1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_error.h" 27 #include "xfs_log_priv.h" 28 #include "xfs_buf_item.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_trace.h" 37 #include "xfs_fsops.h" 38 #include "xfs_cksum.h" 39 40 kmem_zone_t *xfs_log_ticket_zone; 41 42 /* Local miscellaneous function prototypes */ 43 STATIC int 44 xlog_commit_record( 45 struct xlog *log, 46 struct xlog_ticket *ticket, 47 struct xlog_in_core **iclog, 48 xfs_lsn_t *commitlsnp); 49 50 STATIC struct xlog * 51 xlog_alloc_log( 52 struct xfs_mount *mp, 53 struct xfs_buftarg *log_target, 54 xfs_daddr_t blk_offset, 55 int num_bblks); 56 STATIC int 57 xlog_space_left( 58 struct xlog *log, 59 atomic64_t *head); 60 STATIC int 61 xlog_sync( 62 struct xlog *log, 63 struct xlog_in_core *iclog); 64 STATIC void 65 xlog_dealloc_log( 66 struct xlog *log); 67 68 /* local state machine functions */ 69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 70 STATIC void 71 xlog_state_do_callback( 72 struct xlog *log, 73 int aborted, 74 struct xlog_in_core *iclog); 75 STATIC int 76 xlog_state_get_iclog_space( 77 struct xlog *log, 78 int len, 79 struct xlog_in_core **iclog, 80 struct xlog_ticket *ticket, 81 int *continued_write, 82 int *logoffsetp); 83 STATIC int 84 xlog_state_release_iclog( 85 struct xlog *log, 86 struct xlog_in_core *iclog); 87 STATIC void 88 xlog_state_switch_iclogs( 89 struct xlog *log, 90 struct xlog_in_core *iclog, 91 int eventual_size); 92 STATIC void 93 xlog_state_want_sync( 94 struct xlog *log, 95 struct xlog_in_core *iclog); 96 97 STATIC void 98 xlog_grant_push_ail( 99 struct xlog *log, 100 int need_bytes); 101 STATIC void 102 xlog_regrant_reserve_log_space( 103 struct xlog *log, 104 struct xlog_ticket *ticket); 105 STATIC void 106 xlog_ungrant_log_space( 107 struct xlog *log, 108 struct xlog_ticket *ticket); 109 110 #if defined(DEBUG) 111 STATIC void 112 xlog_verify_dest_ptr( 113 struct xlog *log, 114 char *ptr); 115 STATIC void 116 xlog_verify_grant_tail( 117 struct xlog *log); 118 STATIC void 119 xlog_verify_iclog( 120 struct xlog *log, 121 struct xlog_in_core *iclog, 122 int count, 123 bool syncing); 124 STATIC void 125 xlog_verify_tail_lsn( 126 struct xlog *log, 127 struct xlog_in_core *iclog, 128 xfs_lsn_t tail_lsn); 129 #else 130 #define xlog_verify_dest_ptr(a,b) 131 #define xlog_verify_grant_tail(a) 132 #define xlog_verify_iclog(a,b,c,d) 133 #define xlog_verify_tail_lsn(a,b,c) 134 #endif 135 136 STATIC int 137 xlog_iclogs_empty( 138 struct xlog *log); 139 140 static void 141 xlog_grant_sub_space( 142 struct xlog *log, 143 atomic64_t *head, 144 int bytes) 145 { 146 int64_t head_val = atomic64_read(head); 147 int64_t new, old; 148 149 do { 150 int cycle, space; 151 152 xlog_crack_grant_head_val(head_val, &cycle, &space); 153 154 space -= bytes; 155 if (space < 0) { 156 space += log->l_logsize; 157 cycle--; 158 } 159 160 old = head_val; 161 new = xlog_assign_grant_head_val(cycle, space); 162 head_val = atomic64_cmpxchg(head, old, new); 163 } while (head_val != old); 164 } 165 166 static void 167 xlog_grant_add_space( 168 struct xlog *log, 169 atomic64_t *head, 170 int bytes) 171 { 172 int64_t head_val = atomic64_read(head); 173 int64_t new, old; 174 175 do { 176 int tmp; 177 int cycle, space; 178 179 xlog_crack_grant_head_val(head_val, &cycle, &space); 180 181 tmp = log->l_logsize - space; 182 if (tmp > bytes) 183 space += bytes; 184 else { 185 space = bytes - tmp; 186 cycle++; 187 } 188 189 old = head_val; 190 new = xlog_assign_grant_head_val(cycle, space); 191 head_val = atomic64_cmpxchg(head, old, new); 192 } while (head_val != old); 193 } 194 195 STATIC void 196 xlog_grant_head_init( 197 struct xlog_grant_head *head) 198 { 199 xlog_assign_grant_head(&head->grant, 1, 0); 200 INIT_LIST_HEAD(&head->waiters); 201 spin_lock_init(&head->lock); 202 } 203 204 STATIC void 205 xlog_grant_head_wake_all( 206 struct xlog_grant_head *head) 207 { 208 struct xlog_ticket *tic; 209 210 spin_lock(&head->lock); 211 list_for_each_entry(tic, &head->waiters, t_queue) 212 wake_up_process(tic->t_task); 213 spin_unlock(&head->lock); 214 } 215 216 static inline int 217 xlog_ticket_reservation( 218 struct xlog *log, 219 struct xlog_grant_head *head, 220 struct xlog_ticket *tic) 221 { 222 if (head == &log->l_write_head) { 223 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 224 return tic->t_unit_res; 225 } else { 226 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 227 return tic->t_unit_res * tic->t_cnt; 228 else 229 return tic->t_unit_res; 230 } 231 } 232 233 STATIC bool 234 xlog_grant_head_wake( 235 struct xlog *log, 236 struct xlog_grant_head *head, 237 int *free_bytes) 238 { 239 struct xlog_ticket *tic; 240 int need_bytes; 241 242 list_for_each_entry(tic, &head->waiters, t_queue) { 243 need_bytes = xlog_ticket_reservation(log, head, tic); 244 if (*free_bytes < need_bytes) 245 return false; 246 247 *free_bytes -= need_bytes; 248 trace_xfs_log_grant_wake_up(log, tic); 249 wake_up_process(tic->t_task); 250 } 251 252 return true; 253 } 254 255 STATIC int 256 xlog_grant_head_wait( 257 struct xlog *log, 258 struct xlog_grant_head *head, 259 struct xlog_ticket *tic, 260 int need_bytes) 261 { 262 list_add_tail(&tic->t_queue, &head->waiters); 263 264 do { 265 if (XLOG_FORCED_SHUTDOWN(log)) 266 goto shutdown; 267 xlog_grant_push_ail(log, need_bytes); 268 269 __set_current_state(TASK_UNINTERRUPTIBLE); 270 spin_unlock(&head->lock); 271 272 XFS_STATS_INC(xs_sleep_logspace); 273 274 trace_xfs_log_grant_sleep(log, tic); 275 schedule(); 276 trace_xfs_log_grant_wake(log, tic); 277 278 spin_lock(&head->lock); 279 if (XLOG_FORCED_SHUTDOWN(log)) 280 goto shutdown; 281 } while (xlog_space_left(log, &head->grant) < need_bytes); 282 283 list_del_init(&tic->t_queue); 284 return 0; 285 shutdown: 286 list_del_init(&tic->t_queue); 287 return XFS_ERROR(EIO); 288 } 289 290 /* 291 * Atomically get the log space required for a log ticket. 292 * 293 * Once a ticket gets put onto head->waiters, it will only return after the 294 * needed reservation is satisfied. 295 * 296 * This function is structured so that it has a lock free fast path. This is 297 * necessary because every new transaction reservation will come through this 298 * path. Hence any lock will be globally hot if we take it unconditionally on 299 * every pass. 300 * 301 * As tickets are only ever moved on and off head->waiters under head->lock, we 302 * only need to take that lock if we are going to add the ticket to the queue 303 * and sleep. We can avoid taking the lock if the ticket was never added to 304 * head->waiters because the t_queue list head will be empty and we hold the 305 * only reference to it so it can safely be checked unlocked. 306 */ 307 STATIC int 308 xlog_grant_head_check( 309 struct xlog *log, 310 struct xlog_grant_head *head, 311 struct xlog_ticket *tic, 312 int *need_bytes) 313 { 314 int free_bytes; 315 int error = 0; 316 317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 318 319 /* 320 * If there are other waiters on the queue then give them a chance at 321 * logspace before us. Wake up the first waiters, if we do not wake 322 * up all the waiters then go to sleep waiting for more free space, 323 * otherwise try to get some space for this transaction. 324 */ 325 *need_bytes = xlog_ticket_reservation(log, head, tic); 326 free_bytes = xlog_space_left(log, &head->grant); 327 if (!list_empty_careful(&head->waiters)) { 328 spin_lock(&head->lock); 329 if (!xlog_grant_head_wake(log, head, &free_bytes) || 330 free_bytes < *need_bytes) { 331 error = xlog_grant_head_wait(log, head, tic, 332 *need_bytes); 333 } 334 spin_unlock(&head->lock); 335 } else if (free_bytes < *need_bytes) { 336 spin_lock(&head->lock); 337 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 338 spin_unlock(&head->lock); 339 } 340 341 return error; 342 } 343 344 static void 345 xlog_tic_reset_res(xlog_ticket_t *tic) 346 { 347 tic->t_res_num = 0; 348 tic->t_res_arr_sum = 0; 349 tic->t_res_num_ophdrs = 0; 350 } 351 352 static void 353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 354 { 355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 356 /* add to overflow and start again */ 357 tic->t_res_o_flow += tic->t_res_arr_sum; 358 tic->t_res_num = 0; 359 tic->t_res_arr_sum = 0; 360 } 361 362 tic->t_res_arr[tic->t_res_num].r_len = len; 363 tic->t_res_arr[tic->t_res_num].r_type = type; 364 tic->t_res_arr_sum += len; 365 tic->t_res_num++; 366 } 367 368 /* 369 * Replenish the byte reservation required by moving the grant write head. 370 */ 371 int 372 xfs_log_regrant( 373 struct xfs_mount *mp, 374 struct xlog_ticket *tic) 375 { 376 struct xlog *log = mp->m_log; 377 int need_bytes; 378 int error = 0; 379 380 if (XLOG_FORCED_SHUTDOWN(log)) 381 return XFS_ERROR(EIO); 382 383 XFS_STATS_INC(xs_try_logspace); 384 385 /* 386 * This is a new transaction on the ticket, so we need to change the 387 * transaction ID so that the next transaction has a different TID in 388 * the log. Just add one to the existing tid so that we can see chains 389 * of rolling transactions in the log easily. 390 */ 391 tic->t_tid++; 392 393 xlog_grant_push_ail(log, tic->t_unit_res); 394 395 tic->t_curr_res = tic->t_unit_res; 396 xlog_tic_reset_res(tic); 397 398 if (tic->t_cnt > 0) 399 return 0; 400 401 trace_xfs_log_regrant(log, tic); 402 403 error = xlog_grant_head_check(log, &log->l_write_head, tic, 404 &need_bytes); 405 if (error) 406 goto out_error; 407 408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 409 trace_xfs_log_regrant_exit(log, tic); 410 xlog_verify_grant_tail(log); 411 return 0; 412 413 out_error: 414 /* 415 * If we are failing, make sure the ticket doesn't have any current 416 * reservations. We don't want to add this back when the ticket/ 417 * transaction gets cancelled. 418 */ 419 tic->t_curr_res = 0; 420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 421 return error; 422 } 423 424 /* 425 * Reserve log space and return a ticket corresponding the reservation. 426 * 427 * Each reservation is going to reserve extra space for a log record header. 428 * When writes happen to the on-disk log, we don't subtract the length of the 429 * log record header from any reservation. By wasting space in each 430 * reservation, we prevent over allocation problems. 431 */ 432 int 433 xfs_log_reserve( 434 struct xfs_mount *mp, 435 int unit_bytes, 436 int cnt, 437 struct xlog_ticket **ticp, 438 __uint8_t client, 439 bool permanent, 440 uint t_type) 441 { 442 struct xlog *log = mp->m_log; 443 struct xlog_ticket *tic; 444 int need_bytes; 445 int error = 0; 446 447 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 448 449 if (XLOG_FORCED_SHUTDOWN(log)) 450 return XFS_ERROR(EIO); 451 452 XFS_STATS_INC(xs_try_logspace); 453 454 ASSERT(*ticp == NULL); 455 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 456 KM_SLEEP | KM_MAYFAIL); 457 if (!tic) 458 return XFS_ERROR(ENOMEM); 459 460 tic->t_trans_type = t_type; 461 *ticp = tic; 462 463 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 464 : tic->t_unit_res); 465 466 trace_xfs_log_reserve(log, tic); 467 468 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 469 &need_bytes); 470 if (error) 471 goto out_error; 472 473 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 474 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 475 trace_xfs_log_reserve_exit(log, tic); 476 xlog_verify_grant_tail(log); 477 return 0; 478 479 out_error: 480 /* 481 * If we are failing, make sure the ticket doesn't have any current 482 * reservations. We don't want to add this back when the ticket/ 483 * transaction gets cancelled. 484 */ 485 tic->t_curr_res = 0; 486 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 487 return error; 488 } 489 490 491 /* 492 * NOTES: 493 * 494 * 1. currblock field gets updated at startup and after in-core logs 495 * marked as with WANT_SYNC. 496 */ 497 498 /* 499 * This routine is called when a user of a log manager ticket is done with 500 * the reservation. If the ticket was ever used, then a commit record for 501 * the associated transaction is written out as a log operation header with 502 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 503 * a given ticket. If the ticket was one with a permanent reservation, then 504 * a few operations are done differently. Permanent reservation tickets by 505 * default don't release the reservation. They just commit the current 506 * transaction with the belief that the reservation is still needed. A flag 507 * must be passed in before permanent reservations are actually released. 508 * When these type of tickets are not released, they need to be set into 509 * the inited state again. By doing this, a start record will be written 510 * out when the next write occurs. 511 */ 512 xfs_lsn_t 513 xfs_log_done( 514 struct xfs_mount *mp, 515 struct xlog_ticket *ticket, 516 struct xlog_in_core **iclog, 517 uint flags) 518 { 519 struct xlog *log = mp->m_log; 520 xfs_lsn_t lsn = 0; 521 522 if (XLOG_FORCED_SHUTDOWN(log) || 523 /* 524 * If nothing was ever written, don't write out commit record. 525 * If we get an error, just continue and give back the log ticket. 526 */ 527 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 528 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 529 lsn = (xfs_lsn_t) -1; 530 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 531 flags |= XFS_LOG_REL_PERM_RESERV; 532 } 533 } 534 535 536 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 537 (flags & XFS_LOG_REL_PERM_RESERV)) { 538 trace_xfs_log_done_nonperm(log, ticket); 539 540 /* 541 * Release ticket if not permanent reservation or a specific 542 * request has been made to release a permanent reservation. 