xref: /openbmc/linux/fs/xfs/xfs_log.c (revision b34081f1)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
39 
40 kmem_zone_t	*xfs_log_ticket_zone;
41 
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 	struct xlog		*log,
46 	struct xlog_ticket	*ticket,
47 	struct xlog_in_core	**iclog,
48 	xfs_lsn_t		*commitlsnp);
49 
50 STATIC struct xlog *
51 xlog_alloc_log(
52 	struct xfs_mount	*mp,
53 	struct xfs_buftarg	*log_target,
54 	xfs_daddr_t		blk_offset,
55 	int			num_bblks);
56 STATIC int
57 xlog_space_left(
58 	struct xlog		*log,
59 	atomic64_t		*head);
60 STATIC int
61 xlog_sync(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_dealloc_log(
66 	struct xlog		*log);
67 
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 	struct xlog		*log,
73 	int			aborted,
74 	struct xlog_in_core	*iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 	struct xlog		*log,
78 	int			len,
79 	struct xlog_in_core	**iclog,
80 	struct xlog_ticket	*ticket,
81 	int			*continued_write,
82 	int			*logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 	struct xlog		*log,
86 	struct xlog_in_core	*iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 	struct xlog		*log,
90 	struct xlog_in_core	*iclog,
91 	int			eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 	struct xlog		*log,
95 	struct xlog_in_core	*iclog);
96 
97 STATIC void
98 xlog_grant_push_ail(
99 	struct xlog		*log,
100 	int			need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 	struct xlog		*log,
104 	struct xlog_ticket	*ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 	struct xlog		*log,
108 	struct xlog_ticket	*ticket);
109 
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 	struct xlog		*log,
114 	char			*ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 	struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 	struct xlog		*log,
121 	struct xlog_in_core	*iclog,
122 	int			count,
123 	bool                    syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 	struct xlog		*log,
127 	struct xlog_in_core	*iclog,
128 	xfs_lsn_t		tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
135 
136 STATIC int
137 xlog_iclogs_empty(
138 	struct xlog		*log);
139 
140 static void
141 xlog_grant_sub_space(
142 	struct xlog		*log,
143 	atomic64_t		*head,
144 	int			bytes)
145 {
146 	int64_t	head_val = atomic64_read(head);
147 	int64_t new, old;
148 
149 	do {
150 		int	cycle, space;
151 
152 		xlog_crack_grant_head_val(head_val, &cycle, &space);
153 
154 		space -= bytes;
155 		if (space < 0) {
156 			space += log->l_logsize;
157 			cycle--;
158 		}
159 
160 		old = head_val;
161 		new = xlog_assign_grant_head_val(cycle, space);
162 		head_val = atomic64_cmpxchg(head, old, new);
163 	} while (head_val != old);
164 }
165 
166 static void
167 xlog_grant_add_space(
168 	struct xlog		*log,
169 	atomic64_t		*head,
170 	int			bytes)
171 {
172 	int64_t	head_val = atomic64_read(head);
173 	int64_t new, old;
174 
175 	do {
176 		int		tmp;
177 		int		cycle, space;
178 
179 		xlog_crack_grant_head_val(head_val, &cycle, &space);
180 
181 		tmp = log->l_logsize - space;
182 		if (tmp > bytes)
183 			space += bytes;
184 		else {
185 			space = bytes - tmp;
186 			cycle++;
187 		}
188 
189 		old = head_val;
190 		new = xlog_assign_grant_head_val(cycle, space);
191 		head_val = atomic64_cmpxchg(head, old, new);
192 	} while (head_val != old);
193 }
194 
195 STATIC void
196 xlog_grant_head_init(
197 	struct xlog_grant_head	*head)
198 {
199 	xlog_assign_grant_head(&head->grant, 1, 0);
200 	INIT_LIST_HEAD(&head->waiters);
201 	spin_lock_init(&head->lock);
202 }
203 
204 STATIC void
205 xlog_grant_head_wake_all(
206 	struct xlog_grant_head	*head)
207 {
208 	struct xlog_ticket	*tic;
209 
210 	spin_lock(&head->lock);
211 	list_for_each_entry(tic, &head->waiters, t_queue)
212 		wake_up_process(tic->t_task);
213 	spin_unlock(&head->lock);
214 }
215 
216 static inline int
217 xlog_ticket_reservation(
218 	struct xlog		*log,
219 	struct xlog_grant_head	*head,
220 	struct xlog_ticket	*tic)
221 {
222 	if (head == &log->l_write_head) {
223 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 		return tic->t_unit_res;
225 	} else {
226 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 			return tic->t_unit_res * tic->t_cnt;
228 		else
229 			return tic->t_unit_res;
230 	}
231 }
232 
233 STATIC bool
234 xlog_grant_head_wake(
235 	struct xlog		*log,
236 	struct xlog_grant_head	*head,
237 	int			*free_bytes)
238 {
239 	struct xlog_ticket	*tic;
240 	int			need_bytes;
241 
242 	list_for_each_entry(tic, &head->waiters, t_queue) {
243 		need_bytes = xlog_ticket_reservation(log, head, tic);
244 		if (*free_bytes < need_bytes)
245 			return false;
246 
247 		*free_bytes -= need_bytes;
248 		trace_xfs_log_grant_wake_up(log, tic);
249 		wake_up_process(tic->t_task);
250 	}
251 
252 	return true;
253 }
254 
255 STATIC int
256 xlog_grant_head_wait(
257 	struct xlog		*log,
258 	struct xlog_grant_head	*head,
259 	struct xlog_ticket	*tic,
260 	int			need_bytes)
261 {
262 	list_add_tail(&tic->t_queue, &head->waiters);
263 
264 	do {
265 		if (XLOG_FORCED_SHUTDOWN(log))
266 			goto shutdown;
267 		xlog_grant_push_ail(log, need_bytes);
268 
269 		__set_current_state(TASK_UNINTERRUPTIBLE);
270 		spin_unlock(&head->lock);
271 
272 		XFS_STATS_INC(xs_sleep_logspace);
273 
274 		trace_xfs_log_grant_sleep(log, tic);
275 		schedule();
276 		trace_xfs_log_grant_wake(log, tic);
277 
278 		spin_lock(&head->lock);
279 		if (XLOG_FORCED_SHUTDOWN(log))
280 			goto shutdown;
281 	} while (xlog_space_left(log, &head->grant) < need_bytes);
282 
283 	list_del_init(&tic->t_queue);
284 	return 0;
285 shutdown:
286 	list_del_init(&tic->t_queue);
287 	return XFS_ERROR(EIO);
288 }
289 
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309 	struct xlog		*log,
310 	struct xlog_grant_head	*head,
311 	struct xlog_ticket	*tic,
312 	int			*need_bytes)
313 {
314 	int			free_bytes;
315 	int			error = 0;
316 
317 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 
319 	/*
320 	 * If there are other waiters on the queue then give them a chance at
321 	 * logspace before us.  Wake up the first waiters, if we do not wake
322 	 * up all the waiters then go to sleep waiting for more free space,
323 	 * otherwise try to get some space for this transaction.
324 	 */
325 	*need_bytes = xlog_ticket_reservation(log, head, tic);
326 	free_bytes = xlog_space_left(log, &head->grant);
327 	if (!list_empty_careful(&head->waiters)) {
328 		spin_lock(&head->lock);
329 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 		    free_bytes < *need_bytes) {
331 			error = xlog_grant_head_wait(log, head, tic,
332 						     *need_bytes);
333 		}
334 		spin_unlock(&head->lock);
335 	} else if (free_bytes < *need_bytes) {
336 		spin_lock(&head->lock);
337 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 		spin_unlock(&head->lock);
339 	}
340 
341 	return error;
342 }
343 
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 	tic->t_res_num = 0;
348 	tic->t_res_arr_sum = 0;
349 	tic->t_res_num_ophdrs = 0;
350 }
351 
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 		/* add to overflow and start again */
357 		tic->t_res_o_flow += tic->t_res_arr_sum;
358 		tic->t_res_num = 0;
359 		tic->t_res_arr_sum = 0;
360 	}
361 
362 	tic->t_res_arr[tic->t_res_num].r_len = len;
363 	tic->t_res_arr[tic->t_res_num].r_type = type;
364 	tic->t_res_arr_sum += len;
365 	tic->t_res_num++;
366 }
367 
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373 	struct xfs_mount	*mp,
374 	struct xlog_ticket	*tic)
375 {
376 	struct xlog		*log = mp->m_log;
377 	int			need_bytes;
378 	int			error = 0;
379 
380 	if (XLOG_FORCED_SHUTDOWN(log))
381 		return XFS_ERROR(EIO);
382 
383 	XFS_STATS_INC(xs_try_logspace);
384 
385 	/*
386 	 * This is a new transaction on the ticket, so we need to change the
387 	 * transaction ID so that the next transaction has a different TID in
388 	 * the log. Just add one to the existing tid so that we can see chains
389 	 * of rolling transactions in the log easily.
390 	 */
391 	tic->t_tid++;
392 
393 	xlog_grant_push_ail(log, tic->t_unit_res);
394 
395 	tic->t_curr_res = tic->t_unit_res;
396 	xlog_tic_reset_res(tic);
397 
398 	if (tic->t_cnt > 0)
399 		return 0;
400 
401 	trace_xfs_log_regrant(log, tic);
402 
403 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 				      &need_bytes);
405 	if (error)
406 		goto out_error;
407 
408 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 	trace_xfs_log_regrant_exit(log, tic);
410 	xlog_verify_grant_tail(log);
411 	return 0;
412 
413 out_error:
414 	/*
415 	 * If we are failing, make sure the ticket doesn't have any current
416 	 * reservations.  We don't want to add this back when the ticket/
417 	 * transaction gets cancelled.
418 	 */
419 	tic->t_curr_res = 0;
420 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421 	return error;
422 }
423 
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434 	struct xfs_mount	*mp,
435 	int		 	unit_bytes,
436 	int		 	cnt,
437 	struct xlog_ticket	**ticp,
438 	__uint8_t	 	client,
439 	bool			permanent,
440 	uint		 	t_type)
441 {
442 	struct xlog		*log = mp->m_log;
443 	struct xlog_ticket	*tic;
444 	int			need_bytes;
445 	int			error = 0;
446 
447 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 
449 	if (XLOG_FORCED_SHUTDOWN(log))
450 		return XFS_ERROR(EIO);
451 
452 	XFS_STATS_INC(xs_try_logspace);
453 
454 	ASSERT(*ticp == NULL);
455 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456 				KM_SLEEP | KM_MAYFAIL);
457 	if (!tic)
458 		return XFS_ERROR(ENOMEM);
459 
460 	tic->t_trans_type = t_type;
461 	*ticp = tic;
462 
463 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 					    : tic->t_unit_res);
465 
466 	trace_xfs_log_reserve(log, tic);
467 
468 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 				      &need_bytes);
470 	if (error)
471 		goto out_error;
472 
473 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 	trace_xfs_log_reserve_exit(log, tic);
476 	xlog_verify_grant_tail(log);
477 	return 0;
478 
479 out_error:
480 	/*
481 	 * If we are failing, make sure the ticket doesn't have any current
482 	 * reservations.  We don't want to add this back when the ticket/
483 	 * transaction gets cancelled.
484 	 */
485 	tic->t_curr_res = 0;
486 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487 	return error;
488 }
489 
490 
491 /*
492  * NOTES:
493  *
494  *	1. currblock field gets updated at startup and after in-core logs
495  *		marked as with WANT_SYNC.
496  */
497 
498 /*
499  * This routine is called when a user of a log manager ticket is done with
500  * the reservation.  If the ticket was ever used, then a commit record for
501  * the associated transaction is written out as a log operation header with
502  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
503  * a given ticket.  If the ticket was one with a permanent reservation, then
504  * a few operations are done differently.  Permanent reservation tickets by
505  * default don't release the reservation.  They just commit the current
506  * transaction with the belief that the reservation is still needed.  A flag
507  * must be passed in before permanent reservations are actually released.
508  * When these type of tickets are not released, they need to be set into
509  * the inited state again.  By doing this, a start record will be written
510  * out when the next write occurs.
511  */
512 xfs_lsn_t
513 xfs_log_done(
514 	struct xfs_mount	*mp,
515 	struct xlog_ticket	*ticket,
516 	struct xlog_in_core	**iclog,
517 	uint			flags)
518 {
519 	struct xlog		*log = mp->m_log;
520 	xfs_lsn_t		lsn = 0;
521 
522 	if (XLOG_FORCED_SHUTDOWN(log) ||
523 	    /*
524 	     * If nothing was ever written, don't write out commit record.
525 	     * If we get an error, just continue and give back the log ticket.
526 	     */
527 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529 		lsn = (xfs_lsn_t) -1;
530 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531 			flags |= XFS_LOG_REL_PERM_RESERV;
532 		}
533 	}
534 
535 
536 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
538 		trace_xfs_log_done_nonperm(log, ticket);
539 
540 		/*
541 		 * Release ticket if not permanent reservation or a specific
542 		 * request has been made to release a permanent reservation.
543 		 */
544 		xlog_ungrant_log_space(log, ticket);
545 		xfs_log_ticket_put(ticket);
546 	} else {
547 		trace_xfs_log_done_perm(log, ticket);
548 
549 		xlog_regrant_reserve_log_space(log, ticket);
550 		/* If this ticket was a permanent reservation and we aren't
551 		 * trying to release it, reset the inited flags; so next time
552 		 * we write, a start record will be written out.
553 		 */
554 		ticket->t_flags |= XLOG_TIC_INITED;
555 	}
556 
557 	return lsn;
558 }
559 
560 /*
561  * Attaches a new iclog I/O completion callback routine during
562  * transaction commit.  If the log is in error state, a non-zero
563  * return code is handed back and the caller is responsible for
564  * executing the callback at an appropriate time.
565  */
566 int
567 xfs_log_notify(
568 	struct xfs_mount	*mp,
569 	struct xlog_in_core	*iclog,
570 	xfs_log_callback_t	*cb)
571 {
572 	int	abortflg;
573 
574 	spin_lock(&iclog->ic_callback_lock);
575 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576 	if (!abortflg) {
577 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579 		cb->cb_next = NULL;
580 		*(iclog->ic_callback_tail) = cb;
581 		iclog->ic_callback_tail = &(cb->cb_next);
582 	}
583 	spin_unlock(&iclog->ic_callback_lock);
584 	return abortflg;
585 }
586 
587 int
588 xfs_log_release_iclog(
589 	struct xfs_mount	*mp,
590 	struct xlog_in_core	*iclog)
591 {
592 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
593 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594 		return EIO;
595 	}
596 
597 	return 0;
598 }
599 
600 /*
601  * Mount a log filesystem
602  *
603  * mp		- ubiquitous xfs mount point structure
604  * log_target	- buftarg of on-disk log device
605  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
606  * num_bblocks	- Number of BBSIZE blocks in on-disk log
607  *
608  * Return error or zero.
609  */
610 int
611 xfs_log_mount(
612 	xfs_mount_t	*mp,
613 	xfs_buftarg_t	*log_target,
614 	xfs_daddr_t	blk_offset,
615 	int		num_bblks)
616 {
617 	int		error = 0;
618 	int		min_logfsbs;
619 
620 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
621 		xfs_notice(mp, "Mounting Filesystem");
622 	else {
623 		xfs_notice(mp,
624 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
625 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
626 	}
627 
628 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
629 	if (IS_ERR(mp->m_log)) {
630 		error = -PTR_ERR(mp->m_log);
631 		goto out;
632 	}
633 
634 	/*
635 	 * Validate the given log space and drop a critical message via syslog
636 	 * if the log size is too small that would lead to some unexpected
637 	 * situations in transaction log space reservation stage.
