1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_errortag.h" 26 #include "xfs_error.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_log.h" 30 #include "xfs_log_priv.h" 31 #include "xfs_log_recover.h" 32 #include "xfs_inode.h" 33 #include "xfs_trace.h" 34 #include "xfs_fsops.h" 35 #include "xfs_cksum.h" 36 #include "xfs_sysfs.h" 37 #include "xfs_sb.h" 38 39 kmem_zone_t *xfs_log_ticket_zone; 40 41 /* Local miscellaneous function prototypes */ 42 STATIC int 43 xlog_commit_record( 44 struct xlog *log, 45 struct xlog_ticket *ticket, 46 struct xlog_in_core **iclog, 47 xfs_lsn_t *commitlsnp); 48 49 STATIC struct xlog * 50 xlog_alloc_log( 51 struct xfs_mount *mp, 52 struct xfs_buftarg *log_target, 53 xfs_daddr_t blk_offset, 54 int num_bblks); 55 STATIC int 56 xlog_space_left( 57 struct xlog *log, 58 atomic64_t *head); 59 STATIC int 60 xlog_sync( 61 struct xlog *log, 62 struct xlog_in_core *iclog); 63 STATIC void 64 xlog_dealloc_log( 65 struct xlog *log); 66 67 /* local state machine functions */ 68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 69 STATIC void 70 xlog_state_do_callback( 71 struct xlog *log, 72 int aborted, 73 struct xlog_in_core *iclog); 74 STATIC int 75 xlog_state_get_iclog_space( 76 struct xlog *log, 77 int len, 78 struct xlog_in_core **iclog, 79 struct xlog_ticket *ticket, 80 int *continued_write, 81 int *logoffsetp); 82 STATIC int 83 xlog_state_release_iclog( 84 struct xlog *log, 85 struct xlog_in_core *iclog); 86 STATIC void 87 xlog_state_switch_iclogs( 88 struct xlog *log, 89 struct xlog_in_core *iclog, 90 int eventual_size); 91 STATIC void 92 xlog_state_want_sync( 93 struct xlog *log, 94 struct xlog_in_core *iclog); 95 96 STATIC void 97 xlog_grant_push_ail( 98 struct xlog *log, 99 int need_bytes); 100 STATIC void 101 xlog_regrant_reserve_log_space( 102 struct xlog *log, 103 struct xlog_ticket *ticket); 104 STATIC void 105 xlog_ungrant_log_space( 106 struct xlog *log, 107 struct xlog_ticket *ticket); 108 109 #if defined(DEBUG) 110 STATIC void 111 xlog_verify_dest_ptr( 112 struct xlog *log, 113 void *ptr); 114 STATIC void 115 xlog_verify_grant_tail( 116 struct xlog *log); 117 STATIC void 118 xlog_verify_iclog( 119 struct xlog *log, 120 struct xlog_in_core *iclog, 121 int count, 122 bool syncing); 123 STATIC void 124 xlog_verify_tail_lsn( 125 struct xlog *log, 126 struct xlog_in_core *iclog, 127 xfs_lsn_t tail_lsn); 128 #else 129 #define xlog_verify_dest_ptr(a,b) 130 #define xlog_verify_grant_tail(a) 131 #define xlog_verify_iclog(a,b,c,d) 132 #define xlog_verify_tail_lsn(a,b,c) 133 #endif 134 135 STATIC int 136 xlog_iclogs_empty( 137 struct xlog *log); 138 139 static void 140 xlog_grant_sub_space( 141 struct xlog *log, 142 atomic64_t *head, 143 int bytes) 144 { 145 int64_t head_val = atomic64_read(head); 146 int64_t new, old; 147 148 do { 149 int cycle, space; 150 151 xlog_crack_grant_head_val(head_val, &cycle, &space); 152 153 space -= bytes; 154 if (space < 0) { 155 space += log->l_logsize; 156 cycle--; 157 } 158 159 old = head_val; 160 new = xlog_assign_grant_head_val(cycle, space); 161 head_val = atomic64_cmpxchg(head, old, new); 162 } while (head_val != old); 163 } 164 165 static void 166 xlog_grant_add_space( 167 struct xlog *log, 168 atomic64_t *head, 169 int bytes) 170 { 171 int64_t head_val = atomic64_read(head); 172 int64_t new, old; 173 174 do { 175 int tmp; 176 int cycle, space; 177 178 xlog_crack_grant_head_val(head_val, &cycle, &space); 179 180 tmp = log->l_logsize - space; 181 if (tmp > bytes) 182 space += bytes; 183 else { 184 space = bytes - tmp; 185 cycle++; 186 } 187 188 old = head_val; 189 new = xlog_assign_grant_head_val(cycle, space); 190 head_val = atomic64_cmpxchg(head, old, new); 191 } while (head_val != old); 192 } 193 194 STATIC void 195 xlog_grant_head_init( 196 struct xlog_grant_head *head) 197 { 198 xlog_assign_grant_head(&head->grant, 1, 0); 199 INIT_LIST_HEAD(&head->waiters); 200 spin_lock_init(&head->lock); 201 } 202 203 STATIC void 204 xlog_grant_head_wake_all( 205 struct xlog_grant_head *head) 206 { 207 struct xlog_ticket *tic; 208 209 spin_lock(&head->lock); 210 list_for_each_entry(tic, &head->waiters, t_queue) 211 wake_up_process(tic->t_task); 212 spin_unlock(&head->lock); 213 } 214 215 static inline int 216 xlog_ticket_reservation( 217 struct xlog *log, 218 struct xlog_grant_head *head, 219 struct xlog_ticket *tic) 220 { 221 if (head == &log->l_write_head) { 222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 223 return tic->t_unit_res; 224 } else { 225 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 226 return tic->t_unit_res * tic->t_cnt; 227 else 228 return tic->t_unit_res; 229 } 230 } 231 232 STATIC bool 233 xlog_grant_head_wake( 234 struct xlog *log, 235 struct xlog_grant_head *head, 236 int *free_bytes) 237 { 238 struct xlog_ticket *tic; 239 int need_bytes; 240 241 list_for_each_entry(tic, &head->waiters, t_queue) { 242 need_bytes = xlog_ticket_reservation(log, head, tic); 243 if (*free_bytes < need_bytes) 244 return false; 245 246 *free_bytes -= need_bytes; 247 trace_xfs_log_grant_wake_up(log, tic); 248 wake_up_process(tic->t_task); 249 } 250 251 return true; 252 } 253 254 STATIC int 255 xlog_grant_head_wait( 256 struct xlog *log, 257 struct xlog_grant_head *head, 258 struct xlog_ticket *tic, 259 int need_bytes) __releases(&head->lock) 260 __acquires(&head->lock) 261 { 262 list_add_tail(&tic->t_queue, &head->waiters); 263 264 do { 265 if (XLOG_FORCED_SHUTDOWN(log)) 266 goto shutdown; 267 xlog_grant_push_ail(log, need_bytes); 268 269 __set_current_state(TASK_UNINTERRUPTIBLE); 270 spin_unlock(&head->lock); 271 272 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 273 274 trace_xfs_log_grant_sleep(log, tic); 275 schedule(); 276 trace_xfs_log_grant_wake(log, tic); 277 278 spin_lock(&head->lock); 279 if (XLOG_FORCED_SHUTDOWN(log)) 280 goto shutdown; 281 } while (xlog_space_left(log, &head->grant) < need_bytes); 282 283 list_del_init(&tic->t_queue); 284 return 0; 285 shutdown: 286 list_del_init(&tic->t_queue); 287 return -EIO; 288 } 289 290 /* 291 * Atomically get the log space required for a log ticket. 292 * 293 * Once a ticket gets put onto head->waiters, it will only return after the 294 * needed reservation is satisfied. 295 * 296 * This function is structured so that it has a lock free fast path. This is 297 * necessary because every new transaction reservation will come through this 298 * path. Hence any lock will be globally hot if we take it unconditionally on 299 * every pass. 300 * 301 * As tickets are only ever moved on and off head->waiters under head->lock, we 302 * only need to take that lock if we are going to add the ticket to the queue 303 * and sleep. We can avoid taking the lock if the ticket was never added to 304 * head->waiters because the t_queue list head will be empty and we hold the 305 * only reference to it so it can safely be checked unlocked. 306 */ 307 STATIC int 308 xlog_grant_head_check( 309 struct xlog *log, 310 struct xlog_grant_head *head, 311 struct xlog_ticket *tic, 312 int *need_bytes) 313 { 314 int free_bytes; 315 int error = 0; 316 317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 318 319 /* 320 * If there are other waiters on the queue then give them a chance at 321 * logspace before us. Wake up the first waiters, if we do not wake 322 * up all the waiters then go to sleep waiting for more free space, 323 * otherwise try to get some space for this transaction. 324 */ 325 *need_bytes = xlog_ticket_reservation(log, head, tic); 326 free_bytes = xlog_space_left(log, &head->grant); 327 if (!list_empty_careful(&head->waiters)) { 328 spin_lock(&head->lock); 329 if (!xlog_grant_head_wake(log, head, &free_bytes) || 330 free_bytes < *need_bytes) { 331 error = xlog_grant_head_wait(log, head, tic, 332 *need_bytes); 333 } 334 spin_unlock(&head->lock); 335 } else if (free_bytes < *need_bytes) { 336 spin_lock(&head->lock); 337 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 338 spin_unlock(&head->lock); 339 } 340 341 return error; 342 } 343 344 static void 345 xlog_tic_reset_res(xlog_ticket_t *tic) 346 { 347 tic->t_res_num = 0; 348 tic->t_res_arr_sum = 0; 349 tic->t_res_num_ophdrs = 0; 350 } 351 352 static void 353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 354 { 355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 356 /* add to overflow and start again */ 357 tic->t_res_o_flow += tic->t_res_arr_sum; 358 tic->t_res_num = 0; 359 tic->t_res_arr_sum = 0; 360 } 361 362 tic->t_res_arr[tic->t_res_num].r_len = len; 363 tic->t_res_arr[tic->t_res_num].r_type = type; 364 tic->t_res_arr_sum += len; 365 tic->t_res_num++; 366 } 367 368 /* 369 * Replenish the byte reservation required by moving the grant write head. 370 */ 371 int 372 xfs_log_regrant( 373 struct xfs_mount *mp, 374 struct xlog_ticket *tic) 375 { 376 struct xlog *log = mp->m_log; 377 int need_bytes; 378 int error = 0; 379 380 if (XLOG_FORCED_SHUTDOWN(log)) 381 return -EIO; 382 383 XFS_STATS_INC(mp, xs_try_logspace); 384 385 /* 386 * This is a new transaction on the ticket, so we need to change the 387 * transaction ID so that the next transaction has a different TID in 388 * the log. Just add one to the existing tid so that we can see chains 389 * of rolling transactions in the log easily. 390 */ 391 tic->t_tid++; 392 393 xlog_grant_push_ail(log, tic->t_unit_res); 394 395 tic->t_curr_res = tic->t_unit_res; 396 xlog_tic_reset_res(tic); 397 398 if (tic->t_cnt > 0) 399 return 0; 400 401 trace_xfs_log_regrant(log, tic); 402 403 error = xlog_grant_head_check(log, &log->l_write_head, tic, 404 &need_bytes); 405 if (error) 406 goto out_error; 407 408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 409 trace_xfs_log_regrant_exit(log, tic); 410 xlog_verify_grant_tail(log); 411 return 0; 412 413 out_error: 414 /* 415 * If we are failing, make sure the ticket doesn't have any current 416 * reservations. We don't want to add this back when the ticket/ 417 * transaction gets cancelled. 418 */ 419 tic->t_curr_res = 0; 420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 421 return error; 422 } 423 424 /* 425 * Reserve log space and return a ticket corresponding the reservation. 426 * 427 * Each reservation is going to reserve extra space for a log record header. 428 * When writes happen to the on-disk log, we don't subtract the length of the 429 * log record header from any reservation. By wasting space in each 430 * reservation, we prevent over allocation problems. 431 */ 432 int 433 xfs_log_reserve( 434 struct xfs_mount *mp, 435 int unit_bytes, 436 int cnt, 437 struct xlog_ticket **ticp, 438 uint8_t client, 439 bool permanent) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return -EIO; 450 451 XFS_STATS_INC(mp, xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return -ENOMEM; 458 459 *ticp = tic; 460 461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 462 : tic->t_unit_res); 463 464 trace_xfs_log_reserve(log, tic); 465 466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 467 &need_bytes); 468 if (error) 469 goto out_error; 470 471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 473 trace_xfs_log_reserve_exit(log, tic); 474 xlog_verify_grant_tail(log); 475 return 0; 476 477 out_error: 478 /* 479 * If we are failing, make sure the ticket doesn't have any current 480 * reservations. We don't want to add this back when the ticket/ 481 * transaction gets cancelled. 482 */ 483 tic->t_curr_res = 0; 484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 485 return error; 486 } 487 488 489 /* 490 * NOTES: 491 * 492 * 1. currblock field gets updated at startup and after in-core logs 493 * marked as with WANT_SYNC. 494 */ 495 496 /* 497 * This routine is called when a user of a log manager ticket is done with 498 * the reservation. If the ticket was ever used, then a commit record for 499 * the associated transaction is written out as a log operation header with 500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 501 * a given ticket. If the ticket was one with a permanent reservation, then 502 * a few operations are done differently. Permanent reservation tickets by 503 * default don't release the reservation. They just commit the current 504 * transaction with the belief that the reservation is still needed. A flag 505 * must be passed in before permanent reservations are actually released. 506 * When these type of tickets are not released, they need to be set into 507 * the inited state again. By doing this, a start record will be written 508 * out when the next write occurs. 509 */ 510 xfs_lsn_t 511 xfs_log_done( 512 struct xfs_mount *mp, 513 struct xlog_ticket *ticket, 514 struct xlog_in_core **iclog, 515 bool regrant) 516 { 517 struct xlog *log = mp->m_log; 518 xfs_lsn_t lsn = 0; 519 520 if (XLOG_FORCED_SHUTDOWN(log) || 521 /* 522 * If nothing was ever written, don't write out commit record. 523 * If we get an error, just continue and give back the log ticket. 524 */ 525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 527 lsn = (xfs_lsn_t) -1; 528 regrant = false; 529 } 530 531 532 if (!regrant) { 533 trace_xfs_log_done_nonperm(log, ticket); 534 535 /* 536 * Release ticket if not permanent reservation or a specific 537 * request has been made to release a permanent reservation. 538 */ 539 xlog_ungrant_log_space(log, ticket); 540 } else { 541 trace_xfs_log_done_perm(log, ticket); 542 543 xlog_regrant_reserve_log_space(log, ticket); 544 /* If this ticket was a permanent reservation and we aren't 545 * trying to release it, reset the inited flags; so next time 546 * we write, a start record will be written out. 547 */ 548 ticket->t_flags |= XLOG_TIC_INITED; 549 } 550 551 xfs_log_ticket_put(ticket); 552 return lsn; 553 } 554 555 /* 556 * Attaches a new iclog I/O completion callback routine during 557 * transaction commit. If the log is in error state, a non-zero 558 * return code is handed back and the caller is responsible for 559 * executing the callback at an appropriate time. 560 */ 561 int 562 xfs_log_notify( 563 struct xfs_mount *mp, 564 struct xlog_in_core *iclog, 565 xfs_log_callback_t *cb) 566 { 567 int abortflg; 568 569 spin_lock(&iclog->ic_callback_lock); 570 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 571 if (!abortflg) { 572 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 573 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 574 cb->cb_next = NULL; 575 *(iclog->ic_callback_tail) = cb; 576 iclog->ic_callback_tail = &(cb->cb_next); 577 } 578 spin_unlock(&iclog->ic_callback_lock); 579 return abortflg; 580 } 581 582 int 583 xfs_log_release_iclog( 584 struct xfs_mount *mp, 585 struct xlog_in_core *iclog) 586 { 587 if (xlog_state_release_iclog(mp->m_log, iclog)) { 588 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 589 return -EIO; 590 } 591 592 return 0; 593 } 594 595 /* 596 * Mount a log filesystem 597 * 598 * mp - ubiquitous xfs mount point structure 599 * log_target - buftarg of on-disk log device 600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 601 * num_bblocks - Number of BBSIZE blocks in on-disk log 602 * 603 * Return error or zero. 604 */ 605 int 606 xfs_log_mount( 607 xfs_mount_t *mp, 608 xfs_buftarg_t *log_target, 609 xfs_daddr_t blk_offset, 610 int num_bblks) 611 { 612 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 613 int error = 0; 614 int min_logfsbs; 615 616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 617 xfs_notice(mp, "Mounting V%d Filesystem", 618 XFS_SB_VERSION_NUM(&mp->m_sb)); 619 } else { 620 xfs_notice(mp, 621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 622 XFS_SB_VERSION_NUM(&mp->m_sb)); 623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 624 } 625 626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 627 if (IS_ERR(mp->m_log)) { 628 error = PTR_ERR(mp->m_log); 629 goto out; 630 } 631 632 /* 633 * Validate the given log space and drop a critical message via syslog 634 * if the log size is too small that would lead to some unexpected 635 * situations in transaction log space reservation stage. 