xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 8851b9f1)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
39 
40 kmem_zone_t	*xfs_log_ticket_zone;
41 
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 	struct xlog		*log,
46 	struct xlog_ticket	*ticket,
47 	struct xlog_in_core	**iclog,
48 	xfs_lsn_t		*commitlsnp);
49 
50 STATIC struct xlog *
51 xlog_alloc_log(
52 	struct xfs_mount	*mp,
53 	struct xfs_buftarg	*log_target,
54 	xfs_daddr_t		blk_offset,
55 	int			num_bblks);
56 STATIC int
57 xlog_space_left(
58 	struct xlog		*log,
59 	atomic64_t		*head);
60 STATIC int
61 xlog_sync(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_dealloc_log(
66 	struct xlog		*log);
67 
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 	struct xlog		*log,
73 	int			aborted,
74 	struct xlog_in_core	*iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 	struct xlog		*log,
78 	int			len,
79 	struct xlog_in_core	**iclog,
80 	struct xlog_ticket	*ticket,
81 	int			*continued_write,
82 	int			*logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 	struct xlog		*log,
86 	struct xlog_in_core	*iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 	struct xlog		*log,
90 	struct xlog_in_core	*iclog,
91 	int			eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 	struct xlog		*log,
95 	struct xlog_in_core	*iclog);
96 
97 STATIC void
98 xlog_grant_push_ail(
99 	struct xlog		*log,
100 	int			need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 	struct xlog		*log,
104 	struct xlog_ticket	*ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 	struct xlog		*log,
108 	struct xlog_ticket	*ticket);
109 
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 	struct xlog		*log,
114 	char			*ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 	struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 	struct xlog		*log,
121 	struct xlog_in_core	*iclog,
122 	int			count,
123 	bool                    syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 	struct xlog		*log,
127 	struct xlog_in_core	*iclog,
128 	xfs_lsn_t		tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
135 
136 STATIC int
137 xlog_iclogs_empty(
138 	struct xlog		*log);
139 
140 static void
141 xlog_grant_sub_space(
142 	struct xlog		*log,
143 	atomic64_t		*head,
144 	int			bytes)
145 {
146 	int64_t	head_val = atomic64_read(head);
147 	int64_t new, old;
148 
149 	do {
150 		int	cycle, space;
151 
152 		xlog_crack_grant_head_val(head_val, &cycle, &space);
153 
154 		space -= bytes;
155 		if (space < 0) {
156 			space += log->l_logsize;
157 			cycle--;
158 		}
159 
160 		old = head_val;
161 		new = xlog_assign_grant_head_val(cycle, space);
162 		head_val = atomic64_cmpxchg(head, old, new);
163 	} while (head_val != old);
164 }
165 
166 static void
167 xlog_grant_add_space(
168 	struct xlog		*log,
169 	atomic64_t		*head,
170 	int			bytes)
171 {
172 	int64_t	head_val = atomic64_read(head);
173 	int64_t new, old;
174 
175 	do {
176 		int		tmp;
177 		int		cycle, space;
178 
179 		xlog_crack_grant_head_val(head_val, &cycle, &space);
180 
181 		tmp = log->l_logsize - space;
182 		if (tmp > bytes)
183 			space += bytes;
184 		else {
185 			space = bytes - tmp;
186 			cycle++;
187 		}
188 
189 		old = head_val;
190 		new = xlog_assign_grant_head_val(cycle, space);
191 		head_val = atomic64_cmpxchg(head, old, new);
192 	} while (head_val != old);
193 }
194 
195 STATIC void
196 xlog_grant_head_init(
197 	struct xlog_grant_head	*head)
198 {
199 	xlog_assign_grant_head(&head->grant, 1, 0);
200 	INIT_LIST_HEAD(&head->waiters);
201 	spin_lock_init(&head->lock);
202 }
203 
204 STATIC void
205 xlog_grant_head_wake_all(
206 	struct xlog_grant_head	*head)
207 {
208 	struct xlog_ticket	*tic;
209 
210 	spin_lock(&head->lock);
211 	list_for_each_entry(tic, &head->waiters, t_queue)
212 		wake_up_process(tic->t_task);
213 	spin_unlock(&head->lock);
214 }
215 
216 static inline int
217 xlog_ticket_reservation(
218 	struct xlog		*log,
219 	struct xlog_grant_head	*head,
220 	struct xlog_ticket	*tic)
221 {
222 	if (head == &log->l_write_head) {
223 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 		return tic->t_unit_res;
225 	} else {
226 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 			return tic->t_unit_res * tic->t_cnt;
228 		else
229 			return tic->t_unit_res;
230 	}
231 }
232 
233 STATIC bool
234 xlog_grant_head_wake(
235 	struct xlog		*log,
236 	struct xlog_grant_head	*head,
237 	int			*free_bytes)
238 {
239 	struct xlog_ticket	*tic;
240 	int			need_bytes;
241 
242 	list_for_each_entry(tic, &head->waiters, t_queue) {
243 		need_bytes = xlog_ticket_reservation(log, head, tic);
244 		if (*free_bytes < need_bytes)
245 			return false;
246 
247 		*free_bytes -= need_bytes;
248 		trace_xfs_log_grant_wake_up(log, tic);
249 		wake_up_process(tic->t_task);
250 	}
251 
252 	return true;
253 }
254 
255 STATIC int
256 xlog_grant_head_wait(
257 	struct xlog		*log,
258 	struct xlog_grant_head	*head,
259 	struct xlog_ticket	*tic,
260 	int			need_bytes)
261 {
262 	list_add_tail(&tic->t_queue, &head->waiters);
263 
264 	do {
265 		if (XLOG_FORCED_SHUTDOWN(log))
266 			goto shutdown;
267 		xlog_grant_push_ail(log, need_bytes);
268 
269 		__set_current_state(TASK_UNINTERRUPTIBLE);
270 		spin_unlock(&head->lock);
271 
272 		XFS_STATS_INC(xs_sleep_logspace);
273 
274 		trace_xfs_log_grant_sleep(log, tic);
275 		schedule();
276 		trace_xfs_log_grant_wake(log, tic);
277 
278 		spin_lock(&head->lock);
279 		if (XLOG_FORCED_SHUTDOWN(log))
280 			goto shutdown;
281 	} while (xlog_space_left(log, &head->grant) < need_bytes);
282 
283 	list_del_init(&tic->t_queue);
284 	return 0;
285 shutdown:
286 	list_del_init(&tic->t_queue);
287 	return XFS_ERROR(EIO);
288 }
289 
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309 	struct xlog		*log,
310 	struct xlog_grant_head	*head,
311 	struct xlog_ticket	*tic,
312 	int			*need_bytes)
313 {
314 	int			free_bytes;
315 	int			error = 0;
316 
317 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 
319 	/*
320 	 * If there are other waiters on the queue then give them a chance at
321 	 * logspace before us.  Wake up the first waiters, if we do not wake
322 	 * up all the waiters then go to sleep waiting for more free space,
323 	 * otherwise try to get some space for this transaction.
324 	 */
325 	*need_bytes = xlog_ticket_reservation(log, head, tic);
326 	free_bytes = xlog_space_left(log, &head->grant);
327 	if (!list_empty_careful(&head->waiters)) {
328 		spin_lock(&head->lock);
329 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 		    free_bytes < *need_bytes) {
331 			error = xlog_grant_head_wait(log, head, tic,
332 						     *need_bytes);
333 		}
334 		spin_unlock(&head->lock);
335 	} else if (free_bytes < *need_bytes) {
336 		spin_lock(&head->lock);
337 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 		spin_unlock(&head->lock);
339 	}
340 
341 	return error;
342 }
343 
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 	tic->t_res_num = 0;
348 	tic->t_res_arr_sum = 0;
349 	tic->t_res_num_ophdrs = 0;
350 }
351 
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 		/* add to overflow and start again */
357 		tic->t_res_o_flow += tic->t_res_arr_sum;
358 		tic->t_res_num = 0;
359 		tic->t_res_arr_sum = 0;
360 	}
361 
362 	tic->t_res_arr[tic->t_res_num].r_len = len;
363 	tic->t_res_arr[tic->t_res_num].r_type = type;
364 	tic->t_res_arr_sum += len;
365 	tic->t_res_num++;
366 }
367 
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373 	struct xfs_mount	*mp,
374 	struct xlog_ticket	*tic)
375 {
376 	struct xlog		*log = mp->m_log;
377 	int			need_bytes;
378 	int			error = 0;
379 
380 	if (XLOG_FORCED_SHUTDOWN(log))
381 		return XFS_ERROR(EIO);
382 
383 	XFS_STATS_INC(xs_try_logspace);
384 
385 	/*
386 	 * This is a new transaction on the ticket, so we need to change the
387 	 * transaction ID so that the next transaction has a different TID in
388 	 * the log. Just add one to the existing tid so that we can see chains
389 	 * of rolling transactions in the log easily.
390 	 */
391 	tic->t_tid++;
392 
393 	xlog_grant_push_ail(log, tic->t_unit_res);
394 
395 	tic->t_curr_res = tic->t_unit_res;
396 	xlog_tic_reset_res(tic);
397 
398 	if (tic->t_cnt > 0)
399 		return 0;
400 
401 	trace_xfs_log_regrant(log, tic);
402 
403 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 				      &need_bytes);
405 	if (error)
406 		goto out_error;
407 
408 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 	trace_xfs_log_regrant_exit(log, tic);
410 	xlog_verify_grant_tail(log);
411 	return 0;
412 
413 out_error:
414 	/*
415 	 * If we are failing, make sure the ticket doesn't have any current
416 	 * reservations.  We don't want to add this back when the ticket/
417 	 * transaction gets cancelled.
418 	 */
419 	tic->t_curr_res = 0;
420 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421 	return error;
422 }
423 
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434 	struct xfs_mount	*mp,
435 	int		 	unit_bytes,
436 	int		 	cnt,
437 	struct xlog_ticket	**ticp,
438 	__uint8_t	 	client,
439 	bool			permanent,
440 	uint		 	t_type)
441 {
442 	struct xlog		*log = mp->m_log;
443 	struct xlog_ticket	*tic;
444 	int			need_bytes;
445 	int			error = 0;
446 
447 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 
449 	if (XLOG_FORCED_SHUTDOWN(log))
450 		return XFS_ERROR(EIO);
451 
452 	XFS_STATS_INC(xs_try_logspace);
453 
454 	ASSERT(*ticp == NULL);
455 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456 				KM_SLEEP | KM_MAYFAIL);
457 	if (!tic)
458 		return XFS_ERROR(ENOMEM);
459 
460 	tic->t_trans_type = t_type;
461 	*ticp = tic;
462 
463 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 					    : tic->t_unit_res);
465 
466 	trace_xfs_log_reserve(log, tic);
467 
468 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 				      &need_bytes);
470 	if (error)
471 		goto out_error;
472 
473 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 	trace_xfs_log_reserve_exit(log, tic);
476 	xlog_verify_grant_tail(log);
477 	return 0;
478 
479 out_error:
480 	/*
481 	 * If we are failing, make sure the ticket doesn't have any current
482 	 * reservations.  We don't want to add this back when the ticket/
483 	 * transaction gets cancelled.
484 	 */
485 	tic->t_curr_res = 0;
486 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487 	return error;
488 }
489 
490 
491 /*
492  * NOTES:
493  *
494  *	1. currblock field gets updated at startup and after in-core logs
495  *		marked as with WANT_SYNC.
496  */
497 
498 /*
499  * This routine is called when a user of a log manager ticket is done with
500  * the reservation.  If the ticket was ever used, then a commit record for
501  * the associated transaction is written out as a log operation header with
502  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
503  * a given ticket.  If the ticket was one with a permanent reservation, then
504  * a few operations are done differently.  Permanent reservation tickets by
505  * default don't release the reservation.  They just commit the current
506  * transaction with the belief that the reservation is still needed.  A flag
507  * must be passed in before permanent reservations are actually released.
508  * When these type of tickets are not released, they need to be set into
509  * the inited state again.  By doing this, a start record will be written
510  * out when the next write occurs.
511  */
512 xfs_lsn_t
513 xfs_log_done(
514 	struct xfs_mount	*mp,
515 	struct xlog_ticket	*ticket,
516 	struct xlog_in_core	**iclog,
517 	uint			flags)
518 {
519 	struct xlog		*log = mp->m_log;
520 	xfs_lsn_t		lsn = 0;
521 
522 	if (XLOG_FORCED_SHUTDOWN(log) ||
523 	    /*
524 	     * If nothing was ever written, don't write out commit record.
525 	     * If we get an error, just continue and give back the log ticket.
526 	     */
527 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529 		lsn = (xfs_lsn_t) -1;
530 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531 			flags |= XFS_LOG_REL_PERM_RESERV;
532 		}
533 	}
534 
535 
536 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
538 		trace_xfs_log_done_nonperm(log, ticket);
539 
540 		/*
541 		 * Release ticket if not permanent reservation or a specific
542 		 * request has been made to release a permanent reservation.
543 		 */
544 		xlog_ungrant_log_space(log, ticket);
545 		xfs_log_ticket_put(ticket);
546 	} else {
547 		trace_xfs_log_done_perm(log, ticket);
548 
549 		xlog_regrant_reserve_log_space(log, ticket);
550 		/* If this ticket was a permanent reservation and we aren't
551 		 * trying to release it, reset the inited flags; so next time
552 		 * we write, a start record will be written out.
553 		 */
554 		ticket->t_flags |= XLOG_TIC_INITED;
555 	}
556 
557 	return lsn;
558 }
559 
560 /*
561  * Attaches a new iclog I/O completion callback routine during
562  * transaction commit.  If the log is in error state, a non-zero
563  * return code is handed back and the caller is responsible for
564  * executing the callback at an appropriate time.
565  */
566 int
567 xfs_log_notify(
568 	struct xfs_mount	*mp,
569 	struct xlog_in_core	*iclog,
570 	xfs_log_callback_t	*cb)
571 {
572 	int	abortflg;
573 
574 	spin_lock(&iclog->ic_callback_lock);
575 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576 	if (!abortflg) {
577 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579 		cb->cb_next = NULL;
580 		*(iclog->ic_callback_tail) = cb;
581 		iclog->ic_callback_tail = &(cb->cb_next);
582 	}
583 	spin_unlock(&iclog->ic_callback_lock);
584 	return abortflg;
585 }
586 
587 int
588 xfs_log_release_iclog(
589 	struct xfs_mount	*mp,
590 	struct xlog_in_core	*iclog)
591 {
592 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
593 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594 		return EIO;
595 	}
596 
597 	return 0;
598 }
599 
600 /*
601  * Mount a log filesystem
602  *
603  * mp		- ubiquitous xfs mount point structure
604  * log_target	- buftarg of on-disk log device
605  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
606  * num_bblocks	- Number of BBSIZE blocks in on-disk log
607  *
608  * Return error or zero.
609  */
610 int
611 xfs_log_mount(
612 	xfs_mount_t	*mp,
613 	xfs_buftarg_t	*log_target,
614 	xfs_daddr_t	blk_offset,
615 	int		num_bblks)
616 {
617 	int		error;
618 
619 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
620 		xfs_notice(mp, "Mounting Filesystem");
621 	else {
622 		xfs_notice(mp,
623 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
624 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
625 	}
626 
627 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
628 	if (IS_ERR(mp->m_log)) {
629 		error = -PTR_ERR(mp->m_log);
630 		goto out;
631 	}
632 
633 	/*
634 	 * Initialize the AIL now we have a log.