543 */ 544 xlog_ungrant_log_space(log, ticket); 545 xfs_log_ticket_put(ticket); 546 } else { 547 trace_xfs_log_done_perm(log, ticket); 548 549 xlog_regrant_reserve_log_space(log, ticket); 550 /* If this ticket was a permanent reservation and we aren't 551 * trying to release it, reset the inited flags; so next time 552 * we write, a start record will be written out. 553 */ 554 ticket->t_flags |= XLOG_TIC_INITED; 555 } 556 557 return lsn; 558 } 559 560 /* 561 * Attaches a new iclog I/O completion callback routine during 562 * transaction commit. If the log is in error state, a non-zero 563 * return code is handed back and the caller is responsible for 564 * executing the callback at an appropriate time. 565 */ 566 int 567 xfs_log_notify( 568 struct xfs_mount *mp, 569 struct xlog_in_core *iclog, 570 xfs_log_callback_t *cb) 571 { 572 int abortflg; 573 574 spin_lock(&iclog->ic_callback_lock); 575 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 576 if (!abortflg) { 577 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 578 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 579 cb->cb_next = NULL; 580 *(iclog->ic_callback_tail) = cb; 581 iclog->ic_callback_tail = &(cb->cb_next); 582 } 583 spin_unlock(&iclog->ic_callback_lock); 584 return abortflg; 585 } 586 587 int 588 xfs_log_release_iclog( 589 struct xfs_mount *mp, 590 struct xlog_in_core *iclog) 591 { 592 if (xlog_state_release_iclog(mp->m_log, iclog)) { 593 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 594 return EIO; 595 } 596 597 return 0; 598 } 599 600 /* 601 * Mount a log filesystem 602 * 603 * mp - ubiquitous xfs mount point structure 604 * log_target - buftarg of on-disk log device 605 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 606 * num_bblocks - Number of BBSIZE blocks in on-disk log 607 * 608 * Return error or zero. 609 */ 610 int 611 xfs_log_mount( 612 xfs_mount_t *mp, 613 xfs_buftarg_t *log_target, 614 xfs_daddr_t blk_offset, 615 int num_bblks) 616 { 617 int error = 0; 618 int min_logfsbs; 619 620 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 621 xfs_notice(mp, "Mounting Filesystem"); 622 else { 623 xfs_notice(mp, 624 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 625 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 626 } 627 628 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 629 if (IS_ERR(mp->m_log)) { 630 error = -PTR_ERR(mp->m_log); 631 goto out; 632 } 633 634 /* 635 * Validate the given log space and drop a critical message via syslog 636 * if the log size is too small that would lead to some unexpected 637 * situations in transaction log space reservation stage. 638 * 639 * Note: we can't just reject the mount if the validation fails. This 640 * would mean that people would have to downgrade their kernel just to 641 * remedy the situation as there is no way to grow the log (short of 642 * black magic surgery with xfs_db). 643 * 644 * We can, however, reject mounts for CRC format filesystems, as the 645 * mkfs binary being used to make the filesystem should never create a 646 * filesystem with a log that is too small. 647 */ 648 min_logfsbs = xfs_log_calc_minimum_size(mp); 649 650 if (mp->m_sb.sb_logblocks < min_logfsbs) { 651 xfs_warn(mp, 652 "Log size %d blocks too small, minimum size is %d blocks", 653 mp->m_sb.sb_logblocks, min_logfsbs); 654 error = EINVAL; 655 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 656 xfs_warn(mp, 657 "Log size %d blocks too large, maximum size is %lld blocks", 658 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 659 error = EINVAL; 660 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 661 xfs_warn(mp, 662 "log size %lld bytes too large, maximum size is %lld bytes", 663 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 664 XFS_MAX_LOG_BYTES); 665 error = EINVAL; 666 } 667 if (error) { 668 if (xfs_sb_version_hascrc(&mp->m_sb)) { 669 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 670 ASSERT(0); 671 goto out_free_log; 672 } 673 xfs_crit(mp, 674 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 675 "experienced then please report this message in the bug report."); 676 } 677 678 /* 679 * Initialize the AIL now we have a log. 680 */ 681 error = xfs_trans_ail_init(mp); 682 if (error) { 683 xfs_warn(mp, "AIL initialisation failed: error %d", error); 684 goto out_free_log; 685 } 686 mp->m_log->l_ailp = mp->m_ail; 687 688 /* 689 * skip log recovery on a norecovery mount. pretend it all 690 * just worked. 691 */ 692 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 693 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 694 695 if (readonly) 696 mp->m_flags &= ~XFS_MOUNT_RDONLY; 697 698 error = xlog_recover(mp->m_log); 699 700 if (readonly) 701 mp->m_flags |= XFS_MOUNT_RDONLY; 702 if (error) { 703 xfs_warn(mp, "log mount/recovery failed: error %d", 704 error); 705 goto out_destroy_ail; 706 } 707 } 708 709 /* Normal transactions can now occur */ 710 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 711 712 /* 713 * Now the log has been fully initialised and we know were our 714 * space grant counters are, we can initialise the permanent ticket 715 * needed for delayed logging to work. 716 */ 717 xlog_cil_init_post_recovery(mp->m_log); 718 719 return 0; 720 721 out_destroy_ail: 722 xfs_trans_ail_destroy(mp); 723 out_free_log: 724 xlog_dealloc_log(mp->m_log); 725 out: 726 return error; 727 } 728 729 /* 730 * Finish the recovery of the file system. This is separate from the 731 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 732 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 733 * here. 734 * 735 * If we finish recovery successfully, start the background log work. If we are 736 * not doing recovery, then we have a RO filesystem and we don't need to start 737 * it. 738 */ 739 int 740 xfs_log_mount_finish(xfs_mount_t *mp) 741 { 742 int error = 0; 743 744 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 745 error = xlog_recover_finish(mp->m_log); 746 if (!error) 747 xfs_log_work_queue(mp); 748 } else { 749 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 750 } 751 752 753 return error; 754 } 755 756 /* 757 * Final log writes as part of unmount. 758 * 759 * Mark the filesystem clean as unmount happens. Note that during relocation 760 * this routine needs to be executed as part of source-bag while the 761 * deallocation must not be done until source-end. 762 */ 763 764 /* 765 * Unmount record used to have a string "Unmount filesystem--" in the 766 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 767 * We just write the magic number now since that particular field isn't 768 * currently architecture converted and "Unmount" is a bit foo. 769 * As far as I know, there weren't any dependencies on the old behaviour. 770 */ 771 772 int 773 xfs_log_unmount_write(xfs_mount_t *mp) 774 { 775 struct xlog *log = mp->m_log; 776 xlog_in_core_t *iclog; 777 #ifdef DEBUG 778 xlog_in_core_t *first_iclog; 779 #endif 780 xlog_ticket_t *tic = NULL; 781 xfs_lsn_t lsn; 782 int error; 783 784 /* 785 * Don't write out unmount record on read-only mounts. 786 * Or, if we are doing a forced umount (typically because of IO errors). 787 */ 788 if (mp->m_flags & XFS_MOUNT_RDONLY) 789 return 0; 790 791 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 792 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 793 794 #ifdef DEBUG 795 first_iclog = iclog = log->l_iclog; 796 do { 797 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 798 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 799 ASSERT(iclog->ic_offset == 0); 800 } 801 iclog = iclog->ic_next; 802 } while (iclog != first_iclog); 803 #endif 804 if (! (XLOG_FORCED_SHUTDOWN(log))) { 805 error = xfs_log_reserve(mp, 600, 1, &tic, 806 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 807 if (!error) { 808 /* the data section must be 32 bit size aligned */ 809 struct { 810 __uint16_t magic; 811 __uint16_t pad1; 812 __uint32_t pad2; /* may as well make it 64 bits */ 813 } magic = { 814 .magic = XLOG_UNMOUNT_TYPE, 815 }; 816 struct xfs_log_iovec reg = { 817 .i_addr = &magic, 818 .i_len = sizeof(magic), 819 .i_type = XLOG_REG_TYPE_UNMOUNT, 820 }; 821 struct xfs_log_vec vec = { 822 .lv_niovecs = 1, 823 .lv_iovecp = ®, 824 }; 825 826 /* remove inited flag, and account for space used */ 827 tic->t_flags = 0; 828 tic->t_curr_res -= sizeof(magic); 829 error = xlog_write(log, &vec, tic, &lsn, 830 NULL, XLOG_UNMOUNT_TRANS); 831 /* 832 * At this point, we're umounting anyway, 833 * so there's no point in transitioning log state 834 * to IOERROR. Just continue... 835 */ 836 } 837 838 if (error) 839 xfs_alert(mp, "%s: unmount record failed", __func__); 840 841 842 spin_lock(&log->l_icloglock); 843 iclog = log->l_iclog; 844 atomic_inc(&iclog->ic_refcnt); 845 xlog_state_want_sync(log, iclog); 846 spin_unlock(&log->l_icloglock); 847 error = xlog_state_release_iclog(log, iclog); 848 849 spin_lock(&log->l_icloglock); 850 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 851 iclog->ic_state == XLOG_STATE_DIRTY)) { 852 if (!XLOG_FORCED_SHUTDOWN(log)) { 853 xlog_wait(&iclog->ic_force_wait, 854 &log->l_icloglock); 855 } else { 856 spin_unlock(&log->l_icloglock); 857 } 858 } else { 859 spin_unlock(&log->l_icloglock); 860 } 861 if (tic) { 862 trace_xfs_log_umount_write(log, tic); 863 xlog_ungrant_log_space(log, tic); 864 xfs_log_ticket_put(tic); 865 } 866 } else { 867 /* 868 * We're already in forced_shutdown mode, couldn't 869 * even attempt to write out the unmount transaction. 870 * 871 * Go through the motions of sync'ing and releasing 872 * the iclog, even though no I/O will actually happen, 873 * we need to wait for other log I/Os that may already 874 * be in progress. Do this as a separate section of 875 * code so we'll know if we ever get stuck here that 876 * we're in this odd situation of trying to unmount 877 * a file system that went into forced_shutdown as 878 * the result of an unmount.. 879 */ 880 spin_lock(&log->l_icloglock); 881 iclog = log->l_iclog; 882 atomic_inc(&iclog->ic_refcnt); 883 884 xlog_state_want_sync(log, iclog); 885 spin_unlock(&log->l_icloglock); 886 error = xlog_state_release_iclog(log, iclog); 887 888 spin_lock(&log->l_icloglock); 889 890 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 891 || iclog->ic_state == XLOG_STATE_DIRTY 892 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 893 894 xlog_wait(&iclog->ic_force_wait, 895 &log->l_icloglock); 896 } else { 897 spin_unlock(&log->l_icloglock); 898 } 899 } 900 901 return error; 902 } /* xfs_log_unmount_write */ 903 904 /* 905 * Empty the log for unmount/freeze. 906 * 907 * To do this, we first need to shut down the background log work so it is not 908 * trying to cover the log as we clean up. We then need to unpin all objects in 909 * the log so we can then flush them out. Once they have completed their IO and 910 * run the callbacks removing themselves from the AIL, we can write the unmount 911 * record. 912 */ 913 void 914 xfs_log_quiesce( 915 struct xfs_mount *mp) 916 { 917 cancel_delayed_work_sync(&mp->m_log->l_work); 918 xfs_log_force(mp, XFS_LOG_SYNC); 919 920 /* 921 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 922 * will push it, xfs_wait_buftarg() will not wait for it. Further, 923 * xfs_buf_iowait() cannot be used because it was pushed with the 924 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 925 * the IO to complete. 926 */ 927 xfs_ail_push_all_sync(mp->m_ail); 928 xfs_wait_buftarg(mp->m_ddev_targp); 929 xfs_buf_lock(mp->m_sb_bp); 930 xfs_buf_unlock(mp->m_sb_bp); 931 932 xfs_log_unmount_write(mp); 933 } 934 935 /* 936 * Shut down and release the AIL and Log. 937 * 938 * During unmount, we need to ensure we flush all the dirty metadata objects 939 * from the AIL so that the log is empty before we write the unmount record to 940 * the log. Once this is done, we can tear down the AIL and the log. 941 */ 942 void 943 xfs_log_unmount( 944 struct xfs_mount *mp) 945 { 946 xfs_log_quiesce(mp); 947 948 xfs_trans_ail_destroy(mp); 949 xlog_dealloc_log(mp->m_log); 950 } 951 952 void 953 xfs_log_item_init( 954 struct xfs_mount *mp, 955 struct xfs_log_item *item, 956 int type, 957 const struct xfs_item_ops *ops) 958 { 959 item->li_mountp = mp; 960 item->li_ailp = mp->m_ail; 961 item->li_type = type; 962 item->li_ops = ops; 963 item->li_lv = NULL; 964 965 INIT_LIST_HEAD(&item->li_ail); 966 INIT_LIST_HEAD(&item->li_cil); 967 } 968 969 /* 970 * Wake up processes waiting for log space after we have moved the log tail. 971 */ 972 void 973 xfs_log_space_wake( 974 struct xfs_mount *mp) 975 { 976 struct xlog *log = mp->m_log; 977 int free_bytes; 978 979 if (XLOG_FORCED_SHUTDOWN(log)) 980 return; 981 982 if (!list_empty_careful(&log->l_write_head.waiters)) { 983 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 984 985 spin_lock(&log->l_write_head.lock); 986 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 987 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 988 spin_unlock(&log->l_write_head.lock); 989 } 990 991 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 992 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 993 994 spin_lock(&log->l_reserve_head.lock); 995 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 996 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 997 spin_unlock(&log->l_reserve_head.lock); 998 } 999 } 1000 1001 /* 1002 * Determine if we have a transaction that has gone to disk 1003 * that needs to be covered. To begin the transition to the idle state 1004 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 1005 * If we are then in a state where covering is needed, the caller is informed 1006 * that dummy transactions are required to move the log into the idle state. 1007 * 1008 * Because this is called as part of the sync process, we should also indicate 1009 * that dummy transactions should be issued in anything but the covered or 1010 * idle states. This ensures that the log tail is accurately reflected in 1011 * the log at the end of the sync, hence if a crash occurrs avoids replay 1012 * of transactions where the metadata is already on disk. 1013 */ 1014 int 1015 xfs_log_need_covered(xfs_mount_t *mp) 1016 { 1017 int needed = 0; 1018 struct xlog *log = mp->m_log; 1019 1020 if (!xfs_fs_writable(mp)) 1021 return 0; 1022 1023 spin_lock(&log->l_icloglock); 1024 switch (log->l_covered_state) { 1025 case XLOG_STATE_COVER_DONE: 1026 case XLOG_STATE_COVER_DONE2: 1027 case XLOG_STATE_COVER_IDLE: 1028 break; 1029 case XLOG_STATE_COVER_NEED: 1030 case XLOG_STATE_COVER_NEED2: 1031 if (!xfs_ail_min_lsn(log->l_ailp) && 1032 xlog_iclogs_empty(log)) { 1033 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1034 log->l_covered_state = XLOG_STATE_COVER_DONE; 1035 else 1036 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1037 } 1038 /* FALLTHRU */ 1039 default: 1040 needed = 1; 1041 break; 1042 } 1043 spin_unlock(&log->l_icloglock); 1044 return needed; 1045 } 1046 1047 /* 1048 * We may be holding the log iclog lock upon entering this routine. 1049 */ 1050 xfs_lsn_t 1051 xlog_assign_tail_lsn_locked( 1052 struct xfs_mount *mp) 1053 { 1054 struct xlog *log = mp->m_log; 1055 struct xfs_log_item *lip; 1056 xfs_lsn_t tail_lsn; 1057 1058 assert_spin_locked(&mp->m_ail->xa_lock); 1059 1060 /* 1061 * To make sure we always have a valid LSN for the log tail we keep 1062 * track of the last LSN which was committed in log->l_last_sync_lsn, 1063 * and use that when the AIL was empty. 