xref: /openbmc/linux/fs/xfs/xfs_log.c (revision afb46f79)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	char			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return XFS_ERROR(EIO);
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return XFS_ERROR(EIO);
381 
382 	XFS_STATS_INC(xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return XFS_ERROR(EIO);
450 
451 	XFS_STATS_INC(xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return XFS_ERROR(ENOMEM);
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	uint			flags)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 			flags |= XFS_LOG_REL_PERM_RESERV;
531 		}
532 	}
533 
534 
535 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
537 		trace_xfs_log_done_nonperm(log, ticket);
538 
539 		/*
540 		 * Release ticket if not permanent reservation or a specific
541 		 * request has been made to release a permanent reservation.
542 		 */
543 		xlog_ungrant_log_space(log, ticket);
544 		xfs_log_ticket_put(ticket);
545 	} else {
546 		trace_xfs_log_done_perm(log, ticket);
547 
548 		xlog_regrant_reserve_log_space(log, ticket);
549 		/* If this ticket was a permanent reservation and we aren't
550 		 * trying to release it, reset the inited flags; so next time
551 		 * we write, a start record will be written out.
552 		 */
553 		ticket->t_flags |= XLOG_TIC_INITED;
554 	}
555 
556 	return lsn;
557 }
558 
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567 	struct xfs_mount	*mp,
568 	struct xlog_in_core	*iclog,
569 	xfs_log_callback_t	*cb)
570 {
571 	int	abortflg;
572 
573 	spin_lock(&iclog->ic_callback_lock);
574 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 	if (!abortflg) {
576 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 		cb->cb_next = NULL;
579 		*(iclog->ic_callback_tail) = cb;
580 		iclog->ic_callback_tail = &(cb->cb_next);
581 	}
582 	spin_unlock(&iclog->ic_callback_lock);
583 	return abortflg;
584 }
585 
586 int
587 xfs_log_release_iclog(
588 	struct xfs_mount	*mp,
589 	struct xlog_in_core	*iclog)
590 {
591 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 		return EIO;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * Mount a log filesystem
601  *
602  * mp		- ubiquitous xfs mount point structure
603  * log_target	- buftarg of on-disk log device
604  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks	- Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611 	xfs_mount_t	*mp,
612 	xfs_buftarg_t	*log_target,
613 	xfs_daddr_t	blk_offset,
614 	int		num_bblks)
615 {
616 	int		error = 0;
617 	int		min_logfsbs;
618 
619 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
620 		xfs_notice(mp, "Mounting Filesystem");
621 	else {
622 		xfs_notice(mp,
623 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
624 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
625 	}
626 
627 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
628 	if (IS_ERR(mp->m_log)) {
629 		error = -PTR_ERR(mp->m_log);
630 		goto out;
631 	}
632 
633 	/*
634 	 * Validate the given log space and drop a critical message via syslog
635 	 * if the log size is too small that would lead to some unexpected
636 	 * situations in transaction log space reservation stage.
637 	 *
638 	 * Note: we can't just reject the mount if the validation fails.  This
639 	 * would mean that people would have to downgrade their kernel just to
640 	 * remedy the situation as there is no way to grow the log (short of
641 	 * black magic surgery with xfs_db).
642 	 *
643 	 * We can, however, reject mounts for CRC format filesystems, as the
644 	 * mkfs binary being used to make the filesystem should never create a
645 	 * filesystem with a log that is too small.
646 	 */
647 	min_logfsbs = xfs_log_calc_minimum_size(mp);
648 
649 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
650 		xfs_warn(mp,
651 		"Log size %d blocks too small, minimum size is %d blocks",
652 			 mp->m_sb.sb_logblocks, min_logfsbs);
653 		error = EINVAL;
654 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
655 		xfs_warn(mp,
656 		"Log size %d blocks too large, maximum size is %lld blocks",
657 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
658 		error = EINVAL;
659 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
660 		xfs_warn(mp,
661 		"log size %lld bytes too large, maximum size is %lld bytes",
662 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
663 			 XFS_MAX_LOG_BYTES);
664 		error = EINVAL;
665 	}
666 	if (error) {
667 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
668 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
669 			ASSERT(0);
670 			goto out_free_log;
671 		}
672 		xfs_crit(mp,
673 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
674 "experienced then please report this message in the bug report.");
675 	}
676 
677 	/*
678 	 * Initialize the AIL now we have a log.
679 	 */
680 	error = xfs_trans_ail_init(mp);
681 	if (error) {
682 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
683 		goto out_free_log;
684 	}
685 	mp->m_log->l_ailp = mp->m_ail;
686 
687 	/*
688 	 * skip log recovery on a norecovery mount.  pretend it all
689 	 * just worked.
690 	 */
691 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
692 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
693 
694 		if (readonly)
695 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
696 
697 		error = xlog_recover(mp->m_log);
698 
699 		if (readonly)
700 			mp->m_flags |= XFS_MOUNT_RDONLY;
701 		if (error) {
702 			xfs_warn(mp, "log mount/recovery failed: error %d",
703 				error);
704 			goto out_destroy_ail;
705 		}
706 	}
707 
708 	/* Normal transactions can now occur */
709 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
710 
711 	/*
712 	 * Now the log has been fully initialised and we know were our
713 	 * space grant counters are, we can initialise the permanent ticket
714 	 * needed for delayed logging to work.
715 	 */
716 	xlog_cil_init_post_recovery(mp->m_log);
717 
718 	return 0;
719 
720 out_destroy_ail:
721 	xfs_trans_ail_destroy(mp);
722 out_free_log:
723 	xlog_dealloc_log(mp->m_log);
724 out:
725 	return error;
726 }
727 
728 /*
729  * Finish the recovery of the file system.  This is separate from the
730  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
731  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
732  * here.
733  *
734  * If we finish recovery successfully, start the background log work. If we are
735  * not doing recovery, then we have a RO filesystem and we don't need to start
736  * it.
737  */
738 int
739 xfs_log_mount_finish(xfs_mount_t *mp)
740 {
741 	int	error = 0;
742 
743 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
744 		error = xlog_recover_finish(mp->m_log);
745 		if (!error)
746 			xfs_log_work_queue(mp);
747 	} else {
748 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 	}
750 
751 
752 	return error;
753 }
754 
755 /*
756  * Final log writes as part of unmount.
757  *
758  * Mark the filesystem clean as unmount happens.  Note that during relocation
759  * this routine needs to be executed as part of source-bag while the
760  * deallocation must not be done until source-end.
761  */
762 
763 /*
764  * Unmount record used to have a string "Unmount filesystem--" in the
765  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
766  * We just write the magic number now since that particular field isn't
767  * currently architecture converted and "Unmount" is a bit foo.
768  * As far as I know, there weren't any dependencies on the old behaviour.
769  */
770 
771 int
772 xfs_log_unmount_write(xfs_mount_t *mp)
773 {
774 	struct xlog	 *log = mp->m_log;
775 	xlog_in_core_t	 *iclog;
776 #ifdef DEBUG
777 	xlog_in_core_t	 *first_iclog;
778 #endif
779 	xlog_ticket_t	*tic = NULL;
780 	xfs_lsn_t	 lsn;
781 	int		 error;
782 
783 	/*
784 	 * Don't write out unmount record on read-only mounts.
785 	 * Or, if we are doing a forced umount (typically because of IO errors).
786 	 */
787 	if (mp->m_flags & XFS_MOUNT_RDONLY)
788 		return 0;
789 
790 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
791 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
792 
793 #ifdef DEBUG
794 	first_iclog = iclog = log->l_iclog;
795 	do {
796 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
797 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
798 			ASSERT(iclog->ic_offset == 0);
799 		}
800 		iclog = iclog->ic_next;
801 	} while (iclog != first_iclog);
802 #endif
803 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
804 		error = xfs_log_reserve(mp, 600, 1, &tic,
805 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
806 		if (!error) {
807 			/* the data section must be 32 bit size aligned */
808 			struct {
809 			    __uint16_t magic;
810 			    __uint16_t pad1;
811 			    __uint32_t pad2; /* may as well make it 64 bits */
812 			} magic = {
813 				.magic = XLOG_UNMOUNT_TYPE,
814 			};
815 			struct xfs_log_iovec reg = {
816 				.i_addr = &magic,
817 				.i_len = sizeof(magic),
818 				.i_type = XLOG_REG_TYPE_UNMOUNT,
819 			};
820 			struct xfs_log_vec vec = {
821 				.lv_niovecs = 1,
822 				.lv_iovecp = &reg,
823 			};
824 
825 			/* remove inited flag, and account for space used */
826 			tic->t_flags = 0;
827 			tic->t_curr_res -= sizeof(magic);
828 			error = xlog_write(log, &vec, tic, &lsn,
829 					   NULL, XLOG_UNMOUNT_TRANS);
830 			/*
831 			 * At this point, we're umounting anyway,
832 			 * so there's no point in transitioning log state
833 			 * to IOERROR. Just continue...
834 			 */
835 		}
836 
837 		if (error)
838 			xfs_alert(mp, "%s: unmount record failed", __func__);
839 
840 
841 		spin_lock(&log->l_icloglock);
842 		iclog = log->l_iclog;
843 		atomic_inc(&iclog->ic_refcnt);
844 		xlog_state_want_sync(log, iclog);
845 		spin_unlock(&log->l_icloglock);
846 		error = xlog_state_release_iclog(log, iclog);
847 
848 		spin_lock(&log->l_icloglock);
849 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
850 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
851 			if (!XLOG_FORCED_SHUTDOWN(log)) {
852 				xlog_wait(&iclog->ic_force_wait,
853 							&log->l_icloglock);
854 			} else {
855 				spin_unlock(&log->l_icloglock);
856 			}
857 		} else {
858 			spin_unlock(&log->l_icloglock);
859 		}
860 		if (tic) {
861 			trace_xfs_log_umount_write(log, tic);
862 			xlog_ungrant_log_space(log, tic);
863 			xfs_log_ticket_put(tic);
864 		}
865 	} else {
866 		/*
867 		 * We're already in forced_shutdown mode, couldn't
868 		 * even attempt to write out the unmount transaction.
869 		 *
870 		 * Go through the motions of sync'ing and releasing
871 		 * the iclog, even though no I/O will actually happen,
872 		 * we need to wait for other log I/Os that may already
873 		 * be in progress.  Do this as a separate section of
874 		 * code so we'll know if we ever get stuck here that
875 		 * we're in this odd situation of trying to unmount
876 		 * a file system that went into forced_shutdown as
877 		 * the result of an unmount..
878 		 */
879 		spin_lock(&log->l_icloglock);
880 		iclog = log->l_iclog;
881 		atomic_inc(&iclog->ic_refcnt);
882 
883 		xlog_state_want_sync(log, iclog);
884 		spin_unlock(&log->l_icloglock);
885 		error =  xlog_state_release_iclog(log, iclog);
886 
887 		spin_lock(&log->l_icloglock);
888 
889 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
890 			|| iclog->ic_state == XLOG_STATE_DIRTY
891 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
892 
893 				xlog_wait(&iclog->ic_force_wait,
894 							&log->l_icloglock);
895 		} else {
896 			spin_unlock(&log->l_icloglock);
897 		}
898 	}
899 
900 	return error;
901 }	/* xfs_log_unmount_write */
902 
903 /*
904  * Empty the log for unmount/freeze.
905  *
906  * To do this, we first need to shut down the background log work so it is not
907  * trying to cover the log as we clean up. We then need to unpin all objects in
908  * the log so we can then flush them out. Once they have completed their IO and
909  * run the callbacks removing themselves from the AIL, we can write the unmount
910  * record.
911  */
912 void
913 xfs_log_quiesce(
914 	struct xfs_mount	*mp)
915 {
916 	cancel_delayed_work_sync(&mp->m_log->l_work);
917 	xfs_log_force(mp, XFS_LOG_SYNC);
918 
919 	/*
920 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
921 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
922 	 * xfs_buf_iowait() cannot be used because it was pushed with the
923 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
924 	 * the IO to complete.
925 	 */
926 	xfs_ail_push_all_sync(mp->m_ail);
927 	xfs_wait_buftarg(mp->m_ddev_targp);
928 	xfs_buf_lock(mp->m_sb_bp);
929 	xfs_buf_unlock(mp->m_sb_bp);
930 
931 	xfs_log_unmount_write(mp);
932 }
933 
934 /*
935  * Shut down and release the AIL and Log.
936  *
937  * During unmount, we need to ensure we flush all the dirty metadata objects
938  * from the AIL so that the log is empty before we write the unmount record to
939  * the log. Once this is done, we can tear down the AIL and the log.
940  */
941 void
942 xfs_log_unmount(
943 	struct xfs_mount	*mp)
944 {
945 	xfs_log_quiesce(mp);
946 
947 	xfs_trans_ail_destroy(mp);
948 	xlog_dealloc_log(mp->m_log);
949 }
950 
951 void
952 xfs_log_item_init(
953 	struct xfs_mount	*mp,
954 	struct xfs_log_item	*item,
955 	int			type,
956 	const struct xfs_item_ops *ops)
957 {
958 	item->li_mountp = mp;
959 	item->li_ailp = mp->m_ail;
960 	item->li_type = type;
961 	item->li_ops = ops;
962 	item->li_lv = NULL;
963 
964 	INIT_LIST_HEAD(&item->li_ail);
965 	INIT_LIST_HEAD(&item->li_cil);
966 }
967 
968 /*
969  * Wake up processes waiting for log space after we have moved the log tail.
970  */
971 void
972 xfs_log_space_wake(
973 	struct xfs_mount	*mp)
974 {
975 	struct xlog		*log = mp->m_log;
976 	int			free_bytes;
977 
978 	if (XLOG_FORCED_SHUTDOWN(log))
979 		return;
980 
981 	if (!list_empty_careful(&log->l_write_head.waiters)) {
982 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
983 
984 		spin_lock(&log->l_write_head.lock);
985 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
986 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
987 		spin_unlock(&log->l_write_head.lock);
988 	}
989 
990 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
991 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
992 
993 		spin_lock(&log->l_reserve_head.lock);
994 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
995 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
996 		spin_unlock(&log->l_reserve_head.lock);
997 	}
998 }
999 
1000 /*
1001  * Determine if we have a transaction that has gone to disk that needs to be
1002  * covered. To begin the transition to the idle state firstly the log needs to
1003  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1004  * we start attempting to cover the log.