636 * 637 * Note: we can't just reject the mount if the validation fails. This 638 * would mean that people would have to downgrade their kernel just to 639 * remedy the situation as there is no way to grow the log (short of 640 * black magic surgery with xfs_db). 641 * 642 * We can, however, reject mounts for CRC format filesystems, as the 643 * mkfs binary being used to make the filesystem should never create a 644 * filesystem with a log that is too small. 645 */ 646 min_logfsbs = xfs_log_calc_minimum_size(mp); 647 648 if (mp->m_sb.sb_logblocks < min_logfsbs) { 649 xfs_warn(mp, 650 "Log size %d blocks too small, minimum size is %d blocks", 651 mp->m_sb.sb_logblocks, min_logfsbs); 652 error = -EINVAL; 653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 654 xfs_warn(mp, 655 "Log size %d blocks too large, maximum size is %lld blocks", 656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 657 error = -EINVAL; 658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 659 xfs_warn(mp, 660 "log size %lld bytes too large, maximum size is %lld bytes", 661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 662 XFS_MAX_LOG_BYTES); 663 error = -EINVAL; 664 } else if (mp->m_sb.sb_logsunit > 1 && 665 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 666 xfs_warn(mp, 667 "log stripe unit %u bytes must be a multiple of block size", 668 mp->m_sb.sb_logsunit); 669 error = -EINVAL; 670 fatal = true; 671 } 672 if (error) { 673 /* 674 * Log check errors are always fatal on v5; or whenever bad 675 * metadata leads to a crash. 676 */ 677 if (fatal) { 678 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 679 ASSERT(0); 680 goto out_free_log; 681 } 682 xfs_crit(mp, "Log size out of supported range."); 683 xfs_crit(mp, 684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 685 } 686 687 /* 688 * Initialize the AIL now we have a log. 689 */ 690 error = xfs_trans_ail_init(mp); 691 if (error) { 692 xfs_warn(mp, "AIL initialisation failed: error %d", error); 693 goto out_free_log; 694 } 695 mp->m_log->l_ailp = mp->m_ail; 696 697 /* 698 * skip log recovery on a norecovery mount. pretend it all 699 * just worked. 700 */ 701 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 702 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 703 704 if (readonly) 705 mp->m_flags &= ~XFS_MOUNT_RDONLY; 706 707 error = xlog_recover(mp->m_log); 708 709 if (readonly) 710 mp->m_flags |= XFS_MOUNT_RDONLY; 711 if (error) { 712 xfs_warn(mp, "log mount/recovery failed: error %d", 713 error); 714 xlog_recover_cancel(mp->m_log); 715 goto out_destroy_ail; 716 } 717 } 718 719 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 720 "log"); 721 if (error) 722 goto out_destroy_ail; 723 724 /* Normal transactions can now occur */ 725 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 726 727 /* 728 * Now the log has been fully initialised and we know were our 729 * space grant counters are, we can initialise the permanent ticket 730 * needed for delayed logging to work. 731 */ 732 xlog_cil_init_post_recovery(mp->m_log); 733 734 return 0; 735 736 out_destroy_ail: 737 xfs_trans_ail_destroy(mp); 738 out_free_log: 739 xlog_dealloc_log(mp->m_log); 740 out: 741 return error; 742 } 743 744 /* 745 * Finish the recovery of the file system. This is separate from the 746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 748 * here. 749 * 750 * If we finish recovery successfully, start the background log work. If we are 751 * not doing recovery, then we have a RO filesystem and we don't need to start 752 * it. 753 */ 754 int 755 xfs_log_mount_finish( 756 struct xfs_mount *mp) 757 { 758 int error = 0; 759 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 760 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 761 762 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 763 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 764 return 0; 765 } else if (readonly) { 766 /* Allow unlinked processing to proceed */ 767 mp->m_flags &= ~XFS_MOUNT_RDONLY; 768 } 769 770 /* 771 * During the second phase of log recovery, we need iget and 772 * iput to behave like they do for an active filesystem. 773 * xfs_fs_drop_inode needs to be able to prevent the deletion 774 * of inodes before we're done replaying log items on those 775 * inodes. Turn it off immediately after recovery finishes 776 * so that we don't leak the quota inodes if subsequent mount 777 * activities fail. 778 * 779 * We let all inodes involved in redo item processing end up on 780 * the LRU instead of being evicted immediately so that if we do 781 * something to an unlinked inode, the irele won't cause 782 * premature truncation and freeing of the inode, which results 783 * in log recovery failure. We have to evict the unreferenced 784 * lru inodes after clearing SB_ACTIVE because we don't 785 * otherwise clean up the lru if there's a subsequent failure in 786 * xfs_mountfs, which leads to us leaking the inodes if nothing 787 * else (e.g. quotacheck) references the inodes before the 788 * mount failure occurs. 789 */ 790 mp->m_super->s_flags |= SB_ACTIVE; 791 error = xlog_recover_finish(mp->m_log); 792 if (!error) 793 xfs_log_work_queue(mp); 794 mp->m_super->s_flags &= ~SB_ACTIVE; 795 evict_inodes(mp->m_super); 796 797 /* 798 * Drain the buffer LRU after log recovery. This is required for v4 799 * filesystems to avoid leaving around buffers with NULL verifier ops, 800 * but we do it unconditionally to make sure we're always in a clean 801 * cache state after mount. 802 * 803 * Don't push in the error case because the AIL may have pending intents 804 * that aren't removed until recovery is cancelled. 805 */ 806 if (!error && recovered) { 807 xfs_log_force(mp, XFS_LOG_SYNC); 808 xfs_ail_push_all_sync(mp->m_ail); 809 } 810 xfs_wait_buftarg(mp->m_ddev_targp); 811 812 if (readonly) 813 mp->m_flags |= XFS_MOUNT_RDONLY; 814 815 return error; 816 } 817 818 /* 819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 820 * the log. 821 */ 822 int 823 xfs_log_mount_cancel( 824 struct xfs_mount *mp) 825 { 826 int error; 827 828 error = xlog_recover_cancel(mp->m_log); 829 xfs_log_unmount(mp); 830 831 return error; 832 } 833 834 /* 835 * Final log writes as part of unmount. 836 * 837 * Mark the filesystem clean as unmount happens. Note that during relocation 838 * this routine needs to be executed as part of source-bag while the 839 * deallocation must not be done until source-end. 840 */ 841 842 /* 843 * Unmount record used to have a string "Unmount filesystem--" in the 844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 845 * We just write the magic number now since that particular field isn't 846 * currently architecture converted and "Unmount" is a bit foo. 847 * As far as I know, there weren't any dependencies on the old behaviour. 848 */ 849 850 static int 851 xfs_log_unmount_write(xfs_mount_t *mp) 852 { 853 struct xlog *log = mp->m_log; 854 xlog_in_core_t *iclog; 855 #ifdef DEBUG 856 xlog_in_core_t *first_iclog; 857 #endif 858 xlog_ticket_t *tic = NULL; 859 xfs_lsn_t lsn; 860 int error; 861 862 /* 863 * Don't write out unmount record on norecovery mounts or ro devices. 864 * Or, if we are doing a forced umount (typically because of IO errors). 865 */ 866 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 867 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 868 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 869 return 0; 870 } 871 872 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 873 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 874 875 #ifdef DEBUG 876 first_iclog = iclog = log->l_iclog; 877 do { 878 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 879 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 880 ASSERT(iclog->ic_offset == 0); 881 } 882 iclog = iclog->ic_next; 883 } while (iclog != first_iclog); 884 #endif 885 if (! (XLOG_FORCED_SHUTDOWN(log))) { 886 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 887 if (!error) { 888 /* the data section must be 32 bit size aligned */ 889 struct { 890 uint16_t magic; 891 uint16_t pad1; 892 uint32_t pad2; /* may as well make it 64 bits */ 893 } magic = { 894 .magic = XLOG_UNMOUNT_TYPE, 895 }; 896 struct xfs_log_iovec reg = { 897 .i_addr = &magic, 898 .i_len = sizeof(magic), 899 .i_type = XLOG_REG_TYPE_UNMOUNT, 900 }; 901 struct xfs_log_vec vec = { 902 .lv_niovecs = 1, 903 .lv_iovecp = ®, 904 }; 905 906 /* remove inited flag, and account for space used */ 907 tic->t_flags = 0; 908 tic->t_curr_res -= sizeof(magic); 909 error = xlog_write(log, &vec, tic, &lsn, 910 NULL, XLOG_UNMOUNT_TRANS); 911 /* 912 * At this point, we're umounting anyway, 913 * so there's no point in transitioning log state 914 * to IOERROR. Just continue... 915 */ 916 } 917 918 if (error) 919 xfs_alert(mp, "%s: unmount record failed", __func__); 920 921 922 spin_lock(&log->l_icloglock); 923 iclog = log->l_iclog; 924 atomic_inc(&iclog->ic_refcnt); 925 xlog_state_want_sync(log, iclog); 926 spin_unlock(&log->l_icloglock); 927 error = xlog_state_release_iclog(log, iclog); 928 929 spin_lock(&log->l_icloglock); 930 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 931 iclog->ic_state == XLOG_STATE_DIRTY)) { 932 if (!XLOG_FORCED_SHUTDOWN(log)) { 933 xlog_wait(&iclog->ic_force_wait, 934 &log->l_icloglock); 935 } else { 936 spin_unlock(&log->l_icloglock); 937 } 938 } else { 939 spin_unlock(&log->l_icloglock); 940 } 941 if (tic) { 942 trace_xfs_log_umount_write(log, tic); 943 xlog_ungrant_log_space(log, tic); 944 xfs_log_ticket_put(tic); 945 } 946 } else { 947 /* 948 * We're already in forced_shutdown mode, couldn't 949 * even attempt to write out the unmount transaction. 950 * 951 * Go through the motions of sync'ing and releasing 952 * the iclog, even though no I/O will actually happen, 953 * we need to wait for other log I/Os that may already 954 * be in progress. Do this as a separate section of 955 * code so we'll know if we ever get stuck here that 956 * we're in this odd situation of trying to unmount 957 * a file system that went into forced_shutdown as 958 * the result of an unmount.. 959 */ 960 spin_lock(&log->l_icloglock); 961 iclog = log->l_iclog; 962 atomic_inc(&iclog->ic_refcnt); 963 964 xlog_state_want_sync(log, iclog); 965 spin_unlock(&log->l_icloglock); 966 error = xlog_state_release_iclog(log, iclog); 967 968 spin_lock(&log->l_icloglock); 969 970 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 971 || iclog->ic_state == XLOG_STATE_DIRTY 972 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 973 974 xlog_wait(&iclog->ic_force_wait, 975 &log->l_icloglock); 976 } else { 977 spin_unlock(&log->l_icloglock); 978 } 979 } 980 981 return error; 982 } /* xfs_log_unmount_write */ 983 984 /* 985 * Empty the log for unmount/freeze. 986 * 987 * To do this, we first need to shut down the background log work so it is not 988 * trying to cover the log as we clean up. We then need to unpin all objects in 989 * the log so we can then flush them out. Once they have completed their IO and 990 * run the callbacks removing themselves from the AIL, we can write the unmount 991 * record. 992 */ 993 void 994 xfs_log_quiesce( 995 struct xfs_mount *mp) 996 { 997 cancel_delayed_work_sync(&mp->m_log->l_work); 998 xfs_log_force(mp, XFS_LOG_SYNC); 999 1000 /* 1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1002 * will push it, xfs_wait_buftarg() will not wait for it. Further, 1003 * xfs_buf_iowait() cannot be used because it was pushed with the 1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1005 * the IO to complete. 1006 */ 1007 xfs_ail_push_all_sync(mp->m_ail); 1008 xfs_wait_buftarg(mp->m_ddev_targp); 1009 xfs_buf_lock(mp->m_sb_bp); 1010 xfs_buf_unlock(mp->m_sb_bp); 1011 1012 xfs_log_unmount_write(mp); 1013 } 1014 1015 /* 1016 * Shut down and release the AIL and Log. 1017 * 1018 * During unmount, we need to ensure we flush all the dirty metadata objects 1019 * from the AIL so that the log is empty before we write the unmount record to 1020 * the log. Once this is done, we can tear down the AIL and the log. 1021 */ 1022 void 1023 xfs_log_unmount( 1024 struct xfs_mount *mp) 1025 { 1026 xfs_log_quiesce(mp); 1027 1028 xfs_trans_ail_destroy(mp); 1029 1030 xfs_sysfs_del(&mp->m_log->l_kobj); 1031 1032 xlog_dealloc_log(mp->m_log); 1033 } 1034 1035 void 1036 xfs_log_item_init( 1037 struct xfs_mount *mp, 1038 struct xfs_log_item *item, 1039 int type, 1040 const struct xfs_item_ops *ops) 1041 { 1042 item->li_mountp = mp; 1043 item->li_ailp = mp->m_ail; 1044 item->li_type = type; 1045 item->li_ops = ops; 1046 item->li_lv = NULL; 1047 1048 INIT_LIST_HEAD(&item->li_ail); 1049 INIT_LIST_HEAD(&item->li_cil); 1050 INIT_LIST_HEAD(&item->li_bio_list); 1051 } 1052 1053 /* 1054 * Wake up processes waiting for log space after we have moved the log tail. 1055 */ 1056 void 1057 xfs_log_space_wake( 1058 struct xfs_mount *mp) 1059 { 1060 struct xlog *log = mp->m_log; 1061 int free_bytes; 1062 1063 if (XLOG_FORCED_SHUTDOWN(log)) 1064 return; 1065 1066 if (!list_empty_careful(&log->l_write_head.waiters)) { 1067 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1068 1069 spin_lock(&log->l_write_head.lock); 1070 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1071 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1072 spin_unlock(&log->l_write_head.lock); 1073 } 1074 1075 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1076 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1077 1078 spin_lock(&log->l_reserve_head.lock); 1079 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1080 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1081 spin_unlock(&log->l_reserve_head.lock); 1082 } 1083 } 1084 1085 /* 1086 * Determine if we have a transaction that has gone to disk that needs to be 1087 * covered. To begin the transition to the idle state firstly the log needs to 1088 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1089 * we start attempting to cover the log. 1090 * 1091 * Only if we are then in a state where covering is needed, the caller is 1092 * informed that dummy transactions are required to move the log into the idle 1093 * state. 1094 * 1095 * If there are any items in the AIl or CIL, then we do not want to attempt to 1096 * cover the log as we may be in a situation where there isn't log space 1097 * available to run a dummy transaction and this can lead to deadlocks when the 1098 * tail of the log is pinned by an item that is modified in the CIL. Hence 1099 * there's no point in running a dummy transaction at this point because we 1100 * can't start trying to idle the log until both the CIL and AIL are empty. 1101 */ 1102 static int 1103 xfs_log_need_covered(xfs_mount_t *mp) 1104 { 1105 struct xlog *log = mp->m_log; 1106 int needed = 0; 1107 1108 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1109 return 0; 1110 1111 if (!xlog_cil_empty(log)) 1112 return 0; 1113 1114 spin_lock(&log->l_icloglock); 1115 switch (log->l_covered_state) { 1116 case XLOG_STATE_COVER_DONE: 1117 case XLOG_STATE_COVER_DONE2: 1118 case XLOG_STATE_COVER_IDLE: 1119 break; 1120 case XLOG_STATE_COVER_NEED: 1121 case XLOG_STATE_COVER_NEED2: 1122 if (xfs_ail_min_lsn(log->l_ailp)) 1123 break; 1124 if (!xlog_iclogs_empty(log)) 1125 break; 1126 1127 needed = 1; 1128 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1129 log->l_covered_state = XLOG_STATE_COVER_DONE; 1130 else 1131 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1132 break; 1133 default: 1134 needed = 1; 1135 break; 1136 } 1137 spin_unlock(&log->l_icloglock); 1138 return needed; 1139 } 1140 1141 /* 1142 * We may be holding the log iclog lock upon entering this routine. 1143 */ 1144 xfs_lsn_t 1145 xlog_assign_tail_lsn_locked( 1146 struct xfs_mount *mp) 1147 { 1148 struct xlog *log = mp->m_log; 1149 struct xfs_log_item *lip; 1150 xfs_lsn_t tail_lsn; 1151 1152 assert_spin_locked(&mp->m_ail->xa_lock); 1153 1154 /* 1155 * To make sure we always have a valid LSN for the log tail we keep 1156 * track of the last LSN which was committed in log->l_last_sync_lsn, 1157 * and use that when the AIL was empty. 