1064 */ 1065 lip = xfs_ail_min(mp->m_ail); 1066 if (lip) 1067 tail_lsn = lip->li_lsn; 1068 else 1069 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1070 atomic64_set(&log->l_tail_lsn, tail_lsn); 1071 return tail_lsn; 1072 } 1073 1074 xfs_lsn_t 1075 xlog_assign_tail_lsn( 1076 struct xfs_mount *mp) 1077 { 1078 xfs_lsn_t tail_lsn; 1079 1080 spin_lock(&mp->m_ail->xa_lock); 1081 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1082 spin_unlock(&mp->m_ail->xa_lock); 1083 1084 return tail_lsn; 1085 } 1086 1087 /* 1088 * Return the space in the log between the tail and the head. The head 1089 * is passed in the cycle/bytes formal parms. In the special case where 1090 * the reserve head has wrapped passed the tail, this calculation is no 1091 * longer valid. In this case, just return 0 which means there is no space 1092 * in the log. This works for all places where this function is called 1093 * with the reserve head. Of course, if the write head were to ever 1094 * wrap the tail, we should blow up. Rather than catch this case here, 1095 * we depend on other ASSERTions in other parts of the code. XXXmiken 1096 * 1097 * This code also handles the case where the reservation head is behind 1098 * the tail. The details of this case are described below, but the end 1099 * result is that we return the size of the log as the amount of space left. 1100 */ 1101 STATIC int 1102 xlog_space_left( 1103 struct xlog *log, 1104 atomic64_t *head) 1105 { 1106 int free_bytes; 1107 int tail_bytes; 1108 int tail_cycle; 1109 int head_cycle; 1110 int head_bytes; 1111 1112 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1113 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1114 tail_bytes = BBTOB(tail_bytes); 1115 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1116 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1117 else if (tail_cycle + 1 < head_cycle) 1118 return 0; 1119 else if (tail_cycle < head_cycle) { 1120 ASSERT(tail_cycle == (head_cycle - 1)); 1121 free_bytes = tail_bytes - head_bytes; 1122 } else { 1123 /* 1124 * The reservation head is behind the tail. 1125 * In this case we just want to return the size of the 1126 * log as the amount of space left. 1127 */ 1128 xfs_alert(log->l_mp, 1129 "xlog_space_left: head behind tail\n" 1130 " tail_cycle = %d, tail_bytes = %d\n" 1131 " GH cycle = %d, GH bytes = %d", 1132 tail_cycle, tail_bytes, head_cycle, head_bytes); 1133 ASSERT(0); 1134 free_bytes = log->l_logsize; 1135 } 1136 return free_bytes; 1137 } 1138 1139 1140 /* 1141 * Log function which is called when an io completes. 1142 * 1143 * The log manager needs its own routine, in order to control what 1144 * happens with the buffer after the write completes. 1145 */ 1146 void 1147 xlog_iodone(xfs_buf_t *bp) 1148 { 1149 struct xlog_in_core *iclog = bp->b_fspriv; 1150 struct xlog *l = iclog->ic_log; 1151 int aborted = 0; 1152 1153 /* 1154 * Race to shutdown the filesystem if we see an error. 1155 */ 1156 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 1157 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1158 xfs_buf_ioerror_alert(bp, __func__); 1159 xfs_buf_stale(bp); 1160 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1161 /* 1162 * This flag will be propagated to the trans-committed 1163 * callback routines to let them know that the log-commit 1164 * didn't succeed. 1165 */ 1166 aborted = XFS_LI_ABORTED; 1167 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1168 aborted = XFS_LI_ABORTED; 1169 } 1170 1171 /* log I/O is always issued ASYNC */ 1172 ASSERT(XFS_BUF_ISASYNC(bp)); 1173 xlog_state_done_syncing(iclog, aborted); 1174 /* 1175 * do not reference the buffer (bp) here as we could race 1176 * with it being freed after writing the unmount record to the 1177 * log. 1178 */ 1179 } 1180 1181 /* 1182 * Return size of each in-core log record buffer. 1183 * 1184 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1185 * 1186 * If the filesystem blocksize is too large, we may need to choose a 1187 * larger size since the directory code currently logs entire blocks. 1188 */ 1189 1190 STATIC void 1191 xlog_get_iclog_buffer_size( 1192 struct xfs_mount *mp, 1193 struct xlog *log) 1194 { 1195 int size; 1196 int xhdrs; 1197 1198 if (mp->m_logbufs <= 0) 1199 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1200 else 1201 log->l_iclog_bufs = mp->m_logbufs; 1202 1203 /* 1204 * Buffer size passed in from mount system call. 1205 */ 1206 if (mp->m_logbsize > 0) { 1207 size = log->l_iclog_size = mp->m_logbsize; 1208 log->l_iclog_size_log = 0; 1209 while (size != 1) { 1210 log->l_iclog_size_log++; 1211 size >>= 1; 1212 } 1213 1214 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1215 /* # headers = size / 32k 1216 * one header holds cycles from 32k of data 1217 */ 1218 1219 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1220 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1221 xhdrs++; 1222 log->l_iclog_hsize = xhdrs << BBSHIFT; 1223 log->l_iclog_heads = xhdrs; 1224 } else { 1225 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1226 log->l_iclog_hsize = BBSIZE; 1227 log->l_iclog_heads = 1; 1228 } 1229 goto done; 1230 } 1231 1232 /* All machines use 32kB buffers by default. */ 1233 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1234 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1235 1236 /* the default log size is 16k or 32k which is one header sector */ 1237 log->l_iclog_hsize = BBSIZE; 1238 log->l_iclog_heads = 1; 1239 1240 done: 1241 /* are we being asked to make the sizes selected above visible? */ 1242 if (mp->m_logbufs == 0) 1243 mp->m_logbufs = log->l_iclog_bufs; 1244 if (mp->m_logbsize == 0) 1245 mp->m_logbsize = log->l_iclog_size; 1246 } /* xlog_get_iclog_buffer_size */ 1247 1248 1249 void 1250 xfs_log_work_queue( 1251 struct xfs_mount *mp) 1252 { 1253 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1254 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1255 } 1256 1257 /* 1258 * Every sync period we need to unpin all items in the AIL and push them to 1259 * disk. If there is nothing dirty, then we might need to cover the log to 1260 * indicate that the filesystem is idle. 1261 */ 1262 void 1263 xfs_log_worker( 1264 struct work_struct *work) 1265 { 1266 struct xlog *log = container_of(to_delayed_work(work), 1267 struct xlog, l_work); 1268 struct xfs_mount *mp = log->l_mp; 1269 1270 /* dgc: errors ignored - not fatal and nowhere to report them */ 1271 if (xfs_log_need_covered(mp)) 1272 xfs_fs_log_dummy(mp); 1273 else 1274 xfs_log_force(mp, 0); 1275 1276 /* start pushing all the metadata that is currently dirty */ 1277 xfs_ail_push_all(mp->m_ail); 1278 1279 /* queue us up again */ 1280 xfs_log_work_queue(mp); 1281 } 1282 1283 /* 1284 * This routine initializes some of the log structure for a given mount point. 1285 * Its primary purpose is to fill in enough, so recovery can occur. However, 1286 * some other stuff may be filled in too. 1287 */ 1288 STATIC struct xlog * 1289 xlog_alloc_log( 1290 struct xfs_mount *mp, 1291 struct xfs_buftarg *log_target, 1292 xfs_daddr_t blk_offset, 1293 int num_bblks) 1294 { 1295 struct xlog *log; 1296 xlog_rec_header_t *head; 1297 xlog_in_core_t **iclogp; 1298 xlog_in_core_t *iclog, *prev_iclog=NULL; 1299 xfs_buf_t *bp; 1300 int i; 1301 int error = ENOMEM; 1302 uint log2_size = 0; 1303 1304 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1305 if (!log) { 1306 xfs_warn(mp, "Log allocation failed: No memory!"); 1307 goto out; 1308 } 1309 1310 log->l_mp = mp; 1311 log->l_targ = log_target; 1312 log->l_logsize = BBTOB(num_bblks); 1313 log->l_logBBstart = blk_offset; 1314 log->l_logBBsize = num_bblks; 1315 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1316 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1317 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1318 1319 log->l_prev_block = -1; 1320 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1321 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1322 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1323 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1324 1325 xlog_grant_head_init(&log->l_reserve_head); 1326 xlog_grant_head_init(&log->l_write_head); 1327 1328 error = EFSCORRUPTED; 1329 if (xfs_sb_version_hassector(&mp->m_sb)) { 1330 log2_size = mp->m_sb.sb_logsectlog; 1331 if (log2_size < BBSHIFT) { 1332 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1333 log2_size, BBSHIFT); 1334 goto out_free_log; 1335 } 1336 1337 log2_size -= BBSHIFT; 1338 if (log2_size > mp->m_sectbb_log) { 1339 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1340 log2_size, mp->m_sectbb_log); 1341 goto out_free_log; 1342 } 1343 1344 /* for larger sector sizes, must have v2 or external log */ 1345 if (log2_size && log->l_logBBstart > 0 && 1346 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1347 xfs_warn(mp, 1348 "log sector size (0x%x) invalid for configuration.", 1349 log2_size); 1350 goto out_free_log; 1351 } 1352 } 1353 log->l_sectBBsize = 1 << log2_size; 1354 1355 xlog_get_iclog_buffer_size(mp, log); 1356 1357 error = ENOMEM; 1358 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1359 if (!bp) 1360 goto out_free_log; 1361 bp->b_iodone = xlog_iodone; 1362 ASSERT(xfs_buf_islocked(bp)); 1363 log->l_xbuf = bp; 1364 1365 spin_lock_init(&log->l_icloglock); 1366 init_waitqueue_head(&log->l_flush_wait); 1367 1368 iclogp = &log->l_iclog; 1369 /* 1370 * The amount of memory to allocate for the iclog structure is 1371 * rather funky due to the way the structure is defined. It is 1372 * done this way so that we can use different sizes for machines 1373 * with different amounts of memory. See the definition of 1374 * xlog_in_core_t in xfs_log_priv.h for details. 1375 */ 1376 ASSERT(log->l_iclog_size >= 4096); 1377 for (i=0; i < log->l_iclog_bufs; i++) { 1378 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1379 if (!*iclogp) 1380 goto out_free_iclog; 1381 1382 iclog = *iclogp; 1383 iclog->ic_prev = prev_iclog; 1384 prev_iclog = iclog; 1385 1386 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1387 BTOBB(log->l_iclog_size), 0); 1388 if (!bp) 1389 goto out_free_iclog; 1390 1391 bp->b_iodone = xlog_iodone; 1392 iclog->ic_bp = bp; 1393 iclog->ic_data = bp->b_addr; 1394 #ifdef DEBUG 1395 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1396 #endif 1397 head = &iclog->ic_header; 1398 memset(head, 0, sizeof(xlog_rec_header_t)); 1399 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1400 head->h_version = cpu_to_be32( 1401 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1402 head->h_size = cpu_to_be32(log->l_iclog_size); 1403 /* new fields */ 1404 head->h_fmt = cpu_to_be32(XLOG_FMT); 1405 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1406 1407 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1408 iclog->ic_state = XLOG_STATE_ACTIVE; 1409 iclog->ic_log = log; 1410 atomic_set(&iclog->ic_refcnt, 0); 1411 spin_lock_init(&iclog->ic_callback_lock); 1412 iclog->ic_callback_tail = &(iclog->ic_callback); 1413 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1414 1415 ASSERT(xfs_buf_islocked(iclog->ic_bp)); 1416 init_waitqueue_head(&iclog->ic_force_wait); 1417 init_waitqueue_head(&iclog->ic_write_wait); 1418 1419 iclogp = &iclog->ic_next; 1420 } 1421 *iclogp = log->l_iclog; /* complete ring */ 1422 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1423 1424 error = xlog_cil_init(log); 1425 if (error) 1426 goto out_free_iclog; 1427 return log; 1428 1429 out_free_iclog: 1430 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1431 prev_iclog = iclog->ic_next; 1432 if (iclog->ic_bp) 1433 xfs_buf_free(iclog->ic_bp); 1434 kmem_free(iclog); 1435 } 1436 spinlock_destroy(&log->l_icloglock); 1437 xfs_buf_free(log->l_xbuf); 1438 out_free_log: 1439 kmem_free(log); 1440 out: 1441 return ERR_PTR(-error); 1442 } /* xlog_alloc_log */ 1443 1444 1445 /* 1446 * Write out the commit record of a transaction associated with the given 1447 * ticket. Return the lsn of the commit record. 1448 */ 1449 STATIC int 1450 xlog_commit_record( 1451 struct xlog *log, 1452 struct xlog_ticket *ticket, 1453 struct xlog_in_core **iclog, 1454 xfs_lsn_t *commitlsnp) 1455 { 1456 struct xfs_mount *mp = log->l_mp; 1457 int error; 1458 struct xfs_log_iovec reg = { 1459 .i_addr = NULL, 1460 .i_len = 0, 1461 .i_type = XLOG_REG_TYPE_COMMIT, 1462 }; 1463 struct xfs_log_vec vec = { 1464 .lv_niovecs = 1, 1465 .lv_iovecp = ®, 1466 }; 1467 1468 ASSERT_ALWAYS(iclog); 1469 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1470 XLOG_COMMIT_TRANS); 1471 if (error) 1472 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1473 return error; 1474 } 1475 1476 /* 1477 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1478 * log space. This code pushes on the lsn which would supposedly free up 1479 * the 25% which we want to leave free. We may need to adopt a policy which 1480 * pushes on an lsn which is further along in the log once we reach the high 1481 * water mark. In this manner, we would be creating a low water mark. 1482 */ 1483 STATIC void 1484 xlog_grant_push_ail( 1485 struct xlog *log, 1486 int need_bytes) 1487 { 1488 xfs_lsn_t threshold_lsn = 0; 1489 xfs_lsn_t last_sync_lsn; 1490 int free_blocks; 1491 int free_bytes; 1492 int threshold_block; 1493 int threshold_cycle; 1494 int free_threshold; 1495 1496 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1497 1498 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1499 free_blocks = BTOBBT(free_bytes); 1500 1501 /* 1502 * Set the threshold for the minimum number of free blocks in the 1503 * log to the maximum of what the caller needs, one quarter of the 1504 * log, and 256 blocks. 1505 */ 1506 free_threshold = BTOBB(need_bytes); 1507 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1508 free_threshold = MAX(free_threshold, 256); 1509 if (free_blocks >= free_threshold) 1510 return; 1511 1512 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1513 &threshold_block); 1514 threshold_block += free_threshold; 1515 if (threshold_block >= log->l_logBBsize) { 1516 threshold_block -= log->l_logBBsize; 1517 threshold_cycle += 1; 1518 } 1519 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1520 threshold_block); 1521 /* 1522 * Don't pass in an lsn greater than the lsn of the last 1523 * log record known to be on disk. Use a snapshot of the last sync lsn 1524 * so that it doesn't change between the compare and the set. 1525 */ 1526 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1527 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1528 threshold_lsn = last_sync_lsn; 1529 1530 /* 1531 * Get the transaction layer to kick the dirty buffers out to 1532 * disk asynchronously. No point in trying to do this if 1533 * the filesystem is shutting down. 1534 */ 1535 if (!XLOG_FORCED_SHUTDOWN(log)) 1536 xfs_ail_push(log->l_ailp, threshold_lsn); 1537 } 1538 1539 /* 1540 * Stamp cycle number in every block 1541 */ 1542 STATIC void 1543 xlog_pack_data( 1544 struct xlog *log, 1545 struct xlog_in_core *iclog, 1546 int roundoff) 1547 { 1548 int i, j, k; 1549 int size = iclog->ic_offset + roundoff; 1550 __be32 cycle_lsn; 1551 xfs_caddr_t dp; 1552 1553 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1554 1555 dp = iclog->ic_datap; 1556 for (i = 0; i < BTOBB(size); i++) { 1557 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1558 break; 1559 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1560 *(__be32 *)dp = cycle_lsn; 1561 dp += BBSIZE; 1562 } 1563 1564 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1565 xlog_in_core_2_t *xhdr = iclog->ic_data; 1566 1567 for ( ; i < BTOBB(size); i++) { 1568 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1569 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1570 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1571 *(__be32 *)dp = cycle_lsn; 1572 dp += BBSIZE; 1573 } 1574 1575 for (i = 1; i < log->l_iclog_heads; i++) 1576 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1577 } 1578 } 1579 1580 /* 1581 * Calculate the checksum for a log buffer. 