xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 82e6fdd6)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
38 
39 kmem_zone_t	*xfs_log_ticket_zone;
40 
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 	struct xlog		*log,
45 	struct xlog_ticket	*ticket,
46 	struct xlog_in_core	**iclog,
47 	xfs_lsn_t		*commitlsnp);
48 
49 STATIC struct xlog *
50 xlog_alloc_log(
51 	struct xfs_mount	*mp,
52 	struct xfs_buftarg	*log_target,
53 	xfs_daddr_t		blk_offset,
54 	int			num_bblks);
55 STATIC int
56 xlog_space_left(
57 	struct xlog		*log,
58 	atomic64_t		*head);
59 STATIC int
60 xlog_sync(
61 	struct xlog		*log,
62 	struct xlog_in_core	*iclog);
63 STATIC void
64 xlog_dealloc_log(
65 	struct xlog		*log);
66 
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 	struct xlog		*log,
72 	int			aborted,
73 	struct xlog_in_core	*iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 	struct xlog		*log,
77 	int			len,
78 	struct xlog_in_core	**iclog,
79 	struct xlog_ticket	*ticket,
80 	int			*continued_write,
81 	int			*logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 	struct xlog		*log,
85 	struct xlog_in_core	*iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 	struct xlog		*log,
89 	struct xlog_in_core	*iclog,
90 	int			eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 	struct xlog		*log,
94 	struct xlog_in_core	*iclog);
95 
96 STATIC void
97 xlog_grant_push_ail(
98 	struct xlog		*log,
99 	int			need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 	struct xlog		*log,
103 	struct xlog_ticket	*ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 	struct xlog		*log,
107 	struct xlog_ticket	*ticket);
108 
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 	struct xlog		*log,
113 	void			*ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 	struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 	struct xlog		*log,
120 	struct xlog_in_core	*iclog,
121 	int			count,
122 	bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 	struct xlog		*log,
126 	struct xlog_in_core	*iclog,
127 	xfs_lsn_t		tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134 
135 STATIC int
136 xlog_iclogs_empty(
137 	struct xlog		*log);
138 
139 static void
140 xlog_grant_sub_space(
141 	struct xlog		*log,
142 	atomic64_t		*head,
143 	int			bytes)
144 {
145 	int64_t	head_val = atomic64_read(head);
146 	int64_t new, old;
147 
148 	do {
149 		int	cycle, space;
150 
151 		xlog_crack_grant_head_val(head_val, &cycle, &space);
152 
153 		space -= bytes;
154 		if (space < 0) {
155 			space += log->l_logsize;
156 			cycle--;
157 		}
158 
159 		old = head_val;
160 		new = xlog_assign_grant_head_val(cycle, space);
161 		head_val = atomic64_cmpxchg(head, old, new);
162 	} while (head_val != old);
163 }
164 
165 static void
166 xlog_grant_add_space(
167 	struct xlog		*log,
168 	atomic64_t		*head,
169 	int			bytes)
170 {
171 	int64_t	head_val = atomic64_read(head);
172 	int64_t new, old;
173 
174 	do {
175 		int		tmp;
176 		int		cycle, space;
177 
178 		xlog_crack_grant_head_val(head_val, &cycle, &space);
179 
180 		tmp = log->l_logsize - space;
181 		if (tmp > bytes)
182 			space += bytes;
183 		else {
184 			space = bytes - tmp;
185 			cycle++;
186 		}
187 
188 		old = head_val;
189 		new = xlog_assign_grant_head_val(cycle, space);
190 		head_val = atomic64_cmpxchg(head, old, new);
191 	} while (head_val != old);
192 }
193 
194 STATIC void
195 xlog_grant_head_init(
196 	struct xlog_grant_head	*head)
197 {
198 	xlog_assign_grant_head(&head->grant, 1, 0);
199 	INIT_LIST_HEAD(&head->waiters);
200 	spin_lock_init(&head->lock);
201 }
202 
203 STATIC void
204 xlog_grant_head_wake_all(
205 	struct xlog_grant_head	*head)
206 {
207 	struct xlog_ticket	*tic;
208 
209 	spin_lock(&head->lock);
210 	list_for_each_entry(tic, &head->waiters, t_queue)
211 		wake_up_process(tic->t_task);
212 	spin_unlock(&head->lock);
213 }
214 
215 static inline int
216 xlog_ticket_reservation(
217 	struct xlog		*log,
218 	struct xlog_grant_head	*head,
219 	struct xlog_ticket	*tic)
220 {
221 	if (head == &log->l_write_head) {
222 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 		return tic->t_unit_res;
224 	} else {
225 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 			return tic->t_unit_res * tic->t_cnt;
227 		else
228 			return tic->t_unit_res;
229 	}
230 }
231 
232 STATIC bool
233 xlog_grant_head_wake(
234 	struct xlog		*log,
235 	struct xlog_grant_head	*head,
236 	int			*free_bytes)
237 {
238 	struct xlog_ticket	*tic;
239 	int			need_bytes;
240 
241 	list_for_each_entry(tic, &head->waiters, t_queue) {
242 		need_bytes = xlog_ticket_reservation(log, head, tic);
243 		if (*free_bytes < need_bytes)
244 			return false;
245 
246 		*free_bytes -= need_bytes;
247 		trace_xfs_log_grant_wake_up(log, tic);
248 		wake_up_process(tic->t_task);
249 	}
250 
251 	return true;
252 }
253 
254 STATIC int
255 xlog_grant_head_wait(
256 	struct xlog		*log,
257 	struct xlog_grant_head	*head,
258 	struct xlog_ticket	*tic,
259 	int			need_bytes) __releases(&head->lock)
260 					    __acquires(&head->lock)
261 {
262 	list_add_tail(&tic->t_queue, &head->waiters);
263 
264 	do {
265 		if (XLOG_FORCED_SHUTDOWN(log))
266 			goto shutdown;
267 		xlog_grant_push_ail(log, need_bytes);
268 
269 		__set_current_state(TASK_UNINTERRUPTIBLE);
270 		spin_unlock(&head->lock);
271 
272 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273 
274 		trace_xfs_log_grant_sleep(log, tic);
275 		schedule();
276 		trace_xfs_log_grant_wake(log, tic);
277 
278 		spin_lock(&head->lock);
279 		if (XLOG_FORCED_SHUTDOWN(log))
280 			goto shutdown;
281 	} while (xlog_space_left(log, &head->grant) < need_bytes);
282 
283 	list_del_init(&tic->t_queue);
284 	return 0;
285 shutdown:
286 	list_del_init(&tic->t_queue);
287 	return -EIO;
288 }
289 
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309 	struct xlog		*log,
310 	struct xlog_grant_head	*head,
311 	struct xlog_ticket	*tic,
312 	int			*need_bytes)
313 {
314 	int			free_bytes;
315 	int			error = 0;
316 
317 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 
319 	/*
320 	 * If there are other waiters on the queue then give them a chance at
321 	 * logspace before us.  Wake up the first waiters, if we do not wake
322 	 * up all the waiters then go to sleep waiting for more free space,
323 	 * otherwise try to get some space for this transaction.