1005  *
1006  * Only if we are then in a state where covering is needed, the caller is
1007  * informed that dummy transactions are required to move the log into the idle
1008  * state.
1009  *
1010  * If there are any items in the AIl or CIL, then we do not want to attempt to
1011  * cover the log as we may be in a situation where there isn't log space
1012  * available to run a dummy transaction and this can lead to deadlocks when the
1013  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1014  * there's no point in running a dummy transaction at this point because we
1015  * can't start trying to idle the log until both the CIL and AIL are empty.
1016  */
1017 int
1018 xfs_log_need_covered(xfs_mount_t *mp)
1019 {
1020 	struct xlog	*log = mp->m_log;
1021 	int		needed = 0;
1022 
1023 	if (!xfs_fs_writable(mp))
1024 		return 0;
1025 
1026 	if (!xlog_cil_empty(log))
1027 		return 0;
1028 
1029 	spin_lock(&log->l_icloglock);
1030 	switch (log->l_covered_state) {
1031 	case XLOG_STATE_COVER_DONE:
1032 	case XLOG_STATE_COVER_DONE2:
1033 	case XLOG_STATE_COVER_IDLE:
1034 		break;
1035 	case XLOG_STATE_COVER_NEED:
1036 	case XLOG_STATE_COVER_NEED2:
1037 		if (xfs_ail_min_lsn(log->l_ailp))
1038 			break;
1039 		if (!xlog_iclogs_empty(log))
1040 			break;
1041 
1042 		needed = 1;
1043 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1044 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1045 		else
1046 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1047 		break;
1048 	default:
1049 		needed = 1;
1050 		break;
1051 	}
1052 	spin_unlock(&log->l_icloglock);
1053 	return needed;
1054 }
1055 
1056 /*
1057  * We may be holding the log iclog lock upon entering this routine.
1058  */
1059 xfs_lsn_t
1060 xlog_assign_tail_lsn_locked(
1061 	struct xfs_mount	*mp)
1062 {
1063 	struct xlog		*log = mp->m_log;
1064 	struct xfs_log_item	*lip;
1065 	xfs_lsn_t		tail_lsn;
1066 
1067 	assert_spin_locked(&mp->m_ail->xa_lock);
1068 
1069 	/*
1070 	 * To make sure we always have a valid LSN for the log tail we keep
1071 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1072 	 * and use that when the AIL was empty.
1073 	 */
1074 	lip = xfs_ail_min(mp->m_ail);
1075 	if (lip)
1076 		tail_lsn = lip->li_lsn;
1077 	else
1078 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1079 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1080 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1081 	return tail_lsn;
1082 }
1083 
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn(
1086 	struct xfs_mount	*mp)
1087 {
1088 	xfs_lsn_t		tail_lsn;
1089 
1090 	spin_lock(&mp->m_ail->xa_lock);
1091 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1092 	spin_unlock(&mp->m_ail->xa_lock);
1093 
1094 	return tail_lsn;
1095 }
1096 
1097 /*
1098  * Return the space in the log between the tail and the head.  The head
1099  * is passed in the cycle/bytes formal parms.  In the special case where
1100  * the reserve head has wrapped passed the tail, this calculation is no
1101  * longer valid.  In this case, just return 0 which means there is no space
1102  * in the log.  This works for all places where this function is called
1103  * with the reserve head.  Of course, if the write head were to ever
1104  * wrap the tail, we should blow up.  Rather than catch this case here,
1105  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1106  *
1107  * This code also handles the case where the reservation head is behind
1108  * the tail.  The details of this case are described below, but the end
1109  * result is that we return the size of the log as the amount of space left.
1110  */
1111 STATIC int
1112 xlog_space_left(
1113 	struct xlog	*log,
1114 	atomic64_t	*head)
1115 {
1116 	int		free_bytes;
1117 	int		tail_bytes;
1118 	int		tail_cycle;
1119 	int		head_cycle;
1120 	int		head_bytes;
1121 
1122 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1123 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1124 	tail_bytes = BBTOB(tail_bytes);
1125 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1126 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1127 	else if (tail_cycle + 1 < head_cycle)
1128 		return 0;
1129 	else if (tail_cycle < head_cycle) {
1130 		ASSERT(tail_cycle == (head_cycle - 1));
1131 		free_bytes = tail_bytes - head_bytes;
1132 	} else {
1133 		/*
1134 		 * The reservation head is behind the tail.
1135 		 * In this case we just want to return the size of the
1136 		 * log as the amount of space left.
1137 		 */
1138 		xfs_alert(log->l_mp,
1139 			"xlog_space_left: head behind tail\n"
1140 			"  tail_cycle = %d, tail_bytes = %d\n"
1141 			"  GH   cycle = %d, GH   bytes = %d",
1142 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1143 		ASSERT(0);
1144 		free_bytes = log->l_logsize;
1145 	}
1146 	return free_bytes;
1147 }
1148 
1149 
1150 /*
1151  * Log function which is called when an io completes.
1152  *
1153  * The log manager needs its own routine, in order to control what
1154  * happens with the buffer after the write completes.
1155  */
1156 void
1157 xlog_iodone(xfs_buf_t *bp)
1158 {
1159 	struct xlog_in_core	*iclog = bp->b_fspriv;
1160 	struct xlog		*l = iclog->ic_log;
1161 	int			aborted = 0;
1162 
1163 	/*
1164 	 * Race to shutdown the filesystem if we see an error.
1165 	 */
1166 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1167 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1168 		xfs_buf_ioerror_alert(bp, __func__);
1169 		xfs_buf_stale(bp);
1170 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1171 		/*
1172 		 * This flag will be propagated to the trans-committed
1173 		 * callback routines to let them know that the log-commit
1174 		 * didn't succeed.
1175 		 */
1176 		aborted = XFS_LI_ABORTED;
1177 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1178 		aborted = XFS_LI_ABORTED;
1179 	}
1180 
1181 	/* log I/O is always issued ASYNC */
1182 	ASSERT(XFS_BUF_ISASYNC(bp));
1183 	xlog_state_done_syncing(iclog, aborted);
1184 
1185 	/*
1186 	 * drop the buffer lock now that we are done. Nothing references
1187 	 * the buffer after this, so an unmount waiting on this lock can now
1188 	 * tear it down safely. As such, it is unsafe to reference the buffer
1189 	 * (bp) after the unlock as we could race with it being freed.
1190 	 */
1191 	xfs_buf_unlock(bp);
1192 }
1193 
1194 /*
1195  * Return size of each in-core log record buffer.
1196  *
1197  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1198  *
1199  * If the filesystem blocksize is too large, we may need to choose a
1200  * larger size since the directory code currently logs entire blocks.
1201  */
1202 
1203 STATIC void
1204 xlog_get_iclog_buffer_size(
1205 	struct xfs_mount	*mp,
1206 	struct xlog		*log)
1207 {
1208 	int size;
1209 	int xhdrs;
1210 
1211 	if (mp->m_logbufs <= 0)
1212 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1213 	else
1214 		log->l_iclog_bufs = mp->m_logbufs;
1215 
1216 	/*
1217 	 * Buffer size passed in from mount system call.
1218 	 */
1219 	if (mp->m_logbsize > 0) {
1220 		size = log->l_iclog_size = mp->m_logbsize;
1221 		log->l_iclog_size_log = 0;
1222 		while (size != 1) {
1223 			log->l_iclog_size_log++;
1224 			size >>= 1;
1225 		}
1226 
1227 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1228 			/* # headers = size / 32k
1229 			 * one header holds cycles from 32k of data
1230 			 */
1231 
1232 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1233 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1234 				xhdrs++;
1235 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1236 			log->l_iclog_heads = xhdrs;
1237 		} else {
1238 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1239 			log->l_iclog_hsize = BBSIZE;
1240 			log->l_iclog_heads = 1;
1241 		}
1242 		goto done;
1243 	}
1244 
1245 	/* All machines use 32kB buffers by default. */
1246 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1247 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1248 
1249 	/* the default log size is 16k or 32k which is one header sector */
1250 	log->l_iclog_hsize = BBSIZE;
1251 	log->l_iclog_heads = 1;
1252 
1253 done:
1254 	/* are we being asked to make the sizes selected above visible? */
1255 	if (mp->m_logbufs == 0)
1256 		mp->m_logbufs = log->l_iclog_bufs;
1257 	if (mp->m_logbsize == 0)
1258 		mp->m_logbsize = log->l_iclog_size;
1259 }	/* xlog_get_iclog_buffer_size */
1260 
1261 
1262 void
1263 xfs_log_work_queue(
1264 	struct xfs_mount        *mp)
1265 {
1266 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1267 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1268 }
1269 
1270 /*
1271  * Every sync period we need to unpin all items in the AIL and push them to
1272  * disk. If there is nothing dirty, then we might need to cover the log to
1273  * indicate that the filesystem is idle.
1274  */
1275 void
1276 xfs_log_worker(
1277 	struct work_struct	*work)
1278 {
1279 	struct xlog		*log = container_of(to_delayed_work(work),
1280 						struct xlog, l_work);
1281 	struct xfs_mount	*mp = log->l_mp;
1282 
1283 	/* dgc: errors ignored - not fatal and nowhere to report them */
1284 	if (xfs_log_need_covered(mp))
1285 		xfs_fs_log_dummy(mp);
1286 	else
1287 		xfs_log_force(mp, 0);
1288 
1289 	/* start pushing all the metadata that is currently dirty */
1290 	xfs_ail_push_all(mp->m_ail);
1291 
1292 	/* queue us up again */
1293 	xfs_log_work_queue(mp);
1294 }
1295 
1296 /*
1297  * This routine initializes some of the log structure for a given mount point.
1298  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1299  * some other stuff may be filled in too.
1300  */
1301 STATIC struct xlog *
1302 xlog_alloc_log(
1303 	struct xfs_mount	*mp,
1304 	struct xfs_buftarg	*log_target,
1305 	xfs_daddr_t		blk_offset,
1306 	int			num_bblks)
1307 {
1308 	struct xlog		*log;
1309 	xlog_rec_header_t	*head;
1310 	xlog_in_core_t		**iclogp;
1311 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1312 	xfs_buf_t		*bp;
1313 	int			i;
1314 	int			error = ENOMEM;
1315 	uint			log2_size = 0;
1316 
1317 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1318 	if (!log) {
1319 		xfs_warn(mp, "Log allocation failed: No memory!");
1320 		goto out;
1321 	}
1322 
1323 	log->l_mp	   = mp;
1324 	log->l_targ	   = log_target;
1325 	log->l_logsize     = BBTOB(num_bblks);
1326 	log->l_logBBstart  = blk_offset;
1327 	log->l_logBBsize   = num_bblks;
1328 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1329 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1330 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1331 
1332 	log->l_prev_block  = -1;
1333 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1334 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1335 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1336 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1337 
1338 	xlog_grant_head_init(&log->l_reserve_head);
1339 	xlog_grant_head_init(&log->l_write_head);
1340 
1341 	error = EFSCORRUPTED;
1342 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1343 	        log2_size = mp->m_sb.sb_logsectlog;
1344 		if (log2_size < BBSHIFT) {
1345 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1346 				log2_size, BBSHIFT);
1347 			goto out_free_log;
1348 		}
1349 
1350 	        log2_size -= BBSHIFT;
1351 		if (log2_size > mp->m_sectbb_log) {
1352 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1353 				log2_size, mp->m_sectbb_log);
1354 			goto out_free_log;
1355 		}
1356 
1357 		/* for larger sector sizes, must have v2 or external log */
1358 		if (log2_size && log->l_logBBstart > 0 &&
1359 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1360 			xfs_warn(mp,
1361 		"log sector size (0x%x) invalid for configuration.",
1362 				log2_size);
1363 			goto out_free_log;
1364 		}
1365 	}
1366 	log->l_sectBBsize = 1 << log2_size;
1367 
1368 	xlog_get_iclog_buffer_size(mp, log);
1369 
1370 	error = ENOMEM;
1371 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1372 	if (!bp)
1373 		goto out_free_log;
1374 
1375 	/*
1376 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1377 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1378 	 * when appropriately.
1379 	 */
1380 	ASSERT(xfs_buf_islocked(bp));
1381 	xfs_buf_unlock(bp);
1382 
1383 	bp->b_iodone = xlog_iodone;
1384 	log->l_xbuf = bp;
1385 
1386 	spin_lock_init(&log->l_icloglock);
1387 	init_waitqueue_head(&log->l_flush_wait);
1388 
1389 	iclogp = &log->l_iclog;
1390 	/*
1391 	 * The amount of memory to allocate for the iclog structure is
1392 	 * rather funky due to the way the structure is defined.  It is
1393 	 * done this way so that we can use different sizes for machines
1394 	 * with different amounts of memory.  See the definition of
1395 	 * xlog_in_core_t in xfs_log_priv.h for details.