1158 */ 1159 lip = xfs_ail_min(mp->m_ail); 1160 if (lip) 1161 tail_lsn = lip->li_lsn; 1162 else 1163 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1164 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1165 atomic64_set(&log->l_tail_lsn, tail_lsn); 1166 return tail_lsn; 1167 } 1168 1169 xfs_lsn_t 1170 xlog_assign_tail_lsn( 1171 struct xfs_mount *mp) 1172 { 1173 xfs_lsn_t tail_lsn; 1174 1175 spin_lock(&mp->m_ail->xa_lock); 1176 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1177 spin_unlock(&mp->m_ail->xa_lock); 1178 1179 return tail_lsn; 1180 } 1181 1182 /* 1183 * Return the space in the log between the tail and the head. The head 1184 * is passed in the cycle/bytes formal parms. In the special case where 1185 * the reserve head has wrapped passed the tail, this calculation is no 1186 * longer valid. In this case, just return 0 which means there is no space 1187 * in the log. This works for all places where this function is called 1188 * with the reserve head. Of course, if the write head were to ever 1189 * wrap the tail, we should blow up. Rather than catch this case here, 1190 * we depend on other ASSERTions in other parts of the code. XXXmiken 1191 * 1192 * This code also handles the case where the reservation head is behind 1193 * the tail. The details of this case are described below, but the end 1194 * result is that we return the size of the log as the amount of space left. 1195 */ 1196 STATIC int 1197 xlog_space_left( 1198 struct xlog *log, 1199 atomic64_t *head) 1200 { 1201 int free_bytes; 1202 int tail_bytes; 1203 int tail_cycle; 1204 int head_cycle; 1205 int head_bytes; 1206 1207 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1208 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1209 tail_bytes = BBTOB(tail_bytes); 1210 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1211 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1212 else if (tail_cycle + 1 < head_cycle) 1213 return 0; 1214 else if (tail_cycle < head_cycle) { 1215 ASSERT(tail_cycle == (head_cycle - 1)); 1216 free_bytes = tail_bytes - head_bytes; 1217 } else { 1218 /* 1219 * The reservation head is behind the tail. 1220 * In this case we just want to return the size of the 1221 * log as the amount of space left. 1222 */ 1223 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1224 xfs_alert(log->l_mp, 1225 " tail_cycle = %d, tail_bytes = %d", 1226 tail_cycle, tail_bytes); 1227 xfs_alert(log->l_mp, 1228 " GH cycle = %d, GH bytes = %d", 1229 head_cycle, head_bytes); 1230 ASSERT(0); 1231 free_bytes = log->l_logsize; 1232 } 1233 return free_bytes; 1234 } 1235 1236 1237 /* 1238 * Log function which is called when an io completes. 1239 * 1240 * The log manager needs its own routine, in order to control what 1241 * happens with the buffer after the write completes. 1242 */ 1243 static void 1244 xlog_iodone(xfs_buf_t *bp) 1245 { 1246 struct xlog_in_core *iclog = bp->b_log_item; 1247 struct xlog *l = iclog->ic_log; 1248 int aborted = 0; 1249 1250 /* 1251 * Race to shutdown the filesystem if we see an error or the iclog is in 1252 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1253 * CRC errors into log recovery. 1254 */ 1255 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1256 iclog->ic_state & XLOG_STATE_IOABORT) { 1257 if (iclog->ic_state & XLOG_STATE_IOABORT) 1258 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1259 1260 xfs_buf_ioerror_alert(bp, __func__); 1261 xfs_buf_stale(bp); 1262 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1263 /* 1264 * This flag will be propagated to the trans-committed 1265 * callback routines to let them know that the log-commit 1266 * didn't succeed. 1267 */ 1268 aborted = XFS_LI_ABORTED; 1269 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1270 aborted = XFS_LI_ABORTED; 1271 } 1272 1273 /* log I/O is always issued ASYNC */ 1274 ASSERT(bp->b_flags & XBF_ASYNC); 1275 xlog_state_done_syncing(iclog, aborted); 1276 1277 /* 1278 * drop the buffer lock now that we are done. Nothing references 1279 * the buffer after this, so an unmount waiting on this lock can now 1280 * tear it down safely. As such, it is unsafe to reference the buffer 1281 * (bp) after the unlock as we could race with it being freed. 1282 */ 1283 xfs_buf_unlock(bp); 1284 } 1285 1286 /* 1287 * Return size of each in-core log record buffer. 1288 * 1289 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1290 * 1291 * If the filesystem blocksize is too large, we may need to choose a 1292 * larger size since the directory code currently logs entire blocks. 1293 */ 1294 1295 STATIC void 1296 xlog_get_iclog_buffer_size( 1297 struct xfs_mount *mp, 1298 struct xlog *log) 1299 { 1300 int size; 1301 int xhdrs; 1302 1303 if (mp->m_logbufs <= 0) 1304 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1305 else 1306 log->l_iclog_bufs = mp->m_logbufs; 1307 1308 /* 1309 * Buffer size passed in from mount system call. 1310 */ 1311 if (mp->m_logbsize > 0) { 1312 size = log->l_iclog_size = mp->m_logbsize; 1313 log->l_iclog_size_log = 0; 1314 while (size != 1) { 1315 log->l_iclog_size_log++; 1316 size >>= 1; 1317 } 1318 1319 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1320 /* # headers = size / 32k 1321 * one header holds cycles from 32k of data 1322 */ 1323 1324 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1325 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1326 xhdrs++; 1327 log->l_iclog_hsize = xhdrs << BBSHIFT; 1328 log->l_iclog_heads = xhdrs; 1329 } else { 1330 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1331 log->l_iclog_hsize = BBSIZE; 1332 log->l_iclog_heads = 1; 1333 } 1334 goto done; 1335 } 1336 1337 /* All machines use 32kB buffers by default. */ 1338 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1339 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1340 1341 /* the default log size is 16k or 32k which is one header sector */ 1342 log->l_iclog_hsize = BBSIZE; 1343 log->l_iclog_heads = 1; 1344 1345 done: 1346 /* are we being asked to make the sizes selected above visible? */ 1347 if (mp->m_logbufs == 0) 1348 mp->m_logbufs = log->l_iclog_bufs; 1349 if (mp->m_logbsize == 0) 1350 mp->m_logbsize = log->l_iclog_size; 1351 } /* xlog_get_iclog_buffer_size */ 1352 1353 1354 void 1355 xfs_log_work_queue( 1356 struct xfs_mount *mp) 1357 { 1358 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1359 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1360 } 1361 1362 /* 1363 * Every sync period we need to unpin all items in the AIL and push them to 1364 * disk. If there is nothing dirty, then we might need to cover the log to 1365 * indicate that the filesystem is idle. 1366 */ 1367 static void 1368 xfs_log_worker( 1369 struct work_struct *work) 1370 { 1371 struct xlog *log = container_of(to_delayed_work(work), 1372 struct xlog, l_work); 1373 struct xfs_mount *mp = log->l_mp; 1374 1375 /* dgc: errors ignored - not fatal and nowhere to report them */ 1376 if (xfs_log_need_covered(mp)) { 1377 /* 1378 * Dump a transaction into the log that contains no real change. 1379 * This is needed to stamp the current tail LSN into the log 1380 * during the covering operation. 1381 * 1382 * We cannot use an inode here for this - that will push dirty 1383 * state back up into the VFS and then periodic inode flushing 1384 * will prevent log covering from making progress. Hence we 1385 * synchronously log the superblock instead to ensure the 1386 * superblock is immediately unpinned and can be written back. 1387 */ 1388 xfs_sync_sb(mp, true); 1389 } else 1390 xfs_log_force(mp, 0); 1391 1392 /* start pushing all the metadata that is currently dirty */ 1393 xfs_ail_push_all(mp->m_ail); 1394 1395 /* queue us up again */ 1396 xfs_log_work_queue(mp); 1397 } 1398 1399 /* 1400 * This routine initializes some of the log structure for a given mount point. 1401 * Its primary purpose is to fill in enough, so recovery can occur. However, 1402 * some other stuff may be filled in too. 1403 */ 1404 STATIC struct xlog * 1405 xlog_alloc_log( 1406 struct xfs_mount *mp, 1407 struct xfs_buftarg *log_target, 1408 xfs_daddr_t blk_offset, 1409 int num_bblks) 1410 { 1411 struct xlog *log; 1412 xlog_rec_header_t *head; 1413 xlog_in_core_t **iclogp; 1414 xlog_in_core_t *iclog, *prev_iclog=NULL; 1415 xfs_buf_t *bp; 1416 int i; 1417 int error = -ENOMEM; 1418 uint log2_size = 0; 1419 1420 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1421 if (!log) { 1422 xfs_warn(mp, "Log allocation failed: No memory!"); 1423 goto out; 1424 } 1425 1426 log->l_mp = mp; 1427 log->l_targ = log_target; 1428 log->l_logsize = BBTOB(num_bblks); 1429 log->l_logBBstart = blk_offset; 1430 log->l_logBBsize = num_bblks; 1431 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1432 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1433 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1434 1435 log->l_prev_block = -1; 1436 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1437 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1438 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1439 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1440 1441 xlog_grant_head_init(&log->l_reserve_head); 1442 xlog_grant_head_init(&log->l_write_head); 1443 1444 error = -EFSCORRUPTED; 1445 if (xfs_sb_version_hassector(&mp->m_sb)) { 1446 log2_size = mp->m_sb.sb_logsectlog; 1447 if (log2_size < BBSHIFT) { 1448 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1449 log2_size, BBSHIFT); 1450 goto out_free_log; 1451 } 1452 1453 log2_size -= BBSHIFT; 1454 if (log2_size > mp->m_sectbb_log) { 1455 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1456 log2_size, mp->m_sectbb_log); 1457 goto out_free_log; 1458 } 1459 1460 /* for larger sector sizes, must have v2 or external log */ 1461 if (log2_size && log->l_logBBstart > 0 && 1462 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1463 xfs_warn(mp, 1464 "log sector size (0x%x) invalid for configuration.", 1465 log2_size); 1466 goto out_free_log; 1467 } 1468 } 1469 log->l_sectBBsize = 1 << log2_size; 1470 1471 xlog_get_iclog_buffer_size(mp, log); 1472 1473 /* 1474 * Use a NULL block for the extra log buffer used during splits so that 1475 * it will trigger errors if we ever try to do IO on it without first 1476 * having set it up properly. 1477 */ 1478 error = -ENOMEM; 1479 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1480 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1481 if (!bp) 1482 goto out_free_log; 1483 1484 /* 1485 * The iclogbuf buffer locks are held over IO but we are not going to do 1486 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1487 * when appropriately. 1488 */ 1489 ASSERT(xfs_buf_islocked(bp)); 1490 xfs_buf_unlock(bp); 1491 1492 /* use high priority wq for log I/O completion */ 1493 bp->b_ioend_wq = mp->m_log_workqueue; 1494 bp->b_iodone = xlog_iodone; 1495 log->l_xbuf = bp; 1496 1497 spin_lock_init(&log->l_icloglock); 1498 init_waitqueue_head(&log->l_flush_wait); 1499 1500 iclogp = &log->l_iclog; 1501 /* 1502 * The amount of memory to allocate for the iclog structure is 1503 * rather funky due to the way the structure is defined. It is 1504 * done this way so that we can use different sizes for machines 1505 * with different amounts of memory. See the definition of 1506 * xlog_in_core_t in xfs_log_priv.h for details. 1507 */ 1508 ASSERT(log->l_iclog_size >= 4096); 1509 for (i=0; i < log->l_iclog_bufs; i++) { 1510 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1511 if (!*iclogp) 1512 goto out_free_iclog; 1513 1514 iclog = *iclogp; 1515 iclog->ic_prev = prev_iclog; 1516 prev_iclog = iclog; 1517 1518 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1519 BTOBB(log->l_iclog_size), 1520 XBF_NO_IOACCT); 1521 if (!bp) 1522 goto out_free_iclog; 1523 1524 ASSERT(xfs_buf_islocked(bp)); 1525 xfs_buf_unlock(bp); 1526 1527 /* use high priority wq for log I/O completion */ 1528 bp->b_ioend_wq = mp->m_log_workqueue; 1529 bp->b_iodone = xlog_iodone; 1530 iclog->ic_bp = bp; 1531 iclog->ic_data = bp->b_addr; 1532 #ifdef DEBUG 1533 log->l_iclog_bak[i] = &iclog->ic_header; 1534 #endif 1535 head = &iclog->ic_header; 1536 memset(head, 0, sizeof(xlog_rec_header_t)); 1537 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1538 head->h_version = cpu_to_be32( 1539 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1540 head->h_size = cpu_to_be32(log->l_iclog_size); 1541 /* new fields */ 1542 head->h_fmt = cpu_to_be32(XLOG_FMT); 1543 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1544 1545 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1546 iclog->ic_state = XLOG_STATE_ACTIVE; 1547 iclog->ic_log = log; 1548 atomic_set(&iclog->ic_refcnt, 0); 1549 spin_lock_init(&iclog->ic_callback_lock); 1550 iclog->ic_callback_tail = &(iclog->ic_callback); 1551 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1552 1553 init_waitqueue_head(&iclog->ic_force_wait); 1554 init_waitqueue_head(&iclog->ic_write_wait); 1555 1556 iclogp = &iclog->ic_next; 1557 } 1558 *iclogp = log->l_iclog; /* complete ring */ 1559 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1560 1561 error = xlog_cil_init(log); 1562 if (error) 1563 goto out_free_iclog; 1564 return log; 1565 1566 out_free_iclog: 1567 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1568 prev_iclog = iclog->ic_next; 1569 if (iclog->ic_bp) 1570 xfs_buf_free(iclog->ic_bp); 1571 kmem_free(iclog); 1572 } 1573 spinlock_destroy(&log->l_icloglock); 1574 xfs_buf_free(log->l_xbuf); 1575 out_free_log: 1576 kmem_free(log); 1577 out: 1578 return ERR_PTR(error); 1579 } /* xlog_alloc_log */ 1580 1581 1582 /* 1583 * Write out the commit record of a transaction associated with the given 1584 * ticket. Return the lsn of the commit record. 1585 */ 1586 STATIC int 1587 xlog_commit_record( 1588 struct xlog *log, 1589 struct xlog_ticket *ticket, 1590 struct xlog_in_core **iclog, 1591 xfs_lsn_t *commitlsnp) 1592 { 1593 struct xfs_mount *mp = log->l_mp; 1594 int error; 1595 struct xfs_log_iovec reg = { 1596 .i_addr = NULL, 1597 .i_len = 0, 1598 .i_type = XLOG_REG_TYPE_COMMIT, 1599 }; 1600 struct xfs_log_vec vec = { 1601 .lv_niovecs = 1, 1602 .lv_iovecp = ®, 1603 }; 1604 1605 ASSERT_ALWAYS(iclog); 1606 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1607 XLOG_COMMIT_TRANS); 1608 if (error) 1609 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1610 return error; 1611 } 1612 1613 /* 1614 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1615 * log space. This code pushes on the lsn which would supposedly free up 1616 * the 25% which we want to leave free. We may need to adopt a policy which 1617 * pushes on an lsn which is further along in the log once we reach the high 1618 * water mark. In this manner, we would be creating a low water mark. 1619 */ 1620 STATIC void 1621 xlog_grant_push_ail( 1622 struct xlog *log, 1623 int need_bytes) 1624 { 1625 xfs_lsn_t threshold_lsn = 0; 1626 xfs_lsn_t last_sync_lsn; 1627 int free_blocks; 1628 int free_bytes; 1629 int threshold_block; 1630 int threshold_cycle; 1631 int free_threshold; 1632 1633 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1634 1635 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1636 free_blocks = BTOBBT(free_bytes); 1637 1638 /* 1639 * Set the threshold for the minimum number of free blocks in the 1640 * log to the maximum of what the caller needs, one quarter of the 1641 * log, and 256 blocks. 