xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 93d90ad7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 
37 kmem_zone_t	*xfs_log_ticket_zone;
38 
39 /* Local miscellaneous function prototypes */
40 STATIC int
41 xlog_commit_record(
42 	struct xlog		*log,
43 	struct xlog_ticket	*ticket,
44 	struct xlog_in_core	**iclog,
45 	xfs_lsn_t		*commitlsnp);
46 
47 STATIC struct xlog *
48 xlog_alloc_log(
49 	struct xfs_mount	*mp,
50 	struct xfs_buftarg	*log_target,
51 	xfs_daddr_t		blk_offset,
52 	int			num_bblks);
53 STATIC int
54 xlog_space_left(
55 	struct xlog		*log,
56 	atomic64_t		*head);
57 STATIC int
58 xlog_sync(
59 	struct xlog		*log,
60 	struct xlog_in_core	*iclog);
61 STATIC void
62 xlog_dealloc_log(
63 	struct xlog		*log);
64 
65 /* local state machine functions */
66 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
67 STATIC void
68 xlog_state_do_callback(
69 	struct xlog		*log,
70 	int			aborted,
71 	struct xlog_in_core	*iclog);
72 STATIC int
73 xlog_state_get_iclog_space(
74 	struct xlog		*log,
75 	int			len,
76 	struct xlog_in_core	**iclog,
77 	struct xlog_ticket	*ticket,
78 	int			*continued_write,
79 	int			*logoffsetp);
80 STATIC int
81 xlog_state_release_iclog(
82 	struct xlog		*log,
83 	struct xlog_in_core	*iclog);
84 STATIC void
85 xlog_state_switch_iclogs(
86 	struct xlog		*log,
87 	struct xlog_in_core	*iclog,
88 	int			eventual_size);
89 STATIC void
90 xlog_state_want_sync(
91 	struct xlog		*log,
92 	struct xlog_in_core	*iclog);
93 
94 STATIC void
95 xlog_grant_push_ail(
96 	struct xlog		*log,
97 	int			need_bytes);
98 STATIC void
99 xlog_regrant_reserve_log_space(
100 	struct xlog		*log,
101 	struct xlog_ticket	*ticket);
102 STATIC void
103 xlog_ungrant_log_space(
104 	struct xlog		*log,
105 	struct xlog_ticket	*ticket);
106 
107 #if defined(DEBUG)
108 STATIC void
109 xlog_verify_dest_ptr(
110 	struct xlog		*log,
111 	char			*ptr);
112 STATIC void
113 xlog_verify_grant_tail(
114 	struct xlog *log);
115 STATIC void
116 xlog_verify_iclog(
117 	struct xlog		*log,
118 	struct xlog_in_core	*iclog,
119 	int			count,
120 	bool                    syncing);
121 STATIC void
122 xlog_verify_tail_lsn(
123 	struct xlog		*log,
124 	struct xlog_in_core	*iclog,
125 	xfs_lsn_t		tail_lsn);
126 #else
127 #define xlog_verify_dest_ptr(a,b)
128 #define xlog_verify_grant_tail(a)
129 #define xlog_verify_iclog(a,b,c,d)
130 #define xlog_verify_tail_lsn(a,b,c)
131 #endif
132 
133 STATIC int
134 xlog_iclogs_empty(
135 	struct xlog		*log);
136 
137 static void
138 xlog_grant_sub_space(
139 	struct xlog		*log,
140 	atomic64_t		*head,
141 	int			bytes)
142 {
143 	int64_t	head_val = atomic64_read(head);
144 	int64_t new, old;
145 
146 	do {
147 		int	cycle, space;
148 
149 		xlog_crack_grant_head_val(head_val, &cycle, &space);
150 
151 		space -= bytes;
152 		if (space < 0) {
153 			space += log->l_logsize;
154 			cycle--;
155 		}
156 
157 		old = head_val;
158 		new = xlog_assign_grant_head_val(cycle, space);
159 		head_val = atomic64_cmpxchg(head, old, new);
160 	} while (head_val != old);
161 }
162 
163 static void
164 xlog_grant_add_space(
165 	struct xlog		*log,
166 	atomic64_t		*head,
167 	int			bytes)
168 {
169 	int64_t	head_val = atomic64_read(head);
170 	int64_t new, old;
171 
172 	do {
173 		int		tmp;
174 		int		cycle, space;
175 
176 		xlog_crack_grant_head_val(head_val, &cycle, &space);
177 
178 		tmp = log->l_logsize - space;
179 		if (tmp > bytes)
180 			space += bytes;
181 		else {
182 			space = bytes - tmp;
183 			cycle++;
184 		}
185 
186 		old = head_val;
187 		new = xlog_assign_grant_head_val(cycle, space);
188 		head_val = atomic64_cmpxchg(head, old, new);
189 	} while (head_val != old);
190 }
191 
192 STATIC void
193 xlog_grant_head_init(
194 	struct xlog_grant_head	*head)
195 {
196 	xlog_assign_grant_head(&head->grant, 1, 0);
197 	INIT_LIST_HEAD(&head->waiters);
198 	spin_lock_init(&head->lock);
199 }
200 
201 STATIC void
202 xlog_grant_head_wake_all(
203 	struct xlog_grant_head	*head)
204 {
205 	struct xlog_ticket	*tic;
206 
207 	spin_lock(&head->lock);
208 	list_for_each_entry(tic, &head->waiters, t_queue)
209 		wake_up_process(tic->t_task);
210 	spin_unlock(&head->lock);
211 }
212 
213 static inline int
214 xlog_ticket_reservation(
215 	struct xlog		*log,
216 	struct xlog_grant_head	*head,
217 	struct xlog_ticket	*tic)
218 {
219 	if (head == &log->l_write_head) {
220 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
221 		return tic->t_unit_res;
222 	} else {
223 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
224 			return tic->t_unit_res * tic->t_cnt;
225 		else
226 			return tic->t_unit_res;
227 	}
228 }
229 
230 STATIC bool
231 xlog_grant_head_wake(
232 	struct xlog		*log,
233 	struct xlog_grant_head	*head,
234 	int			*free_bytes)
235 {
236 	struct xlog_ticket	*tic;
237 	int			need_bytes;
238 
239 	list_for_each_entry(tic, &head->waiters, t_queue) {
240 		need_bytes = xlog_ticket_reservation(log, head, tic);
241 		if (*free_bytes < need_bytes)
242 			return false;
243 
244 		*free_bytes -= need_bytes;
245 		trace_xfs_log_grant_wake_up(log, tic);
246 		wake_up_process(tic->t_task);
247 	}
248 
249 	return true;
250 }
251 
252 STATIC int
253 xlog_grant_head_wait(
254 	struct xlog		*log,
255 	struct xlog_grant_head	*head,
256 	struct xlog_ticket	*tic,
257 	int			need_bytes) __releases(&head->lock)
258 					    __acquires(&head->lock)
259 {
260 	list_add_tail(&tic->t_queue, &head->waiters);
261 
262 	do {
263 		if (XLOG_FORCED_SHUTDOWN(log))
264 			goto shutdown;
265 		xlog_grant_push_ail(log, need_bytes);
266 
267 		__set_current_state(TASK_UNINTERRUPTIBLE);
268 		spin_unlock(&head->lock);
269 
270 		XFS_STATS_INC(xs_sleep_logspace);
271 
272 		trace_xfs_log_grant_sleep(log, tic);
273 		schedule();
274 		trace_xfs_log_grant_wake(log, tic);
275 
276 		spin_lock(&head->lock);
277 		if (XLOG_FORCED_SHUTDOWN(log))
278 			goto shutdown;
279 	} while (xlog_space_left(log, &head->grant) < need_bytes);
280 
281 	list_del_init(&tic->t_queue);
282 	return 0;
283 shutdown:
284 	list_del_init(&tic->t_queue);
285 	return -EIO;
286 }
287 
288 /*
289  * Atomically get the log space required for a log ticket.
290  *
291  * Once a ticket gets put onto head->waiters, it will only return after the
292  * needed reservation is satisfied.
293  *
294  * This function is structured so that it has a lock free fast path. This is
295  * necessary because every new transaction reservation will come through this
296  * path. Hence any lock will be globally hot if we take it unconditionally on
297  * every pass.
298  *
299  * As tickets are only ever moved on and off head->waiters under head->lock, we
300  * only need to take that lock if we are going to add the ticket to the queue
301  * and sleep. We can avoid taking the lock if the ticket was never added to
302  * head->waiters because the t_queue list head will be empty and we hold the
303  * only reference to it so it can safely be checked unlocked.
304  */
305 STATIC int
306 xlog_grant_head_check(
307 	struct xlog		*log,
308 	struct xlog_grant_head	*head,
309 	struct xlog_ticket	*tic,
310 	int			*need_bytes)
311 {
312 	int			free_bytes;
313 	int			error = 0;
314 
315 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
316 
317 	/*
318 	 * If there are other waiters on the queue then give them a chance at
319 	 * logspace before us.  Wake up the first waiters, if we do not wake
320 	 * up all the waiters then go to sleep waiting for more free space,
321 	 * otherwise try to get some space for this transaction.
322 	 */
323 	*need_bytes = xlog_ticket_reservation(log, head, tic);
324 	free_bytes = xlog_space_left(log, &head->grant);
325 	if (!list_empty_careful(&head->waiters)) {
326 		spin_lock(&head->lock);
327 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
328 		    free_bytes < *need_bytes) {
329 			error = xlog_grant_head_wait(log, head, tic,
330 						     *need_bytes);
331 		}
332 		spin_unlock(&head->lock);
333 	} else if (free_bytes < *need_bytes) {
334 		spin_lock(&head->lock);
335 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
336 		spin_unlock(&head->lock);
337 	}
338 
339 	return error;
340 }
341 
342 static void
343 xlog_tic_reset_res(xlog_ticket_t *tic)
344 {
345 	tic->t_res_num = 0;
346 	tic->t_res_arr_sum = 0;
347 	tic->t_res_num_ophdrs = 0;
348 }
349 
350 static void
351 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
352 {
353 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
354 		/* add to overflow and start again */
355 		tic->t_res_o_flow += tic->t_res_arr_sum;
356 		tic->t_res_num = 0;
357 		tic->t_res_arr_sum = 0;
358 	}
359 
360 	tic->t_res_arr[tic->t_res_num].r_len = len;
361 	tic->t_res_arr[tic->t_res_num].r_type = type;
362 	tic->t_res_arr_sum += len;
363 	tic->t_res_num++;
364 }
365 
366 /*
367  * Replenish the byte reservation required by moving the grant write head.
368  */
369 int
370 xfs_log_regrant(
371 	struct xfs_mount	*mp,
372 	struct xlog_ticket	*tic)
373 {
374 	struct xlog		*log = mp->m_log;
375 	int			need_bytes;
376 	int			error = 0;
377 
378 	if (XLOG_FORCED_SHUTDOWN(log))
379 		return -EIO;
380 
381 	XFS_STATS_INC(xs_try_logspace);
382 
383 	/*
384 	 * This is a new transaction on the ticket, so we need to change the
385 	 * transaction ID so that the next transaction has a different TID in
386 	 * the log. Just add one to the existing tid so that we can see chains
387 	 * of rolling transactions in the log easily.
388 	 */
389 	tic->t_tid++;
390 
391 	xlog_grant_push_ail(log, tic->t_unit_res);
392 
393 	tic->t_curr_res = tic->t_unit_res;
394 	xlog_tic_reset_res(tic);
395 
396 	if (tic->t_cnt > 0)
397 		return 0;
398 
399 	trace_xfs_log_regrant(log, tic);
400 
401 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
402 				      &need_bytes);
403 	if (error)
404 		goto out_error;
405 
406 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
407 	trace_xfs_log_regrant_exit(log, tic);
408 	xlog_verify_grant_tail(log);
409 	return 0;
410 
411 out_error:
412 	/*
413 	 * If we are failing, make sure the ticket doesn't have any current
414 	 * reservations.  We don't want to add this back when the ticket/
415 	 * transaction gets cancelled.
416 	 */
417 	tic->t_curr_res = 0;
418 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
419 	return error;
420 }
421 
422 /*
423  * Reserve log space and return a ticket corresponding the reservation.
424  *
425  * Each reservation is going to reserve extra space for a log record header.
426  * When writes happen to the on-disk log, we don't subtract the length of the
427  * log record header from any reservation.  By wasting space in each
428  * reservation, we prevent over allocation problems.
429  */
430 int
431 xfs_log_reserve(
432 	struct xfs_mount	*mp,
433 	int		 	unit_bytes,
434 	int		 	cnt,
435 	struct xlog_ticket	**ticp,
436 	__uint8_t	 	client,
437 	bool			permanent,
438 	uint		 	t_type)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return -EIO;
449 
450 	XFS_STATS_INC(xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return -ENOMEM;
457 
458 	tic->t_trans_type = t_type;
459 	*ticp = tic;
460 
461 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 					    : tic->t_unit_res);
463 
464 	trace_xfs_log_reserve(log, tic);
465 
466 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 				      &need_bytes);
468 	if (error)
469 		goto out_error;
470 
471 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 	trace_xfs_log_reserve_exit(log, tic);
474 	xlog_verify_grant_tail(log);
475 	return 0;
476 
477 out_error:
478 	/*
479 	 * If we are failing, make sure the ticket doesn't have any current
480 	 * reservations.  We don't want to add this back when the ticket/
481 	 * transaction gets cancelled.
482 	 */
483 	tic->t_curr_res = 0;
484 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
485 	return error;
486 }
487 
488 
489 /*
490  * NOTES:
491  *
492  *	1. currblock field gets updated at startup and after in-core logs
493  *		marked as with WANT_SYNC.
494  */
495 
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512 	struct xfs_mount	*mp,
513 	struct xlog_ticket	*ticket,
514 	struct xlog_in_core	**iclog,
515 	uint			flags)
516 {
517 	struct xlog		*log = mp->m_log;
518 	xfs_lsn_t		lsn = 0;
519 
520 	if (XLOG_FORCED_SHUTDOWN(log) ||
521 	    /*
522 	     * If nothing was ever written, don't write out commit record.
523 	     * If we get an error, just continue and give back the log ticket.
524 	     */
525 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 		lsn = (xfs_lsn_t) -1;
528 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
529 			flags |= XFS_LOG_REL_PERM_RESERV;
530 		}
531 	}
532 
533 
534 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
535 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
536 		trace_xfs_log_done_nonperm(log, ticket);
537 
538 		/*
539 		 * Release ticket if not permanent reservation or a specific
540 		 * request has been made to release a permanent reservation.
541 		 */
542 		xlog_ungrant_log_space(log, ticket);
543 		xfs_log_ticket_put(ticket);
544 	} else {
545 		trace_xfs_log_done_perm(log, ticket);
546 
547 		xlog_regrant_reserve_log_space(log, ticket);
548 		/* If this ticket was a permanent reservation and we aren't
549 		 * trying to release it, reset the inited flags; so next time
550 		 * we write, a start record will be written out.
551 		 */
552 		ticket->t_flags |= XLOG_TIC_INITED;
553 	}
554 
555 	return lsn;
556 }
557 
558 /*
559  * Attaches a new iclog I/O completion callback routine during
560  * transaction commit.  If the log is in error state, a non-zero
561  * return code is handed back and the caller is responsible for
562  * executing the callback at an appropriate time.