324 	 */
325 	*need_bytes = xlog_ticket_reservation(log, head, tic);
326 	free_bytes = xlog_space_left(log, &head->grant);
327 	if (!list_empty_careful(&head->waiters)) {
328 		spin_lock(&head->lock);
329 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 		    free_bytes < *need_bytes) {
331 			error = xlog_grant_head_wait(log, head, tic,
332 						     *need_bytes);
333 		}
334 		spin_unlock(&head->lock);
335 	} else if (free_bytes < *need_bytes) {
336 		spin_lock(&head->lock);
337 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 		spin_unlock(&head->lock);
339 	}
340 
341 	return error;
342 }
343 
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 	tic->t_res_num = 0;
348 	tic->t_res_arr_sum = 0;
349 	tic->t_res_num_ophdrs = 0;
350 }
351 
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 		/* add to overflow and start again */
357 		tic->t_res_o_flow += tic->t_res_arr_sum;
358 		tic->t_res_num = 0;
359 		tic->t_res_arr_sum = 0;
360 	}
361 
362 	tic->t_res_arr[tic->t_res_num].r_len = len;
363 	tic->t_res_arr[tic->t_res_num].r_type = type;
364 	tic->t_res_arr_sum += len;
365 	tic->t_res_num++;
366 }
367 
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373 	struct xfs_mount	*mp,
374 	struct xlog_ticket	*tic)
375 {
376 	struct xlog		*log = mp->m_log;
377 	int			need_bytes;
378 	int			error = 0;
379 
380 	if (XLOG_FORCED_SHUTDOWN(log))
381 		return -EIO;
382 
383 	XFS_STATS_INC(mp, xs_try_logspace);
384 
385 	/*
386 	 * This is a new transaction on the ticket, so we need to change the
387 	 * transaction ID so that the next transaction has a different TID in
388 	 * the log. Just add one to the existing tid so that we can see chains
389 	 * of rolling transactions in the log easily.
390 	 */
391 	tic->t_tid++;
392 
393 	xlog_grant_push_ail(log, tic->t_unit_res);
394 
395 	tic->t_curr_res = tic->t_unit_res;
396 	xlog_tic_reset_res(tic);
397 
398 	if (tic->t_cnt > 0)
399 		return 0;
400 
401 	trace_xfs_log_regrant(log, tic);
402 
403 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 				      &need_bytes);
405 	if (error)
406 		goto out_error;
407 
408 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 	trace_xfs_log_regrant_exit(log, tic);
410 	xlog_verify_grant_tail(log);
411 	return 0;
412 
413 out_error:
414 	/*
415 	 * If we are failing, make sure the ticket doesn't have any current
416 	 * reservations.  We don't want to add this back when the ticket/
417 	 * transaction gets cancelled.
418 	 */
419 	tic->t_curr_res = 0;
420 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421 	return error;
422 }
423 
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434 	struct xfs_mount	*mp,
435 	int		 	unit_bytes,
436 	int		 	cnt,
437 	struct xlog_ticket	**ticp,
438 	uint8_t		 	client,
439 	bool			permanent)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(mp, xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	*ticp = tic;
460 
461 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 					    : tic->t_unit_res);
463 
464 	trace_xfs_log_reserve(log, tic);
465 
466 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 				      &need_bytes);
468 	if (error)
469 		goto out_error;
470 
471 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 	trace_xfs_log_reserve_exit(log, tic);
474 	xlog_verify_grant_tail(log);
475 	return 0;
476 
477 out_error:
478 	/*
479 	 * If we are failing, make sure the ticket doesn't have any current
480 	 * reservations.  We don't want to add this back when the ticket/
481 	 * transaction gets cancelled.
482 	 */
483 	tic->t_curr_res = 0;
484 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
485 	return error;
486 }
487 
488 
489 /*
490  * NOTES:
491  *
492  *	1. currblock field gets updated at startup and after in-core logs
493  *		marked as with WANT_SYNC.