1396 	 */
1397 	ASSERT(log->l_iclog_size >= 4096);
1398 	for (i=0; i < log->l_iclog_bufs; i++) {
1399 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1400 		if (!*iclogp)
1401 			goto out_free_iclog;
1402 
1403 		iclog = *iclogp;
1404 		iclog->ic_prev = prev_iclog;
1405 		prev_iclog = iclog;
1406 
1407 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1408 						BTOBB(log->l_iclog_size), 0);
1409 		if (!bp)
1410 			goto out_free_iclog;
1411 
1412 		ASSERT(xfs_buf_islocked(bp));
1413 		xfs_buf_unlock(bp);
1414 
1415 		bp->b_iodone = xlog_iodone;
1416 		iclog->ic_bp = bp;
1417 		iclog->ic_data = bp->b_addr;
1418 #ifdef DEBUG
1419 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1420 #endif
1421 		head = &iclog->ic_header;
1422 		memset(head, 0, sizeof(xlog_rec_header_t));
1423 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1424 		head->h_version = cpu_to_be32(
1425 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1426 		head->h_size = cpu_to_be32(log->l_iclog_size);
1427 		/* new fields */
1428 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1429 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1430 
1431 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1432 		iclog->ic_state = XLOG_STATE_ACTIVE;
1433 		iclog->ic_log = log;
1434 		atomic_set(&iclog->ic_refcnt, 0);
1435 		spin_lock_init(&iclog->ic_callback_lock);
1436 		iclog->ic_callback_tail = &(iclog->ic_callback);
1437 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1438 
1439 		init_waitqueue_head(&iclog->ic_force_wait);
1440 		init_waitqueue_head(&iclog->ic_write_wait);
1441 
1442 		iclogp = &iclog->ic_next;
1443 	}
1444 	*iclogp = log->l_iclog;			/* complete ring */
1445 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1446 
1447 	error = xlog_cil_init(log);
1448 	if (error)
1449 		goto out_free_iclog;
1450 	return log;
1451 
1452 out_free_iclog:
1453 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1454 		prev_iclog = iclog->ic_next;
1455 		if (iclog->ic_bp)
1456 			xfs_buf_free(iclog->ic_bp);
1457 		kmem_free(iclog);
1458 	}
1459 	spinlock_destroy(&log->l_icloglock);
1460 	xfs_buf_free(log->l_xbuf);
1461 out_free_log:
1462 	kmem_free(log);
1463 out:
1464 	return ERR_PTR(-error);
1465 }	/* xlog_alloc_log */
1466 
1467 
1468 /*
1469  * Write out the commit record of a transaction associated with the given
1470  * ticket.  Return the lsn of the commit record.
1471  */
1472 STATIC int
1473 xlog_commit_record(
1474 	struct xlog		*log,
1475 	struct xlog_ticket	*ticket,
1476 	struct xlog_in_core	**iclog,
1477 	xfs_lsn_t		*commitlsnp)
1478 {
1479 	struct xfs_mount *mp = log->l_mp;
1480 	int	error;
1481 	struct xfs_log_iovec reg = {
1482 		.i_addr = NULL,
1483 		.i_len = 0,
1484 		.i_type = XLOG_REG_TYPE_COMMIT,
1485 	};
1486 	struct xfs_log_vec vec = {
1487 		.lv_niovecs = 1,
1488 		.lv_iovecp = &reg,
1489 	};
1490 
1491 	ASSERT_ALWAYS(iclog);
1492 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1493 					XLOG_COMMIT_TRANS);
1494 	if (error)
1495 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1496 	return error;
1497 }
1498 
1499 /*
1500  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1501  * log space.  This code pushes on the lsn which would supposedly free up
1502  * the 25% which we want to leave free.  We may need to adopt a policy which
1503  * pushes on an lsn which is further along in the log once we reach the high
1504  * water mark.  In this manner, we would be creating a low water mark.
1505  */
1506 STATIC void
1507 xlog_grant_push_ail(
1508 	struct xlog	*log,
1509 	int		need_bytes)
1510 {
1511 	xfs_lsn_t	threshold_lsn = 0;
1512 	xfs_lsn_t	last_sync_lsn;
1513 	int		free_blocks;
1514 	int		free_bytes;
1515 	int		threshold_block;
1516 	int		threshold_cycle;
1517 	int		free_threshold;
1518 
1519 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1520 
1521 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1522 	free_blocks = BTOBBT(free_bytes);
1523 
1524 	/*
1525 	 * Set the threshold for the minimum number of free blocks in the
1526 	 * log to the maximum of what the caller needs, one quarter of the
1527 	 * log, and 256 blocks.
1528 	 */
1529 	free_threshold = BTOBB(need_bytes);
1530 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1531 	free_threshold = MAX(free_threshold, 256);
1532 	if (free_blocks >= free_threshold)
1533 		return;
1534 
1535 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1536 						&threshold_block);
1537 	threshold_block += free_threshold;
1538 	if (threshold_block >= log->l_logBBsize) {
1539 		threshold_block -= log->l_logBBsize;
1540 		threshold_cycle += 1;
1541 	}
1542 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1543 					threshold_block);
1544 	/*
1545 	 * Don't pass in an lsn greater than the lsn of the last
1546 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1547 	 * so that it doesn't change between the compare and the set.
1548 	 */
1549 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1550 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1551 		threshold_lsn = last_sync_lsn;
1552 
1553 	/*
1554 	 * Get the transaction layer to kick the dirty buffers out to
1555 	 * disk asynchronously. No point in trying to do this if
1556 	 * the filesystem is shutting down.
1557 	 */
1558 	if (!XLOG_FORCED_SHUTDOWN(log))
1559 		xfs_ail_push(log->l_ailp, threshold_lsn);
1560 }
1561 
1562 /*
1563  * Stamp cycle number in every block
1564  */
1565 STATIC void
1566 xlog_pack_data(
1567 	struct xlog		*log,
1568 	struct xlog_in_core	*iclog,
1569 	int			roundoff)
1570 {
1571 	int			i, j, k;
1572 	int			size = iclog->ic_offset + roundoff;
1573 	__be32			cycle_lsn;
1574 	xfs_caddr_t		dp;
1575 
1576 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1577 
1578 	dp = iclog->ic_datap;
1579 	for (i = 0; i < BTOBB(size); i++) {
1580 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1581 			break;
1582 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1583 		*(__be32 *)dp = cycle_lsn;
1584 		dp += BBSIZE;
1585 	}
1586 
1587 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1588 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1589 
1590 		for ( ; i < BTOBB(size); i++) {
1591 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1592 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1593 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1594 			*(__be32 *)dp = cycle_lsn;
1595 			dp += BBSIZE;
1596 		}
1597 
1598 		for (i = 1; i < log->l_iclog_heads; i++)
1599 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1600 	}
1601 }
1602 
1603 /*
1604  * Calculate the checksum for a log buffer.
1605  *
1606  * This is a little more complicated than it should be because the various
1607  * headers and the actual data are non-contiguous.
1608  */
1609 __le32
1610 xlog_cksum(
1611 	struct xlog		*log,
1612 	struct xlog_rec_header	*rhead,
1613 	char			*dp,
1614 	int			size)
1615 {
1616 	__uint32_t		crc;
1617 
1618 	/* first generate the crc for the record header ... */
1619 	crc = xfs_start_cksum((char *)rhead,
1620 			      sizeof(struct xlog_rec_header),
1621 			      offsetof(struct xlog_rec_header, h_crc));
1622 
1623 	/* ... then for additional cycle data for v2 logs ... */
1624 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1625 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1626 		int		i;
1627 
1628 		for (i = 1; i < log->l_iclog_heads; i++) {
1629 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1630 				     sizeof(struct xlog_rec_ext_header));
1631 		}
1632 	}
1633 
1634 	/* ... and finally for the payload */
1635 	crc = crc32c(crc, dp, size);
1636 
1637 	return xfs_end_cksum(crc);
1638 }
1639 
1640 /*
1641  * The bdstrat callback function for log bufs. This gives us a central
1642  * place to trap bufs in case we get hit by a log I/O error and need to
1643  * shutdown. Actually, in practice, even when we didn't get a log error,
1644  * we transition the iclogs to IOERROR state *after* flushing all existing
1645  * iclogs to disk. This is because we don't want anymore new transactions to be
1646  * started or completed afterwards.
1647  *
1648  * We lock the iclogbufs here so that we can serialise against IO completion
1649  * during unmount. We might be processing a shutdown triggered during unmount,
1650  * and that can occur asynchronously to the unmount thread, and hence we need to
1651  * ensure that completes before tearing down the iclogbufs. Hence we need to
1652  * hold the buffer lock across the log IO to acheive that.
1653  */
1654 STATIC int
1655 xlog_bdstrat(
1656 	struct xfs_buf		*bp)
1657 {
1658 	struct xlog_in_core	*iclog = bp->b_fspriv;
1659 
1660 	xfs_buf_lock(bp);
1661 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1662 		xfs_buf_ioerror(bp, EIO);
1663 		xfs_buf_stale(bp);
1664 		xfs_buf_ioend(bp, 0);
1665 		/*
1666 		 * It would seem logical to return EIO here, but we rely on
1667 		 * the log state machine to propagate I/O errors instead of
1668 		 * doing it here. Similarly, IO completion will unlock the
1669 		 * buffer, so we don't do it here.
1670 		 */
1671 		return 0;
1672 	}
1673 
1674 	xfs_buf_iorequest(bp);
1675 	return 0;
1676 }
1677 
1678 /*
1679  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1680  * fashion.  Previously, we should have moved the current iclog
1681  * ptr in the log to point to the next available iclog.  This allows further
1682  * write to continue while this code syncs out an iclog ready to go.
1683  * Before an in-core log can be written out, the data section must be scanned
1684  * to save away the 1st word of each BBSIZE block into the header.  We replace
1685  * it with the current cycle count.  Each BBSIZE block is tagged with the
1686  * cycle count because there in an implicit assumption that drives will
1687  * guarantee that entire 512 byte blocks get written at once.  In other words,
1688  * we can't have part of a 512 byte block written and part not written.  By
1689  * tagging each block, we will know which blocks are valid when recovering
1690  * after an unclean shutdown.
1691  *
1692  * This routine is single threaded on the iclog.  No other thread can be in
1693  * this routine with the same iclog.  Changing contents of iclog can there-
1694  * fore be done without grabbing the state machine lock.  Updating the global
1695  * log will require grabbing the lock though.
1696  *
1697  * The entire log manager uses a logical block numbering scheme.  Only
1698  * log_sync (and then only bwrite()) know about the fact that the log may
1699  * not start with block zero on a given device.  The log block start offset
1700  * is added immediately before calling bwrite().
1701  */
1702 
1703 STATIC int
1704 xlog_sync(
1705 	struct xlog		*log,
1706 	struct xlog_in_core	*iclog)
1707 {
1708 	xfs_buf_t	*bp;
1709 	int		i;
1710 	uint		count;		/* byte count of bwrite */
1711 	uint		count_init;	/* initial count before roundup */
1712 	int		roundoff;       /* roundoff to BB or stripe */
1713 	int		split = 0;	/* split write into two regions */
1714 	int		error;
1715 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1716 	int		size;
1717 
1718 	XFS_STATS_INC(xs_log_writes);
1719 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1720 
1721 	/* Add for LR header */
1722 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1723 
1724 	/* Round out the log write size */
1725 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1726 		/* we have a v2 stripe unit to use */
1727 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1728 	} else {
1729 		count = BBTOB(BTOBB(count_init));
1730 	}
1731 	roundoff = count - count_init;
1732 	ASSERT(roundoff >= 0);
1733 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1734                 roundoff < log->l_mp->m_sb.sb_logsunit)
1735 		||
1736 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1737 		 roundoff < BBTOB(1)));
1738 
1739 	/* move grant heads by roundoff in sync */
1740 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1741 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1742 
1743 	/* put cycle number in every block */
1744 	xlog_pack_data(log, iclog, roundoff);
1745 
1746 	/* real byte length */
1747 	size = iclog->ic_offset;
1748 	if (v2)
1749 		size += roundoff;
1750 	iclog->ic_header.h_len = cpu_to_be32(size);
1751 
1752 	bp = iclog->ic_bp;
1753 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1754 
1755 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1756 
1757 	/* Do we need to split this write into 2 parts? */
1758 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1759 		char		*dptr;
1760 
1761 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1762 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1763 		iclog->ic_bwritecnt = 2;
1764 
1765 		/*
1766 		 * Bump the cycle numbers at the start of each block in the
1767 		 * part of the iclog that ends up in the buffer that gets
1768 		 * written to the start of the log.
1769 		 *
1770 		 * Watch out for the header magic number case, though.
1771 		 */
1772 		dptr = (char *)&iclog->ic_header + count;
1773 		for (i = 0; i < split; i += BBSIZE) {
1774 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1775 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1776 				cycle++;
1777 			*(__be32 *)dptr = cpu_to_be32(cycle);
1778 
1779 			dptr += BBSIZE;
1780 		}
1781 	} else {
1782 		iclog->ic_bwritecnt = 1;
1783 	}
1784 
1785 	/* calculcate the checksum */
1786 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1787 					    iclog->ic_datap, size);
1788 
1789 	bp->b_io_length = BTOBB(count);
1790 	bp->b_fspriv = iclog;
1791 	XFS_BUF_ZEROFLAGS(bp);
1792 	XFS_BUF_ASYNC(bp);
1793 	bp->b_flags |= XBF_SYNCIO;
1794 
1795 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1796 		bp->b_flags |= XBF_FUA;
1797 
1798 		/*
1799 		 * Flush the data device before flushing the log to make
1800 		 * sure all meta data written back from the AIL actually made
1801 		 * it to disk before stamping the new log tail LSN into the
1802 		 * log buffer.  For an external log we need to issue the
1803 		 * flush explicitly, and unfortunately synchronously here;
1804 		 * for an internal log we can simply use the block layer
1805 		 * state machine for preflushes.
1806 		 */
1807 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1808 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1809 		else
1810 			bp->b_flags |= XBF_FLUSH;
1811 	}
1812 
1813 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1814 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1815 
1816 	xlog_verify_iclog(log, iclog, count, true);
1817 
1818 	/* account for log which doesn't start at block #0 */
1819 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1820 	/*
1821 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1822 	 * is shutting down.
1823 	 */
1824 	XFS_BUF_WRITE(bp);
1825 
1826 	error = xlog_bdstrat(bp);
1827 	if (error) {
1828 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1829 		return error;
1830 	}
1831 	if (split) {
1832 		bp = iclog->ic_log->l_xbuf;
1833 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1834 		xfs_buf_associate_memory(bp,
1835 				(char *)&iclog->ic_header + count, split);
1836 		bp->b_fspriv = iclog;
1837 		XFS_BUF_ZEROFLAGS(bp);
1838 		XFS_BUF_ASYNC(bp);
1839 		bp->b_flags |= XBF_SYNCIO;
1840 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1841 			bp->b_flags |= XBF_FUA;
1842 
1843 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1844 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1845 
1846 		/* account for internal log which doesn't start at block #0 */
1847 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1848 		XFS_BUF_WRITE(bp);
1849 		error = xlog_bdstrat(bp);
1850 		if (error) {
1851 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1852 			return error;
1853 		}
1854 	}
1855 	return 0;
1856 }	/* xlog_sync */
1857 
1858 /*
1859  * Deallocate a log structure
1860  */
1861 STATIC void
1862 xlog_dealloc_log(
1863 	struct xlog	*log)
1864 {
1865 	xlog_in_core_t	*iclog, *next_iclog;
1866 	int		i;
1867 
1868 	xlog_cil_destroy(log);
1869 
1870 	/*
1871 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1872 	 * is done before we tear down these buffers.
