1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_error.h" 28 #include "xfs_trans.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_log.h" 31 #include "xfs_log_priv.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_inode.h" 34 #include "xfs_trace.h" 35 #include "xfs_fsops.h" 36 #include "xfs_cksum.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 char *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return XFS_ERROR(EIO); 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return XFS_ERROR(EIO); 381 382 XFS_STATS_INC(xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent, 439 uint t_type) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return XFS_ERROR(EIO); 450 451 XFS_STATS_INC(xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return XFS_ERROR(ENOMEM); 458 459 tic->t_trans_type = t_type; 460 *ticp = tic; 461 462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 463 : tic->t_unit_res); 464 465 trace_xfs_log_reserve(log, tic); 466 467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 468 &need_bytes); 469 if (error) 470 goto out_error; 471 472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 474 trace_xfs_log_reserve_exit(log, tic); 475 xlog_verify_grant_tail(log); 476 return 0; 477 478 out_error: 479 /* 480 * If we are failing, make sure the ticket doesn't have any current 481 * reservations. We don't want to add this back when the ticket/ 482 * transaction gets cancelled. 483 */ 484 tic->t_curr_res = 0; 485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 486 return error; 487 } 488 489 490 /* 491 * NOTES: 492 * 493 * 1. currblock field gets updated at startup and after in-core logs 494 * marked as with WANT_SYNC. 495 */ 496 497 /* 498 * This routine is called when a user of a log manager ticket is done with 499 * the reservation. If the ticket was ever used, then a commit record for 500 * the associated transaction is written out as a log operation header with 501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 502 * a given ticket. If the ticket was one with a permanent reservation, then 503 * a few operations are done differently. Permanent reservation tickets by 504 * default don't release the reservation. They just commit the current 505 * transaction with the belief that the reservation is still needed. A flag 506 * must be passed in before permanent reservations are actually released. 507 * When these type of tickets are not released, they need to be set into 508 * the inited state again. By doing this, a start record will be written 509 * out when the next write occurs. 510 */ 511 xfs_lsn_t 512 xfs_log_done( 513 struct xfs_mount *mp, 514 struct xlog_ticket *ticket, 515 struct xlog_in_core **iclog, 516 uint flags) 517 { 518 struct xlog *log = mp->m_log; 519 xfs_lsn_t lsn = 0; 520 521 if (XLOG_FORCED_SHUTDOWN(log) || 522 /* 523 * If nothing was ever written, don't write out commit record. 524 * If we get an error, just continue and give back the log ticket. 525 */ 526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 527 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 528 lsn = (xfs_lsn_t) -1; 529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 530 flags |= XFS_LOG_REL_PERM_RESERV; 531 } 532 } 533 534 535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 536 (flags & XFS_LOG_REL_PERM_RESERV)) { 537 trace_xfs_log_done_nonperm(log, ticket); 538 539 /* 540 * Release ticket if not permanent reservation or a specific 541 * request has been made to release a permanent reservation. 542 */ 543 xlog_ungrant_log_space(log, ticket); 544 xfs_log_ticket_put(ticket); 545 } else { 546 trace_xfs_log_done_perm(log, ticket); 547 548 xlog_regrant_reserve_log_space(log, ticket); 549 /* If this ticket was a permanent reservation and we aren't 550 * trying to release it, reset the inited flags; so next time 551 * we write, a start record will be written out. 552 */ 553 ticket->t_flags |= XLOG_TIC_INITED; 554 } 555 556 return lsn; 557 } 558 559 /* 560 * Attaches a new iclog I/O completion callback routine during 561 * transaction commit. If the log is in error state, a non-zero 562 * return code is handed back and the caller is responsible for 563 * executing the callback at an appropriate time. 564 */ 565 int 566 xfs_log_notify( 567 struct xfs_mount *mp, 568 struct xlog_in_core *iclog, 569 xfs_log_callback_t *cb) 570 { 571 int abortflg; 572 573 spin_lock(&iclog->ic_callback_lock); 574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 575 if (!abortflg) { 576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 577 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 578 cb->cb_next = NULL; 579 *(iclog->ic_callback_tail) = cb; 580 iclog->ic_callback_tail = &(cb->cb_next); 581 } 582 spin_unlock(&iclog->ic_callback_lock); 583 return abortflg; 584 } 585 586 int 587 xfs_log_release_iclog( 588 struct xfs_mount *mp, 589 struct xlog_in_core *iclog) 590 { 591 if (xlog_state_release_iclog(mp->m_log, iclog)) { 592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 593 return EIO; 594 } 595 596 return 0; 597 } 598 599 /* 600 * Mount a log filesystem 601 * 602 * mp - ubiquitous xfs mount point structure 603 * log_target - buftarg of on-disk log device 604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 605 * num_bblocks - Number of BBSIZE blocks in on-disk log 606 * 607 * Return error or zero. 608 */ 609 int 610 xfs_log_mount( 611 xfs_mount_t *mp, 612 xfs_buftarg_t *log_target, 613 xfs_daddr_t blk_offset, 614 int num_bblks) 615 { 616 int error = 0; 617 int min_logfsbs; 618 619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 620 xfs_notice(mp, "Mounting Filesystem"); 621 else { 622 xfs_notice(mp, 623 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 624 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 625 } 626 627 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 628 if (IS_ERR(mp->m_log)) { 629 error = -PTR_ERR(mp->m_log); 630 goto out; 631 } 632 633 /* 634 * Validate the given log space and drop a critical message via syslog 635 * if the log size is too small that would lead to some unexpected 636 * situations in transaction log space reservation stage. 637 * 638 * Note: we can't just reject the mount if the validation fails. This 639 * would mean that people would have to downgrade their kernel just to 640 * remedy the situation as there is no way to grow the log (short of 641 * black magic surgery with xfs_db). 642 * 643 * We can, however, reject mounts for CRC format filesystems, as the 644 * mkfs binary being used to make the filesystem should never create a 645 * filesystem with a log that is too small. 646 */ 647 min_logfsbs = xfs_log_calc_minimum_size(mp); 648 649 if (mp->m_sb.sb_logblocks < min_logfsbs) { 650 xfs_warn(mp, 651 "Log size %d blocks too small, minimum size is %d blocks", 652 mp->m_sb.sb_logblocks, min_logfsbs); 653 error = EINVAL; 654 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 655 xfs_warn(mp, 656 "Log size %d blocks too large, maximum size is %lld blocks", 657 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 658 error = EINVAL; 659 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 660 xfs_warn(mp, 661 "log size %lld bytes too large, maximum size is %lld bytes", 662 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 663 XFS_MAX_LOG_BYTES); 664 error = EINVAL; 665 } 666 if (error) { 667 if (xfs_sb_version_hascrc(&mp->m_sb)) { 668 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 669 ASSERT(0); 670 goto out_free_log; 671 } 672 xfs_crit(mp, 673 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 674 "experienced then please report this message in the bug report."); 675 } 676 677 /* 678 * Initialize the AIL now we have a log. 679 */ 680 error = xfs_trans_ail_init(mp); 681 if (error) { 682 xfs_warn(mp, "AIL initialisation failed: error %d", error); 683 goto out_free_log; 684 } 685 mp->m_log->l_ailp = mp->m_ail; 686 687 /* 688 * skip log recovery on a norecovery mount. pretend it all 689 * just worked. 690 */ 691 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 692 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 693 694 if (readonly) 695 mp->m_flags &= ~XFS_MOUNT_RDONLY; 696 697 error = xlog_recover(mp->m_log); 698 699 if (readonly) 700 mp->m_flags |= XFS_MOUNT_RDONLY; 701 if (error) { 702 xfs_warn(mp, "log mount/recovery failed: error %d", 703 error); 704 goto out_destroy_ail; 705 } 706 } 707 708 /* Normal transactions can now occur */ 709 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 710 711 /* 712 * Now the log has been fully initialised and we know were our 713 * space grant counters are, we can initialise the permanent ticket 714 * needed for delayed logging to work. 715 */ 716 xlog_cil_init_post_recovery(mp->m_log); 717 718 return 0; 719 720 out_destroy_ail: 721 xfs_trans_ail_destroy(mp); 722 out_free_log: 723 xlog_dealloc_log(mp->m_log); 724 out: 725 return error; 726 } 727 728 /* 729 * Finish the recovery of the file system. This is separate from the 730 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 731 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 732 * here. 733 * 734 * If we finish recovery successfully, start the background log work. If we are 735 * not doing recovery, then we have a RO filesystem and we don't need to start 736 * it. 737 */ 738 int 739 xfs_log_mount_finish(xfs_mount_t *mp) 740 { 741 int error = 0; 742 743 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 744 error = xlog_recover_finish(mp->m_log); 745 if (!error) 746 xfs_log_work_queue(mp); 747 } else { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 } 750 751 752 return error; 753 } 754 755 /* 756 * Final log writes as part of unmount. 757 * 758 * Mark the filesystem clean as unmount happens. Note that during relocation 759 * this routine needs to be executed as part of source-bag while the 760 * deallocation must not be done until source-end. 761 */ 762 763 /* 764 * Unmount record used to have a string "Unmount filesystem--" in the 765 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 766 * We just write the magic number now since that particular field isn't 767 * currently architecture converted and "Unmount" is a bit foo. 768 * As far as I know, there weren't any dependencies on the old behaviour. 769 */ 770 771 int 772 xfs_log_unmount_write(xfs_mount_t *mp) 773 { 774 struct xlog *log = mp->m_log; 775 xlog_in_core_t *iclog; 776 #ifdef DEBUG 777 xlog_in_core_t *first_iclog; 778 #endif 779 xlog_ticket_t *tic = NULL; 780 xfs_lsn_t lsn; 781 int error; 782 783 /* 784 * Don't write out unmount record on read-only mounts. 785 * Or, if we are doing a forced umount (typically because of IO errors). 786 */ 787 if (mp->m_flags & XFS_MOUNT_RDONLY) 788 return 0; 789 790 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 791 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 792 793 #ifdef DEBUG 794 first_iclog = iclog = log->l_iclog; 795 do { 796 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 797 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 798 ASSERT(iclog->ic_offset == 0); 799 } 800 iclog = iclog->ic_next; 801 } while (iclog != first_iclog); 802 #endif 803 if (! (XLOG_FORCED_SHUTDOWN(log))) { 804 error = xfs_log_reserve(mp, 600, 1, &tic, 805 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 806 if (!error) { 807 /* the data section must be 32 bit size aligned */ 808 struct { 809 __uint16_t magic; 810 __uint16_t pad1; 811 __uint32_t pad2; /* may as well make it 64 bits */ 812 } magic = { 813 .magic = XLOG_UNMOUNT_TYPE, 814 }; 815 struct xfs_log_iovec reg = { 816 .i_addr = &magic, 817 .i_len = sizeof(magic), 818 .i_type = XLOG_REG_TYPE_UNMOUNT, 819 }; 820 struct xfs_log_vec vec = { 821 .lv_niovecs = 1, 822 .lv_iovecp = ®, 823 }; 824 825 /* remove inited flag, and account for space used */ 826 tic->t_flags = 0; 827 tic->t_curr_res -= sizeof(magic); 828 error = xlog_write(log, &vec, tic, &lsn, 829 NULL, XLOG_UNMOUNT_TRANS); 830 /* 831 * At this point, we're umounting anyway, 832 * so there's no point in transitioning log state 833 * to IOERROR. Just continue... 834 */ 835 } 836 837 if (error) 838 xfs_alert(mp, "%s: unmount record failed", __func__); 839 840 841 spin_lock(&log->l_icloglock); 842 iclog = log->l_iclog; 843 atomic_inc(&iclog->ic_refcnt); 844 xlog_state_want_sync(log, iclog); 845 spin_unlock(&log->l_icloglock); 846 error = xlog_state_release_iclog(log, iclog); 847 848 spin_lock(&log->l_icloglock); 849 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 850 iclog->ic_state == XLOG_STATE_DIRTY)) { 851 if (!XLOG_FORCED_SHUTDOWN(log)) { 852 xlog_wait(&iclog->ic_force_wait, 853 &log->l_icloglock); 854 } else { 855 spin_unlock(&log->l_icloglock); 856 } 857 } else { 858 spin_unlock(&log->l_icloglock); 859 } 860 if (tic) { 861 trace_xfs_log_umount_write(log, tic); 862 xlog_ungrant_log_space(log, tic); 863 xfs_log_ticket_put(tic); 864 } 865 } else { 866 /* 867 * We're already in forced_shutdown mode, couldn't 868 * even attempt to write out the unmount transaction. 869 * 870 * Go through the motions of sync'ing and releasing 871 * the iclog, even though no I/O will actually happen, 872 * we need to wait for other log I/Os that may already 873 * be in progress. Do this as a separate section of 874 * code so we'll know if we ever get stuck here that 875 * we're in this odd situation of trying to unmount 876 * a file system that went into forced_shutdown as 877 * the result of an unmount.. 878 */ 879 spin_lock(&log->l_icloglock); 880 iclog = log->l_iclog; 881 atomic_inc(&iclog->ic_refcnt); 882 883 xlog_state_want_sync(log, iclog); 884 spin_unlock(&log->l_icloglock); 885 error = xlog_state_release_iclog(log, iclog); 886 887 spin_lock(&log->l_icloglock); 888 889 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 890 || iclog->ic_state == XLOG_STATE_DIRTY 891 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 892 893 xlog_wait(&iclog->ic_force_wait, 894 &log->l_icloglock); 895 } else { 896 spin_unlock(&log->l_icloglock); 897 } 898 } 899 900 return error; 901 } /* xfs_log_unmount_write */ 902 903 /* 904 * Empty the log for unmount/freeze. 