635 	 */
636 	error = xfs_trans_ail_init(mp);
637 	if (error) {
638 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
639 		goto out_free_log;
640 	}
641 	mp->m_log->l_ailp = mp->m_ail;
642 
643 	/*
644 	 * skip log recovery on a norecovery mount.  pretend it all
645 	 * just worked.
646 	 */
647 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
648 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
649 
650 		if (readonly)
651 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
652 
653 		error = xlog_recover(mp->m_log);
654 
655 		if (readonly)
656 			mp->m_flags |= XFS_MOUNT_RDONLY;
657 		if (error) {
658 			xfs_warn(mp, "log mount/recovery failed: error %d",
659 				error);
660 			goto out_destroy_ail;
661 		}
662 	}
663 
664 	/* Normal transactions can now occur */
665 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
666 
667 	/*
668 	 * Now the log has been fully initialised and we know were our
669 	 * space grant counters are, we can initialise the permanent ticket
670 	 * needed for delayed logging to work.
671 	 */
672 	xlog_cil_init_post_recovery(mp->m_log);
673 
674 	return 0;
675 
676 out_destroy_ail:
677 	xfs_trans_ail_destroy(mp);
678 out_free_log:
679 	xlog_dealloc_log(mp->m_log);
680 out:
681 	return error;
682 }
683 
684 /*
685  * Finish the recovery of the file system.  This is separate from the
686  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
687  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
688  * here.
689  *
690  * If we finish recovery successfully, start the background log work. If we are
691  * not doing recovery, then we have a RO filesystem and we don't need to start
692  * it.
693  */
694 int
695 xfs_log_mount_finish(xfs_mount_t *mp)
696 {
697 	int	error = 0;
698 
699 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
700 		error = xlog_recover_finish(mp->m_log);
701 		if (!error)
702 			xfs_log_work_queue(mp);
703 	} else {
704 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
705 	}
706 
707 
708 	return error;
709 }
710 
711 /*
712  * Final log writes as part of unmount.
713  *
714  * Mark the filesystem clean as unmount happens.  Note that during relocation
715  * this routine needs to be executed as part of source-bag while the
716  * deallocation must not be done until source-end.
717  */
718 
719 /*
720  * Unmount record used to have a string "Unmount filesystem--" in the
721  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
722  * We just write the magic number now since that particular field isn't
723  * currently architecture converted and "nUmount" is a bit foo.
724  * As far as I know, there weren't any dependencies on the old behaviour.
725  */
726 
727 int
728 xfs_log_unmount_write(xfs_mount_t *mp)
729 {
730 	struct xlog	 *log = mp->m_log;
731 	xlog_in_core_t	 *iclog;
732 #ifdef DEBUG
733 	xlog_in_core_t	 *first_iclog;
734 #endif
735 	xlog_ticket_t	*tic = NULL;
736 	xfs_lsn_t	 lsn;
737 	int		 error;
738 
739 	/*
740 	 * Don't write out unmount record on read-only mounts.
741 	 * Or, if we are doing a forced umount (typically because of IO errors).
742 	 */
743 	if (mp->m_flags & XFS_MOUNT_RDONLY)
744 		return 0;
745 
746 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
747 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
748 
749 #ifdef DEBUG
750 	first_iclog = iclog = log->l_iclog;
751 	do {
752 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
753 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
754 			ASSERT(iclog->ic_offset == 0);
755 		}
756 		iclog = iclog->ic_next;
757 	} while (iclog != first_iclog);
758 #endif
759 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
760 		error = xfs_log_reserve(mp, 600, 1, &tic,
761 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
762 		if (!error) {
763 			/* the data section must be 32 bit size aligned */
764 			struct {
765 			    __uint16_t magic;
766 			    __uint16_t pad1;
767 			    __uint32_t pad2; /* may as well make it 64 bits */
768 			} magic = {
769 				.magic = XLOG_UNMOUNT_TYPE,
770 			};
771 			struct xfs_log_iovec reg = {
772 				.i_addr = &magic,
773 				.i_len = sizeof(magic),
774 				.i_type = XLOG_REG_TYPE_UNMOUNT,
775 			};
776 			struct xfs_log_vec vec = {
777 				.lv_niovecs = 1,
778 				.lv_iovecp = &reg,
779 			};
780 
781 			/* remove inited flag, and account for space used */
782 			tic->t_flags = 0;
783 			tic->t_curr_res -= sizeof(magic);
784 			error = xlog_write(log, &vec, tic, &lsn,
785 					   NULL, XLOG_UNMOUNT_TRANS);
786 			/*
787 			 * At this point, we're umounting anyway,
788 			 * so there's no point in transitioning log state
789 			 * to IOERROR. Just continue...
790 			 */
791 		}
792 
793 		if (error)
794 			xfs_alert(mp, "%s: unmount record failed", __func__);
795 
796 
797 		spin_lock(&log->l_icloglock);
798 		iclog = log->l_iclog;
799 		atomic_inc(&iclog->ic_refcnt);
800 		xlog_state_want_sync(log, iclog);
801 		spin_unlock(&log->l_icloglock);
802 		error = xlog_state_release_iclog(log, iclog);
803 
804 		spin_lock(&log->l_icloglock);
805 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
806 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
807 			if (!XLOG_FORCED_SHUTDOWN(log)) {
808 				xlog_wait(&iclog->ic_force_wait,
809 							&log->l_icloglock);
810 			} else {
811 				spin_unlock(&log->l_icloglock);
812 			}
813 		} else {
814 			spin_unlock(&log->l_icloglock);
815 		}
816 		if (tic) {
817 			trace_xfs_log_umount_write(log, tic);
818 			xlog_ungrant_log_space(log, tic);
819 			xfs_log_ticket_put(tic);
820 		}
821 	} else {
822 		/*
823 		 * We're already in forced_shutdown mode, couldn't
824 		 * even attempt to write out the unmount transaction.
825 		 *
826 		 * Go through the motions of sync'ing and releasing
827 		 * the iclog, even though no I/O will actually happen,
828 		 * we need to wait for other log I/Os that may already
829 		 * be in progress.  Do this as a separate section of
830 		 * code so we'll know if we ever get stuck here that
831 		 * we're in this odd situation of trying to unmount
832 		 * a file system that went into forced_shutdown as
833 		 * the result of an unmount..
834 		 */
835 		spin_lock(&log->l_icloglock);
836 		iclog = log->l_iclog;
837 		atomic_inc(&iclog->ic_refcnt);
838 
839 		xlog_state_want_sync(log, iclog);
840 		spin_unlock(&log->l_icloglock);
841 		error =  xlog_state_release_iclog(log, iclog);
842 
843 		spin_lock(&log->l_icloglock);
844 
845 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
846 			|| iclog->ic_state == XLOG_STATE_DIRTY
847 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
848 
849 				xlog_wait(&iclog->ic_force_wait,
850 							&log->l_icloglock);
851 		} else {
852 			spin_unlock(&log->l_icloglock);
853 		}
854 	}
855 
856 	return error;
857 }	/* xfs_log_unmount_write */
858 
859 /*
860  * Empty the log for unmount/freeze.
861  *
862  * To do this, we first need to shut down the background log work so it is not
863  * trying to cover the log as we clean up. We then need to unpin all objects in
864  * the log so we can then flush them out. Once they have completed their IO and
865  * run the callbacks removing themselves from the AIL, we can write the unmount
866  * record.
867  */
868 void
869 xfs_log_quiesce(
870 	struct xfs_mount	*mp)
871 {
872 	cancel_delayed_work_sync(&mp->m_log->l_work);
873 	xfs_log_force(mp, XFS_LOG_SYNC);
874 
875 	/*
876 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
877 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
878 	 * xfs_buf_iowait() cannot be used because it was pushed with the
879 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
880 	 * the IO to complete.
881 	 */
882 	xfs_ail_push_all_sync(mp->m_ail);
883 	xfs_wait_buftarg(mp->m_ddev_targp);
884 	xfs_buf_lock(mp->m_sb_bp);
885 	xfs_buf_unlock(mp->m_sb_bp);
886 
887 	xfs_log_unmount_write(mp);
888 }
889 
890 /*
891  * Shut down and release the AIL and Log.
892  *
893  * During unmount, we need to ensure we flush all the dirty metadata objects
894  * from the AIL so that the log is empty before we write the unmount record to
895  * the log. Once this is done, we can tear down the AIL and the log.
896  */
897 void
898 xfs_log_unmount(
899 	struct xfs_mount	*mp)
900 {
901 	xfs_log_quiesce(mp);
902 
903 	xfs_trans_ail_destroy(mp);
904 	xlog_dealloc_log(mp->m_log);
905 }
906 
907 void
908 xfs_log_item_init(
909 	struct xfs_mount	*mp,
910 	struct xfs_log_item	*item,
911 	int			type,
912 	const struct xfs_item_ops *ops)
913 {
914 	item->li_mountp = mp;
915 	item->li_ailp = mp->m_ail;
916 	item->li_type = type;
917 	item->li_ops = ops;
918 	item->li_lv = NULL;
919 
920 	INIT_LIST_HEAD(&item->li_ail);
921 	INIT_LIST_HEAD(&item->li_cil);
922 }
923 
924 /*
925  * Wake up processes waiting for log space after we have moved the log tail.
926  */
927 void
928 xfs_log_space_wake(
929 	struct xfs_mount	*mp)
930 {
931 	struct xlog		*log = mp->m_log;
932 	int			free_bytes;
933 
934 	if (XLOG_FORCED_SHUTDOWN(log))
935 		return;
936 
937 	if (!list_empty_careful(&log->l_write_head.waiters)) {
938 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
939 
940 		spin_lock(&log->l_write_head.lock);
941 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
942 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
943 		spin_unlock(&log->l_write_head.lock);
944 	}
945 
946 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
947 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
948 
949 		spin_lock(&log->l_reserve_head.lock);
950 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
951 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
952 		spin_unlock(&log->l_reserve_head.lock);
953 	}
954 }
955 
956 /*
957  * Determine if we have a transaction that has gone to disk
958  * that needs to be covered. To begin the transition to the idle state
959  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
960  * If we are then in a state where covering is needed, the caller is informed
961  * that dummy transactions are required to move the log into the idle state.
962  *
963  * Because this is called as part of the sync process, we should also indicate
964  * that dummy transactions should be issued in anything but the covered or
965  * idle states. This ensures that the log tail is accurately reflected in
966  * the log at the end of the sync, hence if a crash occurrs avoids replay
967  * of transactions where the metadata is already on disk.
968  */
969 int
970 xfs_log_need_covered(xfs_mount_t *mp)
971 {
972 	int		needed = 0;
973 	struct xlog	*log = mp->m_log;
974 
975 	if (!xfs_fs_writable(mp))
976 		return 0;
977 
978 	spin_lock(&log->l_icloglock);
979 	switch (log->l_covered_state) {
980 	case XLOG_STATE_COVER_DONE:
981 	case XLOG_STATE_COVER_DONE2:
982 	case XLOG_STATE_COVER_IDLE:
983 		break;
984 	case XLOG_STATE_COVER_NEED:
985 	case XLOG_STATE_COVER_NEED2:
986 		if (!xfs_ail_min_lsn(log->l_ailp) &&
987 		    xlog_iclogs_empty(log)) {
988 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
989 				log->l_covered_state = XLOG_STATE_COVER_DONE;
990 			else
991 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
992 		}
993 		/* FALLTHRU */
994 	default:
995 		needed = 1;
996 		break;
997 	}
998 	spin_unlock(&log->l_icloglock);
999 	return needed;
1000 }
1001 
1002 /*
1003  * We may be holding the log iclog lock upon entering this routine.
1004  */
1005 xfs_lsn_t
1006 xlog_assign_tail_lsn_locked(
1007 	struct xfs_mount	*mp)
1008 {
1009 	struct xlog		*log = mp->m_log;
1010 	struct xfs_log_item	*lip;
1011 	xfs_lsn_t		tail_lsn;
1012 
1013 	assert_spin_locked(&mp->m_ail->xa_lock);
1014 
1015 	/*
1016 	 * To make sure we always have a valid LSN for the log tail we keep
1017 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1018 	 * and use that when the AIL was empty.
1019 	 */
1020 	lip = xfs_ail_min(mp->m_ail);
1021 	if (lip)
1022 		tail_lsn = lip->li_lsn;
1023 	else
1024 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1025 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1026 	return tail_lsn;
1027 }
1028 
1029 xfs_lsn_t
1030 xlog_assign_tail_lsn(
1031 	struct xfs_mount	*mp)
1032 {
1033 	xfs_lsn_t		tail_lsn;
1034 
1035 	spin_lock(&mp->m_ail->xa_lock);
1036 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1037 	spin_unlock(&mp->m_ail->xa_lock);
1038 
1039 	return tail_lsn;
1040 }
1041 
1042 /*
1043  * Return the space in the log between the tail and the head.  The head
1044  * is passed in the cycle/bytes formal parms.  In the special case where
1045  * the reserve head has wrapped passed the tail, this calculation is no
1046  * longer valid.  In this case, just return 0 which means there is no space
1047  * in the log.  This works for all places where this function is called
1048  * with the reserve head.  Of course, if the write head were to ever
1049  * wrap the tail, we should blow up.  Rather than catch this case here,
1050  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1051  *
1052  * This code also handles the case where the reservation head is behind
1053  * the tail.  The details of this case are described below, but the end
1054  * result is that we return the size of the log as the amount of space left.
1055  */
1056 STATIC int
1057 xlog_space_left(
1058 	struct xlog	*log,
1059 	atomic64_t	*head)
1060 {
1061 	int		free_bytes;
1062 	int		tail_bytes;
1063 	int		tail_cycle;
1064 	int		head_cycle;
1065 	int		head_bytes;
1066 
1067 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1068 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1069 	tail_bytes = BBTOB(tail_bytes);
1070 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1071 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1072 	else if (tail_cycle + 1 < head_cycle)
1073 		return 0;
1074 	else if (tail_cycle < head_cycle) {
1075 		ASSERT(tail_cycle == (head_cycle - 1));
1076 		free_bytes = tail_bytes - head_bytes;
1077 	} else {
1078 		/*
1079 		 * The reservation head is behind the tail.
1080 		 * In this case we just want to return the size of the
1081 		 * log as the amount of space left.
1082 		 */
1083 		xfs_alert(log->l_mp,
1084 			"xlog_space_left: head behind tail\n"
1085 			"  tail_cycle = %d, tail_bytes = %d\n"
1086 			"  GH   cycle = %d, GH   bytes = %d",
1087 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1088 		ASSERT(0);
1089 		free_bytes = log->l_logsize;
1090 	}
1091 	return free_bytes;
1092 }
1093 
1094 
1095 /*
1096  * Log function which is called when an io completes.
1097  *
1098  * The log manager needs its own routine, in order to control what
1099  * happens with the buffer after the write completes.