494  */
495 
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512 	struct xfs_mount	*mp,
513 	struct xlog_ticket	*ticket,
514 	struct xlog_in_core	**iclog,
515 	bool			regrant)
516 {
517 	struct xlog		*log = mp->m_log;
518 	xfs_lsn_t		lsn = 0;
519 
520 	if (XLOG_FORCED_SHUTDOWN(log) ||
521 	    /*
522 	     * If nothing was ever written, don't write out commit record.
523 	     * If we get an error, just continue and give back the log ticket.
524 	     */
525 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 		lsn = (xfs_lsn_t) -1;
528 		regrant = false;
529 	}
530 
531 
532 	if (!regrant) {
533 		trace_xfs_log_done_nonperm(log, ticket);
534 
535 		/*
536 		 * Release ticket if not permanent reservation or a specific
537 		 * request has been made to release a permanent reservation.
538 		 */
539 		xlog_ungrant_log_space(log, ticket);
540 	} else {
541 		trace_xfs_log_done_perm(log, ticket);
542 
543 		xlog_regrant_reserve_log_space(log, ticket);
544 		/* If this ticket was a permanent reservation and we aren't
545 		 * trying to release it, reset the inited flags; so next time
546 		 * we write, a start record will be written out.
547 		 */
548 		ticket->t_flags |= XLOG_TIC_INITED;
549 	}
550 
551 	xfs_log_ticket_put(ticket);
552 	return lsn;
553 }
554 
555 /*
556  * Attaches a new iclog I/O completion callback routine during
557  * transaction commit.  If the log is in error state, a non-zero
558  * return code is handed back and the caller is responsible for
559  * executing the callback at an appropriate time.
560  */
561 int
562 xfs_log_notify(
563 	struct xfs_mount	*mp,
564 	struct xlog_in_core	*iclog,
565 	xfs_log_callback_t	*cb)
566 {
567 	int	abortflg;
568 
569 	spin_lock(&iclog->ic_callback_lock);
570 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
571 	if (!abortflg) {
572 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
573 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
574 		cb->cb_next = NULL;
575 		*(iclog->ic_callback_tail) = cb;
576 		iclog->ic_callback_tail = &(cb->cb_next);
577 	}
578 	spin_unlock(&iclog->ic_callback_lock);
579 	return abortflg;
580 }
581 
582 int
583 xfs_log_release_iclog(
584 	struct xfs_mount	*mp,
585 	struct xlog_in_core	*iclog)
586 {
587 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
588 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
589 		return -EIO;
590 	}
591 
592 	return 0;
593 }
594 
595 /*
596  * Mount a log filesystem
597  *
598  * mp		- ubiquitous xfs mount point structure
599  * log_target	- buftarg of on-disk log device
600  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
601  * num_bblocks	- Number of BBSIZE blocks in on-disk log
602  *
603  * Return error or zero.
604  */
605 int
606 xfs_log_mount(
607 	xfs_mount_t	*mp,
608 	xfs_buftarg_t	*log_target,
609 	xfs_daddr_t	blk_offset,
610 	int		num_bblks)
611 {
612 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
613 	int		error = 0;
614 	int		min_logfsbs;
615 
616 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 		xfs_notice(mp, "Mounting V%d Filesystem",
618 			   XFS_SB_VERSION_NUM(&mp->m_sb));
619 	} else {
620 		xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 			   XFS_SB_VERSION_NUM(&mp->m_sb));
623 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 	}
625 
626 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 	if (IS_ERR(mp->m_log)) {
628 		error = PTR_ERR(mp->m_log);
629 		goto out;
630 	}
631 
632 	/*
633 	 * Validate the given log space and drop a critical message via syslog
634 	 * if the log size is too small that would lead to some unexpected
635 	 * situations in transaction log space reservation stage.
636 	 *
637 	 * Note: we can't just reject the mount if the validation fails.  This
638 	 * would mean that people would have to downgrade their kernel just to
639 	 * remedy the situation as there is no way to grow the log (short of
640 	 * black magic surgery with xfs_db).
641 	 *
642 	 * We can, however, reject mounts for CRC format filesystems, as the
643 	 * mkfs binary being used to make the filesystem should never create a
644 	 * filesystem with a log that is too small.
645 	 */
646 	min_logfsbs = xfs_log_calc_minimum_size(mp);
647 
648 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 		xfs_warn(mp,
650 		"Log size %d blocks too small, minimum size is %d blocks",
651 			 mp->m_sb.sb_logblocks, min_logfsbs);
652 		error = -EINVAL;
653 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 		xfs_warn(mp,
655 		"Log size %d blocks too large, maximum size is %lld blocks",
656 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 		error = -EINVAL;
658 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 		xfs_warn(mp,
660 		"log size %lld bytes too large, maximum size is %lld bytes",
661 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 			 XFS_MAX_LOG_BYTES);
663 		error = -EINVAL;
664 	} else if (mp->m_sb.sb_logsunit > 1 &&
665 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
666 		xfs_warn(mp,
667 		"log stripe unit %u bytes must be a multiple of block size",
668 			 mp->m_sb.sb_logsunit);
669 		error = -EINVAL;
670 		fatal = true;
671 	}
672 	if (error) {
673 		/*
674 		 * Log check errors are always fatal on v5; or whenever bad
675 		 * metadata leads to a crash.
676 		 */
677 		if (fatal) {
678 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
679 			ASSERT(0);
680 			goto out_free_log;
681 		}
682 		xfs_crit(mp, "Log size out of supported range.");
683 		xfs_crit(mp,
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
685 	}
686 
687 	/*
688 	 * Initialize the AIL now we have a log.