563  */
564 int
565 xfs_log_notify(
566 	struct xfs_mount	*mp,
567 	struct xlog_in_core	*iclog,
568 	xfs_log_callback_t	*cb)
569 {
570 	int	abortflg;
571 
572 	spin_lock(&iclog->ic_callback_lock);
573 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
574 	if (!abortflg) {
575 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
576 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
577 		cb->cb_next = NULL;
578 		*(iclog->ic_callback_tail) = cb;
579 		iclog->ic_callback_tail = &(cb->cb_next);
580 	}
581 	spin_unlock(&iclog->ic_callback_lock);
582 	return abortflg;
583 }
584 
585 int
586 xfs_log_release_iclog(
587 	struct xfs_mount	*mp,
588 	struct xlog_in_core	*iclog)
589 {
590 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
591 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
592 		return -EIO;
593 	}
594 
595 	return 0;
596 }
597 
598 /*
599  * Mount a log filesystem
600  *
601  * mp		- ubiquitous xfs mount point structure
602  * log_target	- buftarg of on-disk log device
603  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
604  * num_bblocks	- Number of BBSIZE blocks in on-disk log
605  *
606  * Return error or zero.
607  */
608 int
609 xfs_log_mount(
610 	xfs_mount_t	*mp,
611 	xfs_buftarg_t	*log_target,
612 	xfs_daddr_t	blk_offset,
613 	int		num_bblks)
614 {
615 	int		error = 0;
616 	int		min_logfsbs;
617 
618 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
619 		xfs_notice(mp, "Mounting V%d Filesystem",
620 			   XFS_SB_VERSION_NUM(&mp->m_sb));
621 	} else {
622 		xfs_notice(mp,
623 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
624 			   XFS_SB_VERSION_NUM(&mp->m_sb));
625 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
626 	}
627 
628 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
629 	if (IS_ERR(mp->m_log)) {
630 		error = PTR_ERR(mp->m_log);
631 		goto out;
632 	}
633 
634 	/*
635 	 * Validate the given log space and drop a critical message via syslog
636 	 * if the log size is too small that would lead to some unexpected
637 	 * situations in transaction log space reservation stage.
638 	 *
639 	 * Note: we can't just reject the mount if the validation fails.  This
640 	 * would mean that people would have to downgrade their kernel just to
641 	 * remedy the situation as there is no way to grow the log (short of
642 	 * black magic surgery with xfs_db).
643 	 *
644 	 * We can, however, reject mounts for CRC format filesystems, as the
645 	 * mkfs binary being used to make the filesystem should never create a
646 	 * filesystem with a log that is too small.
647 	 */
648 	min_logfsbs = xfs_log_calc_minimum_size(mp);
649 
650 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
651 		xfs_warn(mp,
652 		"Log size %d blocks too small, minimum size is %d blocks",
653 			 mp->m_sb.sb_logblocks, min_logfsbs);
654 		error = -EINVAL;
655 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
656 		xfs_warn(mp,
657 		"Log size %d blocks too large, maximum size is %lld blocks",
658 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
659 		error = -EINVAL;
660 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
661 		xfs_warn(mp,
662 		"log size %lld bytes too large, maximum size is %lld bytes",
663 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
664 			 XFS_MAX_LOG_BYTES);
665 		error = -EINVAL;
666 	}
667 	if (error) {
668 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
669 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
670 			ASSERT(0);
671 			goto out_free_log;
672 		}
673 		xfs_crit(mp,
674 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
675 "experienced then please report this message in the bug report.");
676 	}
677 
678 	/*
679 	 * Initialize the AIL now we have a log.
680 	 */
681 	error = xfs_trans_ail_init(mp);
682 	if (error) {
683 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
684 		goto out_free_log;
685 	}
686 	mp->m_log->l_ailp = mp->m_ail;
687 
688 	/*
689 	 * skip log recovery on a norecovery mount.  pretend it all
690 	 * just worked.
691 	 */
692 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
693 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694 
695 		if (readonly)
696 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
697 
698 		error = xlog_recover(mp->m_log);
699 
700 		if (readonly)
701 			mp->m_flags |= XFS_MOUNT_RDONLY;
702 		if (error) {
703 			xfs_warn(mp, "log mount/recovery failed: error %d",
704 				error);
705 			goto out_destroy_ail;
706 		}
707 	}
708 
709 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
710 			       "log");
711 	if (error)
712 		goto out_destroy_ail;
713 
714 	/* Normal transactions can now occur */
715 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
716 
717 	/*
718 	 * Now the log has been fully initialised and we know were our
719 	 * space grant counters are, we can initialise the permanent ticket
720 	 * needed for delayed logging to work.
721 	 */
722 	xlog_cil_init_post_recovery(mp->m_log);
723 
724 	return 0;
725 
726 out_destroy_ail:
727 	xfs_trans_ail_destroy(mp);
728 out_free_log:
729 	xlog_dealloc_log(mp->m_log);
730 out:
731 	return error;
732 }
733 
734 /*
735  * Finish the recovery of the file system.  This is separate from the
736  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
737  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
738  * here.
739  *
740  * If we finish recovery successfully, start the background log work. If we are
741  * not doing recovery, then we have a RO filesystem and we don't need to start
742  * it.
743  */
744 int
745 xfs_log_mount_finish(xfs_mount_t *mp)
746 {
747 	int	error = 0;
748 
749 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
750 		error = xlog_recover_finish(mp->m_log);
751 		if (!error)
752 			xfs_log_work_queue(mp);
753 	} else {
754 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
755 	}
756 
757 
758 	return error;
759 }
760 
761 /*
762  * Final log writes as part of unmount.
763  *
764  * Mark the filesystem clean as unmount happens.  Note that during relocation
765  * this routine needs to be executed as part of source-bag while the
766  * deallocation must not be done until source-end.
767  */
768 
769 /*
770  * Unmount record used to have a string "Unmount filesystem--" in the
771  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
772  * We just write the magic number now since that particular field isn't
773  * currently architecture converted and "Unmount" is a bit foo.
774  * As far as I know, there weren't any dependencies on the old behaviour.
775  */
776 
777 int
778 xfs_log_unmount_write(xfs_mount_t *mp)
779 {
780 	struct xlog	 *log = mp->m_log;
781 	xlog_in_core_t	 *iclog;
782 #ifdef DEBUG
783 	xlog_in_core_t	 *first_iclog;
784 #endif
785 	xlog_ticket_t	*tic = NULL;
786 	xfs_lsn_t	 lsn;
787 	int		 error;
788 
789 	/*
790 	 * Don't write out unmount record on read-only mounts.
791 	 * Or, if we are doing a forced umount (typically because of IO errors).
792 	 */
793 	if (mp->m_flags & XFS_MOUNT_RDONLY)
794 		return 0;
795 
796 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
797 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
798 
799 #ifdef DEBUG
800 	first_iclog = iclog = log->l_iclog;
801 	do {
802 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
803 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
804 			ASSERT(iclog->ic_offset == 0);
805 		}
806 		iclog = iclog->ic_next;
807 	} while (iclog != first_iclog);
808 #endif
809 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
810 		error = xfs_log_reserve(mp, 600, 1, &tic,
811 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
812 		if (!error) {
813 			/* the data section must be 32 bit size aligned */
814 			struct {
815 			    __uint16_t magic;
816 			    __uint16_t pad1;
817 			    __uint32_t pad2; /* may as well make it 64 bits */
818 			} magic = {
819 				.magic = XLOG_UNMOUNT_TYPE,
820 			};
821 			struct xfs_log_iovec reg = {
822 				.i_addr = &magic,
823 				.i_len = sizeof(magic),
824 				.i_type = XLOG_REG_TYPE_UNMOUNT,
825 			};
826 			struct xfs_log_vec vec = {
827 				.lv_niovecs = 1,
828 				.lv_iovecp = &reg,
829 			};
830 
831 			/* remove inited flag, and account for space used */
832 			tic->t_flags = 0;
833 			tic->t_curr_res -= sizeof(magic);
834 			error = xlog_write(log, &vec, tic, &lsn,
835 					   NULL, XLOG_UNMOUNT_TRANS);
836 			/*
837 			 * At this point, we're umounting anyway,
838 			 * so there's no point in transitioning log state
839 			 * to IOERROR. Just continue...
840 			 */
841 		}
842 
843 		if (error)
844 			xfs_alert(mp, "%s: unmount record failed", __func__);
845 
846 
847 		spin_lock(&log->l_icloglock);
848 		iclog = log->l_iclog;
849 		atomic_inc(&iclog->ic_refcnt);
850 		xlog_state_want_sync(log, iclog);
851 		spin_unlock(&log->l_icloglock);
852 		error = xlog_state_release_iclog(log, iclog);
853 
854 		spin_lock(&log->l_icloglock);
855 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
856 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
857 			if (!XLOG_FORCED_SHUTDOWN(log)) {
858 				xlog_wait(&iclog->ic_force_wait,
859 							&log->l_icloglock);
860 			} else {
861 				spin_unlock(&log->l_icloglock);
862 			}
863 		} else {
864 			spin_unlock(&log->l_icloglock);
865 		}
866 		if (tic) {
867 			trace_xfs_log_umount_write(log, tic);
868 			xlog_ungrant_log_space(log, tic);
869 			xfs_log_ticket_put(tic);
870 		}
871 	} else {
872 		/*
873 		 * We're already in forced_shutdown mode, couldn't
874 		 * even attempt to write out the unmount transaction.
875 		 *
876 		 * Go through the motions of sync'ing and releasing
877 		 * the iclog, even though no I/O will actually happen,
878 		 * we need to wait for other log I/Os that may already
879 		 * be in progress.  Do this as a separate section of
880 		 * code so we'll know if we ever get stuck here that
881 		 * we're in this odd situation of trying to unmount
882 		 * a file system that went into forced_shutdown as
883 		 * the result of an unmount..
884 		 */
885 		spin_lock(&log->l_icloglock);
886 		iclog = log->l_iclog;
887 		atomic_inc(&iclog->ic_refcnt);
888 
889 		xlog_state_want_sync(log, iclog);
890 		spin_unlock(&log->l_icloglock);
891 		error =  xlog_state_release_iclog(log, iclog);
892 
893 		spin_lock(&log->l_icloglock);
894 
895 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
896 			|| iclog->ic_state == XLOG_STATE_DIRTY
897 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
898 
899 				xlog_wait(&iclog->ic_force_wait,
900 							&log->l_icloglock);
901 		} else {
902 			spin_unlock(&log->l_icloglock);
903 		}
904 	}
905 
906 	return error;
907 }	/* xfs_log_unmount_write */
908 
909 /*
910  * Empty the log for unmount/freeze.
911  *
912  * To do this, we first need to shut down the background log work so it is not
913  * trying to cover the log as we clean up. We then need to unpin all objects in
914  * the log so we can then flush them out. Once they have completed their IO and
915  * run the callbacks removing themselves from the AIL, we can write the unmount
916  * record.
917  */
918 void
919 xfs_log_quiesce(
920 	struct xfs_mount	*mp)
921 {
922 	cancel_delayed_work_sync(&mp->m_log->l_work);
923 	xfs_log_force(mp, XFS_LOG_SYNC);
924 
925 	/*
926 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
927 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
928 	 * xfs_buf_iowait() cannot be used because it was pushed with the
929 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
930 	 * the IO to complete.
931 	 */
932 	xfs_ail_push_all_sync(mp->m_ail);
933 	xfs_wait_buftarg(mp->m_ddev_targp);
934 	xfs_buf_lock(mp->m_sb_bp);
935 	xfs_buf_unlock(mp->m_sb_bp);
936 
937 	xfs_log_unmount_write(mp);
938 }
939 
940 /*
941  * Shut down and release the AIL and Log.
942  *
943  * During unmount, we need to ensure we flush all the dirty metadata objects
944  * from the AIL so that the log is empty before we write the unmount record to
945  * the log. Once this is done, we can tear down the AIL and the log.
946  */
947 void
948 xfs_log_unmount(
949 	struct xfs_mount	*mp)
950 {
951 	xfs_log_quiesce(mp);
952 
953 	xfs_trans_ail_destroy(mp);
954 
955 	xfs_sysfs_del(&mp->m_log->l_kobj);
956 
957 	xlog_dealloc_log(mp->m_log);
958 }
959 
960 void
961 xfs_log_item_init(
962 	struct xfs_mount	*mp,
963 	struct xfs_log_item	*item,
964 	int			type,
965 	const struct xfs_item_ops *ops)
966 {
967 	item->li_mountp = mp;
968 	item->li_ailp = mp->m_ail;
969 	item->li_type = type;
970 	item->li_ops = ops;
971 	item->li_lv = NULL;
972 
973 	INIT_LIST_HEAD(&item->li_ail);
974 	INIT_LIST_HEAD(&item->li_cil);
975 }
976 
977 /*
978  * Wake up processes waiting for log space after we have moved the log tail.
979  */
980 void
981 xfs_log_space_wake(
982 	struct xfs_mount	*mp)
983 {
984 	struct xlog		*log = mp->m_log;
985 	int			free_bytes;
986 
987 	if (XLOG_FORCED_SHUTDOWN(log))
988 		return;
989 
990 	if (!list_empty_careful(&log->l_write_head.waiters)) {
991 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
992 
993 		spin_lock(&log->l_write_head.lock);
994 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
995 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
996 		spin_unlock(&log->l_write_head.lock);
997 	}
998 
999 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1000 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1001 
1002 		spin_lock(&log->l_reserve_head.lock);
1003 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1004 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1005 		spin_unlock(&log->l_reserve_head.lock);
1006 	}
1007 }
1008 
1009 /*
1010  * Determine if we have a transaction that has gone to disk that needs to be
1011  * covered. To begin the transition to the idle state firstly the log needs to
1012  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1013  * we start attempting to cover the log.
1014  *
1015  * Only if we are then in a state where covering is needed, the caller is
1016  * informed that dummy transactions are required to move the log into the idle
1017  * state.
1018  *
1019  * If there are any items in the AIl or CIL, then we do not want to attempt to
1020  * cover the log as we may be in a situation where there isn't log space
1021  * available to run a dummy transaction and this can lead to deadlocks when the
1022  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1023  * there's no point in running a dummy transaction at this point because we
1024  * can't start trying to idle the log until both the CIL and AIL are empty.
1025  */
1026 int
1027 xfs_log_need_covered(xfs_mount_t *mp)
1028 {
1029 	struct xlog	*log = mp->m_log;
1030 	int		needed = 0;
1031 
1032 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1033 		return 0;
1034 
1035 	if (!xlog_cil_empty(log))
1036 		return 0;
1037 
1038 	spin_lock(&log->l_icloglock);
1039 	switch (log->l_covered_state) {
1040 	case XLOG_STATE_COVER_DONE:
1041 	case XLOG_STATE_COVER_DONE2:
1042 	case XLOG_STATE_COVER_IDLE:
1043 		break;
1044 	case XLOG_STATE_COVER_NEED:
1045 	case XLOG_STATE_COVER_NEED2:
1046 		if (xfs_ail_min_lsn(log->l_ailp))
1047 			break;
1048 		if (!xlog_iclogs_empty(log))
1049 			break;
1050 
1051 		needed = 1;
1052 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1053 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1054 		else
1055 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1056 		break;
1057 	default:
1058 		needed = 1;
1059 		break;
1060 	}
1061 	spin_unlock(&log->l_icloglock);
1062 	return needed;
1063 }
1064 
1065 /*
1066  * We may be holding the log iclog lock upon entering this routine.
1067  */
1068 xfs_lsn_t
1069 xlog_assign_tail_lsn_locked(
1070 	struct xfs_mount	*mp)
1071 {
1072 	struct xlog		*log = mp->m_log;
1073 	struct xfs_log_item	*lip;
1074 	xfs_lsn_t		tail_lsn;
1075 
1076 	assert_spin_locked(&mp->m_ail->xa_lock);
1077 
1078 	/*
1079 	 * To make sure we always have a valid LSN for the log tail we keep
1080 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1081 	 * and use that when the AIL was empty.