1100  */
1101 void
1102 xlog_iodone(xfs_buf_t *bp)
1103 {
1104 	struct xlog_in_core	*iclog = bp->b_fspriv;
1105 	struct xlog		*l = iclog->ic_log;
1106 	int			aborted = 0;
1107 
1108 	/*
1109 	 * Race to shutdown the filesystem if we see an error.
1110 	 */
1111 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1112 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1113 		xfs_buf_ioerror_alert(bp, __func__);
1114 		xfs_buf_stale(bp);
1115 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1116 		/*
1117 		 * This flag will be propagated to the trans-committed
1118 		 * callback routines to let them know that the log-commit
1119 		 * didn't succeed.
1120 		 */
1121 		aborted = XFS_LI_ABORTED;
1122 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1123 		aborted = XFS_LI_ABORTED;
1124 	}
1125 
1126 	/* log I/O is always issued ASYNC */
1127 	ASSERT(XFS_BUF_ISASYNC(bp));
1128 	xlog_state_done_syncing(iclog, aborted);
1129 	/*
1130 	 * do not reference the buffer (bp) here as we could race
1131 	 * with it being freed after writing the unmount record to the
1132 	 * log.
1133 	 */
1134 }
1135 
1136 /*
1137  * Return size of each in-core log record buffer.
1138  *
1139  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1140  *
1141  * If the filesystem blocksize is too large, we may need to choose a
1142  * larger size since the directory code currently logs entire blocks.
1143  */
1144 
1145 STATIC void
1146 xlog_get_iclog_buffer_size(
1147 	struct xfs_mount	*mp,
1148 	struct xlog		*log)
1149 {
1150 	int size;
1151 	int xhdrs;
1152 
1153 	if (mp->m_logbufs <= 0)
1154 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1155 	else
1156 		log->l_iclog_bufs = mp->m_logbufs;
1157 
1158 	/*
1159 	 * Buffer size passed in from mount system call.
1160 	 */
1161 	if (mp->m_logbsize > 0) {
1162 		size = log->l_iclog_size = mp->m_logbsize;
1163 		log->l_iclog_size_log = 0;
1164 		while (size != 1) {
1165 			log->l_iclog_size_log++;
1166 			size >>= 1;
1167 		}
1168 
1169 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1170 			/* # headers = size / 32k
1171 			 * one header holds cycles from 32k of data
1172 			 */
1173 
1174 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1175 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1176 				xhdrs++;
1177 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1178 			log->l_iclog_heads = xhdrs;
1179 		} else {
1180 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1181 			log->l_iclog_hsize = BBSIZE;
1182 			log->l_iclog_heads = 1;
1183 		}
1184 		goto done;
1185 	}
1186 
1187 	/* All machines use 32kB buffers by default. */
1188 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1189 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1190 
1191 	/* the default log size is 16k or 32k which is one header sector */
1192 	log->l_iclog_hsize = BBSIZE;
1193 	log->l_iclog_heads = 1;
1194 
1195 done:
1196 	/* are we being asked to make the sizes selected above visible? */
1197 	if (mp->m_logbufs == 0)
1198 		mp->m_logbufs = log->l_iclog_bufs;
1199 	if (mp->m_logbsize == 0)
1200 		mp->m_logbsize = log->l_iclog_size;
1201 }	/* xlog_get_iclog_buffer_size */
1202 
1203 
1204 void
1205 xfs_log_work_queue(
1206 	struct xfs_mount        *mp)
1207 {
1208 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1209 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1210 }
1211 
1212 /*
1213  * Every sync period we need to unpin all items in the AIL and push them to
1214  * disk. If there is nothing dirty, then we might need to cover the log to
1215  * indicate that the filesystem is idle.
1216  */
1217 void
1218 xfs_log_worker(
1219 	struct work_struct	*work)
1220 {
1221 	struct xlog		*log = container_of(to_delayed_work(work),
1222 						struct xlog, l_work);
1223 	struct xfs_mount	*mp = log->l_mp;
1224 
1225 	/* dgc: errors ignored - not fatal and nowhere to report them */
1226 	if (xfs_log_need_covered(mp))
1227 		xfs_fs_log_dummy(mp);
1228 	else
1229 		xfs_log_force(mp, 0);
1230 
1231 	/* start pushing all the metadata that is currently dirty */
1232 	xfs_ail_push_all(mp->m_ail);
1233 
1234 	/* queue us up again */
1235 	xfs_log_work_queue(mp);
1236 }
1237 
1238 /*
1239  * This routine initializes some of the log structure for a given mount point.
1240  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1241  * some other stuff may be filled in too.
1242  */
1243 STATIC struct xlog *
1244 xlog_alloc_log(
1245 	struct xfs_mount	*mp,
1246 	struct xfs_buftarg	*log_target,
1247 	xfs_daddr_t		blk_offset,
1248 	int			num_bblks)
1249 {
1250 	struct xlog		*log;
1251 	xlog_rec_header_t	*head;
1252 	xlog_in_core_t		**iclogp;
1253 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1254 	xfs_buf_t		*bp;
1255 	int			i;
1256 	int			error = ENOMEM;
1257 	uint			log2_size = 0;
1258 
1259 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1260 	if (!log) {
1261 		xfs_warn(mp, "Log allocation failed: No memory!");
1262 		goto out;
1263 	}
1264 
1265 	log->l_mp	   = mp;
1266 	log->l_targ	   = log_target;
1267 	log->l_logsize     = BBTOB(num_bblks);
1268 	log->l_logBBstart  = blk_offset;
1269 	log->l_logBBsize   = num_bblks;
1270 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1271 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1272 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1273 
1274 	log->l_prev_block  = -1;
1275 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1276 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1277 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1278 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1279 
1280 	xlog_grant_head_init(&log->l_reserve_head);
1281 	xlog_grant_head_init(&log->l_write_head);
1282 
1283 	error = EFSCORRUPTED;
1284 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1285 	        log2_size = mp->m_sb.sb_logsectlog;
1286 		if (log2_size < BBSHIFT) {
1287 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1288 				log2_size, BBSHIFT);
1289 			goto out_free_log;
1290 		}
1291 
1292 	        log2_size -= BBSHIFT;
1293 		if (log2_size > mp->m_sectbb_log) {
1294 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1295 				log2_size, mp->m_sectbb_log);
1296 			goto out_free_log;
1297 		}
1298 
1299 		/* for larger sector sizes, must have v2 or external log */
1300 		if (log2_size && log->l_logBBstart > 0 &&
1301 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1302 			xfs_warn(mp,
1303 		"log sector size (0x%x) invalid for configuration.",
1304 				log2_size);
1305 			goto out_free_log;
1306 		}
1307 	}
1308 	log->l_sectBBsize = 1 << log2_size;
1309 
1310 	xlog_get_iclog_buffer_size(mp, log);
1311 
1312 	error = ENOMEM;
1313 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1314 	if (!bp)
1315 		goto out_free_log;
1316 	bp->b_iodone = xlog_iodone;
1317 	ASSERT(xfs_buf_islocked(bp));
1318 	log->l_xbuf = bp;
1319 
1320 	spin_lock_init(&log->l_icloglock);
1321 	init_waitqueue_head(&log->l_flush_wait);
1322 
1323 	iclogp = &log->l_iclog;
1324 	/*
1325 	 * The amount of memory to allocate for the iclog structure is
1326 	 * rather funky due to the way the structure is defined.  It is
1327 	 * done this way so that we can use different sizes for machines
1328 	 * with different amounts of memory.  See the definition of
1329 	 * xlog_in_core_t in xfs_log_priv.h for details.
1330 	 */
1331 	ASSERT(log->l_iclog_size >= 4096);
1332 	for (i=0; i < log->l_iclog_bufs; i++) {
1333 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1334 		if (!*iclogp)
1335 			goto out_free_iclog;
1336 
1337 		iclog = *iclogp;
1338 		iclog->ic_prev = prev_iclog;
1339 		prev_iclog = iclog;
1340 
1341 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1342 						BTOBB(log->l_iclog_size), 0);
1343 		if (!bp)
1344 			goto out_free_iclog;
1345 
1346 		bp->b_iodone = xlog_iodone;
1347 		iclog->ic_bp = bp;
1348 		iclog->ic_data = bp->b_addr;
1349 #ifdef DEBUG
1350 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1351 #endif
1352 		head = &iclog->ic_header;
1353 		memset(head, 0, sizeof(xlog_rec_header_t));
1354 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1355 		head->h_version = cpu_to_be32(
1356 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1357 		head->h_size = cpu_to_be32(log->l_iclog_size);
1358 		/* new fields */
1359 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1360 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1361 
1362 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1363 		iclog->ic_state = XLOG_STATE_ACTIVE;
1364 		iclog->ic_log = log;
1365 		atomic_set(&iclog->ic_refcnt, 0);
1366 		spin_lock_init(&iclog->ic_callback_lock);
1367 		iclog->ic_callback_tail = &(iclog->ic_callback);
1368 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1369 
1370 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1371 		init_waitqueue_head(&iclog->ic_force_wait);
1372 		init_waitqueue_head(&iclog->ic_write_wait);
1373 
1374 		iclogp = &iclog->ic_next;
1375 	}
1376 	*iclogp = log->l_iclog;			/* complete ring */
1377 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1378 
1379 	error = xlog_cil_init(log);
1380 	if (error)
1381 		goto out_free_iclog;
1382 	return log;
1383 
1384 out_free_iclog:
1385 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1386 		prev_iclog = iclog->ic_next;
1387 		if (iclog->ic_bp)
1388 			xfs_buf_free(iclog->ic_bp);
1389 		kmem_free(iclog);
1390 	}
1391 	spinlock_destroy(&log->l_icloglock);
1392 	xfs_buf_free(log->l_xbuf);
1393 out_free_log:
1394 	kmem_free(log);
1395 out:
1396 	return ERR_PTR(-error);
1397 }	/* xlog_alloc_log */
1398 
1399 
1400 /*
1401  * Write out the commit record of a transaction associated with the given
1402  * ticket.  Return the lsn of the commit record.
1403  */
1404 STATIC int
1405 xlog_commit_record(
1406 	struct xlog		*log,
1407 	struct xlog_ticket	*ticket,
1408 	struct xlog_in_core	**iclog,
1409 	xfs_lsn_t		*commitlsnp)
1410 {
1411 	struct xfs_mount *mp = log->l_mp;
1412 	int	error;
1413 	struct xfs_log_iovec reg = {
1414 		.i_addr = NULL,
1415 		.i_len = 0,
1416 		.i_type = XLOG_REG_TYPE_COMMIT,
1417 	};
1418 	struct xfs_log_vec vec = {
1419 		.lv_niovecs = 1,
1420 		.lv_iovecp = &reg,
1421 	};
1422 
1423 	ASSERT_ALWAYS(iclog);
1424 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1425 					XLOG_COMMIT_TRANS);
1426 	if (error)
1427 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1428 	return error;
1429 }
1430 
1431 /*
1432  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1433  * log space.  This code pushes on the lsn which would supposedly free up
1434  * the 25% which we want to leave free.  We may need to adopt a policy which
1435  * pushes on an lsn which is further along in the log once we reach the high
1436  * water mark.  In this manner, we would be creating a low water mark.
1437  */
1438 STATIC void
1439 xlog_grant_push_ail(
1440 	struct xlog	*log,
1441 	int		need_bytes)
1442 {
1443 	xfs_lsn_t	threshold_lsn = 0;
1444 	xfs_lsn_t	last_sync_lsn;
1445 	int		free_blocks;
1446 	int		free_bytes;
1447 	int		threshold_block;
1448 	int		threshold_cycle;
1449 	int		free_threshold;
1450 
1451 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1452 
1453 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1454 	free_blocks = BTOBBT(free_bytes);
1455 
1456 	/*
1457 	 * Set the threshold for the minimum number of free blocks in the
1458 	 * log to the maximum of what the caller needs, one quarter of the
1459 	 * log, and 256 blocks.
1460 	 */
1461 	free_threshold = BTOBB(need_bytes);
1462 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1463 	free_threshold = MAX(free_threshold, 256);
1464 	if (free_blocks >= free_threshold)
1465 		return;
1466 
1467 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1468 						&threshold_block);
1469 	threshold_block += free_threshold;
1470 	if (threshold_block >= log->l_logBBsize) {
1471 		threshold_block -= log->l_logBBsize;
1472 		threshold_cycle += 1;
1473 	}
1474 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1475 					threshold_block);
1476 	/*
1477 	 * Don't pass in an lsn greater than the lsn of the last
1478 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1479 	 * so that it doesn't change between the compare and the set.
1480 	 */
1481 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1482 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1483 		threshold_lsn = last_sync_lsn;
1484 
1485 	/*
1486 	 * Get the transaction layer to kick the dirty buffers out to
1487 	 * disk asynchronously. No point in trying to do this if
1488 	 * the filesystem is shutting down.
1489 	 */
1490 	if (!XLOG_FORCED_SHUTDOWN(log))
1491 		xfs_ail_push(log->l_ailp, threshold_lsn);
1492 }
1493 
1494 /*
1495  * Stamp cycle number in every block
1496  */
1497 STATIC void
1498 xlog_pack_data(
1499 	struct xlog		*log,
1500 	struct xlog_in_core	*iclog,
1501 	int			roundoff)
1502 {
1503 	int			i, j, k;
1504 	int			size = iclog->ic_offset + roundoff;
1505 	__be32			cycle_lsn;
1506 	xfs_caddr_t		dp;
1507 
1508 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1509 
1510 	dp = iclog->ic_datap;
1511 	for (i = 0; i < BTOBB(size); i++) {
1512 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1513 			break;
1514 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1515 		*(__be32 *)dp = cycle_lsn;
1516 		dp += BBSIZE;
1517 	}
1518 
1519 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1520 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1521 
1522 		for ( ; i < BTOBB(size); i++) {
1523 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1524 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1525 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1526 			*(__be32 *)dp = cycle_lsn;
1527 			dp += BBSIZE;
1528 		}
1529 
1530 		for (i = 1; i < log->l_iclog_heads; i++)
1531 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1532 	}
1533 }
1534 
1535 /*
1536  * Calculate the checksum for a log buffer.
1537  *
1538  * This is a little more complicated than it should be because the various
1539  * headers and the actual data are non-contiguous.
1540  */
1541 __le32
1542 xlog_cksum(
1543 	struct xlog		*log,
1544 	struct xlog_rec_header	*rhead,
1545 	char			*dp,
1546 	int			size)
1547 {
1548 	__uint32_t		crc;
1549 
1550 	/* first generate the crc for the record header ... */
1551 	crc = xfs_start_cksum((char *)rhead,
1552 			      sizeof(struct xlog_rec_header),
1553 			      offsetof(struct xlog_rec_header, h_crc));
1554 
1555 	/* ... then for additional cycle data for v2 logs ... */
1556 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1557 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1558 		int		i;
1559 
1560 		for (i = 1; i < log->l_iclog_heads; i++) {
1561 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1562 				     sizeof(struct xlog_rec_ext_header));
1563 		}
1564 	}
1565 
1566 	/* ... and finally for the payload */
1567 	crc = crc32c(crc, dp, size);
1568 
1569 	return xfs_end_cksum(crc);
1570 }
1571 
1572 /*
1573  * The bdstrat callback function for log bufs. This gives us a central
1574  * place to trap bufs in case we get hit by a log I/O error and need to
1575  * shutdown. Actually, in practice, even when we didn't get a log error,
1576  * we transition the iclogs to IOERROR state *after* flushing all existing
1577  * iclogs to disk. This is because we don't want anymore new transactions to be
1578  * started or completed afterwards.
