xref: /openbmc/linux/fs/xfs/xfs_log.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 	struct xlog		*log,
47 	int			len,
48 	struct xlog_in_core	**iclog,
49 	struct xlog_ticket	*ticket,
50 	int			*continued_write,
51 	int			*logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 	struct xlog		*log,
55 	struct xlog_in_core	*iclog,
56 	int			eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 	struct xlog		*log,
60 	int			need_bytes);
61 STATIC void
62 xlog_sync(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 	struct xlog		*log,
69 	void			*ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 	struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 	struct xlog		*log,
76 	struct xlog_in_core	*iclog,
77 	int			count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 	struct xlog		*log,
81 	struct xlog_in_core	*iclog);
82 #else
83 #define xlog_verify_dest_ptr(a,b)
84 #define xlog_verify_grant_tail(a)
85 #define xlog_verify_iclog(a,b,c)
86 #define xlog_verify_tail_lsn(a,b)
87 #endif
88 
89 STATIC int
90 xlog_iclogs_empty(
91 	struct xlog		*log);
92 
93 static int
94 xfs_log_cover(struct xfs_mount *);
95 
96 static void
97 xlog_grant_sub_space(
98 	struct xlog		*log,
99 	atomic64_t		*head,
100 	int			bytes)
101 {
102 	int64_t	head_val = atomic64_read(head);
103 	int64_t new, old;
104 
105 	do {
106 		int	cycle, space;
107 
108 		xlog_crack_grant_head_val(head_val, &cycle, &space);
109 
110 		space -= bytes;
111 		if (space < 0) {
112 			space += log->l_logsize;
113 			cycle--;
114 		}
115 
116 		old = head_val;
117 		new = xlog_assign_grant_head_val(cycle, space);
118 		head_val = atomic64_cmpxchg(head, old, new);
119 	} while (head_val != old);
120 }
121 
122 static void
123 xlog_grant_add_space(
124 	struct xlog		*log,
125 	atomic64_t		*head,
126 	int			bytes)
127 {
128 	int64_t	head_val = atomic64_read(head);
129 	int64_t new, old;
130 
131 	do {
132 		int		tmp;
133 		int		cycle, space;
134 
135 		xlog_crack_grant_head_val(head_val, &cycle, &space);
136 
137 		tmp = log->l_logsize - space;
138 		if (tmp > bytes)
139 			space += bytes;
140 		else {
141 			space = bytes - tmp;
142 			cycle++;
143 		}
144 
145 		old = head_val;
146 		new = xlog_assign_grant_head_val(cycle, space);
147 		head_val = atomic64_cmpxchg(head, old, new);
148 	} while (head_val != old);
149 }
150 
151 STATIC void
152 xlog_grant_head_init(
153 	struct xlog_grant_head	*head)
154 {
155 	xlog_assign_grant_head(&head->grant, 1, 0);
156 	INIT_LIST_HEAD(&head->waiters);
157 	spin_lock_init(&head->lock);
158 }
159 
160 STATIC void
161 xlog_grant_head_wake_all(
162 	struct xlog_grant_head	*head)
163 {
164 	struct xlog_ticket	*tic;
165 
166 	spin_lock(&head->lock);
167 	list_for_each_entry(tic, &head->waiters, t_queue)
168 		wake_up_process(tic->t_task);
169 	spin_unlock(&head->lock);
170 }
171 
172 static inline int
173 xlog_ticket_reservation(
174 	struct xlog		*log,
175 	struct xlog_grant_head	*head,
176 	struct xlog_ticket	*tic)
177 {
178 	if (head == &log->l_write_head) {
179 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
180 		return tic->t_unit_res;
181 	} else {
182 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
183 			return tic->t_unit_res * tic->t_cnt;
184 		else
185 			return tic->t_unit_res;
186 	}
187 }
188 
189 STATIC bool
190 xlog_grant_head_wake(
191 	struct xlog		*log,
192 	struct xlog_grant_head	*head,
193 	int			*free_bytes)
194 {
195 	struct xlog_ticket	*tic;
196 	int			need_bytes;
197 	bool			woken_task = false;
198 
199 	list_for_each_entry(tic, &head->waiters, t_queue) {
200 
201 		/*
202 		 * There is a chance that the size of the CIL checkpoints in
203 		 * progress at the last AIL push target calculation resulted in
204 		 * limiting the target to the log head (l_last_sync_lsn) at the
205 		 * time. This may not reflect where the log head is now as the
206 		 * CIL checkpoints may have completed.
207 		 *
208 		 * Hence when we are woken here, it may be that the head of the
209 		 * log that has moved rather than the tail. As the tail didn't
210 		 * move, there still won't be space available for the
211 		 * reservation we require.  However, if the AIL has already
212 		 * pushed to the target defined by the old log head location, we
213 		 * will hang here waiting for something else to update the AIL
214 		 * push target.
215 		 *
216 		 * Therefore, if there isn't space to wake the first waiter on
217 		 * the grant head, we need to push the AIL again to ensure the
218 		 * target reflects both the current log tail and log head
219 		 * position before we wait for the tail to move again.
220 		 */
221 
222 		need_bytes = xlog_ticket_reservation(log, head, tic);
223 		if (*free_bytes < need_bytes) {
224 			if (!woken_task)
225 				xlog_grant_push_ail(log, need_bytes);
226 			return false;
227 		}
228 
229 		*free_bytes -= need_bytes;
230 		trace_xfs_log_grant_wake_up(log, tic);
231 		wake_up_process(tic->t_task);
232 		woken_task = true;
233 	}
234 
235 	return true;
236 }
237 
238 STATIC int
239 xlog_grant_head_wait(
240 	struct xlog		*log,
241 	struct xlog_grant_head	*head,
242 	struct xlog_ticket	*tic,
243 	int			need_bytes) __releases(&head->lock)
244 					    __acquires(&head->lock)
245 {
246 	list_add_tail(&tic->t_queue, &head->waiters);
247 
248 	do {
249 		if (XLOG_FORCED_SHUTDOWN(log))
250 			goto shutdown;
251 		xlog_grant_push_ail(log, need_bytes);
252 
253 		__set_current_state(TASK_UNINTERRUPTIBLE);
254 		spin_unlock(&head->lock);
255 
256 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
257 
258 		trace_xfs_log_grant_sleep(log, tic);
259 		schedule();
260 		trace_xfs_log_grant_wake(log, tic);
261 
262 		spin_lock(&head->lock);
263 		if (XLOG_FORCED_SHUTDOWN(log))
264 			goto shutdown;
265 	} while (xlog_space_left(log, &head->grant) < need_bytes);
266 
267 	list_del_init(&tic->t_queue);
268 	return 0;
269 shutdown:
270 	list_del_init(&tic->t_queue);
271 	return -EIO;
272 }
273 
274 /*
275  * Atomically get the log space required for a log ticket.
276  *
277  * Once a ticket gets put onto head->waiters, it will only return after the
278  * needed reservation is satisfied.
279  *
280  * This function is structured so that it has a lock free fast path. This is
281  * necessary because every new transaction reservation will come through this
282  * path. Hence any lock will be globally hot if we take it unconditionally on
283  * every pass.
284  *
285  * As tickets are only ever moved on and off head->waiters under head->lock, we
286  * only need to take that lock if we are going to add the ticket to the queue
287  * and sleep. We can avoid taking the lock if the ticket was never added to
288  * head->waiters because the t_queue list head will be empty and we hold the
289  * only reference to it so it can safely be checked unlocked.
290  */
291 STATIC int
292 xlog_grant_head_check(
293 	struct xlog		*log,
294 	struct xlog_grant_head	*head,
295 	struct xlog_ticket	*tic,
296 	int			*need_bytes)
297 {
298 	int			free_bytes;
299 	int			error = 0;
300 
301 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
302 
303 	/*
304 	 * If there are other waiters on the queue then give them a chance at
305 	 * logspace before us.  Wake up the first waiters, if we do not wake
306 	 * up all the waiters then go to sleep waiting for more free space,
307 	 * otherwise try to get some space for this transaction.
308 	 */
309 	*need_bytes = xlog_ticket_reservation(log, head, tic);
310 	free_bytes = xlog_space_left(log, &head->grant);
311 	if (!list_empty_careful(&head->waiters)) {
312 		spin_lock(&head->lock);
313 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
314 		    free_bytes < *need_bytes) {
315 			error = xlog_grant_head_wait(log, head, tic,
316 						     *need_bytes);
317 		}
318 		spin_unlock(&head->lock);
319 	} else if (free_bytes < *need_bytes) {
320 		spin_lock(&head->lock);
321 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
322 		spin_unlock(&head->lock);
323 	}
324 
325 	return error;
326 }
327 
328 static void
329 xlog_tic_reset_res(xlog_ticket_t *tic)
330 {
331 	tic->t_res_num = 0;
332 	tic->t_res_arr_sum = 0;
333 	tic->t_res_num_ophdrs = 0;
334 }
335 
336 static void
337 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
338 {
339 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
340 		/* add to overflow and start again */
341 		tic->t_res_o_flow += tic->t_res_arr_sum;
342 		tic->t_res_num = 0;
343 		tic->t_res_arr_sum = 0;
344 	}
345 
346 	tic->t_res_arr[tic->t_res_num].r_len = len;
347 	tic->t_res_arr[tic->t_res_num].r_type = type;
348 	tic->t_res_arr_sum += len;
349 	tic->t_res_num++;
350 }
351 
352 bool
353 xfs_log_writable(
354 	struct xfs_mount	*mp)
355 {
356 	/*
357 	 * Do not write to the log on norecovery mounts, if the data or log
358 	 * devices are read-only, or if the filesystem is shutdown. Read-only
359 	 * mounts allow internal writes for log recovery and unmount purposes,
360 	 * so don't restrict that case.
361 	 */
362 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
363 		return false;
364 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
365 		return false;
366 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
367 		return false;
368 	if (XFS_FORCED_SHUTDOWN(mp))
369 		return false;
370 	return true;
371 }
372 
373 /*
374  * Replenish the byte reservation required by moving the grant write head.
375  */
376 int
377 xfs_log_regrant(
378 	struct xfs_mount	*mp,
379 	struct xlog_ticket	*tic)
380 {
381 	struct xlog		*log = mp->m_log;
382 	int			need_bytes;
383 	int			error = 0;
384 
385 	if (XLOG_FORCED_SHUTDOWN(log))
386 		return -EIO;
387 
388 	XFS_STATS_INC(mp, xs_try_logspace);
389 
390 	/*
391 	 * This is a new transaction on the ticket, so we need to change the
392 	 * transaction ID so that the next transaction has a different TID in
393 	 * the log. Just add one to the existing tid so that we can see chains
394 	 * of rolling transactions in the log easily.
395 	 */
396 	tic->t_tid++;
397 
398 	xlog_grant_push_ail(log, tic->t_unit_res);
399 
400 	tic->t_curr_res = tic->t_unit_res;
401 	xlog_tic_reset_res(tic);
402 
403 	if (tic->t_cnt > 0)
404 		return 0;
405 
406 	trace_xfs_log_regrant(log, tic);
407 
408 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
409 				      &need_bytes);
410 	if (error)
411 		goto out_error;
412 
413 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
414 	trace_xfs_log_regrant_exit(log, tic);
415 	xlog_verify_grant_tail(log);
416 	return 0;
417 
418 out_error:
419 	/*
420 	 * If we are failing, make sure the ticket doesn't have any current
421 	 * reservations.  We don't want to add this back when the ticket/
422 	 * transaction gets cancelled.
423 	 */
424 	tic->t_curr_res = 0;
425 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
426 	return error;
427 }
428 
429 /*
430  * Reserve log space and return a ticket corresponding to the reservation.
431  *
432  * Each reservation is going to reserve extra space for a log record header.
433  * When writes happen to the on-disk log, we don't subtract the length of the
434  * log record header from any reservation.  By wasting space in each
435  * reservation, we prevent over allocation problems.
436  */
437 int
438 xfs_log_reserve(
439 	struct xfs_mount	*mp,
440 	int		 	unit_bytes,
441 	int		 	cnt,
442 	struct xlog_ticket	**ticp,
443 	uint8_t		 	client,
444 	bool			permanent)
445 {
446 	struct xlog		*log = mp->m_log;
447 	struct xlog_ticket	*tic;
448 	int			need_bytes;
449 	int			error = 0;
450 
451 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
452 
453 	if (XLOG_FORCED_SHUTDOWN(log))
454 		return -EIO;
455 
456 	XFS_STATS_INC(mp, xs_try_logspace);
457 
458 	ASSERT(*ticp == NULL);
459 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 /*
490  * Flush iclog to disk if this is the last reference to the given iclog and the
491  * it is in the WANT_SYNC state.
492  *
493  * If the caller passes in a non-zero @old_tail_lsn and the current log tail
494  * does not match, there may be metadata on disk that must be persisted before
495  * this iclog is written.  To satisfy that requirement, set the
496  * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
497  * log tail value.
498  *
499  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
500  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
501  * written to stable storage, and implies that a commit record is contained
502  * within the iclog. We need to ensure that the log tail does not move beyond
503  * the tail that the first commit record in the iclog ordered against, otherwise
504  * correct recovery of that checkpoint becomes dependent on future operations
505  * performed on this iclog.
506  *
507  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
508  * current tail into iclog. Once the iclog tail is set, future operations must
509  * not modify it, otherwise they potentially violate ordering constraints for
510  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
511  * the iclog will get zeroed on activation of the iclog after sync, so we
512  * always capture the tail lsn on the iclog on the first NEED_FUA release
513  * regardless of the number of active reference counts on this iclog.
514  */
515 
516 int
517 xlog_state_release_iclog(
518 	struct xlog		*log,
519 	struct xlog_in_core	*iclog,
520 	xfs_lsn_t		old_tail_lsn)
521 {
522 	xfs_lsn_t		tail_lsn;
523 	lockdep_assert_held(&log->l_icloglock);
524 
525 	trace_xlog_iclog_release(iclog, _RET_IP_);
526 	if (iclog->ic_state == XLOG_STATE_IOERROR)
527 		return -EIO;
528 
529 	/*
530 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 	 * of the tail LSN into the iclog so we guarantee that the log tail does
532 	 * not move between deciding if a cache flush is required and writing
533 	 * the LSN into the iclog below.
534 	 */
535 	if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
536 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
537 
538 		if (old_tail_lsn && tail_lsn != old_tail_lsn)
539 			iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
540 
541 		if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
542 		    !iclog->ic_header.h_tail_lsn)
543 			iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
544 	}
545 
546 	if (!atomic_dec_and_test(&iclog->ic_refcnt))
547 		return 0;
548 
549 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
550 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
551 		return 0;
552 	}
553 
554 	iclog->ic_state = XLOG_STATE_SYNCING;
555 	if (!iclog->ic_header.h_tail_lsn)
556 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
557 	xlog_verify_tail_lsn(log, iclog);
558 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
559 
560 	spin_unlock(&log->l_icloglock);
561 	xlog_sync(log, iclog);
562 	spin_lock(&log->l_icloglock);
563 	return 0;
564 }
565 
566 /*
567  * Mount a log filesystem
568  *
569  * mp		- ubiquitous xfs mount point structure
570  * log_target	- buftarg of on-disk log device
571  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
572  * num_bblocks	- Number of BBSIZE blocks in on-disk log
573  *
574  * Return error or zero.