638 	 *
639 	 * Note: we can't just reject the mount if the validation fails.  This
640 	 * would mean that people would have to downgrade their kernel just to
641 	 * remedy the situation as there is no way to grow the log (short of
642 	 * black magic surgery with xfs_db).
643 	 *
644 	 * We can, however, reject mounts for CRC format filesystems, as the
645 	 * mkfs binary being used to make the filesystem should never create a
646 	 * filesystem with a log that is too small.
647 	 */
648 	min_logfsbs = xfs_log_calc_minimum_size(mp);
649 
650 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
651 		xfs_warn(mp,
652 		"Log size %d blocks too small, minimum size is %d blocks",
653 			 mp->m_sb.sb_logblocks, min_logfsbs);
654 		error = EINVAL;
655 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
656 		xfs_warn(mp,
657 		"Log size %d blocks too large, maximum size is %lld blocks",
658 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
659 		error = EINVAL;
660 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
661 		xfs_warn(mp,
662 		"log size %lld bytes too large, maximum size is %lld bytes",
663 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
664 			 XFS_MAX_LOG_BYTES);
665 		error = EINVAL;
666 	}
667 	if (error) {
668 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
669 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
670 			ASSERT(0);
671 			goto out_free_log;
672 		}
673 		xfs_crit(mp,
674 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
675 "experienced then please report this message in the bug report.");
676 	}
677 
678 	/*
679 	 * Initialize the AIL now we have a log.
680 	 */
681 	error = xfs_trans_ail_init(mp);
682 	if (error) {
683 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
684 		goto out_free_log;
685 	}
686 	mp->m_log->l_ailp = mp->m_ail;
687 
688 	/*
689 	 * skip log recovery on a norecovery mount.  pretend it all
690 	 * just worked.
691 	 */
692 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
693 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694 
695 		if (readonly)
696 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
697 
698 		error = xlog_recover(mp->m_log);
699 
700 		if (readonly)
701 			mp->m_flags |= XFS_MOUNT_RDONLY;
702 		if (error) {
703 			xfs_warn(mp, "log mount/recovery failed: error %d",
704 				error);
705 			goto out_destroy_ail;
706 		}
707 	}
708 
709 	/* Normal transactions can now occur */
710 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
711 
712 	/*
713 	 * Now the log has been fully initialised and we know were our
714 	 * space grant counters are, we can initialise the permanent ticket
715 	 * needed for delayed logging to work.
716 	 */
717 	xlog_cil_init_post_recovery(mp->m_log);
718 
719 	return 0;
720 
721 out_destroy_ail:
722 	xfs_trans_ail_destroy(mp);
723 out_free_log:
724 	xlog_dealloc_log(mp->m_log);
725 out:
726 	return error;
727 }
728 
729 /*
730  * Finish the recovery of the file system.  This is separate from the
731  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
732  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
733  * here.
734  *
735  * If we finish recovery successfully, start the background log work. If we are
736  * not doing recovery, then we have a RO filesystem and we don't need to start
737  * it.
738  */
739 int
740 xfs_log_mount_finish(xfs_mount_t *mp)
741 {
742 	int	error = 0;
743 
744 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
745 		error = xlog_recover_finish(mp->m_log);
746 		if (!error)
747 			xfs_log_work_queue(mp);
748 	} else {
749 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 	}
751 
752 
753 	return error;
754 }
755 
756 /*
757  * Final log writes as part of unmount.
758  *
759  * Mark the filesystem clean as unmount happens.  Note that during relocation
760  * this routine needs to be executed as part of source-bag while the
761  * deallocation must not be done until source-end.
762  */
763 
764 /*
765  * Unmount record used to have a string "Unmount filesystem--" in the
766  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
767  * We just write the magic number now since that particular field isn't
768  * currently architecture converted and "Unmount" is a bit foo.
769  * As far as I know, there weren't any dependencies on the old behaviour.
770  */
771 
772 int
773 xfs_log_unmount_write(xfs_mount_t *mp)
774 {
775 	struct xlog	 *log = mp->m_log;
776 	xlog_in_core_t	 *iclog;
777 #ifdef DEBUG
778 	xlog_in_core_t	 *first_iclog;
779 #endif
780 	xlog_ticket_t	*tic = NULL;
781 	xfs_lsn_t	 lsn;
782 	int		 error;
783 
784 	/*
785 	 * Don't write out unmount record on read-only mounts.
786 	 * Or, if we are doing a forced umount (typically because of IO errors).
787 	 */
788 	if (mp->m_flags & XFS_MOUNT_RDONLY)
789 		return 0;
790 
791 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
792 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
793 
794 #ifdef DEBUG
795 	first_iclog = iclog = log->l_iclog;
796 	do {
797 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
798 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
799 			ASSERT(iclog->ic_offset == 0);
800 		}
801 		iclog = iclog->ic_next;
802 	} while (iclog != first_iclog);
803 #endif
804 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
805 		error = xfs_log_reserve(mp, 600, 1, &tic,
806 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
807 		if (!error) {
808 			/* the data section must be 32 bit size aligned */
809 			struct {
810 			    __uint16_t magic;
811 			    __uint16_t pad1;
812 			    __uint32_t pad2; /* may as well make it 64 bits */
813 			} magic = {
814 				.magic = XLOG_UNMOUNT_TYPE,
815 			};
816 			struct xfs_log_iovec reg = {
817 				.i_addr = &magic,
818 				.i_len = sizeof(magic),
819 				.i_type = XLOG_REG_TYPE_UNMOUNT,
820 			};
821 			struct xfs_log_vec vec = {
822 				.lv_niovecs = 1,
823 				.lv_iovecp = &reg,
824 			};
825 
826 			/* remove inited flag, and account for space used */
827 			tic->t_flags = 0;
828 			tic->t_curr_res -= sizeof(magic);
829 			error = xlog_write(log, &vec, tic, &lsn,
830 					   NULL, XLOG_UNMOUNT_TRANS);
831 			/*
832 			 * At this point, we're umounting anyway,
833 			 * so there's no point in transitioning log state
834 			 * to IOERROR. Just continue...
835 			 */
836 		}
837 
838 		if (error)
839 			xfs_alert(mp, "%s: unmount record failed", __func__);
840 
841 
842 		spin_lock(&log->l_icloglock);
843 		iclog = log->l_iclog;
844 		atomic_inc(&iclog->ic_refcnt);
845 		xlog_state_want_sync(log, iclog);
846 		spin_unlock(&log->l_icloglock);
847 		error = xlog_state_release_iclog(log, iclog);
848 
849 		spin_lock(&log->l_icloglock);
850 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
851 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
852 			if (!XLOG_FORCED_SHUTDOWN(log)) {
853 				xlog_wait(&iclog->ic_force_wait,
854 							&log->l_icloglock);
855 			} else {
856 				spin_unlock(&log->l_icloglock);
857 			}
858 		} else {
859 			spin_unlock(&log->l_icloglock);
860 		}
861 		if (tic) {
862 			trace_xfs_log_umount_write(log, tic);
863 			xlog_ungrant_log_space(log, tic);
864 			xfs_log_ticket_put(tic);
865 		}
866 	} else {
867 		/*
868 		 * We're already in forced_shutdown mode, couldn't
869 		 * even attempt to write out the unmount transaction.
870 		 *
871 		 * Go through the motions of sync'ing and releasing
872 		 * the iclog, even though no I/O will actually happen,
873 		 * we need to wait for other log I/Os that may already
874 		 * be in progress.  Do this as a separate section of
875 		 * code so we'll know if we ever get stuck here that
876 		 * we're in this odd situation of trying to unmount
877 		 * a file system that went into forced_shutdown as
878 		 * the result of an unmount..
879 		 */
880 		spin_lock(&log->l_icloglock);
881 		iclog = log->l_iclog;
882 		atomic_inc(&iclog->ic_refcnt);
883 
884 		xlog_state_want_sync(log, iclog);
885 		spin_unlock(&log->l_icloglock);
886 		error =  xlog_state_release_iclog(log, iclog);
887 
888 		spin_lock(&log->l_icloglock);
889 
890 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
891 			|| iclog->ic_state == XLOG_STATE_DIRTY
892 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
893 
894 				xlog_wait(&iclog->ic_force_wait,
895 							&log->l_icloglock);
896 		} else {
897 			spin_unlock(&log->l_icloglock);
898 		}
899 	}
900 
901 	return error;
902 }	/* xfs_log_unmount_write */
903 
904 /*
905  * Empty the log for unmount/freeze.
906  *
907  * To do this, we first need to shut down the background log work so it is not
908  * trying to cover the log as we clean up. We then need to unpin all objects in
909  * the log so we can then flush them out. Once they have completed their IO and
910  * run the callbacks removing themselves from the AIL, we can write the unmount
911  * record.
912  */
913 void
914 xfs_log_quiesce(
915 	struct xfs_mount	*mp)
916 {
917 	cancel_delayed_work_sync(&mp->m_log->l_work);
918 	xfs_log_force(mp, XFS_LOG_SYNC);
919 
920 	/*
921 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
922 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
923 	 * xfs_buf_iowait() cannot be used because it was pushed with the
924 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
925 	 * the IO to complete.
926 	 */
927 	xfs_ail_push_all_sync(mp->m_ail);
928 	xfs_wait_buftarg(mp->m_ddev_targp);
929 	xfs_buf_lock(mp->m_sb_bp);
930 	xfs_buf_unlock(mp->m_sb_bp);
931 
932 	xfs_log_unmount_write(mp);
933 }
934 
935 /*
936  * Shut down and release the AIL and Log.
937  *
938  * During unmount, we need to ensure we flush all the dirty metadata objects
939  * from the AIL so that the log is empty before we write the unmount record to
940  * the log. Once this is done, we can tear down the AIL and the log.
941  */
942 void
943 xfs_log_unmount(
944 	struct xfs_mount	*mp)
945 {
946 	xfs_log_quiesce(mp);
947 
948 	xfs_trans_ail_destroy(mp);
949 	xlog_dealloc_log(mp->m_log);
950 }
951 
952 void
953 xfs_log_item_init(
954 	struct xfs_mount	*mp,
955 	struct xfs_log_item	*item,
956 	int			type,
957 	const struct xfs_item_ops *ops)
958 {
959 	item->li_mountp = mp;
960 	item->li_ailp = mp->m_ail;
961 	item->li_type = type;
962 	item->li_ops = ops;
963 	item->li_lv = NULL;
964 
965 	INIT_LIST_HEAD(&item->li_ail);
966 	INIT_LIST_HEAD(&item->li_cil);
967 }
968 
969 /*
970  * Wake up processes waiting for log space after we have moved the log tail.
971  */
972 void
973 xfs_log_space_wake(
974 	struct xfs_mount	*mp)
975 {
976 	struct xlog		*log = mp->m_log;
977 	int			free_bytes;
978 
979 	if (XLOG_FORCED_SHUTDOWN(log))
980 		return;
981 
982 	if (!list_empty_careful(&log->l_write_head.waiters)) {
983 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
984 
985 		spin_lock(&log->l_write_head.lock);
986 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
987 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
988 		spin_unlock(&log->l_write_head.lock);
989 	}
990 
991 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
992 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993 
994 		spin_lock(&log->l_reserve_head.lock);
995 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
996 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
997 		spin_unlock(&log->l_reserve_head.lock);
998 	}
999 }
1000 
1001 /*
1002  * Determine if we have a transaction that has gone to disk
1003  * that needs to be covered. To begin the transition to the idle state
1004  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
1005  * If we are then in a state where covering is needed, the caller is informed
1006  * that dummy transactions are required to move the log into the idle state.
1007  *
1008  * Because this is called as part of the sync process, we should also indicate
1009  * that dummy transactions should be issued in anything but the covered or
1010  * idle states. This ensures that the log tail is accurately reflected in
1011  * the log at the end of the sync, hence if a crash occurrs avoids replay
1012  * of transactions where the metadata is already on disk.
1013  */
1014 int
1015 xfs_log_need_covered(xfs_mount_t *mp)
1016 {
1017 	int		needed = 0;
1018 	struct xlog	*log = mp->m_log;
1019 
1020 	if (!xfs_fs_writable(mp))
1021 		return 0;
1022 
1023 	spin_lock(&log->l_icloglock);
1024 	switch (log->l_covered_state) {
1025 	case XLOG_STATE_COVER_DONE:
1026 	case XLOG_STATE_COVER_DONE2:
1027 	case XLOG_STATE_COVER_IDLE:
1028 		break;
1029 	case XLOG_STATE_COVER_NEED:
1030 	case XLOG_STATE_COVER_NEED2:
1031 		if (!xfs_ail_min_lsn(log->l_ailp) &&
1032 		    xlog_iclogs_empty(log)) {
1033 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1034 				log->l_covered_state = XLOG_STATE_COVER_DONE;
1035 			else
1036 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
1037 		}
1038 		/* FALLTHRU */
1039 	default:
1040 		needed = 1;
1041 		break;
1042 	}
1043 	spin_unlock(&log->l_icloglock);
1044 	return needed;
1045 }
1046 
1047 /*
1048  * We may be holding the log iclog lock upon entering this routine.
1049  */
1050 xfs_lsn_t
1051 xlog_assign_tail_lsn_locked(
1052 	struct xfs_mount	*mp)
1053 {
1054 	struct xlog		*log = mp->m_log;
1055 	struct xfs_log_item	*lip;
1056 	xfs_lsn_t		tail_lsn;
1057 
1058 	assert_spin_locked(&mp->m_ail->xa_lock);
1059 
1060 	/*
1061 	 * To make sure we always have a valid LSN for the log tail we keep
1062 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1063 	 * and use that when the AIL was empty.
1064 	 */
1065 	lip = xfs_ail_min(mp->m_ail);
1066 	if (lip)
1067 		tail_lsn = lip->li_lsn;
1068 	else
1069 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1070 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1071 	return tail_lsn;
1072 }
1073 
1074 xfs_lsn_t
1075 xlog_assign_tail_lsn(
1076 	struct xfs_mount	*mp)
1077 {
1078 	xfs_lsn_t		tail_lsn;
1079 
1080 	spin_lock(&mp->m_ail->xa_lock);
1081 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1082 	spin_unlock(&mp->m_ail->xa_lock);
1083 
1084 	return tail_lsn;
1085 }
1086 
1087 /*
1088  * Return the space in the log between the tail and the head.  The head
1089  * is passed in the cycle/bytes formal parms.  In the special case where
1090  * the reserve head has wrapped passed the tail, this calculation is no
1091  * longer valid.  In this case, just return 0 which means there is no space
1092  * in the log.  This works for all places where this function is called
1093  * with the reserve head.  Of course, if the write head were to ever
1094  * wrap the tail, we should blow up.  Rather than catch this case here,
1095  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1096  *
1097  * This code also handles the case where the reservation head is behind
1098  * the tail.  The details of this case are described below, but the end
1099  * result is that we return the size of the log as the amount of space left.
