xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 94c7b6fc)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	char			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return XFS_ERROR(EIO);
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return XFS_ERROR(EIO);
381 
382 	XFS_STATS_INC(xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return XFS_ERROR(EIO);
450 
451 	XFS_STATS_INC(xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return XFS_ERROR(ENOMEM);
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	uint			flags)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 			flags |= XFS_LOG_REL_PERM_RESERV;
531 		}
532 	}
533 
534 
535 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
537 		trace_xfs_log_done_nonperm(log, ticket);
538 
539 		/*
540 		 * Release ticket if not permanent reservation or a specific
541 		 * request has been made to release a permanent reservation.
542 		 */
543 		xlog_ungrant_log_space(log, ticket);
544 		xfs_log_ticket_put(ticket);
545 	} else {
546 		trace_xfs_log_done_perm(log, ticket);
547 
548 		xlog_regrant_reserve_log_space(log, ticket);
549 		/* If this ticket was a permanent reservation and we aren't
550 		 * trying to release it, reset the inited flags; so next time
551 		 * we write, a start record will be written out.
552 		 */
553 		ticket->t_flags |= XLOG_TIC_INITED;
554 	}
555 
556 	return lsn;
557 }
558 
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567 	struct xfs_mount	*mp,
568 	struct xlog_in_core	*iclog,
569 	xfs_log_callback_t	*cb)
570 {
571 	int	abortflg;
572 
573 	spin_lock(&iclog->ic_callback_lock);
574 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 	if (!abortflg) {
576 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 		cb->cb_next = NULL;
579 		*(iclog->ic_callback_tail) = cb;
580 		iclog->ic_callback_tail = &(cb->cb_next);
581 	}
582 	spin_unlock(&iclog->ic_callback_lock);
583 	return abortflg;
584 }
585 
586 int
587 xfs_log_release_iclog(
588 	struct xfs_mount	*mp,
589 	struct xlog_in_core	*iclog)
590 {
591 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 		return EIO;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * Mount a log filesystem
601  *
602  * mp		- ubiquitous xfs mount point structure
603  * log_target	- buftarg of on-disk log device
604  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks	- Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611 	xfs_mount_t	*mp,
612 	xfs_buftarg_t	*log_target,
613 	xfs_daddr_t	blk_offset,
614 	int		num_bblks)
615 {
616 	int		error = 0;
617 	int		min_logfsbs;
618 
619 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620 		xfs_notice(mp, "Mounting V%d Filesystem",
621 			   XFS_SB_VERSION_NUM(&mp->m_sb));
622 	} else {
623 		xfs_notice(mp,
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 			   XFS_SB_VERSION_NUM(&mp->m_sb));
626 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 	}
628 
629 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 	if (IS_ERR(mp->m_log)) {
631 		error = -PTR_ERR(mp->m_log);
632 		goto out;
633 	}
634 
635 	/*
636 	 * Validate the given log space and drop a critical message via syslog
637 	 * if the log size is too small that would lead to some unexpected
638 	 * situations in transaction log space reservation stage.
639 	 *
640 	 * Note: we can't just reject the mount if the validation fails.  This
641 	 * would mean that people would have to downgrade their kernel just to
642 	 * remedy the situation as there is no way to grow the log (short of
643 	 * black magic surgery with xfs_db).
644 	 *
645 	 * We can, however, reject mounts for CRC format filesystems, as the
646 	 * mkfs binary being used to make the filesystem should never create a
647 	 * filesystem with a log that is too small.
648 	 */
649 	min_logfsbs = xfs_log_calc_minimum_size(mp);
650 
651 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too small, minimum size is %d blocks",
654 			 mp->m_sb.sb_logblocks, min_logfsbs);
655 		error = EINVAL;
656 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 		xfs_warn(mp,
658 		"Log size %d blocks too large, maximum size is %lld blocks",
659 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 		error = EINVAL;
661 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 		xfs_warn(mp,
663 		"log size %lld bytes too large, maximum size is %lld bytes",
664 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 			 XFS_MAX_LOG_BYTES);
666 		error = EINVAL;
667 	}
668 	if (error) {
669 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 			ASSERT(0);
672 			goto out_free_log;
673 		}
674 		xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677 	}
678 
679 	/*
680 	 * Initialize the AIL now we have a log.
681 	 */
682 	error = xfs_trans_ail_init(mp);
683 	if (error) {
684 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 		goto out_free_log;
686 	}
687 	mp->m_log->l_ailp = mp->m_ail;
688 
689 	/*
690 	 * skip log recovery on a norecovery mount.  pretend it all
691 	 * just worked.
692 	 */
693 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695 
696 		if (readonly)
697 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
698 
699 		error = xlog_recover(mp->m_log);
700 
701 		if (readonly)
702 			mp->m_flags |= XFS_MOUNT_RDONLY;
703 		if (error) {
704 			xfs_warn(mp, "log mount/recovery failed: error %d",
705 				error);
706 			goto out_destroy_ail;
707 		}
708 	}
709 
710 	/* Normal transactions can now occur */
711 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
712 
713 	/*
714 	 * Now the log has been fully initialised and we know were our
715 	 * space grant counters are, we can initialise the permanent ticket
716 	 * needed for delayed logging to work.
717 	 */
718 	xlog_cil_init_post_recovery(mp->m_log);
719 
720 	return 0;
721 
722 out_destroy_ail:
723 	xfs_trans_ail_destroy(mp);
724 out_free_log:
725 	xlog_dealloc_log(mp->m_log);
726 out:
727 	return error;
728 }
729 
730 /*
731  * Finish the recovery of the file system.  This is separate from the
732  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734  * here.
735  *
736  * If we finish recovery successfully, start the background log work. If we are
737  * not doing recovery, then we have a RO filesystem and we don't need to start
738  * it.
739  */
740 int
741 xfs_log_mount_finish(xfs_mount_t *mp)
742 {
743 	int	error = 0;
744 
745 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
746 		error = xlog_recover_finish(mp->m_log);
747 		if (!error)
748 			xfs_log_work_queue(mp);
749 	} else {
750 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 	}
752 
753 
754 	return error;
755 }
756 
757 /*
758  * Final log writes as part of unmount.
759  *
760  * Mark the filesystem clean as unmount happens.  Note that during relocation
761  * this routine needs to be executed as part of source-bag while the
762  * deallocation must not be done until source-end.
763  */
764 
765 /*
766  * Unmount record used to have a string "Unmount filesystem--" in the
767  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768  * We just write the magic number now since that particular field isn't
769  * currently architecture converted and "Unmount" is a bit foo.
770  * As far as I know, there weren't any dependencies on the old behaviour.
771  */
772 
773 int
774 xfs_log_unmount_write(xfs_mount_t *mp)
775 {
776 	struct xlog	 *log = mp->m_log;
777 	xlog_in_core_t	 *iclog;
778 #ifdef DEBUG
779 	xlog_in_core_t	 *first_iclog;
780 #endif
781 	xlog_ticket_t	*tic = NULL;
782 	xfs_lsn_t	 lsn;
783 	int		 error;
784 
785 	/*
786 	 * Don't write out unmount record on read-only mounts.
787 	 * Or, if we are doing a forced umount (typically because of IO errors).
788 	 */
789 	if (mp->m_flags & XFS_MOUNT_RDONLY)
790 		return 0;
791 
792 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
793 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
794 
795 #ifdef DEBUG
796 	first_iclog = iclog = log->l_iclog;
797 	do {
798 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
799 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
800 			ASSERT(iclog->ic_offset == 0);
801 		}
802 		iclog = iclog->ic_next;
803 	} while (iclog != first_iclog);
804 #endif
805 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
806 		error = xfs_log_reserve(mp, 600, 1, &tic,
807 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
808 		if (!error) {
809 			/* the data section must be 32 bit size aligned */
810 			struct {
811 			    __uint16_t magic;
812 			    __uint16_t pad1;
813 			    __uint32_t pad2; /* may as well make it 64 bits */
814 			} magic = {
815 				.magic = XLOG_UNMOUNT_TYPE,
816 			};
817 			struct xfs_log_iovec reg = {
818 				.i_addr = &magic,
819 				.i_len = sizeof(magic),
820 				.i_type = XLOG_REG_TYPE_UNMOUNT,
821 			};
822 			struct xfs_log_vec vec = {
823 				.lv_niovecs = 1,
824 				.lv_iovecp = &reg,
825 			};
826 
827 			/* remove inited flag, and account for space used */
828 			tic->t_flags = 0;
829 			tic->t_curr_res -= sizeof(magic);
830 			error = xlog_write(log, &vec, tic, &lsn,
831 					   NULL, XLOG_UNMOUNT_TRANS);
832 			/*
833 			 * At this point, we're umounting anyway,
834 			 * so there's no point in transitioning log state
835 			 * to IOERROR. Just continue...
836 			 */
837 		}
838 
839 		if (error)
840 			xfs_alert(mp, "%s: unmount record failed", __func__);
841 
842 
843 		spin_lock(&log->l_icloglock);
844 		iclog = log->l_iclog;
845 		atomic_inc(&iclog->ic_refcnt);
846 		xlog_state_want_sync(log, iclog);
847 		spin_unlock(&log->l_icloglock);
848 		error = xlog_state_release_iclog(log, iclog);
849 
850 		spin_lock(&log->l_icloglock);
851 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
852 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
853 			if (!XLOG_FORCED_SHUTDOWN(log)) {
854 				xlog_wait(&iclog->ic_force_wait,
855 							&log->l_icloglock);
856 			} else {
857 				spin_unlock(&log->l_icloglock);
858 			}
859 		} else {
860 			spin_unlock(&log->l_icloglock);
861 		}
862 		if (tic) {
863 			trace_xfs_log_umount_write(log, tic);
864 			xlog_ungrant_log_space(log, tic);
865 			xfs_log_ticket_put(tic);
866 		}
867 	} else {
868 		/*
869 		 * We're already in forced_shutdown mode, couldn't
870 		 * even attempt to write out the unmount transaction.
871 		 *
872 		 * Go through the motions of sync'ing and releasing
873 		 * the iclog, even though no I/O will actually happen,
874 		 * we need to wait for other log I/Os that may already
875 		 * be in progress.  Do this as a separate section of
876 		 * code so we'll know if we ever get stuck here that
877 		 * we're in this odd situation of trying to unmount
878 		 * a file system that went into forced_shutdown as
879 		 * the result of an unmount..
880 		 */
881 		spin_lock(&log->l_icloglock);
882 		iclog = log->l_iclog;
883 		atomic_inc(&iclog->ic_refcnt);
884 
885 		xlog_state_want_sync(log, iclog);
886 		spin_unlock(&log->l_icloglock);
887 		error =  xlog_state_release_iclog(log, iclog);
888 
889 		spin_lock(&log->l_icloglock);
890 
891 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
892 			|| iclog->ic_state == XLOG_STATE_DIRTY
893 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
894 
895 				xlog_wait(&iclog->ic_force_wait,
896 							&log->l_icloglock);
897 		} else {
898 			spin_unlock(&log->l_icloglock);
899 		}
900 	}
901 
902 	return error;
903 }	/* xfs_log_unmount_write */
904 
905 /*
906  * Empty the log for unmount/freeze.
907  *
908  * To do this, we first need to shut down the background log work so it is not
909  * trying to cover the log as we clean up. We then need to unpin all objects in
910  * the log so we can then flush them out. Once they have completed their IO and
911  * run the callbacks removing themselves from the AIL, we can write the unmount
912  * record.
913  */
914 void
915 xfs_log_quiesce(
916 	struct xfs_mount	*mp)
917 {
918 	cancel_delayed_work_sync(&mp->m_log->l_work);
919 	xfs_log_force(mp, XFS_LOG_SYNC);
920 
921 	/*
922 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 	 * xfs_buf_iowait() cannot be used because it was pushed with the
925 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 	 * the IO to complete.
927 	 */
928 	xfs_ail_push_all_sync(mp->m_ail);
929 	xfs_wait_buftarg(mp->m_ddev_targp);
930 	xfs_buf_lock(mp->m_sb_bp);
931 	xfs_buf_unlock(mp->m_sb_bp);
932 
933 	xfs_log_unmount_write(mp);
934 }
935 
936 /*
937  * Shut down and release the AIL and Log.
938  *
939  * During unmount, we need to ensure we flush all the dirty metadata objects
940  * from the AIL so that the log is empty before we write the unmount record to
941  * the log. Once this is done, we can tear down the AIL and the log.
942  */
943 void
944 xfs_log_unmount(
945 	struct xfs_mount	*mp)
946 {
947 	xfs_log_quiesce(mp);
948 
949 	xfs_trans_ail_destroy(mp);
950 	xlog_dealloc_log(mp->m_log);
951 }
952 
953 void
954 xfs_log_item_init(
955 	struct xfs_mount	*mp,
956 	struct xfs_log_item	*item,
957 	int			type,
958 	const struct xfs_item_ops *ops)
959 {
960 	item->li_mountp = mp;
961 	item->li_ailp = mp->m_ail;
962 	item->li_type = type;
963 	item->li_ops = ops;
964 	item->li_lv = NULL;
965 
966 	INIT_LIST_HEAD(&item->li_ail);
967 	INIT_LIST_HEAD(&item->li_cil);
968 }
969 
970 /*
971  * Wake up processes waiting for log space after we have moved the log tail.
972  */
973 void
974 xfs_log_space_wake(
975 	struct xfs_mount	*mp)
976 {
977 	struct xlog		*log = mp->m_log;
978 	int			free_bytes;
979 
980 	if (XLOG_FORCED_SHUTDOWN(log))
981 		return;
982 
983 	if (!list_empty_careful(&log->l_write_head.waiters)) {
984 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
985 
986 		spin_lock(&log->l_write_head.lock);
987 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
988 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
989 		spin_unlock(&log->l_write_head.lock);
990 	}
991 
992 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
993 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994 
995 		spin_lock(&log->l_reserve_head.lock);
996 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
997 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
998 		spin_unlock(&log->l_reserve_head.lock);
999 	}
1000 }
1001 
1002 /*
1003  * Determine if we have a transaction that has gone to disk that needs to be
1004  * covered. To begin the transition to the idle state firstly the log needs to
1005  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1006  * we start attempting to cover the log.