1582 * 1583 * This is a little more complicated than it should be because the various 1584 * headers and the actual data are non-contiguous. 1585 */ 1586 __le32 1587 xlog_cksum( 1588 struct xlog *log, 1589 struct xlog_rec_header *rhead, 1590 char *dp, 1591 int size) 1592 { 1593 __uint32_t crc; 1594 1595 /* first generate the crc for the record header ... */ 1596 crc = xfs_start_cksum((char *)rhead, 1597 sizeof(struct xlog_rec_header), 1598 offsetof(struct xlog_rec_header, h_crc)); 1599 1600 /* ... then for additional cycle data for v2 logs ... */ 1601 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1602 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1603 int i; 1604 1605 for (i = 1; i < log->l_iclog_heads; i++) { 1606 crc = crc32c(crc, &xhdr[i].hic_xheader, 1607 sizeof(struct xlog_rec_ext_header)); 1608 } 1609 } 1610 1611 /* ... and finally for the payload */ 1612 crc = crc32c(crc, dp, size); 1613 1614 return xfs_end_cksum(crc); 1615 } 1616 1617 /* 1618 * The bdstrat callback function for log bufs. This gives us a central 1619 * place to trap bufs in case we get hit by a log I/O error and need to 1620 * shutdown. Actually, in practice, even when we didn't get a log error, 1621 * we transition the iclogs to IOERROR state *after* flushing all existing 1622 * iclogs to disk. This is because we don't want anymore new transactions to be 1623 * started or completed afterwards. 1624 */ 1625 STATIC int 1626 xlog_bdstrat( 1627 struct xfs_buf *bp) 1628 { 1629 struct xlog_in_core *iclog = bp->b_fspriv; 1630 1631 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1632 xfs_buf_ioerror(bp, EIO); 1633 xfs_buf_stale(bp); 1634 xfs_buf_ioend(bp, 0); 1635 /* 1636 * It would seem logical to return EIO here, but we rely on 1637 * the log state machine to propagate I/O errors instead of 1638 * doing it here. 1639 */ 1640 return 0; 1641 } 1642 1643 xfs_buf_iorequest(bp); 1644 return 0; 1645 } 1646 1647 /* 1648 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1649 * fashion. Previously, we should have moved the current iclog 1650 * ptr in the log to point to the next available iclog. This allows further 1651 * write to continue while this code syncs out an iclog ready to go. 1652 * Before an in-core log can be written out, the data section must be scanned 1653 * to save away the 1st word of each BBSIZE block into the header. We replace 1654 * it with the current cycle count. Each BBSIZE block is tagged with the 1655 * cycle count because there in an implicit assumption that drives will 1656 * guarantee that entire 512 byte blocks get written at once. In other words, 1657 * we can't have part of a 512 byte block written and part not written. By 1658 * tagging each block, we will know which blocks are valid when recovering 1659 * after an unclean shutdown. 1660 * 1661 * This routine is single threaded on the iclog. No other thread can be in 1662 * this routine with the same iclog. Changing contents of iclog can there- 1663 * fore be done without grabbing the state machine lock. Updating the global 1664 * log will require grabbing the lock though. 1665 * 1666 * The entire log manager uses a logical block numbering scheme. Only 1667 * log_sync (and then only bwrite()) know about the fact that the log may 1668 * not start with block zero on a given device. The log block start offset 1669 * is added immediately before calling bwrite(). 1670 */ 1671 1672 STATIC int 1673 xlog_sync( 1674 struct xlog *log, 1675 struct xlog_in_core *iclog) 1676 { 1677 xfs_buf_t *bp; 1678 int i; 1679 uint count; /* byte count of bwrite */ 1680 uint count_init; /* initial count before roundup */ 1681 int roundoff; /* roundoff to BB or stripe */ 1682 int split = 0; /* split write into two regions */ 1683 int error; 1684 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1685 int size; 1686 1687 XFS_STATS_INC(xs_log_writes); 1688 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1689 1690 /* Add for LR header */ 1691 count_init = log->l_iclog_hsize + iclog->ic_offset; 1692 1693 /* Round out the log write size */ 1694 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1695 /* we have a v2 stripe unit to use */ 1696 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1697 } else { 1698 count = BBTOB(BTOBB(count_init)); 1699 } 1700 roundoff = count - count_init; 1701 ASSERT(roundoff >= 0); 1702 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1703 roundoff < log->l_mp->m_sb.sb_logsunit) 1704 || 1705 (log->l_mp->m_sb.sb_logsunit <= 1 && 1706 roundoff < BBTOB(1))); 1707 1708 /* move grant heads by roundoff in sync */ 1709 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1710 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1711 1712 /* put cycle number in every block */ 1713 xlog_pack_data(log, iclog, roundoff); 1714 1715 /* real byte length */ 1716 size = iclog->ic_offset; 1717 if (v2) 1718 size += roundoff; 1719 iclog->ic_header.h_len = cpu_to_be32(size); 1720 1721 bp = iclog->ic_bp; 1722 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1723 1724 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1725 1726 /* Do we need to split this write into 2 parts? */ 1727 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1728 char *dptr; 1729 1730 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1731 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1732 iclog->ic_bwritecnt = 2; 1733 1734 /* 1735 * Bump the cycle numbers at the start of each block in the 1736 * part of the iclog that ends up in the buffer that gets 1737 * written to the start of the log. 1738 * 1739 * Watch out for the header magic number case, though. 1740 */ 1741 dptr = (char *)&iclog->ic_header + count; 1742 for (i = 0; i < split; i += BBSIZE) { 1743 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1744 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1745 cycle++; 1746 *(__be32 *)dptr = cpu_to_be32(cycle); 1747 1748 dptr += BBSIZE; 1749 } 1750 } else { 1751 iclog->ic_bwritecnt = 1; 1752 } 1753 1754 /* calculcate the checksum */ 1755 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1756 iclog->ic_datap, size); 1757 1758 bp->b_io_length = BTOBB(count); 1759 bp->b_fspriv = iclog; 1760 XFS_BUF_ZEROFLAGS(bp); 1761 XFS_BUF_ASYNC(bp); 1762 bp->b_flags |= XBF_SYNCIO; 1763 1764 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1765 bp->b_flags |= XBF_FUA; 1766 1767 /* 1768 * Flush the data device before flushing the log to make 1769 * sure all meta data written back from the AIL actually made 1770 * it to disk before stamping the new log tail LSN into the 1771 * log buffer. For an external log we need to issue the 1772 * flush explicitly, and unfortunately synchronously here; 1773 * for an internal log we can simply use the block layer 1774 * state machine for preflushes. 1775 */ 1776 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1777 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1778 else 1779 bp->b_flags |= XBF_FLUSH; 1780 } 1781 1782 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1783 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1784 1785 xlog_verify_iclog(log, iclog, count, true); 1786 1787 /* account for log which doesn't start at block #0 */ 1788 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1789 /* 1790 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1791 * is shutting down. 1792 */ 1793 XFS_BUF_WRITE(bp); 1794 1795 error = xlog_bdstrat(bp); 1796 if (error) { 1797 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1798 return error; 1799 } 1800 if (split) { 1801 bp = iclog->ic_log->l_xbuf; 1802 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1803 xfs_buf_associate_memory(bp, 1804 (char *)&iclog->ic_header + count, split); 1805 bp->b_fspriv = iclog; 1806 XFS_BUF_ZEROFLAGS(bp); 1807 XFS_BUF_ASYNC(bp); 1808 bp->b_flags |= XBF_SYNCIO; 1809 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1810 bp->b_flags |= XBF_FUA; 1811 1812 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1813 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1814 1815 /* account for internal log which doesn't start at block #0 */ 1816 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1817 XFS_BUF_WRITE(bp); 1818 error = xlog_bdstrat(bp); 1819 if (error) { 1820 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1821 return error; 1822 } 1823 } 1824 return 0; 1825 } /* xlog_sync */ 1826 1827 /* 1828 * Deallocate a log structure 1829 */ 1830 STATIC void 1831 xlog_dealloc_log( 1832 struct xlog *log) 1833 { 1834 xlog_in_core_t *iclog, *next_iclog; 1835 int i; 1836 1837 xlog_cil_destroy(log); 1838 1839 /* 1840 * always need to ensure that the extra buffer does not point to memory 1841 * owned by another log buffer before we free it. 1842 */ 1843 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1844 xfs_buf_free(log->l_xbuf); 1845 1846 iclog = log->l_iclog; 1847 for (i=0; i<log->l_iclog_bufs; i++) { 1848 xfs_buf_free(iclog->ic_bp); 1849 next_iclog = iclog->ic_next; 1850 kmem_free(iclog); 1851 iclog = next_iclog; 1852 } 1853 spinlock_destroy(&log->l_icloglock); 1854 1855 log->l_mp->m_log = NULL; 1856 kmem_free(log); 1857 } /* xlog_dealloc_log */ 1858 1859 /* 1860 * Update counters atomically now that memcpy is done. 1861 */ 1862 /* ARGSUSED */ 1863 static inline void 1864 xlog_state_finish_copy( 1865 struct xlog *log, 1866 struct xlog_in_core *iclog, 1867 int record_cnt, 1868 int copy_bytes) 1869 { 1870 spin_lock(&log->l_icloglock); 1871 1872 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1873 iclog->ic_offset += copy_bytes; 1874 1875 spin_unlock(&log->l_icloglock); 1876 } /* xlog_state_finish_copy */ 1877 1878 1879 1880 1881 /* 1882 * print out info relating to regions written which consume 1883 * the reservation 1884 */ 1885 void 1886 xlog_print_tic_res( 1887 struct xfs_mount *mp, 1888 struct xlog_ticket *ticket) 1889 { 1890 uint i; 1891 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1892 1893 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1894 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1895 "bformat", 1896 "bchunk", 1897 "efi_format", 1898 "efd_format", 1899 "iformat", 1900 "icore", 1901 "iext", 1902 "ibroot", 1903 "ilocal", 1904 "iattr_ext", 1905 "iattr_broot", 1906 "iattr_local", 1907 "qformat", 1908 "dquot", 1909 "quotaoff", 1910 "LR header", 1911 "unmount", 1912 "commit", 1913 "trans header" 1914 }; 1915 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1916 "SETATTR_NOT_SIZE", 1917 "SETATTR_SIZE", 1918 "INACTIVE", 1919 "CREATE", 1920 "CREATE_TRUNC", 1921 "TRUNCATE_FILE", 1922 "REMOVE", 1923 "LINK", 1924 "RENAME", 1925 "MKDIR", 1926 "RMDIR", 1927 "SYMLINK", 1928 "SET_DMATTRS", 1929 "GROWFS", 1930 "STRAT_WRITE", 1931 "DIOSTRAT", 1932 "WRITE_SYNC", 1933 "WRITEID", 1934 "ADDAFORK", 1935 "ATTRINVAL", 1936 "ATRUNCATE", 1937 "ATTR_SET", 1938 "ATTR_RM", 1939 "ATTR_FLAG", 1940 "CLEAR_AGI_BUCKET", 1941 "QM_SBCHANGE", 1942 "DUMMY1", 1943 "DUMMY2", 1944 "QM_QUOTAOFF", 1945 "QM_DQALLOC", 1946 "QM_SETQLIM", 1947 "QM_DQCLUSTER", 1948 "QM_QINOCREATE", 1949 "QM_QUOTAOFF_END", 1950 "SB_UNIT", 1951 "FSYNC_TS", 1952 "GROWFSRT_ALLOC", 1953 "GROWFSRT_ZERO", 1954 "GROWFSRT_FREE", 1955 "SWAPEXT" 1956 }; 1957 1958 xfs_warn(mp, 1959 "xlog_write: reservation summary:\n" 1960 " trans type = %s (%u)\n" 1961 " unit res = %d bytes\n" 1962 " current res = %d bytes\n" 1963 " total reg = %u bytes (o/flow = %u bytes)\n" 1964 " ophdrs = %u (ophdr space = %u bytes)\n" 1965 " ophdr + reg = %u bytes\n" 1966 " num regions = %u\n", 1967 ((ticket->t_trans_type <= 0 || 1968 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1969 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1970 ticket->t_trans_type, 1971 ticket->t_unit_res, 1972 ticket->t_curr_res, 1973 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1974 ticket->t_res_num_ophdrs, ophdr_spc, 1975 ticket->t_res_arr_sum + 1976 ticket->t_res_o_flow + ophdr_spc, 1977 ticket->t_res_num); 1978 1979 for (i = 0; i < ticket->t_res_num; i++) { 1980 uint r_type = ticket->t_res_arr[i].r_type; 1981 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i, 1982 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1983 "bad-rtype" : res_type_str[r_type-1]), 1984 ticket->t_res_arr[i].r_len); 1985 } 1986 1987 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 1988 "xlog_write: reservation ran out. Need to up reservation"); 1989 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1990 } 1991 1992 /* 1993 * Calculate the potential space needed by the log vector. Each region gets 1994 * its own xlog_op_header_t and may need to be double word aligned. 1995 */ 1996 static int 1997 xlog_write_calc_vec_length( 1998 struct xlog_ticket *ticket, 1999 struct xfs_log_vec *log_vector) 2000 { 2001 struct xfs_log_vec *lv; 2002 int headers = 0; 2003 int len = 0; 2004 int i; 2005 2006 /* acct for start rec of xact */ 2007 if (ticket->t_flags & XLOG_TIC_INITED) 2008 headers++; 2009 2010 for (lv = log_vector; lv; lv = lv->lv_next) { 2011 /* we don't write ordered log vectors */ 2012 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2013 continue; 2014 2015 headers += lv->lv_niovecs; 2016 2017 for (i = 0; i < lv->lv_niovecs; i++) { 2018 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2019 2020 len += vecp->i_len; 2021 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2022 } 2023 } 2024 2025 ticket->t_res_num_ophdrs += headers; 2026 len += headers * sizeof(struct xlog_op_header); 2027 2028 return len; 2029 } 2030 2031 /* 2032 * If first write for transaction, insert start record We can't be trying to 2033 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2034 */ 2035 static int 2036 xlog_write_start_rec( 2037 struct xlog_op_header *ophdr, 2038 struct xlog_ticket *ticket) 2039 { 2040 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2041 return 0; 2042 2043 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2044 ophdr->oh_clientid = ticket->t_clientid; 2045 ophdr->oh_len = 0; 2046 ophdr->oh_flags = XLOG_START_TRANS; 2047 ophdr->oh_res2 = 0; 2048 2049 ticket->t_flags &= ~XLOG_TIC_INITED; 2050 2051 return sizeof(struct xlog_op_header); 2052 } 2053 2054 static xlog_op_header_t * 2055 xlog_write_setup_ophdr( 2056 struct xlog *log, 2057 struct xlog_op_header *ophdr, 2058 struct xlog_ticket *ticket, 2059 uint flags) 2060 { 2061 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2062 ophdr->oh_clientid = ticket->t_clientid; 2063 ophdr->oh_res2 = 0; 2064 2065 /* are we copying a commit or unmount record? */ 2066 ophdr->oh_flags = flags; 2067 2068 /* 2069 * We've seen logs corrupted with bad transaction client ids. This 2070 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2071 * and shut down the filesystem. 