1100  */
1101 STATIC int
1102 xlog_space_left(
1103 	struct xlog	*log,
1104 	atomic64_t	*head)
1105 {
1106 	int		free_bytes;
1107 	int		tail_bytes;
1108 	int		tail_cycle;
1109 	int		head_cycle;
1110 	int		head_bytes;
1111 
1112 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1113 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1114 	tail_bytes = BBTOB(tail_bytes);
1115 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1116 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1117 	else if (tail_cycle + 1 < head_cycle)
1118 		return 0;
1119 	else if (tail_cycle < head_cycle) {
1120 		ASSERT(tail_cycle == (head_cycle - 1));
1121 		free_bytes = tail_bytes - head_bytes;
1122 	} else {
1123 		/*
1124 		 * The reservation head is behind the tail.
1125 		 * In this case we just want to return the size of the
1126 		 * log as the amount of space left.
1127 		 */
1128 		xfs_alert(log->l_mp,
1129 			"xlog_space_left: head behind tail\n"
1130 			"  tail_cycle = %d, tail_bytes = %d\n"
1131 			"  GH   cycle = %d, GH   bytes = %d",
1132 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1133 		ASSERT(0);
1134 		free_bytes = log->l_logsize;
1135 	}
1136 	return free_bytes;
1137 }
1138 
1139 
1140 /*
1141  * Log function which is called when an io completes.
1142  *
1143  * The log manager needs its own routine, in order to control what
1144  * happens with the buffer after the write completes.
1145  */
1146 void
1147 xlog_iodone(xfs_buf_t *bp)
1148 {
1149 	struct xlog_in_core	*iclog = bp->b_fspriv;
1150 	struct xlog		*l = iclog->ic_log;
1151 	int			aborted = 0;
1152 
1153 	/*
1154 	 * Race to shutdown the filesystem if we see an error.
1155 	 */
1156 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1157 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1158 		xfs_buf_ioerror_alert(bp, __func__);
1159 		xfs_buf_stale(bp);
1160 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1161 		/*
1162 		 * This flag will be propagated to the trans-committed
1163 		 * callback routines to let them know that the log-commit
1164 		 * didn't succeed.
1165 		 */
1166 		aborted = XFS_LI_ABORTED;
1167 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1168 		aborted = XFS_LI_ABORTED;
1169 	}
1170 
1171 	/* log I/O is always issued ASYNC */
1172 	ASSERT(XFS_BUF_ISASYNC(bp));
1173 	xlog_state_done_syncing(iclog, aborted);
1174 	/*
1175 	 * do not reference the buffer (bp) here as we could race
1176 	 * with it being freed after writing the unmount record to the
1177 	 * log.
1178 	 */
1179 }
1180 
1181 /*
1182  * Return size of each in-core log record buffer.
1183  *
1184  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1185  *
1186  * If the filesystem blocksize is too large, we may need to choose a
1187  * larger size since the directory code currently logs entire blocks.
1188  */
1189 
1190 STATIC void
1191 xlog_get_iclog_buffer_size(
1192 	struct xfs_mount	*mp,
1193 	struct xlog		*log)
1194 {
1195 	int size;
1196 	int xhdrs;
1197 
1198 	if (mp->m_logbufs <= 0)
1199 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1200 	else
1201 		log->l_iclog_bufs = mp->m_logbufs;
1202 
1203 	/*
1204 	 * Buffer size passed in from mount system call.
1205 	 */
1206 	if (mp->m_logbsize > 0) {
1207 		size = log->l_iclog_size = mp->m_logbsize;
1208 		log->l_iclog_size_log = 0;
1209 		while (size != 1) {
1210 			log->l_iclog_size_log++;
1211 			size >>= 1;
1212 		}
1213 
1214 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1215 			/* # headers = size / 32k
1216 			 * one header holds cycles from 32k of data
1217 			 */
1218 
1219 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1220 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1221 				xhdrs++;
1222 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1223 			log->l_iclog_heads = xhdrs;
1224 		} else {
1225 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1226 			log->l_iclog_hsize = BBSIZE;
1227 			log->l_iclog_heads = 1;
1228 		}
1229 		goto done;
1230 	}
1231 
1232 	/* All machines use 32kB buffers by default. */
1233 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1234 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1235 
1236 	/* the default log size is 16k or 32k which is one header sector */
1237 	log->l_iclog_hsize = BBSIZE;
1238 	log->l_iclog_heads = 1;
1239 
1240 done:
1241 	/* are we being asked to make the sizes selected above visible? */
1242 	if (mp->m_logbufs == 0)
1243 		mp->m_logbufs = log->l_iclog_bufs;
1244 	if (mp->m_logbsize == 0)
1245 		mp->m_logbsize = log->l_iclog_size;
1246 }	/* xlog_get_iclog_buffer_size */
1247 
1248 
1249 void
1250 xfs_log_work_queue(
1251 	struct xfs_mount        *mp)
1252 {
1253 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1254 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1255 }
1256 
1257 /*
1258  * Every sync period we need to unpin all items in the AIL and push them to
1259  * disk. If there is nothing dirty, then we might need to cover the log to
1260  * indicate that the filesystem is idle.
1261  */
1262 void
1263 xfs_log_worker(
1264 	struct work_struct	*work)
1265 {
1266 	struct xlog		*log = container_of(to_delayed_work(work),
1267 						struct xlog, l_work);
1268 	struct xfs_mount	*mp = log->l_mp;
1269 
1270 	/* dgc: errors ignored - not fatal and nowhere to report them */
1271 	if (xfs_log_need_covered(mp))
1272 		xfs_fs_log_dummy(mp);
1273 	else
1274 		xfs_log_force(mp, 0);
1275 
1276 	/* start pushing all the metadata that is currently dirty */
1277 	xfs_ail_push_all(mp->m_ail);
1278 
1279 	/* queue us up again */
1280 	xfs_log_work_queue(mp);
1281 }
1282 
1283 /*
1284  * This routine initializes some of the log structure for a given mount point.
1285  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1286  * some other stuff may be filled in too.
1287  */
1288 STATIC struct xlog *
1289 xlog_alloc_log(
1290 	struct xfs_mount	*mp,
1291 	struct xfs_buftarg	*log_target,
1292 	xfs_daddr_t		blk_offset,
1293 	int			num_bblks)
1294 {
1295 	struct xlog		*log;
1296 	xlog_rec_header_t	*head;
1297 	xlog_in_core_t		**iclogp;
1298 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1299 	xfs_buf_t		*bp;
1300 	int			i;
1301 	int			error = ENOMEM;
1302 	uint			log2_size = 0;
1303 
1304 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1305 	if (!log) {
1306 		xfs_warn(mp, "Log allocation failed: No memory!");
1307 		goto out;
1308 	}
1309 
1310 	log->l_mp	   = mp;
1311 	log->l_targ	   = log_target;
1312 	log->l_logsize     = BBTOB(num_bblks);
1313 	log->l_logBBstart  = blk_offset;
1314 	log->l_logBBsize   = num_bblks;
1315 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1316 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1317 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1318 
1319 	log->l_prev_block  = -1;
1320 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1321 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1322 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1323 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1324 
1325 	xlog_grant_head_init(&log->l_reserve_head);
1326 	xlog_grant_head_init(&log->l_write_head);
1327 
1328 	error = EFSCORRUPTED;
1329 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1330 	        log2_size = mp->m_sb.sb_logsectlog;
1331 		if (log2_size < BBSHIFT) {
1332 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1333 				log2_size, BBSHIFT);
1334 			goto out_free_log;
1335 		}
1336 
1337 	        log2_size -= BBSHIFT;
1338 		if (log2_size > mp->m_sectbb_log) {
1339 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1340 				log2_size, mp->m_sectbb_log);
1341 			goto out_free_log;
1342 		}
1343 
1344 		/* for larger sector sizes, must have v2 or external log */
1345 		if (log2_size && log->l_logBBstart > 0 &&
1346 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1347 			xfs_warn(mp,
1348 		"log sector size (0x%x) invalid for configuration.",
1349 				log2_size);
1350 			goto out_free_log;
1351 		}
1352 	}
1353 	log->l_sectBBsize = 1 << log2_size;
1354 
1355 	xlog_get_iclog_buffer_size(mp, log);
1356 
1357 	error = ENOMEM;
1358 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1359 	if (!bp)
1360 		goto out_free_log;
1361 	bp->b_iodone = xlog_iodone;
1362 	ASSERT(xfs_buf_islocked(bp));
1363 	log->l_xbuf = bp;
1364 
1365 	spin_lock_init(&log->l_icloglock);
1366 	init_waitqueue_head(&log->l_flush_wait);
1367 
1368 	iclogp = &log->l_iclog;
1369 	/*
1370 	 * The amount of memory to allocate for the iclog structure is
1371 	 * rather funky due to the way the structure is defined.  It is
1372 	 * done this way so that we can use different sizes for machines
1373 	 * with different amounts of memory.  See the definition of
1374 	 * xlog_in_core_t in xfs_log_priv.h for details.
1375 	 */
1376 	ASSERT(log->l_iclog_size >= 4096);
1377 	for (i=0; i < log->l_iclog_bufs; i++) {
1378 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1379 		if (!*iclogp)
1380 			goto out_free_iclog;
1381 
1382 		iclog = *iclogp;
1383 		iclog->ic_prev = prev_iclog;
1384 		prev_iclog = iclog;
1385 
1386 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1387 						BTOBB(log->l_iclog_size), 0);
1388 		if (!bp)
1389 			goto out_free_iclog;
1390 
1391 		bp->b_iodone = xlog_iodone;
1392 		iclog->ic_bp = bp;
1393 		iclog->ic_data = bp->b_addr;
1394 #ifdef DEBUG
1395 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1396 #endif
1397 		head = &iclog->ic_header;
1398 		memset(head, 0, sizeof(xlog_rec_header_t));
1399 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1400 		head->h_version = cpu_to_be32(
1401 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1402 		head->h_size = cpu_to_be32(log->l_iclog_size);
1403 		/* new fields */
1404 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1405 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1406 
1407 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1408 		iclog->ic_state = XLOG_STATE_ACTIVE;
1409 		iclog->ic_log = log;
1410 		atomic_set(&iclog->ic_refcnt, 0);
1411 		spin_lock_init(&iclog->ic_callback_lock);
1412 		iclog->ic_callback_tail = &(iclog->ic_callback);
1413 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1414 
1415 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1416 		init_waitqueue_head(&iclog->ic_force_wait);
1417 		init_waitqueue_head(&iclog->ic_write_wait);
1418 
1419 		iclogp = &iclog->ic_next;
1420 	}
1421 	*iclogp = log->l_iclog;			/* complete ring */
1422 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1423 
1424 	error = xlog_cil_init(log);
1425 	if (error)
1426 		goto out_free_iclog;
1427 	return log;
1428 
1429 out_free_iclog:
1430 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1431 		prev_iclog = iclog->ic_next;
1432 		if (iclog->ic_bp)
1433 			xfs_buf_free(iclog->ic_bp);
1434 		kmem_free(iclog);
1435 	}
1436 	spinlock_destroy(&log->l_icloglock);
1437 	xfs_buf_free(log->l_xbuf);
1438 out_free_log:
1439 	kmem_free(log);
1440 out:
1441 	return ERR_PTR(-error);
1442 }	/* xlog_alloc_log */
1443 
1444 
1445 /*
1446  * Write out the commit record of a transaction associated with the given
1447  * ticket.  Return the lsn of the commit record.
1448  */
1449 STATIC int
1450 xlog_commit_record(
1451 	struct xlog		*log,
1452 	struct xlog_ticket	*ticket,
1453 	struct xlog_in_core	**iclog,
1454 	xfs_lsn_t		*commitlsnp)
1455 {
1456 	struct xfs_mount *mp = log->l_mp;
1457 	int	error;
1458 	struct xfs_log_iovec reg = {
1459 		.i_addr = NULL,
1460 		.i_len = 0,
1461 		.i_type = XLOG_REG_TYPE_COMMIT,
1462 	};
1463 	struct xfs_log_vec vec = {
1464 		.lv_niovecs = 1,
1465 		.lv_iovecp = &reg,
1466 	};
1467 
1468 	ASSERT_ALWAYS(iclog);
1469 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1470 					XLOG_COMMIT_TRANS);
1471 	if (error)
1472 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1473 	return error;
1474 }
1475 
1476 /*
1477  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1478  * log space.  This code pushes on the lsn which would supposedly free up
1479  * the 25% which we want to leave free.  We may need to adopt a policy which
1480  * pushes on an lsn which is further along in the log once we reach the high
1481  * water mark.  In this manner, we would be creating a low water mark.
1482  */
1483 STATIC void
1484 xlog_grant_push_ail(
1485 	struct xlog	*log,
1486 	int		need_bytes)
1487 {
1488 	xfs_lsn_t	threshold_lsn = 0;
1489 	xfs_lsn_t	last_sync_lsn;
1490 	int		free_blocks;
1491 	int		free_bytes;
1492 	int		threshold_block;
1493 	int		threshold_cycle;
1494 	int		free_threshold;
1495 
1496 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1497 
1498 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1499 	free_blocks = BTOBBT(free_bytes);
1500 
1501 	/*
1502 	 * Set the threshold for the minimum number of free blocks in the
1503 	 * log to the maximum of what the caller needs, one quarter of the
1504 	 * log, and 256 blocks.
1505 	 */
1506 	free_threshold = BTOBB(need_bytes);
1507 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1508 	free_threshold = MAX(free_threshold, 256);
1509 	if (free_blocks >= free_threshold)
1510 		return;
1511 
1512 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1513 						&threshold_block);
1514 	threshold_block += free_threshold;
1515 	if (threshold_block >= log->l_logBBsize) {
1516 		threshold_block -= log->l_logBBsize;
1517 		threshold_cycle += 1;
1518 	}
1519 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1520 					threshold_block);
1521 	/*
1522 	 * Don't pass in an lsn greater than the lsn of the last
1523 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1524 	 * so that it doesn't change between the compare and the set.
1525 	 */
1526 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1527 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1528 		threshold_lsn = last_sync_lsn;
1529 
1530 	/*
1531 	 * Get the transaction layer to kick the dirty buffers out to
1532 	 * disk asynchronously. No point in trying to do this if
1533 	 * the filesystem is shutting down.
1534 	 */
1535 	if (!XLOG_FORCED_SHUTDOWN(log))
1536 		xfs_ail_push(log->l_ailp, threshold_lsn);
1537 }
1538 
1539 /*
1540  * Stamp cycle number in every block
1541  */
1542 STATIC void
1543 xlog_pack_data(
1544 	struct xlog		*log,
1545 	struct xlog_in_core	*iclog,
1546 	int			roundoff)
1547 {
1548 	int			i, j, k;
1549 	int			size = iclog->ic_offset + roundoff;
1550 	__be32			cycle_lsn;
1551 	xfs_caddr_t		dp;
1552 
1553 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1554 
1555 	dp = iclog->ic_datap;
1556 	for (i = 0; i < BTOBB(size); i++) {
1557 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1558 			break;
1559 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1560 		*(__be32 *)dp = cycle_lsn;
1561 		dp += BBSIZE;
1562 	}
1563 
1564 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1565 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1566 
1567 		for ( ; i < BTOBB(size); i++) {
1568 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1569 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1571 			*(__be32 *)dp = cycle_lsn;
1572 			dp += BBSIZE;
1573 		}
1574 
1575 		for (i = 1; i < log->l_iclog_heads; i++)
1576 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1577 	}
1578 }
1579 
1580 /*
1581  * Calculate the checksum for a log buffer.
1582  *
1583  * This is a little more complicated than it should be because the various
1584  * headers and the actual data are non-contiguous.
