		xfs_warn(log->l_mp,
1887 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1888 			 be64_to_cpu(iclog->ic_header.h_lsn));
1889 	}
1890 #endif
1891 
1892 	/*
1893 	 * Flush the data device before flushing the log to make sure all meta
1894 	 * data written back from the AIL actually made it to disk before
1895 	 * stamping the new log tail LSN into the log buffer.  For an external
1896 	 * log we need to issue the flush explicitly, and unfortunately
1897 	 * synchronously here; for an internal log we can simply use the block
1898 	 * layer state machine for preflushes.
1899 	 */
1900 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1901 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1902 		need_flush = false;
1903 	}
1904 
1905 	xlog_verify_iclog(log, iclog, count);
1906 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1907 }
1908 
1909 /*
1910  * Deallocate a log structure
1911  */
1912 STATIC void
1913 xlog_dealloc_log(
1914 	struct xlog	*log)
1915 {
1916 	xlog_in_core_t	*iclog, *next_iclog;
1917 	int		i;
1918 
1919 	xlog_cil_destroy(log);
1920 
1921 	/*
1922 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1923 	 * is done before we tear down these buffers.
1924 	 */
1925 	iclog = log->l_iclog;
1926 	for (i = 0; i < log->l_iclog_bufs; i++) {
1927 		down(&iclog->ic_sema);
1928 		up(&iclog->ic_sema);
1929 		iclog = iclog->ic_next;
1930 	}
1931 
1932 	iclog = log->l_iclog;
1933 	for (i = 0; i < log->l_iclog_bufs; i++) {
1934 		next_iclog = iclog->ic_next;
1935 		kmem_free(iclog->ic_data);
1936 		kmem_free(iclog);
1937 		iclog = next_iclog;
1938 	}
1939 
1940 	log->l_mp->m_log = NULL;
1941 	destroy_workqueue(log->l_ioend_workqueue);
1942 	kmem_free(log);
1943 }	/* xlog_dealloc_log */
1944 
1945 /*
1946  * Update counters atomically now that memcpy is done.
1947  */
1948 /* ARGSUSED */
1949 static inline void
1950 xlog_state_finish_copy(
1951 	struct xlog		*log,
1952 	struct xlog_in_core	*iclog,
1953 	int			record_cnt,
1954 	int			copy_bytes)
1955 {
1956 	spin_lock(&log->l_icloglock);
1957 
1958 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1959 	iclog->ic_offset += copy_bytes;
1960 
1961 	spin_unlock(&log->l_icloglock);
1962 }	/* xlog_state_finish_copy */
1963 
1964 
1965 
1966 
1967 /*
1968  * print out info relating to regions written which consume
1969  * the reservation
1970  */
1971 void
1972 xlog_print_tic_res(
1973 	struct xfs_mount	*mp,
1974 	struct xlog_ticket	*ticket)
1975 {
1976 	uint i;
1977 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1978 
1979 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1980 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1981 	static char *res_type_str[] = {
1982 	    REG_TYPE_STR(BFORMAT, "bformat"),
1983 	    REG_TYPE_STR(BCHUNK, "bchunk"),
1984 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1985 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1986 	    REG_TYPE_STR(IFORMAT, "iformat"),
1987 	    REG_TYPE_STR(ICORE, "icore"),
1988 	    REG_TYPE_STR(IEXT, "iext"),
1989 	    REG_TYPE_STR(IBROOT, "ibroot"),
1990 	    REG_TYPE_STR(ILOCAL, "ilocal"),
1991 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1992 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1993 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1994 	    REG_TYPE_STR(QFORMAT, "qformat"),
1995 	    REG_TYPE_STR(DQUOT, "dquot"),
1996 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1997 	    REG_TYPE_STR(LRHEADER, "LR header"),
1998 	    REG_TYPE_STR(UNMOUNT, "unmount"),
1999 	    REG_TYPE_STR(COMMIT, "commit"),
2000 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2001 	    REG_TYPE_STR(ICREATE, "inode create"),
2002 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2003 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2004 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2005 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2006 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2007 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2008 	};
2009 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2010 #undef REG_TYPE_STR
2011 
2012 	xfs_warn(mp, "ticket reservation summary:");
2013 	xfs_warn(mp, "  unit res    = %d bytes",
2014 		 ticket->t_unit_res);
2015 	xfs_warn(mp, "  current res = %d bytes",
2016 		 ticket->t_curr_res);
2017 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2018 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2019 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2020 		 ticket->t_res_num_ophdrs, ophdr_spc);
2021 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2022 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2023 	xfs_warn(mp, "  num regions = %u",
2024 		 ticket->t_res_num);
2025 
2026 	for (i = 0; i < ticket->t_res_num; i++) {
2027 		uint r_type = ticket->t_res_arr[i].r_type;
2028 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2029 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2030 			    "bad-rtype" : res_type_str[r_type]),
2031 			    ticket->t_res_arr[i].r_len);
2032 	}
2033 }
2034 
2035 /*
2036  * Print a summary of the transaction.
2037  */
2038 void
2039 xlog_print_trans(
2040 	struct xfs_trans	*tp)
2041 {
2042 	struct xfs_mount	*mp = tp->t_mountp;
2043 	struct xfs_log_item	*lip;
2044 
2045 	/* dump core transaction and ticket info */
2046 	xfs_warn(mp, "transaction summary:");
2047 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2048 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2049 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2050 
2051 	xlog_print_tic_res(mp, tp->t_ticket);
2052 
2053 	/* dump each log item */
2054 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2055 		struct xfs_log_vec	*lv = lip->li_lv;
2056 		struct xfs_log_iovec	*vec;
2057 		int			i;
2058 
2059 		xfs_warn(mp, "log item: ");
2060 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2061 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2062 		if (!lv)
2063 			continue;
2064 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2065 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2066 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2067 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2068 
2069 		/* dump each iovec for the log item */
2070 		vec = lv->lv_iovecp;
2071 		for (i = 0; i < lv->lv_niovecs; i++) {
2072 			int dumplen = min(vec->i_len, 32);
2073 
2074 			xfs_warn(mp, "  iovec[%d]", i);
2075 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2076 			xfs_warn(mp, "    len	= %d", vec->i_len);
2077 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2078 			xfs_hex_dump(vec->i_addr, dumplen);
2079 
2080 			vec++;
2081 		}
2082 	}
2083 }
2084 
2085 /*
2086  * Calculate the potential space needed by the log vector.  Each region gets
2087  * its own xlog_op_header_t and may need to be double word aligned.
2088  */
2089 static int
2090 xlog_write_calc_vec_length(
2091 	struct xlog_ticket	*ticket,
2092 	struct xfs_log_vec	*log_vector)
2093 {
2094 	struct xfs_log_vec	*lv;
2095 	int			headers = 0;
2096 	int			len = 0;
2097 	int			i;
2098 
2099 	/* acct for start rec of xact */
2100 	if (ticket->t_flags & XLOG_TIC_INITED)
2101 		headers++;
2102 
2103 	for (lv = log_vector; lv; lv = lv->lv_next) {
2104 		/* we don't write ordered log vectors */
2105 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2106 			continue;
2107 
2108 		headers += lv->lv_niovecs;
2109 
2110 		for (i = 0; i < lv->lv_niovecs; i++) {
2111 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2112 
2113 			len += vecp->i_len;
2114 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2115 		}
2116 	}
2117 
2118 	ticket->t_res_num_ophdrs += headers;
2119 	len += headers * sizeof(struct xlog_op_header);
2120 
2121 	return len;
2122 }
2123 
2124 /*
2125  * If first write for transaction, insert start record  We can't be trying to
2126  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2127  */
2128 static int
2129 xlog_write_start_rec(
2130 	struct xlog_op_header	*ophdr,
2131 	struct xlog_ticket	*ticket)
2132 {
2133 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2134 		return 0;
2135 
2136 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2137 	ophdr->oh_clientid = ticket->t_clientid;
2138 	ophdr->oh_len = 0;
2139 	ophdr->oh_flags = XLOG_START_TRANS;
2140 	ophdr->oh_res2 = 0;
2141 
2142 	ticket->t_flags &= ~XLOG_TIC_INITED;
2143 
2144 	return sizeof(struct xlog_op_header);
2145 }
2146 
2147 static xlog_op_header_t *
2148 xlog_write_setup_ophdr(
2149 	struct xlog		*log,
2150 	struct xlog_op_header	*ophdr,
2151 	struct xlog_ticket	*ticket,
2152 	uint			flags)
2153 {
2154 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2155 	ophdr->oh_clientid = ticket->t_clientid;
2156 	ophdr->oh_res2 = 0;
2157 
2158 	/* are we copying a commit or unmount record? */
2159 	ophdr->oh_flags = flags;
2160 
2161 	/*
2162 	 * We've seen logs corrupted with bad transaction client ids.  This
2163 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2164 	 * and shut down the filesystem.