1579  */
1580 STATIC int
1581 xlog_bdstrat(
1582 	struct xfs_buf		*bp)
1583 {
1584 	struct xlog_in_core	*iclog = bp->b_fspriv;
1585 
1586 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1587 		xfs_buf_ioerror(bp, EIO);
1588 		xfs_buf_stale(bp);
1589 		xfs_buf_ioend(bp, 0);
1590 		/*
1591 		 * It would seem logical to return EIO here, but we rely on
1592 		 * the log state machine to propagate I/O errors instead of
1593 		 * doing it here.
1594 		 */
1595 		return 0;
1596 	}
1597 
1598 	xfs_buf_iorequest(bp);
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1604  * fashion.  Previously, we should have moved the current iclog
1605  * ptr in the log to point to the next available iclog.  This allows further
1606  * write to continue while this code syncs out an iclog ready to go.
1607  * Before an in-core log can be written out, the data section must be scanned
1608  * to save away the 1st word of each BBSIZE block into the header.  We replace
1609  * it with the current cycle count.  Each BBSIZE block is tagged with the
1610  * cycle count because there in an implicit assumption that drives will
1611  * guarantee that entire 512 byte blocks get written at once.  In other words,
1612  * we can't have part of a 512 byte block written and part not written.  By
1613  * tagging each block, we will know which blocks are valid when recovering
1614  * after an unclean shutdown.
1615  *
1616  * This routine is single threaded on the iclog.  No other thread can be in
1617  * this routine with the same iclog.  Changing contents of iclog can there-
1618  * fore be done without grabbing the state machine lock.  Updating the global
1619  * log will require grabbing the lock though.
1620  *
1621  * The entire log manager uses a logical block numbering scheme.  Only
1622  * log_sync (and then only bwrite()) know about the fact that the log may
1623  * not start with block zero on a given device.  The log block start offset
1624  * is added immediately before calling bwrite().
1625  */
1626 
1627 STATIC int
1628 xlog_sync(
1629 	struct xlog		*log,
1630 	struct xlog_in_core	*iclog)
1631 {
1632 	xfs_buf_t	*bp;
1633 	int		i;
1634 	uint		count;		/* byte count of bwrite */
1635 	uint		count_init;	/* initial count before roundup */
1636 	int		roundoff;       /* roundoff to BB or stripe */
1637 	int		split = 0;	/* split write into two regions */
1638 	int		error;
1639 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1640 	int		size;
1641 
1642 	XFS_STATS_INC(xs_log_writes);
1643 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1644 
1645 	/* Add for LR header */
1646 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1647 
1648 	/* Round out the log write size */
1649 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1650 		/* we have a v2 stripe unit to use */
1651 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1652 	} else {
1653 		count = BBTOB(BTOBB(count_init));
1654 	}
1655 	roundoff = count - count_init;
1656 	ASSERT(roundoff >= 0);
1657 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1658                 roundoff < log->l_mp->m_sb.sb_logsunit)
1659 		||
1660 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1661 		 roundoff < BBTOB(1)));
1662 
1663 	/* move grant heads by roundoff in sync */
1664 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1665 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1666 
1667 	/* put cycle number in every block */
1668 	xlog_pack_data(log, iclog, roundoff);
1669 
1670 	/* real byte length */
1671 	size = iclog->ic_offset;
1672 	if (v2)
1673 		size += roundoff;
1674 	iclog->ic_header.h_len = cpu_to_be32(size);
1675 
1676 	bp = iclog->ic_bp;
1677 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1678 
1679 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1680 
1681 	/* Do we need to split this write into 2 parts? */
1682 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1683 		char		*dptr;
1684 
1685 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1686 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1687 		iclog->ic_bwritecnt = 2;
1688 
1689 		/*
1690 		 * Bump the cycle numbers at the start of each block in the
1691 		 * part of the iclog that ends up in the buffer that gets
1692 		 * written to the start of the log.
1693 		 *
1694 		 * Watch out for the header magic number case, though.
1695 		 */
1696 		dptr = (char *)&iclog->ic_header + count;
1697 		for (i = 0; i < split; i += BBSIZE) {
1698 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1699 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1700 				cycle++;
1701 			*(__be32 *)dptr = cpu_to_be32(cycle);
1702 
1703 			dptr += BBSIZE;
1704 		}
1705 	} else {
1706 		iclog->ic_bwritecnt = 1;
1707 	}
1708 
1709 	/* calculcate the checksum */
1710 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1711 					    iclog->ic_datap, size);
1712 
1713 	bp->b_io_length = BTOBB(count);
1714 	bp->b_fspriv = iclog;
1715 	XFS_BUF_ZEROFLAGS(bp);
1716 	XFS_BUF_ASYNC(bp);
1717 	bp->b_flags |= XBF_SYNCIO;
1718 
1719 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1720 		bp->b_flags |= XBF_FUA;
1721 
1722 		/*
1723 		 * Flush the data device before flushing the log to make
1724 		 * sure all meta data written back from the AIL actually made
1725 		 * it to disk before stamping the new log tail LSN into the
1726 		 * log buffer.  For an external log we need to issue the
1727 		 * flush explicitly, and unfortunately synchronously here;
1728 		 * for an internal log we can simply use the block layer
1729 		 * state machine for preflushes.
1730 		 */
1731 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1732 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1733 		else
1734 			bp->b_flags |= XBF_FLUSH;
1735 	}
1736 
1737 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1738 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1739 
1740 	xlog_verify_iclog(log, iclog, count, true);
1741 
1742 	/* account for log which doesn't start at block #0 */
1743 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1744 	/*
1745 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1746 	 * is shutting down.
1747 	 */
1748 	XFS_BUF_WRITE(bp);
1749 
1750 	error = xlog_bdstrat(bp);
1751 	if (error) {
1752 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1753 		return error;
1754 	}
1755 	if (split) {
1756 		bp = iclog->ic_log->l_xbuf;
1757 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1758 		xfs_buf_associate_memory(bp,
1759 				(char *)&iclog->ic_header + count, split);
1760 		bp->b_fspriv = iclog;
1761 		XFS_BUF_ZEROFLAGS(bp);
1762 		XFS_BUF_ASYNC(bp);
1763 		bp->b_flags |= XBF_SYNCIO;
1764 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1765 			bp->b_flags |= XBF_FUA;
1766 
1767 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1768 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1769 
1770 		/* account for internal log which doesn't start at block #0 */
1771 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1772 		XFS_BUF_WRITE(bp);
1773 		error = xlog_bdstrat(bp);
1774 		if (error) {
1775 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1776 			return error;
1777 		}
1778 	}
1779 	return 0;
1780 }	/* xlog_sync */
1781 
1782 /*
1783  * Deallocate a log structure
1784  */
1785 STATIC void
1786 xlog_dealloc_log(
1787 	struct xlog	*log)
1788 {
1789 	xlog_in_core_t	*iclog, *next_iclog;
1790 	int		i;
1791 
1792 	xlog_cil_destroy(log);
1793 
1794 	/*
1795 	 * always need to ensure that the extra buffer does not point to memory
1796 	 * owned by another log buffer before we free it.
1797 	 */
1798 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1799 	xfs_buf_free(log->l_xbuf);
1800 
1801 	iclog = log->l_iclog;
1802 	for (i=0; i<log->l_iclog_bufs; i++) {
1803 		xfs_buf_free(iclog->ic_bp);
1804 		next_iclog = iclog->ic_next;
1805 		kmem_free(iclog);
1806 		iclog = next_iclog;
1807 	}
1808 	spinlock_destroy(&log->l_icloglock);
1809 
1810 	log->l_mp->m_log = NULL;
1811 	kmem_free(log);
1812 }	/* xlog_dealloc_log */
1813 
1814 /*
1815  * Update counters atomically now that memcpy is done.
1816  */
1817 /* ARGSUSED */
1818 static inline void
1819 xlog_state_finish_copy(
1820 	struct xlog		*log,
1821 	struct xlog_in_core	*iclog,
1822 	int			record_cnt,
1823 	int			copy_bytes)
1824 {
1825 	spin_lock(&log->l_icloglock);
1826 
1827 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1828 	iclog->ic_offset += copy_bytes;
1829 
1830 	spin_unlock(&log->l_icloglock);
1831 }	/* xlog_state_finish_copy */
1832 
1833 
1834 
1835 
1836 /*
1837  * print out info relating to regions written which consume
1838  * the reservation
1839  */
1840 void
1841 xlog_print_tic_res(
1842 	struct xfs_mount	*mp,
1843 	struct xlog_ticket	*ticket)
1844 {
1845 	uint i;
1846 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1847 
1848 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1849 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1850 	    "bformat",
1851 	    "bchunk",
1852 	    "efi_format",
1853 	    "efd_format",
1854 	    "iformat",
1855 	    "icore",
1856 	    "iext",
1857 	    "ibroot",
1858 	    "ilocal",
1859 	    "iattr_ext",
1860 	    "iattr_broot",
1861 	    "iattr_local",
1862 	    "qformat",
1863 	    "dquot",
1864 	    "quotaoff",
1865 	    "LR header",
1866 	    "unmount",
1867 	    "commit",
1868 	    "trans header"
1869 	};
1870 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1871 	    "SETATTR_NOT_SIZE",
1872 	    "SETATTR_SIZE",
1873 	    "INACTIVE",
1874 	    "CREATE",
1875 	    "CREATE_TRUNC",
1876 	    "TRUNCATE_FILE",
1877 	    "REMOVE",
1878 	    "LINK",
1879 	    "RENAME",
1880 	    "MKDIR",
1881 	    "RMDIR",
1882 	    "SYMLINK",
1883 	    "SET_DMATTRS",
1884 	    "GROWFS",
1885 	    "STRAT_WRITE",
1886 	    "DIOSTRAT",
1887 	    "WRITE_SYNC",
1888 	    "WRITEID",
1889 	    "ADDAFORK",
1890 	    "ATTRINVAL",
1891 	    "ATRUNCATE",
1892 	    "ATTR_SET",
1893 	    "ATTR_RM",
1894 	    "ATTR_FLAG",
1895 	    "CLEAR_AGI_BUCKET",
1896 	    "QM_SBCHANGE",
1897 	    "DUMMY1",
1898 	    "DUMMY2",
1899 	    "QM_QUOTAOFF",
1900 	    "QM_DQALLOC",
1901 	    "QM_SETQLIM",
1902 	    "QM_DQCLUSTER",
1903 	    "QM_QINOCREATE",
1904 	    "QM_QUOTAOFF_END",
1905 	    "SB_UNIT",
1906 	    "FSYNC_TS",
1907 	    "GROWFSRT_ALLOC",
1908 	    "GROWFSRT_ZERO",
1909 	    "GROWFSRT_FREE",
1910 	    "SWAPEXT"
1911 	};
1912 
1913 	xfs_warn(mp,
1914 		"xlog_write: reservation summary:\n"
1915 		"  trans type  = %s (%u)\n"
1916 		"  unit res    = %d bytes\n"
1917 		"  current res = %d bytes\n"
1918 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1919 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1920 		"  ophdr + reg = %u bytes\n"
1921 		"  num regions = %u\n",
1922 		((ticket->t_trans_type <= 0 ||
1923 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1924 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1925 		ticket->t_trans_type,
1926 		ticket->t_unit_res,
1927 		ticket->t_curr_res,
1928 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1929 		ticket->t_res_num_ophdrs, ophdr_spc,
1930 		ticket->t_res_arr_sum +
1931 		ticket->t_res_o_flow + ophdr_spc,
1932 		ticket->t_res_num);
1933 
1934 	for (i = 0; i < ticket->t_res_num; i++) {
1935 		uint r_type = ticket->t_res_arr[i].r_type;
1936 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1937 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1938 			    "bad-rtype" : res_type_str[r_type-1]),
1939 			    ticket->t_res_arr[i].r_len);
1940 	}
1941 
1942 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1943 		"xlog_write: reservation ran out. Need to up reservation");
1944 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1945 }
1946 
1947 /*
1948  * Calculate the potential space needed by the log vector.  Each region gets
1949  * its own xlog_op_header_t and may need to be double word aligned.
1950  */
1951 static int
1952 xlog_write_calc_vec_length(
1953 	struct xlog_ticket	*ticket,
1954 	struct xfs_log_vec	*log_vector)
1955 {
1956 	struct xfs_log_vec	*lv;
1957 	int			headers = 0;
1958 	int			len = 0;
1959 	int			i;
1960 
1961 	/* acct for start rec of xact */
1962 	if (ticket->t_flags & XLOG_TIC_INITED)
1963 		headers++;
1964 
1965 	for (lv = log_vector; lv; lv = lv->lv_next) {
1966 		/* we don't write ordered log vectors */
1967 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
1968 			continue;
1969 
1970 		headers += lv->lv_niovecs;
1971 
1972 		for (i = 0; i < lv->lv_niovecs; i++) {
1973 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1974 
1975 			len += vecp->i_len;
1976 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1977 		}
1978 	}
1979 
1980 	ticket->t_res_num_ophdrs += headers;
1981 	len += headers * sizeof(struct xlog_op_header);
1982 
1983 	return len;
1984 }
1985 
1986 /*
1987  * If first write for transaction, insert start record  We can't be trying to
1988  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1989  */
1990 static int
1991 xlog_write_start_rec(
1992 	struct xlog_op_header	*ophdr,
1993 	struct xlog_ticket	*ticket)
1994 {
1995 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1996 		return 0;
1997 
1998 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1999 	ophdr->oh_clientid = ticket->t_clientid;
2000 	ophdr->oh_len = 0;
2001 	ophdr->oh_flags = XLOG_START_TRANS;
2002 	ophdr->oh_res2 = 0;
2003 
2004 	ticket->t_flags &= ~XLOG_TIC_INITED;
2005 
2006 	return sizeof(struct xlog_op_header);
2007 }
2008 
2009 static xlog_op_header_t *
2010 xlog_write_setup_ophdr(
2011 	struct xlog		*log,
2012 	struct xlog_op_header	*ophdr,
2013 	struct xlog_ticket	*ticket,
2014 	uint			flags)
2015 {
2016 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2017 	ophdr->oh_clientid = ticket->t_clientid;
2018 	ophdr->oh_res2 = 0;
2019 
2020 	/* are we copying a commit or unmount record? */
2021 	ophdr->oh_flags = flags;
2022 
2023 	/*
2024 	 * We've seen logs corrupted with bad transaction client ids.  This
2025 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2026 	 * and shut down the filesystem.
2027 	 */
2028 	switch (ophdr->oh_clientid)  {
2029 	case XFS_TRANSACTION:
2030 	case XFS_VOLUME:
2031 	case XFS_LOG:
2032 		break;
2033 	default:
2034 		xfs_warn(log->l_mp,
2035 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2036 			ophdr->oh_clientid, ticket);
2037 		return NULL;
2038 	}
2039 
2040 	return ophdr;
2041 }
2042 
2043 /*
2044  * Set up the parameters of the region copy into the log. This has
2045  * to handle region write split across multiple log buffers - this
2046  * state is kept external to this function so that this code can
2047  * can be written in an obvious, self documenting manner.