1007  *
1008  * Only if we are then in a state where covering is needed, the caller is
1009  * informed that dummy transactions are required to move the log into the idle
1010  * state.
1011  *
1012  * If there are any items in the AIl or CIL, then we do not want to attempt to
1013  * cover the log as we may be in a situation where there isn't log space
1014  * available to run a dummy transaction and this can lead to deadlocks when the
1015  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1016  * there's no point in running a dummy transaction at this point because we
1017  * can't start trying to idle the log until both the CIL and AIL are empty.
1018  */
1019 int
1020 xfs_log_need_covered(xfs_mount_t *mp)
1021 {
1022 	struct xlog	*log = mp->m_log;
1023 	int		needed = 0;
1024 
1025 	if (!xfs_fs_writable(mp))
1026 		return 0;
1027 
1028 	if (!xlog_cil_empty(log))
1029 		return 0;
1030 
1031 	spin_lock(&log->l_icloglock);
1032 	switch (log->l_covered_state) {
1033 	case XLOG_STATE_COVER_DONE:
1034 	case XLOG_STATE_COVER_DONE2:
1035 	case XLOG_STATE_COVER_IDLE:
1036 		break;
1037 	case XLOG_STATE_COVER_NEED:
1038 	case XLOG_STATE_COVER_NEED2:
1039 		if (xfs_ail_min_lsn(log->l_ailp))
1040 			break;
1041 		if (!xlog_iclogs_empty(log))
1042 			break;
1043 
1044 		needed = 1;
1045 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1046 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1047 		else
1048 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1049 		break;
1050 	default:
1051 		needed = 1;
1052 		break;
1053 	}
1054 	spin_unlock(&log->l_icloglock);
1055 	return needed;
1056 }
1057 
1058 /*
1059  * We may be holding the log iclog lock upon entering this routine.
1060  */
1061 xfs_lsn_t
1062 xlog_assign_tail_lsn_locked(
1063 	struct xfs_mount	*mp)
1064 {
1065 	struct xlog		*log = mp->m_log;
1066 	struct xfs_log_item	*lip;
1067 	xfs_lsn_t		tail_lsn;
1068 
1069 	assert_spin_locked(&mp->m_ail->xa_lock);
1070 
1071 	/*
1072 	 * To make sure we always have a valid LSN for the log tail we keep
1073 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1074 	 * and use that when the AIL was empty.
1075 	 */
1076 	lip = xfs_ail_min(mp->m_ail);
1077 	if (lip)
1078 		tail_lsn = lip->li_lsn;
1079 	else
1080 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1081 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1082 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1083 	return tail_lsn;
1084 }
1085 
1086 xfs_lsn_t
1087 xlog_assign_tail_lsn(
1088 	struct xfs_mount	*mp)
1089 {
1090 	xfs_lsn_t		tail_lsn;
1091 
1092 	spin_lock(&mp->m_ail->xa_lock);
1093 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1094 	spin_unlock(&mp->m_ail->xa_lock);
1095 
1096 	return tail_lsn;
1097 }
1098 
1099 /*
1100  * Return the space in the log between the tail and the head.  The head
1101  * is passed in the cycle/bytes formal parms.  In the special case where
1102  * the reserve head has wrapped passed the tail, this calculation is no
1103  * longer valid.  In this case, just return 0 which means there is no space
1104  * in the log.  This works for all places where this function is called
1105  * with the reserve head.  Of course, if the write head were to ever
1106  * wrap the tail, we should blow up.  Rather than catch this case here,
1107  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1108  *
1109  * This code also handles the case where the reservation head is behind
1110  * the tail.  The details of this case are described below, but the end
1111  * result is that we return the size of the log as the amount of space left.
1112  */
1113 STATIC int
1114 xlog_space_left(
1115 	struct xlog	*log,
1116 	atomic64_t	*head)
1117 {
1118 	int		free_bytes;
1119 	int		tail_bytes;
1120 	int		tail_cycle;
1121 	int		head_cycle;
1122 	int		head_bytes;
1123 
1124 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1125 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1126 	tail_bytes = BBTOB(tail_bytes);
1127 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1128 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1129 	else if (tail_cycle + 1 < head_cycle)
1130 		return 0;
1131 	else if (tail_cycle < head_cycle) {
1132 		ASSERT(tail_cycle == (head_cycle - 1));
1133 		free_bytes = tail_bytes - head_bytes;
1134 	} else {
1135 		/*
1136 		 * The reservation head is behind the tail.
1137 		 * In this case we just want to return the size of the
1138 		 * log as the amount of space left.
1139 		 */
1140 		xfs_alert(log->l_mp,
1141 			"xlog_space_left: head behind tail\n"
1142 			"  tail_cycle = %d, tail_bytes = %d\n"
1143 			"  GH   cycle = %d, GH   bytes = %d",
1144 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1145 		ASSERT(0);
1146 		free_bytes = log->l_logsize;
1147 	}
1148 	return free_bytes;
1149 }
1150 
1151 
1152 /*
1153  * Log function which is called when an io completes.
1154  *
1155  * The log manager needs its own routine, in order to control what
1156  * happens with the buffer after the write completes.
1157  */
1158 void
1159 xlog_iodone(xfs_buf_t *bp)
1160 {
1161 	struct xlog_in_core	*iclog = bp->b_fspriv;
1162 	struct xlog		*l = iclog->ic_log;
1163 	int			aborted = 0;
1164 
1165 	/*
1166 	 * Race to shutdown the filesystem if we see an error.
1167 	 */
1168 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1169 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1170 		xfs_buf_ioerror_alert(bp, __func__);
1171 		xfs_buf_stale(bp);
1172 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1173 		/*
1174 		 * This flag will be propagated to the trans-committed
1175 		 * callback routines to let them know that the log-commit
1176 		 * didn't succeed.
1177 		 */
1178 		aborted = XFS_LI_ABORTED;
1179 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1180 		aborted = XFS_LI_ABORTED;
1181 	}
1182 
1183 	/* log I/O is always issued ASYNC */
1184 	ASSERT(XFS_BUF_ISASYNC(bp));
1185 	xlog_state_done_syncing(iclog, aborted);
1186 
1187 	/*
1188 	 * drop the buffer lock now that we are done. Nothing references
1189 	 * the buffer after this, so an unmount waiting on this lock can now
1190 	 * tear it down safely. As such, it is unsafe to reference the buffer
1191 	 * (bp) after the unlock as we could race with it being freed.
1192 	 */
1193 	xfs_buf_unlock(bp);
1194 }
1195 
1196 /*
1197  * Return size of each in-core log record buffer.
1198  *
1199  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1200  *
1201  * If the filesystem blocksize is too large, we may need to choose a
1202  * larger size since the directory code currently logs entire blocks.
1203  */
1204 
1205 STATIC void
1206 xlog_get_iclog_buffer_size(
1207 	struct xfs_mount	*mp,
1208 	struct xlog		*log)
1209 {
1210 	int size;
1211 	int xhdrs;
1212 
1213 	if (mp->m_logbufs <= 0)
1214 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1215 	else
1216 		log->l_iclog_bufs = mp->m_logbufs;
1217 
1218 	/*
1219 	 * Buffer size passed in from mount system call.
1220 	 */
1221 	if (mp->m_logbsize > 0) {
1222 		size = log->l_iclog_size = mp->m_logbsize;
1223 		log->l_iclog_size_log = 0;
1224 		while (size != 1) {
1225 			log->l_iclog_size_log++;
1226 			size >>= 1;
1227 		}
1228 
1229 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1230 			/* # headers = size / 32k
1231 			 * one header holds cycles from 32k of data
1232 			 */
1233 
1234 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1235 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1236 				xhdrs++;
1237 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1238 			log->l_iclog_heads = xhdrs;
1239 		} else {
1240 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1241 			log->l_iclog_hsize = BBSIZE;
1242 			log->l_iclog_heads = 1;
1243 		}
1244 		goto done;
1245 	}
1246 
1247 	/* All machines use 32kB buffers by default. */
1248 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1249 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1250 
1251 	/* the default log size is 16k or 32k which is one header sector */
1252 	log->l_iclog_hsize = BBSIZE;
1253 	log->l_iclog_heads = 1;
1254 
1255 done:
1256 	/* are we being asked to make the sizes selected above visible? */
1257 	if (mp->m_logbufs == 0)
1258 		mp->m_logbufs = log->l_iclog_bufs;
1259 	if (mp->m_logbsize == 0)
1260 		mp->m_logbsize = log->l_iclog_size;
1261 }	/* xlog_get_iclog_buffer_size */
1262 
1263 
1264 void
1265 xfs_log_work_queue(
1266 	struct xfs_mount        *mp)
1267 {
1268 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1269 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1270 }
1271 
1272 /*
1273  * Every sync period we need to unpin all items in the AIL and push them to
1274  * disk. If there is nothing dirty, then we might need to cover the log to
1275  * indicate that the filesystem is idle.
1276  */
1277 void
1278 xfs_log_worker(
1279 	struct work_struct	*work)
1280 {
1281 	struct xlog		*log = container_of(to_delayed_work(work),
1282 						struct xlog, l_work);
1283 	struct xfs_mount	*mp = log->l_mp;
1284 
1285 	/* dgc: errors ignored - not fatal and nowhere to report them */
1286 	if (xfs_log_need_covered(mp))
1287 		xfs_fs_log_dummy(mp);
1288 	else
1289 		xfs_log_force(mp, 0);
1290 
1291 	/* start pushing all the metadata that is currently dirty */
1292 	xfs_ail_push_all(mp->m_ail);
1293 
1294 	/* queue us up again */
1295 	xfs_log_work_queue(mp);
1296 }
1297 
1298 /*
1299  * This routine initializes some of the log structure for a given mount point.
1300  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1301  * some other stuff may be filled in too.
1302  */
1303 STATIC struct xlog *
1304 xlog_alloc_log(
1305 	struct xfs_mount	*mp,
1306 	struct xfs_buftarg	*log_target,
1307 	xfs_daddr_t		blk_offset,
1308 	int			num_bblks)
1309 {
1310 	struct xlog		*log;
1311 	xlog_rec_header_t	*head;
1312 	xlog_in_core_t		**iclogp;
1313 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1314 	xfs_buf_t		*bp;
1315 	int			i;
1316 	int			error = ENOMEM;
1317 	uint			log2_size = 0;
1318 
1319 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1320 	if (!log) {
1321 		xfs_warn(mp, "Log allocation failed: No memory!");
1322 		goto out;
1323 	}
1324 
1325 	log->l_mp	   = mp;
1326 	log->l_targ	   = log_target;
1327 	log->l_logsize     = BBTOB(num_bblks);
1328 	log->l_logBBstart  = blk_offset;
1329 	log->l_logBBsize   = num_bblks;
1330 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1331 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1332 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1333 
1334 	log->l_prev_block  = -1;
1335 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1336 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1337 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1338 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1339 
1340 	xlog_grant_head_init(&log->l_reserve_head);
1341 	xlog_grant_head_init(&log->l_write_head);
1342 
1343 	error = EFSCORRUPTED;
1344 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1345 	        log2_size = mp->m_sb.sb_logsectlog;
1346 		if (log2_size < BBSHIFT) {
1347 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1348 				log2_size, BBSHIFT);
1349 			goto out_free_log;
1350 		}
1351 
1352 	        log2_size -= BBSHIFT;
1353 		if (log2_size > mp->m_sectbb_log) {
1354 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1355 				log2_size, mp->m_sectbb_log);
1356 			goto out_free_log;
1357 		}
1358 
1359 		/* for larger sector sizes, must have v2 or external log */
1360 		if (log2_size && log->l_logBBstart > 0 &&
1361 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1362 			xfs_warn(mp,
1363 		"log sector size (0x%x) invalid for configuration.",
1364 				log2_size);
1365 			goto out_free_log;
1366 		}
1367 	}
1368 	log->l_sectBBsize = 1 << log2_size;
1369 
1370 	xlog_get_iclog_buffer_size(mp, log);
1371 
1372 	error = ENOMEM;
1373 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1374 	if (!bp)
1375 		goto out_free_log;
1376 
1377 	/*
1378 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1379 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1380 	 * when appropriately.
1381 	 */
1382 	ASSERT(xfs_buf_islocked(bp));
1383 	xfs_buf_unlock(bp);
1384 
1385 	bp->b_iodone = xlog_iodone;
1386 	log->l_xbuf = bp;
1387 
1388 	spin_lock_init(&log->l_icloglock);
1389 	init_waitqueue_head(&log->l_flush_wait);
1390 
1391 	iclogp = &log->l_iclog;
1392 	/*
1393 	 * The amount of memory to allocate for the iclog structure is
1394 	 * rather funky due to the way the structure is defined.  It is
1395 	 * done this way so that we can use different sizes for machines
1396 	 * with different amounts of memory.  See the definition of
1397 	 * xlog_in_core_t in xfs_log_priv.h for details.