1873 	 */
1874 	iclog = log->l_iclog;
1875 	for (i = 0; i < log->l_iclog_bufs; i++) {
1876 		xfs_buf_lock(iclog->ic_bp);
1877 		xfs_buf_unlock(iclog->ic_bp);
1878 		iclog = iclog->ic_next;
1879 	}
1880 
1881 	/*
1882 	 * Always need to ensure that the extra buffer does not point to memory
1883 	 * owned by another log buffer before we free it. Also, cycle the lock
1884 	 * first to ensure we've completed IO on it.
1885 	 */
1886 	xfs_buf_lock(log->l_xbuf);
1887 	xfs_buf_unlock(log->l_xbuf);
1888 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1889 	xfs_buf_free(log->l_xbuf);
1890 
1891 	iclog = log->l_iclog;
1892 	for (i = 0; i < log->l_iclog_bufs; i++) {
1893 		xfs_buf_free(iclog->ic_bp);
1894 		next_iclog = iclog->ic_next;
1895 		kmem_free(iclog);
1896 		iclog = next_iclog;
1897 	}
1898 	spinlock_destroy(&log->l_icloglock);
1899 
1900 	log->l_mp->m_log = NULL;
1901 	kmem_free(log);
1902 }	/* xlog_dealloc_log */
1903 
1904 /*
1905  * Update counters atomically now that memcpy is done.
1906  */
1907 /* ARGSUSED */
1908 static inline void
1909 xlog_state_finish_copy(
1910 	struct xlog		*log,
1911 	struct xlog_in_core	*iclog,
1912 	int			record_cnt,
1913 	int			copy_bytes)
1914 {
1915 	spin_lock(&log->l_icloglock);
1916 
1917 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1918 	iclog->ic_offset += copy_bytes;
1919 
1920 	spin_unlock(&log->l_icloglock);
1921 }	/* xlog_state_finish_copy */
1922 
1923 
1924 
1925 
1926 /*
1927  * print out info relating to regions written which consume
1928  * the reservation
1929  */
1930 void
1931 xlog_print_tic_res(
1932 	struct xfs_mount	*mp,
1933 	struct xlog_ticket	*ticket)
1934 {
1935 	uint i;
1936 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1937 
1938 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1939 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1940 	    "bformat",
1941 	    "bchunk",
1942 	    "efi_format",
1943 	    "efd_format",
1944 	    "iformat",
1945 	    "icore",
1946 	    "iext",
1947 	    "ibroot",
1948 	    "ilocal",
1949 	    "iattr_ext",
1950 	    "iattr_broot",
1951 	    "iattr_local",
1952 	    "qformat",
1953 	    "dquot",
1954 	    "quotaoff",
1955 	    "LR header",
1956 	    "unmount",
1957 	    "commit",
1958 	    "trans header"
1959 	};
1960 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1961 	    "SETATTR_NOT_SIZE",
1962 	    "SETATTR_SIZE",
1963 	    "INACTIVE",
1964 	    "CREATE",
1965 	    "CREATE_TRUNC",
1966 	    "TRUNCATE_FILE",
1967 	    "REMOVE",
1968 	    "LINK",
1969 	    "RENAME",
1970 	    "MKDIR",
1971 	    "RMDIR",
1972 	    "SYMLINK",
1973 	    "SET_DMATTRS",
1974 	    "GROWFS",
1975 	    "STRAT_WRITE",
1976 	    "DIOSTRAT",
1977 	    "WRITE_SYNC",
1978 	    "WRITEID",
1979 	    "ADDAFORK",
1980 	    "ATTRINVAL",
1981 	    "ATRUNCATE",
1982 	    "ATTR_SET",
1983 	    "ATTR_RM",
1984 	    "ATTR_FLAG",
1985 	    "CLEAR_AGI_BUCKET",
1986 	    "QM_SBCHANGE",
1987 	    "DUMMY1",
1988 	    "DUMMY2",
1989 	    "QM_QUOTAOFF",
1990 	    "QM_DQALLOC",
1991 	    "QM_SETQLIM",
1992 	    "QM_DQCLUSTER",
1993 	    "QM_QINOCREATE",
1994 	    "QM_QUOTAOFF_END",
1995 	    "SB_UNIT",
1996 	    "FSYNC_TS",
1997 	    "GROWFSRT_ALLOC",
1998 	    "GROWFSRT_ZERO",
1999 	    "GROWFSRT_FREE",
2000 	    "SWAPEXT"
2001 	};
2002 
2003 	xfs_warn(mp,
2004 		"xlog_write: reservation summary:\n"
2005 		"  trans type  = %s (%u)\n"
2006 		"  unit res    = %d bytes\n"
2007 		"  current res = %d bytes\n"
2008 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2009 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2010 		"  ophdr + reg = %u bytes\n"
2011 		"  num regions = %u\n",
2012 		((ticket->t_trans_type <= 0 ||
2013 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2014 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2015 		ticket->t_trans_type,
2016 		ticket->t_unit_res,
2017 		ticket->t_curr_res,
2018 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2019 		ticket->t_res_num_ophdrs, ophdr_spc,
2020 		ticket->t_res_arr_sum +
2021 		ticket->t_res_o_flow + ophdr_spc,
2022 		ticket->t_res_num);
2023 
2024 	for (i = 0; i < ticket->t_res_num; i++) {
2025 		uint r_type = ticket->t_res_arr[i].r_type;
2026 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2027 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2028 			    "bad-rtype" : res_type_str[r_type-1]),
2029 			    ticket->t_res_arr[i].r_len);
2030 	}
2031 
2032 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2033 		"xlog_write: reservation ran out. Need to up reservation");
2034 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2035 }
2036 
2037 /*
2038  * Calculate the potential space needed by the log vector.  Each region gets
2039  * its own xlog_op_header_t and may need to be double word aligned.
2040  */
2041 static int
2042 xlog_write_calc_vec_length(
2043 	struct xlog_ticket	*ticket,
2044 	struct xfs_log_vec	*log_vector)
2045 {
2046 	struct xfs_log_vec	*lv;
2047 	int			headers = 0;
2048 	int			len = 0;
2049 	int			i;
2050 
2051 	/* acct for start rec of xact */
2052 	if (ticket->t_flags & XLOG_TIC_INITED)
2053 		headers++;
2054 
2055 	for (lv = log_vector; lv; lv = lv->lv_next) {
2056 		/* we don't write ordered log vectors */
2057 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2058 			continue;
2059 
2060 		headers += lv->lv_niovecs;
2061 
2062 		for (i = 0; i < lv->lv_niovecs; i++) {
2063 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2064 
2065 			len += vecp->i_len;
2066 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2067 		}
2068 	}
2069 
2070 	ticket->t_res_num_ophdrs += headers;
2071 	len += headers * sizeof(struct xlog_op_header);
2072 
2073 	return len;
2074 }
2075 
2076 /*
2077  * If first write for transaction, insert start record  We can't be trying to
2078  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2079  */
2080 static int
2081 xlog_write_start_rec(
2082 	struct xlog_op_header	*ophdr,
2083 	struct xlog_ticket	*ticket)
2084 {
2085 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2086 		return 0;
2087 
2088 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2089 	ophdr->oh_clientid = ticket->t_clientid;
2090 	ophdr->oh_len = 0;
2091 	ophdr->oh_flags = XLOG_START_TRANS;
2092 	ophdr->oh_res2 = 0;
2093 
2094 	ticket->t_flags &= ~XLOG_TIC_INITED;
2095 
2096 	return sizeof(struct xlog_op_header);
2097 }
2098 
2099 static xlog_op_header_t *
2100 xlog_write_setup_ophdr(
2101 	struct xlog		*log,
2102 	struct xlog_op_header	*ophdr,
2103 	struct xlog_ticket	*ticket,
2104 	uint			flags)
2105 {
2106 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2107 	ophdr->oh_clientid = ticket->t_clientid;
2108 	ophdr->oh_res2 = 0;
2109 
2110 	/* are we copying a commit or unmount record? */
2111 	ophdr->oh_flags = flags;
2112 
2113 	/*
2114 	 * We've seen logs corrupted with bad transaction client ids.  This
2115 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2116 	 * and shut down the filesystem.
2117 	 */
2118 	switch (ophdr->oh_clientid)  {
2119 	case XFS_TRANSACTION:
2120 	case XFS_VOLUME:
2121 	case XFS_LOG:
2122 		break;
2123 	default:
2124 		xfs_warn(log->l_mp,
2125 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2126 			ophdr->oh_clientid, ticket);
2127 		return NULL;
2128 	}
2129 
2130 	return ophdr;
2131 }
2132 
2133 /*
2134  * Set up the parameters of the region copy into the log. This has
2135  * to handle region write split across multiple log buffers - this
2136  * state is kept external to this function so that this code can
2137  * be written in an obvious, self documenting manner.
2138  */
2139 static int
2140 xlog_write_setup_copy(
2141 	struct xlog_ticket	*ticket,
2142 	struct xlog_op_header	*ophdr,
2143 	int			space_available,
2144 	int			space_required,
2145 	int			*copy_off,
2146 	int			*copy_len,
2147 	int			*last_was_partial_copy,
2148 	int			*bytes_consumed)
2149 {
2150 	int			still_to_copy;
2151 
2152 	still_to_copy = space_required - *bytes_consumed;
2153 	*copy_off = *bytes_consumed;
2154 
2155 	if (still_to_copy <= space_available) {
2156 		/* write of region completes here */
2157 		*copy_len = still_to_copy;
2158 		ophdr->oh_len = cpu_to_be32(*copy_len);
2159 		if (*last_was_partial_copy)
2160 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2161 		*last_was_partial_copy = 0;
2162 		*bytes_consumed = 0;
2163 		return 0;
2164 	}
2165 
2166 	/* partial write of region, needs extra log op header reservation */
2167 	*copy_len = space_available;
2168 	ophdr->oh_len = cpu_to_be32(*copy_len);
2169 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2170 	if (*last_was_partial_copy)
2171 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2172 	*bytes_consumed += *copy_len;
2173 	(*last_was_partial_copy)++;
2174 
2175 	/* account for new log op header */
2176 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2177 	ticket->t_res_num_ophdrs++;
2178 
2179 	return sizeof(struct xlog_op_header);
2180 }
2181 
2182 static int
2183 xlog_write_copy_finish(
2184 	struct xlog		*log,
2185 	struct xlog_in_core	*iclog,
2186 	uint			flags,
2187 	int			*record_cnt,
2188 	int			*data_cnt,
2189 	int			*partial_copy,
2190 	int			*partial_copy_len,
2191 	int			log_offset,
2192 	struct xlog_in_core	**commit_iclog)
2193 {
2194 	if (*partial_copy) {
2195 		/*
2196 		 * This iclog has already been marked WANT_SYNC by
2197 		 * xlog_state_get_iclog_space.
2198 		 */
2199 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2200 		*record_cnt = 0;
2201 		*data_cnt = 0;
2202 		return xlog_state_release_iclog(log, iclog);
2203 	}
2204 
2205 	*partial_copy = 0;
2206 	*partial_copy_len = 0;
2207 
2208 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2209 		/* no more space in this iclog - push it. */
2210 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2211 		*record_cnt = 0;
2212 		*data_cnt = 0;
2213 
2214 		spin_lock(&log->l_icloglock);
2215 		xlog_state_want_sync(log, iclog);
2216 		spin_unlock(&log->l_icloglock);
2217 
2218 		if (!commit_iclog)
2219 			return xlog_state_release_iclog(log, iclog);
2220 		ASSERT(flags & XLOG_COMMIT_TRANS);
2221 		*commit_iclog = iclog;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 /*
2228  * Write some region out to in-core log
2229  *
2230  * This will be called when writing externally provided regions or when
2231  * writing out a commit record for a given transaction.
2232  *
2233  * General algorithm:
2234  *	1. Find total length of this write.  This may include adding to the
2235  *		lengths passed in.
2236  *	2. Check whether we violate the tickets reservation.
2237  *	3. While writing to this iclog
2238  *	    A. Reserve as much space in this iclog as can get
2239  *	    B. If this is first write, save away start lsn
2240  *	    C. While writing this region:
2241  *		1. If first write of transaction, write start record
2242  *		2. Write log operation header (header per region)
2243  *		3. Find out if we can fit entire region into this iclog
2244  *		4. Potentially, verify destination memcpy ptr
2245  *		5. Memcpy (partial) region
2246  *		6. If partial copy, release iclog; otherwise, continue
2247  *			copying more regions into current iclog
2248  *	4. Mark want sync bit (in simulation mode)
2249  *	5. Release iclog for potential flush to on-disk log.
2250  *
2251  * ERRORS:
2252  * 1.	Panic if reservation is overrun.  This should never happen since
2253  *	reservation amounts are generated internal to the filesystem.
2254  * NOTES:
2255  * 1. Tickets are single threaded data structures.
2256  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2257  *	syncing routine.  When a single log_write region needs to span
2258  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2259  *	on all log operation writes which don't contain the end of the
2260  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2261  *	operation which contains the end of the continued log_write region.
2262  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2263  *	we don't really know exactly how much space will be used.  As a result,
2264  *	we don't update ic_offset until the end when we know exactly how many
2265  *	bytes have been written out.