2072 */ 2073 switch (ophdr->oh_clientid) { 2074 case XFS_TRANSACTION: 2075 case XFS_VOLUME: 2076 case XFS_LOG: 2077 break; 2078 default: 2079 xfs_warn(log->l_mp, 2080 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2081 ophdr->oh_clientid, ticket); 2082 return NULL; 2083 } 2084 2085 return ophdr; 2086 } 2087 2088 /* 2089 * Set up the parameters of the region copy into the log. This has 2090 * to handle region write split across multiple log buffers - this 2091 * state is kept external to this function so that this code can 2092 * be written in an obvious, self documenting manner. 2093 */ 2094 static int 2095 xlog_write_setup_copy( 2096 struct xlog_ticket *ticket, 2097 struct xlog_op_header *ophdr, 2098 int space_available, 2099 int space_required, 2100 int *copy_off, 2101 int *copy_len, 2102 int *last_was_partial_copy, 2103 int *bytes_consumed) 2104 { 2105 int still_to_copy; 2106 2107 still_to_copy = space_required - *bytes_consumed; 2108 *copy_off = *bytes_consumed; 2109 2110 if (still_to_copy <= space_available) { 2111 /* write of region completes here */ 2112 *copy_len = still_to_copy; 2113 ophdr->oh_len = cpu_to_be32(*copy_len); 2114 if (*last_was_partial_copy) 2115 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2116 *last_was_partial_copy = 0; 2117 *bytes_consumed = 0; 2118 return 0; 2119 } 2120 2121 /* partial write of region, needs extra log op header reservation */ 2122 *copy_len = space_available; 2123 ophdr->oh_len = cpu_to_be32(*copy_len); 2124 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2125 if (*last_was_partial_copy) 2126 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2127 *bytes_consumed += *copy_len; 2128 (*last_was_partial_copy)++; 2129 2130 /* account for new log op header */ 2131 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2132 ticket->t_res_num_ophdrs++; 2133 2134 return sizeof(struct xlog_op_header); 2135 } 2136 2137 static int 2138 xlog_write_copy_finish( 2139 struct xlog *log, 2140 struct xlog_in_core *iclog, 2141 uint flags, 2142 int *record_cnt, 2143 int *data_cnt, 2144 int *partial_copy, 2145 int *partial_copy_len, 2146 int log_offset, 2147 struct xlog_in_core **commit_iclog) 2148 { 2149 if (*partial_copy) { 2150 /* 2151 * This iclog has already been marked WANT_SYNC by 2152 * xlog_state_get_iclog_space. 2153 */ 2154 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2155 *record_cnt = 0; 2156 *data_cnt = 0; 2157 return xlog_state_release_iclog(log, iclog); 2158 } 2159 2160 *partial_copy = 0; 2161 *partial_copy_len = 0; 2162 2163 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2164 /* no more space in this iclog - push it. */ 2165 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2166 *record_cnt = 0; 2167 *data_cnt = 0; 2168 2169 spin_lock(&log->l_icloglock); 2170 xlog_state_want_sync(log, iclog); 2171 spin_unlock(&log->l_icloglock); 2172 2173 if (!commit_iclog) 2174 return xlog_state_release_iclog(log, iclog); 2175 ASSERT(flags & XLOG_COMMIT_TRANS); 2176 *commit_iclog = iclog; 2177 } 2178 2179 return 0; 2180 } 2181 2182 /* 2183 * Write some region out to in-core log 2184 * 2185 * This will be called when writing externally provided regions or when 2186 * writing out a commit record for a given transaction. 2187 * 2188 * General algorithm: 2189 * 1. Find total length of this write. This may include adding to the 2190 * lengths passed in. 2191 * 2. Check whether we violate the tickets reservation. 2192 * 3. While writing to this iclog 2193 * A. Reserve as much space in this iclog as can get 2194 * B. If this is first write, save away start lsn 2195 * C. While writing this region: 2196 * 1. If first write of transaction, write start record 2197 * 2. Write log operation header (header per region) 2198 * 3. Find out if we can fit entire region into this iclog 2199 * 4. Potentially, verify destination memcpy ptr 2200 * 5. Memcpy (partial) region 2201 * 6. If partial copy, release iclog; otherwise, continue 2202 * copying more regions into current iclog 2203 * 4. Mark want sync bit (in simulation mode) 2204 * 5. Release iclog for potential flush to on-disk log. 2205 * 2206 * ERRORS: 2207 * 1. Panic if reservation is overrun. This should never happen since 2208 * reservation amounts are generated internal to the filesystem. 2209 * NOTES: 2210 * 1. Tickets are single threaded data structures. 2211 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2212 * syncing routine. When a single log_write region needs to span 2213 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2214 * on all log operation writes which don't contain the end of the 2215 * region. The XLOG_END_TRANS bit is used for the in-core log 2216 * operation which contains the end of the continued log_write region. 2217 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2218 * we don't really know exactly how much space will be used. As a result, 2219 * we don't update ic_offset until the end when we know exactly how many 2220 * bytes have been written out. 2221 */ 2222 int 2223 xlog_write( 2224 struct xlog *log, 2225 struct xfs_log_vec *log_vector, 2226 struct xlog_ticket *ticket, 2227 xfs_lsn_t *start_lsn, 2228 struct xlog_in_core **commit_iclog, 2229 uint flags) 2230 { 2231 struct xlog_in_core *iclog = NULL; 2232 struct xfs_log_iovec *vecp; 2233 struct xfs_log_vec *lv; 2234 int len; 2235 int index; 2236 int partial_copy = 0; 2237 int partial_copy_len = 0; 2238 int contwr = 0; 2239 int record_cnt = 0; 2240 int data_cnt = 0; 2241 int error; 2242 2243 *start_lsn = 0; 2244 2245 len = xlog_write_calc_vec_length(ticket, log_vector); 2246 2247 /* 2248 * Region headers and bytes are already accounted for. 2249 * We only need to take into account start records and 2250 * split regions in this function. 2251 */ 2252 if (ticket->t_flags & XLOG_TIC_INITED) 2253 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2254 2255 /* 2256 * Commit record headers need to be accounted for. These 2257 * come in as separate writes so are easy to detect. 2258 */ 2259 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2260 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2261 2262 if (ticket->t_curr_res < 0) 2263 xlog_print_tic_res(log->l_mp, ticket); 2264 2265 index = 0; 2266 lv = log_vector; 2267 vecp = lv->lv_iovecp; 2268 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2269 void *ptr; 2270 int log_offset; 2271 2272 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2273 &contwr, &log_offset); 2274 if (error) 2275 return error; 2276 2277 ASSERT(log_offset <= iclog->ic_size - 1); 2278 ptr = iclog->ic_datap + log_offset; 2279 2280 /* start_lsn is the first lsn written to. That's all we need. */ 2281 if (!*start_lsn) 2282 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2283 2284 /* 2285 * This loop writes out as many regions as can fit in the amount 2286 * of space which was allocated by xlog_state_get_iclog_space(). 2287 */ 2288 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2289 struct xfs_log_iovec *reg; 2290 struct xlog_op_header *ophdr; 2291 int start_rec_copy; 2292 int copy_len; 2293 int copy_off; 2294 bool ordered = false; 2295 2296 /* ordered log vectors have no regions to write */ 2297 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2298 ASSERT(lv->lv_niovecs == 0); 2299 ordered = true; 2300 goto next_lv; 2301 } 2302 2303 reg = &vecp[index]; 2304 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2305 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2306 2307 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2308 if (start_rec_copy) { 2309 record_cnt++; 2310 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2311 start_rec_copy); 2312 } 2313 2314 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2315 if (!ophdr) 2316 return XFS_ERROR(EIO); 2317 2318 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2319 sizeof(struct xlog_op_header)); 2320 2321 len += xlog_write_setup_copy(ticket, ophdr, 2322 iclog->ic_size-log_offset, 2323 reg->i_len, 2324 ©_off, ©_len, 2325 &partial_copy, 2326 &partial_copy_len); 2327 xlog_verify_dest_ptr(log, ptr); 2328 2329 /* copy region */ 2330 ASSERT(copy_len >= 0); 2331 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2332 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2333 2334 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2335 record_cnt++; 2336 data_cnt += contwr ? copy_len : 0; 2337 2338 error = xlog_write_copy_finish(log, iclog, flags, 2339 &record_cnt, &data_cnt, 2340 &partial_copy, 2341 &partial_copy_len, 2342 log_offset, 2343 commit_iclog); 2344 if (error) 2345 return error; 2346 2347 /* 2348 * if we had a partial copy, we need to get more iclog 2349 * space but we don't want to increment the region 2350 * index because there is still more is this region to 2351 * write. 2352 * 2353 * If we completed writing this region, and we flushed 2354 * the iclog (indicated by resetting of the record 2355 * count), then we also need to get more log space. If 2356 * this was the last record, though, we are done and 2357 * can just return. 2358 */ 2359 if (partial_copy) 2360 break; 2361 2362 if (++index == lv->lv_niovecs) { 2363 next_lv: 2364 lv = lv->lv_next; 2365 index = 0; 2366 if (lv) 2367 vecp = lv->lv_iovecp; 2368 } 2369 if (record_cnt == 0 && ordered == false) { 2370 if (!lv) 2371 return 0; 2372 break; 2373 } 2374 } 2375 } 2376 2377 ASSERT(len == 0); 2378 2379 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2380 if (!commit_iclog) 2381 return xlog_state_release_iclog(log, iclog); 2382 2383 ASSERT(flags & XLOG_COMMIT_TRANS); 2384 *commit_iclog = iclog; 2385 return 0; 2386 } 2387 2388 2389 /***************************************************************************** 2390 * 2391 * State Machine functions 2392 * 2393 ***************************************************************************** 2394 */ 2395 2396 /* Clean iclogs starting from the head. This ordering must be 2397 * maintained, so an iclog doesn't become ACTIVE beyond one that 2398 * is SYNCING. This is also required to maintain the notion that we use 2399 * a ordered wait queue to hold off would be writers to the log when every 2400 * iclog is trying to sync to disk. 2401 * 2402 * State Change: DIRTY -> ACTIVE 2403 */ 2404 STATIC void 2405 xlog_state_clean_log( 2406 struct xlog *log) 2407 { 2408 xlog_in_core_t *iclog; 2409 int changed = 0; 2410 2411 iclog = log->l_iclog; 2412 do { 2413 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2414 iclog->ic_state = XLOG_STATE_ACTIVE; 2415 iclog->ic_offset = 0; 2416 ASSERT(iclog->ic_callback == NULL); 2417 /* 2418 * If the number of ops in this iclog indicate it just 2419 * contains the dummy transaction, we can 2420 * change state into IDLE (the second time around). 2421 * Otherwise we should change the state into 2422 * NEED a dummy. 2423 * We don't need to cover the dummy. 2424 */ 2425 if (!changed && 2426 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2427 XLOG_COVER_OPS)) { 2428 changed = 1; 2429 } else { 2430 /* 2431 * We have two dirty iclogs so start over 2432 * This could also be num of ops indicates 2433 * this is not the dummy going out. 2434 */ 2435 changed = 2; 2436 } 2437 iclog->ic_header.h_num_logops = 0; 2438 memset(iclog->ic_header.h_cycle_data, 0, 2439 sizeof(iclog->ic_header.h_cycle_data)); 2440 iclog->ic_header.h_lsn = 0; 2441 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2442 /* do nothing */; 2443 else 2444 break; /* stop cleaning */ 2445 iclog = iclog->ic_next; 2446 } while (iclog != log->l_iclog); 2447 2448 /* log is locked when we are called */ 2449 /* 2450 * Change state for the dummy log recording. 2451 * We usually go to NEED. But we go to NEED2 if the changed indicates 2452 * we are done writing the dummy record. 2453 * If we are done with the second dummy recored (DONE2), then 2454 * we go to IDLE. 2455 */ 2456 if (changed) { 2457 switch (log->l_covered_state) { 2458 case XLOG_STATE_COVER_IDLE: 2459 case XLOG_STATE_COVER_NEED: 2460 case XLOG_STATE_COVER_NEED2: 2461 log->l_covered_state = XLOG_STATE_COVER_NEED; 2462 break; 2463 2464 case XLOG_STATE_COVER_DONE: 2465 if (changed == 1) 2466 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2467 else 2468 log->l_covered_state = XLOG_STATE_COVER_NEED; 2469 break; 2470 2471 case XLOG_STATE_COVER_DONE2: 2472 if (changed == 1) 2473 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2474 else 2475 log->l_covered_state = XLOG_STATE_COVER_NEED; 2476 break; 2477 2478 default: 2479 ASSERT(0); 2480 } 2481 } 2482 } /* xlog_state_clean_log */ 2483 2484 STATIC xfs_lsn_t 2485 xlog_get_lowest_lsn( 2486 struct xlog *log) 2487 { 2488 xlog_in_core_t *lsn_log; 2489 xfs_lsn_t lowest_lsn, lsn; 2490 2491 lsn_log = log->l_iclog; 2492 lowest_lsn = 0; 2493 do { 2494 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2495 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2496 if ((lsn && !lowest_lsn) || 2497 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2498 lowest_lsn = lsn; 2499 } 2500 } 2501 lsn_log = lsn_log->ic_next; 2502 } while (lsn_log != log->l_iclog); 2503 return lowest_lsn; 2504 } 2505 2506 2507 STATIC void 2508 xlog_state_do_callback( 2509 struct xlog *log, 2510 int aborted, 2511 struct xlog_in_core *ciclog) 2512 { 2513 xlog_in_core_t *iclog; 2514 xlog_in_core_t *first_iclog; /* used to know when we've 2515 * processed all iclogs once */ 2516 xfs_log_callback_t *cb, *cb_next; 2517 int flushcnt = 0; 2518 xfs_lsn_t lowest_lsn; 2519 int ioerrors; /* counter: iclogs with errors */ 2520 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2521 int funcdidcallbacks; /* flag: function did callbacks */ 2522 int repeats; /* for issuing console warnings if 2523 * looping too many times */ 2524 int wake = 0; 2525 2526 spin_lock(&log->l_icloglock); 2527 first_iclog = iclog = log->l_iclog; 2528 ioerrors = 0; 2529 funcdidcallbacks = 0; 2530 repeats = 0; 2531 2532 do { 2533 /* 2534 * Scan all iclogs starting with the one pointed to by the 2535 * log. Reset this starting point each time the log is 2536 * unlocked (during callbacks). 2537 * 2538 * Keep looping through iclogs until one full pass is made 2539 * without running any callbacks. 2540 */ 2541 first_iclog = log->l_iclog; 2542 iclog = log->l_iclog; 2543 loopdidcallbacks = 0; 2544 repeats++; 2545 2546 do { 2547 2548 /* skip all iclogs in the ACTIVE & DIRTY states */ 2549 if (iclog->ic_state & 2550 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2551 iclog = iclog->ic_next; 2552 continue; 2553 } 2554 2555 /* 2556 * Between marking a filesystem SHUTDOWN and stopping 2557 * the log, we do flush all iclogs to disk (if there 2558 * wasn't a log I/O error). So, we do want things to 2559 * go smoothly in case of just a SHUTDOWN w/o a 2560 * LOG_IO_ERROR. 