689 	 */
690 	error = xfs_trans_ail_init(mp);
691 	if (error) {
692 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
693 		goto out_free_log;
694 	}
695 	mp->m_log->l_ailp = mp->m_ail;
696 
697 	/*
698 	 * skip log recovery on a norecovery mount.  pretend it all
699 	 * just worked.
700 	 */
701 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
702 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
703 
704 		if (readonly)
705 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
706 
707 		error = xlog_recover(mp->m_log);
708 
709 		if (readonly)
710 			mp->m_flags |= XFS_MOUNT_RDONLY;
711 		if (error) {
712 			xfs_warn(mp, "log mount/recovery failed: error %d",
713 				error);
714 			xlog_recover_cancel(mp->m_log);
715 			goto out_destroy_ail;
716 		}
717 	}
718 
719 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
720 			       "log");
721 	if (error)
722 		goto out_destroy_ail;
723 
724 	/* Normal transactions can now occur */
725 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
726 
727 	/*
728 	 * Now the log has been fully initialised and we know were our
729 	 * space grant counters are, we can initialise the permanent ticket
730 	 * needed for delayed logging to work.
731 	 */
732 	xlog_cil_init_post_recovery(mp->m_log);
733 
734 	return 0;
735 
736 out_destroy_ail:
737 	xfs_trans_ail_destroy(mp);
738 out_free_log:
739 	xlog_dealloc_log(mp->m_log);
740 out:
741 	return error;
742 }
743 
744 /*
745  * Finish the recovery of the file system.  This is separate from the
746  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
748  * here.
749  *
750  * If we finish recovery successfully, start the background log work. If we are
751  * not doing recovery, then we have a RO filesystem and we don't need to start
752  * it.
753  */
754 int
755 xfs_log_mount_finish(
756 	struct xfs_mount	*mp)
757 {
758 	int	error = 0;
759 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
760 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
761 
762 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
763 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
764 		return 0;
765 	} else if (readonly) {
766 		/* Allow unlinked processing to proceed */
767 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
768 	}
769 
770 	/*
771 	 * During the second phase of log recovery, we need iget and
772 	 * iput to behave like they do for an active filesystem.
773 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 	 * of inodes before we're done replaying log items on those
775 	 * inodes.  Turn it off immediately after recovery finishes
776 	 * so that we don't leak the quota inodes if subsequent mount
777 	 * activities fail.
778 	 *
779 	 * We let all inodes involved in redo item processing end up on
780 	 * the LRU instead of being evicted immediately so that if we do
781 	 * something to an unlinked inode, the irele won't cause
782 	 * premature truncation and freeing of the inode, which results
783 	 * in log recovery failure.  We have to evict the unreferenced
784 	 * lru inodes after clearing SB_ACTIVE because we don't
785 	 * otherwise clean up the lru if there's a subsequent failure in
786 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 	 * else (e.g. quotacheck) references the inodes before the
788 	 * mount failure occurs.
789 	 */
790 	mp->m_super->s_flags |= SB_ACTIVE;
791 	error = xlog_recover_finish(mp->m_log);
792 	if (!error)
793 		xfs_log_work_queue(mp);
794 	mp->m_super->s_flags &= ~SB_ACTIVE;
795 	evict_inodes(mp->m_super);
796 
797 	/*
798 	 * Drain the buffer LRU after log recovery. This is required for v4
799 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 	 * but we do it unconditionally to make sure we're always in a clean
801 	 * cache state after mount.
802 	 *
803 	 * Don't push in the error case because the AIL may have pending intents
804 	 * that aren't removed until recovery is cancelled.
805 	 */
806 	if (!error && recovered) {
807 		xfs_log_force(mp, XFS_LOG_SYNC);
808 		xfs_ail_push_all_sync(mp->m_ail);
809 	}
810 	xfs_wait_buftarg(mp->m_ddev_targp);
811 
812 	if (readonly)
813 		mp->m_flags |= XFS_MOUNT_RDONLY;
814 
815 	return error;
816 }
817 
818 /*
819  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
820  * the log.
821  */
822 int
823 xfs_log_mount_cancel(
824 	struct xfs_mount	*mp)
825 {
826 	int			error;
827 
828 	error = xlog_recover_cancel(mp->m_log);
829 	xfs_log_unmount(mp);
830 
831 	return error;
832 }
833 
834 /*
835  * Final log writes as part of unmount.
836  *
837  * Mark the filesystem clean as unmount happens.  Note that during relocation
838  * this routine needs to be executed as part of source-bag while the
839  * deallocation must not be done until source-end.
840  */
841 
842 /*
843  * Unmount record used to have a string "Unmount filesystem--" in the
844  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845  * We just write the magic number now since that particular field isn't
846  * currently architecture converted and "Unmount" is a bit foo.
847  * As far as I know, there weren't any dependencies on the old behaviour.
848  */
849 
850 static int
851 xfs_log_unmount_write(xfs_mount_t *mp)
852 {
853 	struct xlog	 *log = mp->m_log;
854 	xlog_in_core_t	 *iclog;
855 #ifdef DEBUG
856 	xlog_in_core_t	 *first_iclog;
857 #endif
858 	xlog_ticket_t	*tic = NULL;
859 	xfs_lsn_t	 lsn;
860 	int		 error;
861 
862 	/*
863 	 * Don't write out unmount record on norecovery mounts or ro devices.
864 	 * Or, if we are doing a forced umount (typically because of IO errors).