905 * 906 * To do this, we first need to shut down the background log work so it is not 907 * trying to cover the log as we clean up. We then need to unpin all objects in 908 * the log so we can then flush them out. Once they have completed their IO and 909 * run the callbacks removing themselves from the AIL, we can write the unmount 910 * record. 911 */ 912 void 913 xfs_log_quiesce( 914 struct xfs_mount *mp) 915 { 916 cancel_delayed_work_sync(&mp->m_log->l_work); 917 xfs_log_force(mp, XFS_LOG_SYNC); 918 919 /* 920 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 921 * will push it, xfs_wait_buftarg() will not wait for it. Further, 922 * xfs_buf_iowait() cannot be used because it was pushed with the 923 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 924 * the IO to complete. 925 */ 926 xfs_ail_push_all_sync(mp->m_ail); 927 xfs_wait_buftarg(mp->m_ddev_targp); 928 xfs_buf_lock(mp->m_sb_bp); 929 xfs_buf_unlock(mp->m_sb_bp); 930 931 xfs_log_unmount_write(mp); 932 } 933 934 /* 935 * Shut down and release the AIL and Log. 936 * 937 * During unmount, we need to ensure we flush all the dirty metadata objects 938 * from the AIL so that the log is empty before we write the unmount record to 939 * the log. Once this is done, we can tear down the AIL and the log. 940 */ 941 void 942 xfs_log_unmount( 943 struct xfs_mount *mp) 944 { 945 xfs_log_quiesce(mp); 946 947 xfs_trans_ail_destroy(mp); 948 xlog_dealloc_log(mp->m_log); 949 } 950 951 void 952 xfs_log_item_init( 953 struct xfs_mount *mp, 954 struct xfs_log_item *item, 955 int type, 956 const struct xfs_item_ops *ops) 957 { 958 item->li_mountp = mp; 959 item->li_ailp = mp->m_ail; 960 item->li_type = type; 961 item->li_ops = ops; 962 item->li_lv = NULL; 963 964 INIT_LIST_HEAD(&item->li_ail); 965 INIT_LIST_HEAD(&item->li_cil); 966 } 967 968 /* 969 * Wake up processes waiting for log space after we have moved the log tail. 970 */ 971 void 972 xfs_log_space_wake( 973 struct xfs_mount *mp) 974 { 975 struct xlog *log = mp->m_log; 976 int free_bytes; 977 978 if (XLOG_FORCED_SHUTDOWN(log)) 979 return; 980 981 if (!list_empty_careful(&log->l_write_head.waiters)) { 982 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 983 984 spin_lock(&log->l_write_head.lock); 985 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 986 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 987 spin_unlock(&log->l_write_head.lock); 988 } 989 990 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 991 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 992 993 spin_lock(&log->l_reserve_head.lock); 994 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 995 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 996 spin_unlock(&log->l_reserve_head.lock); 997 } 998 } 999 1000 /* 1001 * Determine if we have a transaction that has gone to disk that needs to be 1002 * covered. To begin the transition to the idle state firstly the log needs to 1003 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1004 * we start attempting to cover the log. 1005 * 1006 * Only if we are then in a state where covering is needed, the caller is 1007 * informed that dummy transactions are required to move the log into the idle 1008 * state. 1009 * 1010 * If there are any items in the AIl or CIL, then we do not want to attempt to 1011 * cover the log as we may be in a situation where there isn't log space 1012 * available to run a dummy transaction and this can lead to deadlocks when the 1013 * tail of the log is pinned by an item that is modified in the CIL. Hence 1014 * there's no point in running a dummy transaction at this point because we 1015 * can't start trying to idle the log until both the CIL and AIL are empty. 1016 */ 1017 int 1018 xfs_log_need_covered(xfs_mount_t *mp) 1019 { 1020 struct xlog *log = mp->m_log; 1021 int needed = 0; 1022 1023 if (!xfs_fs_writable(mp)) 1024 return 0; 1025 1026 if (!xlog_cil_empty(log)) 1027 return 0; 1028 1029 spin_lock(&log->l_icloglock); 1030 switch (log->l_covered_state) { 1031 case XLOG_STATE_COVER_DONE: 1032 case XLOG_STATE_COVER_DONE2: 1033 case XLOG_STATE_COVER_IDLE: 1034 break; 1035 case XLOG_STATE_COVER_NEED: 1036 case XLOG_STATE_COVER_NEED2: 1037 if (xfs_ail_min_lsn(log->l_ailp)) 1038 break; 1039 if (!xlog_iclogs_empty(log)) 1040 break; 1041 1042 needed = 1; 1043 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1044 log->l_covered_state = XLOG_STATE_COVER_DONE; 1045 else 1046 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1047 break; 1048 default: 1049 needed = 1; 1050 break; 1051 } 1052 spin_unlock(&log->l_icloglock); 1053 return needed; 1054 } 1055 1056 /* 1057 * We may be holding the log iclog lock upon entering this routine. 1058 */ 1059 xfs_lsn_t 1060 xlog_assign_tail_lsn_locked( 1061 struct xfs_mount *mp) 1062 { 1063 struct xlog *log = mp->m_log; 1064 struct xfs_log_item *lip; 1065 xfs_lsn_t tail_lsn; 1066 1067 assert_spin_locked(&mp->m_ail->xa_lock); 1068 1069 /* 1070 * To make sure we always have a valid LSN for the log tail we keep 1071 * track of the last LSN which was committed in log->l_last_sync_lsn, 1072 * and use that when the AIL was empty. 1073 */ 1074 lip = xfs_ail_min(mp->m_ail); 1075 if (lip) 1076 tail_lsn = lip->li_lsn; 1077 else 1078 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1079 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1080 atomic64_set(&log->l_tail_lsn, tail_lsn); 1081 return tail_lsn; 1082 } 1083 1084 xfs_lsn_t 1085 xlog_assign_tail_lsn( 1086 struct xfs_mount *mp) 1087 { 1088 xfs_lsn_t tail_lsn; 1089 1090 spin_lock(&mp->m_ail->xa_lock); 1091 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1092 spin_unlock(&mp->m_ail->xa_lock); 1093 1094 return tail_lsn; 1095 } 1096 1097 /* 1098 * Return the space in the log between the tail and the head. The head 1099 * is passed in the cycle/bytes formal parms. In the special case where 1100 * the reserve head has wrapped passed the tail, this calculation is no 1101 * longer valid. In this case, just return 0 which means there is no space 1102 * in the log. This works for all places where this function is called 1103 * with the reserve head. Of course, if the write head were to ever 1104 * wrap the tail, we should blow up. Rather than catch this case here, 1105 * we depend on other ASSERTions in other parts of the code. XXXmiken 1106 * 1107 * This code also handles the case where the reservation head is behind 1108 * the tail. The details of this case are described below, but the end 1109 * result is that we return the size of the log as the amount of space left. 1110 */ 1111 STATIC int 1112 xlog_space_left( 1113 struct xlog *log, 1114 atomic64_t *head) 1115 { 1116 int free_bytes; 1117 int tail_bytes; 1118 int tail_cycle; 1119 int head_cycle; 1120 int head_bytes; 1121 1122 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1123 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1124 tail_bytes = BBTOB(tail_bytes); 1125 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1126 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1127 else if (tail_cycle + 1 < head_cycle) 1128 return 0; 1129 else if (tail_cycle < head_cycle) { 1130 ASSERT(tail_cycle == (head_cycle - 1)); 1131 free_bytes = tail_bytes - head_bytes; 1132 } else { 1133 /* 1134 * The reservation head is behind the tail. 1135 * In this case we just want to return the size of the 1136 * log as the amount of space left. 1137 */ 1138 xfs_alert(log->l_mp, 1139 "xlog_space_left: head behind tail\n" 1140 " tail_cycle = %d, tail_bytes = %d\n" 1141 " GH cycle = %d, GH bytes = %d", 1142 tail_cycle, tail_bytes, head_cycle, head_bytes); 1143 ASSERT(0); 1144 free_bytes = log->l_logsize; 1145 } 1146 return free_bytes; 1147 } 1148 1149 1150 /* 1151 * Log function which is called when an io completes. 1152 * 1153 * The log manager needs its own routine, in order to control what 1154 * happens with the buffer after the write completes. 1155 */ 1156 void 1157 xlog_iodone(xfs_buf_t *bp) 1158 { 1159 struct xlog_in_core *iclog = bp->b_fspriv; 1160 struct xlog *l = iclog->ic_log; 1161 int aborted = 0; 1162 1163 /* 1164 * Race to shutdown the filesystem if we see an error. 1165 */ 1166 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 1167 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1168 xfs_buf_ioerror_alert(bp, __func__); 1169 xfs_buf_stale(bp); 1170 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1171 /* 1172 * This flag will be propagated to the trans-committed 1173 * callback routines to let them know that the log-commit 1174 * didn't succeed. 1175 */ 1176 aborted = XFS_LI_ABORTED; 1177 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1178 aborted = XFS_LI_ABORTED; 1179 } 1180 1181 /* log I/O is always issued ASYNC */ 1182 ASSERT(XFS_BUF_ISASYNC(bp)); 1183 xlog_state_done_syncing(iclog, aborted); 1184 1185 /* 1186 * drop the buffer lock now that we are done. Nothing references 1187 * the buffer after this, so an unmount waiting on this lock can now 1188 * tear it down safely. As such, it is unsafe to reference the buffer 1189 * (bp) after the unlock as we could race with it being freed. 1190 */ 1191 xfs_buf_unlock(bp); 1192 } 1193 1194 /* 1195 * Return size of each in-core log record buffer. 1196 * 1197 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1198 * 1199 * If the filesystem blocksize is too large, we may need to choose a 1200 * larger size since the directory code currently logs entire blocks. 1201 */ 1202 1203 STATIC void 1204 xlog_get_iclog_buffer_size( 1205 struct xfs_mount *mp, 1206 struct xlog *log) 1207 { 1208 int size; 1209 int xhdrs; 1210 1211 if (mp->m_logbufs <= 0) 1212 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1213 else 1214 log->l_iclog_bufs = mp->m_logbufs; 1215 1216 /* 1217 * Buffer size passed in from mount system call. 1218 */ 1219 if (mp->m_logbsize > 0) { 1220 size = log->l_iclog_size = mp->m_logbsize; 1221 log->l_iclog_size_log = 0; 1222 while (size != 1) { 1223 log->l_iclog_size_log++; 1224 size >>= 1; 1225 } 1226 1227 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1228 /* # headers = size / 32k 1229 * one header holds cycles from 32k of data 1230 */ 1231 1232 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1233 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1234 xhdrs++; 1235 log->l_iclog_hsize = xhdrs << BBSHIFT; 1236 log->l_iclog_heads = xhdrs; 1237 } else { 1238 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1239 log->l_iclog_hsize = BBSIZE; 1240 log->l_iclog_heads = 1; 1241 } 1242 goto done; 1243 } 1244 1245 /* All machines use 32kB buffers by default. */ 1246 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1247 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1248 1249 /* the default log size is 16k or 32k which is one header sector */ 1250 log->l_iclog_hsize = BBSIZE; 1251 log->l_iclog_heads = 1; 1252 1253 done: 1254 /* are we being asked to make the sizes selected above visible? */ 1255 if (mp->m_logbufs == 0) 1256 mp->m_logbufs = log->l_iclog_bufs; 1257 if (mp->m_logbsize == 0) 1258 mp->m_logbsize = log->l_iclog_size; 1259 } /* xlog_get_iclog_buffer_size */ 1260 1261 1262 void 1263 xfs_log_work_queue( 1264 struct xfs_mount *mp) 1265 { 1266 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1267 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1268 } 1269 1270 /* 1271 * Every sync period we need to unpin all items in the AIL and push them to 1272 * disk. If there is nothing dirty, then we might need to cover the log to 1273 * indicate that the filesystem is idle. 1274 */ 1275 void 1276 xfs_log_worker( 1277 struct work_struct *work) 1278 { 1279 struct xlog *log = container_of(to_delayed_work(work), 1280 struct xlog, l_work); 1281 struct xfs_mount *mp = log->l_mp; 1282 1283 /* dgc: errors ignored - not fatal and nowhere to report them */ 1284 if (xfs_log_need_covered(mp)) 1285 xfs_fs_log_dummy(mp); 1286 else 1287 xfs_log_force(mp, 0); 1288 1289 /* start pushing all the metadata that is currently dirty */ 1290 xfs_ail_push_all(mp->m_ail); 1291 1292 /* queue us up again */ 1293 xfs_log_work_queue(mp); 1294 } 1295 1296 /* 1297 * This routine initializes some of the log structure for a given mount point. 1298 * Its primary purpose is to fill in enough, so recovery can occur. However, 1299 * some other stuff may be filled in too. 1300 */ 1301 STATIC struct xlog * 1302 xlog_alloc_log( 1303 struct xfs_mount *mp, 1304 struct xfs_buftarg *log_target, 1305 xfs_daddr_t blk_offset, 1306 int num_bblks) 1307 { 1308 struct xlog *log; 1309 xlog_rec_header_t *head; 1310 xlog_in_core_t **iclogp; 1311 xlog_in_core_t *iclog, *prev_iclog=NULL; 1312 xfs_buf_t *bp; 1313 int i; 1314 int error = ENOMEM; 1315 uint log2_size = 0; 1316 1317 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1318 if (!log) { 1319 xfs_warn(mp, "Log allocation failed: No memory!"); 1320 goto out; 1321 } 1322 1323 log->l_mp = mp; 1324 log->l_targ = log_target; 1325 log->l_logsize = BBTOB(num_bblks); 1326 log->l_logBBstart = blk_offset; 1327 log->l_logBBsize = num_bblks; 1328 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1329 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1330 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1331 1332 log->l_prev_block = -1; 1333 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1334 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1335 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1336 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1337 1338 xlog_grant_head_init(&log->l_reserve_head); 1339 xlog_grant_head_init(&log->l_write_head); 1340 1341 error = EFSCORRUPTED; 1342 if (xfs_sb_version_hassector(&mp->m_sb)) { 1343 log2_size = mp->m_sb.sb_logsectlog; 1344 if (log2_size < BBSHIFT) { 1345 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1346 log2_size, BBSHIFT); 1347 goto out_free_log; 1348 } 1349 1350 log2_size -= BBSHIFT; 1351 if (log2_size > mp->m_sectbb_log) { 1352 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1353 log2_size, mp->m_sectbb_log); 1354 goto out_free_log; 1355 } 1356 1357 /* for larger sector sizes, must have v2 or external log */ 1358 if (log2_size && log->l_logBBstart > 0 && 1359 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1360 xfs_warn(mp, 1361 "log sector size (0x%x) invalid for configuration.", 1362 log2_size); 1363 goto out_free_log; 1364 } 1365 } 1366 log->l_sectBBsize = 1 << log2_size; 1367 1368 xlog_get_iclog_buffer_size(mp, log); 1369 1370 error = ENOMEM; 1371 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1372 if (!bp) 1373 goto out_free_log; 1374 1375 /* 1376 * The iclogbuf buffer locks are held over IO but we are not going to do 1377 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1378 * when appropriately. 