1398 	 */
1399 	ASSERT(log->l_iclog_size >= 4096);
1400 	for (i=0; i < log->l_iclog_bufs; i++) {
1401 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1402 		if (!*iclogp)
1403 			goto out_free_iclog;
1404 
1405 		iclog = *iclogp;
1406 		iclog->ic_prev = prev_iclog;
1407 		prev_iclog = iclog;
1408 
1409 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1410 						BTOBB(log->l_iclog_size), 0);
1411 		if (!bp)
1412 			goto out_free_iclog;
1413 
1414 		ASSERT(xfs_buf_islocked(bp));
1415 		xfs_buf_unlock(bp);
1416 
1417 		bp->b_iodone = xlog_iodone;
1418 		iclog->ic_bp = bp;
1419 		iclog->ic_data = bp->b_addr;
1420 #ifdef DEBUG
1421 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1422 #endif
1423 		head = &iclog->ic_header;
1424 		memset(head, 0, sizeof(xlog_rec_header_t));
1425 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1426 		head->h_version = cpu_to_be32(
1427 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1428 		head->h_size = cpu_to_be32(log->l_iclog_size);
1429 		/* new fields */
1430 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1431 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1432 
1433 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1434 		iclog->ic_state = XLOG_STATE_ACTIVE;
1435 		iclog->ic_log = log;
1436 		atomic_set(&iclog->ic_refcnt, 0);
1437 		spin_lock_init(&iclog->ic_callback_lock);
1438 		iclog->ic_callback_tail = &(iclog->ic_callback);
1439 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1440 
1441 		init_waitqueue_head(&iclog->ic_force_wait);
1442 		init_waitqueue_head(&iclog->ic_write_wait);
1443 
1444 		iclogp = &iclog->ic_next;
1445 	}
1446 	*iclogp = log->l_iclog;			/* complete ring */
1447 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1448 
1449 	error = xlog_cil_init(log);
1450 	if (error)
1451 		goto out_free_iclog;
1452 	return log;
1453 
1454 out_free_iclog:
1455 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1456 		prev_iclog = iclog->ic_next;
1457 		if (iclog->ic_bp)
1458 			xfs_buf_free(iclog->ic_bp);
1459 		kmem_free(iclog);
1460 	}
1461 	spinlock_destroy(&log->l_icloglock);
1462 	xfs_buf_free(log->l_xbuf);
1463 out_free_log:
1464 	kmem_free(log);
1465 out:
1466 	return ERR_PTR(-error);
1467 }	/* xlog_alloc_log */
1468 
1469 
1470 /*
1471  * Write out the commit record of a transaction associated with the given
1472  * ticket.  Return the lsn of the commit record.
1473  */
1474 STATIC int
1475 xlog_commit_record(
1476 	struct xlog		*log,
1477 	struct xlog_ticket	*ticket,
1478 	struct xlog_in_core	**iclog,
1479 	xfs_lsn_t		*commitlsnp)
1480 {
1481 	struct xfs_mount *mp = log->l_mp;
1482 	int	error;
1483 	struct xfs_log_iovec reg = {
1484 		.i_addr = NULL,
1485 		.i_len = 0,
1486 		.i_type = XLOG_REG_TYPE_COMMIT,
1487 	};
1488 	struct xfs_log_vec vec = {
1489 		.lv_niovecs = 1,
1490 		.lv_iovecp = &reg,
1491 	};
1492 
1493 	ASSERT_ALWAYS(iclog);
1494 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1495 					XLOG_COMMIT_TRANS);
1496 	if (error)
1497 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1498 	return error;
1499 }
1500 
1501 /*
1502  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1503  * log space.  This code pushes on the lsn which would supposedly free up
1504  * the 25% which we want to leave free.  We may need to adopt a policy which
1505  * pushes on an lsn which is further along in the log once we reach the high
1506  * water mark.  In this manner, we would be creating a low water mark.
1507  */
1508 STATIC void
1509 xlog_grant_push_ail(
1510 	struct xlog	*log,
1511 	int		need_bytes)
1512 {
1513 	xfs_lsn_t	threshold_lsn = 0;
1514 	xfs_lsn_t	last_sync_lsn;
1515 	int		free_blocks;
1516 	int		free_bytes;
1517 	int		threshold_block;
1518 	int		threshold_cycle;
1519 	int		free_threshold;
1520 
1521 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1522 
1523 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1524 	free_blocks = BTOBBT(free_bytes);
1525 
1526 	/*
1527 	 * Set the threshold for the minimum number of free blocks in the
1528 	 * log to the maximum of what the caller needs, one quarter of the
1529 	 * log, and 256 blocks.
1530 	 */
1531 	free_threshold = BTOBB(need_bytes);
1532 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1533 	free_threshold = MAX(free_threshold, 256);
1534 	if (free_blocks >= free_threshold)
1535 		return;
1536 
1537 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1538 						&threshold_block);
1539 	threshold_block += free_threshold;
1540 	if (threshold_block >= log->l_logBBsize) {
1541 		threshold_block -= log->l_logBBsize;
1542 		threshold_cycle += 1;
1543 	}
1544 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1545 					threshold_block);
1546 	/*
1547 	 * Don't pass in an lsn greater than the lsn of the last
1548 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1549 	 * so that it doesn't change between the compare and the set.
1550 	 */
1551 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1552 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1553 		threshold_lsn = last_sync_lsn;
1554 
1555 	/*
1556 	 * Get the transaction layer to kick the dirty buffers out to
1557 	 * disk asynchronously. No point in trying to do this if
1558 	 * the filesystem is shutting down.
1559 	 */
1560 	if (!XLOG_FORCED_SHUTDOWN(log))
1561 		xfs_ail_push(log->l_ailp, threshold_lsn);
1562 }
1563 
1564 /*
1565  * Stamp cycle number in every block
1566  */
1567 STATIC void
1568 xlog_pack_data(
1569 	struct xlog		*log,
1570 	struct xlog_in_core	*iclog,
1571 	int			roundoff)
1572 {
1573 	int			i, j, k;
1574 	int			size = iclog->ic_offset + roundoff;
1575 	__be32			cycle_lsn;
1576 	xfs_caddr_t		dp;
1577 
1578 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1579 
1580 	dp = iclog->ic_datap;
1581 	for (i = 0; i < BTOBB(size); i++) {
1582 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1583 			break;
1584 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1585 		*(__be32 *)dp = cycle_lsn;
1586 		dp += BBSIZE;
1587 	}
1588 
1589 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1590 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1591 
1592 		for ( ; i < BTOBB(size); i++) {
1593 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1594 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1595 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1596 			*(__be32 *)dp = cycle_lsn;
1597 			dp += BBSIZE;
1598 		}
1599 
1600 		for (i = 1; i < log->l_iclog_heads; i++)
1601 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1602 	}
1603 }
1604 
1605 /*
1606  * Calculate the checksum for a log buffer.
1607  *
1608  * This is a little more complicated than it should be because the various
1609  * headers and the actual data are non-contiguous.
1610  */
1611 __le32
1612 xlog_cksum(
1613 	struct xlog		*log,
1614 	struct xlog_rec_header	*rhead,
1615 	char			*dp,
1616 	int			size)
1617 {
1618 	__uint32_t		crc;
1619 
1620 	/* first generate the crc for the record header ... */
1621 	crc = xfs_start_cksum((char *)rhead,
1622 			      sizeof(struct xlog_rec_header),
1623 			      offsetof(struct xlog_rec_header, h_crc));
1624 
1625 	/* ... then for additional cycle data for v2 logs ... */
1626 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1627 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1628 		int		i;
1629 
1630 		for (i = 1; i < log->l_iclog_heads; i++) {
1631 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1632 				     sizeof(struct xlog_rec_ext_header));
1633 		}
1634 	}
1635 
1636 	/* ... and finally for the payload */
1637 	crc = crc32c(crc, dp, size);
1638 
1639 	return xfs_end_cksum(crc);
1640 }
1641 
1642 /*
1643  * The bdstrat callback function for log bufs. This gives us a central
1644  * place to trap bufs in case we get hit by a log I/O error and need to
1645  * shutdown. Actually, in practice, even when we didn't get a log error,
1646  * we transition the iclogs to IOERROR state *after* flushing all existing
1647  * iclogs to disk. This is because we don't want anymore new transactions to be
1648  * started or completed afterwards.
1649  *
1650  * We lock the iclogbufs here so that we can serialise against IO completion
1651  * during unmount. We might be processing a shutdown triggered during unmount,
1652  * and that can occur asynchronously to the unmount thread, and hence we need to
1653  * ensure that completes before tearing down the iclogbufs. Hence we need to
1654  * hold the buffer lock across the log IO to acheive that.
1655  */
1656 STATIC int
1657 xlog_bdstrat(
1658 	struct xfs_buf		*bp)
1659 {
1660 	struct xlog_in_core	*iclog = bp->b_fspriv;
1661 
1662 	xfs_buf_lock(bp);
1663 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1664 		xfs_buf_ioerror(bp, EIO);
1665 		xfs_buf_stale(bp);
1666 		xfs_buf_ioend(bp, 0);
1667 		/*
1668 		 * It would seem logical to return EIO here, but we rely on
1669 		 * the log state machine to propagate I/O errors instead of
1670 		 * doing it here. Similarly, IO completion will unlock the
1671 		 * buffer, so we don't do it here.
1672 		 */
1673 		return 0;
1674 	}
1675 
1676 	xfs_buf_iorequest(bp);
1677 	return 0;
1678 }
1679 
1680 /*
1681  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1682  * fashion.  Previously, we should have moved the current iclog
1683  * ptr in the log to point to the next available iclog.  This allows further
1684  * write to continue while this code syncs out an iclog ready to go.
1685  * Before an in-core log can be written out, the data section must be scanned
1686  * to save away the 1st word of each BBSIZE block into the header.  We replace
1687  * it with the current cycle count.  Each BBSIZE block is tagged with the
1688  * cycle count because there in an implicit assumption that drives will
1689  * guarantee that entire 512 byte blocks get written at once.  In other words,
1690  * we can't have part of a 512 byte block written and part not written.  By
1691  * tagging each block, we will know which blocks are valid when recovering
1692  * after an unclean shutdown.
1693  *
1694  * This routine is single threaded on the iclog.  No other thread can be in
1695  * this routine with the same iclog.  Changing contents of iclog can there-
1696  * fore be done without grabbing the state machine lock.  Updating the global
1697  * log will require grabbing the lock though.
1698  *
1699  * The entire log manager uses a logical block numbering scheme.  Only
1700  * log_sync (and then only bwrite()) know about the fact that the log may
1701  * not start with block zero on a given device.  The log block start offset
1702  * is added immediately before calling bwrite().
1703  */
1704 
1705 STATIC int
1706 xlog_sync(
1707 	struct xlog		*log,
1708 	struct xlog_in_core	*iclog)
1709 {
1710 	xfs_buf_t	*bp;
1711 	int		i;
1712 	uint		count;		/* byte count of bwrite */
1713 	uint		count_init;	/* initial count before roundup */
1714 	int		roundoff;       /* roundoff to BB or stripe */
1715 	int		split = 0;	/* split write into two regions */
1716 	int		error;
1717 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1718 	int		size;
1719 
1720 	XFS_STATS_INC(xs_log_writes);
1721 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1722 
1723 	/* Add for LR header */
1724 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1725 
1726 	/* Round out the log write size */
1727 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1728 		/* we have a v2 stripe unit to use */
1729 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1730 	} else {
1731 		count = BBTOB(BTOBB(count_init));
1732 	}
1733 	roundoff = count - count_init;
1734 	ASSERT(roundoff >= 0);
1735 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1736                 roundoff < log->l_mp->m_sb.sb_logsunit)
1737 		||
1738 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1739 		 roundoff < BBTOB(1)));
1740 
1741 	/* move grant heads by roundoff in sync */
1742 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1743 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1744 
1745 	/* put cycle number in every block */
1746 	xlog_pack_data(log, iclog, roundoff);
1747 
1748 	/* real byte length */
1749 	size = iclog->ic_offset;
1750 	if (v2)
1751 		size += roundoff;
1752 	iclog->ic_header.h_len = cpu_to_be32(size);
1753 
1754 	bp = iclog->ic_bp;
1755 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1756 
1757 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1758 
1759 	/* Do we need to split this write into 2 parts? */
1760 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1761 		char		*dptr;
1762 
1763 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1764 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1765 		iclog->ic_bwritecnt = 2;
1766 
1767 		/*
1768 		 * Bump the cycle numbers at the start of each block in the
1769 		 * part of the iclog that ends up in the buffer that gets
1770 		 * written to the start of the log.
1771 		 *
1772 		 * Watch out for the header magic number case, though.
1773 		 */
1774 		dptr = (char *)&iclog->ic_header + count;
1775 		for (i = 0; i < split; i += BBSIZE) {
1776 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1777 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1778 				cycle++;
1779 			*(__be32 *)dptr = cpu_to_be32(cycle);
1780 
1781 			dptr += BBSIZE;
1782 		}
1783 	} else {
1784 		iclog->ic_bwritecnt = 1;
1785 	}
1786 
1787 	/* calculcate the checksum */
1788 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1789 					    iclog->ic_datap, size);
1790 
1791 	bp->b_io_length = BTOBB(count);
1792 	bp->b_fspriv = iclog;
1793 	XFS_BUF_ZEROFLAGS(bp);
1794 	XFS_BUF_ASYNC(bp);
1795 	bp->b_flags |= XBF_SYNCIO;
1796 
1797 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1798 		bp->b_flags |= XBF_FUA;
1799 
1800 		/*
1801 		 * Flush the data device before flushing the log to make
1802 		 * sure all meta data written back from the AIL actually made
1803 		 * it to disk before stamping the new log tail LSN into the
1804 		 * log buffer.  For an external log we need to issue the
1805 		 * flush explicitly, and unfortunately synchronously here;
1806 		 * for an internal log we can simply use the block layer
1807 		 * state machine for preflushes.
1808 		 */
1809 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1810 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1811 		else
1812 			bp->b_flags |= XBF_FLUSH;
1813 	}
1814 
1815 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1816 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1817 
1818 	xlog_verify_iclog(log, iclog, count, true);
1819 
1820 	/* account for log which doesn't start at block #0 */
1821 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1822 	/*
1823 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1824 	 * is shutting down.
1825 	 */
1826 	XFS_BUF_WRITE(bp);
1827 
1828 	error = xlog_bdstrat(bp);
1829 	if (error) {
1830 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1831 		return error;
1832 	}
1833 	if (split) {
1834 		bp = iclog->ic_log->l_xbuf;
1835 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1836 		xfs_buf_associate_memory(bp,
1837 				(char *)&iclog->ic_header + count, split);
1838 		bp->b_fspriv = iclog;
1839 		XFS_BUF_ZEROFLAGS(bp);
1840 		XFS_BUF_ASYNC(bp);
1841 		bp->b_flags |= XBF_SYNCIO;
1842 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1843 			bp->b_flags |= XBF_FUA;
1844 
1845 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1846 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1847 
1848 		/* account for internal log which doesn't start at block #0 */
1849 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1850 		XFS_BUF_WRITE(bp);
1851 		error = xlog_bdstrat(bp);
1852 		if (error) {
1853 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1854 			return error;
1855 		}
1856 	}
1857 	return 0;
1858 }	/* xlog_sync */
1859 
1860 /*
1861  * Deallocate a log structure
1862  */
1863 STATIC void
1864 xlog_dealloc_log(
1865 	struct xlog	*log)
1866 {
1867 	xlog_in_core_t	*iclog, *next_iclog;
1868 	int		i;
1869 
1870 	xlog_cil_destroy(log);
1871 
1872 	/*
1873 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1874 	 * is done before we tear down these buffers.