1642 */ 1643 free_threshold = BTOBB(need_bytes); 1644 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1645 free_threshold = MAX(free_threshold, 256); 1646 if (free_blocks >= free_threshold) 1647 return; 1648 1649 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1650 &threshold_block); 1651 threshold_block += free_threshold; 1652 if (threshold_block >= log->l_logBBsize) { 1653 threshold_block -= log->l_logBBsize; 1654 threshold_cycle += 1; 1655 } 1656 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1657 threshold_block); 1658 /* 1659 * Don't pass in an lsn greater than the lsn of the last 1660 * log record known to be on disk. Use a snapshot of the last sync lsn 1661 * so that it doesn't change between the compare and the set. 1662 */ 1663 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1664 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1665 threshold_lsn = last_sync_lsn; 1666 1667 /* 1668 * Get the transaction layer to kick the dirty buffers out to 1669 * disk asynchronously. No point in trying to do this if 1670 * the filesystem is shutting down. 1671 */ 1672 if (!XLOG_FORCED_SHUTDOWN(log)) 1673 xfs_ail_push(log->l_ailp, threshold_lsn); 1674 } 1675 1676 /* 1677 * Stamp cycle number in every block 1678 */ 1679 STATIC void 1680 xlog_pack_data( 1681 struct xlog *log, 1682 struct xlog_in_core *iclog, 1683 int roundoff) 1684 { 1685 int i, j, k; 1686 int size = iclog->ic_offset + roundoff; 1687 __be32 cycle_lsn; 1688 char *dp; 1689 1690 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1691 1692 dp = iclog->ic_datap; 1693 for (i = 0; i < BTOBB(size); i++) { 1694 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1695 break; 1696 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1697 *(__be32 *)dp = cycle_lsn; 1698 dp += BBSIZE; 1699 } 1700 1701 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1702 xlog_in_core_2_t *xhdr = iclog->ic_data; 1703 1704 for ( ; i < BTOBB(size); i++) { 1705 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1706 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1707 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1708 *(__be32 *)dp = cycle_lsn; 1709 dp += BBSIZE; 1710 } 1711 1712 for (i = 1; i < log->l_iclog_heads; i++) 1713 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1714 } 1715 } 1716 1717 /* 1718 * Calculate the checksum for a log buffer. 1719 * 1720 * This is a little more complicated than it should be because the various 1721 * headers and the actual data are non-contiguous. 1722 */ 1723 __le32 1724 xlog_cksum( 1725 struct xlog *log, 1726 struct xlog_rec_header *rhead, 1727 char *dp, 1728 int size) 1729 { 1730 uint32_t crc; 1731 1732 /* first generate the crc for the record header ... */ 1733 crc = xfs_start_cksum_update((char *)rhead, 1734 sizeof(struct xlog_rec_header), 1735 offsetof(struct xlog_rec_header, h_crc)); 1736 1737 /* ... then for additional cycle data for v2 logs ... */ 1738 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1739 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1740 int i; 1741 int xheads; 1742 1743 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1744 if (size % XLOG_HEADER_CYCLE_SIZE) 1745 xheads++; 1746 1747 for (i = 1; i < xheads; i++) { 1748 crc = crc32c(crc, &xhdr[i].hic_xheader, 1749 sizeof(struct xlog_rec_ext_header)); 1750 } 1751 } 1752 1753 /* ... and finally for the payload */ 1754 crc = crc32c(crc, dp, size); 1755 1756 return xfs_end_cksum(crc); 1757 } 1758 1759 /* 1760 * The bdstrat callback function for log bufs. This gives us a central 1761 * place to trap bufs in case we get hit by a log I/O error and need to 1762 * shutdown. Actually, in practice, even when we didn't get a log error, 1763 * we transition the iclogs to IOERROR state *after* flushing all existing 1764 * iclogs to disk. This is because we don't want anymore new transactions to be 1765 * started or completed afterwards. 1766 * 1767 * We lock the iclogbufs here so that we can serialise against IO completion 1768 * during unmount. We might be processing a shutdown triggered during unmount, 1769 * and that can occur asynchronously to the unmount thread, and hence we need to 1770 * ensure that completes before tearing down the iclogbufs. Hence we need to 1771 * hold the buffer lock across the log IO to acheive that. 1772 */ 1773 STATIC int 1774 xlog_bdstrat( 1775 struct xfs_buf *bp) 1776 { 1777 struct xlog_in_core *iclog = bp->b_log_item; 1778 1779 xfs_buf_lock(bp); 1780 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1781 xfs_buf_ioerror(bp, -EIO); 1782 xfs_buf_stale(bp); 1783 xfs_buf_ioend(bp); 1784 /* 1785 * It would seem logical to return EIO here, but we rely on 1786 * the log state machine to propagate I/O errors instead of 1787 * doing it here. Similarly, IO completion will unlock the 1788 * buffer, so we don't do it here. 1789 */ 1790 return 0; 1791 } 1792 1793 xfs_buf_submit(bp); 1794 return 0; 1795 } 1796 1797 /* 1798 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1799 * fashion. Previously, we should have moved the current iclog 1800 * ptr in the log to point to the next available iclog. This allows further 1801 * write to continue while this code syncs out an iclog ready to go. 1802 * Before an in-core log can be written out, the data section must be scanned 1803 * to save away the 1st word of each BBSIZE block into the header. We replace 1804 * it with the current cycle count. Each BBSIZE block is tagged with the 1805 * cycle count because there in an implicit assumption that drives will 1806 * guarantee that entire 512 byte blocks get written at once. In other words, 1807 * we can't have part of a 512 byte block written and part not written. By 1808 * tagging each block, we will know which blocks are valid when recovering 1809 * after an unclean shutdown. 1810 * 1811 * This routine is single threaded on the iclog. No other thread can be in 1812 * this routine with the same iclog. Changing contents of iclog can there- 1813 * fore be done without grabbing the state machine lock. Updating the global 1814 * log will require grabbing the lock though. 1815 * 1816 * The entire log manager uses a logical block numbering scheme. Only 1817 * log_sync (and then only bwrite()) know about the fact that the log may 1818 * not start with block zero on a given device. The log block start offset 1819 * is added immediately before calling bwrite(). 1820 */ 1821 1822 STATIC int 1823 xlog_sync( 1824 struct xlog *log, 1825 struct xlog_in_core *iclog) 1826 { 1827 xfs_buf_t *bp; 1828 int i; 1829 uint count; /* byte count of bwrite */ 1830 uint count_init; /* initial count before roundup */ 1831 int roundoff; /* roundoff to BB or stripe */ 1832 int split = 0; /* split write into two regions */ 1833 int error; 1834 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1835 int size; 1836 1837 XFS_STATS_INC(log->l_mp, xs_log_writes); 1838 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1839 1840 /* Add for LR header */ 1841 count_init = log->l_iclog_hsize + iclog->ic_offset; 1842 1843 /* Round out the log write size */ 1844 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1845 /* we have a v2 stripe unit to use */ 1846 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1847 } else { 1848 count = BBTOB(BTOBB(count_init)); 1849 } 1850 roundoff = count - count_init; 1851 ASSERT(roundoff >= 0); 1852 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1853 roundoff < log->l_mp->m_sb.sb_logsunit) 1854 || 1855 (log->l_mp->m_sb.sb_logsunit <= 1 && 1856 roundoff < BBTOB(1))); 1857 1858 /* move grant heads by roundoff in sync */ 1859 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1860 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1861 1862 /* put cycle number in every block */ 1863 xlog_pack_data(log, iclog, roundoff); 1864 1865 /* real byte length */ 1866 size = iclog->ic_offset; 1867 if (v2) 1868 size += roundoff; 1869 iclog->ic_header.h_len = cpu_to_be32(size); 1870 1871 bp = iclog->ic_bp; 1872 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1873 1874 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1875 1876 /* Do we need to split this write into 2 parts? */ 1877 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1878 char *dptr; 1879 1880 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1881 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1882 iclog->ic_bwritecnt = 2; 1883 1884 /* 1885 * Bump the cycle numbers at the start of each block in the 1886 * part of the iclog that ends up in the buffer that gets 1887 * written to the start of the log. 1888 * 1889 * Watch out for the header magic number case, though. 1890 */ 1891 dptr = (char *)&iclog->ic_header + count; 1892 for (i = 0; i < split; i += BBSIZE) { 1893 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1894 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1895 cycle++; 1896 *(__be32 *)dptr = cpu_to_be32(cycle); 1897 1898 dptr += BBSIZE; 1899 } 1900 } else { 1901 iclog->ic_bwritecnt = 1; 1902 } 1903 1904 /* calculcate the checksum */ 1905 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1906 iclog->ic_datap, size); 1907 /* 1908 * Intentionally corrupt the log record CRC based on the error injection 1909 * frequency, if defined. This facilitates testing log recovery in the 1910 * event of torn writes. Hence, set the IOABORT state to abort the log 1911 * write on I/O completion and shutdown the fs. The subsequent mount 1912 * detects the bad CRC and attempts to recover. 1913 */ 1914 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1915 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1916 iclog->ic_state |= XLOG_STATE_IOABORT; 1917 xfs_warn(log->l_mp, 1918 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1919 be64_to_cpu(iclog->ic_header.h_lsn)); 1920 } 1921 1922 bp->b_io_length = BTOBB(count); 1923 bp->b_log_item = iclog; 1924 bp->b_flags &= ~XBF_FLUSH; 1925 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1926 1927 /* 1928 * Flush the data device before flushing the log to make sure all meta 1929 * data written back from the AIL actually made it to disk before 1930 * stamping the new log tail LSN into the log buffer. For an external 1931 * log we need to issue the flush explicitly, and unfortunately 1932 * synchronously here; for an internal log we can simply use the block 1933 * layer state machine for preflushes. 1934 */ 1935 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1936 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1937 else 1938 bp->b_flags |= XBF_FLUSH; 1939 1940 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1941 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1942 1943 xlog_verify_iclog(log, iclog, count, true); 1944 1945 /* account for log which doesn't start at block #0 */ 1946 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1947 1948 /* 1949 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1950 * is shutting down. 1951 */ 1952 error = xlog_bdstrat(bp); 1953 if (error) { 1954 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1955 return error; 1956 } 1957 if (split) { 1958 bp = iclog->ic_log->l_xbuf; 1959 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1960 xfs_buf_associate_memory(bp, 1961 (char *)&iclog->ic_header + count, split); 1962 bp->b_log_item = iclog; 1963 bp->b_flags &= ~XBF_FLUSH; 1964 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1965 1966 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1967 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1968 1969 /* account for internal log which doesn't start at block #0 */ 1970 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1971 error = xlog_bdstrat(bp); 1972 if (error) { 1973 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1974 return error; 1975 } 1976 } 1977 return 0; 1978 } /* xlog_sync */ 1979 1980 /* 1981 * Deallocate a log structure 1982 */ 1983 STATIC void 1984 xlog_dealloc_log( 1985 struct xlog *log) 1986 { 1987 xlog_in_core_t *iclog, *next_iclog; 1988 int i; 1989 1990 xlog_cil_destroy(log); 1991 1992 /* 1993 * Cycle all the iclogbuf locks to make sure all log IO completion 1994 * is done before we tear down these buffers. 1995 */ 1996 iclog = log->l_iclog; 1997 for (i = 0; i < log->l_iclog_bufs; i++) { 1998 xfs_buf_lock(iclog->ic_bp); 1999 xfs_buf_unlock(iclog->ic_bp); 2000 iclog = iclog->ic_next; 2001 } 2002 2003 /* 2004 * Always need to ensure that the extra buffer does not point to memory 2005 * owned by another log buffer before we free it. Also, cycle the lock 2006 * first to ensure we've completed IO on it. 2007 */ 2008 xfs_buf_lock(log->l_xbuf); 2009 xfs_buf_unlock(log->l_xbuf); 2010 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 2011 xfs_buf_free(log->l_xbuf); 2012 2013 iclog = log->l_iclog; 2014 for (i = 0; i < log->l_iclog_bufs; i++) { 2015 xfs_buf_free(iclog->ic_bp); 2016 next_iclog = iclog->ic_next; 2017 kmem_free(iclog); 2018 iclog = next_iclog; 2019 } 2020 spinlock_destroy(&log->l_icloglock); 2021 2022 log->l_mp->m_log = NULL; 2023 kmem_free(log); 2024 } /* xlog_dealloc_log */ 2025 2026 /* 2027 * Update counters atomically now that memcpy is done. 2028 */ 2029 /* ARGSUSED */ 2030 static inline void 2031 xlog_state_finish_copy( 2032 struct xlog *log, 2033 struct xlog_in_core *iclog, 2034 int record_cnt, 2035 int copy_bytes) 2036 { 2037 spin_lock(&log->l_icloglock); 2038 2039 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2040 iclog->ic_offset += copy_bytes; 2041 2042 spin_unlock(&log->l_icloglock); 2043 } /* xlog_state_finish_copy */ 2044 2045 2046 2047 2048 /* 2049 * print out info relating to regions written which consume 2050 * the reservation 2051 */ 2052 void 2053 xlog_print_tic_res( 2054 struct xfs_mount *mp, 2055 struct xlog_ticket *ticket) 2056 { 2057 uint i; 2058 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2059 2060 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2061 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2062 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2063 REG_TYPE_STR(BFORMAT, "bformat"), 2064 REG_TYPE_STR(BCHUNK, "bchunk"), 2065 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2066 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2067 REG_TYPE_STR(IFORMAT, "iformat"), 2068 REG_TYPE_STR(ICORE, "icore"), 2069 REG_TYPE_STR(IEXT, "iext"), 2070 REG_TYPE_STR(IBROOT, "ibroot"), 2071 REG_TYPE_STR(ILOCAL, "ilocal"), 2072 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2073 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2074 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2075 REG_TYPE_STR(QFORMAT, "qformat"), 2076 REG_TYPE_STR(DQUOT, "dquot"), 2077 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2078 REG_TYPE_STR(LRHEADER, "LR header"), 2079 REG_TYPE_STR(UNMOUNT, "unmount"), 2080 REG_TYPE_STR(COMMIT, "commit"), 2081 REG_TYPE_STR(TRANSHDR, "trans header"), 2082 REG_TYPE_STR(ICREATE, "inode create") 2083 }; 2084 #undef REG_TYPE_STR 2085 2086 xfs_warn(mp, "ticket reservation summary:"); 2087 xfs_warn(mp, " unit res = %d bytes", 2088 ticket->t_unit_res); 2089 xfs_warn(mp, " current res = %d bytes", 2090 ticket->t_curr_res); 2091 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2092 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2093 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2094 ticket->t_res_num_ophdrs, ophdr_spc); 2095 xfs_warn(mp, " ophdr + reg = %u bytes", 2096 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2097 xfs_warn(mp, " num regions = %u", 2098 ticket->t_res_num); 2099 2100 for (i = 0; i < ticket->t_res_num; i++) { 2101 uint r_type = ticket->t_res_arr[i].r_type; 2102 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2103 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2104 "bad-rtype" : res_type_str[r_type]), 2105 ticket->t_res_arr[i].r_len); 2106 } 2107 } 2108 2109 /* 2110 * Print a summary of the transaction. 2111 */ 2112 void 2113 xlog_print_trans( 2114 struct xfs_trans *tp) 2115 { 2116 struct xfs_mount *mp = tp->t_mountp; 2117 struct xfs_log_item_desc *lidp; 2118 2119 /* dump core transaction and ticket info */ 2120 xfs_warn(mp, "transaction summary:"); 2121 xfs_warn(mp, " log res = %d", tp->t_log_res); 2122 xfs_warn(mp, " log count = %d", tp->t_log_count); 2123 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2124 2125 xlog_print_tic_res(mp, tp->t_ticket); 2126 2127 /* dump each log item */ 2128 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 2129 struct xfs_log_item *lip = lidp->lid_item; 2130 struct xfs_log_vec *lv = lip->li_lv; 2131 struct xfs_log_iovec *vec; 2132 int i; 2133 2134 xfs_warn(mp, "log item: "); 2135 xfs_warn(mp, " type = 0x%x", lip->li_type); 2136 xfs_warn(mp, " flags = 0x%x", lip->li_flags); 2137 if (!lv) 2138 continue; 2139 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2140 xfs_warn(mp, " size = %d", lv->lv_size); 2141 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2142 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2143 2144 /* dump each iovec for the log item */ 2145 vec = lv->lv_iovecp; 2146 for (i = 0; i < lv->lv_niovecs; i++) { 2147 int dumplen = min(vec->i_len, 32); 2148 2149 xfs_warn(mp, " iovec[%d]", i); 2150 xfs_warn(mp, " type = 0x%x", vec->i_type); 2151 xfs_warn(mp, " len = %d", vec->i_len); 2152 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2153 xfs_hex_dump(vec->i_addr, dumplen); 2154 2155 vec++; 2156 } 2157 } 2158 } 2159 2160 /* 2161 * Calculate the potential space needed by the log vector. Each region gets 2162 * its own xlog_op_header_t and may need to be double word aligned. 