575  */
576 int
577 xfs_log_mount(
578 	xfs_mount_t	*mp,
579 	xfs_buftarg_t	*log_target,
580 	xfs_daddr_t	blk_offset,
581 	int		num_bblks)
582 {
583 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
584 	int		error = 0;
585 	int		min_logfsbs;
586 
587 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
588 		xfs_notice(mp, "Mounting V%d Filesystem",
589 			   XFS_SB_VERSION_NUM(&mp->m_sb));
590 	} else {
591 		xfs_notice(mp,
592 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
593 			   XFS_SB_VERSION_NUM(&mp->m_sb));
594 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
595 	}
596 
597 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
598 	if (IS_ERR(mp->m_log)) {
599 		error = PTR_ERR(mp->m_log);
600 		goto out;
601 	}
602 
603 	/*
604 	 * Validate the given log space and drop a critical message via syslog
605 	 * if the log size is too small that would lead to some unexpected
606 	 * situations in transaction log space reservation stage.
607 	 *
608 	 * Note: we can't just reject the mount if the validation fails.  This
609 	 * would mean that people would have to downgrade their kernel just to
610 	 * remedy the situation as there is no way to grow the log (short of
611 	 * black magic surgery with xfs_db).
612 	 *
613 	 * We can, however, reject mounts for CRC format filesystems, as the
614 	 * mkfs binary being used to make the filesystem should never create a
615 	 * filesystem with a log that is too small.
616 	 */
617 	min_logfsbs = xfs_log_calc_minimum_size(mp);
618 
619 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
620 		xfs_warn(mp,
621 		"Log size %d blocks too small, minimum size is %d blocks",
622 			 mp->m_sb.sb_logblocks, min_logfsbs);
623 		error = -EINVAL;
624 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
625 		xfs_warn(mp,
626 		"Log size %d blocks too large, maximum size is %lld blocks",
627 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
628 		error = -EINVAL;
629 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
630 		xfs_warn(mp,
631 		"log size %lld bytes too large, maximum size is %lld bytes",
632 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
633 			 XFS_MAX_LOG_BYTES);
634 		error = -EINVAL;
635 	} else if (mp->m_sb.sb_logsunit > 1 &&
636 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
637 		xfs_warn(mp,
638 		"log stripe unit %u bytes must be a multiple of block size",
639 			 mp->m_sb.sb_logsunit);
640 		error = -EINVAL;
641 		fatal = true;
642 	}
643 	if (error) {
644 		/*
645 		 * Log check errors are always fatal on v5; or whenever bad
646 		 * metadata leads to a crash.
647 		 */
648 		if (fatal) {
649 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
650 			ASSERT(0);
651 			goto out_free_log;
652 		}
653 		xfs_crit(mp, "Log size out of supported range.");
654 		xfs_crit(mp,
655 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
656 	}
657 
658 	/*
659 	 * Initialize the AIL now we have a log.
660 	 */
661 	error = xfs_trans_ail_init(mp);
662 	if (error) {
663 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
664 		goto out_free_log;
665 	}
666 	mp->m_log->l_ailp = mp->m_ail;
667 
668 	/*
669 	 * skip log recovery on a norecovery mount.  pretend it all
670 	 * just worked.
671 	 */
672 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
673 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
674 
675 		if (readonly)
676 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
677 
678 		error = xlog_recover(mp->m_log);
679 
680 		if (readonly)
681 			mp->m_flags |= XFS_MOUNT_RDONLY;
682 		if (error) {
683 			xfs_warn(mp, "log mount/recovery failed: error %d",
684 				error);
685 			xlog_recover_cancel(mp->m_log);
686 			goto out_destroy_ail;
687 		}
688 	}
689 
690 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
691 			       "log");
692 	if (error)
693 		goto out_destroy_ail;
694 
695 	/* Normal transactions can now occur */
696 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
697 
698 	/*
699 	 * Now the log has been fully initialised and we know were our
700 	 * space grant counters are, we can initialise the permanent ticket
701 	 * needed for delayed logging to work.
702 	 */
703 	xlog_cil_init_post_recovery(mp->m_log);
704 
705 	return 0;
706 
707 out_destroy_ail:
708 	xfs_trans_ail_destroy(mp);
709 out_free_log:
710 	xlog_dealloc_log(mp->m_log);
711 out:
712 	return error;
713 }
714 
715 /*
716  * Finish the recovery of the file system.  This is separate from the
717  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
718  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
719  * here.
720  *
721  * If we finish recovery successfully, start the background log work. If we are
722  * not doing recovery, then we have a RO filesystem and we don't need to start
723  * it.
724  */
725 int
726 xfs_log_mount_finish(
727 	struct xfs_mount	*mp)
728 {
729 	int	error = 0;
730 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
731 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
732 
733 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
734 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
735 		return 0;
736 	} else if (readonly) {
737 		/* Allow unlinked processing to proceed */
738 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
739 	}
740 
741 	/*
742 	 * During the second phase of log recovery, we need iget and
743 	 * iput to behave like they do for an active filesystem.
744 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
745 	 * of inodes before we're done replaying log items on those
746 	 * inodes.  Turn it off immediately after recovery finishes
747 	 * so that we don't leak the quota inodes if subsequent mount
748 	 * activities fail.
749 	 *
750 	 * We let all inodes involved in redo item processing end up on
751 	 * the LRU instead of being evicted immediately so that if we do
752 	 * something to an unlinked inode, the irele won't cause
753 	 * premature truncation and freeing of the inode, which results
754 	 * in log recovery failure.  We have to evict the unreferenced
755 	 * lru inodes after clearing SB_ACTIVE because we don't
756 	 * otherwise clean up the lru if there's a subsequent failure in
757 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
758 	 * else (e.g. quotacheck) references the inodes before the
759 	 * mount failure occurs.
760 	 */
761 	mp->m_super->s_flags |= SB_ACTIVE;
762 	error = xlog_recover_finish(mp->m_log);
763 	if (!error)
764 		xfs_log_work_queue(mp);
765 	mp->m_super->s_flags &= ~SB_ACTIVE;
766 	evict_inodes(mp->m_super);
767 
768 	/*
769 	 * Drain the buffer LRU after log recovery. This is required for v4
770 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
771 	 * but we do it unconditionally to make sure we're always in a clean
772 	 * cache state after mount.
773 	 *
774 	 * Don't push in the error case because the AIL may have pending intents
775 	 * that aren't removed until recovery is cancelled.
776 	 */
777 	if (!error && recovered) {
778 		xfs_log_force(mp, XFS_LOG_SYNC);
779 		xfs_ail_push_all_sync(mp->m_ail);
780 	}
781 	xfs_buftarg_drain(mp->m_ddev_targp);
782 
783 	if (readonly)
784 		mp->m_flags |= XFS_MOUNT_RDONLY;
785 
786 	/* Make sure the log is dead if we're returning failure. */
787 	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
788 
789 	return error;
790 }
791 
792 /*
793  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
794  * the log.
795  */
796 void
797 xfs_log_mount_cancel(
798 	struct xfs_mount	*mp)
799 {
800 	xlog_recover_cancel(mp->m_log);
801 	xfs_log_unmount(mp);
802 }
803 
804 /*
805  * Flush out the iclog to disk ensuring that device caches are flushed and
806  * the iclog hits stable storage before any completion waiters are woken.
807  */
808 static inline int
809 xlog_force_iclog(
810 	struct xlog_in_core	*iclog)
811 {
812 	atomic_inc(&iclog->ic_refcnt);
813 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
814 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
815 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
816 	return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
817 }
818 
819 /*
820  * Wait for the iclog and all prior iclogs to be written disk as required by the
821  * log force state machine. Waiting on ic_force_wait ensures iclog completions
822  * have been ordered and callbacks run before we are woken here, hence
823  * guaranteeing that all the iclogs up to this one are on stable storage.
824  */
825 int
826 xlog_wait_on_iclog(
827 	struct xlog_in_core	*iclog)
828 		__releases(iclog->ic_log->l_icloglock)
829 {
830 	struct xlog		*log = iclog->ic_log;
831 
832 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
833 	if (!XLOG_FORCED_SHUTDOWN(log) &&
834 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
835 	    iclog->ic_state != XLOG_STATE_DIRTY) {
836 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
837 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
838 	} else {
839 		spin_unlock(&log->l_icloglock);
840 	}
841 
842 	if (XLOG_FORCED_SHUTDOWN(log))
843 		return -EIO;
844 	return 0;
845 }
846 
847 /*
848  * Write out an unmount record using the ticket provided. We have to account for
849  * the data space used in the unmount ticket as this write is not done from a
850  * transaction context that has already done the accounting for us.
851  */
852 static int
853 xlog_write_unmount_record(
854 	struct xlog		*log,
855 	struct xlog_ticket	*ticket)
856 {
857 	struct xfs_unmount_log_format ulf = {
858 		.magic = XLOG_UNMOUNT_TYPE,
859 	};
860 	struct xfs_log_iovec reg = {
861 		.i_addr = &ulf,
862 		.i_len = sizeof(ulf),
863 		.i_type = XLOG_REG_TYPE_UNMOUNT,
864 	};
865 	struct xfs_log_vec vec = {
866 		.lv_niovecs = 1,
867 		.lv_iovecp = &reg,
868 	};
869 
870 	/* account for space used by record data */
871 	ticket->t_curr_res -= sizeof(ulf);
872 
873 	return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
874 }
875 
876 /*
877  * Mark the filesystem clean by writing an unmount record to the head of the
878  * log.
879  */
880 static void
881 xlog_unmount_write(
882 	struct xlog		*log)
883 {
884 	struct xfs_mount	*mp = log->l_mp;
885 	struct xlog_in_core	*iclog;
886 	struct xlog_ticket	*tic = NULL;
887 	int			error;
888 
889 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
890 	if (error)
891 		goto out_err;
892 
893 	error = xlog_write_unmount_record(log, tic);
894 	/*
895 	 * At this point, we're umounting anyway, so there's no point in
896 	 * transitioning log state to IOERROR. Just continue...
897 	 */
898 out_err:
899 	if (error)
900 		xfs_alert(mp, "%s: unmount record failed", __func__);
901 
902 	spin_lock(&log->l_icloglock);
903 	iclog = log->l_iclog;
904 	error = xlog_force_iclog(iclog);
905 	xlog_wait_on_iclog(iclog);
906 
907 	if (tic) {
908 		trace_xfs_log_umount_write(log, tic);
909 		xfs_log_ticket_ungrant(log, tic);
910 	}
911 }
912 
913 static void
914 xfs_log_unmount_verify_iclog(
915 	struct xlog		*log)
916 {
917 	struct xlog_in_core	*iclog = log->l_iclog;
918 
919 	do {
920 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
921 		ASSERT(iclog->ic_offset == 0);
922 	} while ((iclog = iclog->ic_next) != log->l_iclog);
923 }
924 
925 /*
926  * Unmount record used to have a string "Unmount filesystem--" in the
927  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
928  * We just write the magic number now since that particular field isn't
929  * currently architecture converted and "Unmount" is a bit foo.
930  * As far as I know, there weren't any dependencies on the old behaviour.
931  */
932 static void
933 xfs_log_unmount_write(
934 	struct xfs_mount	*mp)
935 {
936 	struct xlog		*log = mp->m_log;
937 
938 	if (!xfs_log_writable(mp))
939 		return;
940 
941 	xfs_log_force(mp, XFS_LOG_SYNC);
942 
943 	if (XLOG_FORCED_SHUTDOWN(log))
944 		return;
945 
946 	/*
947 	 * If we think the summary counters are bad, avoid writing the unmount
948 	 * record to force log recovery at next mount, after which the summary
949 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
950 	 * more details.
951 	 */
952 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
953 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
954 		xfs_alert(mp, "%s: will fix summary counters at next mount",
955 				__func__);
956 		return;
957 	}
958 
959 	xfs_log_unmount_verify_iclog(log);
960 	xlog_unmount_write(log);
961 }
962 
963 /*
964  * Empty the log for unmount/freeze.
965  *
966  * To do this, we first need to shut down the background log work so it is not
967  * trying to cover the log as we clean up. We then need to unpin all objects in
968  * the log so we can then flush them out. Once they have completed their IO and
969  * run the callbacks removing themselves from the AIL, we can cover the log.
970  */
971 int
972 xfs_log_quiesce(
973 	struct xfs_mount	*mp)
974 {
975 	cancel_delayed_work_sync(&mp->m_log->l_work);
976 	xfs_log_force(mp, XFS_LOG_SYNC);
977 
978 	/*
979 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
980 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
981 	 * xfs_buf_iowait() cannot be used because it was pushed with the
982 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
983 	 * the IO to complete.
984 	 */
985 	xfs_ail_push_all_sync(mp->m_ail);
986 	xfs_buftarg_wait(mp->m_ddev_targp);
987 	xfs_buf_lock(mp->m_sb_bp);
988 	xfs_buf_unlock(mp->m_sb_bp);
989 
990 	return xfs_log_cover(mp);
991 }
992 
993 void
994 xfs_log_clean(
995 	struct xfs_mount	*mp)
996 {
997 	xfs_log_quiesce(mp);
998 	xfs_log_unmount_write(mp);
999 }
1000 
1001 /*
1002  * Shut down and release the AIL and Log.
1003  *
1004  * During unmount, we need to ensure we flush all the dirty metadata objects
1005  * from the AIL so that the log is empty before we write the unmount record to
1006  * the log. Once this is done, we can tear down the AIL and the log.
1007  */
1008 void
1009 xfs_log_unmount(
1010 	struct xfs_mount	*mp)
1011 {
1012 	xfs_log_clean(mp);
1013 
1014 	xfs_buftarg_drain(mp->m_ddev_targp);
1015 
1016 	xfs_trans_ail_destroy(mp);
1017 
1018 	xfs_sysfs_del(&mp->m_log->l_kobj);
1019 
1020 	xlog_dealloc_log(mp->m_log);
1021 }
1022 
1023 void
1024 xfs_log_item_init(
1025 	struct xfs_mount	*mp,
1026 	struct xfs_log_item	*item,
1027 	int			type,
1028 	const struct xfs_item_ops *ops)
1029 {
1030 	item->li_mountp = mp;
1031 	item->li_ailp = mp->m_ail;
1032 	item->li_type = type;
1033 	item->li_ops = ops;
1034 	item->li_lv = NULL;
1035 
1036 	INIT_LIST_HEAD(&item->li_ail);
1037 	INIT_LIST_HEAD(&item->li_cil);
1038 	INIT_LIST_HEAD(&item->li_bio_list);
1039 	INIT_LIST_HEAD(&item->li_trans);
1040 }
1041 
1042 /*
1043  * Wake up processes waiting for log space after we have moved the log tail.
1044  */
1045 void
1046 xfs_log_space_wake(
1047 	struct xfs_mount	*mp)
1048 {
1049 	struct xlog		*log = mp->m_log;
1050 	int			free_bytes;
1051 
1052 	if (XLOG_FORCED_SHUTDOWN(log))
1053 		return;
1054 
1055 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1056 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1057 
1058 		spin_lock(&log->l_write_head.lock);
1059 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1060 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1061 		spin_unlock(&log->l_write_head.lock);
1062 	}
1063 
1064 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1065 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1066 
1067 		spin_lock(&log->l_reserve_head.lock);
1068 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1069 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1070 		spin_unlock(&log->l_reserve_head.lock);
1071 	}
1072 }
1073 
1074 /*
1075  * Determine if we have a transaction that has gone to disk that needs to be
1076  * covered. To begin the transition to the idle state firstly the log needs to
1077  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1078  * we start attempting to cover the log.