1585  */
1586 __le32
1587 xlog_cksum(
1588 	struct xlog		*log,
1589 	struct xlog_rec_header	*rhead,
1590 	char			*dp,
1591 	int			size)
1592 {
1593 	__uint32_t		crc;
1594 
1595 	/* first generate the crc for the record header ... */
1596 	crc = xfs_start_cksum((char *)rhead,
1597 			      sizeof(struct xlog_rec_header),
1598 			      offsetof(struct xlog_rec_header, h_crc));
1599 
1600 	/* ... then for additional cycle data for v2 logs ... */
1601 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1602 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1603 		int		i;
1604 
1605 		for (i = 1; i < log->l_iclog_heads; i++) {
1606 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1607 				     sizeof(struct xlog_rec_ext_header));
1608 		}
1609 	}
1610 
1611 	/* ... and finally for the payload */
1612 	crc = crc32c(crc, dp, size);
1613 
1614 	return xfs_end_cksum(crc);
1615 }
1616 
1617 /*
1618  * The bdstrat callback function for log bufs. This gives us a central
1619  * place to trap bufs in case we get hit by a log I/O error and need to
1620  * shutdown. Actually, in practice, even when we didn't get a log error,
1621  * we transition the iclogs to IOERROR state *after* flushing all existing
1622  * iclogs to disk. This is because we don't want anymore new transactions to be
1623  * started or completed afterwards.
1624  */
1625 STATIC int
1626 xlog_bdstrat(
1627 	struct xfs_buf		*bp)
1628 {
1629 	struct xlog_in_core	*iclog = bp->b_fspriv;
1630 
1631 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1632 		xfs_buf_ioerror(bp, EIO);
1633 		xfs_buf_stale(bp);
1634 		xfs_buf_ioend(bp, 0);
1635 		/*
1636 		 * It would seem logical to return EIO here, but we rely on
1637 		 * the log state machine to propagate I/O errors instead of
1638 		 * doing it here.
1639 		 */
1640 		return 0;
1641 	}
1642 
1643 	xfs_buf_iorequest(bp);
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1649  * fashion.  Previously, we should have moved the current iclog
1650  * ptr in the log to point to the next available iclog.  This allows further
1651  * write to continue while this code syncs out an iclog ready to go.
1652  * Before an in-core log can be written out, the data section must be scanned
1653  * to save away the 1st word of each BBSIZE block into the header.  We replace
1654  * it with the current cycle count.  Each BBSIZE block is tagged with the
1655  * cycle count because there in an implicit assumption that drives will
1656  * guarantee that entire 512 byte blocks get written at once.  In other words,
1657  * we can't have part of a 512 byte block written and part not written.  By
1658  * tagging each block, we will know which blocks are valid when recovering
1659  * after an unclean shutdown.
1660  *
1661  * This routine is single threaded on the iclog.  No other thread can be in
1662  * this routine with the same iclog.  Changing contents of iclog can there-
1663  * fore be done without grabbing the state machine lock.  Updating the global
1664  * log will require grabbing the lock though.
1665  *
1666  * The entire log manager uses a logical block numbering scheme.  Only
1667  * log_sync (and then only bwrite()) know about the fact that the log may
1668  * not start with block zero on a given device.  The log block start offset
1669  * is added immediately before calling bwrite().
1670  */
1671 
1672 STATIC int
1673 xlog_sync(
1674 	struct xlog		*log,
1675 	struct xlog_in_core	*iclog)
1676 {
1677 	xfs_buf_t	*bp;
1678 	int		i;
1679 	uint		count;		/* byte count of bwrite */
1680 	uint		count_init;	/* initial count before roundup */
1681 	int		roundoff;       /* roundoff to BB or stripe */
1682 	int		split = 0;	/* split write into two regions */
1683 	int		error;
1684 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1685 	int		size;
1686 
1687 	XFS_STATS_INC(xs_log_writes);
1688 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1689 
1690 	/* Add for LR header */
1691 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1692 
1693 	/* Round out the log write size */
1694 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1695 		/* we have a v2 stripe unit to use */
1696 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1697 	} else {
1698 		count = BBTOB(BTOBB(count_init));
1699 	}
1700 	roundoff = count - count_init;
1701 	ASSERT(roundoff >= 0);
1702 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1703                 roundoff < log->l_mp->m_sb.sb_logsunit)
1704 		||
1705 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1706 		 roundoff < BBTOB(1)));
1707 
1708 	/* move grant heads by roundoff in sync */
1709 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1710 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1711 
1712 	/* put cycle number in every block */
1713 	xlog_pack_data(log, iclog, roundoff);
1714 
1715 	/* real byte length */
1716 	size = iclog->ic_offset;
1717 	if (v2)
1718 		size += roundoff;
1719 	iclog->ic_header.h_len = cpu_to_be32(size);
1720 
1721 	bp = iclog->ic_bp;
1722 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1723 
1724 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1725 
1726 	/* Do we need to split this write into 2 parts? */
1727 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1728 		char		*dptr;
1729 
1730 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1731 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1732 		iclog->ic_bwritecnt = 2;
1733 
1734 		/*
1735 		 * Bump the cycle numbers at the start of each block in the
1736 		 * part of the iclog that ends up in the buffer that gets
1737 		 * written to the start of the log.
1738 		 *
1739 		 * Watch out for the header magic number case, though.
1740 		 */
1741 		dptr = (char *)&iclog->ic_header + count;
1742 		for (i = 0; i < split; i += BBSIZE) {
1743 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1744 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745 				cycle++;
1746 			*(__be32 *)dptr = cpu_to_be32(cycle);
1747 
1748 			dptr += BBSIZE;
1749 		}
1750 	} else {
1751 		iclog->ic_bwritecnt = 1;
1752 	}
1753 
1754 	/* calculcate the checksum */
1755 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1756 					    iclog->ic_datap, size);
1757 
1758 	bp->b_io_length = BTOBB(count);
1759 	bp->b_fspriv = iclog;
1760 	XFS_BUF_ZEROFLAGS(bp);
1761 	XFS_BUF_ASYNC(bp);
1762 	bp->b_flags |= XBF_SYNCIO;
1763 
1764 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1765 		bp->b_flags |= XBF_FUA;
1766 
1767 		/*
1768 		 * Flush the data device before flushing the log to make
1769 		 * sure all meta data written back from the AIL actually made
1770 		 * it to disk before stamping the new log tail LSN into the
1771 		 * log buffer.  For an external log we need to issue the
1772 		 * flush explicitly, and unfortunately synchronously here;
1773 		 * for an internal log we can simply use the block layer
1774 		 * state machine for preflushes.
1775 		 */
1776 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1777 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1778 		else
1779 			bp->b_flags |= XBF_FLUSH;
1780 	}
1781 
1782 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1783 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1784 
1785 	xlog_verify_iclog(log, iclog, count, true);
1786 
1787 	/* account for log which doesn't start at block #0 */
1788 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1789 	/*
1790 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1791 	 * is shutting down.
1792 	 */
1793 	XFS_BUF_WRITE(bp);
1794 
1795 	error = xlog_bdstrat(bp);
1796 	if (error) {
1797 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1798 		return error;
1799 	}
1800 	if (split) {
1801 		bp = iclog->ic_log->l_xbuf;
1802 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1803 		xfs_buf_associate_memory(bp,
1804 				(char *)&iclog->ic_header + count, split);
1805 		bp->b_fspriv = iclog;
1806 		XFS_BUF_ZEROFLAGS(bp);
1807 		XFS_BUF_ASYNC(bp);
1808 		bp->b_flags |= XBF_SYNCIO;
1809 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1810 			bp->b_flags |= XBF_FUA;
1811 
1812 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1813 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1814 
1815 		/* account for internal log which doesn't start at block #0 */
1816 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1817 		XFS_BUF_WRITE(bp);
1818 		error = xlog_bdstrat(bp);
1819 		if (error) {
1820 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1821 			return error;
1822 		}
1823 	}
1824 	return 0;
1825 }	/* xlog_sync */
1826 
1827 /*
1828  * Deallocate a log structure
1829  */
1830 STATIC void
1831 xlog_dealloc_log(
1832 	struct xlog	*log)
1833 {
1834 	xlog_in_core_t	*iclog, *next_iclog;
1835 	int		i;
1836 
1837 	xlog_cil_destroy(log);
1838 
1839 	/*
1840 	 * always need to ensure that the extra buffer does not point to memory
1841 	 * owned by another log buffer before we free it.
1842 	 */
1843 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1844 	xfs_buf_free(log->l_xbuf);
1845 
1846 	iclog = log->l_iclog;
1847 	for (i=0; i<log->l_iclog_bufs; i++) {
1848 		xfs_buf_free(iclog->ic_bp);
1849 		next_iclog = iclog->ic_next;
1850 		kmem_free(iclog);
1851 		iclog = next_iclog;
1852 	}
1853 	spinlock_destroy(&log->l_icloglock);
1854 
1855 	log->l_mp->m_log = NULL;
1856 	kmem_free(log);
1857 }	/* xlog_dealloc_log */
1858 
1859 /*
1860  * Update counters atomically now that memcpy is done.
1861  */
1862 /* ARGSUSED */
1863 static inline void
1864 xlog_state_finish_copy(
1865 	struct xlog		*log,
1866 	struct xlog_in_core	*iclog,
1867 	int			record_cnt,
1868 	int			copy_bytes)
1869 {
1870 	spin_lock(&log->l_icloglock);
1871 
1872 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1873 	iclog->ic_offset += copy_bytes;
1874 
1875 	spin_unlock(&log->l_icloglock);
1876 }	/* xlog_state_finish_copy */
1877 
1878 
1879 
1880 
1881 /*
1882  * print out info relating to regions written which consume
1883  * the reservation
1884  */
1885 void
1886 xlog_print_tic_res(
1887 	struct xfs_mount	*mp,
1888 	struct xlog_ticket	*ticket)
1889 {
1890 	uint i;
1891 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1892 
1893 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1894 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1895 	    "bformat",
1896 	    "bchunk",
1897 	    "efi_format",
1898 	    "efd_format",
1899 	    "iformat",
1900 	    "icore",
1901 	    "iext",
1902 	    "ibroot",
1903 	    "ilocal",
1904 	    "iattr_ext",
1905 	    "iattr_broot",
1906 	    "iattr_local",
1907 	    "qformat",
1908 	    "dquot",
1909 	    "quotaoff",
1910 	    "LR header",
1911 	    "unmount",
1912 	    "commit",
1913 	    "trans header"
1914 	};
1915 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1916 	    "SETATTR_NOT_SIZE",
1917 	    "SETATTR_SIZE",
1918 	    "INACTIVE",
1919 	    "CREATE",
1920 	    "CREATE_TRUNC",
1921 	    "TRUNCATE_FILE",
1922 	    "REMOVE",
1923 	    "LINK",
1924 	    "RENAME",
1925 	    "MKDIR",
1926 	    "RMDIR",
1927 	    "SYMLINK",
1928 	    "SET_DMATTRS",
1929 	    "GROWFS",
1930 	    "STRAT_WRITE",
1931 	    "DIOSTRAT",
1932 	    "WRITE_SYNC",
1933 	    "WRITEID",
1934 	    "ADDAFORK",
1935 	    "ATTRINVAL",
1936 	    "ATRUNCATE",
1937 	    "ATTR_SET",
1938 	    "ATTR_RM",
1939 	    "ATTR_FLAG",
1940 	    "CLEAR_AGI_BUCKET",
1941 	    "QM_SBCHANGE",
1942 	    "DUMMY1",
1943 	    "DUMMY2",
1944 	    "QM_QUOTAOFF",
1945 	    "QM_DQALLOC",
1946 	    "QM_SETQLIM",
1947 	    "QM_DQCLUSTER",
1948 	    "QM_QINOCREATE",
1949 	    "QM_QUOTAOFF_END",
1950 	    "SB_UNIT",
1951 	    "FSYNC_TS",
1952 	    "GROWFSRT_ALLOC",
1953 	    "GROWFSRT_ZERO",
1954 	    "GROWFSRT_FREE",
1955 	    "SWAPEXT"
1956 	};
1957 
1958 	xfs_warn(mp,
1959 		"xlog_write: reservation summary:\n"
1960 		"  trans type  = %s (%u)\n"
1961 		"  unit res    = %d bytes\n"
1962 		"  current res = %d bytes\n"
1963 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1964 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1965 		"  ophdr + reg = %u bytes\n"
1966 		"  num regions = %u\n",
1967 		((ticket->t_trans_type <= 0 ||
1968 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1969 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1970 		ticket->t_trans_type,
1971 		ticket->t_unit_res,
1972 		ticket->t_curr_res,
1973 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1974 		ticket->t_res_num_ophdrs, ophdr_spc,
1975 		ticket->t_res_arr_sum +
1976 		ticket->t_res_o_flow + ophdr_spc,
1977 		ticket->t_res_num);
1978 
1979 	for (i = 0; i < ticket->t_res_num; i++) {
1980 		uint r_type = ticket->t_res_arr[i].r_type;
1981 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1982 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1983 			    "bad-rtype" : res_type_str[r_type-1]),
1984 			    ticket->t_res_arr[i].r_len);
1985 	}
1986 
1987 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1988 		"xlog_write: reservation ran out. Need to up reservation");
1989 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1990 }
1991 
1992 /*
1993  * Calculate the potential space needed by the log vector.  Each region gets
1994  * its own xlog_op_header_t and may need to be double word aligned.
1995  */
1996 static int
1997 xlog_write_calc_vec_length(
1998 	struct xlog_ticket	*ticket,
1999 	struct xfs_log_vec	*log_vector)
2000 {
2001 	struct xfs_log_vec	*lv;
2002 	int			headers = 0;
2003 	int			len = 0;
2004 	int			i;
2005 
2006 	/* acct for start rec of xact */
2007 	if (ticket->t_flags & XLOG_TIC_INITED)
2008 		headers++;
2009 
2010 	for (lv = log_vector; lv; lv = lv->lv_next) {
2011 		/* we don't write ordered log vectors */
2012 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2013 			continue;
2014 
2015 		headers += lv->lv_niovecs;
2016 
2017 		for (i = 0; i < lv->lv_niovecs; i++) {
2018 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2019 
2020 			len += vecp->i_len;
2021 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2022 		}
2023 	}
2024 
2025 	ticket->t_res_num_ophdrs += headers;
2026 	len += headers * sizeof(struct xlog_op_header);
2027 
2028 	return len;
2029 }
2030 
2031 /*
2032  * If first write for transaction, insert start record  We can't be trying to
2033  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2034  */
2035 static int
2036 xlog_write_start_rec(
2037 	struct xlog_op_header	*ophdr,
2038 	struct xlog_ticket	*ticket)
2039 {
2040 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2041 		return 0;
2042 
2043 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2044 	ophdr->oh_clientid = ticket->t_clientid;
2045 	ophdr->oh_len = 0;
2046 	ophdr->oh_flags = XLOG_START_TRANS;
2047 	ophdr->oh_res2 = 0;
2048 
2049 	ticket->t_flags &= ~XLOG_TIC_INITED;
2050 
2051 	return sizeof(struct xlog_op_header);
2052 }
2053 
2054 static xlog_op_header_t *
2055 xlog_write_setup_ophdr(
2056 	struct xlog		*log,
2057 	struct xlog_op_header	*ophdr,
2058 	struct xlog_ticket	*ticket,
2059 	uint			flags)
2060 {
2061 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2062 	ophdr->oh_clientid = ticket->t_clientid;
2063 	ophdr->oh_res2 = 0;
2064 
2065 	/* are we copying a commit or unmount record? */
2066 	ophdr->oh_flags = flags;
2067 
2068 	/*
2069 	 * We've seen logs corrupted with bad transaction client ids.  This
2070 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2071 	 * and shut down the filesystem.