2163 */ 2164 static int 2165 xlog_write_calc_vec_length( 2166 struct xlog_ticket *ticket, 2167 struct xfs_log_vec *log_vector) 2168 { 2169 struct xfs_log_vec *lv; 2170 int headers = 0; 2171 int len = 0; 2172 int i; 2173 2174 /* acct for start rec of xact */ 2175 if (ticket->t_flags & XLOG_TIC_INITED) 2176 headers++; 2177 2178 for (lv = log_vector; lv; lv = lv->lv_next) { 2179 /* we don't write ordered log vectors */ 2180 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2181 continue; 2182 2183 headers += lv->lv_niovecs; 2184 2185 for (i = 0; i < lv->lv_niovecs; i++) { 2186 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2187 2188 len += vecp->i_len; 2189 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2190 } 2191 } 2192 2193 ticket->t_res_num_ophdrs += headers; 2194 len += headers * sizeof(struct xlog_op_header); 2195 2196 return len; 2197 } 2198 2199 /* 2200 * If first write for transaction, insert start record We can't be trying to 2201 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2202 */ 2203 static int 2204 xlog_write_start_rec( 2205 struct xlog_op_header *ophdr, 2206 struct xlog_ticket *ticket) 2207 { 2208 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2209 return 0; 2210 2211 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2212 ophdr->oh_clientid = ticket->t_clientid; 2213 ophdr->oh_len = 0; 2214 ophdr->oh_flags = XLOG_START_TRANS; 2215 ophdr->oh_res2 = 0; 2216 2217 ticket->t_flags &= ~XLOG_TIC_INITED; 2218 2219 return sizeof(struct xlog_op_header); 2220 } 2221 2222 static xlog_op_header_t * 2223 xlog_write_setup_ophdr( 2224 struct xlog *log, 2225 struct xlog_op_header *ophdr, 2226 struct xlog_ticket *ticket, 2227 uint flags) 2228 { 2229 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2230 ophdr->oh_clientid = ticket->t_clientid; 2231 ophdr->oh_res2 = 0; 2232 2233 /* are we copying a commit or unmount record? */ 2234 ophdr->oh_flags = flags; 2235 2236 /* 2237 * We've seen logs corrupted with bad transaction client ids. This 2238 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2239 * and shut down the filesystem. 2240 */ 2241 switch (ophdr->oh_clientid) { 2242 case XFS_TRANSACTION: 2243 case XFS_VOLUME: 2244 case XFS_LOG: 2245 break; 2246 default: 2247 xfs_warn(log->l_mp, 2248 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2249 ophdr->oh_clientid, ticket); 2250 return NULL; 2251 } 2252 2253 return ophdr; 2254 } 2255 2256 /* 2257 * Set up the parameters of the region copy into the log. This has 2258 * to handle region write split across multiple log buffers - this 2259 * state is kept external to this function so that this code can 2260 * be written in an obvious, self documenting manner. 2261 */ 2262 static int 2263 xlog_write_setup_copy( 2264 struct xlog_ticket *ticket, 2265 struct xlog_op_header *ophdr, 2266 int space_available, 2267 int space_required, 2268 int *copy_off, 2269 int *copy_len, 2270 int *last_was_partial_copy, 2271 int *bytes_consumed) 2272 { 2273 int still_to_copy; 2274 2275 still_to_copy = space_required - *bytes_consumed; 2276 *copy_off = *bytes_consumed; 2277 2278 if (still_to_copy <= space_available) { 2279 /* write of region completes here */ 2280 *copy_len = still_to_copy; 2281 ophdr->oh_len = cpu_to_be32(*copy_len); 2282 if (*last_was_partial_copy) 2283 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2284 *last_was_partial_copy = 0; 2285 *bytes_consumed = 0; 2286 return 0; 2287 } 2288 2289 /* partial write of region, needs extra log op header reservation */ 2290 *copy_len = space_available; 2291 ophdr->oh_len = cpu_to_be32(*copy_len); 2292 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2293 if (*last_was_partial_copy) 2294 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2295 *bytes_consumed += *copy_len; 2296 (*last_was_partial_copy)++; 2297 2298 /* account for new log op header */ 2299 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2300 ticket->t_res_num_ophdrs++; 2301 2302 return sizeof(struct xlog_op_header); 2303 } 2304 2305 static int 2306 xlog_write_copy_finish( 2307 struct xlog *log, 2308 struct xlog_in_core *iclog, 2309 uint flags, 2310 int *record_cnt, 2311 int *data_cnt, 2312 int *partial_copy, 2313 int *partial_copy_len, 2314 int log_offset, 2315 struct xlog_in_core **commit_iclog) 2316 { 2317 if (*partial_copy) { 2318 /* 2319 * This iclog has already been marked WANT_SYNC by 2320 * xlog_state_get_iclog_space. 2321 */ 2322 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2323 *record_cnt = 0; 2324 *data_cnt = 0; 2325 return xlog_state_release_iclog(log, iclog); 2326 } 2327 2328 *partial_copy = 0; 2329 *partial_copy_len = 0; 2330 2331 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2332 /* no more space in this iclog - push it. */ 2333 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2334 *record_cnt = 0; 2335 *data_cnt = 0; 2336 2337 spin_lock(&log->l_icloglock); 2338 xlog_state_want_sync(log, iclog); 2339 spin_unlock(&log->l_icloglock); 2340 2341 if (!commit_iclog) 2342 return xlog_state_release_iclog(log, iclog); 2343 ASSERT(flags & XLOG_COMMIT_TRANS); 2344 *commit_iclog = iclog; 2345 } 2346 2347 return 0; 2348 } 2349 2350 /* 2351 * Write some region out to in-core log 2352 * 2353 * This will be called when writing externally provided regions or when 2354 * writing out a commit record for a given transaction. 2355 * 2356 * General algorithm: 2357 * 1. Find total length of this write. This may include adding to the 2358 * lengths passed in. 2359 * 2. Check whether we violate the tickets reservation. 2360 * 3. While writing to this iclog 2361 * A. Reserve as much space in this iclog as can get 2362 * B. If this is first write, save away start lsn 2363 * C. While writing this region: 2364 * 1. If first write of transaction, write start record 2365 * 2. Write log operation header (header per region) 2366 * 3. Find out if we can fit entire region into this iclog 2367 * 4. Potentially, verify destination memcpy ptr 2368 * 5. Memcpy (partial) region 2369 * 6. If partial copy, release iclog; otherwise, continue 2370 * copying more regions into current iclog 2371 * 4. Mark want sync bit (in simulation mode) 2372 * 5. Release iclog for potential flush to on-disk log. 2373 * 2374 * ERRORS: 2375 * 1. Panic if reservation is overrun. This should never happen since 2376 * reservation amounts are generated internal to the filesystem. 2377 * NOTES: 2378 * 1. Tickets are single threaded data structures. 2379 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2380 * syncing routine. When a single log_write region needs to span 2381 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2382 * on all log operation writes which don't contain the end of the 2383 * region. The XLOG_END_TRANS bit is used for the in-core log 2384 * operation which contains the end of the continued log_write region. 2385 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2386 * we don't really know exactly how much space will be used. As a result, 2387 * we don't update ic_offset until the end when we know exactly how many 2388 * bytes have been written out. 2389 */ 2390 int 2391 xlog_write( 2392 struct xlog *log, 2393 struct xfs_log_vec *log_vector, 2394 struct xlog_ticket *ticket, 2395 xfs_lsn_t *start_lsn, 2396 struct xlog_in_core **commit_iclog, 2397 uint flags) 2398 { 2399 struct xlog_in_core *iclog = NULL; 2400 struct xfs_log_iovec *vecp; 2401 struct xfs_log_vec *lv; 2402 int len; 2403 int index; 2404 int partial_copy = 0; 2405 int partial_copy_len = 0; 2406 int contwr = 0; 2407 int record_cnt = 0; 2408 int data_cnt = 0; 2409 int error; 2410 2411 *start_lsn = 0; 2412 2413 len = xlog_write_calc_vec_length(ticket, log_vector); 2414 2415 /* 2416 * Region headers and bytes are already accounted for. 2417 * We only need to take into account start records and 2418 * split regions in this function. 2419 */ 2420 if (ticket->t_flags & XLOG_TIC_INITED) 2421 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2422 2423 /* 2424 * Commit record headers need to be accounted for. These 2425 * come in as separate writes so are easy to detect. 2426 */ 2427 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2428 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2429 2430 if (ticket->t_curr_res < 0) { 2431 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2432 "ctx ticket reservation ran out. Need to up reservation"); 2433 xlog_print_tic_res(log->l_mp, ticket); 2434 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2435 } 2436 2437 index = 0; 2438 lv = log_vector; 2439 vecp = lv->lv_iovecp; 2440 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2441 void *ptr; 2442 int log_offset; 2443 2444 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2445 &contwr, &log_offset); 2446 if (error) 2447 return error; 2448 2449 ASSERT(log_offset <= iclog->ic_size - 1); 2450 ptr = iclog->ic_datap + log_offset; 2451 2452 /* start_lsn is the first lsn written to. That's all we need. */ 2453 if (!*start_lsn) 2454 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2455 2456 /* 2457 * This loop writes out as many regions as can fit in the amount 2458 * of space which was allocated by xlog_state_get_iclog_space(). 2459 */ 2460 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2461 struct xfs_log_iovec *reg; 2462 struct xlog_op_header *ophdr; 2463 int start_rec_copy; 2464 int copy_len; 2465 int copy_off; 2466 bool ordered = false; 2467 2468 /* ordered log vectors have no regions to write */ 2469 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2470 ASSERT(lv->lv_niovecs == 0); 2471 ordered = true; 2472 goto next_lv; 2473 } 2474 2475 reg = &vecp[index]; 2476 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2477 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2478 2479 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2480 if (start_rec_copy) { 2481 record_cnt++; 2482 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2483 start_rec_copy); 2484 } 2485 2486 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2487 if (!ophdr) 2488 return -EIO; 2489 2490 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2491 sizeof(struct xlog_op_header)); 2492 2493 len += xlog_write_setup_copy(ticket, ophdr, 2494 iclog->ic_size-log_offset, 2495 reg->i_len, 2496 ©_off, ©_len, 2497 &partial_copy, 2498 &partial_copy_len); 2499 xlog_verify_dest_ptr(log, ptr); 2500 2501 /* 2502 * Copy region. 2503 * 2504 * Unmount records just log an opheader, so can have 2505 * empty payloads with no data region to copy. Hence we 2506 * only copy the payload if the vector says it has data 2507 * to copy. 2508 */ 2509 ASSERT(copy_len >= 0); 2510 if (copy_len > 0) { 2511 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2512 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2513 copy_len); 2514 } 2515 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2516 record_cnt++; 2517 data_cnt += contwr ? copy_len : 0; 2518 2519 error = xlog_write_copy_finish(log, iclog, flags, 2520 &record_cnt, &data_cnt, 2521 &partial_copy, 2522 &partial_copy_len, 2523 log_offset, 2524 commit_iclog); 2525 if (error) 2526 return error; 2527 2528 /* 2529 * if we had a partial copy, we need to get more iclog 2530 * space but we don't want to increment the region 2531 * index because there is still more is this region to 2532 * write. 2533 * 2534 * If we completed writing this region, and we flushed 2535 * the iclog (indicated by resetting of the record 2536 * count), then we also need to get more log space. If 2537 * this was the last record, though, we are done and 2538 * can just return. 2539 */ 2540 if (partial_copy) 2541 break; 2542 2543 if (++index == lv->lv_niovecs) { 2544 next_lv: 2545 lv = lv->lv_next; 2546 index = 0; 2547 if (lv) 2548 vecp = lv->lv_iovecp; 2549 } 2550 if (record_cnt == 0 && !ordered) { 2551 if (!lv) 2552 return 0; 2553 break; 2554 } 2555 } 2556 } 2557 2558 ASSERT(len == 0); 2559 2560 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2561 if (!commit_iclog) 2562 return xlog_state_release_iclog(log, iclog); 2563 2564 ASSERT(flags & XLOG_COMMIT_TRANS); 2565 *commit_iclog = iclog; 2566 return 0; 2567 } 2568 2569 2570 /***************************************************************************** 2571 * 2572 * State Machine functions 2573 * 2574 ***************************************************************************** 2575 */ 2576 2577 /* Clean iclogs starting from the head. This ordering must be 2578 * maintained, so an iclog doesn't become ACTIVE beyond one that 2579 * is SYNCING. This is also required to maintain the notion that we use 2580 * a ordered wait queue to hold off would be writers to the log when every 2581 * iclog is trying to sync to disk. 2582 * 2583 * State Change: DIRTY -> ACTIVE 2584 */ 2585 STATIC void 2586 xlog_state_clean_log( 2587 struct xlog *log) 2588 { 2589 xlog_in_core_t *iclog; 2590 int changed = 0; 2591 2592 iclog = log->l_iclog; 2593 do { 2594 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2595 iclog->ic_state = XLOG_STATE_ACTIVE; 2596 iclog->ic_offset = 0; 2597 ASSERT(iclog->ic_callback == NULL); 2598 /* 2599 * If the number of ops in this iclog indicate it just 2600 * contains the dummy transaction, we can 2601 * change state into IDLE (the second time around). 2602 * Otherwise we should change the state into 2603 * NEED a dummy. 2604 * We don't need to cover the dummy. 2605 */ 2606 if (!changed && 2607 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2608 XLOG_COVER_OPS)) { 2609 changed = 1; 2610 } else { 2611 /* 2612 * We have two dirty iclogs so start over 2613 * This could also be num of ops indicates 2614 * this is not the dummy going out. 2615 */ 2616 changed = 2; 2617 } 2618 iclog->ic_header.h_num_logops = 0; 2619 memset(iclog->ic_header.h_cycle_data, 0, 2620 sizeof(iclog->ic_header.h_cycle_data)); 2621 iclog->ic_header.h_lsn = 0; 2622 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2623 /* do nothing */; 2624 else 2625 break; /* stop cleaning */ 2626 iclog = iclog->ic_next; 2627 } while (iclog != log->l_iclog); 2628 2629 /* log is locked when we are called */ 2630 /* 2631 * Change state for the dummy log recording. 2632 * We usually go to NEED. But we go to NEED2 if the changed indicates 2633 * we are done writing the dummy record. 