2266  */
2267 int
2268 xlog_write(
2269 	struct xlog		*log,
2270 	struct xfs_log_vec	*log_vector,
2271 	struct xlog_ticket	*ticket,
2272 	xfs_lsn_t		*start_lsn,
2273 	struct xlog_in_core	**commit_iclog,
2274 	uint			flags)
2275 {
2276 	struct xlog_in_core	*iclog = NULL;
2277 	struct xfs_log_iovec	*vecp;
2278 	struct xfs_log_vec	*lv;
2279 	int			len;
2280 	int			index;
2281 	int			partial_copy = 0;
2282 	int			partial_copy_len = 0;
2283 	int			contwr = 0;
2284 	int			record_cnt = 0;
2285 	int			data_cnt = 0;
2286 	int			error;
2287 
2288 	*start_lsn = 0;
2289 
2290 	len = xlog_write_calc_vec_length(ticket, log_vector);
2291 
2292 	/*
2293 	 * Region headers and bytes are already accounted for.
2294 	 * We only need to take into account start records and
2295 	 * split regions in this function.
2296 	 */
2297 	if (ticket->t_flags & XLOG_TIC_INITED)
2298 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2299 
2300 	/*
2301 	 * Commit record headers need to be accounted for. These
2302 	 * come in as separate writes so are easy to detect.
2303 	 */
2304 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2305 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2306 
2307 	if (ticket->t_curr_res < 0)
2308 		xlog_print_tic_res(log->l_mp, ticket);
2309 
2310 	index = 0;
2311 	lv = log_vector;
2312 	vecp = lv->lv_iovecp;
2313 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2314 		void		*ptr;
2315 		int		log_offset;
2316 
2317 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2318 						   &contwr, &log_offset);
2319 		if (error)
2320 			return error;
2321 
2322 		ASSERT(log_offset <= iclog->ic_size - 1);
2323 		ptr = iclog->ic_datap + log_offset;
2324 
2325 		/* start_lsn is the first lsn written to. That's all we need. */
2326 		if (!*start_lsn)
2327 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2328 
2329 		/*
2330 		 * This loop writes out as many regions as can fit in the amount
2331 		 * of space which was allocated by xlog_state_get_iclog_space().
2332 		 */
2333 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2334 			struct xfs_log_iovec	*reg;
2335 			struct xlog_op_header	*ophdr;
2336 			int			start_rec_copy;
2337 			int			copy_len;
2338 			int			copy_off;
2339 			bool			ordered = false;
2340 
2341 			/* ordered log vectors have no regions to write */
2342 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2343 				ASSERT(lv->lv_niovecs == 0);
2344 				ordered = true;
2345 				goto next_lv;
2346 			}
2347 
2348 			reg = &vecp[index];
2349 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2350 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2351 
2352 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2353 			if (start_rec_copy) {
2354 				record_cnt++;
2355 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2356 						   start_rec_copy);
2357 			}
2358 
2359 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2360 			if (!ophdr)
2361 				return XFS_ERROR(EIO);
2362 
2363 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2364 					   sizeof(struct xlog_op_header));
2365 
2366 			len += xlog_write_setup_copy(ticket, ophdr,
2367 						     iclog->ic_size-log_offset,
2368 						     reg->i_len,
2369 						     &copy_off, &copy_len,
2370 						     &partial_copy,
2371 						     &partial_copy_len);
2372 			xlog_verify_dest_ptr(log, ptr);
2373 
2374 			/* copy region */
2375 			ASSERT(copy_len >= 0);
2376 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2377 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2378 
2379 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2380 			record_cnt++;
2381 			data_cnt += contwr ? copy_len : 0;
2382 
2383 			error = xlog_write_copy_finish(log, iclog, flags,
2384 						       &record_cnt, &data_cnt,
2385 						       &partial_copy,
2386 						       &partial_copy_len,
2387 						       log_offset,
2388 						       commit_iclog);
2389 			if (error)
2390 				return error;
2391 
2392 			/*
2393 			 * if we had a partial copy, we need to get more iclog
2394 			 * space but we don't want to increment the region
2395 			 * index because there is still more is this region to
2396 			 * write.
2397 			 *
2398 			 * If we completed writing this region, and we flushed
2399 			 * the iclog (indicated by resetting of the record
2400 			 * count), then we also need to get more log space. If
2401 			 * this was the last record, though, we are done and
2402 			 * can just return.
2403 			 */
2404 			if (partial_copy)
2405 				break;
2406 
2407 			if (++index == lv->lv_niovecs) {
2408 next_lv:
2409 				lv = lv->lv_next;
2410 				index = 0;
2411 				if (lv)
2412 					vecp = lv->lv_iovecp;
2413 			}
2414 			if (record_cnt == 0 && ordered == false) {
2415 				if (!lv)
2416 					return 0;
2417 				break;
2418 			}
2419 		}
2420 	}
2421 
2422 	ASSERT(len == 0);
2423 
2424 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2425 	if (!commit_iclog)
2426 		return xlog_state_release_iclog(log, iclog);
2427 
2428 	ASSERT(flags & XLOG_COMMIT_TRANS);
2429 	*commit_iclog = iclog;
2430 	return 0;
2431 }
2432 
2433 
2434 /*****************************************************************************
2435  *
2436  *		State Machine functions
2437  *
2438  *****************************************************************************
2439  */
2440 
2441 /* Clean iclogs starting from the head.  This ordering must be
2442  * maintained, so an iclog doesn't become ACTIVE beyond one that
2443  * is SYNCING.  This is also required to maintain the notion that we use
2444  * a ordered wait queue to hold off would be writers to the log when every
2445  * iclog is trying to sync to disk.
2446  *
2447  * State Change: DIRTY -> ACTIVE
2448  */
2449 STATIC void
2450 xlog_state_clean_log(
2451 	struct xlog *log)
2452 {
2453 	xlog_in_core_t	*iclog;
2454 	int changed = 0;
2455 
2456 	iclog = log->l_iclog;
2457 	do {
2458 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2459 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2460 			iclog->ic_offset       = 0;
2461 			ASSERT(iclog->ic_callback == NULL);
2462 			/*
2463 			 * If the number of ops in this iclog indicate it just
2464 			 * contains the dummy transaction, we can
2465 			 * change state into IDLE (the second time around).
2466 			 * Otherwise we should change the state into
2467 			 * NEED a dummy.
2468 			 * We don't need to cover the dummy.
2469 			 */
2470 			if (!changed &&
2471 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2472 			   		XLOG_COVER_OPS)) {
2473 				changed = 1;
2474 			} else {
2475 				/*
2476 				 * We have two dirty iclogs so start over
2477 				 * This could also be num of ops indicates
2478 				 * this is not the dummy going out.
2479 				 */
2480 				changed = 2;
2481 			}
2482 			iclog->ic_header.h_num_logops = 0;
2483 			memset(iclog->ic_header.h_cycle_data, 0,
2484 			      sizeof(iclog->ic_header.h_cycle_data));
2485 			iclog->ic_header.h_lsn = 0;
2486 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2487 			/* do nothing */;
2488 		else
2489 			break;	/* stop cleaning */
2490 		iclog = iclog->ic_next;
2491 	} while (iclog != log->l_iclog);
2492 
2493 	/* log is locked when we are called */
2494 	/*
2495 	 * Change state for the dummy log recording.
2496 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2497 	 * we are done writing the dummy record.
2498 	 * If we are done with the second dummy recored (DONE2), then
2499 	 * we go to IDLE.
2500 	 */
2501 	if (changed) {
2502 		switch (log->l_covered_state) {
2503 		case XLOG_STATE_COVER_IDLE:
2504 		case XLOG_STATE_COVER_NEED:
2505 		case XLOG_STATE_COVER_NEED2:
2506 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2507 			break;
2508 
2509 		case XLOG_STATE_COVER_DONE:
2510 			if (changed == 1)
2511 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2512 			else
2513 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2514 			break;
2515 
2516 		case XLOG_STATE_COVER_DONE2:
2517 			if (changed == 1)
2518 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2519 			else
2520 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2521 			break;
2522 
2523 		default:
2524 			ASSERT(0);
2525 		}
2526 	}
2527 }	/* xlog_state_clean_log */
2528 
2529 STATIC xfs_lsn_t
2530 xlog_get_lowest_lsn(
2531 	struct xlog	*log)
2532 {
2533 	xlog_in_core_t  *lsn_log;
2534 	xfs_lsn_t	lowest_lsn, lsn;
2535 
2536 	lsn_log = log->l_iclog;
2537 	lowest_lsn = 0;
2538 	do {
2539 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2540 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2541 		if ((lsn && !lowest_lsn) ||
2542 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2543 			lowest_lsn = lsn;
2544 		}
2545 	    }
2546 	    lsn_log = lsn_log->ic_next;
2547 	} while (lsn_log != log->l_iclog);
2548 	return lowest_lsn;
2549 }
2550 
2551 
2552 STATIC void
2553 xlog_state_do_callback(
2554 	struct xlog		*log,
2555 	int			aborted,
2556 	struct xlog_in_core	*ciclog)
2557 {
2558 	xlog_in_core_t	   *iclog;
2559 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2560 						 * processed all iclogs once */
2561 	xfs_log_callback_t *cb, *cb_next;
2562 	int		   flushcnt = 0;
2563 	xfs_lsn_t	   lowest_lsn;
2564 	int		   ioerrors;	/* counter: iclogs with errors */
2565 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2566 	int		   funcdidcallbacks; /* flag: function did callbacks */
2567 	int		   repeats;	/* for issuing console warnings if
2568 					 * looping too many times */
2569 	int		   wake = 0;
2570 
2571 	spin_lock(&log->l_icloglock);
2572 	first_iclog = iclog = log->l_iclog;
2573 	ioerrors = 0;
2574 	funcdidcallbacks = 0;
2575 	repeats = 0;
2576 
2577 	do {
2578 		/*
2579 		 * Scan all iclogs starting with the one pointed to by the
2580 		 * log.  Reset this starting point each time the log is
2581 		 * unlocked (during callbacks).
2582 		 *
2583 		 * Keep looping through iclogs until one full pass is made
2584 		 * without running any callbacks.
2585 		 */
2586 		first_iclog = log->l_iclog;
2587 		iclog = log->l_iclog;
2588 		loopdidcallbacks = 0;
2589 		repeats++;
2590 
2591 		do {
2592 
2593 			/* skip all iclogs in the ACTIVE & DIRTY states */
2594 			if (iclog->ic_state &
2595 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2596 				iclog = iclog->ic_next;
2597 				continue;
2598 			}
2599 
2600 			/*
2601 			 * Between marking a filesystem SHUTDOWN and stopping
2602 			 * the log, we do flush all iclogs to disk (if there
2603 			 * wasn't a log I/O error). So, we do want things to
2604 			 * go smoothly in case of just a SHUTDOWN  w/o a
2605 			 * LOG_IO_ERROR.
2606 			 */
2607 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2608 				/*
2609 				 * Can only perform callbacks in order.  Since
2610 				 * this iclog is not in the DONE_SYNC/
2611 				 * DO_CALLBACK state, we skip the rest and
2612 				 * just try to clean up.  If we set our iclog
2613 				 * to DO_CALLBACK, we will not process it when
2614 				 * we retry since a previous iclog is in the
2615 				 * CALLBACK and the state cannot change since
2616 				 * we are holding the l_icloglock.
2617 				 */
2618 				if (!(iclog->ic_state &
2619 					(XLOG_STATE_DONE_SYNC |
2620 						 XLOG_STATE_DO_CALLBACK))) {
2621 					if (ciclog && (ciclog->ic_state ==
2622 							XLOG_STATE_DONE_SYNC)) {
2623 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2624 					}
2625 					break;
2626 				}
2627 				/*
2628 				 * We now have an iclog that is in either the
2629 				 * DO_CALLBACK or DONE_SYNC states. The other
2630 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2631 				 * caught by the above if and are going to
2632 				 * clean (i.e. we aren't doing their callbacks)
2633 				 * see the above if.
2634 				 */
2635 
2636 				/*
2637 				 * We will do one more check here to see if we
2638 				 * have chased our tail around.
2639 				 */
2640 
2641 				lowest_lsn = xlog_get_lowest_lsn(log);
2642 				if (lowest_lsn &&
2643 				    XFS_LSN_CMP(lowest_lsn,
2644 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2645 					iclog = iclog->ic_next;
2646 					continue; /* Leave this iclog for
2647 						   * another thread */
2648 				}
2649 
2650 				iclog->ic_state = XLOG_STATE_CALLBACK;
2651 
2652 
2653 				/*
2654 				 * Completion of a iclog IO does not imply that
2655 				 * a transaction has completed, as transactions
2656 				 * can be large enough to span many iclogs. We
2657 				 * cannot change the tail of the log half way
2658 				 * through a transaction as this may be the only
2659 				 * transaction in the log and moving th etail to
2660 				 * point to the middle of it will prevent
2661 				 * recovery from finding the start of the
2662 				 * transaction. Hence we should only update the
2663 				 * last_sync_lsn if this iclog contains
2664 				 * transaction completion callbacks on it.
2665 				 *
2666 				 * We have to do this before we drop the
2667 				 * icloglock to ensure we are the only one that
2668 				 * can update it.
2669 				 */
2670 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2671 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2672 				if (iclog->ic_callback)
2673 					atomic64_set(&log->l_last_sync_lsn,
2674 						be64_to_cpu(iclog->ic_header.h_lsn));
2675 
2676 			} else
2677 				ioerrors++;
2678 
2679 			spin_unlock(&log->l_icloglock);
2680 
2681 			/*
2682 			 * Keep processing entries in the callback list until
2683 			 * we come around and it is empty.  We need to
2684 			 * atomically see that the list is empty and change the
2685 			 * state to DIRTY so that we don't miss any more
2686 			 * callbacks being added.