2048  */
2049 static int
2050 xlog_write_setup_copy(
2051 	struct xlog_ticket	*ticket,
2052 	struct xlog_op_header	*ophdr,
2053 	int			space_available,
2054 	int			space_required,
2055 	int			*copy_off,
2056 	int			*copy_len,
2057 	int			*last_was_partial_copy,
2058 	int			*bytes_consumed)
2059 {
2060 	int			still_to_copy;
2061 
2062 	still_to_copy = space_required - *bytes_consumed;
2063 	*copy_off = *bytes_consumed;
2064 
2065 	if (still_to_copy <= space_available) {
2066 		/* write of region completes here */
2067 		*copy_len = still_to_copy;
2068 		ophdr->oh_len = cpu_to_be32(*copy_len);
2069 		if (*last_was_partial_copy)
2070 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2071 		*last_was_partial_copy = 0;
2072 		*bytes_consumed = 0;
2073 		return 0;
2074 	}
2075 
2076 	/* partial write of region, needs extra log op header reservation */
2077 	*copy_len = space_available;
2078 	ophdr->oh_len = cpu_to_be32(*copy_len);
2079 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2080 	if (*last_was_partial_copy)
2081 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2082 	*bytes_consumed += *copy_len;
2083 	(*last_was_partial_copy)++;
2084 
2085 	/* account for new log op header */
2086 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2087 	ticket->t_res_num_ophdrs++;
2088 
2089 	return sizeof(struct xlog_op_header);
2090 }
2091 
2092 static int
2093 xlog_write_copy_finish(
2094 	struct xlog		*log,
2095 	struct xlog_in_core	*iclog,
2096 	uint			flags,
2097 	int			*record_cnt,
2098 	int			*data_cnt,
2099 	int			*partial_copy,
2100 	int			*partial_copy_len,
2101 	int			log_offset,
2102 	struct xlog_in_core	**commit_iclog)
2103 {
2104 	if (*partial_copy) {
2105 		/*
2106 		 * This iclog has already been marked WANT_SYNC by
2107 		 * xlog_state_get_iclog_space.
2108 		 */
2109 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2110 		*record_cnt = 0;
2111 		*data_cnt = 0;
2112 		return xlog_state_release_iclog(log, iclog);
2113 	}
2114 
2115 	*partial_copy = 0;
2116 	*partial_copy_len = 0;
2117 
2118 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2119 		/* no more space in this iclog - push it. */
2120 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2121 		*record_cnt = 0;
2122 		*data_cnt = 0;
2123 
2124 		spin_lock(&log->l_icloglock);
2125 		xlog_state_want_sync(log, iclog);
2126 		spin_unlock(&log->l_icloglock);
2127 
2128 		if (!commit_iclog)
2129 			return xlog_state_release_iclog(log, iclog);
2130 		ASSERT(flags & XLOG_COMMIT_TRANS);
2131 		*commit_iclog = iclog;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /*
2138  * Write some region out to in-core log
2139  *
2140  * This will be called when writing externally provided regions or when
2141  * writing out a commit record for a given transaction.
2142  *
2143  * General algorithm:
2144  *	1. Find total length of this write.  This may include adding to the
2145  *		lengths passed in.
2146  *	2. Check whether we violate the tickets reservation.
2147  *	3. While writing to this iclog
2148  *	    A. Reserve as much space in this iclog as can get
2149  *	    B. If this is first write, save away start lsn
2150  *	    C. While writing this region:
2151  *		1. If first write of transaction, write start record
2152  *		2. Write log operation header (header per region)
2153  *		3. Find out if we can fit entire region into this iclog
2154  *		4. Potentially, verify destination memcpy ptr
2155  *		5. Memcpy (partial) region
2156  *		6. If partial copy, release iclog; otherwise, continue
2157  *			copying more regions into current iclog
2158  *	4. Mark want sync bit (in simulation mode)
2159  *	5. Release iclog for potential flush to on-disk log.
2160  *
2161  * ERRORS:
2162  * 1.	Panic if reservation is overrun.  This should never happen since
2163  *	reservation amounts are generated internal to the filesystem.
2164  * NOTES:
2165  * 1. Tickets are single threaded data structures.
2166  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2167  *	syncing routine.  When a single log_write region needs to span
2168  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2169  *	on all log operation writes which don't contain the end of the
2170  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2171  *	operation which contains the end of the continued log_write region.
2172  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2173  *	we don't really know exactly how much space will be used.  As a result,
2174  *	we don't update ic_offset until the end when we know exactly how many
2175  *	bytes have been written out.
2176  */
2177 int
2178 xlog_write(
2179 	struct xlog		*log,
2180 	struct xfs_log_vec	*log_vector,
2181 	struct xlog_ticket	*ticket,
2182 	xfs_lsn_t		*start_lsn,
2183 	struct xlog_in_core	**commit_iclog,
2184 	uint			flags)
2185 {
2186 	struct xlog_in_core	*iclog = NULL;
2187 	struct xfs_log_iovec	*vecp;
2188 	struct xfs_log_vec	*lv;
2189 	int			len;
2190 	int			index;
2191 	int			partial_copy = 0;
2192 	int			partial_copy_len = 0;
2193 	int			contwr = 0;
2194 	int			record_cnt = 0;
2195 	int			data_cnt = 0;
2196 	int			error;
2197 
2198 	*start_lsn = 0;
2199 
2200 	len = xlog_write_calc_vec_length(ticket, log_vector);
2201 
2202 	/*
2203 	 * Region headers and bytes are already accounted for.
2204 	 * We only need to take into account start records and
2205 	 * split regions in this function.
2206 	 */
2207 	if (ticket->t_flags & XLOG_TIC_INITED)
2208 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2209 
2210 	/*
2211 	 * Commit record headers need to be accounted for. These
2212 	 * come in as separate writes so are easy to detect.
2213 	 */
2214 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2215 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2216 
2217 	if (ticket->t_curr_res < 0)
2218 		xlog_print_tic_res(log->l_mp, ticket);
2219 
2220 	index = 0;
2221 	lv = log_vector;
2222 	vecp = lv->lv_iovecp;
2223 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2224 		void		*ptr;
2225 		int		log_offset;
2226 
2227 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2228 						   &contwr, &log_offset);
2229 		if (error)
2230 			return error;
2231 
2232 		ASSERT(log_offset <= iclog->ic_size - 1);
2233 		ptr = iclog->ic_datap + log_offset;
2234 
2235 		/* start_lsn is the first lsn written to. That's all we need. */
2236 		if (!*start_lsn)
2237 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2238 
2239 		/*
2240 		 * This loop writes out as many regions as can fit in the amount
2241 		 * of space which was allocated by xlog_state_get_iclog_space().
2242 		 */
2243 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2244 			struct xfs_log_iovec	*reg;
2245 			struct xlog_op_header	*ophdr;
2246 			int			start_rec_copy;
2247 			int			copy_len;
2248 			int			copy_off;
2249 			bool			ordered = false;
2250 
2251 			/* ordered log vectors have no regions to write */
2252 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2253 				ASSERT(lv->lv_niovecs == 0);
2254 				ordered = true;
2255 				goto next_lv;
2256 			}
2257 
2258 			reg = &vecp[index];
2259 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2260 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2261 
2262 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2263 			if (start_rec_copy) {
2264 				record_cnt++;
2265 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2266 						   start_rec_copy);
2267 			}
2268 
2269 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2270 			if (!ophdr)
2271 				return XFS_ERROR(EIO);
2272 
2273 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2274 					   sizeof(struct xlog_op_header));
2275 
2276 			len += xlog_write_setup_copy(ticket, ophdr,
2277 						     iclog->ic_size-log_offset,
2278 						     reg->i_len,
2279 						     &copy_off, &copy_len,
2280 						     &partial_copy,
2281 						     &partial_copy_len);
2282 			xlog_verify_dest_ptr(log, ptr);
2283 
2284 			/* copy region */
2285 			ASSERT(copy_len >= 0);
2286 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2287 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2288 
2289 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2290 			record_cnt++;
2291 			data_cnt += contwr ? copy_len : 0;
2292 
2293 			error = xlog_write_copy_finish(log, iclog, flags,
2294 						       &record_cnt, &data_cnt,
2295 						       &partial_copy,
2296 						       &partial_copy_len,
2297 						       log_offset,
2298 						       commit_iclog);
2299 			if (error)
2300 				return error;
2301 
2302 			/*
2303 			 * if we had a partial copy, we need to get more iclog
2304 			 * space but we don't want to increment the region
2305 			 * index because there is still more is this region to
2306 			 * write.
2307 			 *
2308 			 * If we completed writing this region, and we flushed
2309 			 * the iclog (indicated by resetting of the record
2310 			 * count), then we also need to get more log space. If
2311 			 * this was the last record, though, we are done and
2312 			 * can just return.
2313 			 */
2314 			if (partial_copy)
2315 				break;
2316 
2317 			if (++index == lv->lv_niovecs) {
2318 next_lv:
2319 				lv = lv->lv_next;
2320 				index = 0;
2321 				if (lv)
2322 					vecp = lv->lv_iovecp;
2323 			}
2324 			if (record_cnt == 0 && ordered == false) {
2325 				if (!lv)
2326 					return 0;
2327 				break;
2328 			}
2329 		}
2330 	}
2331 
2332 	ASSERT(len == 0);
2333 
2334 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2335 	if (!commit_iclog)
2336 		return xlog_state_release_iclog(log, iclog);
2337 
2338 	ASSERT(flags & XLOG_COMMIT_TRANS);
2339 	*commit_iclog = iclog;
2340 	return 0;
2341 }
2342 
2343 
2344 /*****************************************************************************
2345  *
2346  *		State Machine functions
2347  *
2348  *****************************************************************************
2349  */
2350 
2351 /* Clean iclogs starting from the head.  This ordering must be
2352  * maintained, so an iclog doesn't become ACTIVE beyond one that
2353  * is SYNCING.  This is also required to maintain the notion that we use
2354  * a ordered wait queue to hold off would be writers to the log when every
2355  * iclog is trying to sync to disk.
2356  *
2357  * State Change: DIRTY -> ACTIVE
2358  */
2359 STATIC void
2360 xlog_state_clean_log(
2361 	struct xlog *log)
2362 {
2363 	xlog_in_core_t	*iclog;
2364 	int changed = 0;
2365 
2366 	iclog = log->l_iclog;
2367 	do {
2368 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2369 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2370 			iclog->ic_offset       = 0;
2371 			ASSERT(iclog->ic_callback == NULL);
2372 			/*
2373 			 * If the number of ops in this iclog indicate it just
2374 			 * contains the dummy transaction, we can
2375 			 * change state into IDLE (the second time around).
2376 			 * Otherwise we should change the state into
2377 			 * NEED a dummy.
2378 			 * We don't need to cover the dummy.
2379 			 */
2380 			if (!changed &&
2381 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2382 			   		XLOG_COVER_OPS)) {
2383 				changed = 1;
2384 			} else {
2385 				/*
2386 				 * We have two dirty iclogs so start over
2387 				 * This could also be num of ops indicates
2388 				 * this is not the dummy going out.
2389 				 */
2390 				changed = 2;
2391 			}
2392 			iclog->ic_header.h_num_logops = 0;
2393 			memset(iclog->ic_header.h_cycle_data, 0,
2394 			      sizeof(iclog->ic_header.h_cycle_data));
2395 			iclog->ic_header.h_lsn = 0;
2396 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2397 			/* do nothing */;
2398 		else
2399 			break;	/* stop cleaning */
2400 		iclog = iclog->ic_next;
2401 	} while (iclog != log->l_iclog);
2402 
2403 	/* log is locked when we are called */
2404 	/*
2405 	 * Change state for the dummy log recording.
2406 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2407 	 * we are done writing the dummy record.
2408 	 * If we are done with the second dummy recored (DONE2), then
2409 	 * we go to IDLE.
2410 	 */
2411 	if (changed) {
2412 		switch (log->l_covered_state) {
2413 		case XLOG_STATE_COVER_IDLE:
2414 		case XLOG_STATE_COVER_NEED:
2415 		case XLOG_STATE_COVER_NEED2:
2416 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2417 			break;
2418 
2419 		case XLOG_STATE_COVER_DONE:
2420 			if (changed == 1)
2421 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2422 			else
2423 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2424 			break;
2425 
2426 		case XLOG_STATE_COVER_DONE2:
2427 			if (changed == 1)
2428 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2429 			else
2430 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2431 			break;
2432 
2433 		default:
2434 			ASSERT(0);
2435 		}
2436 	}
2437 }	/* xlog_state_clean_log */
2438 
2439 STATIC xfs_lsn_t
2440 xlog_get_lowest_lsn(
2441 	struct xlog	*log)
2442 {
2443 	xlog_in_core_t  *lsn_log;
2444 	xfs_lsn_t	lowest_lsn, lsn;
2445 
2446 	lsn_log = log->l_iclog;
2447 	lowest_lsn = 0;
2448 	do {
2449 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2450 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2451 		if ((lsn && !lowest_lsn) ||
2452 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2453 			lowest_lsn = lsn;
2454 		}
2455 	    }
2456 	    lsn_log = lsn_log->ic_next;
2457 	} while (lsn_log != log->l_iclog);
2458 	return lowest_lsn;
2459 }
2460 
2461 
2462 STATIC void
2463 xlog_state_do_callback(
2464 	struct xlog		*log,
2465 	int			aborted,
2466 	struct xlog_in_core	*ciclog)
2467 {
2468 	xlog_in_core_t	   *iclog;
2469 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2470 						 * processed all iclogs once */
2471 	xfs_log_callback_t *cb, *cb_next;
2472 	int		   flushcnt = 0;
2473 	xfs_lsn_t	   lowest_lsn;
2474 	int		   ioerrors;	/* counter: iclogs with errors */
2475 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2476 	int		   funcdidcallbacks; /* flag: function did callbacks */
2477 	int		   repeats;	/* for issuing console warnings if
2478 					 * looping too many times */
2479 	int		   wake = 0;
2480 
2481 	spin_lock(&log->l_icloglock);
2482 	first_iclog = iclog = log->l_iclog;
2483 	ioerrors = 0;
2484 	funcdidcallbacks = 0;
2485 	repeats = 0;
2486 
2487 	do {
2488 		/*
2489 		 * Scan all iclogs starting with the one pointed to by the
2490 		 * log.  Reset this starting point each time the log is
2491 		 * unlocked (during callbacks).
2492 		 *
2493 		 * Keep looping through iclogs until one full pass is made
2494 		 * without running any callbacks.
2495 		 */
2496 		first_iclog = log->l_iclog;
2497 		iclog = log->l_iclog;
2498 		loopdidcallbacks = 0;
2499 		repeats++;
2500 
2501 		do {
2502 
2503 			/* skip all iclogs in the ACTIVE & DIRTY states */
2504 			if (iclog->ic_state &
2505 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2506 				iclog = iclog->ic_next;
2507 				continue;
2508 			}
2509 
2510 			/*
2511 			 * Between marking a filesystem SHUTDOWN and stopping
2512 			 * the log, we do flush all iclogs to disk (if there
2513 			 * wasn't a log I/O error). So, we do want things to
2514 			 * go smoothly in case of just a SHUTDOWN  w/o a
2515 			 * LOG_IO_ERROR.