1079  *
1080  * Only if we are then in a state where covering is needed, the caller is
1081  * informed that dummy transactions are required to move the log into the idle
1082  * state.
1083  *
1084  * If there are any items in the AIl or CIL, then we do not want to attempt to
1085  * cover the log as we may be in a situation where there isn't log space
1086  * available to run a dummy transaction and this can lead to deadlocks when the
1087  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1088  * there's no point in running a dummy transaction at this point because we
1089  * can't start trying to idle the log until both the CIL and AIL are empty.
1090  */
1091 static bool
1092 xfs_log_need_covered(
1093 	struct xfs_mount	*mp)
1094 {
1095 	struct xlog		*log = mp->m_log;
1096 	bool			needed = false;
1097 
1098 	if (!xlog_cil_empty(log))
1099 		return false;
1100 
1101 	spin_lock(&log->l_icloglock);
1102 	switch (log->l_covered_state) {
1103 	case XLOG_STATE_COVER_DONE:
1104 	case XLOG_STATE_COVER_DONE2:
1105 	case XLOG_STATE_COVER_IDLE:
1106 		break;
1107 	case XLOG_STATE_COVER_NEED:
1108 	case XLOG_STATE_COVER_NEED2:
1109 		if (xfs_ail_min_lsn(log->l_ailp))
1110 			break;
1111 		if (!xlog_iclogs_empty(log))
1112 			break;
1113 
1114 		needed = true;
1115 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1116 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1117 		else
1118 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1119 		break;
1120 	default:
1121 		needed = true;
1122 		break;
1123 	}
1124 	spin_unlock(&log->l_icloglock);
1125 	return needed;
1126 }
1127 
1128 /*
1129  * Explicitly cover the log. This is similar to background log covering but
1130  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1131  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1132  * must all be empty.
1133  */
1134 static int
1135 xfs_log_cover(
1136 	struct xfs_mount	*mp)
1137 {
1138 	int			error = 0;
1139 	bool			need_covered;
1140 
1141 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1142 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1143 	       XFS_FORCED_SHUTDOWN(mp));
1144 
1145 	if (!xfs_log_writable(mp))
1146 		return 0;
1147 
1148 	/*
1149 	 * xfs_log_need_covered() is not idempotent because it progresses the
1150 	 * state machine if the log requires covering. Therefore, we must call
1151 	 * this function once and use the result until we've issued an sb sync.
1152 	 * Do so first to make that abundantly clear.
1153 	 *
1154 	 * Fall into the covering sequence if the log needs covering or the
1155 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1156 	 * used for covering accumulates the in-core counters, so covering
1157 	 * handles this for us.
1158 	 */
1159 	need_covered = xfs_log_need_covered(mp);
1160 	if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 		return 0;
1162 
1163 	/*
1164 	 * To cover the log, commit the superblock twice (at most) in
1165 	 * independent checkpoints. The first serves as a reference for the
1166 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1167 	 * updates the in-core tail to the LSN of the first checkpoint. The
1168 	 * second commit updates the on-disk tail with the in-core LSN,
1169 	 * covering the log. Push the AIL one more time to leave it empty, as
1170 	 * we found it.
1171 	 */
1172 	do {
1173 		error = xfs_sync_sb(mp, true);
1174 		if (error)
1175 			break;
1176 		xfs_ail_push_all_sync(mp->m_ail);
1177 	} while (xfs_log_need_covered(mp));
1178 
1179 	return error;
1180 }
1181 
1182 /*
1183  * We may be holding the log iclog lock upon entering this routine.
1184  */
1185 xfs_lsn_t
1186 xlog_assign_tail_lsn_locked(
1187 	struct xfs_mount	*mp)
1188 {
1189 	struct xlog		*log = mp->m_log;
1190 	struct xfs_log_item	*lip;
1191 	xfs_lsn_t		tail_lsn;
1192 
1193 	assert_spin_locked(&mp->m_ail->ail_lock);
1194 
1195 	/*
1196 	 * To make sure we always have a valid LSN for the log tail we keep
1197 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1198 	 * and use that when the AIL was empty.
1199 	 */
1200 	lip = xfs_ail_min(mp->m_ail);
1201 	if (lip)
1202 		tail_lsn = lip->li_lsn;
1203 	else
1204 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1205 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1206 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1207 	return tail_lsn;
1208 }
1209 
1210 xfs_lsn_t
1211 xlog_assign_tail_lsn(
1212 	struct xfs_mount	*mp)
1213 {
1214 	xfs_lsn_t		tail_lsn;
1215 
1216 	spin_lock(&mp->m_ail->ail_lock);
1217 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1218 	spin_unlock(&mp->m_ail->ail_lock);
1219 
1220 	return tail_lsn;
1221 }
1222 
1223 /*
1224  * Return the space in the log between the tail and the head.  The head
1225  * is passed in the cycle/bytes formal parms.  In the special case where
1226  * the reserve head has wrapped passed the tail, this calculation is no
1227  * longer valid.  In this case, just return 0 which means there is no space
1228  * in the log.  This works for all places where this function is called
1229  * with the reserve head.  Of course, if the write head were to ever
1230  * wrap the tail, we should blow up.  Rather than catch this case here,
1231  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1232  *
1233  * This code also handles the case where the reservation head is behind
1234  * the tail.  The details of this case are described below, but the end
1235  * result is that we return the size of the log as the amount of space left.
1236  */
1237 STATIC int
1238 xlog_space_left(
1239 	struct xlog	*log,
1240 	atomic64_t	*head)
1241 {
1242 	int		free_bytes;
1243 	int		tail_bytes;
1244 	int		tail_cycle;
1245 	int		head_cycle;
1246 	int		head_bytes;
1247 
1248 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1249 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1250 	tail_bytes = BBTOB(tail_bytes);
1251 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1252 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1253 	else if (tail_cycle + 1 < head_cycle)
1254 		return 0;
1255 	else if (tail_cycle < head_cycle) {
1256 		ASSERT(tail_cycle == (head_cycle - 1));
1257 		free_bytes = tail_bytes - head_bytes;
1258 	} else {
1259 		/*
1260 		 * The reservation head is behind the tail.
1261 		 * In this case we just want to return the size of the
1262 		 * log as the amount of space left.
1263 		 */
1264 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1265 		xfs_alert(log->l_mp,
1266 			  "  tail_cycle = %d, tail_bytes = %d",
1267 			  tail_cycle, tail_bytes);
1268 		xfs_alert(log->l_mp,
1269 			  "  GH   cycle = %d, GH   bytes = %d",
1270 			  head_cycle, head_bytes);
1271 		ASSERT(0);
1272 		free_bytes = log->l_logsize;
1273 	}
1274 	return free_bytes;
1275 }
1276 
1277 
1278 static void
1279 xlog_ioend_work(
1280 	struct work_struct	*work)
1281 {
1282 	struct xlog_in_core     *iclog =
1283 		container_of(work, struct xlog_in_core, ic_end_io_work);
1284 	struct xlog		*log = iclog->ic_log;
1285 	int			error;
1286 
1287 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1288 #ifdef DEBUG
1289 	/* treat writes with injected CRC errors as failed */
1290 	if (iclog->ic_fail_crc)
1291 		error = -EIO;
1292 #endif
1293 
1294 	/*
1295 	 * Race to shutdown the filesystem if we see an error.
1296 	 */
1297 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1298 		xfs_alert(log->l_mp, "log I/O error %d", error);
1299 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1300 	}
1301 
1302 	xlog_state_done_syncing(iclog);
1303 	bio_uninit(&iclog->ic_bio);
1304 
1305 	/*
1306 	 * Drop the lock to signal that we are done. Nothing references the
1307 	 * iclog after this, so an unmount waiting on this lock can now tear it
1308 	 * down safely. As such, it is unsafe to reference the iclog after the
1309 	 * unlock as we could race with it being freed.
1310 	 */
1311 	up(&iclog->ic_sema);
1312 }
1313 
1314 /*
1315  * Return size of each in-core log record buffer.
1316  *
1317  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1318  *
1319  * If the filesystem blocksize is too large, we may need to choose a
1320  * larger size since the directory code currently logs entire blocks.
1321  */
1322 STATIC void
1323 xlog_get_iclog_buffer_size(
1324 	struct xfs_mount	*mp,
1325 	struct xlog		*log)
1326 {
1327 	if (mp->m_logbufs <= 0)
1328 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1329 	if (mp->m_logbsize <= 0)
1330 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1331 
1332 	log->l_iclog_bufs = mp->m_logbufs;
1333 	log->l_iclog_size = mp->m_logbsize;
1334 
1335 	/*
1336 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1337 	 */
1338 	log->l_iclog_heads =
1339 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1340 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1341 }
1342 
1343 void
1344 xfs_log_work_queue(
1345 	struct xfs_mount        *mp)
1346 {
1347 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1348 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1349 }
1350 
1351 /*
1352  * Every sync period we need to unpin all items in the AIL and push them to
1353  * disk. If there is nothing dirty, then we might need to cover the log to
1354  * indicate that the filesystem is idle.
1355  */
1356 static void
1357 xfs_log_worker(
1358 	struct work_struct	*work)
1359 {
1360 	struct xlog		*log = container_of(to_delayed_work(work),
1361 						struct xlog, l_work);
1362 	struct xfs_mount	*mp = log->l_mp;
1363 
1364 	/* dgc: errors ignored - not fatal and nowhere to report them */
1365 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1366 		/*
1367 		 * Dump a transaction into the log that contains no real change.
1368 		 * This is needed to stamp the current tail LSN into the log
1369 		 * during the covering operation.
1370 		 *
1371 		 * We cannot use an inode here for this - that will push dirty
1372 		 * state back up into the VFS and then periodic inode flushing
1373 		 * will prevent log covering from making progress. Hence we
1374 		 * synchronously log the superblock instead to ensure the
1375 		 * superblock is immediately unpinned and can be written back.
1376 		 */
1377 		xfs_sync_sb(mp, true);
1378 	} else
1379 		xfs_log_force(mp, 0);
1380 
1381 	/* start pushing all the metadata that is currently dirty */
1382 	xfs_ail_push_all(mp->m_ail);
1383 
1384 	/* queue us up again */
1385 	xfs_log_work_queue(mp);
1386 }
1387 
1388 /*
1389  * This routine initializes some of the log structure for a given mount point.
1390  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1391  * some other stuff may be filled in too.
1392  */
1393 STATIC struct xlog *
1394 xlog_alloc_log(
1395 	struct xfs_mount	*mp,
1396 	struct xfs_buftarg	*log_target,
1397 	xfs_daddr_t		blk_offset,
1398 	int			num_bblks)
1399 {
1400 	struct xlog		*log;
1401 	xlog_rec_header_t	*head;
1402 	xlog_in_core_t		**iclogp;
1403 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1404 	int			i;
1405 	int			error = -ENOMEM;
1406 	uint			log2_size = 0;
1407 
1408 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1409 	if (!log) {
1410 		xfs_warn(mp, "Log allocation failed: No memory!");
1411 		goto out;
1412 	}
1413 
1414 	log->l_mp	   = mp;
1415 	log->l_targ	   = log_target;
1416 	log->l_logsize     = BBTOB(num_bblks);
1417 	log->l_logBBstart  = blk_offset;
1418 	log->l_logBBsize   = num_bblks;
1419 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1420 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1421 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1422 
1423 	log->l_prev_block  = -1;
1424 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1425 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1426 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1427 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1428 
1429 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1430 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1431 	else
1432 		log->l_iclog_roundoff = BBSIZE;
1433 
1434 	xlog_grant_head_init(&log->l_reserve_head);
1435 	xlog_grant_head_init(&log->l_write_head);
1436 
1437 	error = -EFSCORRUPTED;
1438 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1439 	        log2_size = mp->m_sb.sb_logsectlog;
1440 		if (log2_size < BBSHIFT) {
1441 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1442 				log2_size, BBSHIFT);
1443 			goto out_free_log;
1444 		}
1445 
1446 	        log2_size -= BBSHIFT;
1447 		if (log2_size > mp->m_sectbb_log) {
1448 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1449 				log2_size, mp->m_sectbb_log);
1450 			goto out_free_log;
1451 		}
1452 
1453 		/* for larger sector sizes, must have v2 or external log */
1454 		if (log2_size && log->l_logBBstart > 0 &&
1455 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1456 			xfs_warn(mp,
1457 		"log sector size (0x%x) invalid for configuration.",
1458 				log2_size);
1459 			goto out_free_log;
1460 		}
1461 	}
1462 	log->l_sectBBsize = 1 << log2_size;
1463 
1464 	xlog_get_iclog_buffer_size(mp, log);
1465 
1466 	spin_lock_init(&log->l_icloglock);
1467 	init_waitqueue_head(&log->l_flush_wait);
1468 
1469 	iclogp = &log->l_iclog;
1470 	/*
1471 	 * The amount of memory to allocate for the iclog structure is
1472 	 * rather funky due to the way the structure is defined.  It is
1473 	 * done this way so that we can use different sizes for machines
1474 	 * with different amounts of memory.  See the definition of
1475 	 * xlog_in_core_t in xfs_log_priv.h for details.
1476 	 */
1477 	ASSERT(log->l_iclog_size >= 4096);
1478 	for (i = 0; i < log->l_iclog_bufs; i++) {
1479 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1480 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1481 				sizeof(struct bio_vec);
1482 
1483 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1484 		if (!iclog)
1485 			goto out_free_iclog;
1486 
1487 		*iclogp = iclog;
1488 		iclog->ic_prev = prev_iclog;
1489 		prev_iclog = iclog;
1490 
1491 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1492 						KM_MAYFAIL | KM_ZERO);
1493 		if (!iclog->ic_data)
1494 			goto out_free_iclog;
1495 #ifdef DEBUG
1496 		log->l_iclog_bak[i] = &iclog->ic_header;
1497 #endif
1498 		head = &iclog->ic_header;
1499 		memset(head, 0, sizeof(xlog_rec_header_t));
1500 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1501 		head->h_version = cpu_to_be32(
1502 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1503 		head->h_size = cpu_to_be32(log->l_iclog_size);
1504 		/* new fields */
1505 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1506 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1507 
1508 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1509 		iclog->ic_state = XLOG_STATE_ACTIVE;
1510 		iclog->ic_log = log;
1511 		atomic_set(&iclog->ic_refcnt, 0);
1512 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1513 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1514 
1515 		init_waitqueue_head(&iclog->ic_force_wait);
1516 		init_waitqueue_head(&iclog->ic_write_wait);
1517 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1518 		sema_init(&iclog->ic_sema, 1);
1519 
1520 		iclogp = &iclog->ic_next;
1521 	}
1522 	*iclogp = log->l_iclog;			/* complete ring */
1523 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1524 
1525 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1526 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1527 				    WQ_HIGHPRI),
1528 			0, mp->m_super->s_id);
1529 	if (!log->l_ioend_workqueue)
1530 		goto out_free_iclog;
1531 
1532 	error = xlog_cil_init(log);
1533 	if (error)
1534 		goto out_destroy_workqueue;
1535 	return log;
1536 
1537 out_destroy_workqueue:
1538 	destroy_workqueue(log->l_ioend_workqueue);
1539 out_free_iclog:
1540 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1541 		prev_iclog = iclog->ic_next;
1542 		kmem_free(iclog->ic_data);
1543 		kmem_free(iclog);
1544 		if (prev_iclog == log->l_iclog)
1545 			break;
1546 	}
1547 out_free_log:
1548 	kmem_free(log);
1549 out:
1550 	return ERR_PTR(error);
1551 }	/* xlog_alloc_log */
1552 
1553 /*
1554  * Write out the commit record of a transaction associated with the given
1555  * ticket to close off a running log write. Return the lsn of the commit record.