2687 			 */
2688 			spin_lock(&iclog->ic_callback_lock);
2689 			cb = iclog->ic_callback;
2690 			while (cb) {
2691 				iclog->ic_callback_tail = &(iclog->ic_callback);
2692 				iclog->ic_callback = NULL;
2693 				spin_unlock(&iclog->ic_callback_lock);
2694 
2695 				/* perform callbacks in the order given */
2696 				for (; cb; cb = cb_next) {
2697 					cb_next = cb->cb_next;
2698 					cb->cb_func(cb->cb_arg, aborted);
2699 				}
2700 				spin_lock(&iclog->ic_callback_lock);
2701 				cb = iclog->ic_callback;
2702 			}
2703 
2704 			loopdidcallbacks++;
2705 			funcdidcallbacks++;
2706 
2707 			spin_lock(&log->l_icloglock);
2708 			ASSERT(iclog->ic_callback == NULL);
2709 			spin_unlock(&iclog->ic_callback_lock);
2710 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2711 				iclog->ic_state = XLOG_STATE_DIRTY;
2712 
2713 			/*
2714 			 * Transition from DIRTY to ACTIVE if applicable.
2715 			 * NOP if STATE_IOERROR.
2716 			 */
2717 			xlog_state_clean_log(log);
2718 
2719 			/* wake up threads waiting in xfs_log_force() */
2720 			wake_up_all(&iclog->ic_force_wait);
2721 
2722 			iclog = iclog->ic_next;
2723 		} while (first_iclog != iclog);
2724 
2725 		if (repeats > 5000) {
2726 			flushcnt += repeats;
2727 			repeats = 0;
2728 			xfs_warn(log->l_mp,
2729 				"%s: possible infinite loop (%d iterations)",
2730 				__func__, flushcnt);
2731 		}
2732 	} while (!ioerrors && loopdidcallbacks);
2733 
2734 	/*
2735 	 * make one last gasp attempt to see if iclogs are being left in
2736 	 * limbo..
2737 	 */
2738 #ifdef DEBUG
2739 	if (funcdidcallbacks) {
2740 		first_iclog = iclog = log->l_iclog;
2741 		do {
2742 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2743 			/*
2744 			 * Terminate the loop if iclogs are found in states
2745 			 * which will cause other threads to clean up iclogs.
2746 			 *
2747 			 * SYNCING - i/o completion will go through logs
2748 			 * DONE_SYNC - interrupt thread should be waiting for
2749 			 *              l_icloglock
2750 			 * IOERROR - give up hope all ye who enter here
2751 			 */
2752 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2753 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2754 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2755 			    iclog->ic_state == XLOG_STATE_IOERROR )
2756 				break;
2757 			iclog = iclog->ic_next;
2758 		} while (first_iclog != iclog);
2759 	}
2760 #endif
2761 
2762 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2763 		wake = 1;
2764 	spin_unlock(&log->l_icloglock);
2765 
2766 	if (wake)
2767 		wake_up_all(&log->l_flush_wait);
2768 }
2769 
2770 
2771 /*
2772  * Finish transitioning this iclog to the dirty state.
2773  *
2774  * Make sure that we completely execute this routine only when this is
2775  * the last call to the iclog.  There is a good chance that iclog flushes,
2776  * when we reach the end of the physical log, get turned into 2 separate
2777  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2778  * routine.  By using the reference count bwritecnt, we guarantee that only
2779  * the second completion goes through.
2780  *
2781  * Callbacks could take time, so they are done outside the scope of the
2782  * global state machine log lock.
2783  */
2784 STATIC void
2785 xlog_state_done_syncing(
2786 	xlog_in_core_t	*iclog,
2787 	int		aborted)
2788 {
2789 	struct xlog	   *log = iclog->ic_log;
2790 
2791 	spin_lock(&log->l_icloglock);
2792 
2793 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2794 	       iclog->ic_state == XLOG_STATE_IOERROR);
2795 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2796 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2797 
2798 
2799 	/*
2800 	 * If we got an error, either on the first buffer, or in the case of
2801 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2802 	 * and none should ever be attempted to be written to disk
2803 	 * again.
2804 	 */
2805 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2806 		if (--iclog->ic_bwritecnt == 1) {
2807 			spin_unlock(&log->l_icloglock);
2808 			return;
2809 		}
2810 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2811 	}
2812 
2813 	/*
2814 	 * Someone could be sleeping prior to writing out the next
2815 	 * iclog buffer, we wake them all, one will get to do the
2816 	 * I/O, the others get to wait for the result.
2817 	 */
2818 	wake_up_all(&iclog->ic_write_wait);
2819 	spin_unlock(&log->l_icloglock);
2820 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2821 }	/* xlog_state_done_syncing */
2822 
2823 
2824 /*
2825  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2826  * sleep.  We wait on the flush queue on the head iclog as that should be
2827  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2828  * we will wait here and all new writes will sleep until a sync completes.
2829  *
2830  * The in-core logs are used in a circular fashion. They are not used
2831  * out-of-order even when an iclog past the head is free.
2832  *
2833  * return:
2834  *	* log_offset where xlog_write() can start writing into the in-core
2835  *		log's data space.
2836  *	* in-core log pointer to which xlog_write() should write.
2837  *	* boolean indicating this is a continued write to an in-core log.
2838  *		If this is the last write, then the in-core log's offset field
2839  *		needs to be incremented, depending on the amount of data which
2840  *		is copied.
2841  */
2842 STATIC int
2843 xlog_state_get_iclog_space(
2844 	struct xlog		*log,
2845 	int			len,
2846 	struct xlog_in_core	**iclogp,
2847 	struct xlog_ticket	*ticket,
2848 	int			*continued_write,
2849 	int			*logoffsetp)
2850 {
2851 	int		  log_offset;
2852 	xlog_rec_header_t *head;
2853 	xlog_in_core_t	  *iclog;
2854 	int		  error;
2855 
2856 restart:
2857 	spin_lock(&log->l_icloglock);
2858 	if (XLOG_FORCED_SHUTDOWN(log)) {
2859 		spin_unlock(&log->l_icloglock);
2860 		return XFS_ERROR(EIO);
2861 	}
2862 
2863 	iclog = log->l_iclog;
2864 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2865 		XFS_STATS_INC(xs_log_noiclogs);
2866 
2867 		/* Wait for log writes to have flushed */
2868 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2869 		goto restart;
2870 	}
2871 
2872 	head = &iclog->ic_header;
2873 
2874 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2875 	log_offset = iclog->ic_offset;
2876 
2877 	/* On the 1st write to an iclog, figure out lsn.  This works
2878 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879 	 * committing to.  If the offset is set, that's how many blocks
2880 	 * must be written.
2881 	 */
2882 	if (log_offset == 0) {
2883 		ticket->t_curr_res -= log->l_iclog_hsize;
2884 		xlog_tic_add_region(ticket,
2885 				    log->l_iclog_hsize,
2886 				    XLOG_REG_TYPE_LRHEADER);
2887 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2888 		head->h_lsn = cpu_to_be64(
2889 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2890 		ASSERT(log->l_curr_block >= 0);
2891 	}
2892 
2893 	/* If there is enough room to write everything, then do it.  Otherwise,
2894 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2896 	 * until you know exactly how many bytes get copied.  Therefore, wait
2897 	 * until later to update ic_offset.
2898 	 *
2899 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900 	 * can fit into remaining data section.
2901 	 */
2902 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2903 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2904 
2905 		/*
2906 		 * If I'm the only one writing to this iclog, sync it to disk.
2907 		 * We need to do an atomic compare and decrement here to avoid
2908 		 * racing with concurrent atomic_dec_and_lock() calls in
2909 		 * xlog_state_release_iclog() when there is more than one
2910 		 * reference to the iclog.
2911 		 */
2912 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2913 			/* we are the only one */
2914 			spin_unlock(&log->l_icloglock);
2915 			error = xlog_state_release_iclog(log, iclog);
2916 			if (error)
2917 				return error;
2918 		} else {
2919 			spin_unlock(&log->l_icloglock);
2920 		}
2921 		goto restart;
2922 	}
2923 
2924 	/* Do we have enough room to write the full amount in the remainder
2925 	 * of this iclog?  Or must we continue a write on the next iclog and
2926 	 * mark this iclog as completely taken?  In the case where we switch
2927 	 * iclogs (to mark it taken), this particular iclog will release/sync
2928 	 * to disk in xlog_write().
2929 	 */
2930 	if (len <= iclog->ic_size - iclog->ic_offset) {
2931 		*continued_write = 0;
2932 		iclog->ic_offset += len;
2933 	} else {
2934 		*continued_write = 1;
2935 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2936 	}
2937 	*iclogp = iclog;
2938 
2939 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2940 	spin_unlock(&log->l_icloglock);
2941 
2942 	*logoffsetp = log_offset;
2943 	return 0;
2944 }	/* xlog_state_get_iclog_space */
2945 
2946 /* The first cnt-1 times through here we don't need to
2947  * move the grant write head because the permanent
2948  * reservation has reserved cnt times the unit amount.
2949  * Release part of current permanent unit reservation and
2950  * reset current reservation to be one units worth.  Also
2951  * move grant reservation head forward.
2952  */
2953 STATIC void
2954 xlog_regrant_reserve_log_space(
2955 	struct xlog		*log,
2956 	struct xlog_ticket	*ticket)
2957 {
2958 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2959 
2960 	if (ticket->t_cnt > 0)
2961 		ticket->t_cnt--;
2962 
2963 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2964 					ticket->t_curr_res);
2965 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2966 					ticket->t_curr_res);
2967 	ticket->t_curr_res = ticket->t_unit_res;
2968 	xlog_tic_reset_res(ticket);
2969 
2970 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2971 
2972 	/* just return if we still have some of the pre-reserved space */
2973 	if (ticket->t_cnt > 0)
2974 		return;
2975 
2976 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2977 					ticket->t_unit_res);
2978 
2979 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2980 
2981 	ticket->t_curr_res = ticket->t_unit_res;
2982 	xlog_tic_reset_res(ticket);
2983 }	/* xlog_regrant_reserve_log_space */
2984 
2985 
2986 /*
2987  * Give back the space left from a reservation.
2988  *
2989  * All the information we need to make a correct determination of space left
2990  * is present.  For non-permanent reservations, things are quite easy.  The
2991  * count should have been decremented to zero.  We only need to deal with the
2992  * space remaining in the current reservation part of the ticket.  If the
2993  * ticket contains a permanent reservation, there may be left over space which
2994  * needs to be released.  A count of N means that N-1 refills of the current
2995  * reservation can be done before we need to ask for more space.  The first
2996  * one goes to fill up the first current reservation.  Once we run out of
2997  * space, the count will stay at zero and the only space remaining will be
2998  * in the current reservation field.
2999  */
3000 STATIC void
3001 xlog_ungrant_log_space(
3002 	struct xlog		*log,
3003 	struct xlog_ticket	*ticket)
3004 {
3005 	int	bytes;
3006 
3007 	if (ticket->t_cnt > 0)
3008 		ticket->t_cnt--;
3009 
3010 	trace_xfs_log_ungrant_enter(log, ticket);
3011 	trace_xfs_log_ungrant_sub(log, ticket);
3012 
3013 	/*
3014 	 * If this is a permanent reservation ticket, we may be able to free
3015 	 * up more space based on the remaining count.
3016 	 */
3017 	bytes = ticket->t_curr_res;
3018 	if (ticket->t_cnt > 0) {
3019 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3020 		bytes += ticket->t_unit_res*ticket->t_cnt;
3021 	}
3022 
3023 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3024 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3025 
3026 	trace_xfs_log_ungrant_exit(log, ticket);
3027 
3028 	xfs_log_space_wake(log->l_mp);
3029 }
3030 
3031 /*
3032  * Flush iclog to disk if this is the last reference to the given iclog and
3033  * the WANT_SYNC bit is set.
3034  *
3035  * When this function is entered, the iclog is not necessarily in the
3036  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3037  *
3038  *
3039  */
3040 STATIC int
3041 xlog_state_release_iclog(
3042 	struct xlog		*log,
3043 	struct xlog_in_core	*iclog)
3044 {
3045 	int		sync = 0;	/* do we sync? */
3046 
3047 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3048 		return XFS_ERROR(EIO);
3049 
3050 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3051 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3052 		return 0;
3053 
3054 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3055 		spin_unlock(&log->l_icloglock);
3056 		return XFS_ERROR(EIO);
3057 	}
3058 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3059 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3060 
3061 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3062 		/* update tail before writing to iclog */
3063 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3064 		sync++;
3065 		iclog->ic_state = XLOG_STATE_SYNCING;
3066 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3067 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3068 		/* cycle incremented when incrementing curr_block */
3069 	}
3070 	spin_unlock(&log->l_icloglock);
3071 
3072 	/*
3073 	 * We let the log lock go, so it's possible that we hit a log I/O
3074 	 * error or some other SHUTDOWN condition that marks the iclog
3075 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3076 	 * this iclog has consistent data, so we ignore IOERROR
3077 	 * flags after this point.
3078 	 */
3079 	if (sync)
3080 		return xlog_sync(log, iclog);
3081 	return 0;
3082 }	/* xlog_state_release_iclog */
3083 
3084 
3085 /*
3086  * This routine will mark the current iclog in the ring as WANT_SYNC
3087  * and move the current iclog pointer to the next iclog in the ring.
3088  * When this routine is called from xlog_state_get_iclog_space(), the
3089  * exact size of the iclog has not yet been determined.  All we know is
3090  * that every data block.  We have run out of space in this log record.
3091  */
3092 STATIC void
3093 xlog_state_switch_iclogs(
3094 	struct xlog		*log,
3095 	struct xlog_in_core	*iclog,
3096 	int			eventual_size)
3097 {
3098 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3099 	if (!eventual_size)
3100 		eventual_size = iclog->ic_offset;
3101 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3102 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3103 	log->l_prev_block = log->l_curr_block;
3104 	log->l_prev_cycle = log->l_curr_cycle;
3105 
3106 	/* roll log?: ic_offset changed later */
3107 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3108 
3109 	/* Round up to next log-sunit */
3110 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3111 	    log->l_mp->m_sb.sb_logsunit > 1) {
3112 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3113 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3114 	}
3115 
3116 	if (log->l_curr_block >= log->l_logBBsize) {
3117 		log->l_curr_cycle++;
3118 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3119 			log->l_curr_cycle++;
3120 		log->l_curr_block -= log->l_logBBsize;
3121 		ASSERT(log->l_curr_block >= 0);
3122 	}
3123 	ASSERT(iclog == log->l_iclog);
3124 	log->l_iclog = iclog->ic_next;
3125 }	/* xlog_state_switch_iclogs */
3126 
3127 /*
3128  * Write out all data in the in-core log as of this exact moment in time.