2165 	 */
2166 	switch (ophdr->oh_clientid)  {
2167 	case XFS_TRANSACTION:
2168 	case XFS_VOLUME:
2169 	case XFS_LOG:
2170 		break;
2171 	default:
2172 		xfs_warn(log->l_mp,
2173 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2174 			ophdr->oh_clientid, ticket);
2175 		return NULL;
2176 	}
2177 
2178 	return ophdr;
2179 }
2180 
2181 /*
2182  * Set up the parameters of the region copy into the log. This has
2183  * to handle region write split across multiple log buffers - this
2184  * state is kept external to this function so that this code can
2185  * be written in an obvious, self documenting manner.
2186  */
2187 static int
2188 xlog_write_setup_copy(
2189 	struct xlog_ticket	*ticket,
2190 	struct xlog_op_header	*ophdr,
2191 	int			space_available,
2192 	int			space_required,
2193 	int			*copy_off,
2194 	int			*copy_len,
2195 	int			*last_was_partial_copy,
2196 	int			*bytes_consumed)
2197 {
2198 	int			still_to_copy;
2199 
2200 	still_to_copy = space_required - *bytes_consumed;
2201 	*copy_off = *bytes_consumed;
2202 
2203 	if (still_to_copy <= space_available) {
2204 		/* write of region completes here */
2205 		*copy_len = still_to_copy;
2206 		ophdr->oh_len = cpu_to_be32(*copy_len);
2207 		if (*last_was_partial_copy)
2208 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2209 		*last_was_partial_copy = 0;
2210 		*bytes_consumed = 0;
2211 		return 0;
2212 	}
2213 
2214 	/* partial write of region, needs extra log op header reservation */
2215 	*copy_len = space_available;
2216 	ophdr->oh_len = cpu_to_be32(*copy_len);
2217 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2218 	if (*last_was_partial_copy)
2219 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2220 	*bytes_consumed += *copy_len;
2221 	(*last_was_partial_copy)++;
2222 
2223 	/* account for new log op header */
2224 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2225 	ticket->t_res_num_ophdrs++;
2226 
2227 	return sizeof(struct xlog_op_header);
2228 }
2229 
2230 static int
2231 xlog_write_copy_finish(
2232 	struct xlog		*log,
2233 	struct xlog_in_core	*iclog,
2234 	uint			flags,
2235 	int			*record_cnt,
2236 	int			*data_cnt,
2237 	int			*partial_copy,
2238 	int			*partial_copy_len,
2239 	int			log_offset,
2240 	struct xlog_in_core	**commit_iclog)
2241 {
2242 	if (*partial_copy) {
2243 		/*
2244 		 * This iclog has already been marked WANT_SYNC by
2245 		 * xlog_state_get_iclog_space.
2246 		 */
2247 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2248 		*record_cnt = 0;
2249 		*data_cnt = 0;
2250 		return xlog_state_release_iclog(log, iclog);
2251 	}
2252 
2253 	*partial_copy = 0;
2254 	*partial_copy_len = 0;
2255 
2256 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2257 		/* no more space in this iclog - push it. */
2258 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2259 		*record_cnt = 0;
2260 		*data_cnt = 0;
2261 
2262 		spin_lock(&log->l_icloglock);
2263 		xlog_state_want_sync(log, iclog);
2264 		spin_unlock(&log->l_icloglock);
2265 
2266 		if (!commit_iclog)
2267 			return xlog_state_release_iclog(log, iclog);
2268 		ASSERT(flags & XLOG_COMMIT_TRANS);
2269 		*commit_iclog = iclog;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 /*
2276  * Write some region out to in-core log
2277  *
2278  * This will be called when writing externally provided regions or when
2279  * writing out a commit record for a given transaction.
2280  *
2281  * General algorithm:
2282  *	1. Find total length of this write.  This may include adding to the
2283  *		lengths passed in.
2284  *	2. Check whether we violate the tickets reservation.
2285  *	3. While writing to this iclog
2286  *	    A. Reserve as much space in this iclog as can get
2287  *	    B. If this is first write, save away start lsn
2288  *	    C. While writing this region:
2289  *		1. If first write of transaction, write start record
2290  *		2. Write log operation header (header per region)
2291  *		3. Find out if we can fit entire region into this iclog
2292  *		4. Potentially, verify destination memcpy ptr
2293  *		5. Memcpy (partial) region
2294  *		6. If partial copy, release iclog; otherwise, continue
2295  *			copying more regions into current iclog
2296  *	4. Mark want sync bit (in simulation mode)
2297  *	5. Release iclog for potential flush to on-disk log.
2298  *
2299  * ERRORS:
2300  * 1.	Panic if reservation is overrun.  This should never happen since
2301  *	reservation amounts are generated internal to the filesystem.
2302  * NOTES:
2303  * 1. Tickets are single threaded data structures.
2304  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2305  *	syncing routine.  When a single log_write region needs to span
2306  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2307  *	on all log operation writes which don't contain the end of the
2308  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2309  *	operation which contains the end of the continued log_write region.
2310  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2311  *	we don't really know exactly how much space will be used.  As a result,
2312  *	we don't update ic_offset until the end when we know exactly how many
2313  *	bytes have been written out.
2314  */
2315 int
2316 xlog_write(
2317 	struct xlog		*log,
2318 	struct xfs_log_vec	*log_vector,
2319 	struct xlog_ticket	*ticket,
2320 	xfs_lsn_t		*start_lsn,
2321 	struct xlog_in_core	**commit_iclog,
2322 	uint			flags)
2323 {
2324 	struct xlog_in_core	*iclog = NULL;
2325 	struct xfs_log_iovec	*vecp;
2326 	struct xfs_log_vec	*lv;
2327 	int			len;
2328 	int			index;
2329 	int			partial_copy = 0;
2330 	int			partial_copy_len = 0;
2331 	int			contwr = 0;
2332 	int			record_cnt = 0;
2333 	int			data_cnt = 0;
2334 	int			error;
2335 
2336 	*start_lsn = 0;
2337 
2338 	len = xlog_write_calc_vec_length(ticket, log_vector);
2339 
2340 	/*
2341 	 * Region headers and bytes are already accounted for.
2342 	 * We only need to take into account start records and
2343 	 * split regions in this function.
2344 	 */
2345 	if (ticket->t_flags & XLOG_TIC_INITED)
2346 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2347 
2348 	/*
2349 	 * Commit record headers need to be accounted for. These
2350 	 * come in as separate writes so are easy to detect.
2351 	 */
2352 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2353 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2354 
2355 	if (ticket->t_curr_res < 0) {
2356 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2357 		     "ctx ticket reservation ran out. Need to up reservation");
2358 		xlog_print_tic_res(log->l_mp, ticket);
2359 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2360 	}
2361 
2362 	index = 0;
2363 	lv = log_vector;
2364 	vecp = lv->lv_iovecp;
2365 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2366 		void		*ptr;
2367 		int		log_offset;
2368 
2369 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2370 						   &contwr, &log_offset);
2371 		if (error)
2372 			return error;
2373 
2374 		ASSERT(log_offset <= iclog->ic_size - 1);
2375 		ptr = iclog->ic_datap + log_offset;
2376 
2377 		/* start_lsn is the first lsn written to. That's all we need. */
2378 		if (!*start_lsn)
2379 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2380 
2381 		/*
2382 		 * This loop writes out as many regions as can fit in the amount
2383 		 * of space which was allocated by xlog_state_get_iclog_space().
2384 		 */
2385 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2386 			struct xfs_log_iovec	*reg;
2387 			struct xlog_op_header	*ophdr;
2388 			int			start_rec_copy;
2389 			int			copy_len;
2390 			int			copy_off;
2391 			bool			ordered = false;
2392 
2393 			/* ordered log vectors have no regions to write */
2394 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2395 				ASSERT(lv->lv_niovecs == 0);
2396 				ordered = true;
2397 				goto next_lv;
2398 			}
2399 
2400 			reg = &vecp[index];
2401 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2402 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2403 
2404 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2405 			if (start_rec_copy) {
2406 				record_cnt++;
2407 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2408 						   start_rec_copy);
2409 			}
2410 
2411 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2412 			if (!ophdr)
2413 				return -EIO;
2414 
2415 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2416 					   sizeof(struct xlog_op_header));
2417 
2418 			len += xlog_write_setup_copy(ticket, ophdr,
2419 						     iclog->ic_size-log_offset,
2420 						     reg->i_len,
2421 						     &copy_off, &copy_len,
2422 						     &partial_copy,
2423 						     &partial_copy_len);
2424 			xlog_verify_dest_ptr(log, ptr);
2425 
2426 			/*
2427 			 * Copy region.