1556  */
1557 int
1558 xlog_commit_record(
1559 	struct xlog		*log,
1560 	struct xlog_ticket	*ticket,
1561 	struct xlog_in_core	**iclog,
1562 	xfs_lsn_t		*lsn)
1563 {
1564 	struct xfs_log_iovec reg = {
1565 		.i_addr = NULL,
1566 		.i_len = 0,
1567 		.i_type = XLOG_REG_TYPE_COMMIT,
1568 	};
1569 	struct xfs_log_vec vec = {
1570 		.lv_niovecs = 1,
1571 		.lv_iovecp = &reg,
1572 	};
1573 	int	error;
1574 
1575 	if (XLOG_FORCED_SHUTDOWN(log))
1576 		return -EIO;
1577 
1578 	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
1579 	if (error)
1580 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1581 	return error;
1582 }
1583 
1584 /*
1585  * Compute the LSN that we'd need to push the log tail towards in order to have
1586  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1587  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1588  * log free space already meets all three thresholds, this function returns
1589  * NULLCOMMITLSN.
1590  */
1591 xfs_lsn_t
1592 xlog_grant_push_threshold(
1593 	struct xlog	*log,
1594 	int		need_bytes)
1595 {
1596 	xfs_lsn_t	threshold_lsn = 0;
1597 	xfs_lsn_t	last_sync_lsn;
1598 	int		free_blocks;
1599 	int		free_bytes;
1600 	int		threshold_block;
1601 	int		threshold_cycle;
1602 	int		free_threshold;
1603 
1604 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605 
1606 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607 	free_blocks = BTOBBT(free_bytes);
1608 
1609 	/*
1610 	 * Set the threshold for the minimum number of free blocks in the
1611 	 * log to the maximum of what the caller needs, one quarter of the
1612 	 * log, and 256 blocks.
1613 	 */
1614 	free_threshold = BTOBB(need_bytes);
1615 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1616 	free_threshold = max(free_threshold, 256);
1617 	if (free_blocks >= free_threshold)
1618 		return NULLCOMMITLSN;
1619 
1620 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621 						&threshold_block);
1622 	threshold_block += free_threshold;
1623 	if (threshold_block >= log->l_logBBsize) {
1624 		threshold_block -= log->l_logBBsize;
1625 		threshold_cycle += 1;
1626 	}
1627 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628 					threshold_block);
1629 	/*
1630 	 * Don't pass in an lsn greater than the lsn of the last
1631 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1632 	 * so that it doesn't change between the compare and the set.
1633 	 */
1634 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636 		threshold_lsn = last_sync_lsn;
1637 
1638 	return threshold_lsn;
1639 }
1640 
1641 /*
1642  * Push the tail of the log if we need to do so to maintain the free log space
1643  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1644  * policy which pushes on an lsn which is further along in the log once we
1645  * reach the high water mark.  In this manner, we would be creating a low water
1646  * mark.
1647  */
1648 STATIC void
1649 xlog_grant_push_ail(
1650 	struct xlog	*log,
1651 	int		need_bytes)
1652 {
1653 	xfs_lsn_t	threshold_lsn;
1654 
1655 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1656 	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1657 		return;
1658 
1659 	/*
1660 	 * Get the transaction layer to kick the dirty buffers out to
1661 	 * disk asynchronously. No point in trying to do this if
1662 	 * the filesystem is shutting down.
1663 	 */
1664 	xfs_ail_push(log->l_ailp, threshold_lsn);
1665 }
1666 
1667 /*
1668  * Stamp cycle number in every block
1669  */
1670 STATIC void
1671 xlog_pack_data(
1672 	struct xlog		*log,
1673 	struct xlog_in_core	*iclog,
1674 	int			roundoff)
1675 {
1676 	int			i, j, k;
1677 	int			size = iclog->ic_offset + roundoff;
1678 	__be32			cycle_lsn;
1679 	char			*dp;
1680 
1681 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1682 
1683 	dp = iclog->ic_datap;
1684 	for (i = 0; i < BTOBB(size); i++) {
1685 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1686 			break;
1687 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1688 		*(__be32 *)dp = cycle_lsn;
1689 		dp += BBSIZE;
1690 	}
1691 
1692 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1693 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1694 
1695 		for ( ; i < BTOBB(size); i++) {
1696 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1697 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1698 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1699 			*(__be32 *)dp = cycle_lsn;
1700 			dp += BBSIZE;
1701 		}
1702 
1703 		for (i = 1; i < log->l_iclog_heads; i++)
1704 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1705 	}
1706 }
1707 
1708 /*
1709  * Calculate the checksum for a log buffer.
1710  *
1711  * This is a little more complicated than it should be because the various
1712  * headers and the actual data are non-contiguous.
1713  */
1714 __le32
1715 xlog_cksum(
1716 	struct xlog		*log,
1717 	struct xlog_rec_header	*rhead,
1718 	char			*dp,
1719 	int			size)
1720 {
1721 	uint32_t		crc;
1722 
1723 	/* first generate the crc for the record header ... */
1724 	crc = xfs_start_cksum_update((char *)rhead,
1725 			      sizeof(struct xlog_rec_header),
1726 			      offsetof(struct xlog_rec_header, h_crc));
1727 
1728 	/* ... then for additional cycle data for v2 logs ... */
1729 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1730 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1731 		int		i;
1732 		int		xheads;
1733 
1734 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1735 
1736 		for (i = 1; i < xheads; i++) {
1737 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1738 				     sizeof(struct xlog_rec_ext_header));
1739 		}
1740 	}
1741 
1742 	/* ... and finally for the payload */
1743 	crc = crc32c(crc, dp, size);
1744 
1745 	return xfs_end_cksum(crc);
1746 }
1747 
1748 static void
1749 xlog_bio_end_io(
1750 	struct bio		*bio)
1751 {
1752 	struct xlog_in_core	*iclog = bio->bi_private;
1753 
1754 	queue_work(iclog->ic_log->l_ioend_workqueue,
1755 		   &iclog->ic_end_io_work);
1756 }
1757 
1758 static int
1759 xlog_map_iclog_data(
1760 	struct bio		*bio,
1761 	void			*data,
1762 	size_t			count)
1763 {
1764 	do {
1765 		struct page	*page = kmem_to_page(data);
1766 		unsigned int	off = offset_in_page(data);
1767 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1768 
1769 		if (bio_add_page(bio, page, len, off) != len)
1770 			return -EIO;
1771 
1772 		data += len;
1773 		count -= len;
1774 	} while (count);
1775 
1776 	return 0;
1777 }
1778 
1779 STATIC void
1780 xlog_write_iclog(
1781 	struct xlog		*log,
1782 	struct xlog_in_core	*iclog,
1783 	uint64_t		bno,
1784 	unsigned int		count)
1785 {
1786 	ASSERT(bno < log->l_logBBsize);
1787 	trace_xlog_iclog_write(iclog, _RET_IP_);
1788 
1789 	/*
1790 	 * We lock the iclogbufs here so that we can serialise against I/O
1791 	 * completion during unmount.  We might be processing a shutdown
1792 	 * triggered during unmount, and that can occur asynchronously to the
1793 	 * unmount thread, and hence we need to ensure that completes before
1794 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1795 	 * across the log IO to archieve that.
1796 	 */
1797 	down(&iclog->ic_sema);
1798 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1799 		/*
1800 		 * It would seem logical to return EIO here, but we rely on
1801 		 * the log state machine to propagate I/O errors instead of
1802 		 * doing it here.  We kick of the state machine and unlock
1803 		 * the buffer manually, the code needs to be kept in sync
1804 		 * with the I/O completion path.
1805 		 */
1806 		xlog_state_done_syncing(iclog);
1807 		up(&iclog->ic_sema);
1808 		return;
1809 	}
1810 
1811 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1812 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1813 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1814 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1815 	iclog->ic_bio.bi_private = iclog;
1816 
1817 	/*
1818 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1819 	 * IOs coming immediately after this one. This prevents the block layer
1820 	 * writeback throttle from throttling log writes behind background
1821 	 * metadata writeback and causing priority inversions.
1822 	 */
1823 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1824 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1825 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1826 		/*
1827 		 * For external log devices, we also need to flush the data
1828 		 * device cache first to ensure all metadata writeback covered
1829 		 * by the LSN in this iclog is on stable storage. This is slow,
1830 		 * but it *must* complete before we issue the external log IO.
1831 		 */
1832 		if (log->l_targ != log->l_mp->m_ddev_targp)
1833 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1834 	}
1835 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1836 		iclog->ic_bio.bi_opf |= REQ_FUA;
1837 
1838 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1839 
1840 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1841 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1842 		return;
1843 	}
1844 	if (is_vmalloc_addr(iclog->ic_data))
1845 		flush_kernel_vmap_range(iclog->ic_data, count);
1846 
1847 	/*
1848 	 * If this log buffer would straddle the end of the log we will have
1849 	 * to split it up into two bios, so that we can continue at the start.
1850 	 */
1851 	if (bno + BTOBB(count) > log->l_logBBsize) {
1852 		struct bio *split;
1853 
1854 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1855 				  GFP_NOIO, &fs_bio_set);
1856 		bio_chain(split, &iclog->ic_bio);
1857 		submit_bio(split);
1858 
1859 		/* restart at logical offset zero for the remainder */
1860 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1861 	}
1862 
1863 	submit_bio(&iclog->ic_bio);
1864 }
1865 
1866 /*
1867  * We need to bump cycle number for the part of the iclog that is
1868  * written to the start of the log. Watch out for the header magic
1869  * number case, though.
1870  */
1871 static void
1872 xlog_split_iclog(
1873 	struct xlog		*log,
1874 	void			*data,
1875 	uint64_t		bno,
1876 	unsigned int		count)
1877 {
1878 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1879 	unsigned int		i;
1880 
1881 	for (i = split_offset; i < count; i += BBSIZE) {
1882 		uint32_t cycle = get_unaligned_be32(data + i);
1883 
1884 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1885 			cycle++;
1886 		put_unaligned_be32(cycle, data + i);
1887 	}
1888 }
1889 
1890 static int
1891 xlog_calc_iclog_size(
1892 	struct xlog		*log,
1893 	struct xlog_in_core	*iclog,
1894 	uint32_t		*roundoff)
1895 {
1896 	uint32_t		count_init, count;
1897 
1898 	/* Add for LR header */
1899 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1900 	count = roundup(count_init, log->l_iclog_roundoff);
1901 
1902 	*roundoff = count - count_init;
1903 
1904 	ASSERT(count >= count_init);
1905 	ASSERT(*roundoff < log->l_iclog_roundoff);
1906 	return count;
1907 }
1908 
1909 /*
1910  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1911  * fashion.  Previously, we should have moved the current iclog
1912  * ptr in the log to point to the next available iclog.  This allows further
1913  * write to continue while this code syncs out an iclog ready to go.
1914  * Before an in-core log can be written out, the data section must be scanned
1915  * to save away the 1st word of each BBSIZE block into the header.  We replace
1916  * it with the current cycle count.  Each BBSIZE block is tagged with the
1917  * cycle count because there in an implicit assumption that drives will
1918  * guarantee that entire 512 byte blocks get written at once.  In other words,
1919  * we can't have part of a 512 byte block written and part not written.  By
1920  * tagging each block, we will know which blocks are valid when recovering
1921  * after an unclean shutdown.
1922  *
1923  * This routine is single threaded on the iclog.  No other thread can be in
1924  * this routine with the same iclog.  Changing contents of iclog can there-
1925  * fore be done without grabbing the state machine lock.  Updating the global
1926  * log will require grabbing the lock though.
1927  *
1928  * The entire log manager uses a logical block numbering scheme.  Only
1929  * xlog_write_iclog knows about the fact that the log may not start with
1930  * block zero on a given device.
1931  */
1932 STATIC void
1933 xlog_sync(
1934 	struct xlog		*log,
1935 	struct xlog_in_core	*iclog)
1936 {
1937 	unsigned int		count;		/* byte count of bwrite */
1938 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1939 	uint64_t		bno;
1940 	unsigned int		size;
1941 
1942 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1943 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1944 
1945 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1946 
1947 	/* move grant heads by roundoff in sync */
1948 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1949 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1950 
1951 	/* put cycle number in every block */
1952 	xlog_pack_data(log, iclog, roundoff);
1953 
1954 	/* real byte length */
1955 	size = iclog->ic_offset;
1956 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1957 		size += roundoff;
1958 	iclog->ic_header.h_len = cpu_to_be32(size);
1959 
1960 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1961 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1962 
1963 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1964 
1965 	/* Do we need to split this write into 2 parts? */
1966 	if (bno + BTOBB(count) > log->l_logBBsize)
1967 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1968 
1969 	/* calculcate the checksum */
1970 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1971 					    iclog->ic_datap, size);
1972 	/*
1973 	 * Intentionally corrupt the log record CRC based on the error injection
1974 	 * frequency, if defined. This facilitates testing log recovery in the
1975 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1976 	 * write on I/O completion and shutdown the fs. The subsequent mount
1977 	 * detects the bad CRC and attempts to recover.
1978 	 */
1979 #ifdef DEBUG
1980 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1981 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1982 		iclog->ic_fail_crc = true;
1983 		xfs_warn(log->l_mp,
1984 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1985 			 be64_to_cpu(iclog->ic_header.h_lsn));
1986 	}
1987 #endif
1988 	xlog_verify_iclog(log, iclog, count);
1989 	xlog_write_iclog(log, iclog, bno, count);
1990 }
1991 
1992 /*
1993  * Deallocate a log structure
1994  */
1995 STATIC void
1996 xlog_dealloc_log(
1997 	struct xlog	*log)
1998 {
1999 	xlog_in_core_t	*iclog, *next_iclog;
2000 	int		i;
2001 
2002 	xlog_cil_destroy(log);
2003 
2004 	/*
2005 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2006 	 * is done before we tear down these buffers.
2007 	 */
2008 	iclog = log->l_iclog;
2009 	for (i = 0; i < log->l_iclog_bufs; i++) {
2010 		down(&iclog->ic_sema);
2011 		up(&iclog->ic_sema);
2012 		iclog = iclog->ic_next;
2013 	}
2014 
2015 	iclog = log->l_iclog;
2016 	for (i = 0; i < log->l_iclog_bufs; i++) {
2017 		next_iclog = iclog->ic_next;
2018 		kmem_free(iclog->ic_data);
2019 		kmem_free(iclog);
2020 		iclog = next_iclog;
2021 	}
2022 
2023 	log->l_mp->m_log = NULL;
2024 	destroy_workqueue(log->l_ioend_workqueue);
2025 	kmem_free(log);
2026 }
2027 
2028 /*
2029  * Update counters atomically now that memcpy is done.