2561 */ 2562 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2563 /* 2564 * Can only perform callbacks in order. Since 2565 * this iclog is not in the DONE_SYNC/ 2566 * DO_CALLBACK state, we skip the rest and 2567 * just try to clean up. If we set our iclog 2568 * to DO_CALLBACK, we will not process it when 2569 * we retry since a previous iclog is in the 2570 * CALLBACK and the state cannot change since 2571 * we are holding the l_icloglock. 2572 */ 2573 if (!(iclog->ic_state & 2574 (XLOG_STATE_DONE_SYNC | 2575 XLOG_STATE_DO_CALLBACK))) { 2576 if (ciclog && (ciclog->ic_state == 2577 XLOG_STATE_DONE_SYNC)) { 2578 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2579 } 2580 break; 2581 } 2582 /* 2583 * We now have an iclog that is in either the 2584 * DO_CALLBACK or DONE_SYNC states. The other 2585 * states (WANT_SYNC, SYNCING, or CALLBACK were 2586 * caught by the above if and are going to 2587 * clean (i.e. we aren't doing their callbacks) 2588 * see the above if. 2589 */ 2590 2591 /* 2592 * We will do one more check here to see if we 2593 * have chased our tail around. 2594 */ 2595 2596 lowest_lsn = xlog_get_lowest_lsn(log); 2597 if (lowest_lsn && 2598 XFS_LSN_CMP(lowest_lsn, 2599 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2600 iclog = iclog->ic_next; 2601 continue; /* Leave this iclog for 2602 * another thread */ 2603 } 2604 2605 iclog->ic_state = XLOG_STATE_CALLBACK; 2606 2607 2608 /* 2609 * Completion of a iclog IO does not imply that 2610 * a transaction has completed, as transactions 2611 * can be large enough to span many iclogs. We 2612 * cannot change the tail of the log half way 2613 * through a transaction as this may be the only 2614 * transaction in the log and moving th etail to 2615 * point to the middle of it will prevent 2616 * recovery from finding the start of the 2617 * transaction. Hence we should only update the 2618 * last_sync_lsn if this iclog contains 2619 * transaction completion callbacks on it. 2620 * 2621 * We have to do this before we drop the 2622 * icloglock to ensure we are the only one that 2623 * can update it. 2624 */ 2625 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2626 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2627 if (iclog->ic_callback) 2628 atomic64_set(&log->l_last_sync_lsn, 2629 be64_to_cpu(iclog->ic_header.h_lsn)); 2630 2631 } else 2632 ioerrors++; 2633 2634 spin_unlock(&log->l_icloglock); 2635 2636 /* 2637 * Keep processing entries in the callback list until 2638 * we come around and it is empty. We need to 2639 * atomically see that the list is empty and change the 2640 * state to DIRTY so that we don't miss any more 2641 * callbacks being added. 2642 */ 2643 spin_lock(&iclog->ic_callback_lock); 2644 cb = iclog->ic_callback; 2645 while (cb) { 2646 iclog->ic_callback_tail = &(iclog->ic_callback); 2647 iclog->ic_callback = NULL; 2648 spin_unlock(&iclog->ic_callback_lock); 2649 2650 /* perform callbacks in the order given */ 2651 for (; cb; cb = cb_next) { 2652 cb_next = cb->cb_next; 2653 cb->cb_func(cb->cb_arg, aborted); 2654 } 2655 spin_lock(&iclog->ic_callback_lock); 2656 cb = iclog->ic_callback; 2657 } 2658 2659 loopdidcallbacks++; 2660 funcdidcallbacks++; 2661 2662 spin_lock(&log->l_icloglock); 2663 ASSERT(iclog->ic_callback == NULL); 2664 spin_unlock(&iclog->ic_callback_lock); 2665 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2666 iclog->ic_state = XLOG_STATE_DIRTY; 2667 2668 /* 2669 * Transition from DIRTY to ACTIVE if applicable. 2670 * NOP if STATE_IOERROR. 2671 */ 2672 xlog_state_clean_log(log); 2673 2674 /* wake up threads waiting in xfs_log_force() */ 2675 wake_up_all(&iclog->ic_force_wait); 2676 2677 iclog = iclog->ic_next; 2678 } while (first_iclog != iclog); 2679 2680 if (repeats > 5000) { 2681 flushcnt += repeats; 2682 repeats = 0; 2683 xfs_warn(log->l_mp, 2684 "%s: possible infinite loop (%d iterations)", 2685 __func__, flushcnt); 2686 } 2687 } while (!ioerrors && loopdidcallbacks); 2688 2689 /* 2690 * make one last gasp attempt to see if iclogs are being left in 2691 * limbo.. 2692 */ 2693 #ifdef DEBUG 2694 if (funcdidcallbacks) { 2695 first_iclog = iclog = log->l_iclog; 2696 do { 2697 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2698 /* 2699 * Terminate the loop if iclogs are found in states 2700 * which will cause other threads to clean up iclogs. 2701 * 2702 * SYNCING - i/o completion will go through logs 2703 * DONE_SYNC - interrupt thread should be waiting for 2704 * l_icloglock 2705 * IOERROR - give up hope all ye who enter here 2706 */ 2707 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2708 iclog->ic_state == XLOG_STATE_SYNCING || 2709 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2710 iclog->ic_state == XLOG_STATE_IOERROR ) 2711 break; 2712 iclog = iclog->ic_next; 2713 } while (first_iclog != iclog); 2714 } 2715 #endif 2716 2717 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2718 wake = 1; 2719 spin_unlock(&log->l_icloglock); 2720 2721 if (wake) 2722 wake_up_all(&log->l_flush_wait); 2723 } 2724 2725 2726 /* 2727 * Finish transitioning this iclog to the dirty state. 2728 * 2729 * Make sure that we completely execute this routine only when this is 2730 * the last call to the iclog. There is a good chance that iclog flushes, 2731 * when we reach the end of the physical log, get turned into 2 separate 2732 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2733 * routine. By using the reference count bwritecnt, we guarantee that only 2734 * the second completion goes through. 2735 * 2736 * Callbacks could take time, so they are done outside the scope of the 2737 * global state machine log lock. 2738 */ 2739 STATIC void 2740 xlog_state_done_syncing( 2741 xlog_in_core_t *iclog, 2742 int aborted) 2743 { 2744 struct xlog *log = iclog->ic_log; 2745 2746 spin_lock(&log->l_icloglock); 2747 2748 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2749 iclog->ic_state == XLOG_STATE_IOERROR); 2750 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2751 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2752 2753 2754 /* 2755 * If we got an error, either on the first buffer, or in the case of 2756 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2757 * and none should ever be attempted to be written to disk 2758 * again. 2759 */ 2760 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2761 if (--iclog->ic_bwritecnt == 1) { 2762 spin_unlock(&log->l_icloglock); 2763 return; 2764 } 2765 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2766 } 2767 2768 /* 2769 * Someone could be sleeping prior to writing out the next 2770 * iclog buffer, we wake them all, one will get to do the 2771 * I/O, the others get to wait for the result. 2772 */ 2773 wake_up_all(&iclog->ic_write_wait); 2774 spin_unlock(&log->l_icloglock); 2775 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2776 } /* xlog_state_done_syncing */ 2777 2778 2779 /* 2780 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2781 * sleep. We wait on the flush queue on the head iclog as that should be 2782 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2783 * we will wait here and all new writes will sleep until a sync completes. 2784 * 2785 * The in-core logs are used in a circular fashion. They are not used 2786 * out-of-order even when an iclog past the head is free. 2787 * 2788 * return: 2789 * * log_offset where xlog_write() can start writing into the in-core 2790 * log's data space. 2791 * * in-core log pointer to which xlog_write() should write. 2792 * * boolean indicating this is a continued write to an in-core log. 2793 * If this is the last write, then the in-core log's offset field 2794 * needs to be incremented, depending on the amount of data which 2795 * is copied. 2796 */ 2797 STATIC int 2798 xlog_state_get_iclog_space( 2799 struct xlog *log, 2800 int len, 2801 struct xlog_in_core **iclogp, 2802 struct xlog_ticket *ticket, 2803 int *continued_write, 2804 int *logoffsetp) 2805 { 2806 int log_offset; 2807 xlog_rec_header_t *head; 2808 xlog_in_core_t *iclog; 2809 int error; 2810 2811 restart: 2812 spin_lock(&log->l_icloglock); 2813 if (XLOG_FORCED_SHUTDOWN(log)) { 2814 spin_unlock(&log->l_icloglock); 2815 return XFS_ERROR(EIO); 2816 } 2817 2818 iclog = log->l_iclog; 2819 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2820 XFS_STATS_INC(xs_log_noiclogs); 2821 2822 /* Wait for log writes to have flushed */ 2823 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2824 goto restart; 2825 } 2826 2827 head = &iclog->ic_header; 2828 2829 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2830 log_offset = iclog->ic_offset; 2831 2832 /* On the 1st write to an iclog, figure out lsn. This works 2833 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2834 * committing to. If the offset is set, that's how many blocks 2835 * must be written. 2836 */ 2837 if (log_offset == 0) { 2838 ticket->t_curr_res -= log->l_iclog_hsize; 2839 xlog_tic_add_region(ticket, 2840 log->l_iclog_hsize, 2841 XLOG_REG_TYPE_LRHEADER); 2842 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2843 head->h_lsn = cpu_to_be64( 2844 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2845 ASSERT(log->l_curr_block >= 0); 2846 } 2847 2848 /* If there is enough room to write everything, then do it. Otherwise, 2849 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2850 * bit is on, so this will get flushed out. Don't update ic_offset 2851 * until you know exactly how many bytes get copied. Therefore, wait 2852 * until later to update ic_offset. 2853 * 2854 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2855 * can fit into remaining data section. 2856 */ 2857 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2858 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2859 2860 /* 2861 * If I'm the only one writing to this iclog, sync it to disk. 2862 * We need to do an atomic compare and decrement here to avoid 2863 * racing with concurrent atomic_dec_and_lock() calls in 2864 * xlog_state_release_iclog() when there is more than one 2865 * reference to the iclog. 2866 */ 2867 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2868 /* we are the only one */ 2869 spin_unlock(&log->l_icloglock); 2870 error = xlog_state_release_iclog(log, iclog); 2871 if (error) 2872 return error; 2873 } else { 2874 spin_unlock(&log->l_icloglock); 2875 } 2876 goto restart; 2877 } 2878 2879 /* Do we have enough room to write the full amount in the remainder 2880 * of this iclog? Or must we continue a write on the next iclog and 2881 * mark this iclog as completely taken? In the case where we switch 2882 * iclogs (to mark it taken), this particular iclog will release/sync 2883 * to disk in xlog_write(). 2884 */ 2885 if (len <= iclog->ic_size - iclog->ic_offset) { 2886 *continued_write = 0; 2887 iclog->ic_offset += len; 2888 } else { 2889 *continued_write = 1; 2890 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2891 } 2892 *iclogp = iclog; 2893 2894 ASSERT(iclog->ic_offset <= iclog->ic_size); 2895 spin_unlock(&log->l_icloglock); 2896 2897 *logoffsetp = log_offset; 2898 return 0; 2899 } /* xlog_state_get_iclog_space */ 2900 2901 /* The first cnt-1 times through here we don't need to 2902 * move the grant write head because the permanent 2903 * reservation has reserved cnt times the unit amount. 2904 * Release part of current permanent unit reservation and 2905 * reset current reservation to be one units worth. Also 2906 * move grant reservation head forward. 2907 */ 2908 STATIC void 2909 xlog_regrant_reserve_log_space( 2910 struct xlog *log, 2911 struct xlog_ticket *ticket) 2912 { 2913 trace_xfs_log_regrant_reserve_enter(log, ticket); 2914 2915 if (ticket->t_cnt > 0) 2916 ticket->t_cnt--; 2917 2918 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2919 ticket->t_curr_res); 2920 xlog_grant_sub_space(log, &log->l_write_head.grant, 2921 ticket->t_curr_res); 2922 ticket->t_curr_res = ticket->t_unit_res; 2923 xlog_tic_reset_res(ticket); 2924 2925 trace_xfs_log_regrant_reserve_sub(log, ticket); 2926 2927 /* just return if we still have some of the pre-reserved space */ 2928 if (ticket->t_cnt > 0) 2929 return; 2930 2931 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2932 ticket->t_unit_res); 2933 2934 trace_xfs_log_regrant_reserve_exit(log, ticket); 2935 2936 ticket->t_curr_res = ticket->t_unit_res; 2937 xlog_tic_reset_res(ticket); 2938 } /* xlog_regrant_reserve_log_space */ 2939 2940 2941 /* 2942 * Give back the space left from a reservation. 2943 * 2944 * All the information we need to make a correct determination of space left 2945 * is present. For non-permanent reservations, things are quite easy. The 2946 * count should have been decremented to zero. We only need to deal with the 2947 * space remaining in the current reservation part of the ticket. If the 2948 * ticket contains a permanent reservation, there may be left over space which 2949 * needs to be released. A count of N means that N-1 refills of the current 2950 * reservation can be done before we need to ask for more space. The first 2951 * one goes to fill up the first current reservation. Once we run out of 2952 * space, the count will stay at zero and the only space remaining will be 2953 * in the current reservation field. 2954 */ 2955 STATIC void 2956 xlog_ungrant_log_space( 2957 struct xlog *log, 2958 struct xlog_ticket *ticket) 2959 { 2960 int bytes; 2961 2962 if (ticket->t_cnt > 0) 2963 ticket->t_cnt--; 2964 2965 trace_xfs_log_ungrant_enter(log, ticket); 2966 trace_xfs_log_ungrant_sub(log, ticket); 2967 2968 /* 2969 * If this is a permanent reservation ticket, we may be able to free 2970 * up more space based on the remaining count. 2971 */ 2972 bytes = ticket->t_curr_res; 2973 if (ticket->t_cnt > 0) { 2974 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2975 bytes += ticket->t_unit_res*ticket->t_cnt; 2976 } 2977 2978 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 2979 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 2980 2981 trace_xfs_log_ungrant_exit(log, ticket); 2982 2983 xfs_log_space_wake(log->l_mp); 2984 } 2985 2986 /* 2987 * Flush iclog to disk if this is the last reference to the given iclog and 2988 * the WANT_SYNC bit is set. 2989 * 2990 * When this function is entered, the iclog is not necessarily in the 2991 * WANT_SYNC state. It may be sitting around waiting to get filled. 2992 * 2993 * 2994 */ 2995 STATIC int 2996 xlog_state_release_iclog( 2997 struct xlog *log, 2998 struct xlog_in_core *iclog) 2999 { 3000 int sync = 0; /* do we sync? */ 3001 3002 if (iclog->ic_state & XLOG_STATE_IOERROR) 3003 return XFS_ERROR(EIO); 3004 3005 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3006 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3007 return 0; 3008 3009 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3010 spin_unlock(&log->l_icloglock); 3011 return XFS_ERROR(EIO); 3012 } 3013 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3014 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3015 3016 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3017 /* update tail before writing to iclog */ 3018 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3019 sync++; 3020 iclog->ic_state = XLOG_STATE_SYNCING; 3021 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3022 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3023 /* cycle incremented when incrementing curr_block */ 3024 } 3025 spin_unlock(&log->l_icloglock); 3026 3027 /* 3028 * We let the log lock go, so it's possible that we hit a log I/O 3029 * error or some other SHUTDOWN condition that marks the iclog 3030 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3031 * this iclog has consistent data, so we ignore IOERROR 3032 * flags after this point. 