2516 			 */
2517 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2518 				/*
2519 				 * Can only perform callbacks in order.  Since
2520 				 * this iclog is not in the DONE_SYNC/
2521 				 * DO_CALLBACK state, we skip the rest and
2522 				 * just try to clean up.  If we set our iclog
2523 				 * to DO_CALLBACK, we will not process it when
2524 				 * we retry since a previous iclog is in the
2525 				 * CALLBACK and the state cannot change since
2526 				 * we are holding the l_icloglock.
2527 				 */
2528 				if (!(iclog->ic_state &
2529 					(XLOG_STATE_DONE_SYNC |
2530 						 XLOG_STATE_DO_CALLBACK))) {
2531 					if (ciclog && (ciclog->ic_state ==
2532 							XLOG_STATE_DONE_SYNC)) {
2533 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2534 					}
2535 					break;
2536 				}
2537 				/*
2538 				 * We now have an iclog that is in either the
2539 				 * DO_CALLBACK or DONE_SYNC states. The other
2540 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2541 				 * caught by the above if and are going to
2542 				 * clean (i.e. we aren't doing their callbacks)
2543 				 * see the above if.
2544 				 */
2545 
2546 				/*
2547 				 * We will do one more check here to see if we
2548 				 * have chased our tail around.
2549 				 */
2550 
2551 				lowest_lsn = xlog_get_lowest_lsn(log);
2552 				if (lowest_lsn &&
2553 				    XFS_LSN_CMP(lowest_lsn,
2554 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2555 					iclog = iclog->ic_next;
2556 					continue; /* Leave this iclog for
2557 						   * another thread */
2558 				}
2559 
2560 				iclog->ic_state = XLOG_STATE_CALLBACK;
2561 
2562 
2563 				/*
2564 				 * Completion of a iclog IO does not imply that
2565 				 * a transaction has completed, as transactions
2566 				 * can be large enough to span many iclogs. We
2567 				 * cannot change the tail of the log half way
2568 				 * through a transaction as this may be the only
2569 				 * transaction in the log and moving th etail to
2570 				 * point to the middle of it will prevent
2571 				 * recovery from finding the start of the
2572 				 * transaction. Hence we should only update the
2573 				 * last_sync_lsn if this iclog contains
2574 				 * transaction completion callbacks on it.
2575 				 *
2576 				 * We have to do this before we drop the
2577 				 * icloglock to ensure we are the only one that
2578 				 * can update it.
2579 				 */
2580 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2581 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2582 				if (iclog->ic_callback)
2583 					atomic64_set(&log->l_last_sync_lsn,
2584 						be64_to_cpu(iclog->ic_header.h_lsn));
2585 
2586 			} else
2587 				ioerrors++;
2588 
2589 			spin_unlock(&log->l_icloglock);
2590 
2591 			/*
2592 			 * Keep processing entries in the callback list until
2593 			 * we come around and it is empty.  We need to
2594 			 * atomically see that the list is empty and change the
2595 			 * state to DIRTY so that we don't miss any more
2596 			 * callbacks being added.
2597 			 */
2598 			spin_lock(&iclog->ic_callback_lock);
2599 			cb = iclog->ic_callback;
2600 			while (cb) {
2601 				iclog->ic_callback_tail = &(iclog->ic_callback);
2602 				iclog->ic_callback = NULL;
2603 				spin_unlock(&iclog->ic_callback_lock);
2604 
2605 				/* perform callbacks in the order given */
2606 				for (; cb; cb = cb_next) {
2607 					cb_next = cb->cb_next;
2608 					cb->cb_func(cb->cb_arg, aborted);
2609 				}
2610 				spin_lock(&iclog->ic_callback_lock);
2611 				cb = iclog->ic_callback;
2612 			}
2613 
2614 			loopdidcallbacks++;
2615 			funcdidcallbacks++;
2616 
2617 			spin_lock(&log->l_icloglock);
2618 			ASSERT(iclog->ic_callback == NULL);
2619 			spin_unlock(&iclog->ic_callback_lock);
2620 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2621 				iclog->ic_state = XLOG_STATE_DIRTY;
2622 
2623 			/*
2624 			 * Transition from DIRTY to ACTIVE if applicable.
2625 			 * NOP if STATE_IOERROR.
2626 			 */
2627 			xlog_state_clean_log(log);
2628 
2629 			/* wake up threads waiting in xfs_log_force() */
2630 			wake_up_all(&iclog->ic_force_wait);
2631 
2632 			iclog = iclog->ic_next;
2633 		} while (first_iclog != iclog);
2634 
2635 		if (repeats > 5000) {
2636 			flushcnt += repeats;
2637 			repeats = 0;
2638 			xfs_warn(log->l_mp,
2639 				"%s: possible infinite loop (%d iterations)",
2640 				__func__, flushcnt);
2641 		}
2642 	} while (!ioerrors && loopdidcallbacks);
2643 
2644 	/*
2645 	 * make one last gasp attempt to see if iclogs are being left in
2646 	 * limbo..
2647 	 */
2648 #ifdef DEBUG
2649 	if (funcdidcallbacks) {
2650 		first_iclog = iclog = log->l_iclog;
2651 		do {
2652 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2653 			/*
2654 			 * Terminate the loop if iclogs are found in states
2655 			 * which will cause other threads to clean up iclogs.
2656 			 *
2657 			 * SYNCING - i/o completion will go through logs
2658 			 * DONE_SYNC - interrupt thread should be waiting for
2659 			 *              l_icloglock
2660 			 * IOERROR - give up hope all ye who enter here
2661 			 */
2662 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2663 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2664 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2665 			    iclog->ic_state == XLOG_STATE_IOERROR )
2666 				break;
2667 			iclog = iclog->ic_next;
2668 		} while (first_iclog != iclog);
2669 	}
2670 #endif
2671 
2672 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2673 		wake = 1;
2674 	spin_unlock(&log->l_icloglock);
2675 
2676 	if (wake)
2677 		wake_up_all(&log->l_flush_wait);
2678 }
2679 
2680 
2681 /*
2682  * Finish transitioning this iclog to the dirty state.
2683  *
2684  * Make sure that we completely execute this routine only when this is
2685  * the last call to the iclog.  There is a good chance that iclog flushes,
2686  * when we reach the end of the physical log, get turned into 2 separate
2687  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2688  * routine.  By using the reference count bwritecnt, we guarantee that only
2689  * the second completion goes through.
2690  *
2691  * Callbacks could take time, so they are done outside the scope of the
2692  * global state machine log lock.
2693  */
2694 STATIC void
2695 xlog_state_done_syncing(
2696 	xlog_in_core_t	*iclog,
2697 	int		aborted)
2698 {
2699 	struct xlog	   *log = iclog->ic_log;
2700 
2701 	spin_lock(&log->l_icloglock);
2702 
2703 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2704 	       iclog->ic_state == XLOG_STATE_IOERROR);
2705 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2706 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2707 
2708 
2709 	/*
2710 	 * If we got an error, either on the first buffer, or in the case of
2711 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2712 	 * and none should ever be attempted to be written to disk
2713 	 * again.
2714 	 */
2715 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2716 		if (--iclog->ic_bwritecnt == 1) {
2717 			spin_unlock(&log->l_icloglock);
2718 			return;
2719 		}
2720 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2721 	}
2722 
2723 	/*
2724 	 * Someone could be sleeping prior to writing out the next
2725 	 * iclog buffer, we wake them all, one will get to do the
2726 	 * I/O, the others get to wait for the result.
2727 	 */
2728 	wake_up_all(&iclog->ic_write_wait);
2729 	spin_unlock(&log->l_icloglock);
2730 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2731 }	/* xlog_state_done_syncing */
2732 
2733 
2734 /*
2735  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2736  * sleep.  We wait on the flush queue on the head iclog as that should be
2737  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2738  * we will wait here and all new writes will sleep until a sync completes.
2739  *
2740  * The in-core logs are used in a circular fashion. They are not used
2741  * out-of-order even when an iclog past the head is free.
2742  *
2743  * return:
2744  *	* log_offset where xlog_write() can start writing into the in-core
2745  *		log's data space.
2746  *	* in-core log pointer to which xlog_write() should write.
2747  *	* boolean indicating this is a continued write to an in-core log.
2748  *		If this is the last write, then the in-core log's offset field
2749  *		needs to be incremented, depending on the amount of data which
2750  *		is copied.
2751  */
2752 STATIC int
2753 xlog_state_get_iclog_space(
2754 	struct xlog		*log,
2755 	int			len,
2756 	struct xlog_in_core	**iclogp,
2757 	struct xlog_ticket	*ticket,
2758 	int			*continued_write,
2759 	int			*logoffsetp)
2760 {
2761 	int		  log_offset;
2762 	xlog_rec_header_t *head;
2763 	xlog_in_core_t	  *iclog;
2764 	int		  error;
2765 
2766 restart:
2767 	spin_lock(&log->l_icloglock);
2768 	if (XLOG_FORCED_SHUTDOWN(log)) {
2769 		spin_unlock(&log->l_icloglock);
2770 		return XFS_ERROR(EIO);
2771 	}
2772 
2773 	iclog = log->l_iclog;
2774 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2775 		XFS_STATS_INC(xs_log_noiclogs);
2776 
2777 		/* Wait for log writes to have flushed */
2778 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2779 		goto restart;
2780 	}
2781 
2782 	head = &iclog->ic_header;
2783 
2784 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2785 	log_offset = iclog->ic_offset;
2786 
2787 	/* On the 1st write to an iclog, figure out lsn.  This works
2788 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2789 	 * committing to.  If the offset is set, that's how many blocks
2790 	 * must be written.
2791 	 */
2792 	if (log_offset == 0) {
2793 		ticket->t_curr_res -= log->l_iclog_hsize;
2794 		xlog_tic_add_region(ticket,
2795 				    log->l_iclog_hsize,
2796 				    XLOG_REG_TYPE_LRHEADER);
2797 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2798 		head->h_lsn = cpu_to_be64(
2799 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2800 		ASSERT(log->l_curr_block >= 0);
2801 	}
2802 
2803 	/* If there is enough room to write everything, then do it.  Otherwise,
2804 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2805 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2806 	 * until you know exactly how many bytes get copied.  Therefore, wait
2807 	 * until later to update ic_offset.
2808 	 *
2809 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2810 	 * can fit into remaining data section.
2811 	 */
2812 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2813 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2814 
2815 		/*
2816 		 * If I'm the only one writing to this iclog, sync it to disk.
2817 		 * We need to do an atomic compare and decrement here to avoid
2818 		 * racing with concurrent atomic_dec_and_lock() calls in
2819 		 * xlog_state_release_iclog() when there is more than one
2820 		 * reference to the iclog.
2821 		 */
2822 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2823 			/* we are the only one */
2824 			spin_unlock(&log->l_icloglock);
2825 			error = xlog_state_release_iclog(log, iclog);
2826 			if (error)
2827 				return error;
2828 		} else {
2829 			spin_unlock(&log->l_icloglock);
2830 		}
2831 		goto restart;
2832 	}
2833 
2834 	/* Do we have enough room to write the full amount in the remainder
2835 	 * of this iclog?  Or must we continue a write on the next iclog and
2836 	 * mark this iclog as completely taken?  In the case where we switch
2837 	 * iclogs (to mark it taken), this particular iclog will release/sync
2838 	 * to disk in xlog_write().
2839 	 */
2840 	if (len <= iclog->ic_size - iclog->ic_offset) {
2841 		*continued_write = 0;
2842 		iclog->ic_offset += len;
2843 	} else {
2844 		*continued_write = 1;
2845 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2846 	}
2847 	*iclogp = iclog;
2848 
2849 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2850 	spin_unlock(&log->l_icloglock);
2851 
2852 	*logoffsetp = log_offset;
2853 	return 0;
2854 }	/* xlog_state_get_iclog_space */
2855 
2856 /* The first cnt-1 times through here we don't need to
2857  * move the grant write head because the permanent
2858  * reservation has reserved cnt times the unit amount.
2859  * Release part of current permanent unit reservation and
2860  * reset current reservation to be one units worth.  Also
2861  * move grant reservation head forward.
2862  */
2863 STATIC void
2864 xlog_regrant_reserve_log_space(
2865 	struct xlog		*log,
2866 	struct xlog_ticket	*ticket)
2867 {
2868 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2869 
2870 	if (ticket->t_cnt > 0)
2871 		ticket->t_cnt--;
2872 
2873 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2874 					ticket->t_curr_res);
2875 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2876 					ticket->t_curr_res);
2877 	ticket->t_curr_res = ticket->t_unit_res;
2878 	xlog_tic_reset_res(ticket);
2879 
2880 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2881 
2882 	/* just return if we still have some of the pre-reserved space */
2883 	if (ticket->t_cnt > 0)
2884 		return;
2885 
2886 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2887 					ticket->t_unit_res);
2888 
2889 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2890 
2891 	ticket->t_curr_res = ticket->t_unit_res;
2892 	xlog_tic_reset_res(ticket);
2893 }	/* xlog_regrant_reserve_log_space */
2894 
2895 
2896 /*
2897  * Give back the space left from a reservation.
2898  *
2899  * All the information we need to make a correct determination of space left
2900  * is present.  For non-permanent reservations, things are quite easy.  The
2901  * count should have been decremented to zero.  We only need to deal with the
2902  * space remaining in the current reservation part of the ticket.  If the
2903  * ticket contains a permanent reservation, there may be left over space which
2904  * needs to be released.  A count of N means that N-1 refills of the current
2905  * reservation can be done before we need to ask for more space.  The first
2906  * one goes to fill up the first current reservation.  Once we run out of
2907  * space, the count will stay at zero and the only space remaining will be
2908  * in the current reservation field.
2909  */
2910 STATIC void
2911 xlog_ungrant_log_space(
2912 	struct xlog		*log,
2913 	struct xlog_ticket	*ticket)
2914 {
2915 	int	bytes;
2916 
2917 	if (ticket->t_cnt > 0)
2918 		ticket->t_cnt--;
2919 
2920 	trace_xfs_log_ungrant_enter(log, ticket);
2921 	trace_xfs_log_ungrant_sub(log, ticket);
2922 
2923 	/*
2924 	 * If this is a permanent reservation ticket, we may be able to free
2925 	 * up more space based on the remaining count.
2926 	 */
2927 	bytes = ticket->t_curr_res;
2928 	if (ticket->t_cnt > 0) {
2929 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2930 		bytes += ticket->t_unit_res*ticket->t_cnt;
2931 	}
2932 
2933 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2934 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2935 
2936 	trace_xfs_log_ungrant_exit(log, ticket);
2937 
2938 	xfs_log_space_wake(log->l_mp);
2939 }
2940 
2941 /*
2942  * Flush iclog to disk if this is the last reference to the given iclog and
2943  * the WANT_SYNC bit is set.