3129  *
3130  * Data may be written to the in-core log during this call.  However,
3131  * we don't guarantee this data will be written out.  A change from past
3132  * implementation means this routine will *not* write out zero length LRs.
3133  *
3134  * Basically, we try and perform an intelligent scan of the in-core logs.
3135  * If we determine there is no flushable data, we just return.  There is no
3136  * flushable data if:
3137  *
3138  *	1. the current iclog is active and has no data; the previous iclog
3139  *		is in the active or dirty state.
3140  *	2. the current iclog is drity, and the previous iclog is in the
3141  *		active or dirty state.
3142  *
3143  * We may sleep if:
3144  *
3145  *	1. the current iclog is not in the active nor dirty state.
3146  *	2. the current iclog dirty, and the previous iclog is not in the
3147  *		active nor dirty state.
3148  *	3. the current iclog is active, and there is another thread writing
3149  *		to this particular iclog.
3150  *	4. a) the current iclog is active and has no other writers
3151  *	   b) when we return from flushing out this iclog, it is still
3152  *		not in the active nor dirty state.
3153  */
3154 int
3155 _xfs_log_force(
3156 	struct xfs_mount	*mp,
3157 	uint			flags,
3158 	int			*log_flushed)
3159 {
3160 	struct xlog		*log = mp->m_log;
3161 	struct xlog_in_core	*iclog;
3162 	xfs_lsn_t		lsn;
3163 
3164 	XFS_STATS_INC(xs_log_force);
3165 
3166 	xlog_cil_force(log);
3167 
3168 	spin_lock(&log->l_icloglock);
3169 
3170 	iclog = log->l_iclog;
3171 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3172 		spin_unlock(&log->l_icloglock);
3173 		return XFS_ERROR(EIO);
3174 	}
3175 
3176 	/* If the head iclog is not active nor dirty, we just attach
3177 	 * ourselves to the head and go to sleep.
3178 	 */
3179 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3180 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3181 		/*
3182 		 * If the head is dirty or (active and empty), then
3183 		 * we need to look at the previous iclog.  If the previous
3184 		 * iclog is active or dirty we are done.  There is nothing
3185 		 * to sync out.  Otherwise, we attach ourselves to the
3186 		 * previous iclog and go to sleep.
3187 		 */
3188 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3189 		    (atomic_read(&iclog->ic_refcnt) == 0
3190 		     && iclog->ic_offset == 0)) {
3191 			iclog = iclog->ic_prev;
3192 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3193 			    iclog->ic_state == XLOG_STATE_DIRTY)
3194 				goto no_sleep;
3195 			else
3196 				goto maybe_sleep;
3197 		} else {
3198 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3199 				/* We are the only one with access to this
3200 				 * iclog.  Flush it out now.  There should
3201 				 * be a roundoff of zero to show that someone
3202 				 * has already taken care of the roundoff from
3203 				 * the previous sync.
3204 				 */
3205 				atomic_inc(&iclog->ic_refcnt);
3206 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3207 				xlog_state_switch_iclogs(log, iclog, 0);
3208 				spin_unlock(&log->l_icloglock);
3209 
3210 				if (xlog_state_release_iclog(log, iclog))
3211 					return XFS_ERROR(EIO);
3212 
3213 				if (log_flushed)
3214 					*log_flushed = 1;
3215 				spin_lock(&log->l_icloglock);
3216 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3217 				    iclog->ic_state != XLOG_STATE_DIRTY)
3218 					goto maybe_sleep;
3219 				else
3220 					goto no_sleep;
3221 			} else {
3222 				/* Someone else is writing to this iclog.
3223 				 * Use its call to flush out the data.  However,
3224 				 * the other thread may not force out this LR,
3225 				 * so we mark it WANT_SYNC.
3226 				 */
3227 				xlog_state_switch_iclogs(log, iclog, 0);
3228 				goto maybe_sleep;
3229 			}
3230 		}
3231 	}
3232 
3233 	/* By the time we come around again, the iclog could've been filled
3234 	 * which would give it another lsn.  If we have a new lsn, just
3235 	 * return because the relevant data has been flushed.
3236 	 */
3237 maybe_sleep:
3238 	if (flags & XFS_LOG_SYNC) {
3239 		/*
3240 		 * We must check if we're shutting down here, before
3241 		 * we wait, while we're holding the l_icloglock.
3242 		 * Then we check again after waking up, in case our
3243 		 * sleep was disturbed by a bad news.
3244 		 */
3245 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3246 			spin_unlock(&log->l_icloglock);
3247 			return XFS_ERROR(EIO);
3248 		}
3249 		XFS_STATS_INC(xs_log_force_sleep);
3250 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3251 		/*
3252 		 * No need to grab the log lock here since we're
3253 		 * only deciding whether or not to return EIO
3254 		 * and the memory read should be atomic.
3255 		 */
3256 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3257 			return XFS_ERROR(EIO);
3258 		if (log_flushed)
3259 			*log_flushed = 1;
3260 	} else {
3261 
3262 no_sleep:
3263 		spin_unlock(&log->l_icloglock);
3264 	}
3265 	return 0;
3266 }
3267 
3268 /*
3269  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3270  * about errors or whether the log was flushed or not. This is the normal
3271  * interface to use when trying to unpin items or move the log forward.
3272  */
3273 void
3274 xfs_log_force(
3275 	xfs_mount_t	*mp,
3276 	uint		flags)
3277 {
3278 	int	error;
3279 
3280 	trace_xfs_log_force(mp, 0);
3281 	error = _xfs_log_force(mp, flags, NULL);
3282 	if (error)
3283 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3284 }
3285 
3286 /*
3287  * Force the in-core log to disk for a specific LSN.
3288  *
3289  * Find in-core log with lsn.
3290  *	If it is in the DIRTY state, just return.
3291  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3292  *		state and go to sleep or return.
3293  *	If it is in any other state, go to sleep or return.
3294  *
3295  * Synchronous forces are implemented with a signal variable. All callers
3296  * to force a given lsn to disk will wait on a the sv attached to the
3297  * specific in-core log.  When given in-core log finally completes its
3298  * write to disk, that thread will wake up all threads waiting on the
3299  * sv.
3300  */
3301 int
3302 _xfs_log_force_lsn(
3303 	struct xfs_mount	*mp,
3304 	xfs_lsn_t		lsn,
3305 	uint			flags,
3306 	int			*log_flushed)
3307 {
3308 	struct xlog		*log = mp->m_log;
3309 	struct xlog_in_core	*iclog;
3310 	int			already_slept = 0;
3311 
3312 	ASSERT(lsn != 0);
3313 
3314 	XFS_STATS_INC(xs_log_force);
3315 
3316 	lsn = xlog_cil_force_lsn(log, lsn);
3317 	if (lsn == NULLCOMMITLSN)
3318 		return 0;
3319 
3320 try_again:
3321 	spin_lock(&log->l_icloglock);
3322 	iclog = log->l_iclog;
3323 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3324 		spin_unlock(&log->l_icloglock);
3325 		return XFS_ERROR(EIO);
3326 	}
3327 
3328 	do {
3329 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3330 			iclog = iclog->ic_next;
3331 			continue;
3332 		}
3333 
3334 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3335 			spin_unlock(&log->l_icloglock);
3336 			return 0;
3337 		}
3338 
3339 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340 			/*
3341 			 * We sleep here if we haven't already slept (e.g.
3342 			 * this is the first time we've looked at the correct
3343 			 * iclog buf) and the buffer before us is going to
3344 			 * be sync'ed. The reason for this is that if we
3345 			 * are doing sync transactions here, by waiting for
3346 			 * the previous I/O to complete, we can allow a few
3347 			 * more transactions into this iclog before we close
3348 			 * it down.
3349 			 *
3350 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3351 			 * up the refcnt so we can release the log (which
3352 			 * drops the ref count).  The state switch keeps new
3353 			 * transaction commits from using this buffer.  When
3354 			 * the current commits finish writing into the buffer,
3355 			 * the refcount will drop to zero and the buffer will
3356 			 * go out then.
3357 			 */
3358 			if (!already_slept &&
3359 			    (iclog->ic_prev->ic_state &
3360 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3361 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3362 
3363 				XFS_STATS_INC(xs_log_force_sleep);
3364 
3365 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3366 							&log->l_icloglock);
3367 				if (log_flushed)
3368 					*log_flushed = 1;
3369 				already_slept = 1;
3370 				goto try_again;
3371 			}
3372 			atomic_inc(&iclog->ic_refcnt);
3373 			xlog_state_switch_iclogs(log, iclog, 0);
3374 			spin_unlock(&log->l_icloglock);
3375 			if (xlog_state_release_iclog(log, iclog))
3376 				return XFS_ERROR(EIO);
3377 			if (log_flushed)
3378 				*log_flushed = 1;
3379 			spin_lock(&log->l_icloglock);
3380 		}
3381 
3382 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3383 		    !(iclog->ic_state &
3384 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3385 			/*
3386 			 * Don't wait on completion if we know that we've
3387 			 * gotten a log write error.
3388 			 */
3389 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3390 				spin_unlock(&log->l_icloglock);
3391 				return XFS_ERROR(EIO);
3392 			}
3393 			XFS_STATS_INC(xs_log_force_sleep);
3394 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3395 			/*
3396 			 * No need to grab the log lock here since we're
3397 			 * only deciding whether or not to return EIO
3398 			 * and the memory read should be atomic.
3399 			 */
3400 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3401 				return XFS_ERROR(EIO);
3402 
3403 			if (log_flushed)
3404 				*log_flushed = 1;
3405 		} else {		/* just return */
3406 			spin_unlock(&log->l_icloglock);
3407 		}
3408 
3409 		return 0;
3410 	} while (iclog != log->l_iclog);
3411 
3412 	spin_unlock(&log->l_icloglock);
3413 	return 0;
3414 }
3415 
3416 /*
3417  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3418  * about errors or whether the log was flushed or not. This is the normal
3419  * interface to use when trying to unpin items or move the log forward.
3420  */
3421 void
3422 xfs_log_force_lsn(
3423 	xfs_mount_t	*mp,
3424 	xfs_lsn_t	lsn,
3425 	uint		flags)
3426 {
3427 	int	error;
3428 
3429 	trace_xfs_log_force(mp, lsn);
3430 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3431 	if (error)
3432 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3433 }
3434 
3435 /*
3436  * Called when we want to mark the current iclog as being ready to sync to
3437  * disk.
3438  */
3439 STATIC void
3440 xlog_state_want_sync(
3441 	struct xlog		*log,
3442 	struct xlog_in_core	*iclog)
3443 {
3444 	assert_spin_locked(&log->l_icloglock);
3445 
3446 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3447 		xlog_state_switch_iclogs(log, iclog, 0);
3448 	} else {
3449 		ASSERT(iclog->ic_state &
3450 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3451 	}
3452 }
3453 
3454 
3455 /*****************************************************************************
3456  *
3457  *		TICKET functions
3458  *
3459  *****************************************************************************
3460  */
3461 
3462 /*
3463  * Free a used ticket when its refcount falls to zero.
3464  */
3465 void
3466 xfs_log_ticket_put(
3467 	xlog_ticket_t	*ticket)
3468 {
3469 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3470 	if (atomic_dec_and_test(&ticket->t_ref))
3471 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3472 }
3473 
3474 xlog_ticket_t *
3475 xfs_log_ticket_get(
3476 	xlog_ticket_t	*ticket)
3477 {
3478 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3479 	atomic_inc(&ticket->t_ref);
3480 	return ticket;
3481 }
3482 
3483 /*
3484  * Figure out the total log space unit (in bytes) that would be
3485  * required for a log ticket.
3486  */
3487 int
3488 xfs_log_calc_unit_res(
3489 	struct xfs_mount	*mp,
3490 	int			unit_bytes)
3491 {
3492 	struct xlog		*log = mp->m_log;
3493 	int			iclog_space;
3494 	uint			num_headers;
3495 
3496 	/*
3497 	 * Permanent reservations have up to 'cnt'-1 active log operations
3498 	 * in the log.  A unit in this case is the amount of space for one
3499 	 * of these log operations.  Normal reservations have a cnt of 1
3500 	 * and their unit amount is the total amount of space required.
3501 	 *
3502 	 * The following lines of code account for non-transaction data
3503 	 * which occupy space in the on-disk log.
3504 	 *
3505 	 * Normal form of a transaction is:
3506 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3507 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3508 	 *
3509 	 * We need to account for all the leadup data and trailer data
3510 	 * around the transaction data.
3511 	 * And then we need to account for the worst case in terms of using
3512 	 * more space.
3513 	 * The worst case will happen if:
3514 	 * - the placement of the transaction happens to be such that the
3515 	 *   roundoff is at its maximum
3516 	 * - the transaction data is synced before the commit record is synced
3517 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3518 	 *   Therefore the commit record is in its own Log Record.
3519 	 *   This can happen as the commit record is called with its
3520 	 *   own region to xlog_write().
3521 	 *   This then means that in the worst case, roundoff can happen for
3522 	 *   the commit-rec as well.
3523 	 *   The commit-rec is smaller than padding in this scenario and so it is
3524 	 *   not added separately.
3525 	 */
3526 
3527 	/* for trans header */
3528 	unit_bytes += sizeof(xlog_op_header_t);
3529 	unit_bytes += sizeof(xfs_trans_header_t);
3530 
3531 	/* for start-rec */
3532 	unit_bytes += sizeof(xlog_op_header_t);
3533 
3534 	/*
3535 	 * for LR headers - the space for data in an iclog is the size minus
3536 	 * the space used for the headers. If we use the iclog size, then we
3537 	 * undercalculate the number of headers required.
3538 	 *
3539 	 * Furthermore - the addition of op headers for split-recs might
3540 	 * increase the space required enough to require more log and op
3541 	 * headers, so take that into account too.