1082 	 */
1083 	lip = xfs_ail_min(mp->m_ail);
1084 	if (lip)
1085 		tail_lsn = lip->li_lsn;
1086 	else
1087 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1088 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1089 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1090 	return tail_lsn;
1091 }
1092 
1093 xfs_lsn_t
1094 xlog_assign_tail_lsn(
1095 	struct xfs_mount	*mp)
1096 {
1097 	xfs_lsn_t		tail_lsn;
1098 
1099 	spin_lock(&mp->m_ail->xa_lock);
1100 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1101 	spin_unlock(&mp->m_ail->xa_lock);
1102 
1103 	return tail_lsn;
1104 }
1105 
1106 /*
1107  * Return the space in the log between the tail and the head.  The head
1108  * is passed in the cycle/bytes formal parms.  In the special case where
1109  * the reserve head has wrapped passed the tail, this calculation is no
1110  * longer valid.  In this case, just return 0 which means there is no space
1111  * in the log.  This works for all places where this function is called
1112  * with the reserve head.  Of course, if the write head were to ever
1113  * wrap the tail, we should blow up.  Rather than catch this case here,
1114  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1115  *
1116  * This code also handles the case where the reservation head is behind
1117  * the tail.  The details of this case are described below, but the end
1118  * result is that we return the size of the log as the amount of space left.
1119  */
1120 STATIC int
1121 xlog_space_left(
1122 	struct xlog	*log,
1123 	atomic64_t	*head)
1124 {
1125 	int		free_bytes;
1126 	int		tail_bytes;
1127 	int		tail_cycle;
1128 	int		head_cycle;
1129 	int		head_bytes;
1130 
1131 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1132 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1133 	tail_bytes = BBTOB(tail_bytes);
1134 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1135 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1136 	else if (tail_cycle + 1 < head_cycle)
1137 		return 0;
1138 	else if (tail_cycle < head_cycle) {
1139 		ASSERT(tail_cycle == (head_cycle - 1));
1140 		free_bytes = tail_bytes - head_bytes;
1141 	} else {
1142 		/*
1143 		 * The reservation head is behind the tail.
1144 		 * In this case we just want to return the size of the
1145 		 * log as the amount of space left.
1146 		 */
1147 		xfs_alert(log->l_mp,
1148 			"xlog_space_left: head behind tail\n"
1149 			"  tail_cycle = %d, tail_bytes = %d\n"
1150 			"  GH   cycle = %d, GH   bytes = %d",
1151 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1152 		ASSERT(0);
1153 		free_bytes = log->l_logsize;
1154 	}
1155 	return free_bytes;
1156 }
1157 
1158 
1159 /*
1160  * Log function which is called when an io completes.
1161  *
1162  * The log manager needs its own routine, in order to control what
1163  * happens with the buffer after the write completes.
1164  */
1165 void
1166 xlog_iodone(xfs_buf_t *bp)
1167 {
1168 	struct xlog_in_core	*iclog = bp->b_fspriv;
1169 	struct xlog		*l = iclog->ic_log;
1170 	int			aborted = 0;
1171 
1172 	/*
1173 	 * Race to shutdown the filesystem if we see an error.
1174 	 */
1175 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1176 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1177 		xfs_buf_ioerror_alert(bp, __func__);
1178 		xfs_buf_stale(bp);
1179 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1180 		/*
1181 		 * This flag will be propagated to the trans-committed
1182 		 * callback routines to let them know that the log-commit
1183 		 * didn't succeed.
1184 		 */
1185 		aborted = XFS_LI_ABORTED;
1186 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1187 		aborted = XFS_LI_ABORTED;
1188 	}
1189 
1190 	/* log I/O is always issued ASYNC */
1191 	ASSERT(XFS_BUF_ISASYNC(bp));
1192 	xlog_state_done_syncing(iclog, aborted);
1193 
1194 	/*
1195 	 * drop the buffer lock now that we are done. Nothing references
1196 	 * the buffer after this, so an unmount waiting on this lock can now
1197 	 * tear it down safely. As such, it is unsafe to reference the buffer
1198 	 * (bp) after the unlock as we could race with it being freed.
1199 	 */
1200 	xfs_buf_unlock(bp);
1201 }
1202 
1203 /*
1204  * Return size of each in-core log record buffer.
1205  *
1206  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1207  *
1208  * If the filesystem blocksize is too large, we may need to choose a
1209  * larger size since the directory code currently logs entire blocks.
1210  */
1211 
1212 STATIC void
1213 xlog_get_iclog_buffer_size(
1214 	struct xfs_mount	*mp,
1215 	struct xlog		*log)
1216 {
1217 	int size;
1218 	int xhdrs;
1219 
1220 	if (mp->m_logbufs <= 0)
1221 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1222 	else
1223 		log->l_iclog_bufs = mp->m_logbufs;
1224 
1225 	/*
1226 	 * Buffer size passed in from mount system call.
1227 	 */
1228 	if (mp->m_logbsize > 0) {
1229 		size = log->l_iclog_size = mp->m_logbsize;
1230 		log->l_iclog_size_log = 0;
1231 		while (size != 1) {
1232 			log->l_iclog_size_log++;
1233 			size >>= 1;
1234 		}
1235 
1236 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1237 			/* # headers = size / 32k
1238 			 * one header holds cycles from 32k of data
1239 			 */
1240 
1241 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1242 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1243 				xhdrs++;
1244 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1245 			log->l_iclog_heads = xhdrs;
1246 		} else {
1247 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1248 			log->l_iclog_hsize = BBSIZE;
1249 			log->l_iclog_heads = 1;
1250 		}
1251 		goto done;
1252 	}
1253 
1254 	/* All machines use 32kB buffers by default. */
1255 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1256 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1257 
1258 	/* the default log size is 16k or 32k which is one header sector */
1259 	log->l_iclog_hsize = BBSIZE;
1260 	log->l_iclog_heads = 1;
1261 
1262 done:
1263 	/* are we being asked to make the sizes selected above visible? */
1264 	if (mp->m_logbufs == 0)
1265 		mp->m_logbufs = log->l_iclog_bufs;
1266 	if (mp->m_logbsize == 0)
1267 		mp->m_logbsize = log->l_iclog_size;
1268 }	/* xlog_get_iclog_buffer_size */
1269 
1270 
1271 void
1272 xfs_log_work_queue(
1273 	struct xfs_mount        *mp)
1274 {
1275 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1276 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1277 }
1278 
1279 /*
1280  * Every sync period we need to unpin all items in the AIL and push them to
1281  * disk. If there is nothing dirty, then we might need to cover the log to
1282  * indicate that the filesystem is idle.
1283  */
1284 void
1285 xfs_log_worker(
1286 	struct work_struct	*work)
1287 {
1288 	struct xlog		*log = container_of(to_delayed_work(work),
1289 						struct xlog, l_work);
1290 	struct xfs_mount	*mp = log->l_mp;
1291 
1292 	/* dgc: errors ignored - not fatal and nowhere to report them */
1293 	if (xfs_log_need_covered(mp))
1294 		xfs_fs_log_dummy(mp);
1295 	else
1296 		xfs_log_force(mp, 0);
1297 
1298 	/* start pushing all the metadata that is currently dirty */
1299 	xfs_ail_push_all(mp->m_ail);
1300 
1301 	/* queue us up again */
1302 	xfs_log_work_queue(mp);
1303 }
1304 
1305 /*
1306  * This routine initializes some of the log structure for a given mount point.
1307  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1308  * some other stuff may be filled in too.
1309  */
1310 STATIC struct xlog *
1311 xlog_alloc_log(
1312 	struct xfs_mount	*mp,
1313 	struct xfs_buftarg	*log_target,
1314 	xfs_daddr_t		blk_offset,
1315 	int			num_bblks)
1316 {
1317 	struct xlog		*log;
1318 	xlog_rec_header_t	*head;
1319 	xlog_in_core_t		**iclogp;
1320 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1321 	xfs_buf_t		*bp;
1322 	int			i;
1323 	int			error = -ENOMEM;
1324 	uint			log2_size = 0;
1325 
1326 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1327 	if (!log) {
1328 		xfs_warn(mp, "Log allocation failed: No memory!");
1329 		goto out;
1330 	}
1331 
1332 	log->l_mp	   = mp;
1333 	log->l_targ	   = log_target;
1334 	log->l_logsize     = BBTOB(num_bblks);
1335 	log->l_logBBstart  = blk_offset;
1336 	log->l_logBBsize   = num_bblks;
1337 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1338 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1339 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1340 
1341 	log->l_prev_block  = -1;
1342 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1343 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1344 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1345 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1346 
1347 	xlog_grant_head_init(&log->l_reserve_head);
1348 	xlog_grant_head_init(&log->l_write_head);
1349 
1350 	error = -EFSCORRUPTED;
1351 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1352 	        log2_size = mp->m_sb.sb_logsectlog;
1353 		if (log2_size < BBSHIFT) {
1354 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1355 				log2_size, BBSHIFT);
1356 			goto out_free_log;
1357 		}
1358 
1359 	        log2_size -= BBSHIFT;
1360 		if (log2_size > mp->m_sectbb_log) {
1361 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1362 				log2_size, mp->m_sectbb_log);
1363 			goto out_free_log;
1364 		}
1365 
1366 		/* for larger sector sizes, must have v2 or external log */
1367 		if (log2_size && log->l_logBBstart > 0 &&
1368 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1369 			xfs_warn(mp,
1370 		"log sector size (0x%x) invalid for configuration.",
1371 				log2_size);
1372 			goto out_free_log;
1373 		}
1374 	}
1375 	log->l_sectBBsize = 1 << log2_size;
1376 
1377 	xlog_get_iclog_buffer_size(mp, log);
1378 
1379 	/*
1380 	 * Use a NULL block for the extra log buffer used during splits so that
1381 	 * it will trigger errors if we ever try to do IO on it without first
1382 	 * having set it up properly.
1383 	 */
1384 	error = -ENOMEM;
1385 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1386 			   BTOBB(log->l_iclog_size), 0);
1387 	if (!bp)
1388 		goto out_free_log;
1389 
1390 	/*
1391 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1392 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1393 	 * when appropriately.
1394 	 */
1395 	ASSERT(xfs_buf_islocked(bp));
1396 	xfs_buf_unlock(bp);
1397 
1398 	bp->b_iodone = xlog_iodone;
1399 	log->l_xbuf = bp;
1400 
1401 	spin_lock_init(&log->l_icloglock);
1402 	init_waitqueue_head(&log->l_flush_wait);
1403 
1404 	iclogp = &log->l_iclog;
1405 	/*
1406 	 * The amount of memory to allocate for the iclog structure is
1407 	 * rather funky due to the way the structure is defined.  It is
1408 	 * done this way so that we can use different sizes for machines
1409 	 * with different amounts of memory.  See the definition of
1410 	 * xlog_in_core_t in xfs_log_priv.h for details.
1411 	 */
1412 	ASSERT(log->l_iclog_size >= 4096);
1413 	for (i=0; i < log->l_iclog_bufs; i++) {
1414 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1415 		if (!*iclogp)
1416 			goto out_free_iclog;
1417 
1418 		iclog = *iclogp;
1419 		iclog->ic_prev = prev_iclog;
1420 		prev_iclog = iclog;
1421 
1422 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1423 						BTOBB(log->l_iclog_size), 0);
1424 		if (!bp)
1425 			goto out_free_iclog;
1426 
1427 		ASSERT(xfs_buf_islocked(bp));
1428 		xfs_buf_unlock(bp);
1429 
1430 		bp->b_iodone = xlog_iodone;
1431 		iclog->ic_bp = bp;
1432 		iclog->ic_data = bp->b_addr;
1433 #ifdef DEBUG
1434 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1435 #endif
1436 		head = &iclog->ic_header;
1437 		memset(head, 0, sizeof(xlog_rec_header_t));
1438 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1439 		head->h_version = cpu_to_be32(
1440 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1441 		head->h_size = cpu_to_be32(log->l_iclog_size);
1442 		/* new fields */
1443 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1444 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1445 
1446 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1447 		iclog->ic_state = XLOG_STATE_ACTIVE;
1448 		iclog->ic_log = log;
1449 		atomic_set(&iclog->ic_refcnt, 0);
1450 		spin_lock_init(&iclog->ic_callback_lock);
1451 		iclog->ic_callback_tail = &(iclog->ic_callback);
1452 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1453 
1454 		init_waitqueue_head(&iclog->ic_force_wait);
1455 		init_waitqueue_head(&iclog->ic_write_wait);
1456 
1457 		iclogp = &iclog->ic_next;
1458 	}
1459 	*iclogp = log->l_iclog;			/* complete ring */
1460 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1461 
1462 	error = xlog_cil_init(log);
1463 	if (error)
1464 		goto out_free_iclog;
1465 	return log;
1466 
1467 out_free_iclog:
1468 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1469 		prev_iclog = iclog->ic_next;
1470 		if (iclog->ic_bp)
1471 			xfs_buf_free(iclog->ic_bp);
1472 		kmem_free(iclog);
1473 	}
1474 	spinlock_destroy(&log->l_icloglock);
1475 	xfs_buf_free(log->l_xbuf);
1476 out_free_log:
1477 	kmem_free(log);
1478 out:
1479 	return ERR_PTR(error);
1480 }	/* xlog_alloc_log */
1481 
1482 
1483 /*
1484  * Write out the commit record of a transaction associated with the given
1485  * ticket.  Return the lsn of the commit record.
1486  */
1487 STATIC int
1488 xlog_commit_record(
1489 	struct xlog		*log,
1490 	struct xlog_ticket	*ticket,
1491 	struct xlog_in_core	**iclog,
1492 	xfs_lsn_t		*commitlsnp)
1493 {
1494 	struct xfs_mount *mp = log->l_mp;
1495 	int	error;
1496 	struct xfs_log_iovec reg = {
1497 		.i_addr = NULL,
1498 		.i_len = 0,
1499 		.i_type = XLOG_REG_TYPE_COMMIT,
1500 	};
1501 	struct xfs_log_vec vec = {
1502 		.lv_niovecs = 1,
1503 		.lv_iovecp = &reg,
1504 	};
1505 
1506 	ASSERT_ALWAYS(iclog);
1507 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1508 					XLOG_COMMIT_TRANS);
1509 	if (error)
1510 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1511 	return error;
1512 }
1513 
1514 /*
1515  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1516  * log space.  This code pushes on the lsn which would supposedly free up
1517  * the 25% which we want to leave free.  We may need to adopt a policy which
1518  * pushes on an lsn which is further along in the log once we reach the high
1519  * water mark.  In this manner, we would be creating a low water mark.
1520  */
1521 STATIC void
1522 xlog_grant_push_ail(
1523 	struct xlog	*log,
1524 	int		need_bytes)
1525 {
1526 	xfs_lsn_t	threshold_lsn = 0;
1527 	xfs_lsn_t	last_sync_lsn;
1528 	int		free_blocks;
1529 	int		free_bytes;
1530 	int		threshold_block;
1531 	int		threshold_cycle;
1532 	int		free_threshold;
1533 
1534 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1535 
1536 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1537 	free_blocks = BTOBBT(free_bytes);
1538 
1539 	/*
1540 	 * Set the threshold for the minimum number of free blocks in the
1541 	 * log to the maximum of what the caller needs, one quarter of the
1542 	 * log, and 256 blocks.
1543 	 */
1544 	free_threshold = BTOBB(need_bytes);
1545 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1546 	free_threshold = MAX(free_threshold, 256);
1547 	if (free_blocks >= free_threshold)
1548 		return;
1549 
1550 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1551 						&threshold_block);
1552 	threshold_block += free_threshold;
1553 	if (threshold_block >= log->l_logBBsize) {
1554 		threshold_block -= log->l_logBBsize;
1555 		threshold_cycle += 1;
1556 	}
1557 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1558 					threshold_block);
1559 	/*
1560 	 * Don't pass in an lsn greater than the lsn of the last
1561 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1562 	 * so that it doesn't change between the compare and the set.
1563 	 */
1564 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1565 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1566 		threshold_lsn = last_sync_lsn;
1567 
1568 	/*
1569 	 * Get the transaction layer to kick the dirty buffers out to
1570 	 * disk asynchronously. No point in trying to do this if
1571 	 * the filesystem is shutting down.