2030  */
2031 static inline void
2032 xlog_state_finish_copy(
2033 	struct xlog		*log,
2034 	struct xlog_in_core	*iclog,
2035 	int			record_cnt,
2036 	int			copy_bytes)
2037 {
2038 	lockdep_assert_held(&log->l_icloglock);
2039 
2040 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2041 	iclog->ic_offset += copy_bytes;
2042 }
2043 
2044 /*
2045  * print out info relating to regions written which consume
2046  * the reservation
2047  */
2048 void
2049 xlog_print_tic_res(
2050 	struct xfs_mount	*mp,
2051 	struct xlog_ticket	*ticket)
2052 {
2053 	uint i;
2054 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2055 
2056 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2057 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2058 	static char *res_type_str[] = {
2059 	    REG_TYPE_STR(BFORMAT, "bformat"),
2060 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2061 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2062 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2063 	    REG_TYPE_STR(IFORMAT, "iformat"),
2064 	    REG_TYPE_STR(ICORE, "icore"),
2065 	    REG_TYPE_STR(IEXT, "iext"),
2066 	    REG_TYPE_STR(IBROOT, "ibroot"),
2067 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2068 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2069 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2070 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2071 	    REG_TYPE_STR(QFORMAT, "qformat"),
2072 	    REG_TYPE_STR(DQUOT, "dquot"),
2073 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2074 	    REG_TYPE_STR(LRHEADER, "LR header"),
2075 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2076 	    REG_TYPE_STR(COMMIT, "commit"),
2077 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2078 	    REG_TYPE_STR(ICREATE, "inode create"),
2079 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2080 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2081 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2082 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2083 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2084 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2085 	};
2086 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2087 #undef REG_TYPE_STR
2088 
2089 	xfs_warn(mp, "ticket reservation summary:");
2090 	xfs_warn(mp, "  unit res    = %d bytes",
2091 		 ticket->t_unit_res);
2092 	xfs_warn(mp, "  current res = %d bytes",
2093 		 ticket->t_curr_res);
2094 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2095 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2096 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2097 		 ticket->t_res_num_ophdrs, ophdr_spc);
2098 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2099 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2100 	xfs_warn(mp, "  num regions = %u",
2101 		 ticket->t_res_num);
2102 
2103 	for (i = 0; i < ticket->t_res_num; i++) {
2104 		uint r_type = ticket->t_res_arr[i].r_type;
2105 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2106 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2107 			    "bad-rtype" : res_type_str[r_type]),
2108 			    ticket->t_res_arr[i].r_len);
2109 	}
2110 }
2111 
2112 /*
2113  * Print a summary of the transaction.
2114  */
2115 void
2116 xlog_print_trans(
2117 	struct xfs_trans	*tp)
2118 {
2119 	struct xfs_mount	*mp = tp->t_mountp;
2120 	struct xfs_log_item	*lip;
2121 
2122 	/* dump core transaction and ticket info */
2123 	xfs_warn(mp, "transaction summary:");
2124 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2125 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2126 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2127 
2128 	xlog_print_tic_res(mp, tp->t_ticket);
2129 
2130 	/* dump each log item */
2131 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2132 		struct xfs_log_vec	*lv = lip->li_lv;
2133 		struct xfs_log_iovec	*vec;
2134 		int			i;
2135 
2136 		xfs_warn(mp, "log item: ");
2137 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2138 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2139 		if (!lv)
2140 			continue;
2141 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2142 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2143 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2144 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2145 
2146 		/* dump each iovec for the log item */
2147 		vec = lv->lv_iovecp;
2148 		for (i = 0; i < lv->lv_niovecs; i++) {
2149 			int dumplen = min(vec->i_len, 32);
2150 
2151 			xfs_warn(mp, "  iovec[%d]", i);
2152 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2153 			xfs_warn(mp, "    len	= %d", vec->i_len);
2154 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2155 			xfs_hex_dump(vec->i_addr, dumplen);
2156 
2157 			vec++;
2158 		}
2159 	}
2160 }
2161 
2162 /*
2163  * Calculate the potential space needed by the log vector.  We may need a start
2164  * record, and each region gets its own struct xlog_op_header and may need to be
2165  * double word aligned.
2166  */
2167 static int
2168 xlog_write_calc_vec_length(
2169 	struct xlog_ticket	*ticket,
2170 	struct xfs_log_vec	*log_vector,
2171 	uint			optype)
2172 {
2173 	struct xfs_log_vec	*lv;
2174 	int			headers = 0;
2175 	int			len = 0;
2176 	int			i;
2177 
2178 	if (optype & XLOG_START_TRANS)
2179 		headers++;
2180 
2181 	for (lv = log_vector; lv; lv = lv->lv_next) {
2182 		/* we don't write ordered log vectors */
2183 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2184 			continue;
2185 
2186 		headers += lv->lv_niovecs;
2187 
2188 		for (i = 0; i < lv->lv_niovecs; i++) {
2189 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2190 
2191 			len += vecp->i_len;
2192 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2193 		}
2194 	}
2195 
2196 	ticket->t_res_num_ophdrs += headers;
2197 	len += headers * sizeof(struct xlog_op_header);
2198 
2199 	return len;
2200 }
2201 
2202 static void
2203 xlog_write_start_rec(
2204 	struct xlog_op_header	*ophdr,
2205 	struct xlog_ticket	*ticket)
2206 {
2207 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2208 	ophdr->oh_clientid = ticket->t_clientid;
2209 	ophdr->oh_len = 0;
2210 	ophdr->oh_flags = XLOG_START_TRANS;
2211 	ophdr->oh_res2 = 0;
2212 }
2213 
2214 static xlog_op_header_t *
2215 xlog_write_setup_ophdr(
2216 	struct xlog		*log,
2217 	struct xlog_op_header	*ophdr,
2218 	struct xlog_ticket	*ticket,
2219 	uint			flags)
2220 {
2221 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2222 	ophdr->oh_clientid = ticket->t_clientid;
2223 	ophdr->oh_res2 = 0;
2224 
2225 	/* are we copying a commit or unmount record? */
2226 	ophdr->oh_flags = flags;
2227 
2228 	/*
2229 	 * We've seen logs corrupted with bad transaction client ids.  This
2230 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2231 	 * and shut down the filesystem.
2232 	 */
2233 	switch (ophdr->oh_clientid)  {
2234 	case XFS_TRANSACTION:
2235 	case XFS_VOLUME:
2236 	case XFS_LOG:
2237 		break;
2238 	default:
2239 		xfs_warn(log->l_mp,
2240 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2241 			ophdr->oh_clientid, ticket);
2242 		return NULL;
2243 	}
2244 
2245 	return ophdr;
2246 }
2247 
2248 /*
2249  * Set up the parameters of the region copy into the log. This has
2250  * to handle region write split across multiple log buffers - this
2251  * state is kept external to this function so that this code can
2252  * be written in an obvious, self documenting manner.
2253  */
2254 static int
2255 xlog_write_setup_copy(
2256 	struct xlog_ticket	*ticket,
2257 	struct xlog_op_header	*ophdr,
2258 	int			space_available,
2259 	int			space_required,
2260 	int			*copy_off,
2261 	int			*copy_len,
2262 	int			*last_was_partial_copy,
2263 	int			*bytes_consumed)
2264 {
2265 	int			still_to_copy;
2266 
2267 	still_to_copy = space_required - *bytes_consumed;
2268 	*copy_off = *bytes_consumed;
2269 
2270 	if (still_to_copy <= space_available) {
2271 		/* write of region completes here */
2272 		*copy_len = still_to_copy;
2273 		ophdr->oh_len = cpu_to_be32(*copy_len);
2274 		if (*last_was_partial_copy)
2275 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2276 		*last_was_partial_copy = 0;
2277 		*bytes_consumed = 0;
2278 		return 0;
2279 	}
2280 
2281 	/* partial write of region, needs extra log op header reservation */
2282 	*copy_len = space_available;
2283 	ophdr->oh_len = cpu_to_be32(*copy_len);
2284 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2285 	if (*last_was_partial_copy)
2286 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2287 	*bytes_consumed += *copy_len;
2288 	(*last_was_partial_copy)++;
2289 
2290 	/* account for new log op header */
2291 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2292 	ticket->t_res_num_ophdrs++;
2293 
2294 	return sizeof(struct xlog_op_header);
2295 }
2296 
2297 static int
2298 xlog_write_copy_finish(
2299 	struct xlog		*log,
2300 	struct xlog_in_core	*iclog,
2301 	uint			flags,
2302 	int			*record_cnt,
2303 	int			*data_cnt,
2304 	int			*partial_copy,
2305 	int			*partial_copy_len,
2306 	int			log_offset,
2307 	struct xlog_in_core	**commit_iclog)
2308 {
2309 	int			error;
2310 
2311 	if (*partial_copy) {
2312 		/*
2313 		 * This iclog has already been marked WANT_SYNC by
2314 		 * xlog_state_get_iclog_space.
2315 		 */
2316 		spin_lock(&log->l_icloglock);
2317 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2318 		*record_cnt = 0;
2319 		*data_cnt = 0;
2320 		goto release_iclog;
2321 	}
2322 
2323 	*partial_copy = 0;
2324 	*partial_copy_len = 0;
2325 
2326 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2327 		/* no more space in this iclog - push it. */
2328 		spin_lock(&log->l_icloglock);
2329 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2330 		*record_cnt = 0;
2331 		*data_cnt = 0;
2332 
2333 		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2334 			xlog_state_switch_iclogs(log, iclog, 0);
2335 		else
2336 			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2337 			       iclog->ic_state == XLOG_STATE_IOERROR);
2338 		if (!commit_iclog)
2339 			goto release_iclog;
2340 		spin_unlock(&log->l_icloglock);
2341 		ASSERT(flags & XLOG_COMMIT_TRANS);
2342 		*commit_iclog = iclog;
2343 	}
2344 
2345 	return 0;
2346 
2347 release_iclog:
2348 	error = xlog_state_release_iclog(log, iclog, 0);
2349 	spin_unlock(&log->l_icloglock);
2350 	return error;
2351 }
2352 
2353 /*
2354  * Write some region out to in-core log
2355  *
2356  * This will be called when writing externally provided regions or when
2357  * writing out a commit record for a given transaction.
2358  *
2359  * General algorithm:
2360  *	1. Find total length of this write.  This may include adding to the
2361  *		lengths passed in.
2362  *	2. Check whether we violate the tickets reservation.
2363  *	3. While writing to this iclog
2364  *	    A. Reserve as much space in this iclog as can get
2365  *	    B. If this is first write, save away start lsn
2366  *	    C. While writing this region:
2367  *		1. If first write of transaction, write start record
2368  *		2. Write log operation header (header per region)
2369  *		3. Find out if we can fit entire region into this iclog
2370  *		4. Potentially, verify destination memcpy ptr
2371  *		5. Memcpy (partial) region
2372  *		6. If partial copy, release iclog; otherwise, continue
2373  *			copying more regions into current iclog
2374  *	4. Mark want sync bit (in simulation mode)
2375  *	5. Release iclog for potential flush to on-disk log.
2376  *
2377  * ERRORS:
2378  * 1.	Panic if reservation is overrun.  This should never happen since
2379  *	reservation amounts are generated internal to the filesystem.
2380  * NOTES:
2381  * 1. Tickets are single threaded data structures.
2382  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2383  *	syncing routine.  When a single log_write region needs to span
2384  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2385  *	on all log operation writes which don't contain the end of the
2386  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2387  *	operation which contains the end of the continued log_write region.
2388  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2389  *	we don't really know exactly how much space will be used.  As a result,
2390  *	we don't update ic_offset until the end when we know exactly how many
2391  *	bytes have been written out.
2392  */
2393 int
2394 xlog_write(
2395 	struct xlog		*log,
2396 	struct xfs_log_vec	*log_vector,
2397 	struct xlog_ticket	*ticket,
2398 	xfs_lsn_t		*start_lsn,
2399 	struct xlog_in_core	**commit_iclog,
2400 	uint			optype)
2401 {
2402 	struct xlog_in_core	*iclog = NULL;
2403 	struct xfs_log_vec	*lv = log_vector;
2404 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2405 	int			index = 0;
2406 	int			len;
2407 	int			partial_copy = 0;
2408 	int			partial_copy_len = 0;
2409 	int			contwr = 0;
2410 	int			record_cnt = 0;
2411 	int			data_cnt = 0;
2412 	int			error = 0;
2413 
2414 	/*
2415 	 * If this is a commit or unmount transaction, we don't need a start
2416 	 * record to be written.  We do, however, have to account for the
2417 	 * commit or unmount header that gets written. Hence we always have
2418 	 * to account for an extra xlog_op_header here.
2419 	 */
2420 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2421 	if (ticket->t_curr_res < 0) {
2422 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2423 		     "ctx ticket reservation ran out. Need to up reservation");
2424 		xlog_print_tic_res(log->l_mp, ticket);
2425 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2426 	}
2427 
2428 	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2429 	if (start_lsn)
2430 		*start_lsn = 0;
2431 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2432 		void		*ptr;
2433 		int		log_offset;
2434 
2435 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2436 						   &contwr, &log_offset);
2437 		if (error)
2438 			return error;
2439 
2440 		ASSERT(log_offset <= iclog->ic_size - 1);
2441 		ptr = iclog->ic_datap + log_offset;
2442 
2443 		/* Start_lsn is the first lsn written to. */
2444 		if (start_lsn && !*start_lsn)
2445 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2446 
2447 		/*
2448 		 * This loop writes out as many regions as can fit in the amount
2449 		 * of space which was allocated by xlog_state_get_iclog_space().
2450 		 */
2451 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2452 			struct xfs_log_iovec	*reg;
2453 			struct xlog_op_header	*ophdr;
2454 			int			copy_len;
2455 			int			copy_off;
2456 			bool			ordered = false;
2457 			bool			wrote_start_rec = false;
2458 
2459 			/* ordered log vectors have no regions to write */
2460 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2461 				ASSERT(lv->lv_niovecs == 0);
2462 				ordered = true;
2463 				goto next_lv;
2464 			}
2465 
2466 			reg = &vecp[index];
2467 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2468 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2469 
2470 			/*
2471 			 * Before we start formatting log vectors, we need to
2472 			 * write a start record. Only do this for the first
2473 			 * iclog we write to.
2474 			 */
2475 			if (optype & XLOG_START_TRANS) {
2476 				xlog_write_start_rec(ptr, ticket);
2477 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478 						sizeof(struct xlog_op_header));
2479 				optype &= ~XLOG_START_TRANS;
2480 				wrote_start_rec = true;
2481 			}
2482 
2483 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2484 			if (!ophdr)
2485 				return -EIO;
2486 
2487 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488 					   sizeof(struct xlog_op_header));
2489 
2490 			len += xlog_write_setup_copy(ticket, ophdr,
2491 						     iclog->ic_size-log_offset,
2492 						     reg->i_len,
2493 						     &copy_off, &copy_len,
2494 						     &partial_copy,
2495 						     &partial_copy_len);
2496 			xlog_verify_dest_ptr(log, ptr);
2497 
2498 			/*
2499 			 * Copy region.
2500 			 *
2501 			 * Unmount records just log an opheader, so can have
2502 			 * empty payloads with no data region to copy. Hence we
2503 			 * only copy the payload if the vector says it has data
2504 			 * to copy.
2505 			 */
2506 			ASSERT(copy_len >= 0);
2507 			if (copy_len > 0) {
2508 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510 						   copy_len);
2511 			}
2512 			copy_len += sizeof(struct xlog_op_header);
2513 			record_cnt++;
2514 			if (wrote_start_rec) {
2515 				copy_len += sizeof(struct xlog_op_header);
2516 				record_cnt++;
2517 			}
2518 			data_cnt += contwr ? copy_len : 0;
2519 
2520 			error = xlog_write_copy_finish(log, iclog, optype,
2521 						       &record_cnt, &data_cnt,
2522 						       &partial_copy,
2523 						       &partial_copy_len,
2524 						       log_offset,
2525 						       commit_iclog);
2526 			if (error)
2527 				return error;
2528 
2529 			/*
2530 			 * if we had a partial copy, we need to get more iclog
2531 			 * space but we don't want to increment the region
2532 			 * index because there is still more is this region to
2533 			 * write.