2072 	 */
2073 	switch (ophdr->oh_clientid)  {
2074 	case XFS_TRANSACTION:
2075 	case XFS_VOLUME:
2076 	case XFS_LOG:
2077 		break;
2078 	default:
2079 		xfs_warn(log->l_mp,
2080 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2081 			ophdr->oh_clientid, ticket);
2082 		return NULL;
2083 	}
2084 
2085 	return ophdr;
2086 }
2087 
2088 /*
2089  * Set up the parameters of the region copy into the log. This has
2090  * to handle region write split across multiple log buffers - this
2091  * state is kept external to this function so that this code can
2092  * be written in an obvious, self documenting manner.
2093  */
2094 static int
2095 xlog_write_setup_copy(
2096 	struct xlog_ticket	*ticket,
2097 	struct xlog_op_header	*ophdr,
2098 	int			space_available,
2099 	int			space_required,
2100 	int			*copy_off,
2101 	int			*copy_len,
2102 	int			*last_was_partial_copy,
2103 	int			*bytes_consumed)
2104 {
2105 	int			still_to_copy;
2106 
2107 	still_to_copy = space_required - *bytes_consumed;
2108 	*copy_off = *bytes_consumed;
2109 
2110 	if (still_to_copy <= space_available) {
2111 		/* write of region completes here */
2112 		*copy_len = still_to_copy;
2113 		ophdr->oh_len = cpu_to_be32(*copy_len);
2114 		if (*last_was_partial_copy)
2115 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2116 		*last_was_partial_copy = 0;
2117 		*bytes_consumed = 0;
2118 		return 0;
2119 	}
2120 
2121 	/* partial write of region, needs extra log op header reservation */
2122 	*copy_len = space_available;
2123 	ophdr->oh_len = cpu_to_be32(*copy_len);
2124 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2125 	if (*last_was_partial_copy)
2126 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2127 	*bytes_consumed += *copy_len;
2128 	(*last_was_partial_copy)++;
2129 
2130 	/* account for new log op header */
2131 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2132 	ticket->t_res_num_ophdrs++;
2133 
2134 	return sizeof(struct xlog_op_header);
2135 }
2136 
2137 static int
2138 xlog_write_copy_finish(
2139 	struct xlog		*log,
2140 	struct xlog_in_core	*iclog,
2141 	uint			flags,
2142 	int			*record_cnt,
2143 	int			*data_cnt,
2144 	int			*partial_copy,
2145 	int			*partial_copy_len,
2146 	int			log_offset,
2147 	struct xlog_in_core	**commit_iclog)
2148 {
2149 	if (*partial_copy) {
2150 		/*
2151 		 * This iclog has already been marked WANT_SYNC by
2152 		 * xlog_state_get_iclog_space.
2153 		 */
2154 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2155 		*record_cnt = 0;
2156 		*data_cnt = 0;
2157 		return xlog_state_release_iclog(log, iclog);
2158 	}
2159 
2160 	*partial_copy = 0;
2161 	*partial_copy_len = 0;
2162 
2163 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2164 		/* no more space in this iclog - push it. */
2165 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2166 		*record_cnt = 0;
2167 		*data_cnt = 0;
2168 
2169 		spin_lock(&log->l_icloglock);
2170 		xlog_state_want_sync(log, iclog);
2171 		spin_unlock(&log->l_icloglock);
2172 
2173 		if (!commit_iclog)
2174 			return xlog_state_release_iclog(log, iclog);
2175 		ASSERT(flags & XLOG_COMMIT_TRANS);
2176 		*commit_iclog = iclog;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 /*
2183  * Write some region out to in-core log
2184  *
2185  * This will be called when writing externally provided regions or when
2186  * writing out a commit record for a given transaction.
2187  *
2188  * General algorithm:
2189  *	1. Find total length of this write.  This may include adding to the
2190  *		lengths passed in.
2191  *	2. Check whether we violate the tickets reservation.
2192  *	3. While writing to this iclog
2193  *	    A. Reserve as much space in this iclog as can get
2194  *	    B. If this is first write, save away start lsn
2195  *	    C. While writing this region:
2196  *		1. If first write of transaction, write start record
2197  *		2. Write log operation header (header per region)
2198  *		3. Find out if we can fit entire region into this iclog
2199  *		4. Potentially, verify destination memcpy ptr
2200  *		5. Memcpy (partial) region
2201  *		6. If partial copy, release iclog; otherwise, continue
2202  *			copying more regions into current iclog
2203  *	4. Mark want sync bit (in simulation mode)
2204  *	5. Release iclog for potential flush to on-disk log.
2205  *
2206  * ERRORS:
2207  * 1.	Panic if reservation is overrun.  This should never happen since
2208  *	reservation amounts are generated internal to the filesystem.
2209  * NOTES:
2210  * 1. Tickets are single threaded data structures.
2211  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2212  *	syncing routine.  When a single log_write region needs to span
2213  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2214  *	on all log operation writes which don't contain the end of the
2215  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2216  *	operation which contains the end of the continued log_write region.
2217  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2218  *	we don't really know exactly how much space will be used.  As a result,
2219  *	we don't update ic_offset until the end when we know exactly how many
2220  *	bytes have been written out.
2221  */
2222 int
2223 xlog_write(
2224 	struct xlog		*log,
2225 	struct xfs_log_vec	*log_vector,
2226 	struct xlog_ticket	*ticket,
2227 	xfs_lsn_t		*start_lsn,
2228 	struct xlog_in_core	**commit_iclog,
2229 	uint			flags)
2230 {
2231 	struct xlog_in_core	*iclog = NULL;
2232 	struct xfs_log_iovec	*vecp;
2233 	struct xfs_log_vec	*lv;
2234 	int			len;
2235 	int			index;
2236 	int			partial_copy = 0;
2237 	int			partial_copy_len = 0;
2238 	int			contwr = 0;
2239 	int			record_cnt = 0;
2240 	int			data_cnt = 0;
2241 	int			error;
2242 
2243 	*start_lsn = 0;
2244 
2245 	len = xlog_write_calc_vec_length(ticket, log_vector);
2246 
2247 	/*
2248 	 * Region headers and bytes are already accounted for.
2249 	 * We only need to take into account start records and
2250 	 * split regions in this function.
2251 	 */
2252 	if (ticket->t_flags & XLOG_TIC_INITED)
2253 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2254 
2255 	/*
2256 	 * Commit record headers need to be accounted for. These
2257 	 * come in as separate writes so are easy to detect.
2258 	 */
2259 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2260 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2261 
2262 	if (ticket->t_curr_res < 0)
2263 		xlog_print_tic_res(log->l_mp, ticket);
2264 
2265 	index = 0;
2266 	lv = log_vector;
2267 	vecp = lv->lv_iovecp;
2268 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2269 		void		*ptr;
2270 		int		log_offset;
2271 
2272 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2273 						   &contwr, &log_offset);
2274 		if (error)
2275 			return error;
2276 
2277 		ASSERT(log_offset <= iclog->ic_size - 1);
2278 		ptr = iclog->ic_datap + log_offset;
2279 
2280 		/* start_lsn is the first lsn written to. That's all we need. */
2281 		if (!*start_lsn)
2282 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2283 
2284 		/*
2285 		 * This loop writes out as many regions as can fit in the amount
2286 		 * of space which was allocated by xlog_state_get_iclog_space().
2287 		 */
2288 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2289 			struct xfs_log_iovec	*reg;
2290 			struct xlog_op_header	*ophdr;
2291 			int			start_rec_copy;
2292 			int			copy_len;
2293 			int			copy_off;
2294 			bool			ordered = false;
2295 
2296 			/* ordered log vectors have no regions to write */
2297 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2298 				ASSERT(lv->lv_niovecs == 0);
2299 				ordered = true;
2300 				goto next_lv;
2301 			}
2302 
2303 			reg = &vecp[index];
2304 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2305 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2306 
2307 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2308 			if (start_rec_copy) {
2309 				record_cnt++;
2310 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2311 						   start_rec_copy);
2312 			}
2313 
2314 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2315 			if (!ophdr)
2316 				return XFS_ERROR(EIO);
2317 
2318 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2319 					   sizeof(struct xlog_op_header));
2320 
2321 			len += xlog_write_setup_copy(ticket, ophdr,
2322 						     iclog->ic_size-log_offset,
2323 						     reg->i_len,
2324 						     &copy_off, &copy_len,
2325 						     &partial_copy,
2326 						     &partial_copy_len);
2327 			xlog_verify_dest_ptr(log, ptr);
2328 
2329 			/* copy region */
2330 			ASSERT(copy_len >= 0);
2331 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2332 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2333 
2334 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2335 			record_cnt++;
2336 			data_cnt += contwr ? copy_len : 0;
2337 
2338 			error = xlog_write_copy_finish(log, iclog, flags,
2339 						       &record_cnt, &data_cnt,
2340 						       &partial_copy,
2341 						       &partial_copy_len,
2342 						       log_offset,
2343 						       commit_iclog);
2344 			if (error)
2345 				return error;
2346 
2347 			/*
2348 			 * if we had a partial copy, we need to get more iclog
2349 			 * space but we don't want to increment the region
2350 			 * index because there is still more is this region to
2351 			 * write.
2352 			 *
2353 			 * If we completed writing this region, and we flushed
2354 			 * the iclog (indicated by resetting of the record
2355 			 * count), then we also need to get more log space. If
2356 			 * this was the last record, though, we are done and
2357 			 * can just return.
2358 			 */
2359 			if (partial_copy)
2360 				break;
2361 
2362 			if (++index == lv->lv_niovecs) {
2363 next_lv:
2364 				lv = lv->lv_next;
2365 				index = 0;
2366 				if (lv)
2367 					vecp = lv->lv_iovecp;
2368 			}
2369 			if (record_cnt == 0 && ordered == false) {
2370 				if (!lv)
2371 					return 0;
2372 				break;
2373 			}
2374 		}
2375 	}
2376 
2377 	ASSERT(len == 0);
2378 
2379 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2380 	if (!commit_iclog)
2381 		return xlog_state_release_iclog(log, iclog);
2382 
2383 	ASSERT(flags & XLOG_COMMIT_TRANS);
2384 	*commit_iclog = iclog;
2385 	return 0;
2386 }
2387 
2388 
2389 /*****************************************************************************
2390  *
2391  *		State Machine functions
2392  *
2393  *****************************************************************************
2394  */
2395 
2396 /* Clean iclogs starting from the head.  This ordering must be
2397  * maintained, so an iclog doesn't become ACTIVE beyond one that
2398  * is SYNCING.  This is also required to maintain the notion that we use
2399  * a ordered wait queue to hold off would be writers to the log when every
2400  * iclog is trying to sync to disk.
2401  *
2402  * State Change: DIRTY -> ACTIVE
2403  */
2404 STATIC void
2405 xlog_state_clean_log(
2406 	struct xlog *log)
2407 {
2408 	xlog_in_core_t	*iclog;
2409 	int changed = 0;
2410 
2411 	iclog = log->l_iclog;
2412 	do {
2413 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2414 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2415 			iclog->ic_offset       = 0;
2416 			ASSERT(iclog->ic_callback == NULL);
2417 			/*
2418 			 * If the number of ops in this iclog indicate it just
2419 			 * contains the dummy transaction, we can
2420 			 * change state into IDLE (the second time around).
2421 			 * Otherwise we should change the state into
2422 			 * NEED a dummy.
2423 			 * We don't need to cover the dummy.
2424 			 */
2425 			if (!changed &&
2426 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2427 			   		XLOG_COVER_OPS)) {
2428 				changed = 1;
2429 			} else {
2430 				/*
2431 				 * We have two dirty iclogs so start over
2432 				 * This could also be num of ops indicates
2433 				 * this is not the dummy going out.
2434 				 */
2435 				changed = 2;
2436 			}
2437 			iclog->ic_header.h_num_logops = 0;
2438 			memset(iclog->ic_header.h_cycle_data, 0,
2439 			      sizeof(iclog->ic_header.h_cycle_data));
2440 			iclog->ic_header.h_lsn = 0;
2441 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2442 			/* do nothing */;
2443 		else
2444 			break;	/* stop cleaning */
2445 		iclog = iclog->ic_next;
2446 	} while (iclog != log->l_iclog);
2447 
2448 	/* log is locked when we are called */
2449 	/*
2450 	 * Change state for the dummy log recording.
2451 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2452 	 * we are done writing the dummy record.
2453 	 * If we are done with the second dummy recored (DONE2), then
2454 	 * we go to IDLE.
2455 	 */
2456 	if (changed) {
2457 		switch (log->l_covered_state) {
2458 		case XLOG_STATE_COVER_IDLE:
2459 		case XLOG_STATE_COVER_NEED:
2460 		case XLOG_STATE_COVER_NEED2:
2461 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2462 			break;
2463 
2464 		case XLOG_STATE_COVER_DONE:
2465 			if (changed == 1)
2466 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2467 			else
2468 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2469 			break;
2470 
2471 		case XLOG_STATE_COVER_DONE2:
2472 			if (changed == 1)
2473 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2474 			else
2475 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2476 			break;
2477 
2478 		default:
2479 			ASSERT(0);
2480 		}
2481 	}
2482 }	/* xlog_state_clean_log */
2483 
2484 STATIC xfs_lsn_t
2485 xlog_get_lowest_lsn(
2486 	struct xlog	*log)
2487 {
2488 	xlog_in_core_t  *lsn_log;
2489 	xfs_lsn_t	lowest_lsn, lsn;
2490 
2491 	lsn_log = log->l_iclog;
2492 	lowest_lsn = 0;
2493 	do {
2494 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2495 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2496 		if ((lsn && !lowest_lsn) ||
2497 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2498 			lowest_lsn = lsn;
2499 		}
2500 	    }
2501 	    lsn_log = lsn_log->ic_next;
2502 	} while (lsn_log != log->l_iclog);
2503 	return lowest_lsn;
2504 }
2505 
2506 
2507 STATIC void
2508 xlog_state_do_callback(
2509 	struct xlog		*log,
2510 	int			aborted,
2511 	struct xlog_in_core	*ciclog)
2512 {
2513 	xlog_in_core_t	   *iclog;
2514 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2515 						 * processed all iclogs once */
2516 	xfs_log_callback_t *cb, *cb_next;
2517 	int		   flushcnt = 0;
2518 	xfs_lsn_t	   lowest_lsn;
2519 	int		   ioerrors;	/* counter: iclogs with errors */
2520 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2521 	int		   funcdidcallbacks; /* flag: function did callbacks */
2522 	int		   repeats;	/* for issuing console warnings if
2523 					 * looping too many times */
2524 	int		   wake = 0;
2525 
2526 	spin_lock(&log->l_icloglock);
2527 	first_iclog = iclog = log->l_iclog;
2528 	ioerrors = 0;
2529 	funcdidcallbacks = 0;
2530 	repeats = 0;
2531 
2532 	do {
2533 		/*
2534 		 * Scan all iclogs starting with the one pointed to by the
2535 		 * log.  Reset this starting point each time the log is
2536 		 * unlocked (during callbacks).
2537 		 *
2538 		 * Keep looping through iclogs until one full pass is made
2539 		 * without running any callbacks.