1572 	 */
1573 	if (!XLOG_FORCED_SHUTDOWN(log))
1574 		xfs_ail_push(log->l_ailp, threshold_lsn);
1575 }
1576 
1577 /*
1578  * Stamp cycle number in every block
1579  */
1580 STATIC void
1581 xlog_pack_data(
1582 	struct xlog		*log,
1583 	struct xlog_in_core	*iclog,
1584 	int			roundoff)
1585 {
1586 	int			i, j, k;
1587 	int			size = iclog->ic_offset + roundoff;
1588 	__be32			cycle_lsn;
1589 	xfs_caddr_t		dp;
1590 
1591 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1592 
1593 	dp = iclog->ic_datap;
1594 	for (i = 0; i < BTOBB(size); i++) {
1595 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1596 			break;
1597 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1598 		*(__be32 *)dp = cycle_lsn;
1599 		dp += BBSIZE;
1600 	}
1601 
1602 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1604 
1605 		for ( ; i < BTOBB(size); i++) {
1606 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1607 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1608 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1609 			*(__be32 *)dp = cycle_lsn;
1610 			dp += BBSIZE;
1611 		}
1612 
1613 		for (i = 1; i < log->l_iclog_heads; i++)
1614 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1615 	}
1616 }
1617 
1618 /*
1619  * Calculate the checksum for a log buffer.
1620  *
1621  * This is a little more complicated than it should be because the various
1622  * headers and the actual data are non-contiguous.
1623  */
1624 __le32
1625 xlog_cksum(
1626 	struct xlog		*log,
1627 	struct xlog_rec_header	*rhead,
1628 	char			*dp,
1629 	int			size)
1630 {
1631 	__uint32_t		crc;
1632 
1633 	/* first generate the crc for the record header ... */
1634 	crc = xfs_start_cksum((char *)rhead,
1635 			      sizeof(struct xlog_rec_header),
1636 			      offsetof(struct xlog_rec_header, h_crc));
1637 
1638 	/* ... then for additional cycle data for v2 logs ... */
1639 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1641 		int		i;
1642 
1643 		for (i = 1; i < log->l_iclog_heads; i++) {
1644 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1645 				     sizeof(struct xlog_rec_ext_header));
1646 		}
1647 	}
1648 
1649 	/* ... and finally for the payload */
1650 	crc = crc32c(crc, dp, size);
1651 
1652 	return xfs_end_cksum(crc);
1653 }
1654 
1655 /*
1656  * The bdstrat callback function for log bufs. This gives us a central
1657  * place to trap bufs in case we get hit by a log I/O error and need to
1658  * shutdown. Actually, in practice, even when we didn't get a log error,
1659  * we transition the iclogs to IOERROR state *after* flushing all existing
1660  * iclogs to disk. This is because we don't want anymore new transactions to be
1661  * started or completed afterwards.
1662  *
1663  * We lock the iclogbufs here so that we can serialise against IO completion
1664  * during unmount. We might be processing a shutdown triggered during unmount,
1665  * and that can occur asynchronously to the unmount thread, and hence we need to
1666  * ensure that completes before tearing down the iclogbufs. Hence we need to
1667  * hold the buffer lock across the log IO to acheive that.
1668  */
1669 STATIC int
1670 xlog_bdstrat(
1671 	struct xfs_buf		*bp)
1672 {
1673 	struct xlog_in_core	*iclog = bp->b_fspriv;
1674 
1675 	xfs_buf_lock(bp);
1676 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1677 		xfs_buf_ioerror(bp, -EIO);
1678 		xfs_buf_stale(bp);
1679 		xfs_buf_ioend(bp);
1680 		/*
1681 		 * It would seem logical to return EIO here, but we rely on
1682 		 * the log state machine to propagate I/O errors instead of
1683 		 * doing it here. Similarly, IO completion will unlock the
1684 		 * buffer, so we don't do it here.
1685 		 */
1686 		return 0;
1687 	}
1688 
1689 	xfs_buf_submit(bp);
1690 	return 0;
1691 }
1692 
1693 /*
1694  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1695  * fashion.  Previously, we should have moved the current iclog
1696  * ptr in the log to point to the next available iclog.  This allows further
1697  * write to continue while this code syncs out an iclog ready to go.
1698  * Before an in-core log can be written out, the data section must be scanned
1699  * to save away the 1st word of each BBSIZE block into the header.  We replace
1700  * it with the current cycle count.  Each BBSIZE block is tagged with the
1701  * cycle count because there in an implicit assumption that drives will
1702  * guarantee that entire 512 byte blocks get written at once.  In other words,
1703  * we can't have part of a 512 byte block written and part not written.  By
1704  * tagging each block, we will know which blocks are valid when recovering
1705  * after an unclean shutdown.
1706  *
1707  * This routine is single threaded on the iclog.  No other thread can be in
1708  * this routine with the same iclog.  Changing contents of iclog can there-
1709  * fore be done without grabbing the state machine lock.  Updating the global
1710  * log will require grabbing the lock though.
1711  *
1712  * The entire log manager uses a logical block numbering scheme.  Only
1713  * log_sync (and then only bwrite()) know about the fact that the log may
1714  * not start with block zero on a given device.  The log block start offset
1715  * is added immediately before calling bwrite().
1716  */
1717 
1718 STATIC int
1719 xlog_sync(
1720 	struct xlog		*log,
1721 	struct xlog_in_core	*iclog)
1722 {
1723 	xfs_buf_t	*bp;
1724 	int		i;
1725 	uint		count;		/* byte count of bwrite */
1726 	uint		count_init;	/* initial count before roundup */
1727 	int		roundoff;       /* roundoff to BB or stripe */
1728 	int		split = 0;	/* split write into two regions */
1729 	int		error;
1730 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1731 	int		size;
1732 
1733 	XFS_STATS_INC(xs_log_writes);
1734 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1735 
1736 	/* Add for LR header */
1737 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1738 
1739 	/* Round out the log write size */
1740 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1741 		/* we have a v2 stripe unit to use */
1742 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1743 	} else {
1744 		count = BBTOB(BTOBB(count_init));
1745 	}
1746 	roundoff = count - count_init;
1747 	ASSERT(roundoff >= 0);
1748 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1749                 roundoff < log->l_mp->m_sb.sb_logsunit)
1750 		||
1751 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1752 		 roundoff < BBTOB(1)));
1753 
1754 	/* move grant heads by roundoff in sync */
1755 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1756 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1757 
1758 	/* put cycle number in every block */
1759 	xlog_pack_data(log, iclog, roundoff);
1760 
1761 	/* real byte length */
1762 	size = iclog->ic_offset;
1763 	if (v2)
1764 		size += roundoff;
1765 	iclog->ic_header.h_len = cpu_to_be32(size);
1766 
1767 	bp = iclog->ic_bp;
1768 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1769 
1770 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1771 
1772 	/* Do we need to split this write into 2 parts? */
1773 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1774 		char		*dptr;
1775 
1776 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1777 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1778 		iclog->ic_bwritecnt = 2;
1779 
1780 		/*
1781 		 * Bump the cycle numbers at the start of each block in the
1782 		 * part of the iclog that ends up in the buffer that gets
1783 		 * written to the start of the log.
1784 		 *
1785 		 * Watch out for the header magic number case, though.
1786 		 */
1787 		dptr = (char *)&iclog->ic_header + count;
1788 		for (i = 0; i < split; i += BBSIZE) {
1789 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1790 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1791 				cycle++;
1792 			*(__be32 *)dptr = cpu_to_be32(cycle);
1793 
1794 			dptr += BBSIZE;
1795 		}
1796 	} else {
1797 		iclog->ic_bwritecnt = 1;
1798 	}
1799 
1800 	/* calculcate the checksum */
1801 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1802 					    iclog->ic_datap, size);
1803 
1804 	bp->b_io_length = BTOBB(count);
1805 	bp->b_fspriv = iclog;
1806 	XFS_BUF_ZEROFLAGS(bp);
1807 	XFS_BUF_ASYNC(bp);
1808 	bp->b_flags |= XBF_SYNCIO;
1809 	/* use high priority completion wq */
1810 	bp->b_ioend_wq = log->l_mp->m_log_workqueue;
1811 
1812 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1813 		bp->b_flags |= XBF_FUA;
1814 
1815 		/*
1816 		 * Flush the data device before flushing the log to make
1817 		 * sure all meta data written back from the AIL actually made
1818 		 * it to disk before stamping the new log tail LSN into the
1819 		 * log buffer.  For an external log we need to issue the
1820 		 * flush explicitly, and unfortunately synchronously here;
1821 		 * for an internal log we can simply use the block layer
1822 		 * state machine for preflushes.
1823 		 */
1824 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1825 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1826 		else
1827 			bp->b_flags |= XBF_FLUSH;
1828 	}
1829 
1830 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1831 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1832 
1833 	xlog_verify_iclog(log, iclog, count, true);
1834 
1835 	/* account for log which doesn't start at block #0 */
1836 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1837 	/*
1838 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1839 	 * is shutting down.
1840 	 */
1841 	XFS_BUF_WRITE(bp);
1842 
1843 	error = xlog_bdstrat(bp);
1844 	if (error) {
1845 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1846 		return error;
1847 	}
1848 	if (split) {
1849 		bp = iclog->ic_log->l_xbuf;
1850 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1851 		xfs_buf_associate_memory(bp,
1852 				(char *)&iclog->ic_header + count, split);
1853 		bp->b_fspriv = iclog;
1854 		XFS_BUF_ZEROFLAGS(bp);
1855 		XFS_BUF_ASYNC(bp);
1856 		bp->b_flags |= XBF_SYNCIO;
1857 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1858 			bp->b_flags |= XBF_FUA;
1859 		/* use high priority completion wq */
1860 		bp->b_ioend_wq = log->l_mp->m_log_workqueue;
1861 
1862 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1863 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1864 
1865 		/* account for internal log which doesn't start at block #0 */
1866 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1867 		XFS_BUF_WRITE(bp);
1868 		error = xlog_bdstrat(bp);
1869 		if (error) {
1870 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1871 			return error;
1872 		}
1873 	}
1874 	return 0;
1875 }	/* xlog_sync */
1876 
1877 /*
1878  * Deallocate a log structure
1879  */
1880 STATIC void
1881 xlog_dealloc_log(
1882 	struct xlog	*log)
1883 {
1884 	xlog_in_core_t	*iclog, *next_iclog;
1885 	int		i;
1886 
1887 	xlog_cil_destroy(log);
1888 
1889 	/*
1890 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1891 	 * is done before we tear down these buffers.
1892 	 */
1893 	iclog = log->l_iclog;
1894 	for (i = 0; i < log->l_iclog_bufs; i++) {
1895 		xfs_buf_lock(iclog->ic_bp);
1896 		xfs_buf_unlock(iclog->ic_bp);
1897 		iclog = iclog->ic_next;
1898 	}
1899 
1900 	/*
1901 	 * Always need to ensure that the extra buffer does not point to memory
1902 	 * owned by another log buffer before we free it. Also, cycle the lock
1903 	 * first to ensure we've completed IO on it.
1904 	 */
1905 	xfs_buf_lock(log->l_xbuf);
1906 	xfs_buf_unlock(log->l_xbuf);
1907 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1908 	xfs_buf_free(log->l_xbuf);
1909 
1910 	iclog = log->l_iclog;
1911 	for (i = 0; i < log->l_iclog_bufs; i++) {
1912 		xfs_buf_free(iclog->ic_bp);
1913 		next_iclog = iclog->ic_next;
1914 		kmem_free(iclog);
1915 		iclog = next_iclog;
1916 	}
1917 	spinlock_destroy(&log->l_icloglock);
1918 
1919 	log->l_mp->m_log = NULL;
1920 	kmem_free(log);
1921 }	/* xlog_dealloc_log */
1922 
1923 /*
1924  * Update counters atomically now that memcpy is done.
1925  */
1926 /* ARGSUSED */
1927 static inline void
1928 xlog_state_finish_copy(
1929 	struct xlog		*log,
1930 	struct xlog_in_core	*iclog,
1931 	int			record_cnt,
1932 	int			copy_bytes)
1933 {
1934 	spin_lock(&log->l_icloglock);
1935 
1936 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1937 	iclog->ic_offset += copy_bytes;
1938 
1939 	spin_unlock(&log->l_icloglock);
1940 }	/* xlog_state_finish_copy */
1941 
1942 
1943 
1944 
1945 /*
1946  * print out info relating to regions written which consume
1947  * the reservation
1948  */
1949 void
1950 xlog_print_tic_res(
1951 	struct xfs_mount	*mp,
1952 	struct xlog_ticket	*ticket)
1953 {
1954 	uint i;
1955 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1956 
1957 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1958 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1959 	    "bformat",
1960 	    "bchunk",
1961 	    "efi_format",
1962 	    "efd_format",
1963 	    "iformat",
1964 	    "icore",
1965 	    "iext",
1966 	    "ibroot",
1967 	    "ilocal",
1968 	    "iattr_ext",
1969 	    "iattr_broot",
1970 	    "iattr_local",
1971 	    "qformat",
1972 	    "dquot",
1973 	    "quotaoff",
1974 	    "LR header",
1975 	    "unmount",
1976 	    "commit",
1977 	    "trans header"
1978 	};
1979 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1980 	    "SETATTR_NOT_SIZE",
1981 	    "SETATTR_SIZE",
1982 	    "INACTIVE",
1983 	    "CREATE",
1984 	    "CREATE_TRUNC",
1985 	    "TRUNCATE_FILE",
1986 	    "REMOVE",
1987 	    "LINK",
1988 	    "RENAME",
1989 	    "MKDIR",
1990 	    "RMDIR",
1991 	    "SYMLINK",
1992 	    "SET_DMATTRS",
1993 	    "GROWFS",
1994 	    "STRAT_WRITE",
1995 	    "DIOSTRAT",
1996 	    "WRITE_SYNC",
1997 	    "WRITEID",
1998 	    "ADDAFORK",
1999 	    "ATTRINVAL",
2000 	    "ATRUNCATE",
2001 	    "ATTR_SET",
2002 	    "ATTR_RM",
2003 	    "ATTR_FLAG",
2004 	    "CLEAR_AGI_BUCKET",
2005 	    "QM_SBCHANGE",
2006 	    "DUMMY1",
2007 	    "DUMMY2",
2008 	    "QM_QUOTAOFF",
2009 	    "QM_DQALLOC",
2010 	    "QM_SETQLIM",
2011 	    "QM_DQCLUSTER",
2012 	    "QM_QINOCREATE",
2013 	    "QM_QUOTAOFF_END",
2014 	    "SB_UNIT",
2015 	    "FSYNC_TS",
2016 	    "GROWFSRT_ALLOC",
2017 	    "GROWFSRT_ZERO",
2018 	    "GROWFSRT_FREE",
2019 	    "SWAPEXT"
2020 	};
2021 
2022 	xfs_warn(mp,
2023 		"xlog_write: reservation summary:\n"
2024 		"  trans type  = %s (%u)\n"
2025 		"  unit res    = %d bytes\n"
2026 		"  current res = %d bytes\n"
2027 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2028 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2029 		"  ophdr + reg = %u bytes\n"
2030 		"  num regions = %u\n",
2031 		((ticket->t_trans_type <= 0 ||
2032 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2033 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2034 		ticket->t_trans_type,
2035 		ticket->t_unit_res,
2036 		ticket->t_curr_res,
2037 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2038 		ticket->t_res_num_ophdrs, ophdr_spc,
2039 		ticket->t_res_arr_sum +
2040 		ticket->t_res_o_flow + ophdr_spc,
2041 		ticket->t_res_num);
2042 
2043 	for (i = 0; i < ticket->t_res_num; i++) {
2044 		uint r_type = ticket->t_res_arr[i].r_type;
2045 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2046 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2047 			    "bad-rtype" : res_type_str[r_type-1]),
2048 			    ticket->t_res_arr[i].r_len);
2049 	}
2050 
2051 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2052 		"xlog_write: reservation ran out. Need to up reservation");
2053 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2054 }
2055 
2056 /*
2057  * Calculate the potential space needed by the log vector.  Each region gets
2058  * its own xlog_op_header_t and may need to be double word aligned.