2428 			 *
2429 			 * Unmount records just log an opheader, so can have
2430 			 * empty payloads with no data region to copy. Hence we
2431 			 * only copy the payload if the vector says it has data
2432 			 * to copy.
2433 			 */
2434 			ASSERT(copy_len >= 0);
2435 			if (copy_len > 0) {
2436 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2437 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2438 						   copy_len);
2439 			}
2440 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2441 			record_cnt++;
2442 			data_cnt += contwr ? copy_len : 0;
2443 
2444 			error = xlog_write_copy_finish(log, iclog, flags,
2445 						       &record_cnt, &data_cnt,
2446 						       &partial_copy,
2447 						       &partial_copy_len,
2448 						       log_offset,
2449 						       commit_iclog);
2450 			if (error)
2451 				return error;
2452 
2453 			/*
2454 			 * if we had a partial copy, we need to get more iclog
2455 			 * space but we don't want to increment the region
2456 			 * index because there is still more is this region to
2457 			 * write.
2458 			 *
2459 			 * If we completed writing this region, and we flushed
2460 			 * the iclog (indicated by resetting of the record
2461 			 * count), then we also need to get more log space. If
2462 			 * this was the last record, though, we are done and
2463 			 * can just return.
2464 			 */
2465 			if (partial_copy)
2466 				break;
2467 
2468 			if (++index == lv->lv_niovecs) {
2469 next_lv:
2470 				lv = lv->lv_next;
2471 				index = 0;
2472 				if (lv)
2473 					vecp = lv->lv_iovecp;
2474 			}
2475 			if (record_cnt == 0 && !ordered) {
2476 				if (!lv)
2477 					return 0;
2478 				break;
2479 			}
2480 		}
2481 	}
2482 
2483 	ASSERT(len == 0);
2484 
2485 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2486 	if (!commit_iclog)
2487 		return xlog_state_release_iclog(log, iclog);
2488 
2489 	ASSERT(flags & XLOG_COMMIT_TRANS);
2490 	*commit_iclog = iclog;
2491 	return 0;
2492 }
2493 
2494 
2495 /*****************************************************************************
2496  *
2497  *		State Machine functions
2498  *
2499  *****************************************************************************
2500  */
2501 
2502 /* Clean iclogs starting from the head.  This ordering must be
2503  * maintained, so an iclog doesn't become ACTIVE beyond one that
2504  * is SYNCING.  This is also required to maintain the notion that we use
2505  * a ordered wait queue to hold off would be writers to the log when every
2506  * iclog is trying to sync to disk.
2507  *
2508  * State Change: DIRTY -> ACTIVE
2509  */
2510 STATIC void
2511 xlog_state_clean_log(
2512 	struct xlog *log)
2513 {
2514 	xlog_in_core_t	*iclog;
2515 	int changed = 0;
2516 
2517 	iclog = log->l_iclog;
2518 	do {
2519 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2520 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2521 			iclog->ic_offset       = 0;
2522 			ASSERT(list_empty_careful(&iclog->ic_callbacks));
2523 			/*
2524 			 * If the number of ops in this iclog indicate it just
2525 			 * contains the dummy transaction, we can
2526 			 * change state into IDLE (the second time around).
2527 			 * Otherwise we should change the state into
2528 			 * NEED a dummy.
2529 			 * We don't need to cover the dummy.
2530 			 */
2531 			if (!changed &&
2532 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2533 			   		XLOG_COVER_OPS)) {
2534 				changed = 1;
2535 			} else {
2536 				/*
2537 				 * We have two dirty iclogs so start over
2538 				 * This could also be num of ops indicates
2539 				 * this is not the dummy going out.
2540 				 */
2541 				changed = 2;
2542 			}
2543 			iclog->ic_header.h_num_logops = 0;
2544 			memset(iclog->ic_header.h_cycle_data, 0,
2545 			      sizeof(iclog->ic_header.h_cycle_data));
2546 			iclog->ic_header.h_lsn = 0;
2547 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2548 			/* do nothing */;
2549 		else
2550 			break;	/* stop cleaning */
2551 		iclog = iclog->ic_next;
2552 	} while (iclog != log->l_iclog);
2553 
2554 	/* log is locked when we are called */
2555 	/*
2556 	 * Change state for the dummy log recording.
2557 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2558 	 * we are done writing the dummy record.
2559 	 * If we are done with the second dummy recored (DONE2), then
2560 	 * we go to IDLE.
2561 	 */
2562 	if (changed) {
2563 		switch (log->l_covered_state) {
2564 		case XLOG_STATE_COVER_IDLE:
2565 		case XLOG_STATE_COVER_NEED:
2566 		case XLOG_STATE_COVER_NEED2:
2567 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2568 			break;
2569 
2570 		case XLOG_STATE_COVER_DONE:
2571 			if (changed == 1)
2572 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2573 			else
2574 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2575 			break;
2576 
2577 		case XLOG_STATE_COVER_DONE2:
2578 			if (changed == 1)
2579 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2580 			else
2581 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2582 			break;
2583 
2584 		default:
2585 			ASSERT(0);
2586 		}
2587 	}
2588 }	/* xlog_state_clean_log */
2589 
2590 STATIC xfs_lsn_t
2591 xlog_get_lowest_lsn(
2592 	struct xlog		*log)
2593 {
2594 	struct xlog_in_core	*iclog = log->l_iclog;
2595 	xfs_lsn_t		lowest_lsn = 0, lsn;
2596 
2597 	do {
2598 		if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2599 			continue;
2600 
2601 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2602 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2603 			lowest_lsn = lsn;
2604 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2605 
2606 	return lowest_lsn;
2607 }
2608 
2609 STATIC void
2610 xlog_state_do_callback(
2611 	struct xlog		*log,
2612 	bool			aborted,
2613 	struct xlog_in_core	*ciclog)
2614 {
2615 	xlog_in_core_t	   *iclog;
2616 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2617 						 * processed all iclogs once */
2618 	int		   flushcnt = 0;
2619 	xfs_lsn_t	   lowest_lsn;
2620 	int		   ioerrors;	/* counter: iclogs with errors */
2621 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2622 	int		   funcdidcallbacks; /* flag: function did callbacks */
2623 	int		   repeats;	/* for issuing console warnings if
2624 					 * looping too many times */
2625 	int		   wake = 0;
2626 
2627 	spin_lock(&log->l_icloglock);
2628 	first_iclog = iclog = log->l_iclog;
2629 	ioerrors = 0;
2630 	funcdidcallbacks = 0;
2631 	repeats = 0;
2632 
2633 	do {
2634 		/*
2635 		 * Scan all iclogs starting with the one pointed to by the
2636 		 * log.  Reset this starting point each time the log is
2637 		 * unlocked (during callbacks).
2638 		 *
2639 		 * Keep looping through iclogs until one full pass is made
2640 		 * without running any callbacks.
2641 		 */
2642 		first_iclog = log->l_iclog;
2643 		iclog = log->l_iclog;
2644 		loopdidcallbacks = 0;
2645 		repeats++;
2646 
2647 		do {
2648 
2649 			/* skip all iclogs in the ACTIVE & DIRTY states */
2650 			if (iclog->ic_state &
2651 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2652 				iclog = iclog->ic_next;
2653 				continue;
2654 			}
2655 
2656 			/*
2657 			 * Between marking a filesystem SHUTDOWN and stopping
2658 			 * the log, we do flush all iclogs to disk (if there
2659 			 * wasn't a log I/O error). So, we do want things to
2660 			 * go smoothly in case of just a SHUTDOWN  w/o a
2661 			 * LOG_IO_ERROR.
2662 			 */
2663 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2664 				/*
2665 				 * Can only perform callbacks in order.  Since
2666 				 * this iclog is not in the DONE_SYNC/
2667 				 * DO_CALLBACK state, we skip the rest and
2668 				 * just try to clean up.  If we set our iclog
2669 				 * to DO_CALLBACK, we will not process it when
2670 				 * we retry since a previous iclog is in the
2671 				 * CALLBACK and the state cannot change since
2672 				 * we are holding the l_icloglock.
2673 				 */
2674 				if (!(iclog->ic_state &
2675 					(XLOG_STATE_DONE_SYNC |
2676 						 XLOG_STATE_DO_CALLBACK))) {
2677 					if (ciclog && (ciclog->ic_state ==
2678 							XLOG_STATE_DONE_SYNC)) {
2679 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2680 					}
2681 					break;
2682 				}
2683 				/*
2684 				 * We now have an iclog that is in either the
2685 				 * DO_CALLBACK or DONE_SYNC states. The other
2686 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2687 				 * caught by the above if and are going to
2688 				 * clean (i.e. we aren't doing their callbacks)
2689 				 * see the above if.