1875 	 */
1876 	iclog = log->l_iclog;
1877 	for (i = 0; i < log->l_iclog_bufs; i++) {
1878 		xfs_buf_lock(iclog->ic_bp);
1879 		xfs_buf_unlock(iclog->ic_bp);
1880 		iclog = iclog->ic_next;
1881 	}
1882 
1883 	/*
1884 	 * Always need to ensure that the extra buffer does not point to memory
1885 	 * owned by another log buffer before we free it. Also, cycle the lock
1886 	 * first to ensure we've completed IO on it.
1887 	 */
1888 	xfs_buf_lock(log->l_xbuf);
1889 	xfs_buf_unlock(log->l_xbuf);
1890 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1891 	xfs_buf_free(log->l_xbuf);
1892 
1893 	iclog = log->l_iclog;
1894 	for (i = 0; i < log->l_iclog_bufs; i++) {
1895 		xfs_buf_free(iclog->ic_bp);
1896 		next_iclog = iclog->ic_next;
1897 		kmem_free(iclog);
1898 		iclog = next_iclog;
1899 	}
1900 	spinlock_destroy(&log->l_icloglock);
1901 
1902 	log->l_mp->m_log = NULL;
1903 	kmem_free(log);
1904 }	/* xlog_dealloc_log */
1905 
1906 /*
1907  * Update counters atomically now that memcpy is done.
1908  */
1909 /* ARGSUSED */
1910 static inline void
1911 xlog_state_finish_copy(
1912 	struct xlog		*log,
1913 	struct xlog_in_core	*iclog,
1914 	int			record_cnt,
1915 	int			copy_bytes)
1916 {
1917 	spin_lock(&log->l_icloglock);
1918 
1919 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1920 	iclog->ic_offset += copy_bytes;
1921 
1922 	spin_unlock(&log->l_icloglock);
1923 }	/* xlog_state_finish_copy */
1924 
1925 
1926 
1927 
1928 /*
1929  * print out info relating to regions written which consume
1930  * the reservation
1931  */
1932 void
1933 xlog_print_tic_res(
1934 	struct xfs_mount	*mp,
1935 	struct xlog_ticket	*ticket)
1936 {
1937 	uint i;
1938 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1939 
1940 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1941 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1942 	    "bformat",
1943 	    "bchunk",
1944 	    "efi_format",
1945 	    "efd_format",
1946 	    "iformat",
1947 	    "icore",
1948 	    "iext",
1949 	    "ibroot",
1950 	    "ilocal",
1951 	    "iattr_ext",
1952 	    "iattr_broot",
1953 	    "iattr_local",
1954 	    "qformat",
1955 	    "dquot",
1956 	    "quotaoff",
1957 	    "LR header",
1958 	    "unmount",
1959 	    "commit",
1960 	    "trans header"
1961 	};
1962 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1963 	    "SETATTR_NOT_SIZE",
1964 	    "SETATTR_SIZE",
1965 	    "INACTIVE",
1966 	    "CREATE",
1967 	    "CREATE_TRUNC",
1968 	    "TRUNCATE_FILE",
1969 	    "REMOVE",
1970 	    "LINK",
1971 	    "RENAME",
1972 	    "MKDIR",
1973 	    "RMDIR",
1974 	    "SYMLINK",
1975 	    "SET_DMATTRS",
1976 	    "GROWFS",
1977 	    "STRAT_WRITE",
1978 	    "DIOSTRAT",
1979 	    "WRITE_SYNC",
1980 	    "WRITEID",
1981 	    "ADDAFORK",
1982 	    "ATTRINVAL",
1983 	    "ATRUNCATE",
1984 	    "ATTR_SET",
1985 	    "ATTR_RM",
1986 	    "ATTR_FLAG",
1987 	    "CLEAR_AGI_BUCKET",
1988 	    "QM_SBCHANGE",
1989 	    "DUMMY1",
1990 	    "DUMMY2",
1991 	    "QM_QUOTAOFF",
1992 	    "QM_DQALLOC",
1993 	    "QM_SETQLIM",
1994 	    "QM_DQCLUSTER",
1995 	    "QM_QINOCREATE",
1996 	    "QM_QUOTAOFF_END",
1997 	    "SB_UNIT",
1998 	    "FSYNC_TS",
1999 	    "GROWFSRT_ALLOC",
2000 	    "GROWFSRT_ZERO",
2001 	    "GROWFSRT_FREE",
2002 	    "SWAPEXT"
2003 	};
2004 
2005 	xfs_warn(mp,
2006 		"xlog_write: reservation summary:\n"
2007 		"  trans type  = %s (%u)\n"
2008 		"  unit res    = %d bytes\n"
2009 		"  current res = %d bytes\n"
2010 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2011 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2012 		"  ophdr + reg = %u bytes\n"
2013 		"  num regions = %u\n",
2014 		((ticket->t_trans_type <= 0 ||
2015 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2016 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2017 		ticket->t_trans_type,
2018 		ticket->t_unit_res,
2019 		ticket->t_curr_res,
2020 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2021 		ticket->t_res_num_ophdrs, ophdr_spc,
2022 		ticket->t_res_arr_sum +
2023 		ticket->t_res_o_flow + ophdr_spc,
2024 		ticket->t_res_num);
2025 
2026 	for (i = 0; i < ticket->t_res_num; i++) {
2027 		uint r_type = ticket->t_res_arr[i].r_type;
2028 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2029 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2030 			    "bad-rtype" : res_type_str[r_type-1]),
2031 			    ticket->t_res_arr[i].r_len);
2032 	}
2033 
2034 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2035 		"xlog_write: reservation ran out. Need to up reservation");
2036 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2037 }
2038 
2039 /*
2040  * Calculate the potential space needed by the log vector.  Each region gets
2041  * its own xlog_op_header_t and may need to be double word aligned.
2042  */
2043 static int
2044 xlog_write_calc_vec_length(
2045 	struct xlog_ticket	*ticket,
2046 	struct xfs_log_vec	*log_vector)
2047 {
2048 	struct xfs_log_vec	*lv;
2049 	int			headers = 0;
2050 	int			len = 0;
2051 	int			i;
2052 
2053 	/* acct for start rec of xact */
2054 	if (ticket->t_flags & XLOG_TIC_INITED)
2055 		headers++;
2056 
2057 	for (lv = log_vector; lv; lv = lv->lv_next) {
2058 		/* we don't write ordered log vectors */
2059 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2060 			continue;
2061 
2062 		headers += lv->lv_niovecs;
2063 
2064 		for (i = 0; i < lv->lv_niovecs; i++) {
2065 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2066 
2067 			len += vecp->i_len;
2068 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2069 		}
2070 	}
2071 
2072 	ticket->t_res_num_ophdrs += headers;
2073 	len += headers * sizeof(struct xlog_op_header);
2074 
2075 	return len;
2076 }
2077 
2078 /*
2079  * If first write for transaction, insert start record  We can't be trying to
2080  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2081  */
2082 static int
2083 xlog_write_start_rec(
2084 	struct xlog_op_header	*ophdr,
2085 	struct xlog_ticket	*ticket)
2086 {
2087 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2088 		return 0;
2089 
2090 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2091 	ophdr->oh_clientid = ticket->t_clientid;
2092 	ophdr->oh_len = 0;
2093 	ophdr->oh_flags = XLOG_START_TRANS;
2094 	ophdr->oh_res2 = 0;
2095 
2096 	ticket->t_flags &= ~XLOG_TIC_INITED;
2097 
2098 	return sizeof(struct xlog_op_header);
2099 }
2100 
2101 static xlog_op_header_t *
2102 xlog_write_setup_ophdr(
2103 	struct xlog		*log,
2104 	struct xlog_op_header	*ophdr,
2105 	struct xlog_ticket	*ticket,
2106 	uint			flags)
2107 {
2108 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109 	ophdr->oh_clientid = ticket->t_clientid;
2110 	ophdr->oh_res2 = 0;
2111 
2112 	/* are we copying a commit or unmount record? */
2113 	ophdr->oh_flags = flags;
2114 
2115 	/*
2116 	 * We've seen logs corrupted with bad transaction client ids.  This
2117 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2118 	 * and shut down the filesystem.
2119 	 */
2120 	switch (ophdr->oh_clientid)  {
2121 	case XFS_TRANSACTION:
2122 	case XFS_VOLUME:
2123 	case XFS_LOG:
2124 		break;
2125 	default:
2126 		xfs_warn(log->l_mp,
2127 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2128 			ophdr->oh_clientid, ticket);
2129 		return NULL;
2130 	}
2131 
2132 	return ophdr;
2133 }
2134 
2135 /*
2136  * Set up the parameters of the region copy into the log. This has
2137  * to handle region write split across multiple log buffers - this
2138  * state is kept external to this function so that this code can
2139  * be written in an obvious, self documenting manner.
2140  */
2141 static int
2142 xlog_write_setup_copy(
2143 	struct xlog_ticket	*ticket,
2144 	struct xlog_op_header	*ophdr,
2145 	int			space_available,
2146 	int			space_required,
2147 	int			*copy_off,
2148 	int			*copy_len,
2149 	int			*last_was_partial_copy,
2150 	int			*bytes_consumed)
2151 {
2152 	int			still_to_copy;
2153 
2154 	still_to_copy = space_required - *bytes_consumed;
2155 	*copy_off = *bytes_consumed;
2156 
2157 	if (still_to_copy <= space_available) {
2158 		/* write of region completes here */
2159 		*copy_len = still_to_copy;
2160 		ophdr->oh_len = cpu_to_be32(*copy_len);
2161 		if (*last_was_partial_copy)
2162 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2163 		*last_was_partial_copy = 0;
2164 		*bytes_consumed = 0;
2165 		return 0;
2166 	}
2167 
2168 	/* partial write of region, needs extra log op header reservation */
2169 	*copy_len = space_available;
2170 	ophdr->oh_len = cpu_to_be32(*copy_len);
2171 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2172 	if (*last_was_partial_copy)
2173 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2174 	*bytes_consumed += *copy_len;
2175 	(*last_was_partial_copy)++;
2176 
2177 	/* account for new log op header */
2178 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2179 	ticket->t_res_num_ophdrs++;
2180 
2181 	return sizeof(struct xlog_op_header);
2182 }
2183 
2184 static int
2185 xlog_write_copy_finish(
2186 	struct xlog		*log,
2187 	struct xlog_in_core	*iclog,
2188 	uint			flags,
2189 	int			*record_cnt,
2190 	int			*data_cnt,
2191 	int			*partial_copy,
2192 	int			*partial_copy_len,
2193 	int			log_offset,
2194 	struct xlog_in_core	**commit_iclog)
2195 {
2196 	if (*partial_copy) {
2197 		/*
2198 		 * This iclog has already been marked WANT_SYNC by
2199 		 * xlog_state_get_iclog_space.
2200 		 */
2201 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2202 		*record_cnt = 0;
2203 		*data_cnt = 0;
2204 		return xlog_state_release_iclog(log, iclog);
2205 	}
2206 
2207 	*partial_copy = 0;
2208 	*partial_copy_len = 0;
2209 
2210 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2211 		/* no more space in this iclog - push it. */
2212 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2213 		*record_cnt = 0;
2214 		*data_cnt = 0;
2215 
2216 		spin_lock(&log->l_icloglock);
2217 		xlog_state_want_sync(log, iclog);
2218 		spin_unlock(&log->l_icloglock);
2219 
2220 		if (!commit_iclog)
2221 			return xlog_state_release_iclog(log, iclog);
2222 		ASSERT(flags & XLOG_COMMIT_TRANS);
2223 		*commit_iclog = iclog;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Write some region out to in-core log
2231  *
2232  * This will be called when writing externally provided regions or when
2233  * writing out a commit record for a given transaction.
2234  *
2235  * General algorithm:
2236  *	1. Find total length of this write.  This may include adding to the
2237  *		lengths passed in.
2238  *	2. Check whether we violate the tickets reservation.
2239  *	3. While writing to this iclog
2240  *	    A. Reserve as much space in this iclog as can get
2241  *	    B. If this is first write, save away start lsn
2242  *	    C. While writing this region:
2243  *		1. If first write of transaction, write start record
2244  *		2. Write log operation header (header per region)
2245  *		3. Find out if we can fit entire region into this iclog
2246  *		4. Potentially, verify destination memcpy ptr
2247  *		5. Memcpy (partial) region
2248  *		6. If partial copy, release iclog; otherwise, continue
2249  *			copying more regions into current iclog
2250  *	4. Mark want sync bit (in simulation mode)
2251  *	5. Release iclog for potential flush to on-disk log.
2252  *
2253  * ERRORS:
2254  * 1.	Panic if reservation is overrun.  This should never happen since
2255  *	reservation amounts are generated internal to the filesystem.
2256  * NOTES:
2257  * 1. Tickets are single threaded data structures.
2258  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2259  *	syncing routine.  When a single log_write region needs to span
2260  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2261  *	on all log operation writes which don't contain the end of the
2262  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2263  *	operation which contains the end of the continued log_write region.
2264  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2265  *	we don't really know exactly how much space will be used.  As a result,
2266  *	we don't update ic_offset until the end when we know exactly how many
2267  *	bytes have been written out.