3033 */ 3034 if (sync) 3035 return xlog_sync(log, iclog); 3036 return 0; 3037 } /* xlog_state_release_iclog */ 3038 3039 3040 /* 3041 * This routine will mark the current iclog in the ring as WANT_SYNC 3042 * and move the current iclog pointer to the next iclog in the ring. 3043 * When this routine is called from xlog_state_get_iclog_space(), the 3044 * exact size of the iclog has not yet been determined. All we know is 3045 * that every data block. We have run out of space in this log record. 3046 */ 3047 STATIC void 3048 xlog_state_switch_iclogs( 3049 struct xlog *log, 3050 struct xlog_in_core *iclog, 3051 int eventual_size) 3052 { 3053 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3054 if (!eventual_size) 3055 eventual_size = iclog->ic_offset; 3056 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3057 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3058 log->l_prev_block = log->l_curr_block; 3059 log->l_prev_cycle = log->l_curr_cycle; 3060 3061 /* roll log?: ic_offset changed later */ 3062 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3063 3064 /* Round up to next log-sunit */ 3065 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3066 log->l_mp->m_sb.sb_logsunit > 1) { 3067 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3068 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3069 } 3070 3071 if (log->l_curr_block >= log->l_logBBsize) { 3072 log->l_curr_cycle++; 3073 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3074 log->l_curr_cycle++; 3075 log->l_curr_block -= log->l_logBBsize; 3076 ASSERT(log->l_curr_block >= 0); 3077 } 3078 ASSERT(iclog == log->l_iclog); 3079 log->l_iclog = iclog->ic_next; 3080 } /* xlog_state_switch_iclogs */ 3081 3082 /* 3083 * Write out all data in the in-core log as of this exact moment in time. 3084 * 3085 * Data may be written to the in-core log during this call. However, 3086 * we don't guarantee this data will be written out. A change from past 3087 * implementation means this routine will *not* write out zero length LRs. 3088 * 3089 * Basically, we try and perform an intelligent scan of the in-core logs. 3090 * If we determine there is no flushable data, we just return. There is no 3091 * flushable data if: 3092 * 3093 * 1. the current iclog is active and has no data; the previous iclog 3094 * is in the active or dirty state. 3095 * 2. the current iclog is drity, and the previous iclog is in the 3096 * active or dirty state. 3097 * 3098 * We may sleep if: 3099 * 3100 * 1. the current iclog is not in the active nor dirty state. 3101 * 2. the current iclog dirty, and the previous iclog is not in the 3102 * active nor dirty state. 3103 * 3. the current iclog is active, and there is another thread writing 3104 * to this particular iclog. 3105 * 4. a) the current iclog is active and has no other writers 3106 * b) when we return from flushing out this iclog, it is still 3107 * not in the active nor dirty state. 3108 */ 3109 int 3110 _xfs_log_force( 3111 struct xfs_mount *mp, 3112 uint flags, 3113 int *log_flushed) 3114 { 3115 struct xlog *log = mp->m_log; 3116 struct xlog_in_core *iclog; 3117 xfs_lsn_t lsn; 3118 3119 XFS_STATS_INC(xs_log_force); 3120 3121 xlog_cil_force(log); 3122 3123 spin_lock(&log->l_icloglock); 3124 3125 iclog = log->l_iclog; 3126 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3127 spin_unlock(&log->l_icloglock); 3128 return XFS_ERROR(EIO); 3129 } 3130 3131 /* If the head iclog is not active nor dirty, we just attach 3132 * ourselves to the head and go to sleep. 3133 */ 3134 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3135 iclog->ic_state == XLOG_STATE_DIRTY) { 3136 /* 3137 * If the head is dirty or (active and empty), then 3138 * we need to look at the previous iclog. If the previous 3139 * iclog is active or dirty we are done. There is nothing 3140 * to sync out. Otherwise, we attach ourselves to the 3141 * previous iclog and go to sleep. 3142 */ 3143 if (iclog->ic_state == XLOG_STATE_DIRTY || 3144 (atomic_read(&iclog->ic_refcnt) == 0 3145 && iclog->ic_offset == 0)) { 3146 iclog = iclog->ic_prev; 3147 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3148 iclog->ic_state == XLOG_STATE_DIRTY) 3149 goto no_sleep; 3150 else 3151 goto maybe_sleep; 3152 } else { 3153 if (atomic_read(&iclog->ic_refcnt) == 0) { 3154 /* We are the only one with access to this 3155 * iclog. Flush it out now. There should 3156 * be a roundoff of zero to show that someone 3157 * has already taken care of the roundoff from 3158 * the previous sync. 3159 */ 3160 atomic_inc(&iclog->ic_refcnt); 3161 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3162 xlog_state_switch_iclogs(log, iclog, 0); 3163 spin_unlock(&log->l_icloglock); 3164 3165 if (xlog_state_release_iclog(log, iclog)) 3166 return XFS_ERROR(EIO); 3167 3168 if (log_flushed) 3169 *log_flushed = 1; 3170 spin_lock(&log->l_icloglock); 3171 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3172 iclog->ic_state != XLOG_STATE_DIRTY) 3173 goto maybe_sleep; 3174 else 3175 goto no_sleep; 3176 } else { 3177 /* Someone else is writing to this iclog. 3178 * Use its call to flush out the data. However, 3179 * the other thread may not force out this LR, 3180 * so we mark it WANT_SYNC. 3181 */ 3182 xlog_state_switch_iclogs(log, iclog, 0); 3183 goto maybe_sleep; 3184 } 3185 } 3186 } 3187 3188 /* By the time we come around again, the iclog could've been filled 3189 * which would give it another lsn. If we have a new lsn, just 3190 * return because the relevant data has been flushed. 3191 */ 3192 maybe_sleep: 3193 if (flags & XFS_LOG_SYNC) { 3194 /* 3195 * We must check if we're shutting down here, before 3196 * we wait, while we're holding the l_icloglock. 3197 * Then we check again after waking up, in case our 3198 * sleep was disturbed by a bad news. 3199 */ 3200 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3201 spin_unlock(&log->l_icloglock); 3202 return XFS_ERROR(EIO); 3203 } 3204 XFS_STATS_INC(xs_log_force_sleep); 3205 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3206 /* 3207 * No need to grab the log lock here since we're 3208 * only deciding whether or not to return EIO 3209 * and the memory read should be atomic. 3210 */ 3211 if (iclog->ic_state & XLOG_STATE_IOERROR) 3212 return XFS_ERROR(EIO); 3213 if (log_flushed) 3214 *log_flushed = 1; 3215 } else { 3216 3217 no_sleep: 3218 spin_unlock(&log->l_icloglock); 3219 } 3220 return 0; 3221 } 3222 3223 /* 3224 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3225 * about errors or whether the log was flushed or not. This is the normal 3226 * interface to use when trying to unpin items or move the log forward. 3227 */ 3228 void 3229 xfs_log_force( 3230 xfs_mount_t *mp, 3231 uint flags) 3232 { 3233 int error; 3234 3235 trace_xfs_log_force(mp, 0); 3236 error = _xfs_log_force(mp, flags, NULL); 3237 if (error) 3238 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3239 } 3240 3241 /* 3242 * Force the in-core log to disk for a specific LSN. 3243 * 3244 * Find in-core log with lsn. 3245 * If it is in the DIRTY state, just return. 3246 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3247 * state and go to sleep or return. 3248 * If it is in any other state, go to sleep or return. 3249 * 3250 * Synchronous forces are implemented with a signal variable. All callers 3251 * to force a given lsn to disk will wait on a the sv attached to the 3252 * specific in-core log. When given in-core log finally completes its 3253 * write to disk, that thread will wake up all threads waiting on the 3254 * sv. 3255 */ 3256 int 3257 _xfs_log_force_lsn( 3258 struct xfs_mount *mp, 3259 xfs_lsn_t lsn, 3260 uint flags, 3261 int *log_flushed) 3262 { 3263 struct xlog *log = mp->m_log; 3264 struct xlog_in_core *iclog; 3265 int already_slept = 0; 3266 3267 ASSERT(lsn != 0); 3268 3269 XFS_STATS_INC(xs_log_force); 3270 3271 lsn = xlog_cil_force_lsn(log, lsn); 3272 if (lsn == NULLCOMMITLSN) 3273 return 0; 3274 3275 try_again: 3276 spin_lock(&log->l_icloglock); 3277 iclog = log->l_iclog; 3278 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3279 spin_unlock(&log->l_icloglock); 3280 return XFS_ERROR(EIO); 3281 } 3282 3283 do { 3284 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3285 iclog = iclog->ic_next; 3286 continue; 3287 } 3288 3289 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3290 spin_unlock(&log->l_icloglock); 3291 return 0; 3292 } 3293 3294 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3295 /* 3296 * We sleep here if we haven't already slept (e.g. 3297 * this is the first time we've looked at the correct 3298 * iclog buf) and the buffer before us is going to 3299 * be sync'ed. The reason for this is that if we 3300 * are doing sync transactions here, by waiting for 3301 * the previous I/O to complete, we can allow a few 3302 * more transactions into this iclog before we close 3303 * it down. 3304 * 3305 * Otherwise, we mark the buffer WANT_SYNC, and bump 3306 * up the refcnt so we can release the log (which 3307 * drops the ref count). The state switch keeps new 3308 * transaction commits from using this buffer. When 3309 * the current commits finish writing into the buffer, 3310 * the refcount will drop to zero and the buffer will 3311 * go out then. 3312 */ 3313 if (!already_slept && 3314 (iclog->ic_prev->ic_state & 3315 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3316 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3317 3318 XFS_STATS_INC(xs_log_force_sleep); 3319 3320 xlog_wait(&iclog->ic_prev->ic_write_wait, 3321 &log->l_icloglock); 3322 if (log_flushed) 3323 *log_flushed = 1; 3324 already_slept = 1; 3325 goto try_again; 3326 } 3327 atomic_inc(&iclog->ic_refcnt); 3328 xlog_state_switch_iclogs(log, iclog, 0); 3329 spin_unlock(&log->l_icloglock); 3330 if (xlog_state_release_iclog(log, iclog)) 3331 return XFS_ERROR(EIO); 3332 if (log_flushed) 3333 *log_flushed = 1; 3334 spin_lock(&log->l_icloglock); 3335 } 3336 3337 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3338 !(iclog->ic_state & 3339 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3340 /* 3341 * Don't wait on completion if we know that we've 3342 * gotten a log write error. 3343 */ 3344 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3345 spin_unlock(&log->l_icloglock); 3346 return XFS_ERROR(EIO); 3347 } 3348 XFS_STATS_INC(xs_log_force_sleep); 3349 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3350 /* 3351 * No need to grab the log lock here since we're 3352 * only deciding whether or not to return EIO 3353 * and the memory read should be atomic. 3354 */ 3355 if (iclog->ic_state & XLOG_STATE_IOERROR) 3356 return XFS_ERROR(EIO); 3357 3358 if (log_flushed) 3359 *log_flushed = 1; 3360 } else { /* just return */ 3361 spin_unlock(&log->l_icloglock); 3362 } 3363 3364 return 0; 3365 } while (iclog != log->l_iclog); 3366 3367 spin_unlock(&log->l_icloglock); 3368 return 0; 3369 } 3370 3371 /* 3372 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3373 * about errors or whether the log was flushed or not. This is the normal 3374 * interface to use when trying to unpin items or move the log forward. 3375 */ 3376 void 3377 xfs_log_force_lsn( 3378 xfs_mount_t *mp, 3379 xfs_lsn_t lsn, 3380 uint flags) 3381 { 3382 int error; 3383 3384 trace_xfs_log_force(mp, lsn); 3385 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3386 if (error) 3387 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3388 } 3389 3390 /* 3391 * Called when we want to mark the current iclog as being ready to sync to 3392 * disk. 3393 */ 3394 STATIC void 3395 xlog_state_want_sync( 3396 struct xlog *log, 3397 struct xlog_in_core *iclog) 3398 { 3399 assert_spin_locked(&log->l_icloglock); 3400 3401 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3402 xlog_state_switch_iclogs(log, iclog, 0); 3403 } else { 3404 ASSERT(iclog->ic_state & 3405 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3406 } 3407 } 3408 3409 3410 /***************************************************************************** 3411 * 3412 * TICKET functions 3413 * 3414 ***************************************************************************** 3415 */ 3416 3417 /* 3418 * Free a used ticket when its refcount falls to zero. 3419 */ 3420 void 3421 xfs_log_ticket_put( 3422 xlog_ticket_t *ticket) 3423 { 3424 ASSERT(atomic_read(&ticket->t_ref) > 0); 3425 if (atomic_dec_and_test(&ticket->t_ref)) 3426 kmem_zone_free(xfs_log_ticket_zone, ticket); 3427 } 3428 3429 xlog_ticket_t * 3430 xfs_log_ticket_get( 3431 xlog_ticket_t *ticket) 3432 { 3433 ASSERT(atomic_read(&ticket->t_ref) > 0); 3434 atomic_inc(&ticket->t_ref); 3435 return ticket; 3436 } 3437 3438 /* 3439 * Figure out the total log space unit (in bytes) that would be 3440 * required for a log ticket. 3441 */ 3442 int 3443 xfs_log_calc_unit_res( 3444 struct xfs_mount *mp, 3445 int unit_bytes) 3446 { 3447 struct xlog *log = mp->m_log; 3448 int iclog_space; 3449 uint num_headers; 3450 3451 /* 3452 * Permanent reservations have up to 'cnt'-1 active log operations 3453 * in the log. A unit in this case is the amount of space for one 3454 * of these log operations. Normal reservations have a cnt of 1 3455 * and their unit amount is the total amount of space required. 3456 * 3457 * The following lines of code account for non-transaction data 3458 * which occupy space in the on-disk log. 3459 * 3460 * Normal form of a transaction is: 3461 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3462 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3463 * 3464 * We need to account for all the leadup data and trailer data 3465 * around the transaction data. 3466 * And then we need to account for the worst case in terms of using 3467 * more space. 3468 * The worst case will happen if: 3469 * - the placement of the transaction happens to be such that the 3470 * roundoff is at its maximum 3471 * - the transaction data is synced before the commit record is synced 3472 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3473 * Therefore the commit record is in its own Log Record. 3474 * This can happen as the commit record is called with its 3475 * own region to xlog_write(). 3476 * This then means that in the worst case, roundoff can happen for 3477 * the commit-rec as well. 3478 * The commit-rec is smaller than padding in this scenario and so it is 3479 * not added separately. 