3542 	 *
3543 	 * IMPORTANT: This reservation makes the assumption that if this
3544 	 * transaction is the first in an iclog and hence has the LR headers
3545 	 * accounted to it, then the remaining space in the iclog is
3546 	 * exclusively for this transaction.  i.e. if the transaction is larger
3547 	 * than the iclog, it will be the only thing in that iclog.
3548 	 * Fundamentally, this means we must pass the entire log vector to
3549 	 * xlog_write to guarantee this.
3550 	 */
3551 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3552 	num_headers = howmany(unit_bytes, iclog_space);
3553 
3554 	/* for split-recs - ophdrs added when data split over LRs */
3555 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3556 
3557 	/* add extra header reservations if we overrun */
3558 	while (!num_headers ||
3559 	       howmany(unit_bytes, iclog_space) > num_headers) {
3560 		unit_bytes += sizeof(xlog_op_header_t);
3561 		num_headers++;
3562 	}
3563 	unit_bytes += log->l_iclog_hsize * num_headers;
3564 
3565 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3566 	unit_bytes += log->l_iclog_hsize;
3567 
3568 	/* for roundoff padding for transaction data and one for commit record */
3569 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3570 		/* log su roundoff */
3571 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3572 	} else {
3573 		/* BB roundoff */
3574 		unit_bytes += 2 * BBSIZE;
3575         }
3576 
3577 	return unit_bytes;
3578 }
3579 
3580 /*
3581  * Allocate and initialise a new log ticket.
3582  */
3583 struct xlog_ticket *
3584 xlog_ticket_alloc(
3585 	struct xlog		*log,
3586 	int			unit_bytes,
3587 	int			cnt,
3588 	char			client,
3589 	bool			permanent,
3590 	xfs_km_flags_t		alloc_flags)
3591 {
3592 	struct xlog_ticket	*tic;
3593 	int			unit_res;
3594 
3595 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3596 	if (!tic)
3597 		return NULL;
3598 
3599 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3600 
3601 	atomic_set(&tic->t_ref, 1);
3602 	tic->t_task		= current;
3603 	INIT_LIST_HEAD(&tic->t_queue);
3604 	tic->t_unit_res		= unit_res;
3605 	tic->t_curr_res		= unit_res;
3606 	tic->t_cnt		= cnt;
3607 	tic->t_ocnt		= cnt;
3608 	tic->t_tid		= prandom_u32();
3609 	tic->t_clientid		= client;
3610 	tic->t_flags		= XLOG_TIC_INITED;
3611 	tic->t_trans_type	= 0;
3612 	if (permanent)
3613 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3614 
3615 	xlog_tic_reset_res(tic);
3616 
3617 	return tic;
3618 }
3619 
3620 
3621 /******************************************************************************
3622  *
3623  *		Log debug routines
3624  *
3625  ******************************************************************************
3626  */
3627 #if defined(DEBUG)
3628 /*
3629  * Make sure that the destination ptr is within the valid data region of
3630  * one of the iclogs.  This uses backup pointers stored in a different
3631  * part of the log in case we trash the log structure.
3632  */
3633 void
3634 xlog_verify_dest_ptr(
3635 	struct xlog	*log,
3636 	char		*ptr)
3637 {
3638 	int i;
3639 	int good_ptr = 0;
3640 
3641 	for (i = 0; i < log->l_iclog_bufs; i++) {
3642 		if (ptr >= log->l_iclog_bak[i] &&
3643 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3644 			good_ptr++;
3645 	}
3646 
3647 	if (!good_ptr)
3648 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3649 }
3650 
3651 /*
3652  * Check to make sure the grant write head didn't just over lap the tail.  If
3653  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3654  * the cycles differ by exactly one and check the byte count.
3655  *
3656  * This check is run unlocked, so can give false positives. Rather than assert
3657  * on failures, use a warn-once flag and a panic tag to allow the admin to
3658  * determine if they want to panic the machine when such an error occurs. For
3659  * debug kernels this will have the same effect as using an assert but, unlinke
3660  * an assert, it can be turned off at runtime.
3661  */
3662 STATIC void
3663 xlog_verify_grant_tail(
3664 	struct xlog	*log)
3665 {
3666 	int		tail_cycle, tail_blocks;
3667 	int		cycle, space;
3668 
3669 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3670 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3671 	if (tail_cycle != cycle) {
3672 		if (cycle - 1 != tail_cycle &&
3673 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3674 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3675 				"%s: cycle - 1 != tail_cycle", __func__);
3676 			log->l_flags |= XLOG_TAIL_WARN;
3677 		}
3678 
3679 		if (space > BBTOB(tail_blocks) &&
3680 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3681 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3682 				"%s: space > BBTOB(tail_blocks)", __func__);
3683 			log->l_flags |= XLOG_TAIL_WARN;
3684 		}
3685 	}
3686 }
3687 
3688 /* check if it will fit */
3689 STATIC void
3690 xlog_verify_tail_lsn(
3691 	struct xlog		*log,
3692 	struct xlog_in_core	*iclog,
3693 	xfs_lsn_t		tail_lsn)
3694 {
3695     int blocks;
3696 
3697     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3698 	blocks =
3699 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3700 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3701 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3702     } else {
3703 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3704 
3705 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3706 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3707 
3708 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3709 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3710 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3711     }
3712 }	/* xlog_verify_tail_lsn */
3713 
3714 /*
3715  * Perform a number of checks on the iclog before writing to disk.
3716  *
3717  * 1. Make sure the iclogs are still circular
3718  * 2. Make sure we have a good magic number
3719  * 3. Make sure we don't have magic numbers in the data
3720  * 4. Check fields of each log operation header for:
3721  *	A. Valid client identifier
3722  *	B. tid ptr value falls in valid ptr space (user space code)
3723  *	C. Length in log record header is correct according to the
3724  *		individual operation headers within record.
3725  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3726  *	log, check the preceding blocks of the physical log to make sure all
3727  *	the cycle numbers agree with the current cycle number.
3728  */
3729 STATIC void
3730 xlog_verify_iclog(
3731 	struct xlog		*log,
3732 	struct xlog_in_core	*iclog,
3733 	int			count,
3734 	bool                    syncing)
3735 {
3736 	xlog_op_header_t	*ophead;
3737 	xlog_in_core_t		*icptr;
3738 	xlog_in_core_2_t	*xhdr;
3739 	xfs_caddr_t		ptr;
3740 	xfs_caddr_t		base_ptr;
3741 	__psint_t		field_offset;
3742 	__uint8_t		clientid;
3743 	int			len, i, j, k, op_len;
3744 	int			idx;
3745 
3746 	/* check validity of iclog pointers */
3747 	spin_lock(&log->l_icloglock);
3748 	icptr = log->l_iclog;
3749 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3750 		ASSERT(icptr);
3751 
3752 	if (icptr != log->l_iclog)
3753 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3754 	spin_unlock(&log->l_icloglock);
3755 
3756 	/* check log magic numbers */
3757 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3758 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3759 
3760 	ptr = (xfs_caddr_t) &iclog->ic_header;
3761 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3762 	     ptr += BBSIZE) {
3763 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3764 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3765 				__func__);
3766 	}
3767 
3768 	/* check fields */
3769 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3770 	ptr = iclog->ic_datap;
3771 	base_ptr = ptr;
3772 	ophead = (xlog_op_header_t *)ptr;
3773 	xhdr = iclog->ic_data;
3774 	for (i = 0; i < len; i++) {
3775 		ophead = (xlog_op_header_t *)ptr;
3776 
3777 		/* clientid is only 1 byte */
3778 		field_offset = (__psint_t)
3779 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3780 		if (!syncing || (field_offset & 0x1ff)) {
3781 			clientid = ophead->oh_clientid;
3782 		} else {
3783 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3784 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3785 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3786 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3787 				clientid = xlog_get_client_id(
3788 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3789 			} else {
3790 				clientid = xlog_get_client_id(
3791 					iclog->ic_header.h_cycle_data[idx]);
3792 			}
3793 		}
3794 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3795 			xfs_warn(log->l_mp,
3796 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3797 				__func__, clientid, ophead,
3798 				(unsigned long)field_offset);
3799 
3800 		/* check length */
3801 		field_offset = (__psint_t)
3802 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3803 		if (!syncing || (field_offset & 0x1ff)) {
3804 			op_len = be32_to_cpu(ophead->oh_len);
3805 		} else {
3806 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3807 				    (__psint_t)iclog->ic_datap);
3808 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3809 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3810 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3811 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3812 			} else {
3813 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3814 			}
3815 		}
3816 		ptr += sizeof(xlog_op_header_t) + op_len;
3817 	}
3818 }	/* xlog_verify_iclog */
3819 #endif
3820 
3821 /*
3822  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3823  */
3824 STATIC int
3825 xlog_state_ioerror(
3826 	struct xlog	*log)
3827 {
3828 	xlog_in_core_t	*iclog, *ic;
3829 
3830 	iclog = log->l_iclog;
3831 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3832 		/*
3833 		 * Mark all the incore logs IOERROR.
3834 		 * From now on, no log flushes will result.
3835 		 */
3836 		ic = iclog;
3837 		do {
3838 			ic->ic_state = XLOG_STATE_IOERROR;
3839 			ic = ic->ic_next;
3840 		} while (ic != iclog);
3841 		return 0;
3842 	}
3843 	/*
3844 	 * Return non-zero, if state transition has already happened.
3845 	 */
3846 	return 1;
3847 }
3848 
3849 /*
3850  * This is called from xfs_force_shutdown, when we're forcibly
3851  * shutting down the filesystem, typically because of an IO error.
3852  * Our main objectives here are to make sure that:
3853  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3854  *	   parties to find out, 'atomically'.
3855  *	b. those who're sleeping on log reservations, pinned objects and
3856  *	    other resources get woken up, and be told the bad news.
3857  *	c. nothing new gets queued up after (a) and (b) are done.
3858  *	d. if !logerror, flush the iclogs to disk, then seal them off
3859  *	   for business.
3860  *
3861  * Note: for delayed logging the !logerror case needs to flush the regions
3862  * held in memory out to the iclogs before flushing them to disk. This needs
3863  * to be done before the log is marked as shutdown, otherwise the flush to the
3864  * iclogs will fail.
3865  */
3866 int
3867 xfs_log_force_umount(
3868 	struct xfs_mount	*mp,
3869 	int			logerror)
3870 {
3871 	struct xlog	*log;
3872 	int		retval;
3873 
3874 	log = mp->m_log;
3875 
3876 	/*
3877 	 * If this happens during log recovery, don't worry about
3878 	 * locking; the log isn't open for business yet.
3879 	 */
3880 	if (!log ||
3881 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3882 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3883 		if (mp->m_sb_bp)
3884 			XFS_BUF_DONE(mp->m_sb_bp);
3885 		return 0;
3886 	}
3887 
3888 	/*
3889 	 * Somebody could've already done the hard work for us.
3890 	 * No need to get locks for this.
3891 	 */
3892 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3893 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3894 		return 1;
3895 	}
3896 	retval = 0;
3897 
3898 	/*
3899 	 * Flush the in memory commit item list before marking the log as
3900 	 * being shut down. We need to do it in this order to ensure all the
3901 	 * completed transactions are flushed to disk with the xfs_log_force()
3902 	 * call below.
3903 	 */
3904 	if (!logerror)
3905 		xlog_cil_force(log);
3906 
3907 	/*
3908 	 * mark the filesystem and the as in a shutdown state and wake
3909 	 * everybody up to tell them the bad news.
3910 	 */
3911 	spin_lock(&log->l_icloglock);
3912 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913 	if (mp->m_sb_bp)
3914 		XFS_BUF_DONE(mp->m_sb_bp);
3915 
3916 	/*
3917 	 * This flag is sort of redundant because of the mount flag, but
3918 	 * it's good to maintain the separation between the log and the rest
3919 	 * of XFS.
3920 	 */
3921 	log->l_flags |= XLOG_IO_ERROR;
3922 
3923 	/*
3924 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3925 	 * while we're still holding the loglock.
3926 	 */
3927 	if (logerror)
3928 		retval = xlog_state_ioerror(log);
3929 	spin_unlock(&log->l_icloglock);
3930 
3931 	/*
3932 	 * We don't want anybody waiting for log reservations after this. That
3933 	 * means we have to wake up everybody queued up on reserveq as well as
3934 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3935 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3936 	 * action is protected by the grant locks.
3937 	 */
3938 	xlog_grant_head_wake_all(&log->l_reserve_head);
3939 	xlog_grant_head_wake_all(&log->l_write_head);
3940 
3941 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3942 		ASSERT(!logerror);
3943 		/*
3944 		 * Force the incore logs to disk before shutting the
3945 		 * log down completely.
3946 		 */
3947 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3948 
3949 		spin_lock(&log->l_icloglock);
3950 		retval = xlog_state_ioerror(log);
3951 		spin_unlock(&log->l_icloglock);
3952 	}
3953 	/*
3954 	 * Wake up everybody waiting on xfs_log_force.
3955 	 * Callback all log item committed functions as if the
3956 	 * log writes were completed.
3957 	 */
3958 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3959 
3960 #ifdef XFSERRORDEBUG
3961 	{
3962 		xlog_in_core_t	*iclog;
3963 
3964 		spin_lock(&log->l_icloglock);
3965 		iclog = log->l_iclog;
3966 		do {
3967 			ASSERT(iclog->ic_callback == 0);
3968 			iclog = iclog->ic_next;
3969 		} while (iclog != log->l_iclog);
3970 		spin_unlock(&log->l_icloglock);
3971 	}
3972 #endif
3973 	/* return non-zero if log IOERROR transition had already happened */
3974 	return retval;
3975 }
3976 
3977 STATIC int
3978 xlog_iclogs_empty(
3979 	struct xlog	*log)
3980 {
3981 	xlog_in_core_t	*iclog;
3982 
3983 	iclog = log->l_iclog;
3984 	do {
3985 		/* endianness does not matter here, zero is zero in
3986 		 * any language.
3987 		 */
3988 		if (iclog->ic_header.h_num_logops)
3989 			return 0;
3990 		iclog = iclog->ic_next;
3991 	} while (iclog != log->l_iclog);
3992 	return 1;
3993 }
3994 
3995