2268  */
2269 int
2270 xlog_write(
2271 	struct xlog		*log,
2272 	struct xfs_log_vec	*log_vector,
2273 	struct xlog_ticket	*ticket,
2274 	xfs_lsn_t		*start_lsn,
2275 	struct xlog_in_core	**commit_iclog,
2276 	uint			flags)
2277 {
2278 	struct xlog_in_core	*iclog = NULL;
2279 	struct xfs_log_iovec	*vecp;
2280 	struct xfs_log_vec	*lv;
2281 	int			len;
2282 	int			index;
2283 	int			partial_copy = 0;
2284 	int			partial_copy_len = 0;
2285 	int			contwr = 0;
2286 	int			record_cnt = 0;
2287 	int			data_cnt = 0;
2288 	int			error;
2289 
2290 	*start_lsn = 0;
2291 
2292 	len = xlog_write_calc_vec_length(ticket, log_vector);
2293 
2294 	/*
2295 	 * Region headers and bytes are already accounted for.
2296 	 * We only need to take into account start records and
2297 	 * split regions in this function.
2298 	 */
2299 	if (ticket->t_flags & XLOG_TIC_INITED)
2300 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2301 
2302 	/*
2303 	 * Commit record headers need to be accounted for. These
2304 	 * come in as separate writes so are easy to detect.
2305 	 */
2306 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2307 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2308 
2309 	if (ticket->t_curr_res < 0)
2310 		xlog_print_tic_res(log->l_mp, ticket);
2311 
2312 	index = 0;
2313 	lv = log_vector;
2314 	vecp = lv->lv_iovecp;
2315 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2316 		void		*ptr;
2317 		int		log_offset;
2318 
2319 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2320 						   &contwr, &log_offset);
2321 		if (error)
2322 			return error;
2323 
2324 		ASSERT(log_offset <= iclog->ic_size - 1);
2325 		ptr = iclog->ic_datap + log_offset;
2326 
2327 		/* start_lsn is the first lsn written to. That's all we need. */
2328 		if (!*start_lsn)
2329 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2330 
2331 		/*
2332 		 * This loop writes out as many regions as can fit in the amount
2333 		 * of space which was allocated by xlog_state_get_iclog_space().
2334 		 */
2335 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2336 			struct xfs_log_iovec	*reg;
2337 			struct xlog_op_header	*ophdr;
2338 			int			start_rec_copy;
2339 			int			copy_len;
2340 			int			copy_off;
2341 			bool			ordered = false;
2342 
2343 			/* ordered log vectors have no regions to write */
2344 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2345 				ASSERT(lv->lv_niovecs == 0);
2346 				ordered = true;
2347 				goto next_lv;
2348 			}
2349 
2350 			reg = &vecp[index];
2351 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2352 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2353 
2354 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2355 			if (start_rec_copy) {
2356 				record_cnt++;
2357 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2358 						   start_rec_copy);
2359 			}
2360 
2361 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2362 			if (!ophdr)
2363 				return XFS_ERROR(EIO);
2364 
2365 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2366 					   sizeof(struct xlog_op_header));
2367 
2368 			len += xlog_write_setup_copy(ticket, ophdr,
2369 						     iclog->ic_size-log_offset,
2370 						     reg->i_len,
2371 						     &copy_off, &copy_len,
2372 						     &partial_copy,
2373 						     &partial_copy_len);
2374 			xlog_verify_dest_ptr(log, ptr);
2375 
2376 			/* copy region */
2377 			ASSERT(copy_len >= 0);
2378 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2379 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2380 
2381 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2382 			record_cnt++;
2383 			data_cnt += contwr ? copy_len : 0;
2384 
2385 			error = xlog_write_copy_finish(log, iclog, flags,
2386 						       &record_cnt, &data_cnt,
2387 						       &partial_copy,
2388 						       &partial_copy_len,
2389 						       log_offset,
2390 						       commit_iclog);
2391 			if (error)
2392 				return error;
2393 
2394 			/*
2395 			 * if we had a partial copy, we need to get more iclog
2396 			 * space but we don't want to increment the region
2397 			 * index because there is still more is this region to
2398 			 * write.
2399 			 *
2400 			 * If we completed writing this region, and we flushed
2401 			 * the iclog (indicated by resetting of the record
2402 			 * count), then we also need to get more log space. If
2403 			 * this was the last record, though, we are done and
2404 			 * can just return.
2405 			 */
2406 			if (partial_copy)
2407 				break;
2408 
2409 			if (++index == lv->lv_niovecs) {
2410 next_lv:
2411 				lv = lv->lv_next;
2412 				index = 0;
2413 				if (lv)
2414 					vecp = lv->lv_iovecp;
2415 			}
2416 			if (record_cnt == 0 && ordered == false) {
2417 				if (!lv)
2418 					return 0;
2419 				break;
2420 			}
2421 		}
2422 	}
2423 
2424 	ASSERT(len == 0);
2425 
2426 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2427 	if (!commit_iclog)
2428 		return xlog_state_release_iclog(log, iclog);
2429 
2430 	ASSERT(flags & XLOG_COMMIT_TRANS);
2431 	*commit_iclog = iclog;
2432 	return 0;
2433 }
2434 
2435 
2436 /*****************************************************************************
2437  *
2438  *		State Machine functions
2439  *
2440  *****************************************************************************
2441  */
2442 
2443 /* Clean iclogs starting from the head.  This ordering must be
2444  * maintained, so an iclog doesn't become ACTIVE beyond one that
2445  * is SYNCING.  This is also required to maintain the notion that we use
2446  * a ordered wait queue to hold off would be writers to the log when every
2447  * iclog is trying to sync to disk.
2448  *
2449  * State Change: DIRTY -> ACTIVE
2450  */
2451 STATIC void
2452 xlog_state_clean_log(
2453 	struct xlog *log)
2454 {
2455 	xlog_in_core_t	*iclog;
2456 	int changed = 0;
2457 
2458 	iclog = log->l_iclog;
2459 	do {
2460 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2461 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2462 			iclog->ic_offset       = 0;
2463 			ASSERT(iclog->ic_callback == NULL);
2464 			/*
2465 			 * If the number of ops in this iclog indicate it just
2466 			 * contains the dummy transaction, we can
2467 			 * change state into IDLE (the second time around).
2468 			 * Otherwise we should change the state into
2469 			 * NEED a dummy.
2470 			 * We don't need to cover the dummy.
2471 			 */
2472 			if (!changed &&
2473 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2474 			   		XLOG_COVER_OPS)) {
2475 				changed = 1;
2476 			} else {
2477 				/*
2478 				 * We have two dirty iclogs so start over
2479 				 * This could also be num of ops indicates
2480 				 * this is not the dummy going out.
2481 				 */
2482 				changed = 2;
2483 			}
2484 			iclog->ic_header.h_num_logops = 0;
2485 			memset(iclog->ic_header.h_cycle_data, 0,
2486 			      sizeof(iclog->ic_header.h_cycle_data));
2487 			iclog->ic_header.h_lsn = 0;
2488 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2489 			/* do nothing */;
2490 		else
2491 			break;	/* stop cleaning */
2492 		iclog = iclog->ic_next;
2493 	} while (iclog != log->l_iclog);
2494 
2495 	/* log is locked when we are called */
2496 	/*
2497 	 * Change state for the dummy log recording.
2498 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2499 	 * we are done writing the dummy record.
2500 	 * If we are done with the second dummy recored (DONE2), then
2501 	 * we go to IDLE.
2502 	 */
2503 	if (changed) {
2504 		switch (log->l_covered_state) {
2505 		case XLOG_STATE_COVER_IDLE:
2506 		case XLOG_STATE_COVER_NEED:
2507 		case XLOG_STATE_COVER_NEED2:
2508 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2509 			break;
2510 
2511 		case XLOG_STATE_COVER_DONE:
2512 			if (changed == 1)
2513 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2514 			else
2515 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2516 			break;
2517 
2518 		case XLOG_STATE_COVER_DONE2:
2519 			if (changed == 1)
2520 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2521 			else
2522 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2523 			break;
2524 
2525 		default:
2526 			ASSERT(0);
2527 		}
2528 	}
2529 }	/* xlog_state_clean_log */
2530 
2531 STATIC xfs_lsn_t
2532 xlog_get_lowest_lsn(
2533 	struct xlog	*log)
2534 {
2535 	xlog_in_core_t  *lsn_log;
2536 	xfs_lsn_t	lowest_lsn, lsn;
2537 
2538 	lsn_log = log->l_iclog;
2539 	lowest_lsn = 0;
2540 	do {
2541 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2542 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2543 		if ((lsn && !lowest_lsn) ||
2544 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2545 			lowest_lsn = lsn;
2546 		}
2547 	    }
2548 	    lsn_log = lsn_log->ic_next;
2549 	} while (lsn_log != log->l_iclog);
2550 	return lowest_lsn;
2551 }
2552 
2553 
2554 STATIC void
2555 xlog_state_do_callback(
2556 	struct xlog		*log,
2557 	int			aborted,
2558 	struct xlog_in_core	*ciclog)
2559 {
2560 	xlog_in_core_t	   *iclog;
2561 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2562 						 * processed all iclogs once */
2563 	xfs_log_callback_t *cb, *cb_next;
2564 	int		   flushcnt = 0;
2565 	xfs_lsn_t	   lowest_lsn;
2566 	int		   ioerrors;	/* counter: iclogs with errors */
2567 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2568 	int		   funcdidcallbacks; /* flag: function did callbacks */
2569 	int		   repeats;	/* for issuing console warnings if
2570 					 * looping too many times */
2571 	int		   wake = 0;
2572 
2573 	spin_lock(&log->l_icloglock);
2574 	first_iclog = iclog = log->l_iclog;
2575 	ioerrors = 0;
2576 	funcdidcallbacks = 0;
2577 	repeats = 0;
2578 
2579 	do {
2580 		/*
2581 		 * Scan all iclogs starting with the one pointed to by the
2582 		 * log.  Reset this starting point each time the log is
2583 		 * unlocked (during callbacks).
2584 		 *
2585 		 * Keep looping through iclogs until one full pass is made
2586 		 * without running any callbacks.
2587 		 */
2588 		first_iclog = log->l_iclog;
2589 		iclog = log->l_iclog;
2590 		loopdidcallbacks = 0;
2591 		repeats++;
2592 
2593 		do {
2594 
2595 			/* skip all iclogs in the ACTIVE & DIRTY states */
2596 			if (iclog->ic_state &
2597 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2598 				iclog = iclog->ic_next;
2599 				continue;
2600 			}
2601 
2602 			/*
2603 			 * Between marking a filesystem SHUTDOWN and stopping
2604 			 * the log, we do flush all iclogs to disk (if there
2605 			 * wasn't a log I/O error). So, we do want things to
2606 			 * go smoothly in case of just a SHUTDOWN  w/o a
2607 			 * LOG_IO_ERROR.
2608 			 */
2609 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2610 				/*
2611 				 * Can only perform callbacks in order.  Since
2612 				 * this iclog is not in the DONE_SYNC/
2613 				 * DO_CALLBACK state, we skip the rest and
2614 				 * just try to clean up.  If we set our iclog
2615 				 * to DO_CALLBACK, we will not process it when
2616 				 * we retry since a previous iclog is in the
2617 				 * CALLBACK and the state cannot change since
2618 				 * we are holding the l_icloglock.
2619 				 */
2620 				if (!(iclog->ic_state &
2621 					(XLOG_STATE_DONE_SYNC |
2622 						 XLOG_STATE_DO_CALLBACK))) {
2623 					if (ciclog && (ciclog->ic_state ==
2624 							XLOG_STATE_DONE_SYNC)) {
2625 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2626 					}
2627 					break;
2628 				}
2629 				/*
2630 				 * We now have an iclog that is in either the
2631 				 * DO_CALLBACK or DONE_SYNC states. The other
2632 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2633 				 * caught by the above if and are going to
2634 				 * clean (i.e. we aren't doing their callbacks)
2635 				 * see the above if.
2636 				 */
2637 
2638 				/*
2639 				 * We will do one more check here to see if we
2640 				 * have chased our tail around.
2641 				 */
2642 
2643 				lowest_lsn = xlog_get_lowest_lsn(log);
2644 				if (lowest_lsn &&
2645 				    XFS_LSN_CMP(lowest_lsn,
2646 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2647 					iclog = iclog->ic_next;
2648 					continue; /* Leave this iclog for
2649 						   * another thread */
2650 				}
2651 
2652 				iclog->ic_state = XLOG_STATE_CALLBACK;
2653 
2654 
2655 				/*
2656 				 * Completion of a iclog IO does not imply that
2657 				 * a transaction has completed, as transactions
2658 				 * can be large enough to span many iclogs. We
2659 				 * cannot change the tail of the log half way
2660 				 * through a transaction as this may be the only
2661 				 * transaction in the log and moving th etail to
2662 				 * point to the middle of it will prevent
2663 				 * recovery from finding the start of the
2664 				 * transaction. Hence we should only update the
2665 				 * last_sync_lsn if this iclog contains
2666 				 * transaction completion callbacks on it.
2667 				 *
2668 				 * We have to do this before we drop the
2669 				 * icloglock to ensure we are the only one that
2670 				 * can update it.
2671 				 */
2672 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2673 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2674 				if (iclog->ic_callback)
2675 					atomic64_set(&log->l_last_sync_lsn,
2676 						be64_to_cpu(iclog->ic_header.h_lsn));
2677 
2678 			} else
2679 				ioerrors++;
2680 
2681 			spin_unlock(&log->l_icloglock);
2682 
2683 			/*
2684 			 * Keep processing entries in the callback list until
2685 			 * we come around and it is empty.  We need to
2686 			 * atomically see that the list is empty and change the
2687 			 * state to DIRTY so that we don't miss any more
2688 			 * callbacks being added.
2689 			 */
2690 			spin_lock(&iclog->ic_callback_lock);
2691 			cb = iclog->ic_callback;
2692 			while (cb) {
2693 				iclog->ic_callback_tail = &(iclog->ic_callback);
2694 				iclog->ic_callback = NULL;
2695 				spin_unlock(&iclog->ic_callback_lock);
2696 
2697 				/* perform callbacks in the order given */
2698 				for (; cb; cb = cb_next) {
2699 					cb_next = cb->cb_next;
2700 					cb->cb_func(cb->cb_arg, aborted);
2701 				}
2702 				spin_lock(&iclog->ic_callback_lock);
2703 				cb = iclog->ic_callback;
2704 			}
2705 
2706 			loopdidcallbacks++;
2707 			funcdidcallbacks++;
2708 
2709 			spin_lock(&log->l_icloglock);
2710 			ASSERT(iclog->ic_callback == NULL);
2711 			spin_unlock(&iclog->ic_callback_lock);
2712 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2713 				iclog->ic_state = XLOG_STATE_DIRTY;
2714 
2715 			/*
2716 			 * Transition from DIRTY to ACTIVE if applicable.