2690 				 */
2691 
2692 				/*
2693 				 * We will do one more check here to see if we
2694 				 * have chased our tail around.
2695 				 */
2696 
2697 				lowest_lsn = xlog_get_lowest_lsn(log);
2698 				if (lowest_lsn &&
2699 				    XFS_LSN_CMP(lowest_lsn,
2700 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2701 					iclog = iclog->ic_next;
2702 					continue; /* Leave this iclog for
2703 						   * another thread */
2704 				}
2705 
2706 				iclog->ic_state = XLOG_STATE_CALLBACK;
2707 
2708 
2709 				/*
2710 				 * Completion of a iclog IO does not imply that
2711 				 * a transaction has completed, as transactions
2712 				 * can be large enough to span many iclogs. We
2713 				 * cannot change the tail of the log half way
2714 				 * through a transaction as this may be the only
2715 				 * transaction in the log and moving th etail to
2716 				 * point to the middle of it will prevent
2717 				 * recovery from finding the start of the
2718 				 * transaction. Hence we should only update the
2719 				 * last_sync_lsn if this iclog contains
2720 				 * transaction completion callbacks on it.
2721 				 *
2722 				 * We have to do this before we drop the
2723 				 * icloglock to ensure we are the only one that
2724 				 * can update it.
2725 				 */
2726 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2727 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2728 				if (!list_empty_careful(&iclog->ic_callbacks))
2729 					atomic64_set(&log->l_last_sync_lsn,
2730 						be64_to_cpu(iclog->ic_header.h_lsn));
2731 
2732 			} else
2733 				ioerrors++;
2734 
2735 			spin_unlock(&log->l_icloglock);
2736 
2737 			/*
2738 			 * Keep processing entries in the callback list until
2739 			 * we come around and it is empty.  We need to
2740 			 * atomically see that the list is empty and change the
2741 			 * state to DIRTY so that we don't miss any more
2742 			 * callbacks being added.
2743 			 */
2744 			spin_lock(&iclog->ic_callback_lock);
2745 			while (!list_empty(&iclog->ic_callbacks)) {
2746 				LIST_HEAD(tmp);
2747 
2748 				list_splice_init(&iclog->ic_callbacks, &tmp);
2749 
2750 				spin_unlock(&iclog->ic_callback_lock);
2751 				xlog_cil_process_committed(&tmp, aborted);
2752 				spin_lock(&iclog->ic_callback_lock);
2753 			}
2754 
2755 			loopdidcallbacks++;
2756 			funcdidcallbacks++;
2757 
2758 			spin_lock(&log->l_icloglock);
2759 			spin_unlock(&iclog->ic_callback_lock);
2760 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2761 				iclog->ic_state = XLOG_STATE_DIRTY;
2762 
2763 			/*
2764 			 * Transition from DIRTY to ACTIVE if applicable.
2765 			 * NOP if STATE_IOERROR.
2766 			 */
2767 			xlog_state_clean_log(log);
2768 
2769 			/* wake up threads waiting in xfs_log_force() */
2770 			wake_up_all(&iclog->ic_force_wait);
2771 
2772 			iclog = iclog->ic_next;
2773 		} while (first_iclog != iclog);
2774 
2775 		if (repeats > 5000) {
2776 			flushcnt += repeats;
2777 			repeats = 0;
2778 			xfs_warn(log->l_mp,
2779 				"%s: possible infinite loop (%d iterations)",
2780 				__func__, flushcnt);
2781 		}
2782 	} while (!ioerrors && loopdidcallbacks);
2783 
2784 #ifdef DEBUG
2785 	/*
2786 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2787 	 * If the above loop finds an iclog earlier than the current iclog and
2788 	 * in one of the syncing states, the current iclog is put into
2789 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2790 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2791 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2792 	 * states.
2793 	 *
2794 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2795 	 * for ic_state == SYNCING.
2796 	 */
2797 	if (funcdidcallbacks) {
2798 		first_iclog = iclog = log->l_iclog;
2799 		do {
2800 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2801 			/*
2802 			 * Terminate the loop if iclogs are found in states
2803 			 * which will cause other threads to clean up iclogs.
2804 			 *
2805 			 * SYNCING - i/o completion will go through logs
2806 			 * DONE_SYNC - interrupt thread should be waiting for
2807 			 *              l_icloglock
2808 			 * IOERROR - give up hope all ye who enter here
2809 			 */
2810 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2811 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2812 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2813 			    iclog->ic_state == XLOG_STATE_IOERROR )
2814 				break;
2815 			iclog = iclog->ic_next;
2816 		} while (first_iclog != iclog);
2817 	}
2818 #endif
2819 
2820 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2821 		wake = 1;
2822 	spin_unlock(&log->l_icloglock);
2823 
2824 	if (wake)
2825 		wake_up_all(&log->l_flush_wait);
2826 }
2827 
2828 
2829 /*
2830  * Finish transitioning this iclog to the dirty state.
2831  *
2832  * Make sure that we completely execute this routine only when this is
2833  * the last call to the iclog.  There is a good chance that iclog flushes,
2834  * when we reach the end of the physical log, get turned into 2 separate
2835  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2836  * routine.  By using the reference count bwritecnt, we guarantee that only
2837  * the second completion goes through.
2838  *
2839  * Callbacks could take time, so they are done outside the scope of the
2840  * global state machine log lock.
2841  */
2842 STATIC void
2843 xlog_state_done_syncing(
2844 	struct xlog_in_core	*iclog,
2845 	bool			aborted)
2846 {
2847 	struct xlog		*log = iclog->ic_log;
2848 
2849 	spin_lock(&log->l_icloglock);
2850 
2851 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2852 	       iclog->ic_state == XLOG_STATE_IOERROR);
2853 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2854 
2855 	/*
2856 	 * If we got an error, either on the first buffer, or in the case of
2857 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2858 	 * and none should ever be attempted to be written to disk
2859 	 * again.
2860 	 */
2861 	if (iclog->ic_state != XLOG_STATE_IOERROR)
2862 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2863 
2864 	/*
2865 	 * Someone could be sleeping prior to writing out the next
2866 	 * iclog buffer, we wake them all, one will get to do the
2867 	 * I/O, the others get to wait for the result.
2868 	 */
2869 	wake_up_all(&iclog->ic_write_wait);
2870 	spin_unlock(&log->l_icloglock);
2871 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2872 }	/* xlog_state_done_syncing */
2873 
2874 
2875 /*
2876  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2877  * sleep.  We wait on the flush queue on the head iclog as that should be
2878  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2879  * we will wait here and all new writes will sleep until a sync completes.
2880  *
2881  * The in-core logs are used in a circular fashion. They are not used
2882  * out-of-order even when an iclog past the head is free.
2883  *
2884  * return:
2885  *	* log_offset where xlog_write() can start writing into the in-core
2886  *		log's data space.
2887  *	* in-core log pointer to which xlog_write() should write.
2888  *	* boolean indicating this is a continued write to an in-core log.
2889  *		If this is the last write, then the in-core log's offset field
2890  *		needs to be incremented, depending on the amount of data which
2891  *		is copied.
2892  */
2893 STATIC int
2894 xlog_state_get_iclog_space(
2895 	struct xlog		*log,
2896 	int			len,
2897 	struct xlog_in_core	**iclogp,
2898 	struct xlog_ticket	*ticket,
2899 	int			*continued_write,
2900 	int			*logoffsetp)
2901 {
2902 	int		  log_offset;
2903 	xlog_rec_header_t *head;
2904 	xlog_in_core_t	  *iclog;
2905 	int		  error;
2906 
2907 restart:
2908 	spin_lock(&log->l_icloglock);
2909 	if (XLOG_FORCED_SHUTDOWN(log)) {
2910 		spin_unlock(&log->l_icloglock);
2911 		return -EIO;
2912 	}
2913 
2914 	iclog = log->l_iclog;
2915 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2916 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2917 
2918 		/* Wait for log writes to have flushed */
2919 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2920 		goto restart;
2921 	}
2922 
2923 	head = &iclog->ic_header;
2924 
2925 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2926 	log_offset = iclog->ic_offset;
2927 
2928 	/* On the 1st write to an iclog, figure out lsn.  This works
2929 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2930 	 * committing to.  If the offset is set, that's how many blocks
2931 	 * must be written.
2932 	 */
2933 	if (log_offset == 0) {
2934 		ticket->t_curr_res -= log->l_iclog_hsize;
2935 		xlog_tic_add_region(ticket,
2936 				    log->l_iclog_hsize,
2937 				    XLOG_REG_TYPE_LRHEADER);
2938 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2939 		head->h_lsn = cpu_to_be64(
2940 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2941 		ASSERT(log->l_curr_block >= 0);
2942 	}
2943 
2944 	/* If there is enough room to write everything, then do it.  Otherwise,
2945 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2946 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2947 	 * until you know exactly how many bytes get copied.  Therefore, wait
2948 	 * until later to update ic_offset.