2634 * If we are done with the second dummy recored (DONE2), then 2635 * we go to IDLE. 2636 */ 2637 if (changed) { 2638 switch (log->l_covered_state) { 2639 case XLOG_STATE_COVER_IDLE: 2640 case XLOG_STATE_COVER_NEED: 2641 case XLOG_STATE_COVER_NEED2: 2642 log->l_covered_state = XLOG_STATE_COVER_NEED; 2643 break; 2644 2645 case XLOG_STATE_COVER_DONE: 2646 if (changed == 1) 2647 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2648 else 2649 log->l_covered_state = XLOG_STATE_COVER_NEED; 2650 break; 2651 2652 case XLOG_STATE_COVER_DONE2: 2653 if (changed == 1) 2654 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2655 else 2656 log->l_covered_state = XLOG_STATE_COVER_NEED; 2657 break; 2658 2659 default: 2660 ASSERT(0); 2661 } 2662 } 2663 } /* xlog_state_clean_log */ 2664 2665 STATIC xfs_lsn_t 2666 xlog_get_lowest_lsn( 2667 struct xlog *log) 2668 { 2669 xlog_in_core_t *lsn_log; 2670 xfs_lsn_t lowest_lsn, lsn; 2671 2672 lsn_log = log->l_iclog; 2673 lowest_lsn = 0; 2674 do { 2675 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2676 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2677 if ((lsn && !lowest_lsn) || 2678 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2679 lowest_lsn = lsn; 2680 } 2681 } 2682 lsn_log = lsn_log->ic_next; 2683 } while (lsn_log != log->l_iclog); 2684 return lowest_lsn; 2685 } 2686 2687 2688 STATIC void 2689 xlog_state_do_callback( 2690 struct xlog *log, 2691 int aborted, 2692 struct xlog_in_core *ciclog) 2693 { 2694 xlog_in_core_t *iclog; 2695 xlog_in_core_t *first_iclog; /* used to know when we've 2696 * processed all iclogs once */ 2697 xfs_log_callback_t *cb, *cb_next; 2698 int flushcnt = 0; 2699 xfs_lsn_t lowest_lsn; 2700 int ioerrors; /* counter: iclogs with errors */ 2701 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2702 int funcdidcallbacks; /* flag: function did callbacks */ 2703 int repeats; /* for issuing console warnings if 2704 * looping too many times */ 2705 int wake = 0; 2706 2707 spin_lock(&log->l_icloglock); 2708 first_iclog = iclog = log->l_iclog; 2709 ioerrors = 0; 2710 funcdidcallbacks = 0; 2711 repeats = 0; 2712 2713 do { 2714 /* 2715 * Scan all iclogs starting with the one pointed to by the 2716 * log. Reset this starting point each time the log is 2717 * unlocked (during callbacks). 2718 * 2719 * Keep looping through iclogs until one full pass is made 2720 * without running any callbacks. 2721 */ 2722 first_iclog = log->l_iclog; 2723 iclog = log->l_iclog; 2724 loopdidcallbacks = 0; 2725 repeats++; 2726 2727 do { 2728 2729 /* skip all iclogs in the ACTIVE & DIRTY states */ 2730 if (iclog->ic_state & 2731 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2732 iclog = iclog->ic_next; 2733 continue; 2734 } 2735 2736 /* 2737 * Between marking a filesystem SHUTDOWN and stopping 2738 * the log, we do flush all iclogs to disk (if there 2739 * wasn't a log I/O error). So, we do want things to 2740 * go smoothly in case of just a SHUTDOWN w/o a 2741 * LOG_IO_ERROR. 2742 */ 2743 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2744 /* 2745 * Can only perform callbacks in order. Since 2746 * this iclog is not in the DONE_SYNC/ 2747 * DO_CALLBACK state, we skip the rest and 2748 * just try to clean up. If we set our iclog 2749 * to DO_CALLBACK, we will not process it when 2750 * we retry since a previous iclog is in the 2751 * CALLBACK and the state cannot change since 2752 * we are holding the l_icloglock. 2753 */ 2754 if (!(iclog->ic_state & 2755 (XLOG_STATE_DONE_SYNC | 2756 XLOG_STATE_DO_CALLBACK))) { 2757 if (ciclog && (ciclog->ic_state == 2758 XLOG_STATE_DONE_SYNC)) { 2759 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2760 } 2761 break; 2762 } 2763 /* 2764 * We now have an iclog that is in either the 2765 * DO_CALLBACK or DONE_SYNC states. The other 2766 * states (WANT_SYNC, SYNCING, or CALLBACK were 2767 * caught by the above if and are going to 2768 * clean (i.e. we aren't doing their callbacks) 2769 * see the above if. 2770 */ 2771 2772 /* 2773 * We will do one more check here to see if we 2774 * have chased our tail around. 2775 */ 2776 2777 lowest_lsn = xlog_get_lowest_lsn(log); 2778 if (lowest_lsn && 2779 XFS_LSN_CMP(lowest_lsn, 2780 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2781 iclog = iclog->ic_next; 2782 continue; /* Leave this iclog for 2783 * another thread */ 2784 } 2785 2786 iclog->ic_state = XLOG_STATE_CALLBACK; 2787 2788 2789 /* 2790 * Completion of a iclog IO does not imply that 2791 * a transaction has completed, as transactions 2792 * can be large enough to span many iclogs. We 2793 * cannot change the tail of the log half way 2794 * through a transaction as this may be the only 2795 * transaction in the log and moving th etail to 2796 * point to the middle of it will prevent 2797 * recovery from finding the start of the 2798 * transaction. Hence we should only update the 2799 * last_sync_lsn if this iclog contains 2800 * transaction completion callbacks on it. 2801 * 2802 * We have to do this before we drop the 2803 * icloglock to ensure we are the only one that 2804 * can update it. 2805 */ 2806 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2807 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2808 if (iclog->ic_callback) 2809 atomic64_set(&log->l_last_sync_lsn, 2810 be64_to_cpu(iclog->ic_header.h_lsn)); 2811 2812 } else 2813 ioerrors++; 2814 2815 spin_unlock(&log->l_icloglock); 2816 2817 /* 2818 * Keep processing entries in the callback list until 2819 * we come around and it is empty. We need to 2820 * atomically see that the list is empty and change the 2821 * state to DIRTY so that we don't miss any more 2822 * callbacks being added. 2823 */ 2824 spin_lock(&iclog->ic_callback_lock); 2825 cb = iclog->ic_callback; 2826 while (cb) { 2827 iclog->ic_callback_tail = &(iclog->ic_callback); 2828 iclog->ic_callback = NULL; 2829 spin_unlock(&iclog->ic_callback_lock); 2830 2831 /* perform callbacks in the order given */ 2832 for (; cb; cb = cb_next) { 2833 cb_next = cb->cb_next; 2834 cb->cb_func(cb->cb_arg, aborted); 2835 } 2836 spin_lock(&iclog->ic_callback_lock); 2837 cb = iclog->ic_callback; 2838 } 2839 2840 loopdidcallbacks++; 2841 funcdidcallbacks++; 2842 2843 spin_lock(&log->l_icloglock); 2844 ASSERT(iclog->ic_callback == NULL); 2845 spin_unlock(&iclog->ic_callback_lock); 2846 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2847 iclog->ic_state = XLOG_STATE_DIRTY; 2848 2849 /* 2850 * Transition from DIRTY to ACTIVE if applicable. 2851 * NOP if STATE_IOERROR. 2852 */ 2853 xlog_state_clean_log(log); 2854 2855 /* wake up threads waiting in xfs_log_force() */ 2856 wake_up_all(&iclog->ic_force_wait); 2857 2858 iclog = iclog->ic_next; 2859 } while (first_iclog != iclog); 2860 2861 if (repeats > 5000) { 2862 flushcnt += repeats; 2863 repeats = 0; 2864 xfs_warn(log->l_mp, 2865 "%s: possible infinite loop (%d iterations)", 2866 __func__, flushcnt); 2867 } 2868 } while (!ioerrors && loopdidcallbacks); 2869 2870 #ifdef DEBUG 2871 /* 2872 * Make one last gasp attempt to see if iclogs are being left in limbo. 2873 * If the above loop finds an iclog earlier than the current iclog and 2874 * in one of the syncing states, the current iclog is put into 2875 * DO_CALLBACK and the callbacks are deferred to the completion of the 2876 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2877 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2878 * states. 2879 * 2880 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2881 * for ic_state == SYNCING. 2882 */ 2883 if (funcdidcallbacks) { 2884 first_iclog = iclog = log->l_iclog; 2885 do { 2886 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2887 /* 2888 * Terminate the loop if iclogs are found in states 2889 * which will cause other threads to clean up iclogs. 2890 * 2891 * SYNCING - i/o completion will go through logs 2892 * DONE_SYNC - interrupt thread should be waiting for 2893 * l_icloglock 2894 * IOERROR - give up hope all ye who enter here 2895 */ 2896 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2897 iclog->ic_state & XLOG_STATE_SYNCING || 2898 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2899 iclog->ic_state == XLOG_STATE_IOERROR ) 2900 break; 2901 iclog = iclog->ic_next; 2902 } while (first_iclog != iclog); 2903 } 2904 #endif 2905 2906 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2907 wake = 1; 2908 spin_unlock(&log->l_icloglock); 2909 2910 if (wake) 2911 wake_up_all(&log->l_flush_wait); 2912 } 2913 2914 2915 /* 2916 * Finish transitioning this iclog to the dirty state. 2917 * 2918 * Make sure that we completely execute this routine only when this is 2919 * the last call to the iclog. There is a good chance that iclog flushes, 2920 * when we reach the end of the physical log, get turned into 2 separate 2921 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2922 * routine. By using the reference count bwritecnt, we guarantee that only 2923 * the second completion goes through. 2924 * 2925 * Callbacks could take time, so they are done outside the scope of the 2926 * global state machine log lock. 2927 */ 2928 STATIC void 2929 xlog_state_done_syncing( 2930 xlog_in_core_t *iclog, 2931 int aborted) 2932 { 2933 struct xlog *log = iclog->ic_log; 2934 2935 spin_lock(&log->l_icloglock); 2936 2937 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2938 iclog->ic_state == XLOG_STATE_IOERROR); 2939 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2940 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2941 2942 2943 /* 2944 * If we got an error, either on the first buffer, or in the case of 2945 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2946 * and none should ever be attempted to be written to disk 2947 * again. 2948 */ 2949 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2950 if (--iclog->ic_bwritecnt == 1) { 2951 spin_unlock(&log->l_icloglock); 2952 return; 2953 } 2954 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2955 } 2956 2957 /* 2958 * Someone could be sleeping prior to writing out the next 2959 * iclog buffer, we wake them all, one will get to do the 2960 * I/O, the others get to wait for the result. 2961 */ 2962 wake_up_all(&iclog->ic_write_wait); 2963 spin_unlock(&log->l_icloglock); 2964 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2965 } /* xlog_state_done_syncing */ 2966 2967 2968 /* 2969 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2970 * sleep. We wait on the flush queue on the head iclog as that should be 2971 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2972 * we will wait here and all new writes will sleep until a sync completes. 2973 * 2974 * The in-core logs are used in a circular fashion. They are not used 2975 * out-of-order even when an iclog past the head is free. 2976 * 2977 * return: 2978 * * log_offset where xlog_write() can start writing into the in-core 2979 * log's data space. 2980 * * in-core log pointer to which xlog_write() should write. 2981 * * boolean indicating this is a continued write to an in-core log. 2982 * If this is the last write, then the in-core log's offset field 2983 * needs to be incremented, depending on the amount of data which 2984 * is copied. 2985 */ 2986 STATIC int 2987 xlog_state_get_iclog_space( 2988 struct xlog *log, 2989 int len, 2990 struct xlog_in_core **iclogp, 2991 struct xlog_ticket *ticket, 2992 int *continued_write, 2993 int *logoffsetp) 2994 { 2995 int log_offset; 2996 xlog_rec_header_t *head; 2997 xlog_in_core_t *iclog; 2998 int error; 2999 3000 restart: 3001 spin_lock(&log->l_icloglock); 3002 if (XLOG_FORCED_SHUTDOWN(log)) { 3003 spin_unlock(&log->l_icloglock); 3004 return -EIO; 3005 } 3006 3007 iclog = log->l_iclog; 3008 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 3009 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 3010 3011 /* Wait for log writes to have flushed */ 3012 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 3013 goto restart; 3014 } 3015 3016 head = &iclog->ic_header; 3017 3018 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3019 log_offset = iclog->ic_offset; 3020 3021 /* On the 1st write to an iclog, figure out lsn. This works 3022 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3023 * committing to. If the offset is set, that's how many blocks 3024 * must be written. 3025 */ 3026 if (log_offset == 0) { 3027 ticket->t_curr_res -= log->l_iclog_hsize; 3028 xlog_tic_add_region(ticket, 3029 log->l_iclog_hsize, 3030 XLOG_REG_TYPE_LRHEADER); 3031 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3032 head->h_lsn = cpu_to_be64( 3033 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3034 ASSERT(log->l_curr_block >= 0); 3035 } 3036 3037 /* If there is enough room to write everything, then do it. Otherwise, 3038 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3039 * bit is on, so this will get flushed out. Don't update ic_offset 3040 * until you know exactly how many bytes get copied. Therefore, wait 3041 * until later to update ic_offset. 3042 * 3043 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3044 * can fit into remaining data section. 3045 */ 3046 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3047 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3048 3049 /* 3050 * If I'm the only one writing to this iclog, sync it to disk. 3051 * We need to do an atomic compare and decrement here to avoid 3052 * racing with concurrent atomic_dec_and_lock() calls in 3053 * xlog_state_release_iclog() when there is more than one 3054 * reference to the iclog. 3055 */ 3056 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3057 /* we are the only one */ 3058 spin_unlock(&log->l_icloglock); 3059 error = xlog_state_release_iclog(log, iclog); 3060 if (error) 3061 return error; 3062 } else { 3063 spin_unlock(&log->l_icloglock); 3064 } 3065 goto restart; 3066 } 3067 3068 /* Do we have enough room to write the full amount in the remainder 3069 * of this iclog? Or must we continue a write on the next iclog and 3070 * mark this iclog as completely taken? In the case where we switch 3071 * iclogs (to mark it taken), this particular iclog will release/sync 3072 * to disk in xlog_write(). 3073 */ 3074 if (len <= iclog->ic_size - iclog->ic_offset) { 3075 *continued_write = 0; 3076 iclog->ic_offset += len; 3077 } else { 3078 *continued_write = 1; 3079 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3080 } 3081 *iclogp = iclog; 3082 3083 ASSERT(iclog->ic_offset <= iclog->ic_size); 3084 spin_unlock(&log->l_icloglock); 3085 3086 *logoffsetp = log_offset; 3087 return 0; 3088 } /* xlog_state_get_iclog_space */ 3089 3090 /* The first cnt-1 times through here we don't need to 3091 * move the grant write head because the permanent 3092 * reservation has reserved cnt times the unit amount. 3093 * Release part of current permanent unit reservation and 3094 * reset current reservation to be one units worth. Also 3095 * move grant reservation head forward. 3096 */ 3097 STATIC void 3098 xlog_regrant_reserve_log_space( 3099 struct xlog *log, 3100 struct xlog_ticket *ticket) 3101 { 3102 trace_xfs_log_regrant_reserve_enter(log, ticket); 3103 3104 if (ticket->t_cnt > 0) 3105 ticket->t_cnt--; 3106 3107 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3108 ticket->t_curr_res); 3109 xlog_grant_sub_space(log, &log->l_write_head.grant, 3110 ticket->t_curr_res); 3111 ticket->t_curr_res = ticket->t_unit_res; 3112 xlog_tic_reset_res(ticket); 3113 3114 trace_xfs_log_regrant_reserve_sub(log, ticket); 3115 3116 /* just return if we still have some of the pre-reserved space */ 3117 if (ticket->t_cnt > 0) 3118 return; 3119 3120 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3121 ticket->t_unit_res); 3122 3123 trace_xfs_log_regrant_reserve_exit(log, ticket); 3124 3125 ticket->t_curr_res = ticket->t_unit_res; 3126 xlog_tic_reset_res(ticket); 3127 } /* xlog_regrant_reserve_log_space */ 3128 3129 3130 /* 3131 * Give back the space left from a reservation. 3132 * 3133 * All the information we need to make a correct determination of space left 3134 * is present. For non-permanent reservations, things are quite easy. The 3135 * count should have been decremented to zero. We only need to deal with the 3136 * space remaining in the current reservation part of the ticket. If the 3137 * ticket contains a permanent reservation, there may be left over space which 3138 * needs to be released. A count of N means that N-1 refills of the current 3139 * reservation can be done before we need to ask for more space. The first 3140 * one goes to fill up the first current reservation. Once we run out of 3141 * space, the count will stay at zero and the only space remaining will be 3142 * in the current reservation field. 3143 */ 3144 STATIC void 3145 xlog_ungrant_log_space( 3146 struct xlog *log, 3147 struct xlog_ticket *ticket) 3148 { 3149 int bytes; 3150 3151 if (ticket->t_cnt > 0) 3152 ticket->t_cnt--; 3153 3154 trace_xfs_log_ungrant_enter(log, ticket); 3155 trace_xfs_log_ungrant_sub(log, ticket); 3156 3157 /* 3158 * If this is a permanent reservation ticket, we may be able to free 3159 * up more space based on the remaining count. 