3480 */ 3481 3482 /* for trans header */ 3483 unit_bytes += sizeof(xlog_op_header_t); 3484 unit_bytes += sizeof(xfs_trans_header_t); 3485 3486 /* for start-rec */ 3487 unit_bytes += sizeof(xlog_op_header_t); 3488 3489 /* 3490 * for LR headers - the space for data in an iclog is the size minus 3491 * the space used for the headers. If we use the iclog size, then we 3492 * undercalculate the number of headers required. 3493 * 3494 * Furthermore - the addition of op headers for split-recs might 3495 * increase the space required enough to require more log and op 3496 * headers, so take that into account too. 3497 * 3498 * IMPORTANT: This reservation makes the assumption that if this 3499 * transaction is the first in an iclog and hence has the LR headers 3500 * accounted to it, then the remaining space in the iclog is 3501 * exclusively for this transaction. i.e. if the transaction is larger 3502 * than the iclog, it will be the only thing in that iclog. 3503 * Fundamentally, this means we must pass the entire log vector to 3504 * xlog_write to guarantee this. 3505 */ 3506 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3507 num_headers = howmany(unit_bytes, iclog_space); 3508 3509 /* for split-recs - ophdrs added when data split over LRs */ 3510 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3511 3512 /* add extra header reservations if we overrun */ 3513 while (!num_headers || 3514 howmany(unit_bytes, iclog_space) > num_headers) { 3515 unit_bytes += sizeof(xlog_op_header_t); 3516 num_headers++; 3517 } 3518 unit_bytes += log->l_iclog_hsize * num_headers; 3519 3520 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3521 unit_bytes += log->l_iclog_hsize; 3522 3523 /* for roundoff padding for transaction data and one for commit record */ 3524 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3525 /* log su roundoff */ 3526 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3527 } else { 3528 /* BB roundoff */ 3529 unit_bytes += 2 * BBSIZE; 3530 } 3531 3532 return unit_bytes; 3533 } 3534 3535 /* 3536 * Allocate and initialise a new log ticket. 3537 */ 3538 struct xlog_ticket * 3539 xlog_ticket_alloc( 3540 struct xlog *log, 3541 int unit_bytes, 3542 int cnt, 3543 char client, 3544 bool permanent, 3545 xfs_km_flags_t alloc_flags) 3546 { 3547 struct xlog_ticket *tic; 3548 int unit_res; 3549 3550 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3551 if (!tic) 3552 return NULL; 3553 3554 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3555 3556 atomic_set(&tic->t_ref, 1); 3557 tic->t_task = current; 3558 INIT_LIST_HEAD(&tic->t_queue); 3559 tic->t_unit_res = unit_res; 3560 tic->t_curr_res = unit_res; 3561 tic->t_cnt = cnt; 3562 tic->t_ocnt = cnt; 3563 tic->t_tid = prandom_u32(); 3564 tic->t_clientid = client; 3565 tic->t_flags = XLOG_TIC_INITED; 3566 tic->t_trans_type = 0; 3567 if (permanent) 3568 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3569 3570 xlog_tic_reset_res(tic); 3571 3572 return tic; 3573 } 3574 3575 3576 /****************************************************************************** 3577 * 3578 * Log debug routines 3579 * 3580 ****************************************************************************** 3581 */ 3582 #if defined(DEBUG) 3583 /* 3584 * Make sure that the destination ptr is within the valid data region of 3585 * one of the iclogs. This uses backup pointers stored in a different 3586 * part of the log in case we trash the log structure. 3587 */ 3588 void 3589 xlog_verify_dest_ptr( 3590 struct xlog *log, 3591 char *ptr) 3592 { 3593 int i; 3594 int good_ptr = 0; 3595 3596 for (i = 0; i < log->l_iclog_bufs; i++) { 3597 if (ptr >= log->l_iclog_bak[i] && 3598 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3599 good_ptr++; 3600 } 3601 3602 if (!good_ptr) 3603 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3604 } 3605 3606 /* 3607 * Check to make sure the grant write head didn't just over lap the tail. If 3608 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3609 * the cycles differ by exactly one and check the byte count. 3610 * 3611 * This check is run unlocked, so can give false positives. Rather than assert 3612 * on failures, use a warn-once flag and a panic tag to allow the admin to 3613 * determine if they want to panic the machine when such an error occurs. For 3614 * debug kernels this will have the same effect as using an assert but, unlinke 3615 * an assert, it can be turned off at runtime. 3616 */ 3617 STATIC void 3618 xlog_verify_grant_tail( 3619 struct xlog *log) 3620 { 3621 int tail_cycle, tail_blocks; 3622 int cycle, space; 3623 3624 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3625 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3626 if (tail_cycle != cycle) { 3627 if (cycle - 1 != tail_cycle && 3628 !(log->l_flags & XLOG_TAIL_WARN)) { 3629 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3630 "%s: cycle - 1 != tail_cycle", __func__); 3631 log->l_flags |= XLOG_TAIL_WARN; 3632 } 3633 3634 if (space > BBTOB(tail_blocks) && 3635 !(log->l_flags & XLOG_TAIL_WARN)) { 3636 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3637 "%s: space > BBTOB(tail_blocks)", __func__); 3638 log->l_flags |= XLOG_TAIL_WARN; 3639 } 3640 } 3641 } 3642 3643 /* check if it will fit */ 3644 STATIC void 3645 xlog_verify_tail_lsn( 3646 struct xlog *log, 3647 struct xlog_in_core *iclog, 3648 xfs_lsn_t tail_lsn) 3649 { 3650 int blocks; 3651 3652 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3653 blocks = 3654 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3655 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3656 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3657 } else { 3658 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3659 3660 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3661 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3662 3663 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3664 if (blocks < BTOBB(iclog->ic_offset) + 1) 3665 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3666 } 3667 } /* xlog_verify_tail_lsn */ 3668 3669 /* 3670 * Perform a number of checks on the iclog before writing to disk. 3671 * 3672 * 1. Make sure the iclogs are still circular 3673 * 2. Make sure we have a good magic number 3674 * 3. Make sure we don't have magic numbers in the data 3675 * 4. Check fields of each log operation header for: 3676 * A. Valid client identifier 3677 * B. tid ptr value falls in valid ptr space (user space code) 3678 * C. Length in log record header is correct according to the 3679 * individual operation headers within record. 3680 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3681 * log, check the preceding blocks of the physical log to make sure all 3682 * the cycle numbers agree with the current cycle number. 3683 */ 3684 STATIC void 3685 xlog_verify_iclog( 3686 struct xlog *log, 3687 struct xlog_in_core *iclog, 3688 int count, 3689 bool syncing) 3690 { 3691 xlog_op_header_t *ophead; 3692 xlog_in_core_t *icptr; 3693 xlog_in_core_2_t *xhdr; 3694 xfs_caddr_t ptr; 3695 xfs_caddr_t base_ptr; 3696 __psint_t field_offset; 3697 __uint8_t clientid; 3698 int len, i, j, k, op_len; 3699 int idx; 3700 3701 /* check validity of iclog pointers */ 3702 spin_lock(&log->l_icloglock); 3703 icptr = log->l_iclog; 3704 for (i=0; i < log->l_iclog_bufs; i++) { 3705 if (icptr == NULL) 3706 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3707 icptr = icptr->ic_next; 3708 } 3709 if (icptr != log->l_iclog) 3710 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3711 spin_unlock(&log->l_icloglock); 3712 3713 /* check log magic numbers */ 3714 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3715 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3716 3717 ptr = (xfs_caddr_t) &iclog->ic_header; 3718 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3719 ptr += BBSIZE) { 3720 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3721 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3722 __func__); 3723 } 3724 3725 /* check fields */ 3726 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3727 ptr = iclog->ic_datap; 3728 base_ptr = ptr; 3729 ophead = (xlog_op_header_t *)ptr; 3730 xhdr = iclog->ic_data; 3731 for (i = 0; i < len; i++) { 3732 ophead = (xlog_op_header_t *)ptr; 3733 3734 /* clientid is only 1 byte */ 3735 field_offset = (__psint_t) 3736 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3737 if (!syncing || (field_offset & 0x1ff)) { 3738 clientid = ophead->oh_clientid; 3739 } else { 3740 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3741 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3742 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3743 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3744 clientid = xlog_get_client_id( 3745 xhdr[j].hic_xheader.xh_cycle_data[k]); 3746 } else { 3747 clientid = xlog_get_client_id( 3748 iclog->ic_header.h_cycle_data[idx]); 3749 } 3750 } 3751 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3752 xfs_warn(log->l_mp, 3753 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3754 __func__, clientid, ophead, 3755 (unsigned long)field_offset); 3756 3757 /* check length */ 3758 field_offset = (__psint_t) 3759 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3760 if (!syncing || (field_offset & 0x1ff)) { 3761 op_len = be32_to_cpu(ophead->oh_len); 3762 } else { 3763 idx = BTOBBT((__psint_t)&ophead->oh_len - 3764 (__psint_t)iclog->ic_datap); 3765 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3766 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3767 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3768 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3769 } else { 3770 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3771 } 3772 } 3773 ptr += sizeof(xlog_op_header_t) + op_len; 3774 } 3775 } /* xlog_verify_iclog */ 3776 #endif 3777 3778 /* 3779 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3780 */ 3781 STATIC int 3782 xlog_state_ioerror( 3783 struct xlog *log) 3784 { 3785 xlog_in_core_t *iclog, *ic; 3786 3787 iclog = log->l_iclog; 3788 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3789 /* 3790 * Mark all the incore logs IOERROR. 3791 * From now on, no log flushes will result. 3792 */ 3793 ic = iclog; 3794 do { 3795 ic->ic_state = XLOG_STATE_IOERROR; 3796 ic = ic->ic_next; 3797 } while (ic != iclog); 3798 return 0; 3799 } 3800 /* 3801 * Return non-zero, if state transition has already happened. 3802 */ 3803 return 1; 3804 } 3805 3806 /* 3807 * This is called from xfs_force_shutdown, when we're forcibly 3808 * shutting down the filesystem, typically because of an IO error. 3809 * Our main objectives here are to make sure that: 3810 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3811 * parties to find out, 'atomically'. 3812 * b. those who're sleeping on log reservations, pinned objects and 3813 * other resources get woken up, and be told the bad news. 3814 * c. nothing new gets queued up after (a) and (b) are done. 3815 * d. if !logerror, flush the iclogs to disk, then seal them off 3816 * for business. 3817 * 3818 * Note: for delayed logging the !logerror case needs to flush the regions 3819 * held in memory out to the iclogs before flushing them to disk. This needs 3820 * to be done before the log is marked as shutdown, otherwise the flush to the 3821 * iclogs will fail. 3822 */ 3823 int 3824 xfs_log_force_umount( 3825 struct xfs_mount *mp, 3826 int logerror) 3827 { 3828 struct xlog *log; 3829 int retval; 3830 3831 log = mp->m_log; 3832 3833 /* 3834 * If this happens during log recovery, don't worry about 3835 * locking; the log isn't open for business yet. 3836 */ 3837 if (!log || 3838 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3839 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3840 if (mp->m_sb_bp) 3841 XFS_BUF_DONE(mp->m_sb_bp); 3842 return 0; 3843 } 3844 3845 /* 3846 * Somebody could've already done the hard work for us. 3847 * No need to get locks for this. 3848 */ 3849 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3850 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3851 return 1; 3852 } 3853 retval = 0; 3854 3855 /* 3856 * Flush the in memory commit item list before marking the log as 3857 * being shut down. We need to do it in this order to ensure all the 3858 * completed transactions are flushed to disk with the xfs_log_force() 3859 * call below. 3860 */ 3861 if (!logerror) 3862 xlog_cil_force(log); 3863 3864 /* 3865 * mark the filesystem and the as in a shutdown state and wake 3866 * everybody up to tell them the bad news. 3867 */ 3868 spin_lock(&log->l_icloglock); 3869 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3870 if (mp->m_sb_bp) 3871 XFS_BUF_DONE(mp->m_sb_bp); 3872 3873 /* 3874 * This flag is sort of redundant because of the mount flag, but 3875 * it's good to maintain the separation between the log and the rest 3876 * of XFS. 3877 */ 3878 log->l_flags |= XLOG_IO_ERROR; 3879 3880 /* 3881 * If we hit a log error, we want to mark all the iclogs IOERROR 3882 * while we're still holding the loglock. 3883 */ 3884 if (logerror) 3885 retval = xlog_state_ioerror(log); 3886 spin_unlock(&log->l_icloglock); 3887 3888 /* 3889 * We don't want anybody waiting for log reservations after this. That 3890 * means we have to wake up everybody queued up on reserveq as well as 3891 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3892 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3893 * action is protected by the grant locks. 3894 */ 3895 xlog_grant_head_wake_all(&log->l_reserve_head); 3896 xlog_grant_head_wake_all(&log->l_write_head); 3897 3898 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3899 ASSERT(!logerror); 3900 /* 3901 * Force the incore logs to disk before shutting the 3902 * log down completely. 3903 */ 3904 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3905 3906 spin_lock(&log->l_icloglock); 3907 retval = xlog_state_ioerror(log); 3908 spin_unlock(&log->l_icloglock); 3909 } 3910 /* 3911 * Wake up everybody waiting on xfs_log_force. 3912 * Callback all log item committed functions as if the 3913 * log writes were completed. 3914 */ 3915 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3916 3917 #ifdef XFSERRORDEBUG 3918 { 3919 xlog_in_core_t *iclog; 3920 3921 spin_lock(&log->l_icloglock); 3922 iclog = log->l_iclog; 3923 do { 3924 ASSERT(iclog->ic_callback == 0); 3925 iclog = iclog->ic_next; 3926 } while (iclog != log->l_iclog); 3927 spin_unlock(&log->l_icloglock); 3928 } 3929 #endif 3930 /* return non-zero if log IOERROR transition had already happened */ 3931 return retval; 3932 } 3933 3934 STATIC int 3935 xlog_iclogs_empty( 3936 struct xlog *log) 3937 { 3938 xlog_in_core_t *iclog; 3939 3940 iclog = log->l_iclog; 3941 do { 3942 /* endianness does not matter here, zero is zero in 3943 * any language. 3944 */ 3945 if (iclog->ic_header.h_num_logops) 3946 return 0; 3947 iclog = iclog->ic_next; 3948 } while (iclog != log->l_iclog); 3949 return 1; 3950 } 3951 3952