865 	 */
866 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
867 	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
868 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
869 		return 0;
870 	}
871 
872 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
873 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
874 
875 #ifdef DEBUG
876 	first_iclog = iclog = log->l_iclog;
877 	do {
878 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
879 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
880 			ASSERT(iclog->ic_offset == 0);
881 		}
882 		iclog = iclog->ic_next;
883 	} while (iclog != first_iclog);
884 #endif
885 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
886 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
887 		if (!error) {
888 			/* the data section must be 32 bit size aligned */
889 			struct {
890 			    uint16_t magic;
891 			    uint16_t pad1;
892 			    uint32_t pad2; /* may as well make it 64 bits */
893 			} magic = {
894 				.magic = XLOG_UNMOUNT_TYPE,
895 			};
896 			struct xfs_log_iovec reg = {
897 				.i_addr = &magic,
898 				.i_len = sizeof(magic),
899 				.i_type = XLOG_REG_TYPE_UNMOUNT,
900 			};
901 			struct xfs_log_vec vec = {
902 				.lv_niovecs = 1,
903 				.lv_iovecp = &reg,
904 			};
905 
906 			/* remove inited flag, and account for space used */
907 			tic->t_flags = 0;
908 			tic->t_curr_res -= sizeof(magic);
909 			error = xlog_write(log, &vec, tic, &lsn,
910 					   NULL, XLOG_UNMOUNT_TRANS);
911 			/*
912 			 * At this point, we're umounting anyway,
913 			 * so there's no point in transitioning log state
914 			 * to IOERROR. Just continue...
915 			 */
916 		}
917 
918 		if (error)
919 			xfs_alert(mp, "%s: unmount record failed", __func__);
920 
921 
922 		spin_lock(&log->l_icloglock);
923 		iclog = log->l_iclog;
924 		atomic_inc(&iclog->ic_refcnt);
925 		xlog_state_want_sync(log, iclog);
926 		spin_unlock(&log->l_icloglock);
927 		error = xlog_state_release_iclog(log, iclog);
928 
929 		spin_lock(&log->l_icloglock);
930 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
931 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
932 			if (!XLOG_FORCED_SHUTDOWN(log)) {
933 				xlog_wait(&iclog->ic_force_wait,
934 							&log->l_icloglock);
935 			} else {
936 				spin_unlock(&log->l_icloglock);
937 			}
938 		} else {
939 			spin_unlock(&log->l_icloglock);
940 		}
941 		if (tic) {
942 			trace_xfs_log_umount_write(log, tic);
943 			xlog_ungrant_log_space(log, tic);
944 			xfs_log_ticket_put(tic);
945 		}
946 	} else {
947 		/*
948 		 * We're already in forced_shutdown mode, couldn't
949 		 * even attempt to write out the unmount transaction.
950 		 *
951 		 * Go through the motions of sync'ing and releasing
952 		 * the iclog, even though no I/O will actually happen,
953 		 * we need to wait for other log I/Os that may already
954 		 * be in progress.  Do this as a separate section of
955 		 * code so we'll know if we ever get stuck here that
956 		 * we're in this odd situation of trying to unmount
957 		 * a file system that went into forced_shutdown as
958 		 * the result of an unmount..
959 		 */
960 		spin_lock(&log->l_icloglock);
961 		iclog = log->l_iclog;
962 		atomic_inc(&iclog->ic_refcnt);
963 
964 		xlog_state_want_sync(log, iclog);
965 		spin_unlock(&log->l_icloglock);
966 		error =  xlog_state_release_iclog(log, iclog);
967 
968 		spin_lock(&log->l_icloglock);
969 
970 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
971 			|| iclog->ic_state == XLOG_STATE_DIRTY
972 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
973 
974 				xlog_wait(&iclog->ic_force_wait,
975 							&log->l_icloglock);
976 		} else {
977 			spin_unlock(&log->l_icloglock);
978 		}
979 	}
980 
981 	return error;
982 }	/* xfs_log_unmount_write */
983 
984 /*
985  * Empty the log for unmount/freeze.
986  *
987  * To do this, we first need to shut down the background log work so it is not
988  * trying to cover the log as we clean up. We then need to unpin all objects in
989  * the log so we can then flush them out. Once they have completed their IO and
990  * run the callbacks removing themselves from the AIL, we can write the unmount
991  * record.
992  */
993 void
994 xfs_log_quiesce(
995 	struct xfs_mount	*mp)
996 {
997 	cancel_delayed_work_sync(&mp->m_log->l_work);
998 	xfs_log_force(mp, XFS_LOG_SYNC);
999 
1000 	/*
1001 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 	 * the IO to complete.
1006 	 */
1007 	xfs_ail_push_all_sync(mp->m_ail);
1008 	xfs_wait_buftarg(mp->m_ddev_targp);
1009 	xfs_buf_lock(mp->m_sb_bp);
1010 	xfs_buf_unlock(mp->m_sb_bp);
1011 
1012 	xfs_log_unmount_write(mp);
1013 }
1014 
1015 /*
1016  * Shut down and release the AIL and Log.
1017  *
1018  * During unmount, we need to ensure we flush all the dirty metadata objects
1019  * from the AIL so that the log is empty before we write the unmount record to
1020  * the log. Once this is done, we can tear down the AIL and the log.