2949 	 *
2950 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2951 	 * can fit into remaining data section.
2952 	 */
2953 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2954 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2955 
2956 		/*
2957 		 * If I'm the only one writing to this iclog, sync it to disk.
2958 		 * We need to do an atomic compare and decrement here to avoid
2959 		 * racing with concurrent atomic_dec_and_lock() calls in
2960 		 * xlog_state_release_iclog() when there is more than one
2961 		 * reference to the iclog.
2962 		 */
2963 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2964 			/* we are the only one */
2965 			spin_unlock(&log->l_icloglock);
2966 			error = xlog_state_release_iclog(log, iclog);
2967 			if (error)
2968 				return error;
2969 		} else {
2970 			spin_unlock(&log->l_icloglock);
2971 		}
2972 		goto restart;
2973 	}
2974 
2975 	/* Do we have enough room to write the full amount in the remainder
2976 	 * of this iclog?  Or must we continue a write on the next iclog and
2977 	 * mark this iclog as completely taken?  In the case where we switch
2978 	 * iclogs (to mark it taken), this particular iclog will release/sync
2979 	 * to disk in xlog_write().
2980 	 */
2981 	if (len <= iclog->ic_size - iclog->ic_offset) {
2982 		*continued_write = 0;
2983 		iclog->ic_offset += len;
2984 	} else {
2985 		*continued_write = 1;
2986 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2987 	}
2988 	*iclogp = iclog;
2989 
2990 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2991 	spin_unlock(&log->l_icloglock);
2992 
2993 	*logoffsetp = log_offset;
2994 	return 0;
2995 }	/* xlog_state_get_iclog_space */
2996 
2997 /* The first cnt-1 times through here we don't need to
2998  * move the grant write head because the permanent
2999  * reservation has reserved cnt times the unit amount.
3000  * Release part of current permanent unit reservation and
3001  * reset current reservation to be one units worth.  Also
3002  * move grant reservation head forward.
3003  */
3004 STATIC void
3005 xlog_regrant_reserve_log_space(
3006 	struct xlog		*log,
3007 	struct xlog_ticket	*ticket)
3008 {
3009 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3010 
3011 	if (ticket->t_cnt > 0)
3012 		ticket->t_cnt--;
3013 
3014 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3015 					ticket->t_curr_res);
3016 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3017 					ticket->t_curr_res);
3018 	ticket->t_curr_res = ticket->t_unit_res;
3019 	xlog_tic_reset_res(ticket);
3020 
3021 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3022 
3023 	/* just return if we still have some of the pre-reserved space */
3024 	if (ticket->t_cnt > 0)
3025 		return;
3026 
3027 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3028 					ticket->t_unit_res);
3029 
3030 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3031 
3032 	ticket->t_curr_res = ticket->t_unit_res;
3033 	xlog_tic_reset_res(ticket);
3034 }	/* xlog_regrant_reserve_log_space */
3035 
3036 
3037 /*
3038  * Give back the space left from a reservation.
3039  *
3040  * All the information we need to make a correct determination of space left
3041  * is present.  For non-permanent reservations, things are quite easy.  The
3042  * count should have been decremented to zero.  We only need to deal with the
3043  * space remaining in the current reservation part of the ticket.  If the
3044  * ticket contains a permanent reservation, there may be left over space which
3045  * needs to be released.  A count of N means that N-1 refills of the current
3046  * reservation can be done before we need to ask for more space.  The first
3047  * one goes to fill up the first current reservation.  Once we run out of
3048  * space, the count will stay at zero and the only space remaining will be
3049  * in the current reservation field.
3050  */
3051 STATIC void
3052 xlog_ungrant_log_space(
3053 	struct xlog		*log,
3054 	struct xlog_ticket	*ticket)
3055 {
3056 	int	bytes;
3057 
3058 	if (ticket->t_cnt > 0)
3059 		ticket->t_cnt--;
3060 
3061 	trace_xfs_log_ungrant_enter(log, ticket);
3062 	trace_xfs_log_ungrant_sub(log, ticket);
3063 
3064 	/*
3065 	 * If this is a permanent reservation ticket, we may be able to free
3066 	 * up more space based on the remaining count.
3067 	 */
3068 	bytes = ticket->t_curr_res;
3069 	if (ticket->t_cnt > 0) {
3070 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3071 		bytes += ticket->t_unit_res*ticket->t_cnt;
3072 	}
3073 
3074 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3075 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3076 
3077 	trace_xfs_log_ungrant_exit(log, ticket);
3078 
3079 	xfs_log_space_wake(log->l_mp);
3080 }
3081 
3082 /*
3083  * Flush iclog to disk if this is the last reference to the given iclog and
3084  * the WANT_SYNC bit is set.
3085  *
3086  * When this function is entered, the iclog is not necessarily in the
3087  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3088  *
3089  *
3090  */
3091 STATIC int
3092 xlog_state_release_iclog(
3093 	struct xlog		*log,
3094 	struct xlog_in_core	*iclog)
3095 {
3096 	int		sync = 0;	/* do we sync? */
3097 
3098 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3099 		return -EIO;
3100 
3101 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3102 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3103 		return 0;
3104 
3105 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3106 		spin_unlock(&log->l_icloglock);
3107 		return -EIO;
3108 	}
3109 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3110 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3111 
3112 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3113 		/* update tail before writing to iclog */
3114 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3115 		sync++;
3116 		iclog->ic_state = XLOG_STATE_SYNCING;
3117 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3118 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3119 		/* cycle incremented when incrementing curr_block */
3120 	}
3121 	spin_unlock(&log->l_icloglock);
3122 
3123 	/*
3124 	 * We let the log lock go, so it's possible that we hit a log I/O
3125 	 * error or some other SHUTDOWN condition that marks the iclog
3126 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3127 	 * this iclog has consistent data, so we ignore IOERROR
3128 	 * flags after this point.
3129 	 */
3130 	if (sync)
3131 		xlog_sync(log, iclog);
3132 	return 0;
3133 }	/* xlog_state_release_iclog */
3134 
3135 
3136 /*
3137  * This routine will mark the current iclog in the ring as WANT_SYNC
3138  * and move the current iclog pointer to the next iclog in the ring.
3139  * When this routine is called from xlog_state_get_iclog_space(), the
3140  * exact size of the iclog has not yet been determined.  All we know is
3141  * that every data block.  We have run out of space in this log record.
3142  */
3143 STATIC void
3144 xlog_state_switch_iclogs(
3145 	struct xlog		*log,
3146 	struct xlog_in_core	*iclog,
3147 	int			eventual_size)
3148 {
3149 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3150 	if (!eventual_size)
3151 		eventual_size = iclog->ic_offset;
3152 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3153 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3154 	log->l_prev_block = log->l_curr_block;
3155 	log->l_prev_cycle = log->l_curr_cycle;
3156 
3157 	/* roll log?: ic_offset changed later */
3158 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3159 
3160 	/* Round up to next log-sunit */
3161 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3162 	    log->l_mp->m_sb.sb_logsunit > 1) {
3163 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3164 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3165 	}
3166 
3167 	if (log->l_curr_block >= log->l_logBBsize) {
3168 		/*
3169 		 * Rewind the current block before the cycle is bumped to make
3170 		 * sure that the combined LSN never transiently moves forward
3171 		 * when the log wraps to the next cycle. This is to support the
3172 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3173 		 * other cases should acquire l_icloglock.
3174 		 */
3175 		log->l_curr_block -= log->l_logBBsize;
3176 		ASSERT(log->l_curr_block >= 0);
3177 		smp_wmb();
3178 		log->l_curr_cycle++;
3179 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3180 			log->l_curr_cycle++;
3181 	}
3182 	ASSERT(iclog == log->l_iclog);
3183 	log->l_iclog = iclog->ic_next;
3184 }	/* xlog_state_switch_iclogs */
3185 
3186 /*
3187  * Write out all data in the in-core log as of this exact moment in time.
3188  *
3189  * Data may be written to the in-core log during this call.  However,
3190  * we don't guarantee this data will be written out.  A change from past
3191  * implementation means this routine will *not* write out zero length LRs.
3192  *
3193  * Basically, we try and perform an intelligent scan of the in-core logs.
3194  * If we determine there is no flushable data, we just return.  There is no
3195  * flushable data if:
3196  *
3197  *	1. the current iclog is active and has no data; the previous iclog
3198  *		is in the active or dirty state.
3199  *	2. the current iclog is drity, and the previous iclog is in the
3200  *		active or dirty state.