2059  */
2060 static int
2061 xlog_write_calc_vec_length(
2062 	struct xlog_ticket	*ticket,
2063 	struct xfs_log_vec	*log_vector)
2064 {
2065 	struct xfs_log_vec	*lv;
2066 	int			headers = 0;
2067 	int			len = 0;
2068 	int			i;
2069 
2070 	/* acct for start rec of xact */
2071 	if (ticket->t_flags & XLOG_TIC_INITED)
2072 		headers++;
2073 
2074 	for (lv = log_vector; lv; lv = lv->lv_next) {
2075 		/* we don't write ordered log vectors */
2076 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2077 			continue;
2078 
2079 		headers += lv->lv_niovecs;
2080 
2081 		for (i = 0; i < lv->lv_niovecs; i++) {
2082 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2083 
2084 			len += vecp->i_len;
2085 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2086 		}
2087 	}
2088 
2089 	ticket->t_res_num_ophdrs += headers;
2090 	len += headers * sizeof(struct xlog_op_header);
2091 
2092 	return len;
2093 }
2094 
2095 /*
2096  * If first write for transaction, insert start record  We can't be trying to
2097  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2098  */
2099 static int
2100 xlog_write_start_rec(
2101 	struct xlog_op_header	*ophdr,
2102 	struct xlog_ticket	*ticket)
2103 {
2104 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2105 		return 0;
2106 
2107 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2108 	ophdr->oh_clientid = ticket->t_clientid;
2109 	ophdr->oh_len = 0;
2110 	ophdr->oh_flags = XLOG_START_TRANS;
2111 	ophdr->oh_res2 = 0;
2112 
2113 	ticket->t_flags &= ~XLOG_TIC_INITED;
2114 
2115 	return sizeof(struct xlog_op_header);
2116 }
2117 
2118 static xlog_op_header_t *
2119 xlog_write_setup_ophdr(
2120 	struct xlog		*log,
2121 	struct xlog_op_header	*ophdr,
2122 	struct xlog_ticket	*ticket,
2123 	uint			flags)
2124 {
2125 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2126 	ophdr->oh_clientid = ticket->t_clientid;
2127 	ophdr->oh_res2 = 0;
2128 
2129 	/* are we copying a commit or unmount record? */
2130 	ophdr->oh_flags = flags;
2131 
2132 	/*
2133 	 * We've seen logs corrupted with bad transaction client ids.  This
2134 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2135 	 * and shut down the filesystem.
2136 	 */
2137 	switch (ophdr->oh_clientid)  {
2138 	case XFS_TRANSACTION:
2139 	case XFS_VOLUME:
2140 	case XFS_LOG:
2141 		break;
2142 	default:
2143 		xfs_warn(log->l_mp,
2144 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2145 			ophdr->oh_clientid, ticket);
2146 		return NULL;
2147 	}
2148 
2149 	return ophdr;
2150 }
2151 
2152 /*
2153  * Set up the parameters of the region copy into the log. This has
2154  * to handle region write split across multiple log buffers - this
2155  * state is kept external to this function so that this code can
2156  * be written in an obvious, self documenting manner.
2157  */
2158 static int
2159 xlog_write_setup_copy(
2160 	struct xlog_ticket	*ticket,
2161 	struct xlog_op_header	*ophdr,
2162 	int			space_available,
2163 	int			space_required,
2164 	int			*copy_off,
2165 	int			*copy_len,
2166 	int			*last_was_partial_copy,
2167 	int			*bytes_consumed)
2168 {
2169 	int			still_to_copy;
2170 
2171 	still_to_copy = space_required - *bytes_consumed;
2172 	*copy_off = *bytes_consumed;
2173 
2174 	if (still_to_copy <= space_available) {
2175 		/* write of region completes here */
2176 		*copy_len = still_to_copy;
2177 		ophdr->oh_len = cpu_to_be32(*copy_len);
2178 		if (*last_was_partial_copy)
2179 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2180 		*last_was_partial_copy = 0;
2181 		*bytes_consumed = 0;
2182 		return 0;
2183 	}
2184 
2185 	/* partial write of region, needs extra log op header reservation */
2186 	*copy_len = space_available;
2187 	ophdr->oh_len = cpu_to_be32(*copy_len);
2188 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2189 	if (*last_was_partial_copy)
2190 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2191 	*bytes_consumed += *copy_len;
2192 	(*last_was_partial_copy)++;
2193 
2194 	/* account for new log op header */
2195 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2196 	ticket->t_res_num_ophdrs++;
2197 
2198 	return sizeof(struct xlog_op_header);
2199 }
2200 
2201 static int
2202 xlog_write_copy_finish(
2203 	struct xlog		*log,
2204 	struct xlog_in_core	*iclog,
2205 	uint			flags,
2206 	int			*record_cnt,
2207 	int			*data_cnt,
2208 	int			*partial_copy,
2209 	int			*partial_copy_len,
2210 	int			log_offset,
2211 	struct xlog_in_core	**commit_iclog)
2212 {
2213 	if (*partial_copy) {
2214 		/*
2215 		 * This iclog has already been marked WANT_SYNC by
2216 		 * xlog_state_get_iclog_space.
2217 		 */
2218 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2219 		*record_cnt = 0;
2220 		*data_cnt = 0;
2221 		return xlog_state_release_iclog(log, iclog);
2222 	}
2223 
2224 	*partial_copy = 0;
2225 	*partial_copy_len = 0;
2226 
2227 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2228 		/* no more space in this iclog - push it. */
2229 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2230 		*record_cnt = 0;
2231 		*data_cnt = 0;
2232 
2233 		spin_lock(&log->l_icloglock);
2234 		xlog_state_want_sync(log, iclog);
2235 		spin_unlock(&log->l_icloglock);
2236 
2237 		if (!commit_iclog)
2238 			return xlog_state_release_iclog(log, iclog);
2239 		ASSERT(flags & XLOG_COMMIT_TRANS);
2240 		*commit_iclog = iclog;
2241 	}
2242 
2243 	return 0;
2244 }
2245 
2246 /*
2247  * Write some region out to in-core log
2248  *
2249  * This will be called when writing externally provided regions or when
2250  * writing out a commit record for a given transaction.
2251  *
2252  * General algorithm:
2253  *	1. Find total length of this write.  This may include adding to the
2254  *		lengths passed in.
2255  *	2. Check whether we violate the tickets reservation.
2256  *	3. While writing to this iclog
2257  *	    A. Reserve as much space in this iclog as can get
2258  *	    B. If this is first write, save away start lsn
2259  *	    C. While writing this region:
2260  *		1. If first write of transaction, write start record
2261  *		2. Write log operation header (header per region)
2262  *		3. Find out if we can fit entire region into this iclog
2263  *		4. Potentially, verify destination memcpy ptr
2264  *		5. Memcpy (partial) region
2265  *		6. If partial copy, release iclog; otherwise, continue
2266  *			copying more regions into current iclog
2267  *	4. Mark want sync bit (in simulation mode)
2268  *	5. Release iclog for potential flush to on-disk log.
2269  *
2270  * ERRORS:
2271  * 1.	Panic if reservation is overrun.  This should never happen since
2272  *	reservation amounts are generated internal to the filesystem.
2273  * NOTES:
2274  * 1. Tickets are single threaded data structures.
2275  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2276  *	syncing routine.  When a single log_write region needs to span
2277  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2278  *	on all log operation writes which don't contain the end of the
2279  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2280  *	operation which contains the end of the continued log_write region.
2281  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2282  *	we don't really know exactly how much space will be used.  As a result,
2283  *	we don't update ic_offset until the end when we know exactly how many
2284  *	bytes have been written out.
2285  */
2286 int
2287 xlog_write(
2288 	struct xlog		*log,
2289 	struct xfs_log_vec	*log_vector,
2290 	struct xlog_ticket	*ticket,
2291 	xfs_lsn_t		*start_lsn,
2292 	struct xlog_in_core	**commit_iclog,
2293 	uint			flags)
2294 {
2295 	struct xlog_in_core	*iclog = NULL;
2296 	struct xfs_log_iovec	*vecp;
2297 	struct xfs_log_vec	*lv;
2298 	int			len;
2299 	int			index;
2300 	int			partial_copy = 0;
2301 	int			partial_copy_len = 0;
2302 	int			contwr = 0;
2303 	int			record_cnt = 0;
2304 	int			data_cnt = 0;
2305 	int			error;
2306 
2307 	*start_lsn = 0;
2308 
2309 	len = xlog_write_calc_vec_length(ticket, log_vector);
2310 
2311 	/*
2312 	 * Region headers and bytes are already accounted for.
2313 	 * We only need to take into account start records and
2314 	 * split regions in this function.
2315 	 */
2316 	if (ticket->t_flags & XLOG_TIC_INITED)
2317 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2318 
2319 	/*
2320 	 * Commit record headers need to be accounted for. These
2321 	 * come in as separate writes so are easy to detect.
2322 	 */
2323 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2324 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2325 
2326 	if (ticket->t_curr_res < 0)
2327 		xlog_print_tic_res(log->l_mp, ticket);
2328 
2329 	index = 0;
2330 	lv = log_vector;
2331 	vecp = lv->lv_iovecp;
2332 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2333 		void		*ptr;
2334 		int		log_offset;
2335 
2336 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2337 						   &contwr, &log_offset);
2338 		if (error)
2339 			return error;
2340 
2341 		ASSERT(log_offset <= iclog->ic_size - 1);
2342 		ptr = iclog->ic_datap + log_offset;
2343 
2344 		/* start_lsn is the first lsn written to. That's all we need. */
2345 		if (!*start_lsn)
2346 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2347 
2348 		/*
2349 		 * This loop writes out as many regions as can fit in the amount
2350 		 * of space which was allocated by xlog_state_get_iclog_space().
2351 		 */
2352 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2353 			struct xfs_log_iovec	*reg;
2354 			struct xlog_op_header	*ophdr;
2355 			int			start_rec_copy;
2356 			int			copy_len;
2357 			int			copy_off;
2358 			bool			ordered = false;
2359 
2360 			/* ordered log vectors have no regions to write */
2361 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2362 				ASSERT(lv->lv_niovecs == 0);
2363 				ordered = true;
2364 				goto next_lv;
2365 			}
2366 
2367 			reg = &vecp[index];
2368 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2369 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2370 
2371 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2372 			if (start_rec_copy) {
2373 				record_cnt++;
2374 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2375 						   start_rec_copy);
2376 			}
2377 
2378 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2379 			if (!ophdr)
2380 				return -EIO;
2381 
2382 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2383 					   sizeof(struct xlog_op_header));
2384 
2385 			len += xlog_write_setup_copy(ticket, ophdr,
2386 						     iclog->ic_size-log_offset,
2387 						     reg->i_len,
2388 						     &copy_off, &copy_len,
2389 						     &partial_copy,
2390 						     &partial_copy_len);
2391 			xlog_verify_dest_ptr(log, ptr);
2392 
2393 			/* copy region */
2394 			ASSERT(copy_len >= 0);
2395 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2396 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2397 
2398 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2399 			record_cnt++;
2400 			data_cnt += contwr ? copy_len : 0;
2401 
2402 			error = xlog_write_copy_finish(log, iclog, flags,
2403 						       &record_cnt, &data_cnt,
2404 						       &partial_copy,
2405 						       &partial_copy_len,
2406 						       log_offset,
2407 						       commit_iclog);
2408 			if (error)
2409 				return error;
2410 
2411 			/*
2412 			 * if we had a partial copy, we need to get more iclog
2413 			 * space but we don't want to increment the region
2414 			 * index because there is still more is this region to
2415 			 * write.
2416 			 *
2417 			 * If we completed writing this region, and we flushed
2418 			 * the iclog (indicated by resetting of the record
2419 			 * count), then we also need to get more log space. If
2420 			 * this was the last record, though, we are done and
2421 			 * can just return.
2422 			 */
2423 			if (partial_copy)
2424 				break;
2425 
2426 			if (++index == lv->lv_niovecs) {
2427 next_lv:
2428 				lv = lv->lv_next;
2429 				index = 0;
2430 				if (lv)
2431 					vecp = lv->lv_iovecp;
2432 			}
2433 			if (record_cnt == 0 && ordered == false) {
2434 				if (!lv)
2435 					return 0;
2436 				break;
2437 			}
2438 		}
2439 	}
2440 
2441 	ASSERT(len == 0);
2442 
2443 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2444 	if (!commit_iclog)
2445 		return xlog_state_release_iclog(log, iclog);
2446 
2447 	ASSERT(flags & XLOG_COMMIT_TRANS);
2448 	*commit_iclog = iclog;
2449 	return 0;
2450 }
2451 
2452 
2453 /*****************************************************************************
2454  *
2455  *		State Machine functions
2456  *
2457  *****************************************************************************
2458  */
2459 
2460 /* Clean iclogs starting from the head.  This ordering must be
2461  * maintained, so an iclog doesn't become ACTIVE beyond one that
2462  * is SYNCING.  This is also required to maintain the notion that we use
2463  * a ordered wait queue to hold off would be writers to the log when every
2464  * iclog is trying to sync to disk.
2465  *
2466  * State Change: DIRTY -> ACTIVE
2467  */
2468 STATIC void
2469 xlog_state_clean_log(
2470 	struct xlog *log)
2471 {
2472 	xlog_in_core_t	*iclog;
2473 	int changed = 0;
2474 
2475 	iclog = log->l_iclog;
2476 	do {
2477 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2478 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2479 			iclog->ic_offset       = 0;
2480 			ASSERT(iclog->ic_callback == NULL);
2481 			/*
2482 			 * If the number of ops in this iclog indicate it just
2483 			 * contains the dummy transaction, we can
2484 			 * change state into IDLE (the second time around).
2485 			 * Otherwise we should change the state into
2486 			 * NEED a dummy.
2487 			 * We don't need to cover the dummy.
2488 			 */
2489 			if (!changed &&
2490 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2491 			   		XLOG_COVER_OPS)) {
2492 				changed = 1;
2493 			} else {
2494 				/*
2495 				 * We have two dirty iclogs so start over
2496 				 * This could also be num of ops indicates
2497 				 * this is not the dummy going out.
2498 				 */
2499 				changed = 2;
2500 			}
2501 			iclog->ic_header.h_num_logops = 0;
2502 			memset(iclog->ic_header.h_cycle_data, 0,
2503 			      sizeof(iclog->ic_header.h_cycle_data));
2504 			iclog->ic_header.h_lsn = 0;
2505 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2506 			/* do nothing */;
2507 		else
2508 			break;	/* stop cleaning */
2509 		iclog = iclog->ic_next;
2510 	} while (iclog != log->l_iclog);
2511 
2512 	/* log is locked when we are called */
2513 	/*
2514 	 * Change state for the dummy log recording.
2515 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2516 	 * we are done writing the dummy record.
2517 	 * If we are done with the second dummy recored (DONE2), then
2518 	 * we go to IDLE.