1021  */
1022 void
1023 xfs_log_unmount(
1024 	struct xfs_mount	*mp)
1025 {
1026 	xfs_log_quiesce(mp);
1027 
1028 	xfs_trans_ail_destroy(mp);
1029 
1030 	xfs_sysfs_del(&mp->m_log->l_kobj);
1031 
1032 	xlog_dealloc_log(mp->m_log);
1033 }
1034 
1035 void
1036 xfs_log_item_init(
1037 	struct xfs_mount	*mp,
1038 	struct xfs_log_item	*item,
1039 	int			type,
1040 	const struct xfs_item_ops *ops)
1041 {
1042 	item->li_mountp = mp;
1043 	item->li_ailp = mp->m_ail;
1044 	item->li_type = type;
1045 	item->li_ops = ops;
1046 	item->li_lv = NULL;
1047 
1048 	INIT_LIST_HEAD(&item->li_ail);
1049 	INIT_LIST_HEAD(&item->li_cil);
1050 	INIT_LIST_HEAD(&item->li_bio_list);
1051 }
1052 
1053 /*
1054  * Wake up processes waiting for log space after we have moved the log tail.
1055  */
1056 void
1057 xfs_log_space_wake(
1058 	struct xfs_mount	*mp)
1059 {
1060 	struct xlog		*log = mp->m_log;
1061 	int			free_bytes;
1062 
1063 	if (XLOG_FORCED_SHUTDOWN(log))
1064 		return;
1065 
1066 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1067 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068 
1069 		spin_lock(&log->l_write_head.lock);
1070 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1071 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1072 		spin_unlock(&log->l_write_head.lock);
1073 	}
1074 
1075 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1076 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1077 
1078 		spin_lock(&log->l_reserve_head.lock);
1079 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1080 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1081 		spin_unlock(&log->l_reserve_head.lock);
1082 	}
1083 }
1084 
1085 /*
1086  * Determine if we have a transaction that has gone to disk that needs to be
1087  * covered. To begin the transition to the idle state firstly the log needs to
1088  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1089  * we start attempting to cover the log.
1090  *
1091  * Only if we are then in a state where covering is needed, the caller is
1092  * informed that dummy transactions are required to move the log into the idle
1093  * state.
1094  *
1095  * If there are any items in the AIl or CIL, then we do not want to attempt to
1096  * cover the log as we may be in a situation where there isn't log space
1097  * available to run a dummy transaction and this can lead to deadlocks when the
1098  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1099  * there's no point in running a dummy transaction at this point because we
1100  * can't start trying to idle the log until both the CIL and AIL are empty.
1101  */
1102 static int
1103 xfs_log_need_covered(xfs_mount_t *mp)
1104 {
1105 	struct xlog	*log = mp->m_log;
1106 	int		needed = 0;
1107 
1108 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1109 		return 0;
1110 
1111 	if (!xlog_cil_empty(log))
1112 		return 0;
1113 
1114 	spin_lock(&log->l_icloglock);
1115 	switch (log->l_covered_state) {
1116 	case XLOG_STATE_COVER_DONE:
1117 	case XLOG_STATE_COVER_DONE2:
1118 	case XLOG_STATE_COVER_IDLE:
1119 		break;
1120 	case XLOG_STATE_COVER_NEED:
1121 	case XLOG_STATE_COVER_NEED2:
1122 		if (xfs_ail_min_lsn(log->l_ailp))
1123 			break;
1124 		if (!xlog_iclogs_empty(log))
1125 			break;
1126 
1127 		needed = 1;
1128 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1129 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1130 		else
1131 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1132 		break;
1133 	default:
1134 		needed = 1;
1135 		break;
1136 	}
1137 	spin_unlock(&log->l_icloglock);
1138 	return needed;
1139 }
1140 
1141 /*
1142  * We may be holding the log iclog lock upon entering this routine.
1143  */
1144 xfs_lsn_t
1145 xlog_assign_tail_lsn_locked(
1146 	struct xfs_mount	*mp)
1147 {
1148 	struct xlog		*log = mp->m_log;
1149 	struct xfs_log_item	*lip;
1150 	xfs_lsn_t		tail_lsn;
1151 
1152 	assert_spin_locked(&mp->m_ail->xa_lock);
1153 
1154 	/*
1155 	 * To make sure we always have a valid LSN for the log tail we keep
1156 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1157 	 * and use that when the AIL was empty.
1158 	 */
1159 	lip = xfs_ail_min(mp->m_ail);
1160 	if (lip)
1161 		tail_lsn = lip->li_lsn;
1162 	else
1163 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1164 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1165 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1166 	return tail_lsn;
1167 }
1168 
1169 xfs_lsn_t
1170 xlog_assign_tail_lsn(
1171 	struct xfs_mount	*mp)
1172 {
1173 	xfs_lsn_t		tail_lsn;
1174 
1175 	spin_lock(&mp->m_ail->xa_lock);
1176 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1177 	spin_unlock(&mp->m_ail->xa_lock);
1178 
1179 	return tail_lsn;
1180 }
1181 
1182 /*
1183  * Return the space in the log between the tail and the head.  The head
1184  * is passed in the cycle/bytes formal parms.  In the special case where
1185  * the reserve head has wrapped passed the tail, this calculation is no
1186  * longer valid.  In this case, just return 0 which means there is no space
1187  * in the log.  This works for all places where this function is called
1188  * with the reserve head.  Of course, if the write head were to ever
1189  * wrap the tail, we should blow up.  Rather than catch this case here,
1190  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1191  *
1192  * This code also handles the case where the reservation head is behind
1193  * the tail.  The details of this case are described below, but the end
1194  * result is that we return the size of the log as the amount of space left.