3201  *
3202  * We may sleep if:
3203  *
3204  *	1. the current iclog is not in the active nor dirty state.
3205  *	2. the current iclog dirty, and the previous iclog is not in the
3206  *		active nor dirty state.
3207  *	3. the current iclog is active, and there is another thread writing
3208  *		to this particular iclog.
3209  *	4. a) the current iclog is active and has no other writers
3210  *	   b) when we return from flushing out this iclog, it is still
3211  *		not in the active nor dirty state.
3212  */
3213 int
3214 xfs_log_force(
3215 	struct xfs_mount	*mp,
3216 	uint			flags)
3217 {
3218 	struct xlog		*log = mp->m_log;
3219 	struct xlog_in_core	*iclog;
3220 	xfs_lsn_t		lsn;
3221 
3222 	XFS_STATS_INC(mp, xs_log_force);
3223 	trace_xfs_log_force(mp, 0, _RET_IP_);
3224 
3225 	xlog_cil_force(log);
3226 
3227 	spin_lock(&log->l_icloglock);
3228 	iclog = log->l_iclog;
3229 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3230 		goto out_error;
3231 
3232 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3233 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3234 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3235 		/*
3236 		 * If the head is dirty or (active and empty), then we need to
3237 		 * look at the previous iclog.
3238 		 *
3239 		 * If the previous iclog is active or dirty we are done.  There
3240 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3241 		 * previous iclog and go to sleep.
3242 		 */
3243 		iclog = iclog->ic_prev;
3244 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3245 		    iclog->ic_state == XLOG_STATE_DIRTY)
3246 			goto out_unlock;
3247 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3248 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3249 			/*
3250 			 * We are the only one with access to this iclog.
3251 			 *
3252 			 * Flush it out now.  There should be a roundoff of zero
3253 			 * to show that someone has already taken care of the
3254 			 * roundoff from the previous sync.
3255 			 */
3256 			atomic_inc(&iclog->ic_refcnt);
3257 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3258 			xlog_state_switch_iclogs(log, iclog, 0);
3259 			spin_unlock(&log->l_icloglock);
3260 
3261 			if (xlog_state_release_iclog(log, iclog))
3262 				return -EIO;
3263 
3264 			spin_lock(&log->l_icloglock);
3265 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3266 			    iclog->ic_state == XLOG_STATE_DIRTY)
3267 				goto out_unlock;
3268 		} else {
3269 			/*
3270 			 * Someone else is writing to this iclog.
3271 			 *
3272 			 * Use its call to flush out the data.  However, the
3273 			 * other thread may not force out this LR, so we mark
3274 			 * it WANT_SYNC.
3275 			 */
3276 			xlog_state_switch_iclogs(log, iclog, 0);
3277 		}
3278 	} else {
3279 		/*
3280 		 * If the head iclog is not active nor dirty, we just attach
3281 		 * ourselves to the head and go to sleep if necessary.
3282 		 */
3283 		;
3284 	}
3285 
3286 	if (!(flags & XFS_LOG_SYNC))
3287 		goto out_unlock;
3288 
3289 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3290 		goto out_error;
3291 	XFS_STATS_INC(mp, xs_log_force_sleep);
3292 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3293 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3294 		return -EIO;
3295 	return 0;
3296 
3297 out_unlock:
3298 	spin_unlock(&log->l_icloglock);
3299 	return 0;
3300 out_error:
3301 	spin_unlock(&log->l_icloglock);
3302 	return -EIO;
3303 }
3304 
3305 static int
3306 __xfs_log_force_lsn(
3307 	struct xfs_mount	*mp,
3308 	xfs_lsn_t		lsn,
3309 	uint			flags,
3310 	int			*log_flushed,
3311 	bool			already_slept)
3312 {
3313 	struct xlog		*log = mp->m_log;
3314 	struct xlog_in_core	*iclog;
3315 
3316 	spin_lock(&log->l_icloglock);
3317 	iclog = log->l_iclog;
3318 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3319 		goto out_error;
3320 
3321 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3322 		iclog = iclog->ic_next;
3323 		if (iclog == log->l_iclog)
3324 			goto out_unlock;
3325 	}
3326 
3327 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3328 		goto out_unlock;
3329 
3330 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3331 		/*
3332 		 * We sleep here if we haven't already slept (e.g. this is the
3333 		 * first time we've looked at the correct iclog buf) and the
3334 		 * buffer before us is going to be sync'ed.  The reason for this
3335 		 * is that if we are doing sync transactions here, by waiting
3336 		 * for the previous I/O to complete, we can allow a few more
3337 		 * transactions into this iclog before we close it down.
3338 		 *
3339 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3340 		 * refcnt so we can release the log (which drops the ref count).
3341 		 * The state switch keeps new transaction commits from using
3342 		 * this buffer.  When the current commits finish writing into
3343 		 * the buffer, the refcount will drop to zero and the buffer
3344 		 * will go out then.
3345 		 */
3346 		if (!already_slept &&
3347 		    (iclog->ic_prev->ic_state &
3348 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3349 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3350 
3351 			XFS_STATS_INC(mp, xs_log_force_sleep);
3352 
3353 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3354 					&log->l_icloglock);
3355 			return -EAGAIN;
3356 		}
3357 		atomic_inc(&iclog->ic_refcnt);
3358 		xlog_state_switch_iclogs(log, iclog, 0);
3359 		spin_unlock(&log->l_icloglock);
3360 		if (xlog_state_release_iclog(log, iclog))
3361 			return -EIO;
3362 		if (log_flushed)
3363 			*log_flushed = 1;
3364 		spin_lock(&log->l_icloglock);
3365 	}
3366 
3367 	if (!(flags & XFS_LOG_SYNC) ||
3368 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3369 		goto out_unlock;
3370 
3371 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3372 		goto out_error;
3373 
3374 	XFS_STATS_INC(mp, xs_log_force_sleep);
3375 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3376 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3377 		return -EIO;
3378 	return 0;
3379 
3380 out_unlock:
3381 	spin_unlock(&log->l_icloglock);
3382 	return 0;
3383 out_error:
3384 	spin_unlock(&log->l_icloglock);
3385 	return -EIO;
3386 }
3387 
3388 /*
3389  * Force the in-core log to disk for a specific LSN.
3390  *
3391  * Find in-core log with lsn.
3392  *	If it is in the DIRTY state, just return.
3393  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3394  *		state and go to sleep or return.
3395  *	If it is in any other state, go to sleep or return.
3396  *
3397  * Synchronous forces are implemented with a wait queue.  All callers trying
3398  * to force a given lsn to disk must wait on the queue attached to the
3399  * specific in-core log.  When given in-core log finally completes its write
3400  * to disk, that thread will wake up all threads waiting on the queue.
3401  */
3402 int
3403 xfs_log_force_lsn(
3404 	struct xfs_mount	*mp,
3405 	xfs_lsn_t		lsn,
3406 	uint			flags,
3407 	int			*log_flushed)
3408 {
3409 	int			ret;
3410 	ASSERT(lsn != 0);
3411 
3412 	XFS_STATS_INC(mp, xs_log_force);
3413 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3414 
3415 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3416 	if (lsn == NULLCOMMITLSN)
3417 		return 0;
3418 
3419 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3420 	if (ret == -EAGAIN)
3421 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3422 	return ret;
3423 }
3424 
3425 /*
3426  * Called when we want to mark the current iclog as being ready to sync to
3427  * disk.
3428  */
3429 STATIC void
3430 xlog_state_want_sync(
3431 	struct xlog		*log,
3432 	struct xlog_in_core	*iclog)
3433 {
3434 	assert_spin_locked(&log->l_icloglock);
3435 
3436 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3437 		xlog_state_switch_iclogs(log, iclog, 0);
3438 	} else {
3439 		ASSERT(iclog->ic_state &
3440 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3441 	}
3442 }
3443 
3444 
3445 /*****************************************************************************
3446  *
3447  *		TICKET functions
3448  *
3449  *****************************************************************************
3450  */
3451 
3452 /*
3453  * Free a used ticket when its refcount falls to zero.
3454  */
3455 void
3456 xfs_log_ticket_put(
3457 	xlog_ticket_t	*ticket)
3458 {
3459 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3460 	if (atomic_dec_and_test(&ticket->t_ref))
3461 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3462 }
3463 
3464 xlog_ticket_t *
3465 xfs_log_ticket_get(
3466 	xlog_ticket_t	*ticket)
3467 {
3468 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3469 	atomic_inc(&ticket->t_ref);
3470 	return ticket;
3471 }
3472 
3473 /*
3474  * Figure out the total log space unit (in bytes) that would be
3475  * required for a log ticket.