2519 	 */
2520 	if (changed) {
2521 		switch (log->l_covered_state) {
2522 		case XLOG_STATE_COVER_IDLE:
2523 		case XLOG_STATE_COVER_NEED:
2524 		case XLOG_STATE_COVER_NEED2:
2525 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2526 			break;
2527 
2528 		case XLOG_STATE_COVER_DONE:
2529 			if (changed == 1)
2530 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2531 			else
2532 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2533 			break;
2534 
2535 		case XLOG_STATE_COVER_DONE2:
2536 			if (changed == 1)
2537 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2538 			else
2539 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2540 			break;
2541 
2542 		default:
2543 			ASSERT(0);
2544 		}
2545 	}
2546 }	/* xlog_state_clean_log */
2547 
2548 STATIC xfs_lsn_t
2549 xlog_get_lowest_lsn(
2550 	struct xlog	*log)
2551 {
2552 	xlog_in_core_t  *lsn_log;
2553 	xfs_lsn_t	lowest_lsn, lsn;
2554 
2555 	lsn_log = log->l_iclog;
2556 	lowest_lsn = 0;
2557 	do {
2558 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2559 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2560 		if ((lsn && !lowest_lsn) ||
2561 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2562 			lowest_lsn = lsn;
2563 		}
2564 	    }
2565 	    lsn_log = lsn_log->ic_next;
2566 	} while (lsn_log != log->l_iclog);
2567 	return lowest_lsn;
2568 }
2569 
2570 
2571 STATIC void
2572 xlog_state_do_callback(
2573 	struct xlog		*log,
2574 	int			aborted,
2575 	struct xlog_in_core	*ciclog)
2576 {
2577 	xlog_in_core_t	   *iclog;
2578 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2579 						 * processed all iclogs once */
2580 	xfs_log_callback_t *cb, *cb_next;
2581 	int		   flushcnt = 0;
2582 	xfs_lsn_t	   lowest_lsn;
2583 	int		   ioerrors;	/* counter: iclogs with errors */
2584 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2585 	int		   funcdidcallbacks; /* flag: function did callbacks */
2586 	int		   repeats;	/* for issuing console warnings if
2587 					 * looping too many times */
2588 	int		   wake = 0;
2589 
2590 	spin_lock(&log->l_icloglock);
2591 	first_iclog = iclog = log->l_iclog;
2592 	ioerrors = 0;
2593 	funcdidcallbacks = 0;
2594 	repeats = 0;
2595 
2596 	do {
2597 		/*
2598 		 * Scan all iclogs starting with the one pointed to by the
2599 		 * log.  Reset this starting point each time the log is
2600 		 * unlocked (during callbacks).
2601 		 *
2602 		 * Keep looping through iclogs until one full pass is made
2603 		 * without running any callbacks.
2604 		 */
2605 		first_iclog = log->l_iclog;
2606 		iclog = log->l_iclog;
2607 		loopdidcallbacks = 0;
2608 		repeats++;
2609 
2610 		do {
2611 
2612 			/* skip all iclogs in the ACTIVE & DIRTY states */
2613 			if (iclog->ic_state &
2614 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2615 				iclog = iclog->ic_next;
2616 				continue;
2617 			}
2618 
2619 			/*
2620 			 * Between marking a filesystem SHUTDOWN and stopping
2621 			 * the log, we do flush all iclogs to disk (if there
2622 			 * wasn't a log I/O error). So, we do want things to
2623 			 * go smoothly in case of just a SHUTDOWN  w/o a
2624 			 * LOG_IO_ERROR.
2625 			 */
2626 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2627 				/*
2628 				 * Can only perform callbacks in order.  Since
2629 				 * this iclog is not in the DONE_SYNC/
2630 				 * DO_CALLBACK state, we skip the rest and
2631 				 * just try to clean up.  If we set our iclog
2632 				 * to DO_CALLBACK, we will not process it when
2633 				 * we retry since a previous iclog is in the
2634 				 * CALLBACK and the state cannot change since
2635 				 * we are holding the l_icloglock.
2636 				 */
2637 				if (!(iclog->ic_state &
2638 					(XLOG_STATE_DONE_SYNC |
2639 						 XLOG_STATE_DO_CALLBACK))) {
2640 					if (ciclog && (ciclog->ic_state ==
2641 							XLOG_STATE_DONE_SYNC)) {
2642 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2643 					}
2644 					break;
2645 				}
2646 				/*
2647 				 * We now have an iclog that is in either the
2648 				 * DO_CALLBACK or DONE_SYNC states. The other
2649 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2650 				 * caught by the above if and are going to
2651 				 * clean (i.e. we aren't doing their callbacks)
2652 				 * see the above if.
2653 				 */
2654 
2655 				/*
2656 				 * We will do one more check here to see if we
2657 				 * have chased our tail around.
2658 				 */
2659 
2660 				lowest_lsn = xlog_get_lowest_lsn(log);
2661 				if (lowest_lsn &&
2662 				    XFS_LSN_CMP(lowest_lsn,
2663 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2664 					iclog = iclog->ic_next;
2665 					continue; /* Leave this iclog for
2666 						   * another thread */
2667 				}
2668 
2669 				iclog->ic_state = XLOG_STATE_CALLBACK;
2670 
2671 
2672 				/*
2673 				 * Completion of a iclog IO does not imply that
2674 				 * a transaction has completed, as transactions
2675 				 * can be large enough to span many iclogs. We
2676 				 * cannot change the tail of the log half way
2677 				 * through a transaction as this may be the only
2678 				 * transaction in the log and moving th etail to
2679 				 * point to the middle of it will prevent
2680 				 * recovery from finding the start of the
2681 				 * transaction. Hence we should only update the
2682 				 * last_sync_lsn if this iclog contains
2683 				 * transaction completion callbacks on it.
2684 				 *
2685 				 * We have to do this before we drop the
2686 				 * icloglock to ensure we are the only one that
2687 				 * can update it.
2688 				 */
2689 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2690 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2691 				if (iclog->ic_callback)
2692 					atomic64_set(&log->l_last_sync_lsn,
2693 						be64_to_cpu(iclog->ic_header.h_lsn));
2694 
2695 			} else
2696 				ioerrors++;
2697 
2698 			spin_unlock(&log->l_icloglock);
2699 
2700 			/*
2701 			 * Keep processing entries in the callback list until
2702 			 * we come around and it is empty.  We need to
2703 			 * atomically see that the list is empty and change the
2704 			 * state to DIRTY so that we don't miss any more
2705 			 * callbacks being added.
2706 			 */
2707 			spin_lock(&iclog->ic_callback_lock);
2708 			cb = iclog->ic_callback;
2709 			while (cb) {
2710 				iclog->ic_callback_tail = &(iclog->ic_callback);
2711 				iclog->ic_callback = NULL;
2712 				spin_unlock(&iclog->ic_callback_lock);
2713 
2714 				/* perform callbacks in the order given */
2715 				for (; cb; cb = cb_next) {
2716 					cb_next = cb->cb_next;
2717 					cb->cb_func(cb->cb_arg, aborted);
2718 				}
2719 				spin_lock(&iclog->ic_callback_lock);
2720 				cb = iclog->ic_callback;
2721 			}
2722 
2723 			loopdidcallbacks++;
2724 			funcdidcallbacks++;
2725 
2726 			spin_lock(&log->l_icloglock);
2727 			ASSERT(iclog->ic_callback == NULL);
2728 			spin_unlock(&iclog->ic_callback_lock);
2729 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2730 				iclog->ic_state = XLOG_STATE_DIRTY;
2731 
2732 			/*
2733 			 * Transition from DIRTY to ACTIVE if applicable.
2734 			 * NOP if STATE_IOERROR.
2735 			 */
2736 			xlog_state_clean_log(log);
2737 
2738 			/* wake up threads waiting in xfs_log_force() */
2739 			wake_up_all(&iclog->ic_force_wait);
2740 
2741 			iclog = iclog->ic_next;
2742 		} while (first_iclog != iclog);
2743 
2744 		if (repeats > 5000) {
2745 			flushcnt += repeats;
2746 			repeats = 0;
2747 			xfs_warn(log->l_mp,
2748 				"%s: possible infinite loop (%d iterations)",
2749 				__func__, flushcnt);
2750 		}
2751 	} while (!ioerrors && loopdidcallbacks);
2752 
2753 	/*
2754 	 * make one last gasp attempt to see if iclogs are being left in
2755 	 * limbo..
2756 	 */
2757 #ifdef DEBUG
2758 	if (funcdidcallbacks) {
2759 		first_iclog = iclog = log->l_iclog;
2760 		do {
2761 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2762 			/*
2763 			 * Terminate the loop if iclogs are found in states
2764 			 * which will cause other threads to clean up iclogs.
2765 			 *
2766 			 * SYNCING - i/o completion will go through logs
2767 			 * DONE_SYNC - interrupt thread should be waiting for
2768 			 *              l_icloglock
2769 			 * IOERROR - give up hope all ye who enter here
2770 			 */
2771 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2772 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2773 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2774 			    iclog->ic_state == XLOG_STATE_IOERROR )
2775 				break;
2776 			iclog = iclog->ic_next;
2777 		} while (first_iclog != iclog);
2778 	}
2779 #endif
2780 
2781 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2782 		wake = 1;
2783 	spin_unlock(&log->l_icloglock);
2784 
2785 	if (wake)
2786 		wake_up_all(&log->l_flush_wait);
2787 }
2788 
2789 
2790 /*
2791  * Finish transitioning this iclog to the dirty state.
2792  *
2793  * Make sure that we completely execute this routine only when this is
2794  * the last call to the iclog.  There is a good chance that iclog flushes,
2795  * when we reach the end of the physical log, get turned into 2 separate
2796  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2797  * routine.  By using the reference count bwritecnt, we guarantee that only
2798  * the second completion goes through.
2799  *
2800  * Callbacks could take time, so they are done outside the scope of the
2801  * global state machine log lock.
2802  */
2803 STATIC void
2804 xlog_state_done_syncing(
2805 	xlog_in_core_t	*iclog,
2806 	int		aborted)
2807 {
2808 	struct xlog	   *log = iclog->ic_log;
2809 
2810 	spin_lock(&log->l_icloglock);
2811 
2812 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2813 	       iclog->ic_state == XLOG_STATE_IOERROR);
2814 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2815 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2816 
2817 
2818 	/*
2819 	 * If we got an error, either on the first buffer, or in the case of
2820 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2821 	 * and none should ever be attempted to be written to disk
2822 	 * again.
2823 	 */
2824 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2825 		if (--iclog->ic_bwritecnt == 1) {
2826 			spin_unlock(&log->l_icloglock);
2827 			return;
2828 		}
2829 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2830 	}
2831 
2832 	/*
2833 	 * Someone could be sleeping prior to writing out the next
2834 	 * iclog buffer, we wake them all, one will get to do the
2835 	 * I/O, the others get to wait for the result.
2836 	 */
2837 	wake_up_all(&iclog->ic_write_wait);
2838 	spin_unlock(&log->l_icloglock);
2839 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2840 }	/* xlog_state_done_syncing */
2841 
2842 
2843 /*
2844  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2845  * sleep.  We wait on the flush queue on the head iclog as that should be
2846  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2847  * we will wait here and all new writes will sleep until a sync completes.
2848  *
2849  * The in-core logs are used in a circular fashion. They are not used
2850  * out-of-order even when an iclog past the head is free.
2851  *
2852  * return:
2853  *	* log_offset where xlog_write() can start writing into the in-core
2854  *		log's data space.
2855  *	* in-core log pointer to which xlog_write() should write.
2856  *	* boolean indicating this is a continued write to an in-core log.
2857  *		If this is the last write, then the in-core log's offset field
2858  *		needs to be incremented, depending on the amount of data which
2859  *		is copied.
2860  */
2861 STATIC int
2862 xlog_state_get_iclog_space(
2863 	struct xlog		*log,
2864 	int			len,
2865 	struct xlog_in_core	**iclogp,
2866 	struct xlog_ticket	*ticket,
2867 	int			*continued_write,
2868 	int			*logoffsetp)
2869 {
2870 	int		  log_offset;
2871 	xlog_rec_header_t *head;
2872 	xlog_in_core_t	  *iclog;
2873 	int		  error;
2874 
2875 restart:
2876 	spin_lock(&log->l_icloglock);
2877 	if (XLOG_FORCED_SHUTDOWN(log)) {
2878 		spin_unlock(&log->l_icloglock);
2879 		return -EIO;
2880 	}
2881 
2882 	iclog = log->l_iclog;
2883 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2884 		XFS_STATS_INC(xs_log_noiclogs);
2885 
2886 		/* Wait for log writes to have flushed */
2887 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2888 		goto restart;
2889 	}
2890 
2891 	head = &iclog->ic_header;
2892 
2893 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2894 	log_offset = iclog->ic_offset;
2895 
2896 	/* On the 1st write to an iclog, figure out lsn.  This works
2897 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2898 	 * committing to.  If the offset is set, that's how many blocks
2899 	 * must be written.
2900 	 */
2901 	if (log_offset == 0) {
2902 		ticket->t_curr_res -= log->l_iclog_hsize;
2903 		xlog_tic_add_region(ticket,
2904 				    log->l_iclog_hsize,
2905 				    XLOG_REG_TYPE_LRHEADER);
2906 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2907 		head->h_lsn = cpu_to_be64(
2908 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2909 		ASSERT(log->l_curr_block >= 0);
2910 	}
2911 
2912 	/* If there is enough room to write everything, then do it.  Otherwise,
2913 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2914 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2915 	 * until you know exactly how many bytes get copied.  Therefore, wait
2916 	 * until later to update ic_offset.
2917 	 *
2918 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2919 	 * can fit into remaining data section.
2920 	 */
2921 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2922 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2923 
2924 		/*
2925 		 * If I'm the only one writing to this iclog, sync it to disk.
2926 		 * We need to do an atomic compare and decrement here to avoid
2927 		 * racing with concurrent atomic_dec_and_lock() calls in
2928 		 * xlog_state_release_iclog() when there is more than one
2929 		 * reference to the iclog.
2930 		 */
2931 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2932 			/* we are the only one */
2933 			spin_unlock(&log->l_icloglock);
2934 			error = xlog_state_release_iclog(log, iclog);
2935 			if (error)
2936 				return error;
2937 		} else {
2938 			spin_unlock(&log->l_icloglock);
2939 		}
2940 		goto restart;
2941 	}
2942 
2943 	/* Do we have enough room to write the full amount in the remainder
2944 	 * of this iclog?  Or must we continue a write on the next iclog and
2945 	 * mark this iclog as completely taken?  In the case where we switch
2946 	 * iclogs (to mark it taken), this particular iclog will release/sync
2947 	 * to disk in xlog_write().
2948 	 */
2949 	if (len <= iclog->ic_size - iclog->ic_offset) {
2950 		*continued_write = 0;
2951 		iclog->ic_offset += len;
2952 	} else {
2953 		*continued_write = 1;
2954 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2955 	}
2956 	*iclogp = iclog;
2957 
2958 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2959 	spin_unlock(&log->l_icloglock);
2960 
2961 	*logoffsetp = log_offset;
2962 	return 0;
2963 }	/* xlog_state_get_iclog_space */
2964 
2965 /* The first cnt-1 times through here we don't need to
2966  * move the grant write head because the permanent
2967  * reservation has reserved cnt times the unit amount.
2968  * Release part of current permanent unit reservation and
2969  * reset current reservation to be one units worth.  Also
2970  * move grant reservation head forward.
2971  */
2972 STATIC void
2973 xlog_regrant_reserve_log_space(
2974 	struct xlog		*log,
2975 	struct xlog_ticket	*ticket)
2976 {
2977 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2978 
2979 	if (ticket->t_cnt > 0)
2980 		ticket->t_cnt--;
2981 
2982 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2983 					ticket->t_curr_res);
2984 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2985 					ticket->t_curr_res);
2986 	ticket->t_curr_res = ticket->t_unit_res;
2987 	xlog_tic_reset_res(ticket);
2988 
2989 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2990 
2991 	/* just return if we still have some of the pre-reserved space */
2992 	if (ticket->t_cnt > 0)
2993 		return;
2994 
2995 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2996 					ticket->t_unit_res);
2997 
2998 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2999 
3000 	ticket->t_curr_res = ticket->t_unit_res;
3001 	xlog_tic_reset_res(ticket);
3002 }	/* xlog_regrant_reserve_log_space */
3003 
3004 
3005 /*
3006  * Give back the space left from a reservation.