1379 */ 1380 ASSERT(xfs_buf_islocked(bp)); 1381 xfs_buf_unlock(bp); 1382 1383 bp->b_iodone = xlog_iodone; 1384 log->l_xbuf = bp; 1385 1386 spin_lock_init(&log->l_icloglock); 1387 init_waitqueue_head(&log->l_flush_wait); 1388 1389 iclogp = &log->l_iclog; 1390 /* 1391 * The amount of memory to allocate for the iclog structure is 1392 * rather funky due to the way the structure is defined. It is 1393 * done this way so that we can use different sizes for machines 1394 * with different amounts of memory. See the definition of 1395 * xlog_in_core_t in xfs_log_priv.h for details. 1396 */ 1397 ASSERT(log->l_iclog_size >= 4096); 1398 for (i=0; i < log->l_iclog_bufs; i++) { 1399 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1400 if (!*iclogp) 1401 goto out_free_iclog; 1402 1403 iclog = *iclogp; 1404 iclog->ic_prev = prev_iclog; 1405 prev_iclog = iclog; 1406 1407 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1408 BTOBB(log->l_iclog_size), 0); 1409 if (!bp) 1410 goto out_free_iclog; 1411 1412 ASSERT(xfs_buf_islocked(bp)); 1413 xfs_buf_unlock(bp); 1414 1415 bp->b_iodone = xlog_iodone; 1416 iclog->ic_bp = bp; 1417 iclog->ic_data = bp->b_addr; 1418 #ifdef DEBUG 1419 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1420 #endif 1421 head = &iclog->ic_header; 1422 memset(head, 0, sizeof(xlog_rec_header_t)); 1423 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1424 head->h_version = cpu_to_be32( 1425 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1426 head->h_size = cpu_to_be32(log->l_iclog_size); 1427 /* new fields */ 1428 head->h_fmt = cpu_to_be32(XLOG_FMT); 1429 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1430 1431 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1432 iclog->ic_state = XLOG_STATE_ACTIVE; 1433 iclog->ic_log = log; 1434 atomic_set(&iclog->ic_refcnt, 0); 1435 spin_lock_init(&iclog->ic_callback_lock); 1436 iclog->ic_callback_tail = &(iclog->ic_callback); 1437 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1438 1439 init_waitqueue_head(&iclog->ic_force_wait); 1440 init_waitqueue_head(&iclog->ic_write_wait); 1441 1442 iclogp = &iclog->ic_next; 1443 } 1444 *iclogp = log->l_iclog; /* complete ring */ 1445 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1446 1447 error = xlog_cil_init(log); 1448 if (error) 1449 goto out_free_iclog; 1450 return log; 1451 1452 out_free_iclog: 1453 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1454 prev_iclog = iclog->ic_next; 1455 if (iclog->ic_bp) 1456 xfs_buf_free(iclog->ic_bp); 1457 kmem_free(iclog); 1458 } 1459 spinlock_destroy(&log->l_icloglock); 1460 xfs_buf_free(log->l_xbuf); 1461 out_free_log: 1462 kmem_free(log); 1463 out: 1464 return ERR_PTR(-error); 1465 } /* xlog_alloc_log */ 1466 1467 1468 /* 1469 * Write out the commit record of a transaction associated with the given 1470 * ticket. Return the lsn of the commit record. 1471 */ 1472 STATIC int 1473 xlog_commit_record( 1474 struct xlog *log, 1475 struct xlog_ticket *ticket, 1476 struct xlog_in_core **iclog, 1477 xfs_lsn_t *commitlsnp) 1478 { 1479 struct xfs_mount *mp = log->l_mp; 1480 int error; 1481 struct xfs_log_iovec reg = { 1482 .i_addr = NULL, 1483 .i_len = 0, 1484 .i_type = XLOG_REG_TYPE_COMMIT, 1485 }; 1486 struct xfs_log_vec vec = { 1487 .lv_niovecs = 1, 1488 .lv_iovecp = ®, 1489 }; 1490 1491 ASSERT_ALWAYS(iclog); 1492 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1493 XLOG_COMMIT_TRANS); 1494 if (error) 1495 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1496 return error; 1497 } 1498 1499 /* 1500 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1501 * log space. This code pushes on the lsn which would supposedly free up 1502 * the 25% which we want to leave free. We may need to adopt a policy which 1503 * pushes on an lsn which is further along in the log once we reach the high 1504 * water mark. In this manner, we would be creating a low water mark. 1505 */ 1506 STATIC void 1507 xlog_grant_push_ail( 1508 struct xlog *log, 1509 int need_bytes) 1510 { 1511 xfs_lsn_t threshold_lsn = 0; 1512 xfs_lsn_t last_sync_lsn; 1513 int free_blocks; 1514 int free_bytes; 1515 int threshold_block; 1516 int threshold_cycle; 1517 int free_threshold; 1518 1519 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1520 1521 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1522 free_blocks = BTOBBT(free_bytes); 1523 1524 /* 1525 * Set the threshold for the minimum number of free blocks in the 1526 * log to the maximum of what the caller needs, one quarter of the 1527 * log, and 256 blocks. 1528 */ 1529 free_threshold = BTOBB(need_bytes); 1530 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1531 free_threshold = MAX(free_threshold, 256); 1532 if (free_blocks >= free_threshold) 1533 return; 1534 1535 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1536 &threshold_block); 1537 threshold_block += free_threshold; 1538 if (threshold_block >= log->l_logBBsize) { 1539 threshold_block -= log->l_logBBsize; 1540 threshold_cycle += 1; 1541 } 1542 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1543 threshold_block); 1544 /* 1545 * Don't pass in an lsn greater than the lsn of the last 1546 * log record known to be on disk. Use a snapshot of the last sync lsn 1547 * so that it doesn't change between the compare and the set. 1548 */ 1549 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1550 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1551 threshold_lsn = last_sync_lsn; 1552 1553 /* 1554 * Get the transaction layer to kick the dirty buffers out to 1555 * disk asynchronously. No point in trying to do this if 1556 * the filesystem is shutting down. 1557 */ 1558 if (!XLOG_FORCED_SHUTDOWN(log)) 1559 xfs_ail_push(log->l_ailp, threshold_lsn); 1560 } 1561 1562 /* 1563 * Stamp cycle number in every block 1564 */ 1565 STATIC void 1566 xlog_pack_data( 1567 struct xlog *log, 1568 struct xlog_in_core *iclog, 1569 int roundoff) 1570 { 1571 int i, j, k; 1572 int size = iclog->ic_offset + roundoff; 1573 __be32 cycle_lsn; 1574 xfs_caddr_t dp; 1575 1576 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1577 1578 dp = iclog->ic_datap; 1579 for (i = 0; i < BTOBB(size); i++) { 1580 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1581 break; 1582 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1583 *(__be32 *)dp = cycle_lsn; 1584 dp += BBSIZE; 1585 } 1586 1587 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1588 xlog_in_core_2_t *xhdr = iclog->ic_data; 1589 1590 for ( ; i < BTOBB(size); i++) { 1591 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1592 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1593 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1594 *(__be32 *)dp = cycle_lsn; 1595 dp += BBSIZE; 1596 } 1597 1598 for (i = 1; i < log->l_iclog_heads; i++) 1599 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1600 } 1601 } 1602 1603 /* 1604 * Calculate the checksum for a log buffer. 1605 * 1606 * This is a little more complicated than it should be because the various 1607 * headers and the actual data are non-contiguous. 1608 */ 1609 __le32 1610 xlog_cksum( 1611 struct xlog *log, 1612 struct xlog_rec_header *rhead, 1613 char *dp, 1614 int size) 1615 { 1616 __uint32_t crc; 1617 1618 /* first generate the crc for the record header ... */ 1619 crc = xfs_start_cksum((char *)rhead, 1620 sizeof(struct xlog_rec_header), 1621 offsetof(struct xlog_rec_header, h_crc)); 1622 1623 /* ... then for additional cycle data for v2 logs ... */ 1624 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1625 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1626 int i; 1627 1628 for (i = 1; i < log->l_iclog_heads; i++) { 1629 crc = crc32c(crc, &xhdr[i].hic_xheader, 1630 sizeof(struct xlog_rec_ext_header)); 1631 } 1632 } 1633 1634 /* ... and finally for the payload */ 1635 crc = crc32c(crc, dp, size); 1636 1637 return xfs_end_cksum(crc); 1638 } 1639 1640 /* 1641 * The bdstrat callback function for log bufs. This gives us a central 1642 * place to trap bufs in case we get hit by a log I/O error and need to 1643 * shutdown. Actually, in practice, even when we didn't get a log error, 1644 * we transition the iclogs to IOERROR state *after* flushing all existing 1645 * iclogs to disk. This is because we don't want anymore new transactions to be 1646 * started or completed afterwards. 1647 * 1648 * We lock the iclogbufs here so that we can serialise against IO completion 1649 * during unmount. We might be processing a shutdown triggered during unmount, 1650 * and that can occur asynchronously to the unmount thread, and hence we need to 1651 * ensure that completes before tearing down the iclogbufs. Hence we need to 1652 * hold the buffer lock across the log IO to acheive that. 1653 */ 1654 STATIC int 1655 xlog_bdstrat( 1656 struct xfs_buf *bp) 1657 { 1658 struct xlog_in_core *iclog = bp->b_fspriv; 1659 1660 xfs_buf_lock(bp); 1661 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1662 xfs_buf_ioerror(bp, EIO); 1663 xfs_buf_stale(bp); 1664 xfs_buf_ioend(bp, 0); 1665 /* 1666 * It would seem logical to return EIO here, but we rely on 1667 * the log state machine to propagate I/O errors instead of 1668 * doing it here. Similarly, IO completion will unlock the 1669 * buffer, so we don't do it here. 1670 */ 1671 return 0; 1672 } 1673 1674 xfs_buf_iorequest(bp); 1675 return 0; 1676 } 1677 1678 /* 1679 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1680 * fashion. Previously, we should have moved the current iclog 1681 * ptr in the log to point to the next available iclog. This allows further 1682 * write to continue while this code syncs out an iclog ready to go. 1683 * Before an in-core log can be written out, the data section must be scanned 1684 * to save away the 1st word of each BBSIZE block into the header. We replace 1685 * it with the current cycle count. Each BBSIZE block is tagged with the 1686 * cycle count because there in an implicit assumption that drives will 1687 * guarantee that entire 512 byte blocks get written at once. In other words, 1688 * we can't have part of a 512 byte block written and part not written. By 1689 * tagging each block, we will know which blocks are valid when recovering 1690 * after an unclean shutdown. 1691 * 1692 * This routine is single threaded on the iclog. No other thread can be in 1693 * this routine with the same iclog. Changing contents of iclog can there- 1694 * fore be done without grabbing the state machine lock. Updating the global 1695 * log will require grabbing the lock though. 1696 * 1697 * The entire log manager uses a logical block numbering scheme. Only 1698 * log_sync (and then only bwrite()) know about the fact that the log may 1699 * not start with block zero on a given device. The log block start offset 1700 * is added immediately before calling bwrite(). 1701 */ 1702 1703 STATIC int 1704 xlog_sync( 1705 struct xlog *log, 1706 struct xlog_in_core *iclog) 1707 { 1708 xfs_buf_t *bp; 1709 int i; 1710 uint count; /* byte count of bwrite */ 1711 uint count_init; /* initial count before roundup */ 1712 int roundoff; /* roundoff to BB or stripe */ 1713 int split = 0; /* split write into two regions */ 1714 int error; 1715 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1716 int size; 1717 1718 XFS_STATS_INC(xs_log_writes); 1719 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1720 1721 /* Add for LR header */ 1722 count_init = log->l_iclog_hsize + iclog->ic_offset; 1723 1724 /* Round out the log write size */ 1725 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1726 /* we have a v2 stripe unit to use */ 1727 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1728 } else { 1729 count = BBTOB(BTOBB(count_init)); 1730 } 1731 roundoff = count - count_init; 1732 ASSERT(roundoff >= 0); 1733 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1734 roundoff < log->l_mp->m_sb.sb_logsunit) 1735 || 1736 (log->l_mp->m_sb.sb_logsunit <= 1 && 1737 roundoff < BBTOB(1))); 1738 1739 /* move grant heads by roundoff in sync */ 1740 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1741 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1742 1743 /* put cycle number in every block */ 1744 xlog_pack_data(log, iclog, roundoff); 1745 1746 /* real byte length */ 1747 size = iclog->ic_offset; 1748 if (v2) 1749 size += roundoff; 1750 iclog->ic_header.h_len = cpu_to_be32(size); 1751 1752 bp = iclog->ic_bp; 1753 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1754 1755 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1756 1757 /* Do we need to split this write into 2 parts? */ 1758 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1759 char *dptr; 1760 1761 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1762 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1763 iclog->ic_bwritecnt = 2; 1764 1765 /* 1766 * Bump the cycle numbers at the start of each block in the 1767 * part of the iclog that ends up in the buffer that gets 1768 * written to the start of the log. 1769 * 1770 * Watch out for the header magic number case, though. 