2540 		 */
2541 		first_iclog = log->l_iclog;
2542 		iclog = log->l_iclog;
2543 		loopdidcallbacks = 0;
2544 		repeats++;
2545 
2546 		do {
2547 
2548 			/* skip all iclogs in the ACTIVE & DIRTY states */
2549 			if (iclog->ic_state &
2550 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2551 				iclog = iclog->ic_next;
2552 				continue;
2553 			}
2554 
2555 			/*
2556 			 * Between marking a filesystem SHUTDOWN and stopping
2557 			 * the log, we do flush all iclogs to disk (if there
2558 			 * wasn't a log I/O error). So, we do want things to
2559 			 * go smoothly in case of just a SHUTDOWN  w/o a
2560 			 * LOG_IO_ERROR.
2561 			 */
2562 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2563 				/*
2564 				 * Can only perform callbacks in order.  Since
2565 				 * this iclog is not in the DONE_SYNC/
2566 				 * DO_CALLBACK state, we skip the rest and
2567 				 * just try to clean up.  If we set our iclog
2568 				 * to DO_CALLBACK, we will not process it when
2569 				 * we retry since a previous iclog is in the
2570 				 * CALLBACK and the state cannot change since
2571 				 * we are holding the l_icloglock.
2572 				 */
2573 				if (!(iclog->ic_state &
2574 					(XLOG_STATE_DONE_SYNC |
2575 						 XLOG_STATE_DO_CALLBACK))) {
2576 					if (ciclog && (ciclog->ic_state ==
2577 							XLOG_STATE_DONE_SYNC)) {
2578 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2579 					}
2580 					break;
2581 				}
2582 				/*
2583 				 * We now have an iclog that is in either the
2584 				 * DO_CALLBACK or DONE_SYNC states. The other
2585 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2586 				 * caught by the above if and are going to
2587 				 * clean (i.e. we aren't doing their callbacks)
2588 				 * see the above if.
2589 				 */
2590 
2591 				/*
2592 				 * We will do one more check here to see if we
2593 				 * have chased our tail around.
2594 				 */
2595 
2596 				lowest_lsn = xlog_get_lowest_lsn(log);
2597 				if (lowest_lsn &&
2598 				    XFS_LSN_CMP(lowest_lsn,
2599 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2600 					iclog = iclog->ic_next;
2601 					continue; /* Leave this iclog for
2602 						   * another thread */
2603 				}
2604 
2605 				iclog->ic_state = XLOG_STATE_CALLBACK;
2606 
2607 
2608 				/*
2609 				 * Completion of a iclog IO does not imply that
2610 				 * a transaction has completed, as transactions
2611 				 * can be large enough to span many iclogs. We
2612 				 * cannot change the tail of the log half way
2613 				 * through a transaction as this may be the only
2614 				 * transaction in the log and moving th etail to
2615 				 * point to the middle of it will prevent
2616 				 * recovery from finding the start of the
2617 				 * transaction. Hence we should only update the
2618 				 * last_sync_lsn if this iclog contains
2619 				 * transaction completion callbacks on it.
2620 				 *
2621 				 * We have to do this before we drop the
2622 				 * icloglock to ensure we are the only one that
2623 				 * can update it.
2624 				 */
2625 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2626 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2627 				if (iclog->ic_callback)
2628 					atomic64_set(&log->l_last_sync_lsn,
2629 						be64_to_cpu(iclog->ic_header.h_lsn));
2630 
2631 			} else
2632 				ioerrors++;
2633 
2634 			spin_unlock(&log->l_icloglock);
2635 
2636 			/*
2637 			 * Keep processing entries in the callback list until
2638 			 * we come around and it is empty.  We need to
2639 			 * atomically see that the list is empty and change the
2640 			 * state to DIRTY so that we don't miss any more
2641 			 * callbacks being added.
2642 			 */
2643 			spin_lock(&iclog->ic_callback_lock);
2644 			cb = iclog->ic_callback;
2645 			while (cb) {
2646 				iclog->ic_callback_tail = &(iclog->ic_callback);
2647 				iclog->ic_callback = NULL;
2648 				spin_unlock(&iclog->ic_callback_lock);
2649 
2650 				/* perform callbacks in the order given */
2651 				for (; cb; cb = cb_next) {
2652 					cb_next = cb->cb_next;
2653 					cb->cb_func(cb->cb_arg, aborted);
2654 				}
2655 				spin_lock(&iclog->ic_callback_lock);
2656 				cb = iclog->ic_callback;
2657 			}
2658 
2659 			loopdidcallbacks++;
2660 			funcdidcallbacks++;
2661 
2662 			spin_lock(&log->l_icloglock);
2663 			ASSERT(iclog->ic_callback == NULL);
2664 			spin_unlock(&iclog->ic_callback_lock);
2665 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2666 				iclog->ic_state = XLOG_STATE_DIRTY;
2667 
2668 			/*
2669 			 * Transition from DIRTY to ACTIVE if applicable.
2670 			 * NOP if STATE_IOERROR.
2671 			 */
2672 			xlog_state_clean_log(log);
2673 
2674 			/* wake up threads waiting in xfs_log_force() */
2675 			wake_up_all(&iclog->ic_force_wait);
2676 
2677 			iclog = iclog->ic_next;
2678 		} while (first_iclog != iclog);
2679 
2680 		if (repeats > 5000) {
2681 			flushcnt += repeats;
2682 			repeats = 0;
2683 			xfs_warn(log->l_mp,
2684 				"%s: possible infinite loop (%d iterations)",
2685 				__func__, flushcnt);
2686 		}
2687 	} while (!ioerrors && loopdidcallbacks);
2688 
2689 	/*
2690 	 * make one last gasp attempt to see if iclogs are being left in
2691 	 * limbo..
2692 	 */
2693 #ifdef DEBUG
2694 	if (funcdidcallbacks) {
2695 		first_iclog = iclog = log->l_iclog;
2696 		do {
2697 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2698 			/*
2699 			 * Terminate the loop if iclogs are found in states
2700 			 * which will cause other threads to clean up iclogs.
2701 			 *
2702 			 * SYNCING - i/o completion will go through logs
2703 			 * DONE_SYNC - interrupt thread should be waiting for
2704 			 *              l_icloglock
2705 			 * IOERROR - give up hope all ye who enter here
2706 			 */
2707 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2708 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2709 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2710 			    iclog->ic_state == XLOG_STATE_IOERROR )
2711 				break;
2712 			iclog = iclog->ic_next;
2713 		} while (first_iclog != iclog);
2714 	}
2715 #endif
2716 
2717 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2718 		wake = 1;
2719 	spin_unlock(&log->l_icloglock);
2720 
2721 	if (wake)
2722 		wake_up_all(&log->l_flush_wait);
2723 }
2724 
2725 
2726 /*
2727  * Finish transitioning this iclog to the dirty state.
2728  *
2729  * Make sure that we completely execute this routine only when this is
2730  * the last call to the iclog.  There is a good chance that iclog flushes,
2731  * when we reach the end of the physical log, get turned into 2 separate
2732  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2733  * routine.  By using the reference count bwritecnt, we guarantee that only
2734  * the second completion goes through.
2735  *
2736  * Callbacks could take time, so they are done outside the scope of the
2737  * global state machine log lock.
2738  */
2739 STATIC void
2740 xlog_state_done_syncing(
2741 	xlog_in_core_t	*iclog,
2742 	int		aborted)
2743 {
2744 	struct xlog	   *log = iclog->ic_log;
2745 
2746 	spin_lock(&log->l_icloglock);
2747 
2748 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2749 	       iclog->ic_state == XLOG_STATE_IOERROR);
2750 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2751 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2752 
2753 
2754 	/*
2755 	 * If we got an error, either on the first buffer, or in the case of
2756 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2757 	 * and none should ever be attempted to be written to disk
2758 	 * again.
2759 	 */
2760 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2761 		if (--iclog->ic_bwritecnt == 1) {
2762 			spin_unlock(&log->l_icloglock);
2763 			return;
2764 		}
2765 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2766 	}
2767 
2768 	/*
2769 	 * Someone could be sleeping prior to writing out the next
2770 	 * iclog buffer, we wake them all, one will get to do the
2771 	 * I/O, the others get to wait for the result.
2772 	 */
2773 	wake_up_all(&iclog->ic_write_wait);
2774 	spin_unlock(&log->l_icloglock);
2775 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2776 }	/* xlog_state_done_syncing */
2777 
2778 
2779 /*
2780  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2781  * sleep.  We wait on the flush queue on the head iclog as that should be
2782  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2783  * we will wait here and all new writes will sleep until a sync completes.
2784  *
2785  * The in-core logs are used in a circular fashion. They are not used
2786  * out-of-order even when an iclog past the head is free.
2787  *
2788  * return:
2789  *	* log_offset where xlog_write() can start writing into the in-core
2790  *		log's data space.
2791  *	* in-core log pointer to which xlog_write() should write.
2792  *	* boolean indicating this is a continued write to an in-core log.
2793  *		If this is the last write, then the in-core log's offset field
2794  *		needs to be incremented, depending on the amount of data which
2795  *		is copied.
2796  */
2797 STATIC int
2798 xlog_state_get_iclog_space(
2799 	struct xlog		*log,
2800 	int			len,
2801 	struct xlog_in_core	**iclogp,
2802 	struct xlog_ticket	*ticket,
2803 	int			*continued_write,
2804 	int			*logoffsetp)
2805 {
2806 	int		  log_offset;
2807 	xlog_rec_header_t *head;
2808 	xlog_in_core_t	  *iclog;
2809 	int		  error;
2810 
2811 restart:
2812 	spin_lock(&log->l_icloglock);
2813 	if (XLOG_FORCED_SHUTDOWN(log)) {
2814 		spin_unlock(&log->l_icloglock);
2815 		return XFS_ERROR(EIO);
2816 	}
2817 
2818 	iclog = log->l_iclog;
2819 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2820 		XFS_STATS_INC(xs_log_noiclogs);
2821 
2822 		/* Wait for log writes to have flushed */
2823 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2824 		goto restart;
2825 	}
2826 
2827 	head = &iclog->ic_header;
2828 
2829 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2830 	log_offset = iclog->ic_offset;
2831 
2832 	/* On the 1st write to an iclog, figure out lsn.  This works
2833 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2834 	 * committing to.  If the offset is set, that's how many blocks
2835 	 * must be written.
2836 	 */
2837 	if (log_offset == 0) {
2838 		ticket->t_curr_res -= log->l_iclog_hsize;
2839 		xlog_tic_add_region(ticket,
2840 				    log->l_iclog_hsize,
2841 				    XLOG_REG_TYPE_LRHEADER);
2842 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2843 		head->h_lsn = cpu_to_be64(
2844 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2845 		ASSERT(log->l_curr_block >= 0);
2846 	}
2847 
2848 	/* If there is enough room to write everything, then do it.  Otherwise,
2849 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2850 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2851 	 * until you know exactly how many bytes get copied.  Therefore, wait
2852 	 * until later to update ic_offset.
2853 	 *
2854 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2855 	 * can fit into remaining data section.
2856 	 */
2857 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2858 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2859 
2860 		/*
2861 		 * If I'm the only one writing to this iclog, sync it to disk.
2862 		 * We need to do an atomic compare and decrement here to avoid
2863 		 * racing with concurrent atomic_dec_and_lock() calls in
2864 		 * xlog_state_release_iclog() when there is more than one
2865 		 * reference to the iclog.
2866 		 */
2867 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2868 			/* we are the only one */
2869 			spin_unlock(&log->l_icloglock);
2870 			error = xlog_state_release_iclog(log, iclog);
2871 			if (error)
2872 				return error;
2873 		} else {
2874 			spin_unlock(&log->l_icloglock);
2875 		}
2876 		goto restart;
2877 	}
2878 
2879 	/* Do we have enough room to write the full amount in the remainder
2880 	 * of this iclog?  Or must we continue a write on the next iclog and
2881 	 * mark this iclog as completely taken?  In the case where we switch
2882 	 * iclogs (to mark it taken), this particular iclog will release/sync
2883 	 * to disk in xlog_write().
2884 	 */
2885 	if (len <= iclog->ic_size - iclog->ic_offset) {
2886 		*continued_write = 0;
2887 		iclog->ic_offset += len;
2888 	} else {
2889 		*continued_write = 1;
2890 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2891 	}
2892 	*iclogp = iclog;
2893 
2894 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2895 	spin_unlock(&log->l_icloglock);
2896 
2897 	*logoffsetp = log_offset;
2898 	return 0;
2899 }	/* xlog_state_get_iclog_space */
2900 
2901 /* The first cnt-1 times through here we don't need to
2902  * move the grant write head because the permanent
2903  * reservation has reserved cnt times the unit amount.
2904  * Release part of current permanent unit reservation and
2905  * reset current reservation to be one units worth.  Also
2906  * move grant reservation head forward.
2907  */
2908 STATIC void
2909 xlog_regrant_reserve_log_space(
2910 	struct xlog		*log,
2911 	struct xlog_ticket	*ticket)
2912 {
2913 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2914 
2915 	if (ticket->t_cnt > 0)
2916 		ticket->t_cnt--;
2917 
2918 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2919 					ticket->t_curr_res);
2920 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2921 					ticket->t_curr_res);
2922 	ticket->t_curr_res = ticket->t_unit_res;
2923 	xlog_tic_reset_res(ticket);
2924 
2925 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2926 
2927 	/* just return if we still have some of the pre-reserved space */
2928 	if (ticket->t_cnt > 0)
2929 		return;
2930 
2931 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2932 					ticket->t_unit_res);
2933 
2934 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2935 
2936 	ticket->t_curr_res = ticket->t_unit_res;
2937 	xlog_tic_reset_res(ticket);
2938 }	/* xlog_regrant_reserve_log_space */
2939 
2940 
2941 /*
2942  * Give back the space left from a reservation.
2943  *
2944  * All the information we need to make a correct determination of space left
2945  * is present.  For non-permanent reservations, things are quite easy.  The
2946  * count should have been decremented to zero.  We only need to deal with the
2947  * space remaining in the current reservation part of the ticket.  If the
2948  * ticket contains a permanent reservation, there may be left over space which
2949  * needs to be released.  A count of N means that N-1 refills of the current
2950  * reservation can be done before we need to ask for more space.  The first
2951  * one goes to fill up the first current reservation.  Once we run out of
2952  * space, the count will stay at zero and the only space remaining will be
2953  * in the current reservation field.
2954  */
2955 STATIC void
2956 xlog_ungrant_log_space(
2957 	struct xlog		*log,
2958 	struct xlog_ticket	*ticket)
2959 {
2960 	int	bytes;
2961 
2962 	if (ticket->t_cnt > 0)
2963 		ticket->t_cnt--;
2964 
2965 	trace_xfs_log_ungrant_enter(log, ticket);
2966 	trace_xfs_log_ungrant_sub(log, ticket);
2967 
2968 	/*
2969 	 * If this is a permanent reservation ticket, we may be able to free
2970 	 * up more space based on the remaining count.
2971 	 */
2972 	bytes = ticket->t_curr_res;
2973 	if (ticket->t_cnt > 0) {
2974 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2975 		bytes += ticket->t_unit_res*ticket->t_cnt;
2976 	}
2977 
2978 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2979 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2980 
2981 	trace_xfs_log_ungrant_exit(log, ticket);
2982 
2983 	xfs_log_space_wake(log->l_mp);
2984 }
2985 
2986 /*
2987  * Flush iclog to disk if this is the last reference to the given iclog and
2988  * the WANT_SYNC bit is set.