3160 */ 3161 bytes = ticket->t_curr_res; 3162 if (ticket->t_cnt > 0) { 3163 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3164 bytes += ticket->t_unit_res*ticket->t_cnt; 3165 } 3166 3167 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3168 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3169 3170 trace_xfs_log_ungrant_exit(log, ticket); 3171 3172 xfs_log_space_wake(log->l_mp); 3173 } 3174 3175 /* 3176 * Flush iclog to disk if this is the last reference to the given iclog and 3177 * the WANT_SYNC bit is set. 3178 * 3179 * When this function is entered, the iclog is not necessarily in the 3180 * WANT_SYNC state. It may be sitting around waiting to get filled. 3181 * 3182 * 3183 */ 3184 STATIC int 3185 xlog_state_release_iclog( 3186 struct xlog *log, 3187 struct xlog_in_core *iclog) 3188 { 3189 int sync = 0; /* do we sync? */ 3190 3191 if (iclog->ic_state & XLOG_STATE_IOERROR) 3192 return -EIO; 3193 3194 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3195 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3196 return 0; 3197 3198 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3199 spin_unlock(&log->l_icloglock); 3200 return -EIO; 3201 } 3202 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3203 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3204 3205 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3206 /* update tail before writing to iclog */ 3207 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3208 sync++; 3209 iclog->ic_state = XLOG_STATE_SYNCING; 3210 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3211 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3212 /* cycle incremented when incrementing curr_block */ 3213 } 3214 spin_unlock(&log->l_icloglock); 3215 3216 /* 3217 * We let the log lock go, so it's possible that we hit a log I/O 3218 * error or some other SHUTDOWN condition that marks the iclog 3219 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3220 * this iclog has consistent data, so we ignore IOERROR 3221 * flags after this point. 3222 */ 3223 if (sync) 3224 return xlog_sync(log, iclog); 3225 return 0; 3226 } /* xlog_state_release_iclog */ 3227 3228 3229 /* 3230 * This routine will mark the current iclog in the ring as WANT_SYNC 3231 * and move the current iclog pointer to the next iclog in the ring. 3232 * When this routine is called from xlog_state_get_iclog_space(), the 3233 * exact size of the iclog has not yet been determined. All we know is 3234 * that every data block. We have run out of space in this log record. 3235 */ 3236 STATIC void 3237 xlog_state_switch_iclogs( 3238 struct xlog *log, 3239 struct xlog_in_core *iclog, 3240 int eventual_size) 3241 { 3242 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3243 if (!eventual_size) 3244 eventual_size = iclog->ic_offset; 3245 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3246 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3247 log->l_prev_block = log->l_curr_block; 3248 log->l_prev_cycle = log->l_curr_cycle; 3249 3250 /* roll log?: ic_offset changed later */ 3251 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3252 3253 /* Round up to next log-sunit */ 3254 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3255 log->l_mp->m_sb.sb_logsunit > 1) { 3256 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3257 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3258 } 3259 3260 if (log->l_curr_block >= log->l_logBBsize) { 3261 /* 3262 * Rewind the current block before the cycle is bumped to make 3263 * sure that the combined LSN never transiently moves forward 3264 * when the log wraps to the next cycle. This is to support the 3265 * unlocked sample of these fields from xlog_valid_lsn(). Most 3266 * other cases should acquire l_icloglock. 3267 */ 3268 log->l_curr_block -= log->l_logBBsize; 3269 ASSERT(log->l_curr_block >= 0); 3270 smp_wmb(); 3271 log->l_curr_cycle++; 3272 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3273 log->l_curr_cycle++; 3274 } 3275 ASSERT(iclog == log->l_iclog); 3276 log->l_iclog = iclog->ic_next; 3277 } /* xlog_state_switch_iclogs */ 3278 3279 /* 3280 * Write out all data in the in-core log as of this exact moment in time. 3281 * 3282 * Data may be written to the in-core log during this call. However, 3283 * we don't guarantee this data will be written out. A change from past 3284 * implementation means this routine will *not* write out zero length LRs. 3285 * 3286 * Basically, we try and perform an intelligent scan of the in-core logs. 3287 * If we determine there is no flushable data, we just return. There is no 3288 * flushable data if: 3289 * 3290 * 1. the current iclog is active and has no data; the previous iclog 3291 * is in the active or dirty state. 3292 * 2. the current iclog is drity, and the previous iclog is in the 3293 * active or dirty state. 3294 * 3295 * We may sleep if: 3296 * 3297 * 1. the current iclog is not in the active nor dirty state. 3298 * 2. the current iclog dirty, and the previous iclog is not in the 3299 * active nor dirty state. 3300 * 3. the current iclog is active, and there is another thread writing 3301 * to this particular iclog. 3302 * 4. a) the current iclog is active and has no other writers 3303 * b) when we return from flushing out this iclog, it is still 3304 * not in the active nor dirty state. 3305 */ 3306 int 3307 _xfs_log_force( 3308 struct xfs_mount *mp, 3309 uint flags, 3310 int *log_flushed) 3311 { 3312 struct xlog *log = mp->m_log; 3313 struct xlog_in_core *iclog; 3314 xfs_lsn_t lsn; 3315 3316 XFS_STATS_INC(mp, xs_log_force); 3317 3318 xlog_cil_force(log); 3319 3320 spin_lock(&log->l_icloglock); 3321 3322 iclog = log->l_iclog; 3323 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3324 spin_unlock(&log->l_icloglock); 3325 return -EIO; 3326 } 3327 3328 /* If the head iclog is not active nor dirty, we just attach 3329 * ourselves to the head and go to sleep. 3330 */ 3331 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3332 iclog->ic_state == XLOG_STATE_DIRTY) { 3333 /* 3334 * If the head is dirty or (active and empty), then 3335 * we need to look at the previous iclog. If the previous 3336 * iclog is active or dirty we are done. There is nothing 3337 * to sync out. Otherwise, we attach ourselves to the 3338 * previous iclog and go to sleep. 3339 */ 3340 if (iclog->ic_state == XLOG_STATE_DIRTY || 3341 (atomic_read(&iclog->ic_refcnt) == 0 3342 && iclog->ic_offset == 0)) { 3343 iclog = iclog->ic_prev; 3344 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3345 iclog->ic_state == XLOG_STATE_DIRTY) 3346 goto no_sleep; 3347 else 3348 goto maybe_sleep; 3349 } else { 3350 if (atomic_read(&iclog->ic_refcnt) == 0) { 3351 /* We are the only one with access to this 3352 * iclog. Flush it out now. There should 3353 * be a roundoff of zero to show that someone 3354 * has already taken care of the roundoff from 3355 * the previous sync. 3356 */ 3357 atomic_inc(&iclog->ic_refcnt); 3358 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3359 xlog_state_switch_iclogs(log, iclog, 0); 3360 spin_unlock(&log->l_icloglock); 3361 3362 if (xlog_state_release_iclog(log, iclog)) 3363 return -EIO; 3364 3365 if (log_flushed) 3366 *log_flushed = 1; 3367 spin_lock(&log->l_icloglock); 3368 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3369 iclog->ic_state != XLOG_STATE_DIRTY) 3370 goto maybe_sleep; 3371 else 3372 goto no_sleep; 3373 } else { 3374 /* Someone else is writing to this iclog. 3375 * Use its call to flush out the data. However, 3376 * the other thread may not force out this LR, 3377 * so we mark it WANT_SYNC. 3378 */ 3379 xlog_state_switch_iclogs(log, iclog, 0); 3380 goto maybe_sleep; 3381 } 3382 } 3383 } 3384 3385 /* By the time we come around again, the iclog could've been filled 3386 * which would give it another lsn. If we have a new lsn, just 3387 * return because the relevant data has been flushed. 3388 */ 3389 maybe_sleep: 3390 if (flags & XFS_LOG_SYNC) { 3391 /* 3392 * We must check if we're shutting down here, before 3393 * we wait, while we're holding the l_icloglock. 3394 * Then we check again after waking up, in case our 3395 * sleep was disturbed by a bad news. 3396 */ 3397 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3398 spin_unlock(&log->l_icloglock); 3399 return -EIO; 3400 } 3401 XFS_STATS_INC(mp, xs_log_force_sleep); 3402 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3403 /* 3404 * No need to grab the log lock here since we're 3405 * only deciding whether or not to return EIO 3406 * and the memory read should be atomic. 3407 */ 3408 if (iclog->ic_state & XLOG_STATE_IOERROR) 3409 return -EIO; 3410 } else { 3411 3412 no_sleep: 3413 spin_unlock(&log->l_icloglock); 3414 } 3415 return 0; 3416 } 3417 3418 /* 3419 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3420 * about errors or whether the log was flushed or not. This is the normal 3421 * interface to use when trying to unpin items or move the log forward. 3422 */ 3423 void 3424 xfs_log_force( 3425 xfs_mount_t *mp, 3426 uint flags) 3427 { 3428 trace_xfs_log_force(mp, 0, _RET_IP_); 3429 _xfs_log_force(mp, flags, NULL); 3430 } 3431 3432 /* 3433 * Force the in-core log to disk for a specific LSN. 3434 * 3435 * Find in-core log with lsn. 3436 * If it is in the DIRTY state, just return. 3437 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3438 * state and go to sleep or return. 3439 * If it is in any other state, go to sleep or return. 3440 * 3441 * Synchronous forces are implemented with a signal variable. All callers 3442 * to force a given lsn to disk will wait on a the sv attached to the 3443 * specific in-core log. When given in-core log finally completes its 3444 * write to disk, that thread will wake up all threads waiting on the 3445 * sv. 3446 */ 3447 int 3448 _xfs_log_force_lsn( 3449 struct xfs_mount *mp, 3450 xfs_lsn_t lsn, 3451 uint flags, 3452 int *log_flushed) 3453 { 3454 struct xlog *log = mp->m_log; 3455 struct xlog_in_core *iclog; 3456 int already_slept = 0; 3457 3458 ASSERT(lsn != 0); 3459 3460 XFS_STATS_INC(mp, xs_log_force); 3461 3462 lsn = xlog_cil_force_lsn(log, lsn); 3463 if (lsn == NULLCOMMITLSN) 3464 return 0; 3465 3466 try_again: 3467 spin_lock(&log->l_icloglock); 3468 iclog = log->l_iclog; 3469 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3470 spin_unlock(&log->l_icloglock); 3471 return -EIO; 3472 } 3473 3474 do { 3475 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3476 iclog = iclog->ic_next; 3477 continue; 3478 } 3479 3480 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3481 spin_unlock(&log->l_icloglock); 3482 return 0; 3483 } 3484 3485 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3486 /* 3487 * We sleep here if we haven't already slept (e.g. 3488 * this is the first time we've looked at the correct 3489 * iclog buf) and the buffer before us is going to 3490 * be sync'ed. The reason for this is that if we 3491 * are doing sync transactions here, by waiting for 3492 * the previous I/O to complete, we can allow a few 3493 * more transactions into this iclog before we close 3494 * it down. 3495 * 3496 * Otherwise, we mark the buffer WANT_SYNC, and bump 3497 * up the refcnt so we can release the log (which 3498 * drops the ref count). The state switch keeps new 3499 * transaction commits from using this buffer. When 3500 * the current commits finish writing into the buffer, 3501 * the refcount will drop to zero and the buffer will 3502 * go out then. 3503 */ 3504 if (!already_slept && 3505 (iclog->ic_prev->ic_state & 3506 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3507 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3508 3509 XFS_STATS_INC(mp, xs_log_force_sleep); 3510 3511 xlog_wait(&iclog->ic_prev->ic_write_wait, 3512 &log->l_icloglock); 3513 already_slept = 1; 3514 goto try_again; 3515 } 3516 atomic_inc(&iclog->ic_refcnt); 3517 xlog_state_switch_iclogs(log, iclog, 0); 3518 spin_unlock(&log->l_icloglock); 3519 if (xlog_state_release_iclog(log, iclog)) 3520 return -EIO; 3521 if (log_flushed) 3522 *log_flushed = 1; 3523 spin_lock(&log->l_icloglock); 3524 } 3525 3526 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3527 !(iclog->ic_state & 3528 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3529 /* 3530 * Don't wait on completion if we know that we've 3531 * gotten a log write error. 3532 */ 3533 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3534 spin_unlock(&log->l_icloglock); 3535 return -EIO; 3536 } 3537 XFS_STATS_INC(mp, xs_log_force_sleep); 3538 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3539 /* 3540 * No need to grab the log lock here since we're 3541 * only deciding whether or not to return EIO 3542 * and the memory read should be atomic. 3543 */ 3544 if (iclog->ic_state & XLOG_STATE_IOERROR) 3545 return -EIO; 3546 } else { /* just return */ 3547 spin_unlock(&log->l_icloglock); 3548 } 3549 3550 return 0; 3551 } while (iclog != log->l_iclog); 3552 3553 spin_unlock(&log->l_icloglock); 3554 return 0; 3555 } 3556 3557 /* 3558 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3559 * about errors or whether the log was flushed or not. This is the normal 3560 * interface to use when trying to unpin items or move the log forward. 3561 */ 3562 void 3563 xfs_log_force_lsn( 3564 xfs_mount_t *mp, 3565 xfs_lsn_t lsn, 3566 uint flags) 3567 { 3568 trace_xfs_log_force(mp, lsn, _RET_IP_); 3569 _xfs_log_force_lsn(mp, lsn, flags, NULL); 3570 } 3571 3572 /* 3573 * Called when we want to mark the current iclog as being ready to sync to 3574 * disk. 3575 */ 3576 STATIC void 3577 xlog_state_want_sync( 3578 struct xlog *log, 3579 struct xlog_in_core *iclog) 3580 { 3581 assert_spin_locked(&log->l_icloglock); 3582 3583 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3584 xlog_state_switch_iclogs(log, iclog, 0); 3585 } else { 3586 ASSERT(iclog->ic_state & 3587 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3588 } 3589 } 3590 3591 3592 /***************************************************************************** 3593 * 3594 * TICKET functions 3595 * 3596 ***************************************************************************** 3597 */ 3598 3599 /* 3600 * Free a used ticket when its refcount falls to zero. 3601 */ 3602 void 3603 xfs_log_ticket_put( 3604 xlog_ticket_t *ticket) 3605 { 3606 ASSERT(atomic_read(&ticket->t_ref) > 0); 3607 if (atomic_dec_and_test(&ticket->t_ref)) 3608 kmem_zone_free(xfs_log_ticket_zone, ticket); 3609 } 3610 3611 xlog_ticket_t * 3612 xfs_log_ticket_get( 3613 xlog_ticket_t *ticket) 3614 { 3615 ASSERT(atomic_read(&ticket->t_ref) > 0); 3616 atomic_inc(&ticket->t_ref); 3617 return ticket; 3618 } 3619 3620 /* 3621 * Figure out the total log space unit (in bytes) that would be 3622 * required for a log ticket. 3623 */ 3624 int 3625 xfs_log_calc_unit_res( 3626 struct xfs_mount *mp, 3627 int unit_bytes) 3628 { 3629 struct xlog *log = mp->m_log; 3630 int iclog_space; 3631 uint num_headers; 3632 3633 /* 3634 * Permanent reservations have up to 'cnt'-1 active log operations 3635 * in the log. A unit in this case is the amount of space for one 3636 * of these log operations. Normal reservations have a cnt of 1 3637 * and their unit amount is the total amount of space required. 3638 * 3639 * The following lines of code account for non-transaction data 3640 * which occupy space in the on-disk log. 3641 * 3642 * Normal form of a transaction is: 3643 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3644 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3645 * 3646 * We need to account for all the leadup data and trailer data 3647 * around the transaction data. 3648 * And then we need to account for the worst case in terms of using 3649 * more space. 3650 * The worst case will happen if: 3651 * - the placement of the transaction happens to be such that the 3652 * roundoff is at its maximum 3653 * - the transaction data is synced before the commit record is synced 3654 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3655 * Therefore the commit record is in its own Log Record. 