1771 */ 1772 dptr = (char *)&iclog->ic_header + count; 1773 for (i = 0; i < split; i += BBSIZE) { 1774 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1775 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1776 cycle++; 1777 *(__be32 *)dptr = cpu_to_be32(cycle); 1778 1779 dptr += BBSIZE; 1780 } 1781 } else { 1782 iclog->ic_bwritecnt = 1; 1783 } 1784 1785 /* calculcate the checksum */ 1786 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1787 iclog->ic_datap, size); 1788 1789 bp->b_io_length = BTOBB(count); 1790 bp->b_fspriv = iclog; 1791 XFS_BUF_ZEROFLAGS(bp); 1792 XFS_BUF_ASYNC(bp); 1793 bp->b_flags |= XBF_SYNCIO; 1794 1795 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1796 bp->b_flags |= XBF_FUA; 1797 1798 /* 1799 * Flush the data device before flushing the log to make 1800 * sure all meta data written back from the AIL actually made 1801 * it to disk before stamping the new log tail LSN into the 1802 * log buffer. For an external log we need to issue the 1803 * flush explicitly, and unfortunately synchronously here; 1804 * for an internal log we can simply use the block layer 1805 * state machine for preflushes. 1806 */ 1807 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1808 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1809 else 1810 bp->b_flags |= XBF_FLUSH; 1811 } 1812 1813 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1814 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1815 1816 xlog_verify_iclog(log, iclog, count, true); 1817 1818 /* account for log which doesn't start at block #0 */ 1819 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1820 /* 1821 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1822 * is shutting down. 1823 */ 1824 XFS_BUF_WRITE(bp); 1825 1826 error = xlog_bdstrat(bp); 1827 if (error) { 1828 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1829 return error; 1830 } 1831 if (split) { 1832 bp = iclog->ic_log->l_xbuf; 1833 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1834 xfs_buf_associate_memory(bp, 1835 (char *)&iclog->ic_header + count, split); 1836 bp->b_fspriv = iclog; 1837 XFS_BUF_ZEROFLAGS(bp); 1838 XFS_BUF_ASYNC(bp); 1839 bp->b_flags |= XBF_SYNCIO; 1840 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1841 bp->b_flags |= XBF_FUA; 1842 1843 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1844 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1845 1846 /* account for internal log which doesn't start at block #0 */ 1847 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1848 XFS_BUF_WRITE(bp); 1849 error = xlog_bdstrat(bp); 1850 if (error) { 1851 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1852 return error; 1853 } 1854 } 1855 return 0; 1856 } /* xlog_sync */ 1857 1858 /* 1859 * Deallocate a log structure 1860 */ 1861 STATIC void 1862 xlog_dealloc_log( 1863 struct xlog *log) 1864 { 1865 xlog_in_core_t *iclog, *next_iclog; 1866 int i; 1867 1868 xlog_cil_destroy(log); 1869 1870 /* 1871 * Cycle all the iclogbuf locks to make sure all log IO completion 1872 * is done before we tear down these buffers. 1873 */ 1874 iclog = log->l_iclog; 1875 for (i = 0; i < log->l_iclog_bufs; i++) { 1876 xfs_buf_lock(iclog->ic_bp); 1877 xfs_buf_unlock(iclog->ic_bp); 1878 iclog = iclog->ic_next; 1879 } 1880 1881 /* 1882 * Always need to ensure that the extra buffer does not point to memory 1883 * owned by another log buffer before we free it. Also, cycle the lock 1884 * first to ensure we've completed IO on it. 1885 */ 1886 xfs_buf_lock(log->l_xbuf); 1887 xfs_buf_unlock(log->l_xbuf); 1888 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1889 xfs_buf_free(log->l_xbuf); 1890 1891 iclog = log->l_iclog; 1892 for (i = 0; i < log->l_iclog_bufs; i++) { 1893 xfs_buf_free(iclog->ic_bp); 1894 next_iclog = iclog->ic_next; 1895 kmem_free(iclog); 1896 iclog = next_iclog; 1897 } 1898 spinlock_destroy(&log->l_icloglock); 1899 1900 log->l_mp->m_log = NULL; 1901 kmem_free(log); 1902 } /* xlog_dealloc_log */ 1903 1904 /* 1905 * Update counters atomically now that memcpy is done. 1906 */ 1907 /* ARGSUSED */ 1908 static inline void 1909 xlog_state_finish_copy( 1910 struct xlog *log, 1911 struct xlog_in_core *iclog, 1912 int record_cnt, 1913 int copy_bytes) 1914 { 1915 spin_lock(&log->l_icloglock); 1916 1917 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1918 iclog->ic_offset += copy_bytes; 1919 1920 spin_unlock(&log->l_icloglock); 1921 } /* xlog_state_finish_copy */ 1922 1923 1924 1925 1926 /* 1927 * print out info relating to regions written which consume 1928 * the reservation 1929 */ 1930 void 1931 xlog_print_tic_res( 1932 struct xfs_mount *mp, 1933 struct xlog_ticket *ticket) 1934 { 1935 uint i; 1936 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1937 1938 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1939 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1940 "bformat", 1941 "bchunk", 1942 "efi_format", 1943 "efd_format", 1944 "iformat", 1945 "icore", 1946 "iext", 1947 "ibroot", 1948 "ilocal", 1949 "iattr_ext", 1950 "iattr_broot", 1951 "iattr_local", 1952 "qformat", 1953 "dquot", 1954 "quotaoff", 1955 "LR header", 1956 "unmount", 1957 "commit", 1958 "trans header" 1959 }; 1960 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1961 "SETATTR_NOT_SIZE", 1962 "SETATTR_SIZE", 1963 "INACTIVE", 1964 "CREATE", 1965 "CREATE_TRUNC", 1966 "TRUNCATE_FILE", 1967 "REMOVE", 1968 "LINK", 1969 "RENAME", 1970 "MKDIR", 1971 "RMDIR", 1972 "SYMLINK", 1973 "SET_DMATTRS", 1974 "GROWFS", 1975 "STRAT_WRITE", 1976 "DIOSTRAT", 1977 "WRITE_SYNC", 1978 "WRITEID", 1979 "ADDAFORK", 1980 "ATTRINVAL", 1981 "ATRUNCATE", 1982 "ATTR_SET", 1983 "ATTR_RM", 1984 "ATTR_FLAG", 1985 "CLEAR_AGI_BUCKET", 1986 "QM_SBCHANGE", 1987 "DUMMY1", 1988 "DUMMY2", 1989 "QM_QUOTAOFF", 1990 "QM_DQALLOC", 1991 "QM_SETQLIM", 1992 "QM_DQCLUSTER", 1993 "QM_QINOCREATE", 1994 "QM_QUOTAOFF_END", 1995 "SB_UNIT", 1996 "FSYNC_TS", 1997 "GROWFSRT_ALLOC", 1998 "GROWFSRT_ZERO", 1999 "GROWFSRT_FREE", 2000 "SWAPEXT" 2001 }; 2002 2003 xfs_warn(mp, 2004 "xlog_write: reservation summary:\n" 2005 " trans type = %s (%u)\n" 2006 " unit res = %d bytes\n" 2007 " current res = %d bytes\n" 2008 " total reg = %u bytes (o/flow = %u bytes)\n" 2009 " ophdrs = %u (ophdr space = %u bytes)\n" 2010 " ophdr + reg = %u bytes\n" 2011 " num regions = %u\n", 2012 ((ticket->t_trans_type <= 0 || 2013 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 2014 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 2015 ticket->t_trans_type, 2016 ticket->t_unit_res, 2017 ticket->t_curr_res, 2018 ticket->t_res_arr_sum, ticket->t_res_o_flow, 2019 ticket->t_res_num_ophdrs, ophdr_spc, 2020 ticket->t_res_arr_sum + 2021 ticket->t_res_o_flow + ophdr_spc, 2022 ticket->t_res_num); 2023 2024 for (i = 0; i < ticket->t_res_num; i++) { 2025 uint r_type = ticket->t_res_arr[i].r_type; 2026 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2027 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2028 "bad-rtype" : res_type_str[r_type-1]), 2029 ticket->t_res_arr[i].r_len); 2030 } 2031 2032 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2033 "xlog_write: reservation ran out. Need to up reservation"); 2034 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2035 } 2036 2037 /* 2038 * Calculate the potential space needed by the log vector. Each region gets 2039 * its own xlog_op_header_t and may need to be double word aligned. 2040 */ 2041 static int 2042 xlog_write_calc_vec_length( 2043 struct xlog_ticket *ticket, 2044 struct xfs_log_vec *log_vector) 2045 { 2046 struct xfs_log_vec *lv; 2047 int headers = 0; 2048 int len = 0; 2049 int i; 2050 2051 /* acct for start rec of xact */ 2052 if (ticket->t_flags & XLOG_TIC_INITED) 2053 headers++; 2054 2055 for (lv = log_vector; lv; lv = lv->lv_next) { 2056 /* we don't write ordered log vectors */ 2057 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2058 continue; 2059 2060 headers += lv->lv_niovecs; 2061 2062 for (i = 0; i < lv->lv_niovecs; i++) { 2063 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2064 2065 len += vecp->i_len; 2066 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2067 } 2068 } 2069 2070 ticket->t_res_num_ophdrs += headers; 2071 len += headers * sizeof(struct xlog_op_header); 2072 2073 return len; 2074 } 2075 2076 /* 2077 * If first write for transaction, insert start record We can't be trying to 2078 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2079 */ 2080 static int 2081 xlog_write_start_rec( 2082 struct xlog_op_header *ophdr, 2083 struct xlog_ticket *ticket) 2084 { 2085 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2086 return 0; 2087 2088 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2089 ophdr->oh_clientid = ticket->t_clientid; 2090 ophdr->oh_len = 0; 2091 ophdr->oh_flags = XLOG_START_TRANS; 2092 ophdr->oh_res2 = 0; 2093 2094 ticket->t_flags &= ~XLOG_TIC_INITED; 2095 2096 return sizeof(struct xlog_op_header); 2097 } 2098 2099 static xlog_op_header_t * 2100 xlog_write_setup_ophdr( 2101 struct xlog *log, 2102 struct xlog_op_header *ophdr, 2103 struct xlog_ticket *ticket, 2104 uint flags) 2105 { 2106 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2107 ophdr->oh_clientid = ticket->t_clientid; 2108 ophdr->oh_res2 = 0; 2109 2110 /* are we copying a commit or unmount record? */ 2111 ophdr->oh_flags = flags; 2112 2113 /* 2114 * We've seen logs corrupted with bad transaction client ids. This 2115 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2116 * and shut down the filesystem. 2117 */ 2118 switch (ophdr->oh_clientid) { 2119 case XFS_TRANSACTION: 2120 case XFS_VOLUME: 2121 case XFS_LOG: 2122 break; 2123 default: 2124 xfs_warn(log->l_mp, 2125 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2126 ophdr->oh_clientid, ticket); 2127 return NULL; 2128 } 2129 2130 return ophdr; 2131 } 2132 2133 /* 2134 * Set up the parameters of the region copy into the log. This has 2135 * to handle region write split across multiple log buffers - this 2136 * state is kept external to this function so that this code can 2137 * be written in an obvious, self documenting manner. 2138 */ 2139 static int 2140 xlog_write_setup_copy( 2141 struct xlog_ticket *ticket, 2142 struct xlog_op_header *ophdr, 2143 int space_available, 2144 int space_required, 2145 int *copy_off, 2146 int *copy_len, 2147 int *last_was_partial_copy, 2148 int *bytes_consumed) 2149 { 2150 int still_to_copy; 2151 2152 still_to_copy = space_required - *bytes_consumed; 2153 *copy_off = *bytes_consumed; 2154 2155 if (still_to_copy <= space_available) { 2156 /* write of region completes here */ 2157 *copy_len = still_to_copy; 2158 ophdr->oh_len = cpu_to_be32(*copy_len); 2159 if (*last_was_partial_copy) 2160 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2161 *last_was_partial_copy = 0; 2162 *bytes_consumed = 0; 2163 return 0; 2164 } 2165 2166 /* partial write of region, needs extra log op header reservation */ 2167 *copy_len = space_available; 2168 ophdr->oh_len = cpu_to_be32(*copy_len); 2169 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2170 if (*last_was_partial_copy) 2171 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2172 *bytes_consumed += *copy_len; 2173 (*last_was_partial_copy)++; 2174 2175 /* account for new log op header */ 2176 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2177 ticket->t_res_num_ophdrs++; 2178 2179 return sizeof(struct xlog_op_header); 2180 } 2181 2182 static int 2183 xlog_write_copy_finish( 2184 struct xlog *log, 2185 struct xlog_in_core *iclog, 2186 uint flags, 2187 int *record_cnt, 2188 int *data_cnt, 2189 int *partial_copy, 2190 int *partial_copy_len, 2191 int log_offset, 2192 struct xlog_in_core **commit_iclog) 2193 { 2194 if (*partial_copy) { 2195 /* 2196 * This iclog has already been marked WANT_SYNC by 2197 * xlog_state_get_iclog_space. 2198 */ 2199 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2200 *record_cnt = 0; 2201 *data_cnt = 0; 2202 return xlog_state_release_iclog(log, iclog); 2203 } 2204 2205 *partial_copy = 0; 2206 *partial_copy_len = 0; 2207 2208 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2209 /* no more space in this iclog - push it. */ 2210 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2211 *record_cnt = 0; 2212 *data_cnt = 0; 2213 2214 spin_lock(&log->l_icloglock); 2215 xlog_state_want_sync(log, iclog); 2216 spin_unlock(&log->l_icloglock); 2217 2218 if (!commit_iclog) 2219 return xlog_state_release_iclog(log, iclog); 2220 ASSERT(flags & XLOG_COMMIT_TRANS); 2221 *commit_iclog = iclog; 2222 } 2223 2224 return 0; 2225 } 2226 2227 /* 2228 * Write some region out to in-core log 2229 * 2230 * This will be called when writing externally provided regions or when 2231 * writing out a commit record for a given transaction. 2232 * 2233 * General algorithm: 2234 * 1. Find total length of this write. This may include adding to the 2235 * lengths passed in. 2236 * 2. Check whether we violate the tickets reservation. 2237 * 3. While writing to this iclog 2238 * A. Reserve as much space in this iclog as can get 2239 * B. If this is first write, save away start lsn 2240 * C. While writing this region: 2241 * 1. If first write of transaction, write start record 2242 * 2. Write log operation header (header per region) 2243 * 3. Find out if we can fit entire region into this iclog 2244 * 4. Potentially, verify destination memcpy ptr 2245 * 5. Memcpy (partial) region 2246 * 6. If partial copy, release iclog; otherwise, continue 2247 * copying more regions into current iclog 2248 * 4. Mark want sync bit (in simulation mode) 2249 * 5. Release iclog for potential flush to on-disk log. 2250 * 2251 * ERRORS: 2252 * 1. Panic if reservation is overrun. This should never happen since 2253 * reservation amounts are generated internal to the filesystem. 