2989  *
2990  * When this function is entered, the iclog is not necessarily in the
2991  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2992  *
2993  *
2994  */
2995 STATIC int
2996 xlog_state_release_iclog(
2997 	struct xlog		*log,
2998 	struct xlog_in_core	*iclog)
2999 {
3000 	int		sync = 0;	/* do we sync? */
3001 
3002 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3003 		return XFS_ERROR(EIO);
3004 
3005 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3006 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3007 		return 0;
3008 
3009 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3010 		spin_unlock(&log->l_icloglock);
3011 		return XFS_ERROR(EIO);
3012 	}
3013 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3014 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3015 
3016 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3017 		/* update tail before writing to iclog */
3018 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3019 		sync++;
3020 		iclog->ic_state = XLOG_STATE_SYNCING;
3021 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3022 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3023 		/* cycle incremented when incrementing curr_block */
3024 	}
3025 	spin_unlock(&log->l_icloglock);
3026 
3027 	/*
3028 	 * We let the log lock go, so it's possible that we hit a log I/O
3029 	 * error or some other SHUTDOWN condition that marks the iclog
3030 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3031 	 * this iclog has consistent data, so we ignore IOERROR
3032 	 * flags after this point.
3033 	 */
3034 	if (sync)
3035 		return xlog_sync(log, iclog);
3036 	return 0;
3037 }	/* xlog_state_release_iclog */
3038 
3039 
3040 /*
3041  * This routine will mark the current iclog in the ring as WANT_SYNC
3042  * and move the current iclog pointer to the next iclog in the ring.
3043  * When this routine is called from xlog_state_get_iclog_space(), the
3044  * exact size of the iclog has not yet been determined.  All we know is
3045  * that every data block.  We have run out of space in this log record.
3046  */
3047 STATIC void
3048 xlog_state_switch_iclogs(
3049 	struct xlog		*log,
3050 	struct xlog_in_core	*iclog,
3051 	int			eventual_size)
3052 {
3053 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3054 	if (!eventual_size)
3055 		eventual_size = iclog->ic_offset;
3056 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3057 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3058 	log->l_prev_block = log->l_curr_block;
3059 	log->l_prev_cycle = log->l_curr_cycle;
3060 
3061 	/* roll log?: ic_offset changed later */
3062 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3063 
3064 	/* Round up to next log-sunit */
3065 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3066 	    log->l_mp->m_sb.sb_logsunit > 1) {
3067 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3068 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3069 	}
3070 
3071 	if (log->l_curr_block >= log->l_logBBsize) {
3072 		log->l_curr_cycle++;
3073 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3074 			log->l_curr_cycle++;
3075 		log->l_curr_block -= log->l_logBBsize;
3076 		ASSERT(log->l_curr_block >= 0);
3077 	}
3078 	ASSERT(iclog == log->l_iclog);
3079 	log->l_iclog = iclog->ic_next;
3080 }	/* xlog_state_switch_iclogs */
3081 
3082 /*
3083  * Write out all data in the in-core log as of this exact moment in time.
3084  *
3085  * Data may be written to the in-core log during this call.  However,
3086  * we don't guarantee this data will be written out.  A change from past
3087  * implementation means this routine will *not* write out zero length LRs.
3088  *
3089  * Basically, we try and perform an intelligent scan of the in-core logs.
3090  * If we determine there is no flushable data, we just return.  There is no
3091  * flushable data if:
3092  *
3093  *	1. the current iclog is active and has no data; the previous iclog
3094  *		is in the active or dirty state.
3095  *	2. the current iclog is drity, and the previous iclog is in the
3096  *		active or dirty state.
3097  *
3098  * We may sleep if:
3099  *
3100  *	1. the current iclog is not in the active nor dirty state.
3101  *	2. the current iclog dirty, and the previous iclog is not in the
3102  *		active nor dirty state.
3103  *	3. the current iclog is active, and there is another thread writing
3104  *		to this particular iclog.
3105  *	4. a) the current iclog is active and has no other writers
3106  *	   b) when we return from flushing out this iclog, it is still
3107  *		not in the active nor dirty state.
3108  */
3109 int
3110 _xfs_log_force(
3111 	struct xfs_mount	*mp,
3112 	uint			flags,
3113 	int			*log_flushed)
3114 {
3115 	struct xlog		*log = mp->m_log;
3116 	struct xlog_in_core	*iclog;
3117 	xfs_lsn_t		lsn;
3118 
3119 	XFS_STATS_INC(xs_log_force);
3120 
3121 	xlog_cil_force(log);
3122 
3123 	spin_lock(&log->l_icloglock);
3124 
3125 	iclog = log->l_iclog;
3126 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3127 		spin_unlock(&log->l_icloglock);
3128 		return XFS_ERROR(EIO);
3129 	}
3130 
3131 	/* If the head iclog is not active nor dirty, we just attach
3132 	 * ourselves to the head and go to sleep.
3133 	 */
3134 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3135 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3136 		/*
3137 		 * If the head is dirty or (active and empty), then
3138 		 * we need to look at the previous iclog.  If the previous
3139 		 * iclog is active or dirty we are done.  There is nothing
3140 		 * to sync out.  Otherwise, we attach ourselves to the
3141 		 * previous iclog and go to sleep.
3142 		 */
3143 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3144 		    (atomic_read(&iclog->ic_refcnt) == 0
3145 		     && iclog->ic_offset == 0)) {
3146 			iclog = iclog->ic_prev;
3147 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3148 			    iclog->ic_state == XLOG_STATE_DIRTY)
3149 				goto no_sleep;
3150 			else
3151 				goto maybe_sleep;
3152 		} else {
3153 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3154 				/* We are the only one with access to this
3155 				 * iclog.  Flush it out now.  There should
3156 				 * be a roundoff of zero to show that someone
3157 				 * has already taken care of the roundoff from
3158 				 * the previous sync.
3159 				 */
3160 				atomic_inc(&iclog->ic_refcnt);
3161 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3162 				xlog_state_switch_iclogs(log, iclog, 0);
3163 				spin_unlock(&log->l_icloglock);
3164 
3165 				if (xlog_state_release_iclog(log, iclog))
3166 					return XFS_ERROR(EIO);
3167 
3168 				if (log_flushed)
3169 					*log_flushed = 1;
3170 				spin_lock(&log->l_icloglock);
3171 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3172 				    iclog->ic_state != XLOG_STATE_DIRTY)
3173 					goto maybe_sleep;
3174 				else
3175 					goto no_sleep;
3176 			} else {
3177 				/* Someone else is writing to this iclog.
3178 				 * Use its call to flush out the data.  However,
3179 				 * the other thread may not force out this LR,
3180 				 * so we mark it WANT_SYNC.
3181 				 */
3182 				xlog_state_switch_iclogs(log, iclog, 0);
3183 				goto maybe_sleep;
3184 			}
3185 		}
3186 	}
3187 
3188 	/* By the time we come around again, the iclog could've been filled
3189 	 * which would give it another lsn.  If we have a new lsn, just
3190 	 * return because the relevant data has been flushed.
3191 	 */
3192 maybe_sleep:
3193 	if (flags & XFS_LOG_SYNC) {
3194 		/*
3195 		 * We must check if we're shutting down here, before
3196 		 * we wait, while we're holding the l_icloglock.
3197 		 * Then we check again after waking up, in case our
3198 		 * sleep was disturbed by a bad news.
3199 		 */
3200 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3201 			spin_unlock(&log->l_icloglock);
3202 			return XFS_ERROR(EIO);
3203 		}
3204 		XFS_STATS_INC(xs_log_force_sleep);
3205 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3206 		/*
3207 		 * No need to grab the log lock here since we're
3208 		 * only deciding whether or not to return EIO
3209 		 * and the memory read should be atomic.
3210 		 */
3211 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3212 			return XFS_ERROR(EIO);
3213 		if (log_flushed)
3214 			*log_flushed = 1;
3215 	} else {
3216 
3217 no_sleep:
3218 		spin_unlock(&log->l_icloglock);
3219 	}
3220 	return 0;
3221 }
3222 
3223 /*
3224  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3225  * about errors or whether the log was flushed or not. This is the normal
3226  * interface to use when trying to unpin items or move the log forward.
3227  */
3228 void
3229 xfs_log_force(
3230 	xfs_mount_t	*mp,
3231 	uint		flags)
3232 {
3233 	int	error;
3234 
3235 	trace_xfs_log_force(mp, 0);
3236 	error = _xfs_log_force(mp, flags, NULL);
3237 	if (error)
3238 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3239 }
3240 
3241 /*
3242  * Force the in-core log to disk for a specific LSN.
3243  *
3244  * Find in-core log with lsn.
3245  *	If it is in the DIRTY state, just return.
3246  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3247  *		state and go to sleep or return.
3248  *	If it is in any other state, go to sleep or return.
3249  *
3250  * Synchronous forces are implemented with a signal variable. All callers
3251  * to force a given lsn to disk will wait on a the sv attached to the
3252  * specific in-core log.  When given in-core log finally completes its
3253  * write to disk, that thread will wake up all threads waiting on the
3254  * sv.
3255  */
3256 int
3257 _xfs_log_force_lsn(
3258 	struct xfs_mount	*mp,
3259 	xfs_lsn_t		lsn,
3260 	uint			flags,
3261 	int			*log_flushed)
3262 {
3263 	struct xlog		*log = mp->m_log;
3264 	struct xlog_in_core	*iclog;
3265 	int			already_slept = 0;
3266 
3267 	ASSERT(lsn != 0);
3268 
3269 	XFS_STATS_INC(xs_log_force);
3270 
3271 	lsn = xlog_cil_force_lsn(log, lsn);
3272 	if (lsn == NULLCOMMITLSN)
3273 		return 0;
3274 
3275 try_again:
3276 	spin_lock(&log->l_icloglock);
3277 	iclog = log->l_iclog;
3278 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3279 		spin_unlock(&log->l_icloglock);
3280 		return XFS_ERROR(EIO);
3281 	}
3282 
3283 	do {
3284 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3285 			iclog = iclog->ic_next;
3286 			continue;
3287 		}
3288 
3289 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3290 			spin_unlock(&log->l_icloglock);
3291 			return 0;
3292 		}
3293 
3294 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3295 			/*
3296 			 * We sleep here if we haven't already slept (e.g.
3297 			 * this is the first time we've looked at the correct
3298 			 * iclog buf) and the buffer before us is going to
3299 			 * be sync'ed. The reason for this is that if we
3300 			 * are doing sync transactions here, by waiting for
3301 			 * the previous I/O to complete, we can allow a few
3302 			 * more transactions into this iclog before we close
3303 			 * it down.
3304 			 *
3305 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3306 			 * up the refcnt so we can release the log (which
3307 			 * drops the ref count).  The state switch keeps new
3308 			 * transaction commits from using this buffer.  When
3309 			 * the current commits finish writing into the buffer,
3310 			 * the refcount will drop to zero and the buffer will
3311 			 * go out then.
3312 			 */
3313 			if (!already_slept &&
3314 			    (iclog->ic_prev->ic_state &
3315 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3316 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3317 
3318 				XFS_STATS_INC(xs_log_force_sleep);
3319 
3320 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3321 							&log->l_icloglock);
3322 				if (log_flushed)
3323 					*log_flushed = 1;
3324 				already_slept = 1;
3325 				goto try_again;
3326 			}
3327 			atomic_inc(&iclog->ic_refcnt);
3328 			xlog_state_switch_iclogs(log, iclog, 0);
3329 			spin_unlock(&log->l_icloglock);
3330 			if (xlog_state_release_iclog(log, iclog))
3331 				return XFS_ERROR(EIO);
3332 			if (log_flushed)
3333 				*log_flushed = 1;
3334 			spin_lock(&log->l_icloglock);
3335 		}
3336 
3337 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3338 		    !(iclog->ic_state &
3339 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3340 			/*
3341 			 * Don't wait on completion if we know that we've
3342 			 * gotten a log write error.
3343 			 */
3344 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3345 				spin_unlock(&log->l_icloglock);
3346 				return XFS_ERROR(EIO);
3347 			}
3348 			XFS_STATS_INC(xs_log_force_sleep);
3349 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3350 			/*
3351 			 * No need to grab the log lock here since we're
3352 			 * only deciding whether or not to return EIO
3353 			 * and the memory read should be atomic.
3354 			 */
3355 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3356 				return XFS_ERROR(EIO);
3357 
3358 			if (log_flushed)
3359 				*log_flushed = 1;
3360 		} else {		/* just return */
3361 			spin_unlock(&log->l_icloglock);
3362 		}
3363 
3364 		return 0;
3365 	} while (iclog != log->l_iclog);
3366 
3367 	spin_unlock(&log->l_icloglock);
3368 	return 0;
3369 }
3370 
3371 /*
3372  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3373  * about errors or whether the log was flushed or not. This is the normal
3374  * interface to use when trying to unpin items or move the log forward.
3375  */
3376 void
3377 xfs_log_force_lsn(
3378 	xfs_mount_t	*mp,
3379 	xfs_lsn_t	lsn,
3380 	uint		flags)
3381 {
3382 	int	error;
3383 
3384 	trace_xfs_log_force(mp, lsn);
3385 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3386 	if (error)
3387 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3388 }
3389 
3390 /*
3391  * Called when we want to mark the current iclog as being ready to sync to
3392  * disk.
3393  */
3394 STATIC void
3395 xlog_state_want_sync(
3396 	struct xlog		*log,
3397 	struct xlog_in_core	*iclog)
3398 {
3399 	assert_spin_locked(&log->l_icloglock);
3400 
3401 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3402 		xlog_state_switch_iclogs(log, iclog, 0);
3403 	} else {
3404 		ASSERT(iclog->ic_state &
3405 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3406 	}
3407 }
3408 
3409 
3410 /*****************************************************************************
3411  *
3412  *		TICKET functions
3413  *
3414  *****************************************************************************
3415  */
3416 
3417 /*
3418  * Free a used ticket when its refcount falls to zero.
3419  */
3420 void
3421 xfs_log_ticket_put(
3422 	xlog_ticket_t	*ticket)
3423 {
3424 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3425 	if (atomic_dec_and_test(&ticket->t_ref))
3426 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3427 }
3428 
3429 xlog_ticket_t *
3430 xfs_log_ticket_get(
3431 	xlog_ticket_t	*ticket)
3432 {
3433 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3434 	atomic_inc(&ticket->t_ref);
3435 	return ticket;
3436 }
3437 
3438 /*
3439  * Figure out the total log space unit (in bytes) that would be
3440  * required for a log ticket.
3441  */
3442 int
3443 xfs_log_calc_unit_res(
3444 	struct xfs_mount	*mp,
3445 	int			unit_bytes)
3446 {
3447 	struct xlog		*log = mp->m_log;
3448 	int			iclog_space;
3449 	uint			num_headers;
3450 
3451 	/*
3452 	 * Permanent reservations have up to 'cnt'-1 active log operations
3453 	 * in the log.  A unit in this case is the amount of space for one
3454 	 * of these log operations.  Normal reservations have a cnt of 1
3455 	 * and their unit amount is the total amount of space required.
3456 	 *
3457 	 * The following lines of code account for non-transaction data
3458 	 * which occupy space in the on-disk log.
3459 	 *
3460 	 * Normal form of a transaction is:
3461 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3462 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3463 	 *
3464 	 * We need to account for all the leadup data and trailer data
3465 	 * around the transaction data.
3466 	 * And then we need to account for the worst case in terms of using
3467 	 * more space.