3007  *
3008  * All the information we need to make a correct determination of space left
3009  * is present.  For non-permanent reservations, things are quite easy.  The
3010  * count should have been decremented to zero.  We only need to deal with the
3011  * space remaining in the current reservation part of the ticket.  If the
3012  * ticket contains a permanent reservation, there may be left over space which
3013  * needs to be released.  A count of N means that N-1 refills of the current
3014  * reservation can be done before we need to ask for more space.  The first
3015  * one goes to fill up the first current reservation.  Once we run out of
3016  * space, the count will stay at zero and the only space remaining will be
3017  * in the current reservation field.
3018  */
3019 STATIC void
3020 xlog_ungrant_log_space(
3021 	struct xlog		*log,
3022 	struct xlog_ticket	*ticket)
3023 {
3024 	int	bytes;
3025 
3026 	if (ticket->t_cnt > 0)
3027 		ticket->t_cnt--;
3028 
3029 	trace_xfs_log_ungrant_enter(log, ticket);
3030 	trace_xfs_log_ungrant_sub(log, ticket);
3031 
3032 	/*
3033 	 * If this is a permanent reservation ticket, we may be able to free
3034 	 * up more space based on the remaining count.
3035 	 */
3036 	bytes = ticket->t_curr_res;
3037 	if (ticket->t_cnt > 0) {
3038 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3039 		bytes += ticket->t_unit_res*ticket->t_cnt;
3040 	}
3041 
3042 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3043 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3044 
3045 	trace_xfs_log_ungrant_exit(log, ticket);
3046 
3047 	xfs_log_space_wake(log->l_mp);
3048 }
3049 
3050 /*
3051  * Flush iclog to disk if this is the last reference to the given iclog and
3052  * the WANT_SYNC bit is set.
3053  *
3054  * When this function is entered, the iclog is not necessarily in the
3055  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3056  *
3057  *
3058  */
3059 STATIC int
3060 xlog_state_release_iclog(
3061 	struct xlog		*log,
3062 	struct xlog_in_core	*iclog)
3063 {
3064 	int		sync = 0;	/* do we sync? */
3065 
3066 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3067 		return -EIO;
3068 
3069 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3070 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3071 		return 0;
3072 
3073 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3074 		spin_unlock(&log->l_icloglock);
3075 		return -EIO;
3076 	}
3077 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3078 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3079 
3080 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3081 		/* update tail before writing to iclog */
3082 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3083 		sync++;
3084 		iclog->ic_state = XLOG_STATE_SYNCING;
3085 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3086 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3087 		/* cycle incremented when incrementing curr_block */
3088 	}
3089 	spin_unlock(&log->l_icloglock);
3090 
3091 	/*
3092 	 * We let the log lock go, so it's possible that we hit a log I/O
3093 	 * error or some other SHUTDOWN condition that marks the iclog
3094 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3095 	 * this iclog has consistent data, so we ignore IOERROR
3096 	 * flags after this point.
3097 	 */
3098 	if (sync)
3099 		return xlog_sync(log, iclog);
3100 	return 0;
3101 }	/* xlog_state_release_iclog */
3102 
3103 
3104 /*
3105  * This routine will mark the current iclog in the ring as WANT_SYNC
3106  * and move the current iclog pointer to the next iclog in the ring.
3107  * When this routine is called from xlog_state_get_iclog_space(), the
3108  * exact size of the iclog has not yet been determined.  All we know is
3109  * that every data block.  We have run out of space in this log record.
3110  */
3111 STATIC void
3112 xlog_state_switch_iclogs(
3113 	struct xlog		*log,
3114 	struct xlog_in_core	*iclog,
3115 	int			eventual_size)
3116 {
3117 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3118 	if (!eventual_size)
3119 		eventual_size = iclog->ic_offset;
3120 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3121 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3122 	log->l_prev_block = log->l_curr_block;
3123 	log->l_prev_cycle = log->l_curr_cycle;
3124 
3125 	/* roll log?: ic_offset changed later */
3126 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3127 
3128 	/* Round up to next log-sunit */
3129 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3130 	    log->l_mp->m_sb.sb_logsunit > 1) {
3131 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3132 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3133 	}
3134 
3135 	if (log->l_curr_block >= log->l_logBBsize) {
3136 		log->l_curr_cycle++;
3137 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3138 			log->l_curr_cycle++;
3139 		log->l_curr_block -= log->l_logBBsize;
3140 		ASSERT(log->l_curr_block >= 0);
3141 	}
3142 	ASSERT(iclog == log->l_iclog);
3143 	log->l_iclog = iclog->ic_next;
3144 }	/* xlog_state_switch_iclogs */
3145 
3146 /*
3147  * Write out all data in the in-core log as of this exact moment in time.
3148  *
3149  * Data may be written to the in-core log during this call.  However,
3150  * we don't guarantee this data will be written out.  A change from past
3151  * implementation means this routine will *not* write out zero length LRs.
3152  *
3153  * Basically, we try and perform an intelligent scan of the in-core logs.
3154  * If we determine there is no flushable data, we just return.  There is no
3155  * flushable data if:
3156  *
3157  *	1. the current iclog is active and has no data; the previous iclog
3158  *		is in the active or dirty state.
3159  *	2. the current iclog is drity, and the previous iclog is in the
3160  *		active or dirty state.
3161  *
3162  * We may sleep if:
3163  *
3164  *	1. the current iclog is not in the active nor dirty state.
3165  *	2. the current iclog dirty, and the previous iclog is not in the
3166  *		active nor dirty state.
3167  *	3. the current iclog is active, and there is another thread writing
3168  *		to this particular iclog.
3169  *	4. a) the current iclog is active and has no other writers
3170  *	   b) when we return from flushing out this iclog, it is still
3171  *		not in the active nor dirty state.
3172  */
3173 int
3174 _xfs_log_force(
3175 	struct xfs_mount	*mp,
3176 	uint			flags,
3177 	int			*log_flushed)
3178 {
3179 	struct xlog		*log = mp->m_log;
3180 	struct xlog_in_core	*iclog;
3181 	xfs_lsn_t		lsn;
3182 
3183 	XFS_STATS_INC(xs_log_force);
3184 
3185 	xlog_cil_force(log);
3186 
3187 	spin_lock(&log->l_icloglock);
3188 
3189 	iclog = log->l_iclog;
3190 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3191 		spin_unlock(&log->l_icloglock);
3192 		return -EIO;
3193 	}
3194 
3195 	/* If the head iclog is not active nor dirty, we just attach
3196 	 * ourselves to the head and go to sleep.
3197 	 */
3198 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3199 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3200 		/*
3201 		 * If the head is dirty or (active and empty), then
3202 		 * we need to look at the previous iclog.  If the previous
3203 		 * iclog is active or dirty we are done.  There is nothing
3204 		 * to sync out.  Otherwise, we attach ourselves to the
3205 		 * previous iclog and go to sleep.
3206 		 */
3207 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3208 		    (atomic_read(&iclog->ic_refcnt) == 0
3209 		     && iclog->ic_offset == 0)) {
3210 			iclog = iclog->ic_prev;
3211 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3212 			    iclog->ic_state == XLOG_STATE_DIRTY)
3213 				goto no_sleep;
3214 			else
3215 				goto maybe_sleep;
3216 		} else {
3217 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3218 				/* We are the only one with access to this
3219 				 * iclog.  Flush it out now.  There should
3220 				 * be a roundoff of zero to show that someone
3221 				 * has already taken care of the roundoff from
3222 				 * the previous sync.
3223 				 */
3224 				atomic_inc(&iclog->ic_refcnt);
3225 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3226 				xlog_state_switch_iclogs(log, iclog, 0);
3227 				spin_unlock(&log->l_icloglock);
3228 
3229 				if (xlog_state_release_iclog(log, iclog))
3230 					return -EIO;
3231 
3232 				if (log_flushed)
3233 					*log_flushed = 1;
3234 				spin_lock(&log->l_icloglock);
3235 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3236 				    iclog->ic_state != XLOG_STATE_DIRTY)
3237 					goto maybe_sleep;
3238 				else
3239 					goto no_sleep;
3240 			} else {
3241 				/* Someone else is writing to this iclog.
3242 				 * Use its call to flush out the data.  However,
3243 				 * the other thread may not force out this LR,
3244 				 * so we mark it WANT_SYNC.
3245 				 */
3246 				xlog_state_switch_iclogs(log, iclog, 0);
3247 				goto maybe_sleep;
3248 			}
3249 		}
3250 	}
3251 
3252 	/* By the time we come around again, the iclog could've been filled
3253 	 * which would give it another lsn.  If we have a new lsn, just
3254 	 * return because the relevant data has been flushed.
3255 	 */
3256 maybe_sleep:
3257 	if (flags & XFS_LOG_SYNC) {
3258 		/*
3259 		 * We must check if we're shutting down here, before
3260 		 * we wait, while we're holding the l_icloglock.
3261 		 * Then we check again after waking up, in case our
3262 		 * sleep was disturbed by a bad news.
3263 		 */
3264 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3265 			spin_unlock(&log->l_icloglock);
3266 			return -EIO;
3267 		}
3268 		XFS_STATS_INC(xs_log_force_sleep);
3269 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3270 		/*
3271 		 * No need to grab the log lock here since we're
3272 		 * only deciding whether or not to return EIO
3273 		 * and the memory read should be atomic.
3274 		 */
3275 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3276 			return -EIO;
3277 		if (log_flushed)
3278 			*log_flushed = 1;
3279 	} else {
3280 
3281 no_sleep:
3282 		spin_unlock(&log->l_icloglock);
3283 	}
3284 	return 0;
3285 }
3286 
3287 /*
3288  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3289  * about errors or whether the log was flushed or not. This is the normal
3290  * interface to use when trying to unpin items or move the log forward.
3291  */
3292 void
3293 xfs_log_force(
3294 	xfs_mount_t	*mp,
3295 	uint		flags)
3296 {
3297 	int	error;
3298 
3299 	trace_xfs_log_force(mp, 0);
3300 	error = _xfs_log_force(mp, flags, NULL);
3301 	if (error)
3302 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3303 }
3304 
3305 /*
3306  * Force the in-core log to disk for a specific LSN.
3307  *
3308  * Find in-core log with lsn.
3309  *	If it is in the DIRTY state, just return.
3310  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3311  *		state and go to sleep or return.
3312  *	If it is in any other state, go to sleep or return.
3313  *
3314  * Synchronous forces are implemented with a signal variable. All callers
3315  * to force a given lsn to disk will wait on a the sv attached to the
3316  * specific in-core log.  When given in-core log finally completes its
3317  * write to disk, that thread will wake up all threads waiting on the
3318  * sv.
3319  */
3320 int
3321 _xfs_log_force_lsn(
3322 	struct xfs_mount	*mp,
3323 	xfs_lsn_t		lsn,
3324 	uint			flags,
3325 	int			*log_flushed)
3326 {
3327 	struct xlog		*log = mp->m_log;
3328 	struct xlog_in_core	*iclog;
3329 	int			already_slept = 0;
3330 
3331 	ASSERT(lsn != 0);
3332 
3333 	XFS_STATS_INC(xs_log_force);
3334 
3335 	lsn = xlog_cil_force_lsn(log, lsn);
3336 	if (lsn == NULLCOMMITLSN)
3337 		return 0;
3338 
3339 try_again:
3340 	spin_lock(&log->l_icloglock);
3341 	iclog = log->l_iclog;
3342 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3343 		spin_unlock(&log->l_icloglock);
3344 		return -EIO;
3345 	}
3346 
3347 	do {
3348 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3349 			iclog = iclog->ic_next;
3350 			continue;
3351 		}
3352 
3353 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3354 			spin_unlock(&log->l_icloglock);
3355 			return 0;
3356 		}
3357 
3358 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3359 			/*
3360 			 * We sleep here if we haven't already slept (e.g.
3361 			 * this is the first time we've looked at the correct
3362 			 * iclog buf) and the buffer before us is going to
3363 			 * be sync'ed. The reason for this is that if we
3364 			 * are doing sync transactions here, by waiting for
3365 			 * the previous I/O to complete, we can allow a few
3366 			 * more transactions into this iclog before we close
3367 			 * it down.
3368 			 *
3369 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3370 			 * up the refcnt so we can release the log (which
3371 			 * drops the ref count).  The state switch keeps new
3372 			 * transaction commits from using this buffer.  When
3373 			 * the current commits finish writing into the buffer,
3374 			 * the refcount will drop to zero and the buffer will
3375 			 * go out then.
3376 			 */
3377 			if (!already_slept &&
3378 			    (iclog->ic_prev->ic_state &
3379 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3380 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3381 
3382 				XFS_STATS_INC(xs_log_force_sleep);
3383 
3384 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3385 							&log->l_icloglock);
3386 				if (log_flushed)
3387 					*log_flushed = 1;
3388 				already_slept = 1;
3389 				goto try_again;
3390 			}
3391 			atomic_inc(&iclog->ic_refcnt);
3392 			xlog_state_switch_iclogs(log, iclog, 0);
3393 			spin_unlock(&log->l_icloglock);
3394 			if (xlog_state_release_iclog(log, iclog))
3395 				return -EIO;
3396 			if (log_flushed)
3397 				*log_flushed = 1;
3398 			spin_lock(&log->l_icloglock);
3399 		}
3400 
3401 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3402 		    !(iclog->ic_state &
3403 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3404 			/*
3405 			 * Don't wait on completion if we know that we've
3406 			 * gotten a log write error.
3407 			 */
3408 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3409 				spin_unlock(&log->l_icloglock);
3410 				return -EIO;
3411 			}
3412 			XFS_STATS_INC(xs_log_force_sleep);
3413 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3414 			/*
3415 			 * No need to grab the log lock here since we're
3416 			 * only deciding whether or not to return EIO
3417 			 * and the memory read should be atomic.
3418 			 */
3419 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3420 				return -EIO;
3421 
3422 			if (log_flushed)
3423 				*log_flushed = 1;
3424 		} else {		/* just return */
3425 			spin_unlock(&log->l_icloglock);
3426 		}
3427 
3428 		return 0;
3429 	} while (iclog != log->l_iclog);
3430 
3431 	spin_unlock(&log->l_icloglock);
3432 	return 0;
3433 }
3434 
3435 /*
3436  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3437  * about errors or whether the log was flushed or not. This is the normal
3438  * interface to use when trying to unpin items or move the log forward.
3439  */
3440 void
3441 xfs_log_force_lsn(
3442 	xfs_mount_t	*mp,
3443 	xfs_lsn_t	lsn,
3444 	uint		flags)
3445 {
3446 	int	error;
3447 
3448 	trace_xfs_log_force(mp, lsn);
3449 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3450 	if (error)
3451 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3452 }
3453 
3454 /*
3455  * Called when we want to mark the current iclog as being ready to sync to
3456  * disk.
3457  */
3458 STATIC void
3459 xlog_state_want_sync(
3460 	struct xlog		*log,
3461 	struct xlog_in_core	*iclog)
3462 {
3463 	assert_spin_locked(&log->l_icloglock);
3464 
3465 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3466 		xlog_state_switch_iclogs(log, iclog, 0);
3467 	} else {
3468 		ASSERT(iclog->ic_state &
3469 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3470 	}
3471 }
3472 
3473 
3474 /*****************************************************************************
3475  *
3476  *		TICKET functions
3477  *
3478  *****************************************************************************
3479  */
3480 
3481 /*
3482  * Free a used ticket when its refcount falls to zero.
3483  */
3484 void
3485 xfs_log_ticket_put(
3486 	xlog_ticket_t	*ticket)
3487 {
3488 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3489 	if (atomic_dec_and_test(&ticket->t_ref))
3490 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3491 }
3492 
3493 xlog_ticket_t *
3494 xfs_log_ticket_get(
3495 	xlog_ticket_t	*ticket)
3496 {
3497 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3498 	atomic_inc(&ticket->t_ref);
3499 	return ticket;
3500 }
3501 
3502 /*
3503  * Figure out the total log space unit (in bytes) that would be
3504  * required for a log ticket.