2254 * NOTES: 2255 * 1. Tickets are single threaded data structures. 2256 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2257 * syncing routine. When a single log_write region needs to span 2258 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2259 * on all log operation writes which don't contain the end of the 2260 * region. The XLOG_END_TRANS bit is used for the in-core log 2261 * operation which contains the end of the continued log_write region. 2262 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2263 * we don't really know exactly how much space will be used. As a result, 2264 * we don't update ic_offset until the end when we know exactly how many 2265 * bytes have been written out. 2266 */ 2267 int 2268 xlog_write( 2269 struct xlog *log, 2270 struct xfs_log_vec *log_vector, 2271 struct xlog_ticket *ticket, 2272 xfs_lsn_t *start_lsn, 2273 struct xlog_in_core **commit_iclog, 2274 uint flags) 2275 { 2276 struct xlog_in_core *iclog = NULL; 2277 struct xfs_log_iovec *vecp; 2278 struct xfs_log_vec *lv; 2279 int len; 2280 int index; 2281 int partial_copy = 0; 2282 int partial_copy_len = 0; 2283 int contwr = 0; 2284 int record_cnt = 0; 2285 int data_cnt = 0; 2286 int error; 2287 2288 *start_lsn = 0; 2289 2290 len = xlog_write_calc_vec_length(ticket, log_vector); 2291 2292 /* 2293 * Region headers and bytes are already accounted for. 2294 * We only need to take into account start records and 2295 * split regions in this function. 2296 */ 2297 if (ticket->t_flags & XLOG_TIC_INITED) 2298 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2299 2300 /* 2301 * Commit record headers need to be accounted for. These 2302 * come in as separate writes so are easy to detect. 2303 */ 2304 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2305 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2306 2307 if (ticket->t_curr_res < 0) 2308 xlog_print_tic_res(log->l_mp, ticket); 2309 2310 index = 0; 2311 lv = log_vector; 2312 vecp = lv->lv_iovecp; 2313 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2314 void *ptr; 2315 int log_offset; 2316 2317 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2318 &contwr, &log_offset); 2319 if (error) 2320 return error; 2321 2322 ASSERT(log_offset <= iclog->ic_size - 1); 2323 ptr = iclog->ic_datap + log_offset; 2324 2325 /* start_lsn is the first lsn written to. That's all we need. */ 2326 if (!*start_lsn) 2327 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2328 2329 /* 2330 * This loop writes out as many regions as can fit in the amount 2331 * of space which was allocated by xlog_state_get_iclog_space(). 2332 */ 2333 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2334 struct xfs_log_iovec *reg; 2335 struct xlog_op_header *ophdr; 2336 int start_rec_copy; 2337 int copy_len; 2338 int copy_off; 2339 bool ordered = false; 2340 2341 /* ordered log vectors have no regions to write */ 2342 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2343 ASSERT(lv->lv_niovecs == 0); 2344 ordered = true; 2345 goto next_lv; 2346 } 2347 2348 reg = &vecp[index]; 2349 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2350 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2351 2352 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2353 if (start_rec_copy) { 2354 record_cnt++; 2355 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2356 start_rec_copy); 2357 } 2358 2359 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2360 if (!ophdr) 2361 return XFS_ERROR(EIO); 2362 2363 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2364 sizeof(struct xlog_op_header)); 2365 2366 len += xlog_write_setup_copy(ticket, ophdr, 2367 iclog->ic_size-log_offset, 2368 reg->i_len, 2369 ©_off, ©_len, 2370 &partial_copy, 2371 &partial_copy_len); 2372 xlog_verify_dest_ptr(log, ptr); 2373 2374 /* copy region */ 2375 ASSERT(copy_len >= 0); 2376 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2377 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2378 2379 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2380 record_cnt++; 2381 data_cnt += contwr ? copy_len : 0; 2382 2383 error = xlog_write_copy_finish(log, iclog, flags, 2384 &record_cnt, &data_cnt, 2385 &partial_copy, 2386 &partial_copy_len, 2387 log_offset, 2388 commit_iclog); 2389 if (error) 2390 return error; 2391 2392 /* 2393 * if we had a partial copy, we need to get more iclog 2394 * space but we don't want to increment the region 2395 * index because there is still more is this region to 2396 * write. 2397 * 2398 * If we completed writing this region, and we flushed 2399 * the iclog (indicated by resetting of the record 2400 * count), then we also need to get more log space. If 2401 * this was the last record, though, we are done and 2402 * can just return. 2403 */ 2404 if (partial_copy) 2405 break; 2406 2407 if (++index == lv->lv_niovecs) { 2408 next_lv: 2409 lv = lv->lv_next; 2410 index = 0; 2411 if (lv) 2412 vecp = lv->lv_iovecp; 2413 } 2414 if (record_cnt == 0 && ordered == false) { 2415 if (!lv) 2416 return 0; 2417 break; 2418 } 2419 } 2420 } 2421 2422 ASSERT(len == 0); 2423 2424 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2425 if (!commit_iclog) 2426 return xlog_state_release_iclog(log, iclog); 2427 2428 ASSERT(flags & XLOG_COMMIT_TRANS); 2429 *commit_iclog = iclog; 2430 return 0; 2431 } 2432 2433 2434 /***************************************************************************** 2435 * 2436 * State Machine functions 2437 * 2438 ***************************************************************************** 2439 */ 2440 2441 /* Clean iclogs starting from the head. This ordering must be 2442 * maintained, so an iclog doesn't become ACTIVE beyond one that 2443 * is SYNCING. This is also required to maintain the notion that we use 2444 * a ordered wait queue to hold off would be writers to the log when every 2445 * iclog is trying to sync to disk. 2446 * 2447 * State Change: DIRTY -> ACTIVE 2448 */ 2449 STATIC void 2450 xlog_state_clean_log( 2451 struct xlog *log) 2452 { 2453 xlog_in_core_t *iclog; 2454 int changed = 0; 2455 2456 iclog = log->l_iclog; 2457 do { 2458 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2459 iclog->ic_state = XLOG_STATE_ACTIVE; 2460 iclog->ic_offset = 0; 2461 ASSERT(iclog->ic_callback == NULL); 2462 /* 2463 * If the number of ops in this iclog indicate it just 2464 * contains the dummy transaction, we can 2465 * change state into IDLE (the second time around). 2466 * Otherwise we should change the state into 2467 * NEED a dummy. 2468 * We don't need to cover the dummy. 2469 */ 2470 if (!changed && 2471 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2472 XLOG_COVER_OPS)) { 2473 changed = 1; 2474 } else { 2475 /* 2476 * We have two dirty iclogs so start over 2477 * This could also be num of ops indicates 2478 * this is not the dummy going out. 2479 */ 2480 changed = 2; 2481 } 2482 iclog->ic_header.h_num_logops = 0; 2483 memset(iclog->ic_header.h_cycle_data, 0, 2484 sizeof(iclog->ic_header.h_cycle_data)); 2485 iclog->ic_header.h_lsn = 0; 2486 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2487 /* do nothing */; 2488 else 2489 break; /* stop cleaning */ 2490 iclog = iclog->ic_next; 2491 } while (iclog != log->l_iclog); 2492 2493 /* log is locked when we are called */ 2494 /* 2495 * Change state for the dummy log recording. 2496 * We usually go to NEED. But we go to NEED2 if the changed indicates 2497 * we are done writing the dummy record. 2498 * If we are done with the second dummy recored (DONE2), then 2499 * we go to IDLE. 2500 */ 2501 if (changed) { 2502 switch (log->l_covered_state) { 2503 case XLOG_STATE_COVER_IDLE: 2504 case XLOG_STATE_COVER_NEED: 2505 case XLOG_STATE_COVER_NEED2: 2506 log->l_covered_state = XLOG_STATE_COVER_NEED; 2507 break; 2508 2509 case XLOG_STATE_COVER_DONE: 2510 if (changed == 1) 2511 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2512 else 2513 log->l_covered_state = XLOG_STATE_COVER_NEED; 2514 break; 2515 2516 case XLOG_STATE_COVER_DONE2: 2517 if (changed == 1) 2518 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2519 else 2520 log->l_covered_state = XLOG_STATE_COVER_NEED; 2521 break; 2522 2523 default: 2524 ASSERT(0); 2525 } 2526 } 2527 } /* xlog_state_clean_log */ 2528 2529 STATIC xfs_lsn_t 2530 xlog_get_lowest_lsn( 2531 struct xlog *log) 2532 { 2533 xlog_in_core_t *lsn_log; 2534 xfs_lsn_t lowest_lsn, lsn; 2535 2536 lsn_log = log->l_iclog; 2537 lowest_lsn = 0; 2538 do { 2539 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2540 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2541 if ((lsn && !lowest_lsn) || 2542 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2543 lowest_lsn = lsn; 2544 } 2545 } 2546 lsn_log = lsn_log->ic_next; 2547 } while (lsn_log != log->l_iclog); 2548 return lowest_lsn; 2549 } 2550 2551 2552 STATIC void 2553 xlog_state_do_callback( 2554 struct xlog *log, 2555 int aborted, 2556 struct xlog_in_core *ciclog) 2557 { 2558 xlog_in_core_t *iclog; 2559 xlog_in_core_t *first_iclog; /* used to know when we've 2560 * processed all iclogs once */ 2561 xfs_log_callback_t *cb, *cb_next; 2562 int flushcnt = 0; 2563 xfs_lsn_t lowest_lsn; 2564 int ioerrors; /* counter: iclogs with errors */ 2565 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2566 int funcdidcallbacks; /* flag: function did callbacks */ 2567 int repeats; /* for issuing console warnings if 2568 * looping too many times */ 2569 int wake = 0; 2570 2571 spin_lock(&log->l_icloglock); 2572 first_iclog = iclog = log->l_iclog; 2573 ioerrors = 0; 2574 funcdidcallbacks = 0; 2575 repeats = 0; 2576 2577 do { 2578 /* 2579 * Scan all iclogs starting with the one pointed to by the 2580 * log. Reset this starting point each time the log is 2581 * unlocked (during callbacks). 2582 * 2583 * Keep looping through iclogs until one full pass is made 2584 * without running any callbacks. 2585 */ 2586 first_iclog = log->l_iclog; 2587 iclog = log->l_iclog; 2588 loopdidcallbacks = 0; 2589 repeats++; 2590 2591 do { 2592 2593 /* skip all iclogs in the ACTIVE & DIRTY states */ 2594 if (iclog->ic_state & 2595 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2596 iclog = iclog->ic_next; 2597 continue; 2598 } 2599 2600 /* 2601 * Between marking a filesystem SHUTDOWN and stopping 2602 * the log, we do flush all iclogs to disk (if there 2603 * wasn't a log I/O error). So, we do want things to 2604 * go smoothly in case of just a SHUTDOWN w/o a 2605 * LOG_IO_ERROR. 2606 */ 2607 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2608 /* 2609 * Can only perform callbacks in order. Since 2610 * this iclog is not in the DONE_SYNC/ 2611 * DO_CALLBACK state, we skip the rest and 2612 * just try to clean up. If we set our iclog 2613 * to DO_CALLBACK, we will not process it when 2614 * we retry since a previous iclog is in the 2615 * CALLBACK and the state cannot change since 2616 * we are holding the l_icloglock. 2617 */ 2618 if (!(iclog->ic_state & 2619 (XLOG_STATE_DONE_SYNC | 2620 XLOG_STATE_DO_CALLBACK))) { 2621 if (ciclog && (ciclog->ic_state == 2622 XLOG_STATE_DONE_SYNC)) { 2623 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2624 } 2625 break; 2626 } 2627 /* 2628 * We now have an iclog that is in either the 2629 * DO_CALLBACK or DONE_SYNC states. The other 2630 * states (WANT_SYNC, SYNCING, or CALLBACK were 2631 * caught by the above if and are going to 2632 * clean (i.e. we aren't doing their callbacks) 2633 * see the above if. 2634 */ 2635 2636 /* 2637 * We will do one more check here to see if we 2638 * have chased our tail around. 2639 */ 2640 2641 lowest_lsn = xlog_get_lowest_lsn(log); 2642 if (lowest_lsn && 2643 XFS_LSN_CMP(lowest_lsn, 2644 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2645 iclog = iclog->ic_next; 2646 continue; /* Leave this iclog for 2647 * another thread */ 2648 } 2649 2650 iclog->ic_state = XLOG_STATE_CALLBACK; 2651 2652 2653 /* 2654 * Completion of a iclog IO does not imply that 2655 * a transaction has completed, as transactions 2656 * can be large enough to span many iclogs. We 2657 * cannot change the tail of the log half way 2658 * through a transaction as this may be the only 2659 * transaction in the log and moving th etail to 2660 * point to the middle of it will prevent 2661 * recovery from finding the start of the 2662 * transaction. Hence we should only update the 2663 * last_sync_lsn if this iclog contains 2664 * transaction completion callbacks on it. 2665 * 2666 * We have to do this before we drop the 2667 * icloglock to ensure we are the only one that 2668 * can update it. 2669 */ 2670 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2671 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2672 if (iclog->ic_callback) 2673 atomic64_set(&log->l_last_sync_lsn, 2674 be64_to_cpu(iclog->ic_header.h_lsn)); 2675 2676 } else 2677 ioerrors++; 2678 2679 spin_unlock(&log->l_icloglock); 2680 2681 /* 2682 * Keep processing entries in the callback list until 2683 * we come around and it is empty. We need to 2684 * atomically see that the list is empty and change the 2685 * state to DIRTY so that we don't miss any more 2686 * callbacks being added. 2687 */ 2688 spin_lock(&iclog->ic_callback_lock); 2689 cb = iclog->ic_callback; 2690 while (cb) { 2691 iclog->ic_callback_tail = &(iclog->ic_callback); 2692 iclog->ic_callback = NULL; 2693 spin_unlock(&iclog->ic_callback_lock); 2694 2695 /* perform callbacks in the order given */ 2696 for (; cb; cb = cb_next) { 2697 cb_next = cb->cb_next; 2698 cb->cb_func(cb->cb_arg, aborted); 2699 } 2700 spin_lock(&iclog->ic_callback_lock); 2701 cb = iclog->ic_callback; 2702 } 2703 2704 loopdidcallbacks++; 2705 funcdidcallbacks++; 2706 2707 spin_lock(&log->l_icloglock); 2708 ASSERT(iclog->ic_callback == NULL); 2709 spin_unlock(&iclog->ic_callback_lock); 2710 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2711 iclog->ic_state = XLOG_STATE_DIRTY; 2712 2713 /* 2714 * Transition from DIRTY to ACTIVE if applicable. 