2534 			 *
2535 			 * If we completed writing this region, and we flushed
2536 			 * the iclog (indicated by resetting of the record
2537 			 * count), then we also need to get more log space. If
2538 			 * this was the last record, though, we are done and
2539 			 * can just return.
2540 			 */
2541 			if (partial_copy)
2542 				break;
2543 
2544 			if (++index == lv->lv_niovecs) {
2545 next_lv:
2546 				lv = lv->lv_next;
2547 				index = 0;
2548 				if (lv)
2549 					vecp = lv->lv_iovecp;
2550 			}
2551 			if (record_cnt == 0 && !ordered) {
2552 				if (!lv)
2553 					return 0;
2554 				break;
2555 			}
2556 		}
2557 	}
2558 
2559 	ASSERT(len == 0);
2560 
2561 	spin_lock(&log->l_icloglock);
2562 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2563 	if (commit_iclog) {
2564 		ASSERT(optype & XLOG_COMMIT_TRANS);
2565 		*commit_iclog = iclog;
2566 	} else {
2567 		error = xlog_state_release_iclog(log, iclog, 0);
2568 	}
2569 	spin_unlock(&log->l_icloglock);
2570 
2571 	return error;
2572 }
2573 
2574 static void
2575 xlog_state_activate_iclog(
2576 	struct xlog_in_core	*iclog,
2577 	int			*iclogs_changed)
2578 {
2579 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2580 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2581 
2582 	/*
2583 	 * If the number of ops in this iclog indicate it just contains the
2584 	 * dummy transaction, we can change state into IDLE (the second time
2585 	 * around). Otherwise we should change the state into NEED a dummy.
2586 	 * We don't need to cover the dummy.
2587 	 */
2588 	if (*iclogs_changed == 0 &&
2589 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2590 		*iclogs_changed = 1;
2591 	} else {
2592 		/*
2593 		 * We have two dirty iclogs so start over.  This could also be
2594 		 * num of ops indicating this is not the dummy going out.
2595 		 */
2596 		*iclogs_changed = 2;
2597 	}
2598 
2599 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2600 	iclog->ic_offset = 0;
2601 	iclog->ic_header.h_num_logops = 0;
2602 	memset(iclog->ic_header.h_cycle_data, 0,
2603 		sizeof(iclog->ic_header.h_cycle_data));
2604 	iclog->ic_header.h_lsn = 0;
2605 	iclog->ic_header.h_tail_lsn = 0;
2606 }
2607 
2608 /*
2609  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2610  * ACTIVE after iclog I/O has completed.
2611  */
2612 static void
2613 xlog_state_activate_iclogs(
2614 	struct xlog		*log,
2615 	int			*iclogs_changed)
2616 {
2617 	struct xlog_in_core	*iclog = log->l_iclog;
2618 
2619 	do {
2620 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2621 			xlog_state_activate_iclog(iclog, iclogs_changed);
2622 		/*
2623 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2624 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2625 		 */
2626 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2627 			break;
2628 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2629 }
2630 
2631 static int
2632 xlog_covered_state(
2633 	int			prev_state,
2634 	int			iclogs_changed)
2635 {
2636 	/*
2637 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2638 	 * wrote the first covering record (DONE). We go to IDLE if we just
2639 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2640 	 * non-covering write occurs.
2641 	 */
2642 	switch (prev_state) {
2643 	case XLOG_STATE_COVER_IDLE:
2644 		if (iclogs_changed == 1)
2645 			return XLOG_STATE_COVER_IDLE;
2646 		fallthrough;
2647 	case XLOG_STATE_COVER_NEED:
2648 	case XLOG_STATE_COVER_NEED2:
2649 		break;
2650 	case XLOG_STATE_COVER_DONE:
2651 		if (iclogs_changed == 1)
2652 			return XLOG_STATE_COVER_NEED2;
2653 		break;
2654 	case XLOG_STATE_COVER_DONE2:
2655 		if (iclogs_changed == 1)
2656 			return XLOG_STATE_COVER_IDLE;
2657 		break;
2658 	default:
2659 		ASSERT(0);
2660 	}
2661 
2662 	return XLOG_STATE_COVER_NEED;
2663 }
2664 
2665 STATIC void
2666 xlog_state_clean_iclog(
2667 	struct xlog		*log,
2668 	struct xlog_in_core	*dirty_iclog)
2669 {
2670 	int			iclogs_changed = 0;
2671 
2672 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2673 
2674 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2675 
2676 	xlog_state_activate_iclogs(log, &iclogs_changed);
2677 	wake_up_all(&dirty_iclog->ic_force_wait);
2678 
2679 	if (iclogs_changed) {
2680 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2681 				iclogs_changed);
2682 	}
2683 }
2684 
2685 STATIC xfs_lsn_t
2686 xlog_get_lowest_lsn(
2687 	struct xlog		*log)
2688 {
2689 	struct xlog_in_core	*iclog = log->l_iclog;
2690 	xfs_lsn_t		lowest_lsn = 0, lsn;
2691 
2692 	do {
2693 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2694 		    iclog->ic_state == XLOG_STATE_DIRTY)
2695 			continue;
2696 
2697 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2698 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2699 			lowest_lsn = lsn;
2700 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2701 
2702 	return lowest_lsn;
2703 }
2704 
2705 /*
2706  * Completion of a iclog IO does not imply that a transaction has completed, as
2707  * transactions can be large enough to span many iclogs. We cannot change the
2708  * tail of the log half way through a transaction as this may be the only
2709  * transaction in the log and moving the tail to point to the middle of it
2710  * will prevent recovery from finding the start of the transaction. Hence we
2711  * should only update the last_sync_lsn if this iclog contains transaction
2712  * completion callbacks on it.
2713  *
2714  * We have to do this before we drop the icloglock to ensure we are the only one
2715  * that can update it.
2716  *
2717  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2718  * the reservation grant head pushing. This is due to the fact that the push
2719  * target is bound by the current last_sync_lsn value. Hence if we have a large
2720  * amount of log space bound up in this committing transaction then the
2721  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2722  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2723  * should push the AIL to ensure the push target (and hence the grant head) is
2724  * no longer bound by the old log head location and can move forwards and make
2725  * progress again.
2726  */
2727 static void
2728 xlog_state_set_callback(
2729 	struct xlog		*log,
2730 	struct xlog_in_core	*iclog,
2731 	xfs_lsn_t		header_lsn)
2732 {
2733 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2734 	iclog->ic_state = XLOG_STATE_CALLBACK;
2735 
2736 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737 			   header_lsn) <= 0);
2738 
2739 	if (list_empty_careful(&iclog->ic_callbacks))
2740 		return;
2741 
2742 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743 	xlog_grant_push_ail(log, 0);
2744 }
2745 
2746 /*
2747  * Return true if we need to stop processing, false to continue to the next
2748  * iclog. The caller will need to run callbacks if the iclog is returned in the
2749  * XLOG_STATE_CALLBACK state.
2750  */
2751 static bool
2752 xlog_state_iodone_process_iclog(
2753 	struct xlog		*log,
2754 	struct xlog_in_core	*iclog,
2755 	bool			*ioerror)
2756 {
2757 	xfs_lsn_t		lowest_lsn;
2758 	xfs_lsn_t		header_lsn;
2759 
2760 	switch (iclog->ic_state) {
2761 	case XLOG_STATE_ACTIVE:
2762 	case XLOG_STATE_DIRTY:
2763 		/*
2764 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2765 		 */
2766 		return false;
2767 	case XLOG_STATE_IOERROR:
2768 		/*
2769 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2770 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2771 		 * error). So, we do want things to go smoothly in case of just
2772 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2773 		 */
2774 		*ioerror = true;
2775 		return false;
2776 	case XLOG_STATE_DONE_SYNC:
2777 		/*
2778 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2779 		 * one more check here to see if we have chased our tail around.
2780 		 * If this is not the lowest lsn iclog, then we will leave it
2781 		 * for another completion to process.
2782 		 */
2783 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784 		lowest_lsn = xlog_get_lowest_lsn(log);
2785 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786 			return false;
2787 		xlog_state_set_callback(log, iclog, header_lsn);
2788 		return false;
2789 	default:
2790 		/*
2791 		 * Can only perform callbacks in order.  Since this iclog is not
2792 		 * in the DONE_SYNC state, we skip the rest and just try to
2793 		 * clean up.
2794 		 */
2795 		return true;
2796 	}
2797 }
2798 
2799 STATIC void
2800 xlog_state_do_callback(
2801 	struct xlog		*log)
2802 {
2803 	struct xlog_in_core	*iclog;
2804 	struct xlog_in_core	*first_iclog;
2805 	bool			cycled_icloglock;
2806 	bool			ioerror;
2807 	int			flushcnt = 0;
2808 	int			repeats = 0;
2809 
2810 	spin_lock(&log->l_icloglock);
2811 	do {
2812 		/*
2813 		 * Scan all iclogs starting with the one pointed to by the
2814 		 * log.  Reset this starting point each time the log is
2815 		 * unlocked (during callbacks).
2816 		 *
2817 		 * Keep looping through iclogs until one full pass is made
2818 		 * without running any callbacks.
2819 		 */
2820 		first_iclog = log->l_iclog;
2821 		iclog = log->l_iclog;
2822 		cycled_icloglock = false;
2823 		ioerror = false;
2824 		repeats++;
2825 
2826 		do {
2827 			LIST_HEAD(cb_list);
2828 
2829 			if (xlog_state_iodone_process_iclog(log, iclog,
2830 							&ioerror))
2831 				break;
2832 
2833 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2834 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2835 				iclog = iclog->ic_next;
2836 				continue;
2837 			}
2838 			list_splice_init(&iclog->ic_callbacks, &cb_list);
2839 			spin_unlock(&log->l_icloglock);
2840 
2841 			trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2842 			xlog_cil_process_committed(&cb_list);
2843 			trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2844 			cycled_icloglock = true;
2845 
2846 			spin_lock(&log->l_icloglock);
2847 			if (XLOG_FORCED_SHUTDOWN(log))
2848 				wake_up_all(&iclog->ic_force_wait);
2849 			else
2850 				xlog_state_clean_iclog(log, iclog);
2851 			iclog = iclog->ic_next;
2852 		} while (first_iclog != iclog);
2853 
2854 		if (repeats > 5000) {
2855 			flushcnt += repeats;
2856 			repeats = 0;
2857 			xfs_warn(log->l_mp,
2858 				"%s: possible infinite loop (%d iterations)",
2859 				__func__, flushcnt);
2860 		}
2861 	} while (!ioerror && cycled_icloglock);
2862 
2863 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2864 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2865 		wake_up_all(&log->l_flush_wait);
2866 
2867 	spin_unlock(&log->l_icloglock);
2868 }
2869 
2870 
2871 /*
2872  * Finish transitioning this iclog to the dirty state.
2873  *
2874  * Make sure that we completely execute this routine only when this is
2875  * the last call to the iclog.  There is a good chance that iclog flushes,
2876  * when we reach the end of the physical log, get turned into 2 separate
2877  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2878  * routine.  By using the reference count bwritecnt, we guarantee that only
2879  * the second completion goes through.
2880  *
2881  * Callbacks could take time, so they are done outside the scope of the
2882  * global state machine log lock.
2883  */
2884 STATIC void
2885 xlog_state_done_syncing(
2886 	struct xlog_in_core	*iclog)
2887 {
2888 	struct xlog		*log = iclog->ic_log;
2889 
2890 	spin_lock(&log->l_icloglock);
2891 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2892 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2893 
2894 	/*
2895 	 * If we got an error, either on the first buffer, or in the case of
2896 	 * split log writes, on the second, we shut down the file system and
2897 	 * no iclogs should ever be attempted to be written to disk again.
2898 	 */
2899 	if (!XLOG_FORCED_SHUTDOWN(log)) {
2900 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2901 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2902 	}
2903 
2904 	/*
2905 	 * Someone could be sleeping prior to writing out the next
2906 	 * iclog buffer, we wake them all, one will get to do the
2907 	 * I/O, the others get to wait for the result.
2908 	 */
2909 	wake_up_all(&iclog->ic_write_wait);
2910 	spin_unlock(&log->l_icloglock);
2911 	xlog_state_do_callback(log);
2912 }
2913 
2914 /*
2915  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2916  * sleep.  We wait on the flush queue on the head iclog as that should be
2917  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2918  * we will wait here and all new writes will sleep until a sync completes.
2919  *
2920  * The in-core logs are used in a circular fashion. They are not used
2921  * out-of-order even when an iclog past the head is free.
2922  *
2923  * return:
2924  *	* log_offset where xlog_write() can start writing into the in-core
2925  *		log's data space.
2926  *	* in-core log pointer to which xlog_write() should write.
2927  *	* boolean indicating this is a continued write to an in-core log.
2928  *		If this is the last write, then the in-core log's offset field
2929  *		needs to be incremented, depending on the amount of data which
2930  *		is copied.
2931  */
2932 STATIC int
2933 xlog_state_get_iclog_space(
2934 	struct xlog		*log,
2935 	int			len,
2936 	struct xlog_in_core	**iclogp,
2937 	struct xlog_ticket	*ticket,
2938 	int			*continued_write,
2939 	int			*logoffsetp)
2940 {
2941 	int		  log_offset;
2942 	xlog_rec_header_t *head;
2943 	xlog_in_core_t	  *iclog;
2944 
2945 restart:
2946 	spin_lock(&log->l_icloglock);
2947 	if (XLOG_FORCED_SHUTDOWN(log)) {
2948 		spin_unlock(&log->l_icloglock);
2949 		return -EIO;
2950 	}
2951 
2952 	iclog = log->l_iclog;
2953 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2954 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2955 
2956 		/* Wait for log writes to have flushed */
2957 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2958 		goto restart;
2959 	}
2960 
2961 	head = &iclog->ic_header;
2962 
2963 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2964 	log_offset = iclog->ic_offset;
2965 
2966 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2967 
2968 	/* On the 1st write to an iclog, figure out lsn.  This works
2969 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2970 	 * committing to.  If the offset is set, that's how many blocks
2971 	 * must be written.
2972 	 */
2973 	if (log_offset == 0) {
2974 		ticket->t_curr_res -= log->l_iclog_hsize;
2975 		xlog_tic_add_region(ticket,
2976 				    log->l_iclog_hsize,
2977 				    XLOG_REG_TYPE_LRHEADER);
2978 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2979 		head->h_lsn = cpu_to_be64(
2980 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2981 		ASSERT(log->l_curr_block >= 0);
2982 	}
2983 
2984 	/* If there is enough room to write everything, then do it.  Otherwise,
2985 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2986 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2987 	 * until you know exactly how many bytes get copied.  Therefore, wait
2988 	 * until later to update ic_offset.
2989 	 *
2990 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2991 	 * can fit into remaining data section.
2992 	 */
2993 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2994 		int		error = 0;
2995 
2996 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997 
2998 		/*
2999 		 * If we are the only one writing to this iclog, sync it to
3000 		 * disk.  We need to do an atomic compare and decrement here to
3001 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3002 		 * xlog_state_release_iclog() when there is more than one
3003 		 * reference to the iclog.