2944  *
2945  * When this function is entered, the iclog is not necessarily in the
2946  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2947  *
2948  *
2949  */
2950 STATIC int
2951 xlog_state_release_iclog(
2952 	struct xlog		*log,
2953 	struct xlog_in_core	*iclog)
2954 {
2955 	int		sync = 0;	/* do we sync? */
2956 
2957 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2958 		return XFS_ERROR(EIO);
2959 
2960 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2961 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2962 		return 0;
2963 
2964 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2965 		spin_unlock(&log->l_icloglock);
2966 		return XFS_ERROR(EIO);
2967 	}
2968 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2969 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2970 
2971 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2972 		/* update tail before writing to iclog */
2973 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2974 		sync++;
2975 		iclog->ic_state = XLOG_STATE_SYNCING;
2976 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2977 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2978 		/* cycle incremented when incrementing curr_block */
2979 	}
2980 	spin_unlock(&log->l_icloglock);
2981 
2982 	/*
2983 	 * We let the log lock go, so it's possible that we hit a log I/O
2984 	 * error or some other SHUTDOWN condition that marks the iclog
2985 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2986 	 * this iclog has consistent data, so we ignore IOERROR
2987 	 * flags after this point.
2988 	 */
2989 	if (sync)
2990 		return xlog_sync(log, iclog);
2991 	return 0;
2992 }	/* xlog_state_release_iclog */
2993 
2994 
2995 /*
2996  * This routine will mark the current iclog in the ring as WANT_SYNC
2997  * and move the current iclog pointer to the next iclog in the ring.
2998  * When this routine is called from xlog_state_get_iclog_space(), the
2999  * exact size of the iclog has not yet been determined.  All we know is
3000  * that every data block.  We have run out of space in this log record.
3001  */
3002 STATIC void
3003 xlog_state_switch_iclogs(
3004 	struct xlog		*log,
3005 	struct xlog_in_core	*iclog,
3006 	int			eventual_size)
3007 {
3008 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3009 	if (!eventual_size)
3010 		eventual_size = iclog->ic_offset;
3011 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3012 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3013 	log->l_prev_block = log->l_curr_block;
3014 	log->l_prev_cycle = log->l_curr_cycle;
3015 
3016 	/* roll log?: ic_offset changed later */
3017 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3018 
3019 	/* Round up to next log-sunit */
3020 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3021 	    log->l_mp->m_sb.sb_logsunit > 1) {
3022 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3023 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3024 	}
3025 
3026 	if (log->l_curr_block >= log->l_logBBsize) {
3027 		log->l_curr_cycle++;
3028 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3029 			log->l_curr_cycle++;
3030 		log->l_curr_block -= log->l_logBBsize;
3031 		ASSERT(log->l_curr_block >= 0);
3032 	}
3033 	ASSERT(iclog == log->l_iclog);
3034 	log->l_iclog = iclog->ic_next;
3035 }	/* xlog_state_switch_iclogs */
3036 
3037 /*
3038  * Write out all data in the in-core log as of this exact moment in time.
3039  *
3040  * Data may be written to the in-core log during this call.  However,
3041  * we don't guarantee this data will be written out.  A change from past
3042  * implementation means this routine will *not* write out zero length LRs.
3043  *
3044  * Basically, we try and perform an intelligent scan of the in-core logs.
3045  * If we determine there is no flushable data, we just return.  There is no
3046  * flushable data if:
3047  *
3048  *	1. the current iclog is active and has no data; the previous iclog
3049  *		is in the active or dirty state.
3050  *	2. the current iclog is drity, and the previous iclog is in the
3051  *		active or dirty state.
3052  *
3053  * We may sleep if:
3054  *
3055  *	1. the current iclog is not in the active nor dirty state.
3056  *	2. the current iclog dirty, and the previous iclog is not in the
3057  *		active nor dirty state.
3058  *	3. the current iclog is active, and there is another thread writing
3059  *		to this particular iclog.
3060  *	4. a) the current iclog is active and has no other writers
3061  *	   b) when we return from flushing out this iclog, it is still
3062  *		not in the active nor dirty state.
3063  */
3064 int
3065 _xfs_log_force(
3066 	struct xfs_mount	*mp,
3067 	uint			flags,
3068 	int			*log_flushed)
3069 {
3070 	struct xlog		*log = mp->m_log;
3071 	struct xlog_in_core	*iclog;
3072 	xfs_lsn_t		lsn;
3073 
3074 	XFS_STATS_INC(xs_log_force);
3075 
3076 	xlog_cil_force(log);
3077 
3078 	spin_lock(&log->l_icloglock);
3079 
3080 	iclog = log->l_iclog;
3081 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3082 		spin_unlock(&log->l_icloglock);
3083 		return XFS_ERROR(EIO);
3084 	}
3085 
3086 	/* If the head iclog is not active nor dirty, we just attach
3087 	 * ourselves to the head and go to sleep.
3088 	 */
3089 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3090 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3091 		/*
3092 		 * If the head is dirty or (active and empty), then
3093 		 * we need to look at the previous iclog.  If the previous
3094 		 * iclog is active or dirty we are done.  There is nothing
3095 		 * to sync out.  Otherwise, we attach ourselves to the
3096 		 * previous iclog and go to sleep.
3097 		 */
3098 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3099 		    (atomic_read(&iclog->ic_refcnt) == 0
3100 		     && iclog->ic_offset == 0)) {
3101 			iclog = iclog->ic_prev;
3102 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3103 			    iclog->ic_state == XLOG_STATE_DIRTY)
3104 				goto no_sleep;
3105 			else
3106 				goto maybe_sleep;
3107 		} else {
3108 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3109 				/* We are the only one with access to this
3110 				 * iclog.  Flush it out now.  There should
3111 				 * be a roundoff of zero to show that someone
3112 				 * has already taken care of the roundoff from
3113 				 * the previous sync.
3114 				 */
3115 				atomic_inc(&iclog->ic_refcnt);
3116 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3117 				xlog_state_switch_iclogs(log, iclog, 0);
3118 				spin_unlock(&log->l_icloglock);
3119 
3120 				if (xlog_state_release_iclog(log, iclog))
3121 					return XFS_ERROR(EIO);
3122 
3123 				if (log_flushed)
3124 					*log_flushed = 1;
3125 				spin_lock(&log->l_icloglock);
3126 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3127 				    iclog->ic_state != XLOG_STATE_DIRTY)
3128 					goto maybe_sleep;
3129 				else
3130 					goto no_sleep;
3131 			} else {
3132 				/* Someone else is writing to this iclog.
3133 				 * Use its call to flush out the data.  However,
3134 				 * the other thread may not force out this LR,
3135 				 * so we mark it WANT_SYNC.
3136 				 */
3137 				xlog_state_switch_iclogs(log, iclog, 0);
3138 				goto maybe_sleep;
3139 			}
3140 		}
3141 	}
3142 
3143 	/* By the time we come around again, the iclog could've been filled
3144 	 * which would give it another lsn.  If we have a new lsn, just
3145 	 * return because the relevant data has been flushed.
3146 	 */
3147 maybe_sleep:
3148 	if (flags & XFS_LOG_SYNC) {
3149 		/*
3150 		 * We must check if we're shutting down here, before
3151 		 * we wait, while we're holding the l_icloglock.
3152 		 * Then we check again after waking up, in case our
3153 		 * sleep was disturbed by a bad news.
3154 		 */
3155 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3156 			spin_unlock(&log->l_icloglock);
3157 			return XFS_ERROR(EIO);
3158 		}
3159 		XFS_STATS_INC(xs_log_force_sleep);
3160 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3161 		/*
3162 		 * No need to grab the log lock here since we're
3163 		 * only deciding whether or not to return EIO
3164 		 * and the memory read should be atomic.
3165 		 */
3166 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3167 			return XFS_ERROR(EIO);
3168 		if (log_flushed)
3169 			*log_flushed = 1;
3170 	} else {
3171 
3172 no_sleep:
3173 		spin_unlock(&log->l_icloglock);
3174 	}
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3180  * about errors or whether the log was flushed or not. This is the normal
3181  * interface to use when trying to unpin items or move the log forward.
3182  */
3183 void
3184 xfs_log_force(
3185 	xfs_mount_t	*mp,
3186 	uint		flags)
3187 {
3188 	int	error;
3189 
3190 	trace_xfs_log_force(mp, 0);
3191 	error = _xfs_log_force(mp, flags, NULL);
3192 	if (error)
3193 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3194 }
3195 
3196 /*
3197  * Force the in-core log to disk for a specific LSN.
3198  *
3199  * Find in-core log with lsn.
3200  *	If it is in the DIRTY state, just return.
3201  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3202  *		state and go to sleep or return.
3203  *	If it is in any other state, go to sleep or return.
3204  *
3205  * Synchronous forces are implemented with a signal variable. All callers
3206  * to force a given lsn to disk will wait on a the sv attached to the
3207  * specific in-core log.  When given in-core log finally completes its
3208  * write to disk, that thread will wake up all threads waiting on the
3209  * sv.
3210  */
3211 int
3212 _xfs_log_force_lsn(
3213 	struct xfs_mount	*mp,
3214 	xfs_lsn_t		lsn,
3215 	uint			flags,
3216 	int			*log_flushed)
3217 {
3218 	struct xlog		*log = mp->m_log;
3219 	struct xlog_in_core	*iclog;
3220 	int			already_slept = 0;
3221 
3222 	ASSERT(lsn != 0);
3223 
3224 	XFS_STATS_INC(xs_log_force);
3225 
3226 	lsn = xlog_cil_force_lsn(log, lsn);
3227 	if (lsn == NULLCOMMITLSN)
3228 		return 0;
3229 
3230 try_again:
3231 	spin_lock(&log->l_icloglock);
3232 	iclog = log->l_iclog;
3233 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3234 		spin_unlock(&log->l_icloglock);
3235 		return XFS_ERROR(EIO);
3236 	}
3237 
3238 	do {
3239 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3240 			iclog = iclog->ic_next;
3241 			continue;
3242 		}
3243 
3244 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3245 			spin_unlock(&log->l_icloglock);
3246 			return 0;
3247 		}
3248 
3249 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3250 			/*
3251 			 * We sleep here if we haven't already slept (e.g.
3252 			 * this is the first time we've looked at the correct
3253 			 * iclog buf) and the buffer before us is going to
3254 			 * be sync'ed. The reason for this is that if we
3255 			 * are doing sync transactions here, by waiting for
3256 			 * the previous I/O to complete, we can allow a few
3257 			 * more transactions into this iclog before we close
3258 			 * it down.
3259 			 *
3260 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3261 			 * up the refcnt so we can release the log (which
3262 			 * drops the ref count).  The state switch keeps new
3263 			 * transaction commits from using this buffer.  When
3264 			 * the current commits finish writing into the buffer,
3265 			 * the refcount will drop to zero and the buffer will
3266 			 * go out then.
3267 			 */
3268 			if (!already_slept &&
3269 			    (iclog->ic_prev->ic_state &
3270 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3271 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3272 
3273 				XFS_STATS_INC(xs_log_force_sleep);
3274 
3275 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3276 							&log->l_icloglock);
3277 				if (log_flushed)
3278 					*log_flushed = 1;
3279 				already_slept = 1;
3280 				goto try_again;
3281 			}
3282 			atomic_inc(&iclog->ic_refcnt);
3283 			xlog_state_switch_iclogs(log, iclog, 0);
3284 			spin_unlock(&log->l_icloglock);
3285 			if (xlog_state_release_iclog(log, iclog))
3286 				return XFS_ERROR(EIO);
3287 			if (log_flushed)
3288 				*log_flushed = 1;
3289 			spin_lock(&log->l_icloglock);
3290 		}
3291 
3292 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3293 		    !(iclog->ic_state &
3294 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3295 			/*
3296 			 * Don't wait on completion if we know that we've
3297 			 * gotten a log write error.
3298 			 */
3299 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3300 				spin_unlock(&log->l_icloglock);
3301 				return XFS_ERROR(EIO);
3302 			}
3303 			XFS_STATS_INC(xs_log_force_sleep);
3304 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3305 			/*
3306 			 * No need to grab the log lock here since we're
3307 			 * only deciding whether or not to return EIO
3308 			 * and the memory read should be atomic.
3309 			 */
3310 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3311 				return XFS_ERROR(EIO);
3312 
3313 			if (log_flushed)
3314 				*log_flushed = 1;
3315 		} else {		/* just return */
3316 			spin_unlock(&log->l_icloglock);
3317 		}
3318 
3319 		return 0;
3320 	} while (iclog != log->l_iclog);
3321 
3322 	spin_unlock(&log->l_icloglock);
3323 	return 0;
3324 }
3325 
3326 /*
3327  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3328  * about errors or whether the log was flushed or not. This is the normal
3329  * interface to use when trying to unpin items or move the log forward.
3330  */
3331 void
3332 xfs_log_force_lsn(
3333 	xfs_mount_t	*mp,
3334 	xfs_lsn_t	lsn,
3335 	uint		flags)
3336 {
3337 	int	error;
3338 
3339 	trace_xfs_log_force(mp, lsn);
3340 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3341 	if (error)
3342 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3343 }
3344 
3345 /*
3346  * Called when we want to mark the current iclog as being ready to sync to
3347  * disk.
3348  */
3349 STATIC void
3350 xlog_state_want_sync(
3351 	struct xlog		*log,
3352 	struct xlog_in_core	*iclog)
3353 {
3354 	assert_spin_locked(&log->l_icloglock);
3355 
3356 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3357 		xlog_state_switch_iclogs(log, iclog, 0);
3358 	} else {
3359 		ASSERT(iclog->ic_state &
3360 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3361 	}
3362 }
3363 
3364 
3365 /*****************************************************************************
3366  *
3367  *		TICKET functions
3368  *
3369  *****************************************************************************
3370  */
3371 
3372 /*
3373  * Free a used ticket when its refcount falls to zero.
3374  */
3375 void
3376 xfs_log_ticket_put(
3377 	xlog_ticket_t	*ticket)
3378 {
3379 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3380 	if (atomic_dec_and_test(&ticket->t_ref))
3381 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3382 }
3383 
3384 xlog_ticket_t *
3385 xfs_log_ticket_get(
3386 	xlog_ticket_t	*ticket)
3387 {
3388 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3389 	atomic_inc(&ticket->t_ref);
3390 	return ticket;
3391 }
3392 
3393 /*
3394  * Allocate and initialise a new log ticket.
3395  */
3396 struct xlog_ticket *
3397 xlog_ticket_alloc(
3398 	struct xlog	*log,
3399 	int		unit_bytes,
3400 	int		cnt,
3401 	char		client,
3402 	bool		permanent,
3403 	xfs_km_flags_t	alloc_flags)
3404 {
3405 	struct xlog_ticket *tic;
3406 	uint		num_headers;
3407 	int		iclog_space;
3408 
3409 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3410 	if (!tic)
3411 		return NULL;
3412 
3413 	/*
3414 	 * Permanent reservations have up to 'cnt'-1 active log operations
3415 	 * in the log.  A unit in this case is the amount of space for one
3416 	 * of these log operations.  Normal reservations have a cnt of 1
3417 	 * and their unit amount is the total amount of space required.
3418 	 *
3419 	 * The following lines of code account for non-transaction data
3420 	 * which occupy space in the on-disk log.
3421 	 *
3422 	 * Normal form of a transaction is:
3423 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3424 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3425 	 *
3426 	 * We need to account for all the leadup data and trailer data
3427 	 * around the transaction data.