2715 * NOP if STATE_IOERROR. 2716 */ 2717 xlog_state_clean_log(log); 2718 2719 /* wake up threads waiting in xfs_log_force() */ 2720 wake_up_all(&iclog->ic_force_wait); 2721 2722 iclog = iclog->ic_next; 2723 } while (first_iclog != iclog); 2724 2725 if (repeats > 5000) { 2726 flushcnt += repeats; 2727 repeats = 0; 2728 xfs_warn(log->l_mp, 2729 "%s: possible infinite loop (%d iterations)", 2730 __func__, flushcnt); 2731 } 2732 } while (!ioerrors && loopdidcallbacks); 2733 2734 /* 2735 * make one last gasp attempt to see if iclogs are being left in 2736 * limbo.. 2737 */ 2738 #ifdef DEBUG 2739 if (funcdidcallbacks) { 2740 first_iclog = iclog = log->l_iclog; 2741 do { 2742 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2743 /* 2744 * Terminate the loop if iclogs are found in states 2745 * which will cause other threads to clean up iclogs. 2746 * 2747 * SYNCING - i/o completion will go through logs 2748 * DONE_SYNC - interrupt thread should be waiting for 2749 * l_icloglock 2750 * IOERROR - give up hope all ye who enter here 2751 */ 2752 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2753 iclog->ic_state == XLOG_STATE_SYNCING || 2754 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2755 iclog->ic_state == XLOG_STATE_IOERROR ) 2756 break; 2757 iclog = iclog->ic_next; 2758 } while (first_iclog != iclog); 2759 } 2760 #endif 2761 2762 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2763 wake = 1; 2764 spin_unlock(&log->l_icloglock); 2765 2766 if (wake) 2767 wake_up_all(&log->l_flush_wait); 2768 } 2769 2770 2771 /* 2772 * Finish transitioning this iclog to the dirty state. 2773 * 2774 * Make sure that we completely execute this routine only when this is 2775 * the last call to the iclog. There is a good chance that iclog flushes, 2776 * when we reach the end of the physical log, get turned into 2 separate 2777 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2778 * routine. By using the reference count bwritecnt, we guarantee that only 2779 * the second completion goes through. 2780 * 2781 * Callbacks could take time, so they are done outside the scope of the 2782 * global state machine log lock. 2783 */ 2784 STATIC void 2785 xlog_state_done_syncing( 2786 xlog_in_core_t *iclog, 2787 int aborted) 2788 { 2789 struct xlog *log = iclog->ic_log; 2790 2791 spin_lock(&log->l_icloglock); 2792 2793 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2794 iclog->ic_state == XLOG_STATE_IOERROR); 2795 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2796 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2797 2798 2799 /* 2800 * If we got an error, either on the first buffer, or in the case of 2801 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2802 * and none should ever be attempted to be written to disk 2803 * again. 2804 */ 2805 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2806 if (--iclog->ic_bwritecnt == 1) { 2807 spin_unlock(&log->l_icloglock); 2808 return; 2809 } 2810 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2811 } 2812 2813 /* 2814 * Someone could be sleeping prior to writing out the next 2815 * iclog buffer, we wake them all, one will get to do the 2816 * I/O, the others get to wait for the result. 2817 */ 2818 wake_up_all(&iclog->ic_write_wait); 2819 spin_unlock(&log->l_icloglock); 2820 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2821 } /* xlog_state_done_syncing */ 2822 2823 2824 /* 2825 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2826 * sleep. We wait on the flush queue on the head iclog as that should be 2827 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2828 * we will wait here and all new writes will sleep until a sync completes. 2829 * 2830 * The in-core logs are used in a circular fashion. They are not used 2831 * out-of-order even when an iclog past the head is free. 2832 * 2833 * return: 2834 * * log_offset where xlog_write() can start writing into the in-core 2835 * log's data space. 2836 * * in-core log pointer to which xlog_write() should write. 2837 * * boolean indicating this is a continued write to an in-core log. 2838 * If this is the last write, then the in-core log's offset field 2839 * needs to be incremented, depending on the amount of data which 2840 * is copied. 2841 */ 2842 STATIC int 2843 xlog_state_get_iclog_space( 2844 struct xlog *log, 2845 int len, 2846 struct xlog_in_core **iclogp, 2847 struct xlog_ticket *ticket, 2848 int *continued_write, 2849 int *logoffsetp) 2850 { 2851 int log_offset; 2852 xlog_rec_header_t *head; 2853 xlog_in_core_t *iclog; 2854 int error; 2855 2856 restart: 2857 spin_lock(&log->l_icloglock); 2858 if (XLOG_FORCED_SHUTDOWN(log)) { 2859 spin_unlock(&log->l_icloglock); 2860 return XFS_ERROR(EIO); 2861 } 2862 2863 iclog = log->l_iclog; 2864 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2865 XFS_STATS_INC(xs_log_noiclogs); 2866 2867 /* Wait for log writes to have flushed */ 2868 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2869 goto restart; 2870 } 2871 2872 head = &iclog->ic_header; 2873 2874 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2875 log_offset = iclog->ic_offset; 2876 2877 /* On the 1st write to an iclog, figure out lsn. This works 2878 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2879 * committing to. If the offset is set, that's how many blocks 2880 * must be written. 2881 */ 2882 if (log_offset == 0) { 2883 ticket->t_curr_res -= log->l_iclog_hsize; 2884 xlog_tic_add_region(ticket, 2885 log->l_iclog_hsize, 2886 XLOG_REG_TYPE_LRHEADER); 2887 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2888 head->h_lsn = cpu_to_be64( 2889 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2890 ASSERT(log->l_curr_block >= 0); 2891 } 2892 2893 /* If there is enough room to write everything, then do it. Otherwise, 2894 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2895 * bit is on, so this will get flushed out. Don't update ic_offset 2896 * until you know exactly how many bytes get copied. Therefore, wait 2897 * until later to update ic_offset. 2898 * 2899 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2900 * can fit into remaining data section. 2901 */ 2902 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2903 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2904 2905 /* 2906 * If I'm the only one writing to this iclog, sync it to disk. 2907 * We need to do an atomic compare and decrement here to avoid 2908 * racing with concurrent atomic_dec_and_lock() calls in 2909 * xlog_state_release_iclog() when there is more than one 2910 * reference to the iclog. 2911 */ 2912 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2913 /* we are the only one */ 2914 spin_unlock(&log->l_icloglock); 2915 error = xlog_state_release_iclog(log, iclog); 2916 if (error) 2917 return error; 2918 } else { 2919 spin_unlock(&log->l_icloglock); 2920 } 2921 goto restart; 2922 } 2923 2924 /* Do we have enough room to write the full amount in the remainder 2925 * of this iclog? Or must we continue a write on the next iclog and 2926 * mark this iclog as completely taken? In the case where we switch 2927 * iclogs (to mark it taken), this particular iclog will release/sync 2928 * to disk in xlog_write(). 2929 */ 2930 if (len <= iclog->ic_size - iclog->ic_offset) { 2931 *continued_write = 0; 2932 iclog->ic_offset += len; 2933 } else { 2934 *continued_write = 1; 2935 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2936 } 2937 *iclogp = iclog; 2938 2939 ASSERT(iclog->ic_offset <= iclog->ic_size); 2940 spin_unlock(&log->l_icloglock); 2941 2942 *logoffsetp = log_offset; 2943 return 0; 2944 } /* xlog_state_get_iclog_space */ 2945 2946 /* The first cnt-1 times through here we don't need to 2947 * move the grant write head because the permanent 2948 * reservation has reserved cnt times the unit amount. 2949 * Release part of current permanent unit reservation and 2950 * reset current reservation to be one units worth. Also 2951 * move grant reservation head forward. 2952 */ 2953 STATIC void 2954 xlog_regrant_reserve_log_space( 2955 struct xlog *log, 2956 struct xlog_ticket *ticket) 2957 { 2958 trace_xfs_log_regrant_reserve_enter(log, ticket); 2959 2960 if (ticket->t_cnt > 0) 2961 ticket->t_cnt--; 2962 2963 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2964 ticket->t_curr_res); 2965 xlog_grant_sub_space(log, &log->l_write_head.grant, 2966 ticket->t_curr_res); 2967 ticket->t_curr_res = ticket->t_unit_res; 2968 xlog_tic_reset_res(ticket); 2969 2970 trace_xfs_log_regrant_reserve_sub(log, ticket); 2971 2972 /* just return if we still have some of the pre-reserved space */ 2973 if (ticket->t_cnt > 0) 2974 return; 2975 2976 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2977 ticket->t_unit_res); 2978 2979 trace_xfs_log_regrant_reserve_exit(log, ticket); 2980 2981 ticket->t_curr_res = ticket->t_unit_res; 2982 xlog_tic_reset_res(ticket); 2983 } /* xlog_regrant_reserve_log_space */ 2984 2985 2986 /* 2987 * Give back the space left from a reservation. 2988 * 2989 * All the information we need to make a correct determination of space left 2990 * is present. For non-permanent reservations, things are quite easy. The 2991 * count should have been decremented to zero. We only need to deal with the 2992 * space remaining in the current reservation part of the ticket. If the 2993 * ticket contains a permanent reservation, there may be left over space which 2994 * needs to be released. A count of N means that N-1 refills of the current 2995 * reservation can be done before we need to ask for more space. The first 2996 * one goes to fill up the first current reservation. Once we run out of 2997 * space, the count will stay at zero and the only space remaining will be 2998 * in the current reservation field. 2999 */ 3000 STATIC void 3001 xlog_ungrant_log_space( 3002 struct xlog *log, 3003 struct xlog_ticket *ticket) 3004 { 3005 int bytes; 3006 3007 if (ticket->t_cnt > 0) 3008 ticket->t_cnt--; 3009 3010 trace_xfs_log_ungrant_enter(log, ticket); 3011 trace_xfs_log_ungrant_sub(log, ticket); 3012 3013 /* 3014 * If this is a permanent reservation ticket, we may be able to free 3015 * up more space based on the remaining count. 3016 */ 3017 bytes = ticket->t_curr_res; 3018 if (ticket->t_cnt > 0) { 3019 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3020 bytes += ticket->t_unit_res*ticket->t_cnt; 3021 } 3022 3023 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3024 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3025 3026 trace_xfs_log_ungrant_exit(log, ticket); 3027 3028 xfs_log_space_wake(log->l_mp); 3029 } 3030 3031 /* 3032 * Flush iclog to disk if this is the last reference to the given iclog and 3033 * the WANT_SYNC bit is set. 3034 * 3035 * When this function is entered, the iclog is not necessarily in the 3036 * WANT_SYNC state. It may be sitting around waiting to get filled. 3037 * 3038 * 3039 */ 3040 STATIC int 3041 xlog_state_release_iclog( 3042 struct xlog *log, 3043 struct xlog_in_core *iclog) 3044 { 3045 int sync = 0; /* do we sync? */ 3046 3047 if (iclog->ic_state & XLOG_STATE_IOERROR) 3048 return XFS_ERROR(EIO); 3049 3050 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3051 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3052 return 0; 3053 3054 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3055 spin_unlock(&log->l_icloglock); 3056 return XFS_ERROR(EIO); 3057 } 3058 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3059 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3060 3061 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3062 /* update tail before writing to iclog */ 3063 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3064 sync++; 3065 iclog->ic_state = XLOG_STATE_SYNCING; 3066 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3067 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3068 /* cycle incremented when incrementing curr_block */ 3069 } 3070 spin_unlock(&log->l_icloglock); 3071 3072 /* 3073 * We let the log lock go, so it's possible that we hit a log I/O 3074 * error or some other SHUTDOWN condition that marks the iclog 3075 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3076 * this iclog has consistent data, so we ignore IOERROR 3077 * flags after this point. 3078 */ 3079 if (sync) 3080 return xlog_sync(log, iclog); 3081 return 0; 3082 } /* xlog_state_release_iclog */ 3083 3084 3085 /* 3086 * This routine will mark the current iclog in the ring as WANT_SYNC 3087 * and move the current iclog pointer to the next iclog in the ring. 3088 * When this routine is called from xlog_state_get_iclog_space(), the 3089 * exact size of the iclog has not yet been determined. All we know is 3090 * that every data block. We have run out of space in this log record. 3091 */ 3092 STATIC void 3093 xlog_state_switch_iclogs( 3094 struct xlog *log, 3095 struct xlog_in_core *iclog, 3096 int eventual_size) 3097 { 3098 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3099 if (!eventual_size) 3100 eventual_size = iclog->ic_offset; 3101 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3102 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3103 log->l_prev_block = log->l_curr_block; 3104 log->l_prev_cycle = log->l_curr_cycle; 3105 3106 /* roll log?: ic_offset changed later */ 3107 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3108 3109 /* Round up to next log-sunit */ 3110 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3111 log->l_mp->m_sb.sb_logsunit > 1) { 3112 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3113 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3114 } 3115 3116 if (log->l_curr_block >= log->l_logBBsize) { 3117 log->l_curr_cycle++; 3118 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3119 log->l_curr_cycle++; 3120 log->l_curr_block -= log->l_logBBsize; 3121 ASSERT(log->l_curr_block >= 0); 3122 } 3123 ASSERT(iclog == log->l_iclog); 3124 log->l_iclog = iclog->ic_next; 3125 } /* xlog_state_switch_iclogs */ 3126 3127 /* 3128 * Write out all data in the in-core log as of this exact moment in time. 3129 * 3130 * Data may be written to the in-core log during this call. However, 3131 * we don't guarantee this data will be written out. A change from past 3132 * implementation means this routine will *not* write out zero length LRs. 3133 * 3134 * Basically, we try and perform an intelligent scan of the in-core logs. 3135 * If we determine there is no flushable data, we just return. There is no 3136 * flushable data if: 3137 * 3138 * 1. the current iclog is active and has no data; the previous iclog 3139 * is in the active or dirty state. 