1195  */
1196 STATIC int
1197 xlog_space_left(
1198 	struct xlog	*log,
1199 	atomic64_t	*head)
1200 {
1201 	int		free_bytes;
1202 	int		tail_bytes;
1203 	int		tail_cycle;
1204 	int		head_cycle;
1205 	int		head_bytes;
1206 
1207 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1208 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1209 	tail_bytes = BBTOB(tail_bytes);
1210 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1211 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1212 	else if (tail_cycle + 1 < head_cycle)
1213 		return 0;
1214 	else if (tail_cycle < head_cycle) {
1215 		ASSERT(tail_cycle == (head_cycle - 1));
1216 		free_bytes = tail_bytes - head_bytes;
1217 	} else {
1218 		/*
1219 		 * The reservation head is behind the tail.
1220 		 * In this case we just want to return the size of the
1221 		 * log as the amount of space left.
1222 		 */
1223 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1224 		xfs_alert(log->l_mp,
1225 			  "  tail_cycle = %d, tail_bytes = %d",
1226 			  tail_cycle, tail_bytes);
1227 		xfs_alert(log->l_mp,
1228 			  "  GH   cycle = %d, GH   bytes = %d",
1229 			  head_cycle, head_bytes);
1230 		ASSERT(0);
1231 		free_bytes = log->l_logsize;
1232 	}
1233 	return free_bytes;
1234 }
1235 
1236 
1237 /*
1238  * Log function which is called when an io completes.
1239  *
1240  * The log manager needs its own routine, in order to control what
1241  * happens with the buffer after the write completes.
1242  */
1243 static void
1244 xlog_iodone(xfs_buf_t *bp)
1245 {
1246 	struct xlog_in_core	*iclog = bp->b_log_item;
1247 	struct xlog		*l = iclog->ic_log;
1248 	int			aborted = 0;
1249 
1250 	/*
1251 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1252 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1253 	 * CRC errors into log recovery.
1254 	 */
1255 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1256 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1257 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1258 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1259 
1260 		xfs_buf_ioerror_alert(bp, __func__);
1261 		xfs_buf_stale(bp);
1262 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1263 		/*
1264 		 * This flag will be propagated to the trans-committed
1265 		 * callback routines to let them know that the log-commit
1266 		 * didn't succeed.
1267 		 */
1268 		aborted = XFS_LI_ABORTED;
1269 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1270 		aborted = XFS_LI_ABORTED;
1271 	}
1272 
1273 	/* log I/O is always issued ASYNC */
1274 	ASSERT(bp->b_flags & XBF_ASYNC);
1275 	xlog_state_done_syncing(iclog, aborted);
1276 
1277 	/*
1278 	 * drop the buffer lock now that we are done. Nothing references
1279 	 * the buffer after this, so an unmount waiting on this lock can now
1280 	 * tear it down safely. As such, it is unsafe to reference the buffer
1281 	 * (bp) after the unlock as we could race with it being freed.
1282 	 */
1283 	xfs_buf_unlock(bp);
1284 }
1285 
1286 /*
1287  * Return size of each in-core log record buffer.
1288  *
1289  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1290  *
1291  * If the filesystem blocksize is too large, we may need to choose a
1292  * larger size since the directory code currently logs entire blocks.
1293  */
1294 
1295 STATIC void
1296 xlog_get_iclog_buffer_size(
1297 	struct xfs_mount	*mp,
1298 	struct xlog		*log)
1299 {
1300 	int size;
1301 	int xhdrs;
1302 
1303 	if (mp->m_logbufs <= 0)
1304 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1305 	else
1306 		log->l_iclog_bufs = mp->m_logbufs;
1307 
1308 	/*
1309 	 * Buffer size passed in from mount system call.
1310 	 */
1311 	if (mp->m_logbsize > 0) {
1312 		size = log->l_iclog_size = mp->m_logbsize;
1313 		log->l_iclog_size_log = 0;
1314 		while (size != 1) {
1315 			log->l_iclog_size_log++;
1316 			size >>= 1;
1317 		}
1318 
1319 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1320 			/* # headers = size / 32k
1321 			 * one header holds cycles from 32k of data
1322 			 */
1323 
1324 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1325 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1326 				xhdrs++;
1327 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1328 			log->l_iclog_heads = xhdrs;
1329 		} else {
1330 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1331 			log->l_iclog_hsize = BBSIZE;
1332 			log->l_iclog_heads = 1;
1333 		}
1334 		goto done;
1335 	}
1336 
1337 	/* All machines use 32kB buffers by default. */
1338 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1339 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1340 
1341 	/* the default log size is 16k or 32k which is one header sector */
1342 	log->l_iclog_hsize = BBSIZE;
1343 	log->l_iclog_heads = 1;
1344 
1345 done:
1346 	/* are we being asked to make the sizes selected above visible? */
1347 	if (mp->m_logbufs == 0)
1348 		mp->m_logbufs = log->l_iclog_bufs;
1349 	if (mp->m_logbsize == 0)
1350 		mp->m_logbsize = log->l_iclog_size;
1351 }	/* xlog_get_iclog_buffer_size */
1352 
1353 
1354 void
1355 xfs_log_work_queue(
1356 	struct xfs_mount        *mp)
1357 {
1358 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1359 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1360 }
1361 
1362 /*
1363  * Every sync period we need to unpin all items in the AIL and push them to
1364  * disk. If there is nothing dirty, then we might need to cover the log to
1365  * indicate that the filesystem is idle.
1366  */
1367 static void
1368 xfs_log_worker(
1369 	struct work_struct	*work)
1370 {
1371 	struct xlog		*log = container_of(to_delayed_work(work),
1372 						struct xlog, l_work);
1373 	struct xfs_mount	*mp = log->l_mp;
1374 
1375 	/* dgc: errors ignored - not fatal and nowhere to report them */
1376 	if (xfs_log_need_covered(mp)) {
1377 		/*
1378 		 * Dump a transaction into the log that contains no real change.