3656 * This can happen as the commit record is called with its 3657 * own region to xlog_write(). 3658 * This then means that in the worst case, roundoff can happen for 3659 * the commit-rec as well. 3660 * The commit-rec is smaller than padding in this scenario and so it is 3661 * not added separately. 3662 */ 3663 3664 /* for trans header */ 3665 unit_bytes += sizeof(xlog_op_header_t); 3666 unit_bytes += sizeof(xfs_trans_header_t); 3667 3668 /* for start-rec */ 3669 unit_bytes += sizeof(xlog_op_header_t); 3670 3671 /* 3672 * for LR headers - the space for data in an iclog is the size minus 3673 * the space used for the headers. If we use the iclog size, then we 3674 * undercalculate the number of headers required. 3675 * 3676 * Furthermore - the addition of op headers for split-recs might 3677 * increase the space required enough to require more log and op 3678 * headers, so take that into account too. 3679 * 3680 * IMPORTANT: This reservation makes the assumption that if this 3681 * transaction is the first in an iclog and hence has the LR headers 3682 * accounted to it, then the remaining space in the iclog is 3683 * exclusively for this transaction. i.e. if the transaction is larger 3684 * than the iclog, it will be the only thing in that iclog. 3685 * Fundamentally, this means we must pass the entire log vector to 3686 * xlog_write to guarantee this. 3687 */ 3688 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3689 num_headers = howmany(unit_bytes, iclog_space); 3690 3691 /* for split-recs - ophdrs added when data split over LRs */ 3692 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3693 3694 /* add extra header reservations if we overrun */ 3695 while (!num_headers || 3696 howmany(unit_bytes, iclog_space) > num_headers) { 3697 unit_bytes += sizeof(xlog_op_header_t); 3698 num_headers++; 3699 } 3700 unit_bytes += log->l_iclog_hsize * num_headers; 3701 3702 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3703 unit_bytes += log->l_iclog_hsize; 3704 3705 /* for roundoff padding for transaction data and one for commit record */ 3706 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3707 /* log su roundoff */ 3708 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3709 } else { 3710 /* BB roundoff */ 3711 unit_bytes += 2 * BBSIZE; 3712 } 3713 3714 return unit_bytes; 3715 } 3716 3717 /* 3718 * Allocate and initialise a new log ticket. 3719 */ 3720 struct xlog_ticket * 3721 xlog_ticket_alloc( 3722 struct xlog *log, 3723 int unit_bytes, 3724 int cnt, 3725 char client, 3726 bool permanent, 3727 xfs_km_flags_t alloc_flags) 3728 { 3729 struct xlog_ticket *tic; 3730 int unit_res; 3731 3732 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3733 if (!tic) 3734 return NULL; 3735 3736 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3737 3738 atomic_set(&tic->t_ref, 1); 3739 tic->t_task = current; 3740 INIT_LIST_HEAD(&tic->t_queue); 3741 tic->t_unit_res = unit_res; 3742 tic->t_curr_res = unit_res; 3743 tic->t_cnt = cnt; 3744 tic->t_ocnt = cnt; 3745 tic->t_tid = prandom_u32(); 3746 tic->t_clientid = client; 3747 tic->t_flags = XLOG_TIC_INITED; 3748 if (permanent) 3749 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3750 3751 xlog_tic_reset_res(tic); 3752 3753 return tic; 3754 } 3755 3756 3757 /****************************************************************************** 3758 * 3759 * Log debug routines 3760 * 3761 ****************************************************************************** 3762 */ 3763 #if defined(DEBUG) 3764 /* 3765 * Make sure that the destination ptr is within the valid data region of 3766 * one of the iclogs. This uses backup pointers stored in a different 3767 * part of the log in case we trash the log structure. 3768 */ 3769 STATIC void 3770 xlog_verify_dest_ptr( 3771 struct xlog *log, 3772 void *ptr) 3773 { 3774 int i; 3775 int good_ptr = 0; 3776 3777 for (i = 0; i < log->l_iclog_bufs; i++) { 3778 if (ptr >= log->l_iclog_bak[i] && 3779 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3780 good_ptr++; 3781 } 3782 3783 if (!good_ptr) 3784 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3785 } 3786 3787 /* 3788 * Check to make sure the grant write head didn't just over lap the tail. If 3789 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3790 * the cycles differ by exactly one and check the byte count. 3791 * 3792 * This check is run unlocked, so can give false positives. Rather than assert 3793 * on failures, use a warn-once flag and a panic tag to allow the admin to 3794 * determine if they want to panic the machine when such an error occurs. For 3795 * debug kernels this will have the same effect as using an assert but, unlinke 3796 * an assert, it can be turned off at runtime. 3797 */ 3798 STATIC void 3799 xlog_verify_grant_tail( 3800 struct xlog *log) 3801 { 3802 int tail_cycle, tail_blocks; 3803 int cycle, space; 3804 3805 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3806 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3807 if (tail_cycle != cycle) { 3808 if (cycle - 1 != tail_cycle && 3809 !(log->l_flags & XLOG_TAIL_WARN)) { 3810 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3811 "%s: cycle - 1 != tail_cycle", __func__); 3812 log->l_flags |= XLOG_TAIL_WARN; 3813 } 3814 3815 if (space > BBTOB(tail_blocks) && 3816 !(log->l_flags & XLOG_TAIL_WARN)) { 3817 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3818 "%s: space > BBTOB(tail_blocks)", __func__); 3819 log->l_flags |= XLOG_TAIL_WARN; 3820 } 3821 } 3822 } 3823 3824 /* check if it will fit */ 3825 STATIC void 3826 xlog_verify_tail_lsn( 3827 struct xlog *log, 3828 struct xlog_in_core *iclog, 3829 xfs_lsn_t tail_lsn) 3830 { 3831 int blocks; 3832 3833 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3834 blocks = 3835 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3836 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3837 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3838 } else { 3839 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3840 3841 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3842 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3843 3844 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3845 if (blocks < BTOBB(iclog->ic_offset) + 1) 3846 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3847 } 3848 } /* xlog_verify_tail_lsn */ 3849 3850 /* 3851 * Perform a number of checks on the iclog before writing to disk. 3852 * 3853 * 1. Make sure the iclogs are still circular 3854 * 2. Make sure we have a good magic number 3855 * 3. Make sure we don't have magic numbers in the data 3856 * 4. Check fields of each log operation header for: 3857 * A. Valid client identifier 3858 * B. tid ptr value falls in valid ptr space (user space code) 3859 * C. Length in log record header is correct according to the 3860 * individual operation headers within record. 3861 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3862 * log, check the preceding blocks of the physical log to make sure all 3863 * the cycle numbers agree with the current cycle number. 3864 */ 3865 STATIC void 3866 xlog_verify_iclog( 3867 struct xlog *log, 3868 struct xlog_in_core *iclog, 3869 int count, 3870 bool syncing) 3871 { 3872 xlog_op_header_t *ophead; 3873 xlog_in_core_t *icptr; 3874 xlog_in_core_2_t *xhdr; 3875 void *base_ptr, *ptr, *p; 3876 ptrdiff_t field_offset; 3877 uint8_t clientid; 3878 int len, i, j, k, op_len; 3879 int idx; 3880 3881 /* check validity of iclog pointers */ 3882 spin_lock(&log->l_icloglock); 3883 icptr = log->l_iclog; 3884 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3885 ASSERT(icptr); 3886 3887 if (icptr != log->l_iclog) 3888 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3889 spin_unlock(&log->l_icloglock); 3890 3891 /* check log magic numbers */ 3892 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3893 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3894 3895 base_ptr = ptr = &iclog->ic_header; 3896 p = &iclog->ic_header; 3897 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3898 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3899 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3900 __func__); 3901 } 3902 3903 /* check fields */ 3904 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3905 base_ptr = ptr = iclog->ic_datap; 3906 ophead = ptr; 3907 xhdr = iclog->ic_data; 3908 for (i = 0; i < len; i++) { 3909 ophead = ptr; 3910 3911 /* clientid is only 1 byte */ 3912 p = &ophead->oh_clientid; 3913 field_offset = p - base_ptr; 3914 if (!syncing || (field_offset & 0x1ff)) { 3915 clientid = ophead->oh_clientid; 3916 } else { 3917 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3918 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3919 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3920 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3921 clientid = xlog_get_client_id( 3922 xhdr[j].hic_xheader.xh_cycle_data[k]); 3923 } else { 3924 clientid = xlog_get_client_id( 3925 iclog->ic_header.h_cycle_data[idx]); 3926 } 3927 } 3928 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3929 xfs_warn(log->l_mp, 3930 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3931 __func__, clientid, ophead, 3932 (unsigned long)field_offset); 3933 3934 /* check length */ 3935 p = &ophead->oh_len; 3936 field_offset = p - base_ptr; 3937 if (!syncing || (field_offset & 0x1ff)) { 3938 op_len = be32_to_cpu(ophead->oh_len); 3939 } else { 3940 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3941 (uintptr_t)iclog->ic_datap); 3942 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3943 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3944 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3945 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3946 } else { 3947 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3948 } 3949 } 3950 ptr += sizeof(xlog_op_header_t) + op_len; 3951 } 3952 } /* xlog_verify_iclog */ 3953 #endif 3954 3955 /* 3956 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3957 */ 3958 STATIC int 3959 xlog_state_ioerror( 3960 struct xlog *log) 3961 { 3962 xlog_in_core_t *iclog, *ic; 3963 3964 iclog = log->l_iclog; 3965 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3966 /* 3967 * Mark all the incore logs IOERROR. 3968 * From now on, no log flushes will result. 3969 */ 3970 ic = iclog; 3971 do { 3972 ic->ic_state = XLOG_STATE_IOERROR; 3973 ic = ic->ic_next; 3974 } while (ic != iclog); 3975 return 0; 3976 } 3977 /* 3978 * Return non-zero, if state transition has already happened. 3979 */ 3980 return 1; 3981 } 3982 3983 /* 3984 * This is called from xfs_force_shutdown, when we're forcibly 3985 * shutting down the filesystem, typically because of an IO error. 3986 * Our main objectives here are to make sure that: 3987 * a. if !logerror, flush the logs to disk. Anything modified 3988 * after this is ignored. 3989 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3990 * parties to find out, 'atomically'. 3991 * c. those who're sleeping on log reservations, pinned objects and 3992 * other resources get woken up, and be told the bad news. 3993 * d. nothing new gets queued up after (b) and (c) are done. 3994 * 3995 * Note: for the !logerror case we need to flush the regions held in memory out 3996 * to disk first. This needs to be done before the log is marked as shutdown, 3997 * otherwise the iclog writes will fail. 3998 */ 3999 int 4000 xfs_log_force_umount( 4001 struct xfs_mount *mp, 4002 int logerror) 4003 { 4004 struct xlog *log; 4005 int retval; 4006 4007 log = mp->m_log; 4008 4009 /* 4010 * If this happens during log recovery, don't worry about 4011 * locking; the log isn't open for business yet. 4012 */ 4013 if (!log || 4014 log->l_flags & XLOG_ACTIVE_RECOVERY) { 4015 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 4016 if (mp->m_sb_bp) 4017 mp->m_sb_bp->b_flags |= XBF_DONE; 4018 return 0; 4019 } 4020 4021 /* 4022 * Somebody could've already done the hard work for us. 4023 * No need to get locks for this. 4024 */ 4025 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 4026 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 4027 return 1; 4028 } 4029 4030 /* 4031 * Flush all the completed transactions to disk before marking the log 4032 * being shut down. We need to do it in this order to ensure that 4033 * completed operations are safely on disk before we shut down, and that 4034 * we don't have to issue any buffer IO after the shutdown flags are set 4035 * to guarantee this. 4036 */ 4037 if (!logerror) 4038 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 4039 4040 /* 4041 * mark the filesystem and the as in a shutdown state and wake 4042 * everybody up to tell them the bad news. 4043 */ 4044 spin_lock(&log->l_icloglock); 4045 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 4046 if (mp->m_sb_bp) 4047 mp->m_sb_bp->b_flags |= XBF_DONE; 4048 4049 /* 4050 * Mark the log and the iclogs with IO error flags to prevent any 4051 * further log IO from being issued or completed. 4052 */ 4053 log->l_flags |= XLOG_IO_ERROR; 4054 retval = xlog_state_ioerror(log); 4055 spin_unlock(&log->l_icloglock); 4056 4057 /* 4058 * We don't want anybody waiting for log reservations after this. That 4059 * means we have to wake up everybody queued up on reserveq as well as 4060 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4061 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4062 * action is protected by the grant locks. 4063 */ 4064 xlog_grant_head_wake_all(&log->l_reserve_head); 4065 xlog_grant_head_wake_all(&log->l_write_head); 4066 4067 /* 4068 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4069 * as if the log writes were completed. The abort handling in the log 4070 * item committed callback functions will do this again under lock to 4071 * avoid races. 4072 */ 4073 wake_up_all(&log->l_cilp->xc_commit_wait); 4074 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4075 4076 #ifdef XFSERRORDEBUG 4077 { 4078 xlog_in_core_t *iclog; 4079 4080 spin_lock(&log->l_icloglock); 4081 iclog = log->l_iclog; 4082 do { 4083 ASSERT(iclog->ic_callback == 0); 4084 iclog = iclog->ic_next; 4085 } while (iclog != log->l_iclog); 4086 spin_unlock(&log->l_icloglock); 4087 } 4088 #endif 4089 /* return non-zero if log IOERROR transition had already happened */ 4090 return retval; 4091 } 4092 4093 STATIC int 4094 xlog_iclogs_empty( 4095 struct xlog *log) 4096 { 4097 xlog_in_core_t *iclog; 4098 4099 iclog = log->l_iclog; 4100 do { 4101 /* endianness does not matter here, zero is zero in 4102 * any language. 4103 */ 4104 if (iclog->ic_header.h_num_logops) 4105 return 0; 4106 iclog = iclog->ic_next; 4107 } while (iclog != log->l_iclog); 4108 return 1; 4109 } 4110 4111 /* 4112 * Verify that an LSN stamped into a piece of metadata is valid. This is 4113 * intended for use in read verifiers on v5 superblocks. 4114 */ 4115 bool 4116 xfs_log_check_lsn( 4117 struct xfs_mount *mp, 4118 xfs_lsn_t lsn) 4119 { 4120 struct xlog *log = mp->m_log; 4121 bool valid; 4122 4123 /* 4124 * norecovery mode skips mount-time log processing and unconditionally 4125 * resets the in-core LSN. We can't validate in this mode, but 4126 * modifications are not allowed anyways so just return true. 4127 */ 4128 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4129 return true; 4130 4131 /* 4132 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4133 * handled by recovery and thus safe to ignore here. 4134 */ 4135 if (lsn == NULLCOMMITLSN) 4136 return true; 4137 4138 valid = xlog_valid_lsn(mp->m_log, lsn); 4139 4140 /* warn the user about what's gone wrong before verifier failure */ 4141 if (!valid) { 4142 spin_lock(&log->l_icloglock); 4143 xfs_warn(mp, 4144 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4145 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4146 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4147 log->l_curr_cycle, log->l_curr_block); 4148 spin_unlock(&log->l_icloglock); 4149 } 4150 4151 return valid; 4152 } 4153