3468 	 * The worst case will happen if:
3469 	 * - the placement of the transaction happens to be such that the
3470 	 *   roundoff is at its maximum
3471 	 * - the transaction data is synced before the commit record is synced
3472 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3473 	 *   Therefore the commit record is in its own Log Record.
3474 	 *   This can happen as the commit record is called with its
3475 	 *   own region to xlog_write().
3476 	 *   This then means that in the worst case, roundoff can happen for
3477 	 *   the commit-rec as well.
3478 	 *   The commit-rec is smaller than padding in this scenario and so it is
3479 	 *   not added separately.
3480 	 */
3481 
3482 	/* for trans header */
3483 	unit_bytes += sizeof(xlog_op_header_t);
3484 	unit_bytes += sizeof(xfs_trans_header_t);
3485 
3486 	/* for start-rec */
3487 	unit_bytes += sizeof(xlog_op_header_t);
3488 
3489 	/*
3490 	 * for LR headers - the space for data in an iclog is the size minus
3491 	 * the space used for the headers. If we use the iclog size, then we
3492 	 * undercalculate the number of headers required.
3493 	 *
3494 	 * Furthermore - the addition of op headers for split-recs might
3495 	 * increase the space required enough to require more log and op
3496 	 * headers, so take that into account too.
3497 	 *
3498 	 * IMPORTANT: This reservation makes the assumption that if this
3499 	 * transaction is the first in an iclog and hence has the LR headers
3500 	 * accounted to it, then the remaining space in the iclog is
3501 	 * exclusively for this transaction.  i.e. if the transaction is larger
3502 	 * than the iclog, it will be the only thing in that iclog.
3503 	 * Fundamentally, this means we must pass the entire log vector to
3504 	 * xlog_write to guarantee this.
3505 	 */
3506 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3507 	num_headers = howmany(unit_bytes, iclog_space);
3508 
3509 	/* for split-recs - ophdrs added when data split over LRs */
3510 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3511 
3512 	/* add extra header reservations if we overrun */
3513 	while (!num_headers ||
3514 	       howmany(unit_bytes, iclog_space) > num_headers) {
3515 		unit_bytes += sizeof(xlog_op_header_t);
3516 		num_headers++;
3517 	}
3518 	unit_bytes += log->l_iclog_hsize * num_headers;
3519 
3520 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3521 	unit_bytes += log->l_iclog_hsize;
3522 
3523 	/* for roundoff padding for transaction data and one for commit record */
3524 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3525 		/* log su roundoff */
3526 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3527 	} else {
3528 		/* BB roundoff */
3529 		unit_bytes += 2 * BBSIZE;
3530         }
3531 
3532 	return unit_bytes;
3533 }
3534 
3535 /*
3536  * Allocate and initialise a new log ticket.
3537  */
3538 struct xlog_ticket *
3539 xlog_ticket_alloc(
3540 	struct xlog		*log,
3541 	int			unit_bytes,
3542 	int			cnt,
3543 	char			client,
3544 	bool			permanent,
3545 	xfs_km_flags_t		alloc_flags)
3546 {
3547 	struct xlog_ticket	*tic;
3548 	int			unit_res;
3549 
3550 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3551 	if (!tic)
3552 		return NULL;
3553 
3554 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3555 
3556 	atomic_set(&tic->t_ref, 1);
3557 	tic->t_task		= current;
3558 	INIT_LIST_HEAD(&tic->t_queue);
3559 	tic->t_unit_res		= unit_res;
3560 	tic->t_curr_res		= unit_res;
3561 	tic->t_cnt		= cnt;
3562 	tic->t_ocnt		= cnt;
3563 	tic->t_tid		= prandom_u32();
3564 	tic->t_clientid		= client;
3565 	tic->t_flags		= XLOG_TIC_INITED;
3566 	tic->t_trans_type	= 0;
3567 	if (permanent)
3568 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3569 
3570 	xlog_tic_reset_res(tic);
3571 
3572 	return tic;
3573 }
3574 
3575 
3576 /******************************************************************************
3577  *
3578  *		Log debug routines
3579  *
3580  ******************************************************************************
3581  */
3582 #if defined(DEBUG)
3583 /*
3584  * Make sure that the destination ptr is within the valid data region of
3585  * one of the iclogs.  This uses backup pointers stored in a different
3586  * part of the log in case we trash the log structure.
3587  */
3588 void
3589 xlog_verify_dest_ptr(
3590 	struct xlog	*log,
3591 	char		*ptr)
3592 {
3593 	int i;
3594 	int good_ptr = 0;
3595 
3596 	for (i = 0; i < log->l_iclog_bufs; i++) {
3597 		if (ptr >= log->l_iclog_bak[i] &&
3598 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3599 			good_ptr++;
3600 	}
3601 
3602 	if (!good_ptr)
3603 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3604 }
3605 
3606 /*
3607  * Check to make sure the grant write head didn't just over lap the tail.  If
3608  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3609  * the cycles differ by exactly one and check the byte count.
3610  *
3611  * This check is run unlocked, so can give false positives. Rather than assert
3612  * on failures, use a warn-once flag and a panic tag to allow the admin to
3613  * determine if they want to panic the machine when such an error occurs. For
3614  * debug kernels this will have the same effect as using an assert but, unlinke
3615  * an assert, it can be turned off at runtime.
3616  */
3617 STATIC void
3618 xlog_verify_grant_tail(
3619 	struct xlog	*log)
3620 {
3621 	int		tail_cycle, tail_blocks;
3622 	int		cycle, space;
3623 
3624 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3625 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3626 	if (tail_cycle != cycle) {
3627 		if (cycle - 1 != tail_cycle &&
3628 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3629 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3630 				"%s: cycle - 1 != tail_cycle", __func__);
3631 			log->l_flags |= XLOG_TAIL_WARN;
3632 		}
3633 
3634 		if (space > BBTOB(tail_blocks) &&
3635 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3636 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3637 				"%s: space > BBTOB(tail_blocks)", __func__);
3638 			log->l_flags |= XLOG_TAIL_WARN;
3639 		}
3640 	}
3641 }
3642 
3643 /* check if it will fit */
3644 STATIC void
3645 xlog_verify_tail_lsn(
3646 	struct xlog		*log,
3647 	struct xlog_in_core	*iclog,
3648 	xfs_lsn_t		tail_lsn)
3649 {
3650     int blocks;
3651 
3652     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3653 	blocks =
3654 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3655 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3656 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3657     } else {
3658 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3659 
3660 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3661 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3662 
3663 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3664 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3665 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3666     }
3667 }	/* xlog_verify_tail_lsn */
3668 
3669 /*
3670  * Perform a number of checks on the iclog before writing to disk.
3671  *
3672  * 1. Make sure the iclogs are still circular
3673  * 2. Make sure we have a good magic number
3674  * 3. Make sure we don't have magic numbers in the data
3675  * 4. Check fields of each log operation header for:
3676  *	A. Valid client identifier
3677  *	B. tid ptr value falls in valid ptr space (user space code)
3678  *	C. Length in log record header is correct according to the
3679  *		individual operation headers within record.
3680  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3681  *	log, check the preceding blocks of the physical log to make sure all
3682  *	the cycle numbers agree with the current cycle number.
3683  */
3684 STATIC void
3685 xlog_verify_iclog(
3686 	struct xlog		*log,
3687 	struct xlog_in_core	*iclog,
3688 	int			count,
3689 	bool                    syncing)
3690 {
3691 	xlog_op_header_t	*ophead;
3692 	xlog_in_core_t		*icptr;
3693 	xlog_in_core_2_t	*xhdr;
3694 	xfs_caddr_t		ptr;
3695 	xfs_caddr_t		base_ptr;
3696 	__psint_t		field_offset;
3697 	__uint8_t		clientid;
3698 	int			len, i, j, k, op_len;
3699 	int			idx;
3700 
3701 	/* check validity of iclog pointers */
3702 	spin_lock(&log->l_icloglock);
3703 	icptr = log->l_iclog;
3704 	for (i=0; i < log->l_iclog_bufs; i++) {
3705 		if (icptr == NULL)
3706 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3707 		icptr = icptr->ic_next;
3708 	}
3709 	if (icptr != log->l_iclog)
3710 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3711 	spin_unlock(&log->l_icloglock);
3712 
3713 	/* check log magic numbers */
3714 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3715 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3716 
3717 	ptr = (xfs_caddr_t) &iclog->ic_header;
3718 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3719 	     ptr += BBSIZE) {
3720 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3721 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3722 				__func__);
3723 	}
3724 
3725 	/* check fields */
3726 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3727 	ptr = iclog->ic_datap;
3728 	base_ptr = ptr;
3729 	ophead = (xlog_op_header_t *)ptr;
3730 	xhdr = iclog->ic_data;
3731 	for (i = 0; i < len; i++) {
3732 		ophead = (xlog_op_header_t *)ptr;
3733 
3734 		/* clientid is only 1 byte */
3735 		field_offset = (__psint_t)
3736 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3737 		if (!syncing || (field_offset & 0x1ff)) {
3738 			clientid = ophead->oh_clientid;
3739 		} else {
3740 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3741 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3742 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3743 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3744 				clientid = xlog_get_client_id(
3745 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3746 			} else {
3747 				clientid = xlog_get_client_id(
3748 					iclog->ic_header.h_cycle_data[idx]);
3749 			}
3750 		}
3751 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3752 			xfs_warn(log->l_mp,
3753 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3754 				__func__, clientid, ophead,
3755 				(unsigned long)field_offset);
3756 
3757 		/* check length */
3758 		field_offset = (__psint_t)
3759 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3760 		if (!syncing || (field_offset & 0x1ff)) {
3761 			op_len = be32_to_cpu(ophead->oh_len);
3762 		} else {
3763 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3764 				    (__psint_t)iclog->ic_datap);
3765 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3766 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3767 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3768 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3769 			} else {
3770 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3771 			}
3772 		}
3773 		ptr += sizeof(xlog_op_header_t) + op_len;
3774 	}
3775 }	/* xlog_verify_iclog */
3776 #endif
3777 
3778 /*
3779  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3780  */
3781 STATIC int
3782 xlog_state_ioerror(
3783 	struct xlog	*log)
3784 {
3785 	xlog_in_core_t	*iclog, *ic;
3786 
3787 	iclog = log->l_iclog;
3788 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3789 		/*
3790 		 * Mark all the incore logs IOERROR.
3791 		 * From now on, no log flushes will result.
3792 		 */
3793 		ic = iclog;
3794 		do {
3795 			ic->ic_state = XLOG_STATE_IOERROR;
3796 			ic = ic->ic_next;
3797 		} while (ic != iclog);
3798 		return 0;
3799 	}
3800 	/*
3801 	 * Return non-zero, if state transition has already happened.
3802 	 */
3803 	return 1;
3804 }
3805 
3806 /*
3807  * This is called from xfs_force_shutdown, when we're forcibly
3808  * shutting down the filesystem, typically because of an IO error.
3809  * Our main objectives here are to make sure that:
3810  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3811  *	   parties to find out, 'atomically'.
3812  *	b. those who're sleeping on log reservations, pinned objects and
3813  *	    other resources get woken up, and be told the bad news.
3814  *	c. nothing new gets queued up after (a) and (b) are done.
3815  *	d. if !logerror, flush the iclogs to disk, then seal them off
3816  *	   for business.
3817  *
3818  * Note: for delayed logging the !logerror case needs to flush the regions
3819  * held in memory out to the iclogs before flushing them to disk. This needs
3820  * to be done before the log is marked as shutdown, otherwise the flush to the
3821  * iclogs will fail.
3822  */
3823 int
3824 xfs_log_force_umount(
3825 	struct xfs_mount	*mp,
3826 	int			logerror)
3827 {
3828 	struct xlog	*log;
3829 	int		retval;
3830 
3831 	log = mp->m_log;
3832 
3833 	/*
3834 	 * If this happens during log recovery, don't worry about
3835 	 * locking; the log isn't open for business yet.
3836 	 */
3837 	if (!log ||
3838 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3839 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3840 		if (mp->m_sb_bp)
3841 			XFS_BUF_DONE(mp->m_sb_bp);
3842 		return 0;
3843 	}
3844 
3845 	/*
3846 	 * Somebody could've already done the hard work for us.
3847 	 * No need to get locks for this.
3848 	 */
3849 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3850 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3851 		return 1;
3852 	}
3853 	retval = 0;
3854 
3855 	/*
3856 	 * Flush the in memory commit item list before marking the log as
3857 	 * being shut down. We need to do it in this order to ensure all the
3858 	 * completed transactions are flushed to disk with the xfs_log_force()
3859 	 * call below.
3860 	 */
3861 	if (!logerror)
3862 		xlog_cil_force(log);
3863 
3864 	/*
3865 	 * mark the filesystem and the as in a shutdown state and wake
3866 	 * everybody up to tell them the bad news.
3867 	 */
3868 	spin_lock(&log->l_icloglock);
3869 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3870 	if (mp->m_sb_bp)
3871 		XFS_BUF_DONE(mp->m_sb_bp);
3872 
3873 	/*
3874 	 * This flag is sort of redundant because of the mount flag, but
3875 	 * it's good to maintain the separation between the log and the rest
3876 	 * of XFS.
3877 	 */
3878 	log->l_flags |= XLOG_IO_ERROR;
3879 
3880 	/*
3881 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3882 	 * while we're still holding the loglock.
3883 	 */
3884 	if (logerror)
3885 		retval = xlog_state_ioerror(log);
3886 	spin_unlock(&log->l_icloglock);
3887 
3888 	/*
3889 	 * We don't want anybody waiting for log reservations after this. That
3890 	 * means we have to wake up everybody queued up on reserveq as well as
3891 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3892 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3893 	 * action is protected by the grant locks.
3894 	 */
3895 	xlog_grant_head_wake_all(&log->l_reserve_head);
3896 	xlog_grant_head_wake_all(&log->l_write_head);
3897 
3898 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 		ASSERT(!logerror);
3900 		/*
3901 		 * Force the incore logs to disk before shutting the
3902 		 * log down completely.
3903 		 */
3904 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3905 
3906 		spin_lock(&log->l_icloglock);
3907 		retval = xlog_state_ioerror(log);
3908 		spin_unlock(&log->l_icloglock);
3909 	}
3910 	/*
3911 	 * Wake up everybody waiting on xfs_log_force.
3912 	 * Callback all log item committed functions as if the
3913 	 * log writes were completed.
3914 	 */
3915 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3916 
3917 #ifdef XFSERRORDEBUG
3918 	{
3919 		xlog_in_core_t	*iclog;
3920 
3921 		spin_lock(&log->l_icloglock);
3922 		iclog = log->l_iclog;
3923 		do {
3924 			ASSERT(iclog->ic_callback == 0);
3925 			iclog = iclog->ic_next;
3926 		} while (iclog != log->l_iclog);
3927 		spin_unlock(&log->l_icloglock);
3928 	}
3929 #endif
3930 	/* return non-zero if log IOERROR transition had already happened */
3931 	return retval;
3932 }
3933 
3934 STATIC int
3935 xlog_iclogs_empty(
3936 	struct xlog	*log)
3937 {
3938 	xlog_in_core_t	*iclog;
3939 
3940 	iclog = log->l_iclog;
3941 	do {
3942 		/* endianness does not matter here, zero is zero in
3943 		 * any language.
3944 		 */
3945 		if (iclog->ic_header.h_num_logops)
3946 			return 0;
3947 		iclog = iclog->ic_next;
3948 	} while (iclog != log->l_iclog);
3949 	return 1;
3950 }
3951 
3952