3428 	 * And then we need to account for the worst case in terms of using
3429 	 * more space.
3430 	 * The worst case will happen if:
3431 	 * - the placement of the transaction happens to be such that the
3432 	 *   roundoff is at its maximum
3433 	 * - the transaction data is synced before the commit record is synced
3434 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3435 	 *   Therefore the commit record is in its own Log Record.
3436 	 *   This can happen as the commit record is called with its
3437 	 *   own region to xlog_write().
3438 	 *   This then means that in the worst case, roundoff can happen for
3439 	 *   the commit-rec as well.
3440 	 *   The commit-rec is smaller than padding in this scenario and so it is
3441 	 *   not added separately.
3442 	 */
3443 
3444 	/* for trans header */
3445 	unit_bytes += sizeof(xlog_op_header_t);
3446 	unit_bytes += sizeof(xfs_trans_header_t);
3447 
3448 	/* for start-rec */
3449 	unit_bytes += sizeof(xlog_op_header_t);
3450 
3451 	/*
3452 	 * for LR headers - the space for data in an iclog is the size minus
3453 	 * the space used for the headers. If we use the iclog size, then we
3454 	 * undercalculate the number of headers required.
3455 	 *
3456 	 * Furthermore - the addition of op headers for split-recs might
3457 	 * increase the space required enough to require more log and op
3458 	 * headers, so take that into account too.
3459 	 *
3460 	 * IMPORTANT: This reservation makes the assumption that if this
3461 	 * transaction is the first in an iclog and hence has the LR headers
3462 	 * accounted to it, then the remaining space in the iclog is
3463 	 * exclusively for this transaction.  i.e. if the transaction is larger
3464 	 * than the iclog, it will be the only thing in that iclog.
3465 	 * Fundamentally, this means we must pass the entire log vector to
3466 	 * xlog_write to guarantee this.
3467 	 */
3468 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3469 	num_headers = howmany(unit_bytes, iclog_space);
3470 
3471 	/* for split-recs - ophdrs added when data split over LRs */
3472 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3473 
3474 	/* add extra header reservations if we overrun */
3475 	while (!num_headers ||
3476 	       howmany(unit_bytes, iclog_space) > num_headers) {
3477 		unit_bytes += sizeof(xlog_op_header_t);
3478 		num_headers++;
3479 	}
3480 	unit_bytes += log->l_iclog_hsize * num_headers;
3481 
3482 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3483 	unit_bytes += log->l_iclog_hsize;
3484 
3485 	/* for roundoff padding for transaction data and one for commit record */
3486 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3487 	    log->l_mp->m_sb.sb_logsunit > 1) {
3488 		/* log su roundoff */
3489 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3490 	} else {
3491 		/* BB roundoff */
3492 		unit_bytes += 2*BBSIZE;
3493         }
3494 
3495 	atomic_set(&tic->t_ref, 1);
3496 	tic->t_task		= current;
3497 	INIT_LIST_HEAD(&tic->t_queue);
3498 	tic->t_unit_res		= unit_bytes;
3499 	tic->t_curr_res		= unit_bytes;
3500 	tic->t_cnt		= cnt;
3501 	tic->t_ocnt		= cnt;
3502 	tic->t_tid		= prandom_u32();
3503 	tic->t_clientid		= client;
3504 	tic->t_flags		= XLOG_TIC_INITED;
3505 	tic->t_trans_type	= 0;
3506 	if (permanent)
3507 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3508 
3509 	xlog_tic_reset_res(tic);
3510 
3511 	return tic;
3512 }
3513 
3514 
3515 /******************************************************************************
3516  *
3517  *		Log debug routines
3518  *
3519  ******************************************************************************
3520  */
3521 #if defined(DEBUG)
3522 /*
3523  * Make sure that the destination ptr is within the valid data region of
3524  * one of the iclogs.  This uses backup pointers stored in a different
3525  * part of the log in case we trash the log structure.
3526  */
3527 void
3528 xlog_verify_dest_ptr(
3529 	struct xlog	*log,
3530 	char		*ptr)
3531 {
3532 	int i;
3533 	int good_ptr = 0;
3534 
3535 	for (i = 0; i < log->l_iclog_bufs; i++) {
3536 		if (ptr >= log->l_iclog_bak[i] &&
3537 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3538 			good_ptr++;
3539 	}
3540 
3541 	if (!good_ptr)
3542 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3543 }
3544 
3545 /*
3546  * Check to make sure the grant write head didn't just over lap the tail.  If
3547  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3548  * the cycles differ by exactly one and check the byte count.
3549  *
3550  * This check is run unlocked, so can give false positives. Rather than assert
3551  * on failures, use a warn-once flag and a panic tag to allow the admin to
3552  * determine if they want to panic the machine when such an error occurs. For
3553  * debug kernels this will have the same effect as using an assert but, unlinke
3554  * an assert, it can be turned off at runtime.
3555  */
3556 STATIC void
3557 xlog_verify_grant_tail(
3558 	struct xlog	*log)
3559 {
3560 	int		tail_cycle, tail_blocks;
3561 	int		cycle, space;
3562 
3563 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3564 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3565 	if (tail_cycle != cycle) {
3566 		if (cycle - 1 != tail_cycle &&
3567 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3568 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3569 				"%s: cycle - 1 != tail_cycle", __func__);
3570 			log->l_flags |= XLOG_TAIL_WARN;
3571 		}
3572 
3573 		if (space > BBTOB(tail_blocks) &&
3574 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3575 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3576 				"%s: space > BBTOB(tail_blocks)", __func__);
3577 			log->l_flags |= XLOG_TAIL_WARN;
3578 		}
3579 	}
3580 }
3581 
3582 /* check if it will fit */
3583 STATIC void
3584 xlog_verify_tail_lsn(
3585 	struct xlog		*log,
3586 	struct xlog_in_core	*iclog,
3587 	xfs_lsn_t		tail_lsn)
3588 {
3589     int blocks;
3590 
3591     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3592 	blocks =
3593 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3594 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3595 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3596     } else {
3597 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3598 
3599 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3600 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3601 
3602 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3603 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3604 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3605     }
3606 }	/* xlog_verify_tail_lsn */
3607 
3608 /*
3609  * Perform a number of checks on the iclog before writing to disk.
3610  *
3611  * 1. Make sure the iclogs are still circular
3612  * 2. Make sure we have a good magic number
3613  * 3. Make sure we don't have magic numbers in the data
3614  * 4. Check fields of each log operation header for:
3615  *	A. Valid client identifier
3616  *	B. tid ptr value falls in valid ptr space (user space code)
3617  *	C. Length in log record header is correct according to the
3618  *		individual operation headers within record.
3619  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3620  *	log, check the preceding blocks of the physical log to make sure all
3621  *	the cycle numbers agree with the current cycle number.
3622  */
3623 STATIC void
3624 xlog_verify_iclog(
3625 	struct xlog		*log,
3626 	struct xlog_in_core	*iclog,
3627 	int			count,
3628 	bool                    syncing)
3629 {
3630 	xlog_op_header_t	*ophead;
3631 	xlog_in_core_t		*icptr;
3632 	xlog_in_core_2_t	*xhdr;
3633 	xfs_caddr_t		ptr;
3634 	xfs_caddr_t		base_ptr;
3635 	__psint_t		field_offset;
3636 	__uint8_t		clientid;
3637 	int			len, i, j, k, op_len;
3638 	int			idx;
3639 
3640 	/* check validity of iclog pointers */
3641 	spin_lock(&log->l_icloglock);
3642 	icptr = log->l_iclog;
3643 	for (i=0; i < log->l_iclog_bufs; i++) {
3644 		if (icptr == NULL)
3645 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3646 		icptr = icptr->ic_next;
3647 	}
3648 	if (icptr != log->l_iclog)
3649 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3650 	spin_unlock(&log->l_icloglock);
3651 
3652 	/* check log magic numbers */
3653 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3654 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3655 
3656 	ptr = (xfs_caddr_t) &iclog->ic_header;
3657 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3658 	     ptr += BBSIZE) {
3659 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3660 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3661 				__func__);
3662 	}
3663 
3664 	/* check fields */
3665 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3666 	ptr = iclog->ic_datap;
3667 	base_ptr = ptr;
3668 	ophead = (xlog_op_header_t *)ptr;
3669 	xhdr = iclog->ic_data;
3670 	for (i = 0; i < len; i++) {
3671 		ophead = (xlog_op_header_t *)ptr;
3672 
3673 		/* clientid is only 1 byte */
3674 		field_offset = (__psint_t)
3675 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3676 		if (!syncing || (field_offset & 0x1ff)) {
3677 			clientid = ophead->oh_clientid;
3678 		} else {
3679 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3680 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3681 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3682 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3683 				clientid = xlog_get_client_id(
3684 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3685 			} else {
3686 				clientid = xlog_get_client_id(
3687 					iclog->ic_header.h_cycle_data[idx]);
3688 			}
3689 		}
3690 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3691 			xfs_warn(log->l_mp,
3692 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3693 				__func__, clientid, ophead,
3694 				(unsigned long)field_offset);
3695 
3696 		/* check length */
3697 		field_offset = (__psint_t)
3698 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3699 		if (!syncing || (field_offset & 0x1ff)) {
3700 			op_len = be32_to_cpu(ophead->oh_len);
3701 		} else {
3702 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3703 				    (__psint_t)iclog->ic_datap);
3704 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3705 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3706 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3707 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3708 			} else {
3709 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3710 			}
3711 		}
3712 		ptr += sizeof(xlog_op_header_t) + op_len;
3713 	}
3714 }	/* xlog_verify_iclog */
3715 #endif
3716 
3717 /*
3718  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3719  */
3720 STATIC int
3721 xlog_state_ioerror(
3722 	struct xlog	*log)
3723 {
3724 	xlog_in_core_t	*iclog, *ic;
3725 
3726 	iclog = log->l_iclog;
3727 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3728 		/*
3729 		 * Mark all the incore logs IOERROR.
3730 		 * From now on, no log flushes will result.
3731 		 */
3732 		ic = iclog;
3733 		do {
3734 			ic->ic_state = XLOG_STATE_IOERROR;
3735 			ic = ic->ic_next;
3736 		} while (ic != iclog);
3737 		return 0;
3738 	}
3739 	/*
3740 	 * Return non-zero, if state transition has already happened.
3741 	 */
3742 	return 1;
3743 }
3744 
3745 /*
3746  * This is called from xfs_force_shutdown, when we're forcibly
3747  * shutting down the filesystem, typically because of an IO error.
3748  * Our main objectives here are to make sure that:
3749  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3750  *	   parties to find out, 'atomically'.
3751  *	b. those who're sleeping on log reservations, pinned objects and
3752  *	    other resources get woken up, and be told the bad news.
3753  *	c. nothing new gets queued up after (a) and (b) are done.
3754  *	d. if !logerror, flush the iclogs to disk, then seal them off
3755  *	   for business.
3756  *
3757  * Note: for delayed logging the !logerror case needs to flush the regions
3758  * held in memory out to the iclogs before flushing them to disk. This needs
3759  * to be done before the log is marked as shutdown, otherwise the flush to the
3760  * iclogs will fail.
3761  */
3762 int
3763 xfs_log_force_umount(
3764 	struct xfs_mount	*mp,
3765 	int			logerror)
3766 {
3767 	struct xlog	*log;
3768 	int		retval;
3769 
3770 	log = mp->m_log;
3771 
3772 	/*
3773 	 * If this happens during log recovery, don't worry about
3774 	 * locking; the log isn't open for business yet.
3775 	 */
3776 	if (!log ||
3777 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3778 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3779 		if (mp->m_sb_bp)
3780 			XFS_BUF_DONE(mp->m_sb_bp);
3781 		return 0;
3782 	}
3783 
3784 	/*
3785 	 * Somebody could've already done the hard work for us.
3786 	 * No need to get locks for this.
3787 	 */
3788 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3789 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3790 		return 1;
3791 	}
3792 	retval = 0;
3793 
3794 	/*
3795 	 * Flush the in memory commit item list before marking the log as
3796 	 * being shut down. We need to do it in this order to ensure all the
3797 	 * completed transactions are flushed to disk with the xfs_log_force()
3798 	 * call below.
3799 	 */
3800 	if (!logerror)
3801 		xlog_cil_force(log);
3802 
3803 	/*
3804 	 * mark the filesystem and the as in a shutdown state and wake
3805 	 * everybody up to tell them the bad news.
3806 	 */
3807 	spin_lock(&log->l_icloglock);
3808 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3809 	if (mp->m_sb_bp)
3810 		XFS_BUF_DONE(mp->m_sb_bp);
3811 
3812 	/*
3813 	 * This flag is sort of redundant because of the mount flag, but
3814 	 * it's good to maintain the separation between the log and the rest
3815 	 * of XFS.
3816 	 */
3817 	log->l_flags |= XLOG_IO_ERROR;
3818 
3819 	/*
3820 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3821 	 * while we're still holding the loglock.
3822 	 */
3823 	if (logerror)
3824 		retval = xlog_state_ioerror(log);
3825 	spin_unlock(&log->l_icloglock);
3826 
3827 	/*
3828 	 * We don't want anybody waiting for log reservations after this. That
3829 	 * means we have to wake up everybody queued up on reserveq as well as
3830 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3831 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3832 	 * action is protected by the grant locks.
3833 	 */
3834 	xlog_grant_head_wake_all(&log->l_reserve_head);
3835 	xlog_grant_head_wake_all(&log->l_write_head);
3836 
3837 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3838 		ASSERT(!logerror);
3839 		/*
3840 		 * Force the incore logs to disk before shutting the
3841 		 * log down completely.
3842 		 */
3843 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3844 
3845 		spin_lock(&log->l_icloglock);
3846 		retval = xlog_state_ioerror(log);
3847 		spin_unlock(&log->l_icloglock);
3848 	}
3849 	/*
3850 	 * Wake up everybody waiting on xfs_log_force.
3851 	 * Callback all log item committed functions as if the
3852 	 * log writes were completed.
3853 	 */
3854 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3855 
3856 #ifdef XFSERRORDEBUG
3857 	{
3858 		xlog_in_core_t	*iclog;
3859 
3860 		spin_lock(&log->l_icloglock);
3861 		iclog = log->l_iclog;
3862 		do {
3863 			ASSERT(iclog->ic_callback == 0);
3864 			iclog = iclog->ic_next;
3865 		} while (iclog != log->l_iclog);
3866 		spin_unlock(&log->l_icloglock);
3867 	}
3868 #endif
3869 	/* return non-zero if log IOERROR transition had already happened */
3870 	return retval;
3871 }
3872 
3873 STATIC int
3874 xlog_iclogs_empty(
3875 	struct xlog	*log)
3876 {
3877 	xlog_in_core_t	*iclog;
3878 
3879 	iclog = log->l_iclog;
3880 	do {
3881 		/* endianness does not matter here, zero is zero in
3882 		 * any language.
3883 		 */
3884 		if (iclog->ic_header.h_num_logops)
3885 			return 0;
3886 		iclog = iclog->ic_next;
3887 	} while (iclog != log->l_iclog);
3888 	return 1;
3889 }
3890 
3891