3505  */
3506 int
3507 xfs_log_calc_unit_res(
3508 	struct xfs_mount	*mp,
3509 	int			unit_bytes)
3510 {
3511 	struct xlog		*log = mp->m_log;
3512 	int			iclog_space;
3513 	uint			num_headers;
3514 
3515 	/*
3516 	 * Permanent reservations have up to 'cnt'-1 active log operations
3517 	 * in the log.  A unit in this case is the amount of space for one
3518 	 * of these log operations.  Normal reservations have a cnt of 1
3519 	 * and their unit amount is the total amount of space required.
3520 	 *
3521 	 * The following lines of code account for non-transaction data
3522 	 * which occupy space in the on-disk log.
3523 	 *
3524 	 * Normal form of a transaction is:
3525 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3526 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3527 	 *
3528 	 * We need to account for all the leadup data and trailer data
3529 	 * around the transaction data.
3530 	 * And then we need to account for the worst case in terms of using
3531 	 * more space.
3532 	 * The worst case will happen if:
3533 	 * - the placement of the transaction happens to be such that the
3534 	 *   roundoff is at its maximum
3535 	 * - the transaction data is synced before the commit record is synced
3536 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3537 	 *   Therefore the commit record is in its own Log Record.
3538 	 *   This can happen as the commit record is called with its
3539 	 *   own region to xlog_write().
3540 	 *   This then means that in the worst case, roundoff can happen for
3541 	 *   the commit-rec as well.
3542 	 *   The commit-rec is smaller than padding in this scenario and so it is
3543 	 *   not added separately.
3544 	 */
3545 
3546 	/* for trans header */
3547 	unit_bytes += sizeof(xlog_op_header_t);
3548 	unit_bytes += sizeof(xfs_trans_header_t);
3549 
3550 	/* for start-rec */
3551 	unit_bytes += sizeof(xlog_op_header_t);
3552 
3553 	/*
3554 	 * for LR headers - the space for data in an iclog is the size minus
3555 	 * the space used for the headers. If we use the iclog size, then we
3556 	 * undercalculate the number of headers required.
3557 	 *
3558 	 * Furthermore - the addition of op headers for split-recs might
3559 	 * increase the space required enough to require more log and op
3560 	 * headers, so take that into account too.
3561 	 *
3562 	 * IMPORTANT: This reservation makes the assumption that if this
3563 	 * transaction is the first in an iclog and hence has the LR headers
3564 	 * accounted to it, then the remaining space in the iclog is
3565 	 * exclusively for this transaction.  i.e. if the transaction is larger
3566 	 * than the iclog, it will be the only thing in that iclog.
3567 	 * Fundamentally, this means we must pass the entire log vector to
3568 	 * xlog_write to guarantee this.
3569 	 */
3570 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3571 	num_headers = howmany(unit_bytes, iclog_space);
3572 
3573 	/* for split-recs - ophdrs added when data split over LRs */
3574 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3575 
3576 	/* add extra header reservations if we overrun */
3577 	while (!num_headers ||
3578 	       howmany(unit_bytes, iclog_space) > num_headers) {
3579 		unit_bytes += sizeof(xlog_op_header_t);
3580 		num_headers++;
3581 	}
3582 	unit_bytes += log->l_iclog_hsize * num_headers;
3583 
3584 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3585 	unit_bytes += log->l_iclog_hsize;
3586 
3587 	/* for roundoff padding for transaction data and one for commit record */
3588 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3589 		/* log su roundoff */
3590 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3591 	} else {
3592 		/* BB roundoff */
3593 		unit_bytes += 2 * BBSIZE;
3594         }
3595 
3596 	return unit_bytes;
3597 }
3598 
3599 /*
3600  * Allocate and initialise a new log ticket.
3601  */
3602 struct xlog_ticket *
3603 xlog_ticket_alloc(
3604 	struct xlog		*log,
3605 	int			unit_bytes,
3606 	int			cnt,
3607 	char			client,
3608 	bool			permanent,
3609 	xfs_km_flags_t		alloc_flags)
3610 {
3611 	struct xlog_ticket	*tic;
3612 	int			unit_res;
3613 
3614 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3615 	if (!tic)
3616 		return NULL;
3617 
3618 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3619 
3620 	atomic_set(&tic->t_ref, 1);
3621 	tic->t_task		= current;
3622 	INIT_LIST_HEAD(&tic->t_queue);
3623 	tic->t_unit_res		= unit_res;
3624 	tic->t_curr_res		= unit_res;
3625 	tic->t_cnt		= cnt;
3626 	tic->t_ocnt		= cnt;
3627 	tic->t_tid		= prandom_u32();
3628 	tic->t_clientid		= client;
3629 	tic->t_flags		= XLOG_TIC_INITED;
3630 	tic->t_trans_type	= 0;
3631 	if (permanent)
3632 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3633 
3634 	xlog_tic_reset_res(tic);
3635 
3636 	return tic;
3637 }
3638 
3639 
3640 /******************************************************************************
3641  *
3642  *		Log debug routines
3643  *
3644  ******************************************************************************
3645  */
3646 #if defined(DEBUG)
3647 /*
3648  * Make sure that the destination ptr is within the valid data region of
3649  * one of the iclogs.  This uses backup pointers stored in a different
3650  * part of the log in case we trash the log structure.
3651  */
3652 void
3653 xlog_verify_dest_ptr(
3654 	struct xlog	*log,
3655 	char		*ptr)
3656 {
3657 	int i;
3658 	int good_ptr = 0;
3659 
3660 	for (i = 0; i < log->l_iclog_bufs; i++) {
3661 		if (ptr >= log->l_iclog_bak[i] &&
3662 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3663 			good_ptr++;
3664 	}
3665 
3666 	if (!good_ptr)
3667 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3668 }
3669 
3670 /*
3671  * Check to make sure the grant write head didn't just over lap the tail.  If
3672  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3673  * the cycles differ by exactly one and check the byte count.
3674  *
3675  * This check is run unlocked, so can give false positives. Rather than assert
3676  * on failures, use a warn-once flag and a panic tag to allow the admin to
3677  * determine if they want to panic the machine when such an error occurs. For
3678  * debug kernels this will have the same effect as using an assert but, unlinke
3679  * an assert, it can be turned off at runtime.
3680  */
3681 STATIC void
3682 xlog_verify_grant_tail(
3683 	struct xlog	*log)
3684 {
3685 	int		tail_cycle, tail_blocks;
3686 	int		cycle, space;
3687 
3688 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3689 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3690 	if (tail_cycle != cycle) {
3691 		if (cycle - 1 != tail_cycle &&
3692 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3693 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3694 				"%s: cycle - 1 != tail_cycle", __func__);
3695 			log->l_flags |= XLOG_TAIL_WARN;
3696 		}
3697 
3698 		if (space > BBTOB(tail_blocks) &&
3699 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3700 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3701 				"%s: space > BBTOB(tail_blocks)", __func__);
3702 			log->l_flags |= XLOG_TAIL_WARN;
3703 		}
3704 	}
3705 }
3706 
3707 /* check if it will fit */
3708 STATIC void
3709 xlog_verify_tail_lsn(
3710 	struct xlog		*log,
3711 	struct xlog_in_core	*iclog,
3712 	xfs_lsn_t		tail_lsn)
3713 {
3714     int blocks;
3715 
3716     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3717 	blocks =
3718 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3719 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3720 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3721     } else {
3722 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3723 
3724 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3725 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3726 
3727 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3728 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3729 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3730     }
3731 }	/* xlog_verify_tail_lsn */
3732 
3733 /*
3734  * Perform a number of checks on the iclog before writing to disk.
3735  *
3736  * 1. Make sure the iclogs are still circular
3737  * 2. Make sure we have a good magic number
3738  * 3. Make sure we don't have magic numbers in the data
3739  * 4. Check fields of each log operation header for:
3740  *	A. Valid client identifier
3741  *	B. tid ptr value falls in valid ptr space (user space code)
3742  *	C. Length in log record header is correct according to the
3743  *		individual operation headers within record.
3744  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3745  *	log, check the preceding blocks of the physical log to make sure all
3746  *	the cycle numbers agree with the current cycle number.
3747  */
3748 STATIC void
3749 xlog_verify_iclog(
3750 	struct xlog		*log,
3751 	struct xlog_in_core	*iclog,
3752 	int			count,
3753 	bool                    syncing)
3754 {
3755 	xlog_op_header_t	*ophead;
3756 	xlog_in_core_t		*icptr;
3757 	xlog_in_core_2_t	*xhdr;
3758 	xfs_caddr_t		ptr;
3759 	xfs_caddr_t		base_ptr;
3760 	__psint_t		field_offset;
3761 	__uint8_t		clientid;
3762 	int			len, i, j, k, op_len;
3763 	int			idx;
3764 
3765 	/* check validity of iclog pointers */
3766 	spin_lock(&log->l_icloglock);
3767 	icptr = log->l_iclog;
3768 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3769 		ASSERT(icptr);
3770 
3771 	if (icptr != log->l_iclog)
3772 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3773 	spin_unlock(&log->l_icloglock);
3774 
3775 	/* check log magic numbers */
3776 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3777 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3778 
3779 	ptr = (xfs_caddr_t) &iclog->ic_header;
3780 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3781 	     ptr += BBSIZE) {
3782 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3783 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3784 				__func__);
3785 	}
3786 
3787 	/* check fields */
3788 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3789 	ptr = iclog->ic_datap;
3790 	base_ptr = ptr;
3791 	ophead = (xlog_op_header_t *)ptr;
3792 	xhdr = iclog->ic_data;
3793 	for (i = 0; i < len; i++) {
3794 		ophead = (xlog_op_header_t *)ptr;
3795 
3796 		/* clientid is only 1 byte */
3797 		field_offset = (__psint_t)
3798 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3799 		if (!syncing || (field_offset & 0x1ff)) {
3800 			clientid = ophead->oh_clientid;
3801 		} else {
3802 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3803 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3804 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3805 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3806 				clientid = xlog_get_client_id(
3807 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3808 			} else {
3809 				clientid = xlog_get_client_id(
3810 					iclog->ic_header.h_cycle_data[idx]);
3811 			}
3812 		}
3813 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3814 			xfs_warn(log->l_mp,
3815 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3816 				__func__, clientid, ophead,
3817 				(unsigned long)field_offset);
3818 
3819 		/* check length */
3820 		field_offset = (__psint_t)
3821 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3822 		if (!syncing || (field_offset & 0x1ff)) {
3823 			op_len = be32_to_cpu(ophead->oh_len);
3824 		} else {
3825 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3826 				    (__psint_t)iclog->ic_datap);
3827 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3828 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3829 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3830 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3831 			} else {
3832 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3833 			}
3834 		}
3835 		ptr += sizeof(xlog_op_header_t) + op_len;
3836 	}
3837 }	/* xlog_verify_iclog */
3838 #endif
3839 
3840 /*
3841  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3842  */
3843 STATIC int
3844 xlog_state_ioerror(
3845 	struct xlog	*log)
3846 {
3847 	xlog_in_core_t	*iclog, *ic;
3848 
3849 	iclog = log->l_iclog;
3850 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3851 		/*
3852 		 * Mark all the incore logs IOERROR.
3853 		 * From now on, no log flushes will result.
3854 		 */
3855 		ic = iclog;
3856 		do {
3857 			ic->ic_state = XLOG_STATE_IOERROR;
3858 			ic = ic->ic_next;
3859 		} while (ic != iclog);
3860 		return 0;
3861 	}
3862 	/*
3863 	 * Return non-zero, if state transition has already happened.
3864 	 */
3865 	return 1;
3866 }
3867 
3868 /*
3869  * This is called from xfs_force_shutdown, when we're forcibly
3870  * shutting down the filesystem, typically because of an IO error.
3871  * Our main objectives here are to make sure that:
3872  *	a. if !logerror, flush the logs to disk. Anything modified
3873  *	   after this is ignored.
3874  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3875  *	   parties to find out, 'atomically'.
3876  *	c. those who're sleeping on log reservations, pinned objects and
3877  *	    other resources get woken up, and be told the bad news.
3878  *	d. nothing new gets queued up after (b) and (c) are done.
3879  *
3880  * Note: for the !logerror case we need to flush the regions held in memory out
3881  * to disk first. This needs to be done before the log is marked as shutdown,
3882  * otherwise the iclog writes will fail.
3883  */
3884 int
3885 xfs_log_force_umount(
3886 	struct xfs_mount	*mp,
3887 	int			logerror)
3888 {
3889 	struct xlog	*log;
3890 	int		retval;
3891 
3892 	log = mp->m_log;
3893 
3894 	/*
3895 	 * If this happens during log recovery, don't worry about
3896 	 * locking; the log isn't open for business yet.
3897 	 */
3898 	if (!log ||
3899 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3900 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3901 		if (mp->m_sb_bp)
3902 			XFS_BUF_DONE(mp->m_sb_bp);
3903 		return 0;
3904 	}
3905 
3906 	/*
3907 	 * Somebody could've already done the hard work for us.
3908 	 * No need to get locks for this.
3909 	 */
3910 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3911 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3912 		return 1;
3913 	}
3914 
3915 	/*
3916 	 * Flush all the completed transactions to disk before marking the log
3917 	 * being shut down. We need to do it in this order to ensure that
3918 	 * completed operations are safely on disk before we shut down, and that
3919 	 * we don't have to issue any buffer IO after the shutdown flags are set
3920 	 * to guarantee this.
3921 	 */
3922 	if (!logerror)
3923 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3924 
3925 	/*
3926 	 * mark the filesystem and the as in a shutdown state and wake
3927 	 * everybody up to tell them the bad news.
3928 	 */
3929 	spin_lock(&log->l_icloglock);
3930 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3931 	if (mp->m_sb_bp)
3932 		XFS_BUF_DONE(mp->m_sb_bp);
3933 
3934 	/*
3935 	 * Mark the log and the iclogs with IO error flags to prevent any
3936 	 * further log IO from being issued or completed.
3937 	 */
3938 	log->l_flags |= XLOG_IO_ERROR;
3939 	retval = xlog_state_ioerror(log);
3940 	spin_unlock(&log->l_icloglock);
3941 
3942 	/*
3943 	 * We don't want anybody waiting for log reservations after this. That
3944 	 * means we have to wake up everybody queued up on reserveq as well as
3945 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3946 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3947 	 * action is protected by the grant locks.
3948 	 */
3949 	xlog_grant_head_wake_all(&log->l_reserve_head);
3950 	xlog_grant_head_wake_all(&log->l_write_head);
3951 
3952 	/*
3953 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3954 	 * as if the log writes were completed. The abort handling in the log
3955 	 * item committed callback functions will do this again under lock to
3956 	 * avoid races.
3957 	 */
3958 	wake_up_all(&log->l_cilp->xc_commit_wait);
3959 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3960 
3961 #ifdef XFSERRORDEBUG
3962 	{
3963 		xlog_in_core_t	*iclog;
3964 
3965 		spin_lock(&log->l_icloglock);
3966 		iclog = log->l_iclog;
3967 		do {
3968 			ASSERT(iclog->ic_callback == 0);
3969 			iclog = iclog->ic_next;
3970 		} while (iclog != log->l_iclog);
3971 		spin_unlock(&log->l_icloglock);
3972 	}
3973 #endif
3974 	/* return non-zero if log IOERROR transition had already happened */
3975 	return retval;
3976 }
3977 
3978 STATIC int
3979 xlog_iclogs_empty(
3980 	struct xlog	*log)
3981 {
3982 	xlog_in_core_t	*iclog;
3983 
3984 	iclog = log->l_iclog;
3985 	do {
3986 		/* endianness does not matter here, zero is zero in
3987 		 * any language.
3988 		 */
3989 		if (iclog->ic_header.h_num_logops)
3990 			return 0;
3991 		iclog = iclog->ic_next;
3992 	} while (iclog != log->l_iclog);
3993 	return 1;
3994 }
3995 
3996