3476  */
3477 int
3478 xfs_log_calc_unit_res(
3479 	struct xfs_mount	*mp,
3480 	int			unit_bytes)
3481 {
3482 	struct xlog		*log = mp->m_log;
3483 	int			iclog_space;
3484 	uint			num_headers;
3485 
3486 	/*
3487 	 * Permanent reservations have up to 'cnt'-1 active log operations
3488 	 * in the log.  A unit in this case is the amount of space for one
3489 	 * of these log operations.  Normal reservations have a cnt of 1
3490 	 * and their unit amount is the total amount of space required.
3491 	 *
3492 	 * The following lines of code account for non-transaction data
3493 	 * which occupy space in the on-disk log.
3494 	 *
3495 	 * Normal form of a transaction is:
3496 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3497 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3498 	 *
3499 	 * We need to account for all the leadup data and trailer data
3500 	 * around the transaction data.
3501 	 * And then we need to account for the worst case in terms of using
3502 	 * more space.
3503 	 * The worst case will happen if:
3504 	 * - the placement of the transaction happens to be such that the
3505 	 *   roundoff is at its maximum
3506 	 * - the transaction data is synced before the commit record is synced
3507 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3508 	 *   Therefore the commit record is in its own Log Record.
3509 	 *   This can happen as the commit record is called with its
3510 	 *   own region to xlog_write().
3511 	 *   This then means that in the worst case, roundoff can happen for
3512 	 *   the commit-rec as well.
3513 	 *   The commit-rec is smaller than padding in this scenario and so it is
3514 	 *   not added separately.
3515 	 */
3516 
3517 	/* for trans header */
3518 	unit_bytes += sizeof(xlog_op_header_t);
3519 	unit_bytes += sizeof(xfs_trans_header_t);
3520 
3521 	/* for start-rec */
3522 	unit_bytes += sizeof(xlog_op_header_t);
3523 
3524 	/*
3525 	 * for LR headers - the space for data in an iclog is the size minus
3526 	 * the space used for the headers. If we use the iclog size, then we
3527 	 * undercalculate the number of headers required.
3528 	 *
3529 	 * Furthermore - the addition of op headers for split-recs might
3530 	 * increase the space required enough to require more log and op
3531 	 * headers, so take that into account too.
3532 	 *
3533 	 * IMPORTANT: This reservation makes the assumption that if this
3534 	 * transaction is the first in an iclog and hence has the LR headers
3535 	 * accounted to it, then the remaining space in the iclog is
3536 	 * exclusively for this transaction.  i.e. if the transaction is larger
3537 	 * than the iclog, it will be the only thing in that iclog.
3538 	 * Fundamentally, this means we must pass the entire log vector to
3539 	 * xlog_write to guarantee this.
3540 	 */
3541 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3542 	num_headers = howmany(unit_bytes, iclog_space);
3543 
3544 	/* for split-recs - ophdrs added when data split over LRs */
3545 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3546 
3547 	/* add extra header reservations if we overrun */
3548 	while (!num_headers ||
3549 	       howmany(unit_bytes, iclog_space) > num_headers) {
3550 		unit_bytes += sizeof(xlog_op_header_t);
3551 		num_headers++;
3552 	}
3553 	unit_bytes += log->l_iclog_hsize * num_headers;
3554 
3555 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3556 	unit_bytes += log->l_iclog_hsize;
3557 
3558 	/* for roundoff padding for transaction data and one for commit record */
3559 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3560 		/* log su roundoff */
3561 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3562 	} else {
3563 		/* BB roundoff */
3564 		unit_bytes += 2 * BBSIZE;
3565         }
3566 
3567 	return unit_bytes;
3568 }
3569 
3570 /*
3571  * Allocate and initialise a new log ticket.
3572  */
3573 struct xlog_ticket *
3574 xlog_ticket_alloc(
3575 	struct xlog		*log,
3576 	int			unit_bytes,
3577 	int			cnt,
3578 	char			client,
3579 	bool			permanent,
3580 	xfs_km_flags_t		alloc_flags)
3581 {
3582 	struct xlog_ticket	*tic;
3583 	int			unit_res;
3584 
3585 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3586 	if (!tic)
3587 		return NULL;
3588 
3589 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3590 
3591 	atomic_set(&tic->t_ref, 1);
3592 	tic->t_task		= current;
3593 	INIT_LIST_HEAD(&tic->t_queue);
3594 	tic->t_unit_res		= unit_res;
3595 	tic->t_curr_res		= unit_res;
3596 	tic->t_cnt		= cnt;
3597 	tic->t_ocnt		= cnt;
3598 	tic->t_tid		= prandom_u32();
3599 	tic->t_clientid		= client;
3600 	tic->t_flags		= XLOG_TIC_INITED;
3601 	if (permanent)
3602 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3603 
3604 	xlog_tic_reset_res(tic);
3605 
3606 	return tic;
3607 }
3608 
3609 
3610 /******************************************************************************
3611  *
3612  *		Log debug routines
3613  *
3614  ******************************************************************************
3615  */
3616 #if defined(DEBUG)
3617 /*
3618  * Make sure that the destination ptr is within the valid data region of
3619  * one of the iclogs.  This uses backup pointers stored in a different
3620  * part of the log in case we trash the log structure.
3621  */
3622 STATIC void
3623 xlog_verify_dest_ptr(
3624 	struct xlog	*log,
3625 	void		*ptr)
3626 {
3627 	int i;
3628 	int good_ptr = 0;
3629 
3630 	for (i = 0; i < log->l_iclog_bufs; i++) {
3631 		if (ptr >= log->l_iclog_bak[i] &&
3632 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3633 			good_ptr++;
3634 	}
3635 
3636 	if (!good_ptr)
3637 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3638 }
3639 
3640 /*
3641  * Check to make sure the grant write head didn't just over lap the tail.  If
3642  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3643  * the cycles differ by exactly one and check the byte count.
3644  *
3645  * This check is run unlocked, so can give false positives. Rather than assert
3646  * on failures, use a warn-once flag and a panic tag to allow the admin to
3647  * determine if they want to panic the machine when such an error occurs. For
3648  * debug kernels this will have the same effect as using an assert but, unlinke
3649  * an assert, it can be turned off at runtime.
3650  */
3651 STATIC void
3652 xlog_verify_grant_tail(
3653 	struct xlog	*log)
3654 {
3655 	int		tail_cycle, tail_blocks;
3656 	int		cycle, space;
3657 
3658 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3659 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3660 	if (tail_cycle != cycle) {
3661 		if (cycle - 1 != tail_cycle &&
3662 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3663 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3664 				"%s: cycle - 1 != tail_cycle", __func__);
3665 			log->l_flags |= XLOG_TAIL_WARN;
3666 		}
3667 
3668 		if (space > BBTOB(tail_blocks) &&
3669 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3670 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3671 				"%s: space > BBTOB(tail_blocks)", __func__);
3672 			log->l_flags |= XLOG_TAIL_WARN;
3673 		}
3674 	}
3675 }
3676 
3677 /* check if it will fit */
3678 STATIC void
3679 xlog_verify_tail_lsn(
3680 	struct xlog		*log,
3681 	struct xlog_in_core	*iclog,
3682 	xfs_lsn_t		tail_lsn)
3683 {
3684     int blocks;
3685 
3686     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3687 	blocks =
3688 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3689 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3690 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3691     } else {
3692 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3693 
3694 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3695 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3696 
3697 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3698 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3699 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3700     }
3701 }	/* xlog_verify_tail_lsn */
3702 
3703 /*
3704  * Perform a number of checks on the iclog before writing to disk.
3705  *
3706  * 1. Make sure the iclogs are still circular
3707  * 2. Make sure we have a good magic number
3708  * 3. Make sure we don't have magic numbers in the data
3709  * 4. Check fields of each log operation header for:
3710  *	A. Valid client identifier
3711  *	B. tid ptr value falls in valid ptr space (user space code)
3712  *	C. Length in log record header is correct according to the
3713  *		individual operation headers within record.
3714  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3715  *	log, check the preceding blocks of the physical log to make sure all
3716  *	the cycle numbers agree with the current cycle number.