3004 		 */
3005 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3006 			error = xlog_state_release_iclog(log, iclog, 0);
3007 		spin_unlock(&log->l_icloglock);
3008 		if (error)
3009 			return error;
3010 		goto restart;
3011 	}
3012 
3013 	/* Do we have enough room to write the full amount in the remainder
3014 	 * of this iclog?  Or must we continue a write on the next iclog and
3015 	 * mark this iclog as completely taken?  In the case where we switch
3016 	 * iclogs (to mark it taken), this particular iclog will release/sync
3017 	 * to disk in xlog_write().
3018 	 */
3019 	if (len <= iclog->ic_size - iclog->ic_offset) {
3020 		*continued_write = 0;
3021 		iclog->ic_offset += len;
3022 	} else {
3023 		*continued_write = 1;
3024 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3025 	}
3026 	*iclogp = iclog;
3027 
3028 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3029 	spin_unlock(&log->l_icloglock);
3030 
3031 	*logoffsetp = log_offset;
3032 	return 0;
3033 }
3034 
3035 /*
3036  * The first cnt-1 times a ticket goes through here we don't need to move the
3037  * grant write head because the permanent reservation has reserved cnt times the
3038  * unit amount.  Release part of current permanent unit reservation and reset
3039  * current reservation to be one units worth.  Also move grant reservation head
3040  * forward.
3041  */
3042 void
3043 xfs_log_ticket_regrant(
3044 	struct xlog		*log,
3045 	struct xlog_ticket	*ticket)
3046 {
3047 	trace_xfs_log_ticket_regrant(log, ticket);
3048 
3049 	if (ticket->t_cnt > 0)
3050 		ticket->t_cnt--;
3051 
3052 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3053 					ticket->t_curr_res);
3054 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3055 					ticket->t_curr_res);
3056 	ticket->t_curr_res = ticket->t_unit_res;
3057 	xlog_tic_reset_res(ticket);
3058 
3059 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3060 
3061 	/* just return if we still have some of the pre-reserved space */
3062 	if (!ticket->t_cnt) {
3063 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3064 				     ticket->t_unit_res);
3065 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3066 
3067 		ticket->t_curr_res = ticket->t_unit_res;
3068 		xlog_tic_reset_res(ticket);
3069 	}
3070 
3071 	xfs_log_ticket_put(ticket);
3072 }
3073 
3074 /*
3075  * Give back the space left from a reservation.
3076  *
3077  * All the information we need to make a correct determination of space left
3078  * is present.  For non-permanent reservations, things are quite easy.  The
3079  * count should have been decremented to zero.  We only need to deal with the
3080  * space remaining in the current reservation part of the ticket.  If the
3081  * ticket contains a permanent reservation, there may be left over space which
3082  * needs to be released.  A count of N means that N-1 refills of the current
3083  * reservation can be done before we need to ask for more space.  The first
3084  * one goes to fill up the first current reservation.  Once we run out of
3085  * space, the count will stay at zero and the only space remaining will be
3086  * in the current reservation field.
3087  */
3088 void
3089 xfs_log_ticket_ungrant(
3090 	struct xlog		*log,
3091 	struct xlog_ticket	*ticket)
3092 {
3093 	int			bytes;
3094 
3095 	trace_xfs_log_ticket_ungrant(log, ticket);
3096 
3097 	if (ticket->t_cnt > 0)
3098 		ticket->t_cnt--;
3099 
3100 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3101 
3102 	/*
3103 	 * If this is a permanent reservation ticket, we may be able to free
3104 	 * up more space based on the remaining count.
3105 	 */
3106 	bytes = ticket->t_curr_res;
3107 	if (ticket->t_cnt > 0) {
3108 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3109 		bytes += ticket->t_unit_res*ticket->t_cnt;
3110 	}
3111 
3112 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3113 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3114 
3115 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3116 
3117 	xfs_log_space_wake(log->l_mp);
3118 	xfs_log_ticket_put(ticket);
3119 }
3120 
3121 /*
3122  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3123  * the current iclog pointer to the next iclog in the ring.
3124  */
3125 STATIC void
3126 xlog_state_switch_iclogs(
3127 	struct xlog		*log,
3128 	struct xlog_in_core	*iclog,
3129 	int			eventual_size)
3130 {
3131 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3132 	assert_spin_locked(&log->l_icloglock);
3133 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3134 
3135 	if (!eventual_size)
3136 		eventual_size = iclog->ic_offset;
3137 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3138 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3139 	log->l_prev_block = log->l_curr_block;
3140 	log->l_prev_cycle = log->l_curr_cycle;
3141 
3142 	/* roll log?: ic_offset changed later */
3143 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3144 
3145 	/* Round up to next log-sunit */
3146 	if (log->l_iclog_roundoff > BBSIZE) {
3147 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3148 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3149 	}
3150 
3151 	if (log->l_curr_block >= log->l_logBBsize) {
3152 		/*
3153 		 * Rewind the current block before the cycle is bumped to make
3154 		 * sure that the combined LSN never transiently moves forward
3155 		 * when the log wraps to the next cycle. This is to support the
3156 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3157 		 * other cases should acquire l_icloglock.
3158 		 */
3159 		log->l_curr_block -= log->l_logBBsize;
3160 		ASSERT(log->l_curr_block >= 0);
3161 		smp_wmb();
3162 		log->l_curr_cycle++;
3163 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3164 			log->l_curr_cycle++;
3165 	}
3166 	ASSERT(iclog == log->l_iclog);
3167 	log->l_iclog = iclog->ic_next;
3168 }
3169 
3170 /*
3171  * Force the iclog to disk and check if the iclog has been completed before
3172  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3173  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3174  * If completion has already occurred, tell the caller so that it can avoid an
3175  * unnecessary wait on the iclog.
3176  */
3177 static int
3178 xlog_force_and_check_iclog(
3179 	struct xlog_in_core	*iclog,
3180 	bool			*completed)
3181 {
3182 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3183 	int			error;
3184 
3185 	*completed = false;
3186 	error = xlog_force_iclog(iclog);
3187 	if (error)
3188 		return error;
3189 
3190 	/*
3191 	 * If the iclog has already been completed and reused the header LSN
3192 	 * will have been rewritten by completion
3193 	 */
3194 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3195 		*completed = true;
3196 	return 0;
3197 }
3198 
3199 /*
3200  * Write out all data in the in-core log as of this exact moment in time.
3201  *
3202  * Data may be written to the in-core log during this call.  However,
3203  * we don't guarantee this data will be written out.  A change from past
3204  * implementation means this routine will *not* write out zero length LRs.
3205  *
3206  * Basically, we try and perform an intelligent scan of the in-core logs.
3207  * If we determine there is no flushable data, we just return.  There is no
3208  * flushable data if:
3209  *
3210  *	1. the current iclog is active and has no data; the previous iclog
3211  *		is in the active or dirty state.
3212  *	2. the current iclog is drity, and the previous iclog is in the
3213  *		active or dirty state.
3214  *
3215  * We may sleep if:
3216  *
3217  *	1. the current iclog is not in the active nor dirty state.
3218  *	2. the current iclog dirty, and the previous iclog is not in the
3219  *		active nor dirty state.
3220  *	3. the current iclog is active, and there is another thread writing
3221  *		to this particular iclog.
3222  *	4. a) the current iclog is active and has no other writers
3223  *	   b) when we return from flushing out this iclog, it is still
3224  *		not in the active nor dirty state.
3225  */
3226 int
3227 xfs_log_force(
3228 	struct xfs_mount	*mp,
3229 	uint			flags)
3230 {
3231 	struct xlog		*log = mp->m_log;
3232 	struct xlog_in_core	*iclog;
3233 
3234 	XFS_STATS_INC(mp, xs_log_force);
3235 	trace_xfs_log_force(mp, 0, _RET_IP_);
3236 
3237 	xlog_cil_force(log);
3238 
3239 	spin_lock(&log->l_icloglock);
3240 	iclog = log->l_iclog;
3241 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3242 		goto out_error;
3243 
3244 	trace_xlog_iclog_force(iclog, _RET_IP_);
3245 
3246 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3247 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3248 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3249 		/*
3250 		 * If the head is dirty or (active and empty), then we need to
3251 		 * look at the previous iclog.
3252 		 *
3253 		 * If the previous iclog is active or dirty we are done.  There
3254 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3255 		 * previous iclog and go to sleep.
3256 		 */
3257 		iclog = iclog->ic_prev;
3258 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3259 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3260 			/* We have exclusive access to this iclog. */
3261 			bool	completed;
3262 
3263 			if (xlog_force_and_check_iclog(iclog, &completed))
3264 				goto out_error;
3265 
3266 			if (completed)
3267 				goto out_unlock;
3268 		} else {
3269 			/*
3270 			 * Someone else is still writing to this iclog, so we
3271 			 * need to ensure that when they release the iclog it
3272 			 * gets synced immediately as we may be waiting on it.
3273 			 */
3274 			xlog_state_switch_iclogs(log, iclog, 0);
3275 		}
3276 	}
3277 
3278 	/*
3279 	 * The iclog we are about to wait on may contain the checkpoint pushed
3280 	 * by the above xlog_cil_force() call, but it may not have been pushed
3281 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3282 	 * are flushed when this iclog is written.
3283 	 */
3284 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3285 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3286 
3287 	if (flags & XFS_LOG_SYNC)
3288 		return xlog_wait_on_iclog(iclog);
3289 out_unlock:
3290 	spin_unlock(&log->l_icloglock);
3291 	return 0;
3292 out_error:
3293 	spin_unlock(&log->l_icloglock);
3294 	return -EIO;
3295 }
3296 
3297 static int
3298 xlog_force_lsn(
3299 	struct xlog		*log,
3300 	xfs_lsn_t		lsn,
3301 	uint			flags,
3302 	int			*log_flushed,
3303 	bool			already_slept)
3304 {
3305 	struct xlog_in_core	*iclog;
3306 	bool			completed;
3307 
3308 	spin_lock(&log->l_icloglock);
3309 	iclog = log->l_iclog;
3310 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3311 		goto out_error;
3312 
3313 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3314 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3315 		iclog = iclog->ic_next;
3316 		if (iclog == log->l_iclog)
3317 			goto out_unlock;
3318 	}
3319 
3320 	switch (iclog->ic_state) {
3321 	case XLOG_STATE_ACTIVE:
3322 		/*
3323 		 * We sleep here if we haven't already slept (e.g. this is the
3324 		 * first time we've looked at the correct iclog buf) and the
3325 		 * buffer before us is going to be sync'ed.  The reason for this
3326 		 * is that if we are doing sync transactions here, by waiting
3327 		 * for the previous I/O to complete, we can allow a few more
3328 		 * transactions into this iclog before we close it down.
3329 		 *
3330 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3331 		 * refcnt so we can release the log (which drops the ref count).
3332 		 * The state switch keeps new transaction commits from using
3333 		 * this buffer.  When the current commits finish writing into
3334 		 * the buffer, the refcount will drop to zero and the buffer
3335 		 * will go out then.
3336 		 */
3337 		if (!already_slept &&
3338 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3339 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3340 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3341 					&log->l_icloglock);
3342 			return -EAGAIN;
3343 		}
3344 		if (xlog_force_and_check_iclog(iclog, &completed))
3345 			goto out_error;
3346 		if (log_flushed)
3347 			*log_flushed = 1;
3348 		if (completed)
3349 			goto out_unlock;
3350 		break;
3351 	case XLOG_STATE_WANT_SYNC:
3352 		/*
3353 		 * This iclog may contain the checkpoint pushed by the
3354 		 * xlog_cil_force_seq() call, but there are other writers still
3355 		 * accessing it so it hasn't been pushed to disk yet. Like the
3356 		 * ACTIVE case above, we need to make sure caches are flushed
3357 		 * when this iclog is written.
3358 		 */
3359 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3360 		break;
3361 	default:
3362 		/*
3363 		 * The entire checkpoint was written by the CIL force and is on
3364 		 * its way to disk already. It will be stable when it
3365 		 * completes, so we don't need to manipulate caches here at all.
3366 		 * We just need to wait for completion if necessary.
3367 		 */
3368 		break;
3369 	}
3370 
3371 	if (flags & XFS_LOG_SYNC)
3372 		return xlog_wait_on_iclog(iclog);
3373 out_unlock:
3374 	spin_unlock(&log->l_icloglock);
3375 	return 0;
3376 out_error:
3377 	spin_unlock(&log->l_icloglock);
3378 	return -EIO;
3379 }
3380 
3381 /*
3382  * Force the in-core log to disk for a specific LSN.
3383  *
3384  * Find in-core log with lsn.
3385  *	If it is in the DIRTY state, just return.
3386  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3387  *		state and go to sleep or return.
3388  *	If it is in any other state, go to sleep or return.
3389  *
3390  * Synchronous forces are implemented with a wait queue.  All callers trying
3391  * to force a given lsn to disk must wait on the queue attached to the
3392  * specific in-core log.  When given in-core log finally completes its write
3393  * to disk, that thread will wake up all threads waiting on the queue.
3394  */
3395 int
3396 xfs_log_force_seq(
3397 	struct xfs_mount	*mp,
3398 	xfs_csn_t		seq,
3399 	uint			flags,
3400 	int			*log_flushed)
3401 {
3402 	struct xlog		*log = mp->m_log;
3403 	xfs_lsn_t		lsn;
3404 	int			ret;
3405 	ASSERT(seq != 0);
3406 
3407 	XFS_STATS_INC(mp, xs_log_force);
3408 	trace_xfs_log_force(mp, seq, _RET_IP_);
3409 
3410 	lsn = xlog_cil_force_seq(log, seq);
3411 	if (lsn == NULLCOMMITLSN)
3412 		return 0;
3413 
3414 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3415 	if (ret == -EAGAIN) {
3416 		XFS_STATS_INC(mp, xs_log_force_sleep);
3417 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3418 	}
3419 	return ret;
3420 }
3421 
3422 /*
3423  * Free a used ticket when its refcount falls to zero.
3424  */
3425 void
3426 xfs_log_ticket_put(
3427 	xlog_ticket_t	*ticket)
3428 {
3429 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3430 	if (atomic_dec_and_test(&ticket->t_ref))
3431 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3432 }
3433 
3434 xlog_ticket_t *
3435 xfs_log_ticket_get(
3436 	xlog_ticket_t	*ticket)
3437 {
3438 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3439 	atomic_inc(&ticket->t_ref);
3440 	return ticket;
3441 }
3442 
3443 /*
3444  * Figure out the total log space unit (in bytes) that would be
3445  * required for a log ticket.
3446  */
3447 static int
3448 xlog_calc_unit_res(
3449 	struct xlog		*log,
3450 	int			unit_bytes)
3451 {
3452 	int			iclog_space;
3453 	uint			num_headers;
3454 
3455 	/*
3456 	 * Permanent reservations have up to 'cnt'-1 active log operations
3457 	 * in the log.  A unit in this case is the amount of space for one
3458 	 * of these log operations.  Normal reservations have a cnt of 1
3459 	 * and their unit amount is the total amount of space required.
3460 	 *
3461 	 * The following lines of code account for non-transaction data
3462 	 * which occupy space in the on-disk log.
3463 	 *
3464 	 * Normal form of a transaction is:
3465 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3466 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3467 	 *
3468 	 * We need to account for all the leadup data and trailer data
3469 	 * around the transaction data.
3470 	 * And then we need to account for the worst case in terms of using
3471 	 * more space.
3472 	 * The worst case will happen if:
3473 	 * - the placement of the transaction happens to be such that the
3474 	 *   roundoff is at its maximum
3475 	 * - the transaction data is synced before the commit record is synced
3476 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3477 	 *   Therefore the commit record is in its own Log Record.