3140 * 2. the current iclog is drity, and the previous iclog is in the 3141 * active or dirty state. 3142 * 3143 * We may sleep if: 3144 * 3145 * 1. the current iclog is not in the active nor dirty state. 3146 * 2. the current iclog dirty, and the previous iclog is not in the 3147 * active nor dirty state. 3148 * 3. the current iclog is active, and there is another thread writing 3149 * to this particular iclog. 3150 * 4. a) the current iclog is active and has no other writers 3151 * b) when we return from flushing out this iclog, it is still 3152 * not in the active nor dirty state. 3153 */ 3154 int 3155 _xfs_log_force( 3156 struct xfs_mount *mp, 3157 uint flags, 3158 int *log_flushed) 3159 { 3160 struct xlog *log = mp->m_log; 3161 struct xlog_in_core *iclog; 3162 xfs_lsn_t lsn; 3163 3164 XFS_STATS_INC(xs_log_force); 3165 3166 xlog_cil_force(log); 3167 3168 spin_lock(&log->l_icloglock); 3169 3170 iclog = log->l_iclog; 3171 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3172 spin_unlock(&log->l_icloglock); 3173 return XFS_ERROR(EIO); 3174 } 3175 3176 /* If the head iclog is not active nor dirty, we just attach 3177 * ourselves to the head and go to sleep. 3178 */ 3179 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3180 iclog->ic_state == XLOG_STATE_DIRTY) { 3181 /* 3182 * If the head is dirty or (active and empty), then 3183 * we need to look at the previous iclog. If the previous 3184 * iclog is active or dirty we are done. There is nothing 3185 * to sync out. Otherwise, we attach ourselves to the 3186 * previous iclog and go to sleep. 3187 */ 3188 if (iclog->ic_state == XLOG_STATE_DIRTY || 3189 (atomic_read(&iclog->ic_refcnt) == 0 3190 && iclog->ic_offset == 0)) { 3191 iclog = iclog->ic_prev; 3192 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3193 iclog->ic_state == XLOG_STATE_DIRTY) 3194 goto no_sleep; 3195 else 3196 goto maybe_sleep; 3197 } else { 3198 if (atomic_read(&iclog->ic_refcnt) == 0) { 3199 /* We are the only one with access to this 3200 * iclog. Flush it out now. There should 3201 * be a roundoff of zero to show that someone 3202 * has already taken care of the roundoff from 3203 * the previous sync. 3204 */ 3205 atomic_inc(&iclog->ic_refcnt); 3206 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3207 xlog_state_switch_iclogs(log, iclog, 0); 3208 spin_unlock(&log->l_icloglock); 3209 3210 if (xlog_state_release_iclog(log, iclog)) 3211 return XFS_ERROR(EIO); 3212 3213 if (log_flushed) 3214 *log_flushed = 1; 3215 spin_lock(&log->l_icloglock); 3216 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3217 iclog->ic_state != XLOG_STATE_DIRTY) 3218 goto maybe_sleep; 3219 else 3220 goto no_sleep; 3221 } else { 3222 /* Someone else is writing to this iclog. 3223 * Use its call to flush out the data. However, 3224 * the other thread may not force out this LR, 3225 * so we mark it WANT_SYNC. 3226 */ 3227 xlog_state_switch_iclogs(log, iclog, 0); 3228 goto maybe_sleep; 3229 } 3230 } 3231 } 3232 3233 /* By the time we come around again, the iclog could've been filled 3234 * which would give it another lsn. If we have a new lsn, just 3235 * return because the relevant data has been flushed. 3236 */ 3237 maybe_sleep: 3238 if (flags & XFS_LOG_SYNC) { 3239 /* 3240 * We must check if we're shutting down here, before 3241 * we wait, while we're holding the l_icloglock. 3242 * Then we check again after waking up, in case our 3243 * sleep was disturbed by a bad news. 3244 */ 3245 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3246 spin_unlock(&log->l_icloglock); 3247 return XFS_ERROR(EIO); 3248 } 3249 XFS_STATS_INC(xs_log_force_sleep); 3250 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3251 /* 3252 * No need to grab the log lock here since we're 3253 * only deciding whether or not to return EIO 3254 * and the memory read should be atomic. 3255 */ 3256 if (iclog->ic_state & XLOG_STATE_IOERROR) 3257 return XFS_ERROR(EIO); 3258 if (log_flushed) 3259 *log_flushed = 1; 3260 } else { 3261 3262 no_sleep: 3263 spin_unlock(&log->l_icloglock); 3264 } 3265 return 0; 3266 } 3267 3268 /* 3269 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3270 * about errors or whether the log was flushed or not. This is the normal 3271 * interface to use when trying to unpin items or move the log forward. 3272 */ 3273 void 3274 xfs_log_force( 3275 xfs_mount_t *mp, 3276 uint flags) 3277 { 3278 int error; 3279 3280 trace_xfs_log_force(mp, 0); 3281 error = _xfs_log_force(mp, flags, NULL); 3282 if (error) 3283 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3284 } 3285 3286 /* 3287 * Force the in-core log to disk for a specific LSN. 3288 * 3289 * Find in-core log with lsn. 3290 * If it is in the DIRTY state, just return. 3291 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3292 * state and go to sleep or return. 3293 * If it is in any other state, go to sleep or return. 3294 * 3295 * Synchronous forces are implemented with a signal variable. All callers 3296 * to force a given lsn to disk will wait on a the sv attached to the 3297 * specific in-core log. When given in-core log finally completes its 3298 * write to disk, that thread will wake up all threads waiting on the 3299 * sv. 3300 */ 3301 int 3302 _xfs_log_force_lsn( 3303 struct xfs_mount *mp, 3304 xfs_lsn_t lsn, 3305 uint flags, 3306 int *log_flushed) 3307 { 3308 struct xlog *log = mp->m_log; 3309 struct xlog_in_core *iclog; 3310 int already_slept = 0; 3311 3312 ASSERT(lsn != 0); 3313 3314 XFS_STATS_INC(xs_log_force); 3315 3316 lsn = xlog_cil_force_lsn(log, lsn); 3317 if (lsn == NULLCOMMITLSN) 3318 return 0; 3319 3320 try_again: 3321 spin_lock(&log->l_icloglock); 3322 iclog = log->l_iclog; 3323 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3324 spin_unlock(&log->l_icloglock); 3325 return XFS_ERROR(EIO); 3326 } 3327 3328 do { 3329 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3330 iclog = iclog->ic_next; 3331 continue; 3332 } 3333 3334 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3335 spin_unlock(&log->l_icloglock); 3336 return 0; 3337 } 3338 3339 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3340 /* 3341 * We sleep here if we haven't already slept (e.g. 3342 * this is the first time we've looked at the correct 3343 * iclog buf) and the buffer before us is going to 3344 * be sync'ed. The reason for this is that if we 3345 * are doing sync transactions here, by waiting for 3346 * the previous I/O to complete, we can allow a few 3347 * more transactions into this iclog before we close 3348 * it down. 3349 * 3350 * Otherwise, we mark the buffer WANT_SYNC, and bump 3351 * up the refcnt so we can release the log (which 3352 * drops the ref count). The state switch keeps new 3353 * transaction commits from using this buffer. When 3354 * the current commits finish writing into the buffer, 3355 * the refcount will drop to zero and the buffer will 3356 * go out then. 3357 */ 3358 if (!already_slept && 3359 (iclog->ic_prev->ic_state & 3360 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3361 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3362 3363 XFS_STATS_INC(xs_log_force_sleep); 3364 3365 xlog_wait(&iclog->ic_prev->ic_write_wait, 3366 &log->l_icloglock); 3367 if (log_flushed) 3368 *log_flushed = 1; 3369 already_slept = 1; 3370 goto try_again; 3371 } 3372 atomic_inc(&iclog->ic_refcnt); 3373 xlog_state_switch_iclogs(log, iclog, 0); 3374 spin_unlock(&log->l_icloglock); 3375 if (xlog_state_release_iclog(log, iclog)) 3376 return XFS_ERROR(EIO); 3377 if (log_flushed) 3378 *log_flushed = 1; 3379 spin_lock(&log->l_icloglock); 3380 } 3381 3382 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3383 !(iclog->ic_state & 3384 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3385 /* 3386 * Don't wait on completion if we know that we've 3387 * gotten a log write error. 3388 */ 3389 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3390 spin_unlock(&log->l_icloglock); 3391 return XFS_ERROR(EIO); 3392 } 3393 XFS_STATS_INC(xs_log_force_sleep); 3394 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3395 /* 3396 * No need to grab the log lock here since we're 3397 * only deciding whether or not to return EIO 3398 * and the memory read should be atomic. 3399 */ 3400 if (iclog->ic_state & XLOG_STATE_IOERROR) 3401 return XFS_ERROR(EIO); 3402 3403 if (log_flushed) 3404 *log_flushed = 1; 3405 } else { /* just return */ 3406 spin_unlock(&log->l_icloglock); 3407 } 3408 3409 return 0; 3410 } while (iclog != log->l_iclog); 3411 3412 spin_unlock(&log->l_icloglock); 3413 return 0; 3414 } 3415 3416 /* 3417 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3418 * about errors or whether the log was flushed or not. This is the normal 3419 * interface to use when trying to unpin items or move the log forward. 3420 */ 3421 void 3422 xfs_log_force_lsn( 3423 xfs_mount_t *mp, 3424 xfs_lsn_t lsn, 3425 uint flags) 3426 { 3427 int error; 3428 3429 trace_xfs_log_force(mp, lsn); 3430 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3431 if (error) 3432 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3433 } 3434 3435 /* 3436 * Called when we want to mark the current iclog as being ready to sync to 3437 * disk. 3438 */ 3439 STATIC void 3440 xlog_state_want_sync( 3441 struct xlog *log, 3442 struct xlog_in_core *iclog) 3443 { 3444 assert_spin_locked(&log->l_icloglock); 3445 3446 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3447 xlog_state_switch_iclogs(log, iclog, 0); 3448 } else { 3449 ASSERT(iclog->ic_state & 3450 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3451 } 3452 } 3453 3454 3455 /***************************************************************************** 3456 * 3457 * TICKET functions 3458 * 3459 ***************************************************************************** 3460 */ 3461 3462 /* 3463 * Free a used ticket when its refcount falls to zero. 3464 */ 3465 void 3466 xfs_log_ticket_put( 3467 xlog_ticket_t *ticket) 3468 { 3469 ASSERT(atomic_read(&ticket->t_ref) > 0); 3470 if (atomic_dec_and_test(&ticket->t_ref)) 3471 kmem_zone_free(xfs_log_ticket_zone, ticket); 3472 } 3473 3474 xlog_ticket_t * 3475 xfs_log_ticket_get( 3476 xlog_ticket_t *ticket) 3477 { 3478 ASSERT(atomic_read(&ticket->t_ref) > 0); 3479 atomic_inc(&ticket->t_ref); 3480 return ticket; 3481 } 3482 3483 /* 3484 * Figure out the total log space unit (in bytes) that would be 3485 * required for a log ticket. 3486 */ 3487 int 3488 xfs_log_calc_unit_res( 3489 struct xfs_mount *mp, 3490 int unit_bytes) 3491 { 3492 struct xlog *log = mp->m_log; 3493 int iclog_space; 3494 uint num_headers; 3495 3496 /* 3497 * Permanent reservations have up to 'cnt'-1 active log operations 3498 * in the log. A unit in this case is the amount of space for one 3499 * of these log operations. Normal reservations have a cnt of 1 3500 * and their unit amount is the total amount of space required. 3501 * 3502 * The following lines of code account for non-transaction data 3503 * which occupy space in the on-disk log. 3504 * 3505 * Normal form of a transaction is: 3506 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3507 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3508 * 3509 * We need to account for all the leadup data and trailer data 3510 * around the transaction data. 3511 * And then we need to account for the worst case in terms of using 3512 * more space. 3513 * The worst case will happen if: 3514 * - the placement of the transaction happens to be such that the 3515 * roundoff is at its maximum 3516 * - the transaction data is synced before the commit record is synced 3517 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3518 * Therefore the commit record is in its own Log Record. 3519 * This can happen as the commit record is called with its 3520 * own region to xlog_write(). 3521 * This then means that in the worst case, roundoff can happen for 3522 * the commit-rec as well. 3523 * The commit-rec is smaller than padding in this scenario and so it is 3524 * not added separately. 3525 */ 3526 3527 /* for trans header */ 3528 unit_bytes += sizeof(xlog_op_header_t); 3529 unit_bytes += sizeof(xfs_trans_header_t); 3530 3531 /* for start-rec */ 3532 unit_bytes += sizeof(xlog_op_header_t); 3533 3534 /* 3535 * for LR headers - the space for data in an iclog is the size minus 3536 * the space used for the headers. If we use the iclog size, then we 3537 * undercalculate the number of headers required. 3538 * 3539 * Furthermore - the addition of op headers for split-recs might 3540 * increase the space required enough to require more log and op 3541 * headers, so take that into account too. 3542 * 3543 * IMPORTANT: This reservation makes the assumption that if this 3544 * transaction is the first in an iclog and hence has the LR headers 3545 * accounted to it, then the remaining space in the iclog is 3546 * exclusively for this transaction. i.e. if the transaction is larger 3547 * than the iclog, it will be the only thing in that iclog. 