2717 			 * NOP if STATE_IOERROR.
2718 			 */
2719 			xlog_state_clean_log(log);
2720 
2721 			/* wake up threads waiting in xfs_log_force() */
2722 			wake_up_all(&iclog->ic_force_wait);
2723 
2724 			iclog = iclog->ic_next;
2725 		} while (first_iclog != iclog);
2726 
2727 		if (repeats > 5000) {
2728 			flushcnt += repeats;
2729 			repeats = 0;
2730 			xfs_warn(log->l_mp,
2731 				"%s: possible infinite loop (%d iterations)",
2732 				__func__, flushcnt);
2733 		}
2734 	} while (!ioerrors && loopdidcallbacks);
2735 
2736 	/*
2737 	 * make one last gasp attempt to see if iclogs are being left in
2738 	 * limbo..
2739 	 */
2740 #ifdef DEBUG
2741 	if (funcdidcallbacks) {
2742 		first_iclog = iclog = log->l_iclog;
2743 		do {
2744 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2745 			/*
2746 			 * Terminate the loop if iclogs are found in states
2747 			 * which will cause other threads to clean up iclogs.
2748 			 *
2749 			 * SYNCING - i/o completion will go through logs
2750 			 * DONE_SYNC - interrupt thread should be waiting for
2751 			 *              l_icloglock
2752 			 * IOERROR - give up hope all ye who enter here
2753 			 */
2754 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2755 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2756 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2757 			    iclog->ic_state == XLOG_STATE_IOERROR )
2758 				break;
2759 			iclog = iclog->ic_next;
2760 		} while (first_iclog != iclog);
2761 	}
2762 #endif
2763 
2764 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2765 		wake = 1;
2766 	spin_unlock(&log->l_icloglock);
2767 
2768 	if (wake)
2769 		wake_up_all(&log->l_flush_wait);
2770 }
2771 
2772 
2773 /*
2774  * Finish transitioning this iclog to the dirty state.
2775  *
2776  * Make sure that we completely execute this routine only when this is
2777  * the last call to the iclog.  There is a good chance that iclog flushes,
2778  * when we reach the end of the physical log, get turned into 2 separate
2779  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2780  * routine.  By using the reference count bwritecnt, we guarantee that only
2781  * the second completion goes through.
2782  *
2783  * Callbacks could take time, so they are done outside the scope of the
2784  * global state machine log lock.
2785  */
2786 STATIC void
2787 xlog_state_done_syncing(
2788 	xlog_in_core_t	*iclog,
2789 	int		aborted)
2790 {
2791 	struct xlog	   *log = iclog->ic_log;
2792 
2793 	spin_lock(&log->l_icloglock);
2794 
2795 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2796 	       iclog->ic_state == XLOG_STATE_IOERROR);
2797 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2798 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2799 
2800 
2801 	/*
2802 	 * If we got an error, either on the first buffer, or in the case of
2803 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2804 	 * and none should ever be attempted to be written to disk
2805 	 * again.
2806 	 */
2807 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2808 		if (--iclog->ic_bwritecnt == 1) {
2809 			spin_unlock(&log->l_icloglock);
2810 			return;
2811 		}
2812 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2813 	}
2814 
2815 	/*
2816 	 * Someone could be sleeping prior to writing out the next
2817 	 * iclog buffer, we wake them all, one will get to do the
2818 	 * I/O, the others get to wait for the result.
2819 	 */
2820 	wake_up_all(&iclog->ic_write_wait);
2821 	spin_unlock(&log->l_icloglock);
2822 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2823 }	/* xlog_state_done_syncing */
2824 
2825 
2826 /*
2827  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2828  * sleep.  We wait on the flush queue on the head iclog as that should be
2829  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2830  * we will wait here and all new writes will sleep until a sync completes.
2831  *
2832  * The in-core logs are used in a circular fashion. They are not used
2833  * out-of-order even when an iclog past the head is free.
2834  *
2835  * return:
2836  *	* log_offset where xlog_write() can start writing into the in-core
2837  *		log's data space.
2838  *	* in-core log pointer to which xlog_write() should write.
2839  *	* boolean indicating this is a continued write to an in-core log.
2840  *		If this is the last write, then the in-core log's offset field
2841  *		needs to be incremented, depending on the amount of data which
2842  *		is copied.
2843  */
2844 STATIC int
2845 xlog_state_get_iclog_space(
2846 	struct xlog		*log,
2847 	int			len,
2848 	struct xlog_in_core	**iclogp,
2849 	struct xlog_ticket	*ticket,
2850 	int			*continued_write,
2851 	int			*logoffsetp)
2852 {
2853 	int		  log_offset;
2854 	xlog_rec_header_t *head;
2855 	xlog_in_core_t	  *iclog;
2856 	int		  error;
2857 
2858 restart:
2859 	spin_lock(&log->l_icloglock);
2860 	if (XLOG_FORCED_SHUTDOWN(log)) {
2861 		spin_unlock(&log->l_icloglock);
2862 		return XFS_ERROR(EIO);
2863 	}
2864 
2865 	iclog = log->l_iclog;
2866 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2867 		XFS_STATS_INC(xs_log_noiclogs);
2868 
2869 		/* Wait for log writes to have flushed */
2870 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2871 		goto restart;
2872 	}
2873 
2874 	head = &iclog->ic_header;
2875 
2876 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2877 	log_offset = iclog->ic_offset;
2878 
2879 	/* On the 1st write to an iclog, figure out lsn.  This works
2880 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2881 	 * committing to.  If the offset is set, that's how many blocks
2882 	 * must be written.
2883 	 */
2884 	if (log_offset == 0) {
2885 		ticket->t_curr_res -= log->l_iclog_hsize;
2886 		xlog_tic_add_region(ticket,
2887 				    log->l_iclog_hsize,
2888 				    XLOG_REG_TYPE_LRHEADER);
2889 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2890 		head->h_lsn = cpu_to_be64(
2891 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2892 		ASSERT(log->l_curr_block >= 0);
2893 	}
2894 
2895 	/* If there is enough room to write everything, then do it.  Otherwise,
2896 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2897 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2898 	 * until you know exactly how many bytes get copied.  Therefore, wait
2899 	 * until later to update ic_offset.
2900 	 *
2901 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2902 	 * can fit into remaining data section.
2903 	 */
2904 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2905 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2906 
2907 		/*
2908 		 * If I'm the only one writing to this iclog, sync it to disk.
2909 		 * We need to do an atomic compare and decrement here to avoid
2910 		 * racing with concurrent atomic_dec_and_lock() calls in
2911 		 * xlog_state_release_iclog() when there is more than one
2912 		 * reference to the iclog.
2913 		 */
2914 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2915 			/* we are the only one */
2916 			spin_unlock(&log->l_icloglock);
2917 			error = xlog_state_release_iclog(log, iclog);
2918 			if (error)
2919 				return error;
2920 		} else {
2921 			spin_unlock(&log->l_icloglock);
2922 		}
2923 		goto restart;
2924 	}
2925 
2926 	/* Do we have enough room to write the full amount in the remainder
2927 	 * of this iclog?  Or must we continue a write on the next iclog and
2928 	 * mark this iclog as completely taken?  In the case where we switch
2929 	 * iclogs (to mark it taken), this particular iclog will release/sync
2930 	 * to disk in xlog_write().
2931 	 */
2932 	if (len <= iclog->ic_size - iclog->ic_offset) {
2933 		*continued_write = 0;
2934 		iclog->ic_offset += len;
2935 	} else {
2936 		*continued_write = 1;
2937 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2938 	}
2939 	*iclogp = iclog;
2940 
2941 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2942 	spin_unlock(&log->l_icloglock);
2943 
2944 	*logoffsetp = log_offset;
2945 	return 0;
2946 }	/* xlog_state_get_iclog_space */
2947 
2948 /* The first cnt-1 times through here we don't need to
2949  * move the grant write head because the permanent
2950  * reservation has reserved cnt times the unit amount.
2951  * Release part of current permanent unit reservation and
2952  * reset current reservation to be one units worth.  Also
2953  * move grant reservation head forward.
2954  */
2955 STATIC void
2956 xlog_regrant_reserve_log_space(
2957 	struct xlog		*log,
2958 	struct xlog_ticket	*ticket)
2959 {
2960 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2961 
2962 	if (ticket->t_cnt > 0)
2963 		ticket->t_cnt--;
2964 
2965 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2966 					ticket->t_curr_res);
2967 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2968 					ticket->t_curr_res);
2969 	ticket->t_curr_res = ticket->t_unit_res;
2970 	xlog_tic_reset_res(ticket);
2971 
2972 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2973 
2974 	/* just return if we still have some of the pre-reserved space */
2975 	if (ticket->t_cnt > 0)
2976 		return;
2977 
2978 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2979 					ticket->t_unit_res);
2980 
2981 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2982 
2983 	ticket->t_curr_res = ticket->t_unit_res;
2984 	xlog_tic_reset_res(ticket);
2985 }	/* xlog_regrant_reserve_log_space */
2986 
2987 
2988 /*
2989  * Give back the space left from a reservation.
2990  *
2991  * All the information we need to make a correct determination of space left
2992  * is present.  For non-permanent reservations, things are quite easy.  The
2993  * count should have been decremented to zero.  We only need to deal with the
2994  * space remaining in the current reservation part of the ticket.  If the
2995  * ticket contains a permanent reservation, there may be left over space which
2996  * needs to be released.  A count of N means that N-1 refills of the current
2997  * reservation can be done before we need to ask for more space.  The first
2998  * one goes to fill up the first current reservation.  Once we run out of
2999  * space, the count will stay at zero and the only space remaining will be
3000  * in the current reservation field.
3001  */
3002 STATIC void
3003 xlog_ungrant_log_space(
3004 	struct xlog		*log,
3005 	struct xlog_ticket	*ticket)
3006 {
3007 	int	bytes;
3008 
3009 	if (ticket->t_cnt > 0)
3010 		ticket->t_cnt--;
3011 
3012 	trace_xfs_log_ungrant_enter(log, ticket);
3013 	trace_xfs_log_ungrant_sub(log, ticket);
3014 
3015 	/*
3016 	 * If this is a permanent reservation ticket, we may be able to free
3017 	 * up more space based on the remaining count.
3018 	 */
3019 	bytes = ticket->t_curr_res;
3020 	if (ticket->t_cnt > 0) {
3021 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3022 		bytes += ticket->t_unit_res*ticket->t_cnt;
3023 	}
3024 
3025 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3026 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3027 
3028 	trace_xfs_log_ungrant_exit(log, ticket);
3029 
3030 	xfs_log_space_wake(log->l_mp);
3031 }
3032 
3033 /*
3034  * Flush iclog to disk if this is the last reference to the given iclog and
3035  * the WANT_SYNC bit is set.
3036  *
3037  * When this function is entered, the iclog is not necessarily in the
3038  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3039  *
3040  *
3041  */
3042 STATIC int
3043 xlog_state_release_iclog(
3044 	struct xlog		*log,
3045 	struct xlog_in_core	*iclog)
3046 {
3047 	int		sync = 0;	/* do we sync? */
3048 
3049 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3050 		return XFS_ERROR(EIO);
3051 
3052 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3053 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3054 		return 0;
3055 
3056 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3057 		spin_unlock(&log->l_icloglock);
3058 		return XFS_ERROR(EIO);
3059 	}
3060 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3061 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3062 
3063 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3064 		/* update tail before writing to iclog */
3065 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3066 		sync++;
3067 		iclog->ic_state = XLOG_STATE_SYNCING;
3068 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3069 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3070 		/* cycle incremented when incrementing curr_block */
3071 	}
3072 	spin_unlock(&log->l_icloglock);
3073 
3074 	/*
3075 	 * We let the log lock go, so it's possible that we hit a log I/O
3076 	 * error or some other SHUTDOWN condition that marks the iclog
3077 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3078 	 * this iclog has consistent data, so we ignore IOERROR
3079 	 * flags after this point.
3080 	 */
3081 	if (sync)
3082 		return xlog_sync(log, iclog);
3083 	return 0;
3084 }	/* xlog_state_release_iclog */
3085 
3086 
3087 /*
3088  * This routine will mark the current iclog in the ring as WANT_SYNC
3089  * and move the current iclog pointer to the next iclog in the ring.
3090  * When this routine is called from xlog_state_get_iclog_space(), the
3091  * exact size of the iclog has not yet been determined.  All we know is
3092  * that every data block.  We have run out of space in this log record.
3093  */
3094 STATIC void
3095 xlog_state_switch_iclogs(
3096 	struct xlog		*log,
3097 	struct xlog_in_core	*iclog,
3098 	int			eventual_size)
3099 {
3100 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3101 	if (!eventual_size)
3102 		eventual_size = iclog->ic_offset;
3103 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3104 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3105 	log->l_prev_block = log->l_curr_block;
3106 	log->l_prev_cycle = log->l_curr_cycle;
3107 
3108 	/* roll log?: ic_offset changed later */
3109 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3110 
3111 	/* Round up to next log-sunit */
3112 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3113 	    log->l_mp->m_sb.sb_logsunit > 1) {
3114 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3115 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3116 	}
3117 
3118 	if (log->l_curr_block >= log->l_logBBsize) {
3119 		log->l_curr_cycle++;
3120 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3121 			log->l_curr_cycle++;
3122 		log->l_curr_block -= log->l_logBBsize;
3123 		ASSERT(log->l_curr_block >= 0);
3124 	}
3125 	ASSERT(iclog == log->l_iclog);
3126 	log->l_iclog = iclog->ic_next;
3127 }	/* xlog_state_switch_iclogs */
3128 
3129 /*
3130  * Write out all data in the in-core log as of this exact moment in time.