3478 	 *   This can happen as the commit record is called with its
3479 	 *   own region to xlog_write().
3480 	 *   This then means that in the worst case, roundoff can happen for
3481 	 *   the commit-rec as well.
3482 	 *   The commit-rec is smaller than padding in this scenario and so it is
3483 	 *   not added separately.
3484 	 */
3485 
3486 	/* for trans header */
3487 	unit_bytes += sizeof(xlog_op_header_t);
3488 	unit_bytes += sizeof(xfs_trans_header_t);
3489 
3490 	/* for start-rec */
3491 	unit_bytes += sizeof(xlog_op_header_t);
3492 
3493 	/*
3494 	 * for LR headers - the space for data in an iclog is the size minus
3495 	 * the space used for the headers. If we use the iclog size, then we
3496 	 * undercalculate the number of headers required.
3497 	 *
3498 	 * Furthermore - the addition of op headers for split-recs might
3499 	 * increase the space required enough to require more log and op
3500 	 * headers, so take that into account too.
3501 	 *
3502 	 * IMPORTANT: This reservation makes the assumption that if this
3503 	 * transaction is the first in an iclog and hence has the LR headers
3504 	 * accounted to it, then the remaining space in the iclog is
3505 	 * exclusively for this transaction.  i.e. if the transaction is larger
3506 	 * than the iclog, it will be the only thing in that iclog.
3507 	 * Fundamentally, this means we must pass the entire log vector to
3508 	 * xlog_write to guarantee this.
3509 	 */
3510 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3511 	num_headers = howmany(unit_bytes, iclog_space);
3512 
3513 	/* for split-recs - ophdrs added when data split over LRs */
3514 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3515 
3516 	/* add extra header reservations if we overrun */
3517 	while (!num_headers ||
3518 	       howmany(unit_bytes, iclog_space) > num_headers) {
3519 		unit_bytes += sizeof(xlog_op_header_t);
3520 		num_headers++;
3521 	}
3522 	unit_bytes += log->l_iclog_hsize * num_headers;
3523 
3524 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3525 	unit_bytes += log->l_iclog_hsize;
3526 
3527 	/* roundoff padding for transaction data and one for commit record */
3528 	unit_bytes += 2 * log->l_iclog_roundoff;
3529 
3530 	return unit_bytes;
3531 }
3532 
3533 int
3534 xfs_log_calc_unit_res(
3535 	struct xfs_mount	*mp,
3536 	int			unit_bytes)
3537 {
3538 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3539 }
3540 
3541 /*
3542  * Allocate and initialise a new log ticket.
3543  */
3544 struct xlog_ticket *
3545 xlog_ticket_alloc(
3546 	struct xlog		*log,
3547 	int			unit_bytes,
3548 	int			cnt,
3549 	char			client,
3550 	bool			permanent)
3551 {
3552 	struct xlog_ticket	*tic;
3553 	int			unit_res;
3554 
3555 	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3556 
3557 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3558 
3559 	atomic_set(&tic->t_ref, 1);
3560 	tic->t_task		= current;
3561 	INIT_LIST_HEAD(&tic->t_queue);
3562 	tic->t_unit_res		= unit_res;
3563 	tic->t_curr_res		= unit_res;
3564 	tic->t_cnt		= cnt;
3565 	tic->t_ocnt		= cnt;
3566 	tic->t_tid		= prandom_u32();
3567 	tic->t_clientid		= client;
3568 	if (permanent)
3569 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3570 
3571 	xlog_tic_reset_res(tic);
3572 
3573 	return tic;
3574 }
3575 
3576 #if defined(DEBUG)
3577 /*
3578  * Make sure that the destination ptr is within the valid data region of
3579  * one of the iclogs.  This uses backup pointers stored in a different
3580  * part of the log in case we trash the log structure.
3581  */
3582 STATIC void
3583 xlog_verify_dest_ptr(
3584 	struct xlog	*log,
3585 	void		*ptr)
3586 {
3587 	int i;
3588 	int good_ptr = 0;
3589 
3590 	for (i = 0; i < log->l_iclog_bufs; i++) {
3591 		if (ptr >= log->l_iclog_bak[i] &&
3592 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3593 			good_ptr++;
3594 	}
3595 
3596 	if (!good_ptr)
3597 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3598 }
3599 
3600 /*
3601  * Check to make sure the grant write head didn't just over lap the tail.  If
3602  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3603  * the cycles differ by exactly one and check the byte count.
3604  *
3605  * This check is run unlocked, so can give false positives. Rather than assert
3606  * on failures, use a warn-once flag and a panic tag to allow the admin to
3607  * determine if they want to panic the machine when such an error occurs. For
3608  * debug kernels this will have the same effect as using an assert but, unlinke
3609  * an assert, it can be turned off at runtime.
3610  */
3611 STATIC void
3612 xlog_verify_grant_tail(
3613 	struct xlog	*log)
3614 {
3615 	int		tail_cycle, tail_blocks;
3616 	int		cycle, space;
3617 
3618 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3619 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3620 	if (tail_cycle != cycle) {
3621 		if (cycle - 1 != tail_cycle &&
3622 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3623 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3624 				"%s: cycle - 1 != tail_cycle", __func__);
3625 			log->l_flags |= XLOG_TAIL_WARN;
3626 		}
3627 
3628 		if (space > BBTOB(tail_blocks) &&
3629 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3630 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3631 				"%s: space > BBTOB(tail_blocks)", __func__);
3632 			log->l_flags |= XLOG_TAIL_WARN;
3633 		}
3634 	}
3635 }
3636 
3637 /* check if it will fit */
3638 STATIC void
3639 xlog_verify_tail_lsn(
3640 	struct xlog		*log,
3641 	struct xlog_in_core	*iclog)
3642 {
3643 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3644 	int		blocks;
3645 
3646     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3647 	blocks =
3648 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3649 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3650 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3651     } else {
3652 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3653 
3654 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3655 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3656 
3657 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3658 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3659 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3660     }
3661 }
3662 
3663 /*
3664  * Perform a number of checks on the iclog before writing to disk.
3665  *
3666  * 1. Make sure the iclogs are still circular
3667  * 2. Make sure we have a good magic number
3668  * 3. Make sure we don't have magic numbers in the data
3669  * 4. Check fields of each log operation header for:
3670  *	A. Valid client identifier
3671  *	B. tid ptr value falls in valid ptr space (user space code)
3672  *	C. Length in log record header is correct according to the
3673  *		individual operation headers within record.
3674  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3675  *	log, check the preceding blocks of the physical log to make sure all
3676  *	the cycle numbers agree with the current cycle number.
3677  */
3678 STATIC void
3679 xlog_verify_iclog(
3680 	struct xlog		*log,
3681 	struct xlog_in_core	*iclog,
3682 	int			count)
3683 {
3684 	xlog_op_header_t	*ophead;
3685 	xlog_in_core_t		*icptr;
3686 	xlog_in_core_2_t	*xhdr;
3687 	void			*base_ptr, *ptr, *p;
3688 	ptrdiff_t		field_offset;
3689 	uint8_t			clientid;
3690 	int			len, i, j, k, op_len;
3691 	int			idx;
3692 
3693 	/* check validity of iclog pointers */
3694 	spin_lock(&log->l_icloglock);
3695 	icptr = log->l_iclog;
3696 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3697 		ASSERT(icptr);
3698 
3699 	if (icptr != log->l_iclog)
3700 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3701 	spin_unlock(&log->l_icloglock);
3702 
3703 	/* check log magic numbers */
3704 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3705 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3706 
3707 	base_ptr = ptr = &iclog->ic_header;
3708 	p = &iclog->ic_header;
3709 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3710 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3711 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3712 				__func__);
3713 	}
3714 
3715 	/* check fields */
3716 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3717 	base_ptr = ptr = iclog->ic_datap;
3718 	ophead = ptr;
3719 	xhdr = iclog->ic_data;
3720 	for (i = 0; i < len; i++) {
3721 		ophead = ptr;
3722 
3723 		/* clientid is only 1 byte */
3724 		p = &ophead->oh_clientid;
3725 		field_offset = p - base_ptr;
3726 		if (field_offset & 0x1ff) {
3727 			clientid = ophead->oh_clientid;
3728 		} else {
3729 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3730 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3731 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3732 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3733 				clientid = xlog_get_client_id(
3734 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3735 			} else {
3736 				clientid = xlog_get_client_id(
3737 					iclog->ic_header.h_cycle_data[idx]);
3738 			}
3739 		}
3740 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3741 			xfs_warn(log->l_mp,
3742 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3743 				__func__, clientid, ophead,
3744 				(unsigned long)field_offset);
3745 
3746 		/* check length */
3747 		p = &ophead->oh_len;
3748 		field_offset = p - base_ptr;
3749 		if (field_offset & 0x1ff) {
3750 			op_len = be32_to_cpu(ophead->oh_len);
3751 		} else {
3752 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3753 				    (uintptr_t)iclog->ic_datap);
3754 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3755 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3756 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3757 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3758 			} else {
3759 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3760 			}
3761 		}
3762 		ptr += sizeof(xlog_op_header_t) + op_len;
3763 	}
3764 }
3765 #endif
3766 
3767 /*
3768  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3769  */
3770 STATIC int
3771 xlog_state_ioerror(
3772 	struct xlog	*log)
3773 {
3774 	xlog_in_core_t	*iclog, *ic;
3775 
3776 	iclog = log->l_iclog;
3777 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3778 		/*
3779 		 * Mark all the incore logs IOERROR.
3780 		 * From now on, no log flushes will result.
3781 		 */
3782 		ic = iclog;
3783 		do {
3784 			ic->ic_state = XLOG_STATE_IOERROR;
3785 			ic = ic->ic_next;
3786 		} while (ic != iclog);
3787 		return 0;
3788 	}
3789 	/*
3790 	 * Return non-zero, if state transition has already happened.
3791 	 */
3792 	return 1;
3793 }
3794 
3795 /*
3796  * This is called from xfs_force_shutdown, when we're forcibly
3797  * shutting down the filesystem, typically because of an IO error.
3798  * Our main objectives here are to make sure that:
3799  *	a. if !logerror, flush the logs to disk. Anything modified
3800  *	   after this is ignored.
3801  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3802  *	   parties to find out, 'atomically'.
3803  *	c. those who're sleeping on log reservations, pinned objects and
3804  *	    other resources get woken up, and be told the bad news.
3805  *	d. nothing new gets queued up after (b) and (c) are done.
3806  *
3807  * Note: for the !logerror case we need to flush the regions held in memory out
3808  * to disk first. This needs to be done before the log is marked as shutdown,
3809  * otherwise the iclog writes will fail.
3810  */
3811 int
3812 xfs_log_force_umount(
3813 	struct xfs_mount	*mp,
3814 	int			logerror)
3815 {
3816 	struct xlog	*log;
3817 	int		retval;
3818 
3819 	log = mp->m_log;
3820 
3821 	/*
3822 	 * If this happens during log recovery, don't worry about
3823 	 * locking; the log isn't open for business yet.
3824 	 */
3825 	if (!log ||
3826 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3827 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3828 		if (mp->m_sb_bp)
3829 			mp->m_sb_bp->b_flags |= XBF_DONE;
3830 		return 0;
3831 	}
3832 
3833 	/*
3834 	 * Somebody could've already done the hard work for us.
3835 	 * No need to get locks for this.
3836 	 */
3837 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3838 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3839 		return 1;
3840 	}
3841 
3842 	/*
3843 	 * Flush all the completed transactions to disk before marking the log
3844 	 * being shut down. We need to do it in this order to ensure that
3845 	 * completed operations are safely on disk before we shut down, and that
3846 	 * we don't have to issue any buffer IO after the shutdown flags are set
3847 	 * to guarantee this.
3848 	 */
3849 	if (!logerror)
3850 		xfs_log_force(mp, XFS_LOG_SYNC);
3851 
3852 	/*
3853 	 * mark the filesystem and the as in a shutdown state and wake
3854 	 * everybody up to tell them the bad news.
3855 	 */
3856 	spin_lock(&log->l_icloglock);
3857 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3858 	if (mp->m_sb_bp)
3859 		mp->m_sb_bp->b_flags |= XBF_DONE;
3860 
3861 	/*
3862 	 * Mark the log and the iclogs with IO error flags to prevent any
3863 	 * further log IO from being issued or completed.
3864 	 */
3865 	log->l_flags |= XLOG_IO_ERROR;
3866 	retval = xlog_state_ioerror(log);
3867 	spin_unlock(&log->l_icloglock);
3868 
3869 	/*
3870 	 * We don't want anybody waiting for log reservations after this. That
3871 	 * means we have to wake up everybody queued up on reserveq as well as
3872 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3873 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3874 	 * action is protected by the grant locks.
3875 	 */
3876 	xlog_grant_head_wake_all(&log->l_reserve_head);
3877 	xlog_grant_head_wake_all(&log->l_write_head);
3878 
3879 	/*
3880 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3881 	 * as if the log writes were completed. The abort handling in the log
3882 	 * item committed callback functions will do this again under lock to
3883 	 * avoid races.
3884 	 */
3885 	spin_lock(&log->l_cilp->xc_push_lock);
3886 	wake_up_all(&log->l_cilp->xc_commit_wait);
3887 	spin_unlock(&log->l_cilp->xc_push_lock);
3888 	xlog_state_do_callback(log);
3889 
3890 	/* return non-zero if log IOERROR transition had already happened */
3891 	return retval;
3892 }
3893 
3894 STATIC int
3895 xlog_iclogs_empty(
3896 	struct xlog	*log)
3897 {
3898 	xlog_in_core_t	*iclog;
3899 
3900 	iclog = log->l_iclog;
3901 	do {
3902 		/* endianness does not matter here, zero is zero in
3903 		 * any language.
3904 		 */
3905 		if (iclog->ic_header.h_num_logops)
3906 			return 0;
3907 		iclog = iclog->ic_next;
3908 	} while (iclog != log->l_iclog);
3909 	return 1;
3910 }
3911 
3912 /*
3913  * Verify that an LSN stamped into a piece of metadata is valid. This is
3914  * intended for use in read verifiers on v5 superblocks.
3915  */
3916 bool
3917 xfs_log_check_lsn(
3918 	struct xfs_mount	*mp,
3919 	xfs_lsn_t		lsn)
3920 {
3921 	struct xlog		*log = mp->m_log;
3922 	bool			valid;
3923 
3924 	/*
3925 	 * norecovery mode skips mount-time log processing and unconditionally
3926 	 * resets the in-core LSN. We can't validate in this mode, but
3927 	 * modifications are not allowed anyways so just return true.
3928 	 */
3929 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3930 		return true;
3931 
3932 	/*
3933 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3934 	 * handled by recovery and thus safe to ignore here.
3935 	 */
3936 	if (lsn == NULLCOMMITLSN)
3937 		return true;
3938 
3939 	valid = xlog_valid_lsn(mp->m_log, lsn);
3940 
3941 	/* warn the user about what's gone wrong before verifier failure */
3942 	if (!valid) {
3943 		spin_lock(&log->l_icloglock);
3944 		xfs_warn(mp,
3945 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3946 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3947 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3948 			 log->l_curr_cycle, log->l_curr_block);
3949 		spin_unlock(&log->l_icloglock);
3950 	}
3951 
3952 	return valid;
3953 }
3954 
3955 bool
3956 xfs_log_in_recovery(
3957 	struct xfs_mount	*mp)
3958 {
3959 	struct xlog		*log = mp->m_log;
3960 
3961 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3962 }
3963