3717  */
3718 STATIC void
3719 xlog_verify_iclog(
3720 	struct xlog		*log,
3721 	struct xlog_in_core	*iclog,
3722 	int			count)
3723 {
3724 	xlog_op_header_t	*ophead;
3725 	xlog_in_core_t		*icptr;
3726 	xlog_in_core_2_t	*xhdr;
3727 	void			*base_ptr, *ptr, *p;
3728 	ptrdiff_t		field_offset;
3729 	uint8_t			clientid;
3730 	int			len, i, j, k, op_len;
3731 	int			idx;
3732 
3733 	/* check validity of iclog pointers */
3734 	spin_lock(&log->l_icloglock);
3735 	icptr = log->l_iclog;
3736 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3737 		ASSERT(icptr);
3738 
3739 	if (icptr != log->l_iclog)
3740 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3741 	spin_unlock(&log->l_icloglock);
3742 
3743 	/* check log magic numbers */
3744 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3745 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3746 
3747 	base_ptr = ptr = &iclog->ic_header;
3748 	p = &iclog->ic_header;
3749 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3750 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3751 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3752 				__func__);
3753 	}
3754 
3755 	/* check fields */
3756 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3757 	base_ptr = ptr = iclog->ic_datap;
3758 	ophead = ptr;
3759 	xhdr = iclog->ic_data;
3760 	for (i = 0; i < len; i++) {
3761 		ophead = ptr;
3762 
3763 		/* clientid is only 1 byte */
3764 		p = &ophead->oh_clientid;
3765 		field_offset = p - base_ptr;
3766 		if (field_offset & 0x1ff) {
3767 			clientid = ophead->oh_clientid;
3768 		} else {
3769 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3770 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3771 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3772 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3773 				clientid = xlog_get_client_id(
3774 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3775 			} else {
3776 				clientid = xlog_get_client_id(
3777 					iclog->ic_header.h_cycle_data[idx]);
3778 			}
3779 		}
3780 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3781 			xfs_warn(log->l_mp,
3782 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3783 				__func__, clientid, ophead,
3784 				(unsigned long)field_offset);
3785 
3786 		/* check length */
3787 		p = &ophead->oh_len;
3788 		field_offset = p - base_ptr;
3789 		if (field_offset & 0x1ff) {
3790 			op_len = be32_to_cpu(ophead->oh_len);
3791 		} else {
3792 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3793 				    (uintptr_t)iclog->ic_datap);
3794 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3795 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3796 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3797 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3798 			} else {
3799 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3800 			}
3801 		}
3802 		ptr += sizeof(xlog_op_header_t) + op_len;
3803 	}
3804 }	/* xlog_verify_iclog */
3805 #endif
3806 
3807 /*
3808  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3809  */
3810 STATIC int
3811 xlog_state_ioerror(
3812 	struct xlog	*log)
3813 {
3814 	xlog_in_core_t	*iclog, *ic;
3815 
3816 	iclog = log->l_iclog;
3817 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3818 		/*
3819 		 * Mark all the incore logs IOERROR.
3820 		 * From now on, no log flushes will result.
3821 		 */
3822 		ic = iclog;
3823 		do {
3824 			ic->ic_state = XLOG_STATE_IOERROR;
3825 			ic = ic->ic_next;
3826 		} while (ic != iclog);
3827 		return 0;
3828 	}
3829 	/*
3830 	 * Return non-zero, if state transition has already happened.
3831 	 */
3832 	return 1;
3833 }
3834 
3835 /*
3836  * This is called from xfs_force_shutdown, when we're forcibly
3837  * shutting down the filesystem, typically because of an IO error.
3838  * Our main objectives here are to make sure that:
3839  *	a. if !logerror, flush the logs to disk. Anything modified
3840  *	   after this is ignored.
3841  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3842  *	   parties to find out, 'atomically'.
3843  *	c. those who're sleeping on log reservations, pinned objects and
3844  *	    other resources get woken up, and be told the bad news.
3845  *	d. nothing new gets queued up after (b) and (c) are done.
3846  *
3847  * Note: for the !logerror case we need to flush the regions held in memory out
3848  * to disk first. This needs to be done before the log is marked as shutdown,
3849  * otherwise the iclog writes will fail.
3850  */
3851 int
3852 xfs_log_force_umount(
3853 	struct xfs_mount	*mp,
3854 	int			logerror)
3855 {
3856 	struct xlog	*log;
3857 	int		retval;
3858 
3859 	log = mp->m_log;
3860 
3861 	/*
3862 	 * If this happens during log recovery, don't worry about
3863 	 * locking; the log isn't open for business yet.
3864 	 */
3865 	if (!log ||
3866 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3867 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3868 		if (mp->m_sb_bp)
3869 			mp->m_sb_bp->b_flags |= XBF_DONE;
3870 		return 0;
3871 	}
3872 
3873 	/*
3874 	 * Somebody could've already done the hard work for us.
3875 	 * No need to get locks for this.
3876 	 */
3877 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3878 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3879 		return 1;
3880 	}
3881 
3882 	/*
3883 	 * Flush all the completed transactions to disk before marking the log
3884 	 * being shut down. We need to do it in this order to ensure that
3885 	 * completed operations are safely on disk before we shut down, and that
3886 	 * we don't have to issue any buffer IO after the shutdown flags are set
3887 	 * to guarantee this.
3888 	 */
3889 	if (!logerror)
3890 		xfs_log_force(mp, XFS_LOG_SYNC);
3891 
3892 	/*
3893 	 * mark the filesystem and the as in a shutdown state and wake
3894 	 * everybody up to tell them the bad news.
3895 	 */
3896 	spin_lock(&log->l_icloglock);
3897 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3898 	if (mp->m_sb_bp)
3899 		mp->m_sb_bp->b_flags |= XBF_DONE;
3900 
3901 	/*
3902 	 * Mark the log and the iclogs with IO error flags to prevent any
3903 	 * further log IO from being issued or completed.
3904 	 */
3905 	log->l_flags |= XLOG_IO_ERROR;
3906 	retval = xlog_state_ioerror(log);
3907 	spin_unlock(&log->l_icloglock);
3908 
3909 	/*
3910 	 * We don't want anybody waiting for log reservations after this. That
3911 	 * means we have to wake up everybody queued up on reserveq as well as
3912 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3913 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3914 	 * action is protected by the grant locks.
3915 	 */
3916 	xlog_grant_head_wake_all(&log->l_reserve_head);
3917 	xlog_grant_head_wake_all(&log->l_write_head);
3918 
3919 	/*
3920 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3921 	 * as if the log writes were completed. The abort handling in the log
3922 	 * item committed callback functions will do this again under lock to
3923 	 * avoid races.
3924 	 */
3925 	wake_up_all(&log->l_cilp->xc_commit_wait);
3926 	xlog_state_do_callback(log, true, NULL);
3927 
3928 #ifdef XFSERRORDEBUG
3929 	{
3930 		xlog_in_core_t	*iclog;
3931 
3932 		spin_lock(&log->l_icloglock);
3933 		iclog = log->l_iclog;
3934 		do {
3935 			ASSERT(iclog->ic_callback == 0);
3936 			iclog = iclog->ic_next;
3937 		} while (iclog != log->l_iclog);
3938 		spin_unlock(&log->l_icloglock);
3939 	}
3940 #endif
3941 	/* return non-zero if log IOERROR transition had already happened */
3942 	return retval;
3943 }
3944 
3945 STATIC int
3946 xlog_iclogs_empty(
3947 	struct xlog	*log)
3948 {
3949 	xlog_in_core_t	*iclog;
3950 
3951 	iclog = log->l_iclog;
3952 	do {
3953 		/* endianness does not matter here, zero is zero in
3954 		 * any language.
3955 		 */
3956 		if (iclog->ic_header.h_num_logops)
3957 			return 0;
3958 		iclog = iclog->ic_next;
3959 	} while (iclog != log->l_iclog);
3960 	return 1;
3961 }
3962 
3963 /*
3964  * Verify that an LSN stamped into a piece of metadata is valid. This is
3965  * intended for use in read verifiers on v5 superblocks.
3966  */
3967 bool
3968 xfs_log_check_lsn(
3969 	struct xfs_mount	*mp,
3970 	xfs_lsn_t		lsn)
3971 {
3972 	struct xlog		*log = mp->m_log;
3973 	bool			valid;
3974 
3975 	/*
3976 	 * norecovery mode skips mount-time log processing and unconditionally
3977 	 * resets the in-core LSN. We can't validate in this mode, but
3978 	 * modifications are not allowed anyways so just return true.
3979 	 */
3980 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3981 		return true;
3982 
3983 	/*
3984 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3985 	 * handled by recovery and thus safe to ignore here.
3986 	 */
3987 	if (lsn == NULLCOMMITLSN)
3988 		return true;
3989 
3990 	valid = xlog_valid_lsn(mp->m_log, lsn);
3991 
3992 	/* warn the user about what's gone wrong before verifier failure */
3993 	if (!valid) {
3994 		spin_lock(&log->l_icloglock);
3995 		xfs_warn(mp,
3996 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3997 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3998 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3999 			 log->l_curr_cycle, log->l_curr_block);
4000 		spin_unlock(&log->l_icloglock);
4001 	}
4002 
4003 	return valid;
4004 }
4005 
4006 bool
4007 xfs_log_in_recovery(
4008 	struct xfs_mount	*mp)
4009 {
4010 	struct xlog		*log = mp->m_log;
4011 
4012 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
4013 }
4014