3131  *
3132  * Data may be written to the in-core log during this call.  However,
3133  * we don't guarantee this data will be written out.  A change from past
3134  * implementation means this routine will *not* write out zero length LRs.
3135  *
3136  * Basically, we try and perform an intelligent scan of the in-core logs.
3137  * If we determine there is no flushable data, we just return.  There is no
3138  * flushable data if:
3139  *
3140  *	1. the current iclog is active and has no data; the previous iclog
3141  *		is in the active or dirty state.
3142  *	2. the current iclog is drity, and the previous iclog is in the
3143  *		active or dirty state.
3144  *
3145  * We may sleep if:
3146  *
3147  *	1. the current iclog is not in the active nor dirty state.
3148  *	2. the current iclog dirty, and the previous iclog is not in the
3149  *		active nor dirty state.
3150  *	3. the current iclog is active, and there is another thread writing
3151  *		to this particular iclog.
3152  *	4. a) the current iclog is active and has no other writers
3153  *	   b) when we return from flushing out this iclog, it is still
3154  *		not in the active nor dirty state.
3155  */
3156 int
3157 _xfs_log_force(
3158 	struct xfs_mount	*mp,
3159 	uint			flags,
3160 	int			*log_flushed)
3161 {
3162 	struct xlog		*log = mp->m_log;
3163 	struct xlog_in_core	*iclog;
3164 	xfs_lsn_t		lsn;
3165 
3166 	XFS_STATS_INC(xs_log_force);
3167 
3168 	xlog_cil_force(log);
3169 
3170 	spin_lock(&log->l_icloglock);
3171 
3172 	iclog = log->l_iclog;
3173 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3174 		spin_unlock(&log->l_icloglock);
3175 		return XFS_ERROR(EIO);
3176 	}
3177 
3178 	/* If the head iclog is not active nor dirty, we just attach
3179 	 * ourselves to the head and go to sleep.
3180 	 */
3181 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3182 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3183 		/*
3184 		 * If the head is dirty or (active and empty), then
3185 		 * we need to look at the previous iclog.  If the previous
3186 		 * iclog is active or dirty we are done.  There is nothing
3187 		 * to sync out.  Otherwise, we attach ourselves to the
3188 		 * previous iclog and go to sleep.
3189 		 */
3190 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3191 		    (atomic_read(&iclog->ic_refcnt) == 0
3192 		     && iclog->ic_offset == 0)) {
3193 			iclog = iclog->ic_prev;
3194 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3195 			    iclog->ic_state == XLOG_STATE_DIRTY)
3196 				goto no_sleep;
3197 			else
3198 				goto maybe_sleep;
3199 		} else {
3200 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3201 				/* We are the only one with access to this
3202 				 * iclog.  Flush it out now.  There should
3203 				 * be a roundoff of zero to show that someone
3204 				 * has already taken care of the roundoff from
3205 				 * the previous sync.
3206 				 */
3207 				atomic_inc(&iclog->ic_refcnt);
3208 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3209 				xlog_state_switch_iclogs(log, iclog, 0);
3210 				spin_unlock(&log->l_icloglock);
3211 
3212 				if (xlog_state_release_iclog(log, iclog))
3213 					return XFS_ERROR(EIO);
3214 
3215 				if (log_flushed)
3216 					*log_flushed = 1;
3217 				spin_lock(&log->l_icloglock);
3218 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3219 				    iclog->ic_state != XLOG_STATE_DIRTY)
3220 					goto maybe_sleep;
3221 				else
3222 					goto no_sleep;
3223 			} else {
3224 				/* Someone else is writing to this iclog.
3225 				 * Use its call to flush out the data.  However,
3226 				 * the other thread may not force out this LR,
3227 				 * so we mark it WANT_SYNC.
3228 				 */
3229 				xlog_state_switch_iclogs(log, iclog, 0);
3230 				goto maybe_sleep;
3231 			}
3232 		}
3233 	}
3234 
3235 	/* By the time we come around again, the iclog could've been filled
3236 	 * which would give it another lsn.  If we have a new lsn, just
3237 	 * return because the relevant data has been flushed.
3238 	 */
3239 maybe_sleep:
3240 	if (flags & XFS_LOG_SYNC) {
3241 		/*
3242 		 * We must check if we're shutting down here, before
3243 		 * we wait, while we're holding the l_icloglock.
3244 		 * Then we check again after waking up, in case our
3245 		 * sleep was disturbed by a bad news.
3246 		 */
3247 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3248 			spin_unlock(&log->l_icloglock);
3249 			return XFS_ERROR(EIO);
3250 		}
3251 		XFS_STATS_INC(xs_log_force_sleep);
3252 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3253 		/*
3254 		 * No need to grab the log lock here since we're
3255 		 * only deciding whether or not to return EIO
3256 		 * and the memory read should be atomic.
3257 		 */
3258 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3259 			return XFS_ERROR(EIO);
3260 		if (log_flushed)
3261 			*log_flushed = 1;
3262 	} else {
3263 
3264 no_sleep:
3265 		spin_unlock(&log->l_icloglock);
3266 	}
3267 	return 0;
3268 }
3269 
3270 /*
3271  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3272  * about errors or whether the log was flushed or not. This is the normal
3273  * interface to use when trying to unpin items or move the log forward.
3274  */
3275 void
3276 xfs_log_force(
3277 	xfs_mount_t	*mp,
3278 	uint		flags)
3279 {
3280 	int	error;
3281 
3282 	trace_xfs_log_force(mp, 0);
3283 	error = _xfs_log_force(mp, flags, NULL);
3284 	if (error)
3285 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3286 }
3287 
3288 /*
3289  * Force the in-core log to disk for a specific LSN.
3290  *
3291  * Find in-core log with lsn.
3292  *	If it is in the DIRTY state, just return.
3293  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3294  *		state and go to sleep or return.
3295  *	If it is in any other state, go to sleep or return.
3296  *
3297  * Synchronous forces are implemented with a signal variable. All callers
3298  * to force a given lsn to disk will wait on a the sv attached to the
3299  * specific in-core log.  When given in-core log finally completes its
3300  * write to disk, that thread will wake up all threads waiting on the
3301  * sv.
3302  */
3303 int
3304 _xfs_log_force_lsn(
3305 	struct xfs_mount	*mp,
3306 	xfs_lsn_t		lsn,
3307 	uint			flags,
3308 	int			*log_flushed)
3309 {
3310 	struct xlog		*log = mp->m_log;
3311 	struct xlog_in_core	*iclog;
3312 	int			already_slept = 0;
3313 
3314 	ASSERT(lsn != 0);
3315 
3316 	XFS_STATS_INC(xs_log_force);
3317 
3318 	lsn = xlog_cil_force_lsn(log, lsn);
3319 	if (lsn == NULLCOMMITLSN)
3320 		return 0;
3321 
3322 try_again:
3323 	spin_lock(&log->l_icloglock);
3324 	iclog = log->l_iclog;
3325 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3326 		spin_unlock(&log->l_icloglock);
3327 		return XFS_ERROR(EIO);
3328 	}
3329 
3330 	do {
3331 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3332 			iclog = iclog->ic_next;
3333 			continue;
3334 		}
3335 
3336 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3337 			spin_unlock(&log->l_icloglock);
3338 			return 0;
3339 		}
3340 
3341 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3342 			/*
3343 			 * We sleep here if we haven't already slept (e.g.
3344 			 * this is the first time we've looked at the correct
3345 			 * iclog buf) and the buffer before us is going to
3346 			 * be sync'ed. The reason for this is that if we
3347 			 * are doing sync transactions here, by waiting for
3348 			 * the previous I/O to complete, we can allow a few
3349 			 * more transactions into this iclog before we close
3350 			 * it down.
3351 			 *
3352 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3353 			 * up the refcnt so we can release the log (which
3354 			 * drops the ref count).  The state switch keeps new
3355 			 * transaction commits from using this buffer.  When
3356 			 * the current commits finish writing into the buffer,
3357 			 * the refcount will drop to zero and the buffer will
3358 			 * go out then.
3359 			 */
3360 			if (!already_slept &&
3361 			    (iclog->ic_prev->ic_state &
3362 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3363 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3364 
3365 				XFS_STATS_INC(xs_log_force_sleep);
3366 
3367 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3368 							&log->l_icloglock);
3369 				if (log_flushed)
3370 					*log_flushed = 1;
3371 				already_slept = 1;
3372 				goto try_again;
3373 			}
3374 			atomic_inc(&iclog->ic_refcnt);
3375 			xlog_state_switch_iclogs(log, iclog, 0);
3376 			spin_unlock(&log->l_icloglock);
3377 			if (xlog_state_release_iclog(log, iclog))
3378 				return XFS_ERROR(EIO);
3379 			if (log_flushed)
3380 				*log_flushed = 1;
3381 			spin_lock(&log->l_icloglock);
3382 		}
3383 
3384 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3385 		    !(iclog->ic_state &
3386 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3387 			/*
3388 			 * Don't wait on completion if we know that we've
3389 			 * gotten a log write error.
3390 			 */
3391 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3392 				spin_unlock(&log->l_icloglock);
3393 				return XFS_ERROR(EIO);
3394 			}
3395 			XFS_STATS_INC(xs_log_force_sleep);
3396 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3397 			/*
3398 			 * No need to grab the log lock here since we're
3399 			 * only deciding whether or not to return EIO
3400 			 * and the memory read should be atomic.
3401 			 */
3402 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3403 				return XFS_ERROR(EIO);
3404 
3405 			if (log_flushed)
3406 				*log_flushed = 1;
3407 		} else {		/* just return */
3408 			spin_unlock(&log->l_icloglock);
3409 		}
3410 
3411 		return 0;
3412 	} while (iclog != log->l_iclog);
3413 
3414 	spin_unlock(&log->l_icloglock);
3415 	return 0;
3416 }
3417 
3418 /*
3419  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3420  * about errors or whether the log was flushed or not. This is the normal
3421  * interface to use when trying to unpin items or move the log forward.
3422  */
3423 void
3424 xfs_log_force_lsn(
3425 	xfs_mount_t	*mp,
3426 	xfs_lsn_t	lsn,
3427 	uint		flags)
3428 {
3429 	int	error;
3430 
3431 	trace_xfs_log_force(mp, lsn);
3432 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3433 	if (error)
3434 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3435 }
3436 
3437 /*
3438  * Called when we want to mark the current iclog as being ready to sync to
3439  * disk.
3440  */
3441 STATIC void
3442 xlog_state_want_sync(
3443 	struct xlog		*log,
3444 	struct xlog_in_core	*iclog)
3445 {
3446 	assert_spin_locked(&log->l_icloglock);
3447 
3448 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3449 		xlog_state_switch_iclogs(log, iclog, 0);
3450 	} else {
3451 		ASSERT(iclog->ic_state &
3452 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3453 	}
3454 }
3455 
3456 
3457 /*****************************************************************************
3458  *
3459  *		TICKET functions
3460  *
3461  *****************************************************************************
3462  */
3463 
3464 /*
3465  * Free a used ticket when its refcount falls to zero.
3466  */
3467 void
3468 xfs_log_ticket_put(
3469 	xlog_ticket_t	*ticket)
3470 {
3471 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3472 	if (atomic_dec_and_test(&ticket->t_ref))
3473 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3474 }
3475 
3476 xlog_ticket_t *
3477 xfs_log_ticket_get(
3478 	xlog_ticket_t	*ticket)
3479 {
3480 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 	atomic_inc(&ticket->t_ref);
3482 	return ticket;
3483 }
3484 
3485 /*
3486  * Figure out the total log space unit (in bytes) that would be
3487  * required for a log ticket.
3488  */
3489 int
3490 xfs_log_calc_unit_res(
3491 	struct xfs_mount	*mp,
3492 	int			unit_bytes)
3493 {
3494 	struct xlog		*log = mp->m_log;
3495 	int			iclog_space;
3496 	uint			num_headers;
3497 
3498 	/*
3499 	 * Permanent reservations have up to 'cnt'-1 active log operations
3500 	 * in the log.  A unit in this case is the amount of space for one
3501 	 * of these log operations.  Normal reservations have a cnt of 1
3502 	 * and their unit amount is the total amount of space required.
3503 	 *
3504 	 * The following lines of code account for non-transaction data
3505 	 * which occupy space in the on-disk log.
3506 	 *
3507 	 * Normal form of a transaction is:
3508 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3510 	 *
3511 	 * We need to account for all the leadup data and trailer data
3512 	 * around the transaction data.
3513 	 * And then we need to account for the worst case in terms of using
3514 	 * more space.
3515 	 * The worst case will happen if:
3516 	 * - the placement of the transaction happens to be such that the
3517 	 *   roundoff is at its maximum
3518 	 * - the transaction data is synced before the commit record is synced
3519 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 	 *   Therefore the commit record is in its own Log Record.
3521 	 *   This can happen as the commit record is called with its
3522 	 *   own region to xlog_write().
3523 	 *   This then means that in the worst case, roundoff can happen for
3524 	 *   the commit-rec as well.
3525 	 *   The commit-rec is smaller than padding in this scenario and so it is
3526 	 *   not added separately.
3527 	 */
3528 
3529 	/* for trans header */
3530 	unit_bytes += sizeof(xlog_op_header_t);
3531 	unit_bytes += sizeof(xfs_trans_header_t);
3532 
3533 	/* for start-rec */
3534 	unit_bytes += sizeof(xlog_op_header_t);
3535 
3536 	/*
3537 	 * for LR headers - the space for data in an iclog is the size minus
3538 	 * the space used for the headers. If we use the iclog size, then we
3539 	 * undercalculate the number of headers required.
3540 	 *
3541 	 * Furthermore - the addition of op headers for split-recs might
3542 	 * increase the space required enough to require more log and op
3543 	 * headers, so take that into account too.
3544 	 *
3545 	 * IMPORTANT: This reservation makes the assumption that if this
3546 	 * transaction is the first in an iclog and hence has the LR headers
3547 	 * accounted to it, then the remaining space in the iclog is
3548 	 * exclusively for this transaction.  i.e. if the transaction is larger
3549 	 * than the iclog, it will be the only thing in that iclog.