3548 * Fundamentally, this means we must pass the entire log vector to 3549 * xlog_write to guarantee this. 3550 */ 3551 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3552 num_headers = howmany(unit_bytes, iclog_space); 3553 3554 /* for split-recs - ophdrs added when data split over LRs */ 3555 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3556 3557 /* add extra header reservations if we overrun */ 3558 while (!num_headers || 3559 howmany(unit_bytes, iclog_space) > num_headers) { 3560 unit_bytes += sizeof(xlog_op_header_t); 3561 num_headers++; 3562 } 3563 unit_bytes += log->l_iclog_hsize * num_headers; 3564 3565 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3566 unit_bytes += log->l_iclog_hsize; 3567 3568 /* for roundoff padding for transaction data and one for commit record */ 3569 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3570 /* log su roundoff */ 3571 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3572 } else { 3573 /* BB roundoff */ 3574 unit_bytes += 2 * BBSIZE; 3575 } 3576 3577 return unit_bytes; 3578 } 3579 3580 /* 3581 * Allocate and initialise a new log ticket. 3582 */ 3583 struct xlog_ticket * 3584 xlog_ticket_alloc( 3585 struct xlog *log, 3586 int unit_bytes, 3587 int cnt, 3588 char client, 3589 bool permanent, 3590 xfs_km_flags_t alloc_flags) 3591 { 3592 struct xlog_ticket *tic; 3593 int unit_res; 3594 3595 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3596 if (!tic) 3597 return NULL; 3598 3599 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3600 3601 atomic_set(&tic->t_ref, 1); 3602 tic->t_task = current; 3603 INIT_LIST_HEAD(&tic->t_queue); 3604 tic->t_unit_res = unit_res; 3605 tic->t_curr_res = unit_res; 3606 tic->t_cnt = cnt; 3607 tic->t_ocnt = cnt; 3608 tic->t_tid = prandom_u32(); 3609 tic->t_clientid = client; 3610 tic->t_flags = XLOG_TIC_INITED; 3611 tic->t_trans_type = 0; 3612 if (permanent) 3613 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3614 3615 xlog_tic_reset_res(tic); 3616 3617 return tic; 3618 } 3619 3620 3621 /****************************************************************************** 3622 * 3623 * Log debug routines 3624 * 3625 ****************************************************************************** 3626 */ 3627 #if defined(DEBUG) 3628 /* 3629 * Make sure that the destination ptr is within the valid data region of 3630 * one of the iclogs. This uses backup pointers stored in a different 3631 * part of the log in case we trash the log structure. 3632 */ 3633 void 3634 xlog_verify_dest_ptr( 3635 struct xlog *log, 3636 char *ptr) 3637 { 3638 int i; 3639 int good_ptr = 0; 3640 3641 for (i = 0; i < log->l_iclog_bufs; i++) { 3642 if (ptr >= log->l_iclog_bak[i] && 3643 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3644 good_ptr++; 3645 } 3646 3647 if (!good_ptr) 3648 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3649 } 3650 3651 /* 3652 * Check to make sure the grant write head didn't just over lap the tail. If 3653 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3654 * the cycles differ by exactly one and check the byte count. 3655 * 3656 * This check is run unlocked, so can give false positives. Rather than assert 3657 * on failures, use a warn-once flag and a panic tag to allow the admin to 3658 * determine if they want to panic the machine when such an error occurs. For 3659 * debug kernels this will have the same effect as using an assert but, unlinke 3660 * an assert, it can be turned off at runtime. 3661 */ 3662 STATIC void 3663 xlog_verify_grant_tail( 3664 struct xlog *log) 3665 { 3666 int tail_cycle, tail_blocks; 3667 int cycle, space; 3668 3669 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3670 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3671 if (tail_cycle != cycle) { 3672 if (cycle - 1 != tail_cycle && 3673 !(log->l_flags & XLOG_TAIL_WARN)) { 3674 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3675 "%s: cycle - 1 != tail_cycle", __func__); 3676 log->l_flags |= XLOG_TAIL_WARN; 3677 } 3678 3679 if (space > BBTOB(tail_blocks) && 3680 !(log->l_flags & XLOG_TAIL_WARN)) { 3681 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3682 "%s: space > BBTOB(tail_blocks)", __func__); 3683 log->l_flags |= XLOG_TAIL_WARN; 3684 } 3685 } 3686 } 3687 3688 /* check if it will fit */ 3689 STATIC void 3690 xlog_verify_tail_lsn( 3691 struct xlog *log, 3692 struct xlog_in_core *iclog, 3693 xfs_lsn_t tail_lsn) 3694 { 3695 int blocks; 3696 3697 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3698 blocks = 3699 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3700 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3701 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3702 } else { 3703 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3704 3705 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3706 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3707 3708 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3709 if (blocks < BTOBB(iclog->ic_offset) + 1) 3710 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3711 } 3712 } /* xlog_verify_tail_lsn */ 3713 3714 /* 3715 * Perform a number of checks on the iclog before writing to disk. 3716 * 3717 * 1. Make sure the iclogs are still circular 3718 * 2. Make sure we have a good magic number 3719 * 3. Make sure we don't have magic numbers in the data 3720 * 4. Check fields of each log operation header for: 3721 * A. Valid client identifier 3722 * B. tid ptr value falls in valid ptr space (user space code) 3723 * C. Length in log record header is correct according to the 3724 * individual operation headers within record. 3725 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3726 * log, check the preceding blocks of the physical log to make sure all 3727 * the cycle numbers agree with the current cycle number. 3728 */ 3729 STATIC void 3730 xlog_verify_iclog( 3731 struct xlog *log, 3732 struct xlog_in_core *iclog, 3733 int count, 3734 bool syncing) 3735 { 3736 xlog_op_header_t *ophead; 3737 xlog_in_core_t *icptr; 3738 xlog_in_core_2_t *xhdr; 3739 xfs_caddr_t ptr; 3740 xfs_caddr_t base_ptr; 3741 __psint_t field_offset; 3742 __uint8_t clientid; 3743 int len, i, j, k, op_len; 3744 int idx; 3745 3746 /* check validity of iclog pointers */ 3747 spin_lock(&log->l_icloglock); 3748 icptr = log->l_iclog; 3749 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3750 ASSERT(icptr); 3751 3752 if (icptr != log->l_iclog) 3753 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3754 spin_unlock(&log->l_icloglock); 3755 3756 /* check log magic numbers */ 3757 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3758 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3759 3760 ptr = (xfs_caddr_t) &iclog->ic_header; 3761 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3762 ptr += BBSIZE) { 3763 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3764 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3765 __func__); 3766 } 3767 3768 /* check fields */ 3769 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3770 ptr = iclog->ic_datap; 3771 base_ptr = ptr; 3772 ophead = (xlog_op_header_t *)ptr; 3773 xhdr = iclog->ic_data; 3774 for (i = 0; i < len; i++) { 3775 ophead = (xlog_op_header_t *)ptr; 3776 3777 /* clientid is only 1 byte */ 3778 field_offset = (__psint_t) 3779 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3780 if (!syncing || (field_offset & 0x1ff)) { 3781 clientid = ophead->oh_clientid; 3782 } else { 3783 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3784 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3785 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3786 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3787 clientid = xlog_get_client_id( 3788 xhdr[j].hic_xheader.xh_cycle_data[k]); 3789 } else { 3790 clientid = xlog_get_client_id( 3791 iclog->ic_header.h_cycle_data[idx]); 3792 } 3793 } 3794 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3795 xfs_warn(log->l_mp, 3796 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3797 __func__, clientid, ophead, 3798 (unsigned long)field_offset); 3799 3800 /* check length */ 3801 field_offset = (__psint_t) 3802 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3803 if (!syncing || (field_offset & 0x1ff)) { 3804 op_len = be32_to_cpu(ophead->oh_len); 3805 } else { 3806 idx = BTOBBT((__psint_t)&ophead->oh_len - 3807 (__psint_t)iclog->ic_datap); 3808 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3809 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3810 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3811 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3812 } else { 3813 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3814 } 3815 } 3816 ptr += sizeof(xlog_op_header_t) + op_len; 3817 } 3818 } /* xlog_verify_iclog */ 3819 #endif 3820 3821 /* 3822 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3823 */ 3824 STATIC int 3825 xlog_state_ioerror( 3826 struct xlog *log) 3827 { 3828 xlog_in_core_t *iclog, *ic; 3829 3830 iclog = log->l_iclog; 3831 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3832 /* 3833 * Mark all the incore logs IOERROR. 3834 * From now on, no log flushes will result. 3835 */ 3836 ic = iclog; 3837 do { 3838 ic->ic_state = XLOG_STATE_IOERROR; 3839 ic = ic->ic_next; 3840 } while (ic != iclog); 3841 return 0; 3842 } 3843 /* 3844 * Return non-zero, if state transition has already happened. 3845 */ 3846 return 1; 3847 } 3848 3849 /* 3850 * This is called from xfs_force_shutdown, when we're forcibly 3851 * shutting down the filesystem, typically because of an IO error. 3852 * Our main objectives here are to make sure that: 3853 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3854 * parties to find out, 'atomically'. 3855 * b. those who're sleeping on log reservations, pinned objects and 3856 * other resources get woken up, and be told the bad news. 3857 * c. nothing new gets queued up after (a) and (b) are done. 3858 * d. if !logerror, flush the iclogs to disk, then seal them off 3859 * for business. 3860 * 3861 * Note: for delayed logging the !logerror case needs to flush the regions 3862 * held in memory out to the iclogs before flushing them to disk. This needs 3863 * to be done before the log is marked as shutdown, otherwise the flush to the 3864 * iclogs will fail. 3865 */ 3866 int 3867 xfs_log_force_umount( 3868 struct xfs_mount *mp, 3869 int logerror) 3870 { 3871 struct xlog *log; 3872 int retval; 3873 3874 log = mp->m_log; 3875 3876 /* 3877 * If this happens during log recovery, don't worry about 3878 * locking; the log isn't open for business yet. 3879 */ 3880 if (!log || 3881 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3882 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3883 if (mp->m_sb_bp) 3884 XFS_BUF_DONE(mp->m_sb_bp); 3885 return 0; 3886 } 3887 3888 /* 3889 * Somebody could've already done the hard work for us. 3890 * No need to get locks for this. 3891 */ 3892 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3893 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3894 return 1; 3895 } 3896 retval = 0; 3897 3898 /* 3899 * Flush the in memory commit item list before marking the log as 3900 * being shut down. We need to do it in this order to ensure all the 3901 * completed transactions are flushed to disk with the xfs_log_force() 3902 * call below. 3903 */ 3904 if (!logerror) 3905 xlog_cil_force(log); 3906 3907 /* 3908 * mark the filesystem and the as in a shutdown state and wake 3909 * everybody up to tell them the bad news. 3910 */ 3911 spin_lock(&log->l_icloglock); 3912 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3913 if (mp->m_sb_bp) 3914 XFS_BUF_DONE(mp->m_sb_bp); 3915 3916 /* 3917 * This flag is sort of redundant because of the mount flag, but 3918 * it's good to maintain the separation between the log and the rest 3919 * of XFS. 3920 */ 3921 log->l_flags |= XLOG_IO_ERROR; 3922 3923 /* 3924 * If we hit a log error, we want to mark all the iclogs IOERROR 3925 * while we're still holding the loglock. 3926 */ 3927 if (logerror) 3928 retval = xlog_state_ioerror(log); 3929 spin_unlock(&log->l_icloglock); 3930 3931 /* 3932 * We don't want anybody waiting for log reservations after this. That 3933 * means we have to wake up everybody queued up on reserveq as well as 3934 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3935 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3936 * action is protected by the grant locks. 3937 */ 3938 xlog_grant_head_wake_all(&log->l_reserve_head); 3939 xlog_grant_head_wake_all(&log->l_write_head); 3940 3941 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3942 ASSERT(!logerror); 3943 /* 3944 * Force the incore logs to disk before shutting the 3945 * log down completely. 3946 */ 3947 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3948 3949 spin_lock(&log->l_icloglock); 3950 retval = xlog_state_ioerror(log); 3951 spin_unlock(&log->l_icloglock); 3952 } 3953 /* 3954 * Wake up everybody waiting on xfs_log_force. 3955 * Callback all log item committed functions as if the 3956 * log writes were completed. 3957 */ 3958 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3959 3960 #ifdef XFSERRORDEBUG 3961 { 3962 xlog_in_core_t *iclog; 3963 3964 spin_lock(&log->l_icloglock); 3965 iclog = log->l_iclog; 3966 do { 3967 ASSERT(iclog->ic_callback == 0); 3968 iclog = iclog->ic_next; 3969 } while (iclog != log->l_iclog); 3970 spin_unlock(&log->l_icloglock); 3971 } 3972 #endif 3973 /* return non-zero if log IOERROR transition had already happened */ 3974 return retval; 3975 } 3976 3977 STATIC int 3978 xlog_iclogs_empty( 3979 struct xlog *log) 3980 { 3981 xlog_in_core_t *iclog; 3982 3983 iclog = log->l_iclog; 3984 do { 3985 /* endianness does not matter here, zero is zero in 3986 * any language. 3987 */ 3988 if (iclog->ic_header.h_num_logops) 3989 return 0; 3990 iclog = iclog->ic_next; 3991 } while (iclog != log->l_iclog); 3992 return 1; 3993 } 3994 3995