3550 	 * Fundamentally, this means we must pass the entire log vector to
3551 	 * xlog_write to guarantee this.
3552 	 */
3553 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3554 	num_headers = howmany(unit_bytes, iclog_space);
3555 
3556 	/* for split-recs - ophdrs added when data split over LRs */
3557 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3558 
3559 	/* add extra header reservations if we overrun */
3560 	while (!num_headers ||
3561 	       howmany(unit_bytes, iclog_space) > num_headers) {
3562 		unit_bytes += sizeof(xlog_op_header_t);
3563 		num_headers++;
3564 	}
3565 	unit_bytes += log->l_iclog_hsize * num_headers;
3566 
3567 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3568 	unit_bytes += log->l_iclog_hsize;
3569 
3570 	/* for roundoff padding for transaction data and one for commit record */
3571 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3572 		/* log su roundoff */
3573 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3574 	} else {
3575 		/* BB roundoff */
3576 		unit_bytes += 2 * BBSIZE;
3577         }
3578 
3579 	return unit_bytes;
3580 }
3581 
3582 /*
3583  * Allocate and initialise a new log ticket.
3584  */
3585 struct xlog_ticket *
3586 xlog_ticket_alloc(
3587 	struct xlog		*log,
3588 	int			unit_bytes,
3589 	int			cnt,
3590 	char			client,
3591 	bool			permanent,
3592 	xfs_km_flags_t		alloc_flags)
3593 {
3594 	struct xlog_ticket	*tic;
3595 	int			unit_res;
3596 
3597 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3598 	if (!tic)
3599 		return NULL;
3600 
3601 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3602 
3603 	atomic_set(&tic->t_ref, 1);
3604 	tic->t_task		= current;
3605 	INIT_LIST_HEAD(&tic->t_queue);
3606 	tic->t_unit_res		= unit_res;
3607 	tic->t_curr_res		= unit_res;
3608 	tic->t_cnt		= cnt;
3609 	tic->t_ocnt		= cnt;
3610 	tic->t_tid		= prandom_u32();
3611 	tic->t_clientid		= client;
3612 	tic->t_flags		= XLOG_TIC_INITED;
3613 	tic->t_trans_type	= 0;
3614 	if (permanent)
3615 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3616 
3617 	xlog_tic_reset_res(tic);
3618 
3619 	return tic;
3620 }
3621 
3622 
3623 /******************************************************************************
3624  *
3625  *		Log debug routines
3626  *
3627  ******************************************************************************
3628  */
3629 #if defined(DEBUG)
3630 /*
3631  * Make sure that the destination ptr is within the valid data region of
3632  * one of the iclogs.  This uses backup pointers stored in a different
3633  * part of the log in case we trash the log structure.
3634  */
3635 void
3636 xlog_verify_dest_ptr(
3637 	struct xlog	*log,
3638 	char		*ptr)
3639 {
3640 	int i;
3641 	int good_ptr = 0;
3642 
3643 	for (i = 0; i < log->l_iclog_bufs; i++) {
3644 		if (ptr >= log->l_iclog_bak[i] &&
3645 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3646 			good_ptr++;
3647 	}
3648 
3649 	if (!good_ptr)
3650 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3651 }
3652 
3653 /*
3654  * Check to make sure the grant write head didn't just over lap the tail.  If
3655  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3656  * the cycles differ by exactly one and check the byte count.
3657  *
3658  * This check is run unlocked, so can give false positives. Rather than assert
3659  * on failures, use a warn-once flag and a panic tag to allow the admin to
3660  * determine if they want to panic the machine when such an error occurs. For
3661  * debug kernels this will have the same effect as using an assert but, unlinke
3662  * an assert, it can be turned off at runtime.
3663  */
3664 STATIC void
3665 xlog_verify_grant_tail(
3666 	struct xlog	*log)
3667 {
3668 	int		tail_cycle, tail_blocks;
3669 	int		cycle, space;
3670 
3671 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3672 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3673 	if (tail_cycle != cycle) {
3674 		if (cycle - 1 != tail_cycle &&
3675 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3676 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3677 				"%s: cycle - 1 != tail_cycle", __func__);
3678 			log->l_flags |= XLOG_TAIL_WARN;
3679 		}
3680 
3681 		if (space > BBTOB(tail_blocks) &&
3682 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3683 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3684 				"%s: space > BBTOB(tail_blocks)", __func__);
3685 			log->l_flags |= XLOG_TAIL_WARN;
3686 		}
3687 	}
3688 }
3689 
3690 /* check if it will fit */
3691 STATIC void
3692 xlog_verify_tail_lsn(
3693 	struct xlog		*log,
3694 	struct xlog_in_core	*iclog,
3695 	xfs_lsn_t		tail_lsn)
3696 {
3697     int blocks;
3698 
3699     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3700 	blocks =
3701 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3702 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3703 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3704     } else {
3705 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3706 
3707 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3708 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3709 
3710 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3711 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3712 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3713     }
3714 }	/* xlog_verify_tail_lsn */
3715 
3716 /*
3717  * Perform a number of checks on the iclog before writing to disk.
3718  *
3719  * 1. Make sure the iclogs are still circular
3720  * 2. Make sure we have a good magic number
3721  * 3. Make sure we don't have magic numbers in the data
3722  * 4. Check fields of each log operation header for:
3723  *	A. Valid client identifier
3724  *	B. tid ptr value falls in valid ptr space (user space code)
3725  *	C. Length in log record header is correct according to the
3726  *		individual operation headers within record.
3727  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3728  *	log, check the preceding blocks of the physical log to make sure all
3729  *	the cycle numbers agree with the current cycle number.
3730  */
3731 STATIC void
3732 xlog_verify_iclog(
3733 	struct xlog		*log,
3734 	struct xlog_in_core	*iclog,
3735 	int			count,
3736 	bool                    syncing)
3737 {
3738 	xlog_op_header_t	*ophead;
3739 	xlog_in_core_t		*icptr;
3740 	xlog_in_core_2_t	*xhdr;
3741 	xfs_caddr_t		ptr;
3742 	xfs_caddr_t		base_ptr;
3743 	__psint_t		field_offset;
3744 	__uint8_t		clientid;
3745 	int			len, i, j, k, op_len;
3746 	int			idx;
3747 
3748 	/* check validity of iclog pointers */
3749 	spin_lock(&log->l_icloglock);
3750 	icptr = log->l_iclog;
3751 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3752 		ASSERT(icptr);
3753 
3754 	if (icptr != log->l_iclog)
3755 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3756 	spin_unlock(&log->l_icloglock);
3757 
3758 	/* check log magic numbers */
3759 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3760 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3761 
3762 	ptr = (xfs_caddr_t) &iclog->ic_header;
3763 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3764 	     ptr += BBSIZE) {
3765 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3766 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3767 				__func__);
3768 	}
3769 
3770 	/* check fields */
3771 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3772 	ptr = iclog->ic_datap;
3773 	base_ptr = ptr;
3774 	ophead = (xlog_op_header_t *)ptr;
3775 	xhdr = iclog->ic_data;
3776 	for (i = 0; i < len; i++) {
3777 		ophead = (xlog_op_header_t *)ptr;
3778 
3779 		/* clientid is only 1 byte */
3780 		field_offset = (__psint_t)
3781 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3782 		if (!syncing || (field_offset & 0x1ff)) {
3783 			clientid = ophead->oh_clientid;
3784 		} else {
3785 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3786 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3787 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3788 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3789 				clientid = xlog_get_client_id(
3790 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3791 			} else {
3792 				clientid = xlog_get_client_id(
3793 					iclog->ic_header.h_cycle_data[idx]);
3794 			}
3795 		}
3796 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3797 			xfs_warn(log->l_mp,
3798 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3799 				__func__, clientid, ophead,
3800 				(unsigned long)field_offset);
3801 
3802 		/* check length */
3803 		field_offset = (__psint_t)
3804 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3805 		if (!syncing || (field_offset & 0x1ff)) {
3806 			op_len = be32_to_cpu(ophead->oh_len);
3807 		} else {
3808 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3809 				    (__psint_t)iclog->ic_datap);
3810 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3811 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3812 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3814 			} else {
3815 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3816 			}
3817 		}
3818 		ptr += sizeof(xlog_op_header_t) + op_len;
3819 	}
3820 }	/* xlog_verify_iclog */
3821 #endif
3822 
3823 /*
3824  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3825  */
3826 STATIC int
3827 xlog_state_ioerror(
3828 	struct xlog	*log)
3829 {
3830 	xlog_in_core_t	*iclog, *ic;
3831 
3832 	iclog = log->l_iclog;
3833 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3834 		/*
3835 		 * Mark all the incore logs IOERROR.
3836 		 * From now on, no log flushes will result.
3837 		 */
3838 		ic = iclog;
3839 		do {
3840 			ic->ic_state = XLOG_STATE_IOERROR;
3841 			ic = ic->ic_next;
3842 		} while (ic != iclog);
3843 		return 0;
3844 	}
3845 	/*
3846 	 * Return non-zero, if state transition has already happened.
3847 	 */
3848 	return 1;
3849 }
3850 
3851 /*
3852  * This is called from xfs_force_shutdown, when we're forcibly
3853  * shutting down the filesystem, typically because of an IO error.
3854  * Our main objectives here are to make sure that:
3855  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3856  *	   parties to find out, 'atomically'.
3857  *	b. those who're sleeping on log reservations, pinned objects and
3858  *	    other resources get woken up, and be told the bad news.
3859  *	c. nothing new gets queued up after (a) and (b) are done.
3860  *	d. if !logerror, flush the iclogs to disk, then seal them off
3861  *	   for business.
3862  *
3863  * Note: for delayed logging the !logerror case needs to flush the regions
3864  * held in memory out to the iclogs before flushing them to disk. This needs
3865  * to be done before the log is marked as shutdown, otherwise the flush to the
3866  * iclogs will fail.
3867  */
3868 int
3869 xfs_log_force_umount(
3870 	struct xfs_mount	*mp,
3871 	int			logerror)
3872 {
3873 	struct xlog	*log;
3874 	int		retval;
3875 
3876 	log = mp->m_log;
3877 
3878 	/*
3879 	 * If this happens during log recovery, don't worry about
3880 	 * locking; the log isn't open for business yet.
3881 	 */
3882 	if (!log ||
3883 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3884 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3885 		if (mp->m_sb_bp)
3886 			XFS_BUF_DONE(mp->m_sb_bp);
3887 		return 0;
3888 	}
3889 
3890 	/*
3891 	 * Somebody could've already done the hard work for us.
3892 	 * No need to get locks for this.
3893 	 */
3894 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3895 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3896 		return 1;
3897 	}
3898 	retval = 0;
3899 
3900 	/*
3901 	 * Flush the in memory commit item list before marking the log as
3902 	 * being shut down. We need to do it in this order to ensure all the
3903 	 * completed transactions are flushed to disk with the xfs_log_force()
3904 	 * call below.
3905 	 */
3906 	if (!logerror)
3907 		xlog_cil_force(log);
3908 
3909 	/*
3910 	 * mark the filesystem and the as in a shutdown state and wake
3911 	 * everybody up to tell them the bad news.
3912 	 */
3913 	spin_lock(&log->l_icloglock);
3914 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3915 	if (mp->m_sb_bp)
3916 		XFS_BUF_DONE(mp->m_sb_bp);
3917 
3918 	/*
3919 	 * This flag is sort of redundant because of the mount flag, but
3920 	 * it's good to maintain the separation between the log and the rest
3921 	 * of XFS.
3922 	 */
3923 	log->l_flags |= XLOG_IO_ERROR;
3924 
3925 	/*
3926 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3927 	 * while we're still holding the loglock.
3928 	 */
3929 	if (logerror)
3930 		retval = xlog_state_ioerror(log);
3931 	spin_unlock(&log->l_icloglock);
3932 
3933 	/*
3934 	 * We don't want anybody waiting for log reservations after this. That
3935 	 * means we have to wake up everybody queued up on reserveq as well as
3936 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3937 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3938 	 * action is protected by the grant locks.
3939 	 */
3940 	xlog_grant_head_wake_all(&log->l_reserve_head);
3941 	xlog_grant_head_wake_all(&log->l_write_head);
3942 
3943 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3944 		ASSERT(!logerror);
3945 		/*
3946 		 * Force the incore logs to disk before shutting the
3947 		 * log down completely.
3948 		 */
3949 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3950 
3951 		spin_lock(&log->l_icloglock);
3952 		retval = xlog_state_ioerror(log);
3953 		spin_unlock(&log->l_icloglock);
3954 	}
3955 
3956 	/*
3957 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3958 	 * as if the log writes were completed. The abort handling in the log
3959 	 * item committed callback functions will do this again under lock to
3960 	 * avoid races.
3961 	 */
3962 	wake_up_all(&log->l_cilp->xc_commit_wait);
3963 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3964 
3965 #ifdef XFSERRORDEBUG
3966 	{
3967 		xlog_in_core_t	*iclog;
3968 
3969 		spin_lock(&log->l_icloglock);
3970 		iclog = log->l_iclog;
3971 		do {
3972 			ASSERT(iclog->ic_callback == 0);
3973 			iclog = iclog->ic_next;
3974 		} while (iclog != log->l_iclog);
3975 		spin_unlock(&log->l_icloglock);
3976 	}
3977 #endif
3978 	/* return non-zero if log IOERROR transition had already happened */
3979 	return retval;
3980 }
3981 
3982 STATIC int
3983 xlog_iclogs_empty(
3984 	struct xlog	*log)
3985 {
3986 	xlog_in_core_t	*iclog;
3987 
3988 	iclog = log->l_iclog;
3989 	do {
3990 		/* endianness does not matter here, zero is zero in
3991 		 * any language.
3992 		 */
3993 		if (iclog->ic_header.h_num_logops)
3994 			return 0;
3995 		iclog = iclog->ic_next;
3996 	} while (iclog != log->l_iclog);
3997 	return 1;
3998 }
3999 
4000