1379 		 * This is needed to stamp the current tail LSN into the log
1380 		 * during the covering operation.
1381 		 *
1382 		 * We cannot use an inode here for this - that will push dirty
1383 		 * state back up into the VFS and then periodic inode flushing
1384 		 * will prevent log covering from making progress. Hence we
1385 		 * synchronously log the superblock instead to ensure the
1386 		 * superblock is immediately unpinned and can be written back.
1387 		 */
1388 		xfs_sync_sb(mp, true);
1389 	} else
1390 		xfs_log_force(mp, 0);
1391 
1392 	/* start pushing all the metadata that is currently dirty */
1393 	xfs_ail_push_all(mp->m_ail);
1394 
1395 	/* queue us up again */
1396 	xfs_log_work_queue(mp);
1397 }
1398 
1399 /*
1400  * This routine initializes some of the log structure for a given mount point.
1401  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1402  * some other stuff may be filled in too.
1403  */
1404 STATIC struct xlog *
1405 xlog_alloc_log(
1406 	struct xfs_mount	*mp,
1407 	struct xfs_buftarg	*log_target,
1408 	xfs_daddr_t		blk_offset,
1409 	int			num_bblks)
1410 {
1411 	struct xlog		*log;
1412 	xlog_rec_header_t	*head;
1413 	xlog_in_core_t		**iclogp;
1414 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1415 	xfs_buf_t		*bp;
1416 	int			i;
1417 	int			error = -ENOMEM;
1418 	uint			log2_size = 0;
1419 
1420 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1421 	if (!log) {
1422 		xfs_warn(mp, "Log allocation failed: No memory!");
1423 		goto out;
1424 	}
1425 
1426 	log->l_mp	   = mp;
1427 	log->l_targ	   = log_target;
1428 	log->l_logsize     = BBTOB(num_bblks);
1429 	log->l_logBBstart  = blk_offset;
1430 	log->l_logBBsize   = num_bblks;
1431 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1432 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1433 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1434 
1435 	log->l_prev_block  = -1;
1436 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1437 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1438 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1439 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1440 
1441 	xlog_grant_head_init(&log->l_reserve_head);
1442 	xlog_grant_head_init(&log->l_write_head);
1443 
1444 	error = -EFSCORRUPTED;
1445 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1446 	        log2_size = mp->m_sb.sb_logsectlog;
1447 		if (log2_size < BBSHIFT) {
1448 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1449 				log2_size, BBSHIFT);
1450 			goto out_free_log;
1451 		}
1452 
1453 	        log2_size -= BBSHIFT;
1454 		if (log2_size > mp->m_sectbb_log) {
1455 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1456 				log2_size, mp->m_sectbb_log);
1457 			goto out_free_log;
1458 		}
1459 
1460 		/* for larger sector sizes, must have v2 or external log */
1461 		if (log2_size && log->l_logBBstart > 0 &&
1462 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1463 			xfs_warn(mp,
1464 		"log sector size (0x%x) invalid for configuration.",
1465 				log2_size);
1466 			goto out_free_log;
1467 		}
1468 	}
1469 	log->l_sectBBsize = 1 << log2_size;
1470 
1471 	xlog_get_iclog_buffer_size(mp, log);
1472 
1473 	/*
1474 	 * Use a NULL block for the extra log buffer used during splits so that
1475 	 * it will trigger errors if we ever try to do IO on it without first
1476 	 * having set it up properly.
1477 	 */
1478 	error = -ENOMEM;
1479 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1480 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1481 	if (!bp)
1482 		goto out_free_log;
1483 
1484 	/*
1485 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1486 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1487 	 * when appropriately.
1488 	 */
1489 	ASSERT(xfs_buf_islocked(bp));
1490 	xfs_buf_unlock(bp);
1491 
1492 	/* use high priority wq for log I/O completion */
1493 	bp->b_ioend_wq = mp->m_log_workqueue;
1494 	bp->b_iodone = xlog_iodone;
1495 	log->l_xbuf = bp;
1496 
1497 	spin_lock_init(&log->l_icloglock);
1498 	init_waitqueue_head(&log->l_flush_wait);
1499 
1500 	iclogp = &log->l_iclog;
1501 	/*
1502 	 * The amount of memory to allocate for the iclog structure is
1503 	 * rather funky due to the way the structure is defined.  It is
1504 	 * done this way so that we can use different sizes for machines
1505 	 * with different amounts of memory.  See the definition of
1506 	 * xlog_in_core_t in xfs_log_priv.h for details.
1507 	 */
1508 	ASSERT(log->l_iclog_size >= 4096);
1509 	for (i=0; i < log->l_iclog_bufs; i++) {
1510 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1511 		if (!*iclogp)
1512 			goto out_free_iclog;
1513 
1514 		iclog = *iclogp;
1515 		iclog->ic_prev = prev_iclog;
1516 		prev_iclog = iclog;
1517 
1518 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1519 					  BTOBB(log->l_iclog_size),
1520 					  XBF_NO_IOACCT);
1521 		if (!bp)
1522 			goto out_free_iclog;
1523 
1524 		ASSERT(xfs_buf_islocked(bp));
1525 		xfs_buf_unlock(bp);
1526 
1527 		/* use high priority wq for log I/O completion */
1528 		bp->b_ioend_wq = mp->m_log_workqueue;
1529 		bp->b_iodone = xlog_iodone;
1530 		iclog->ic_bp = bp;
1531 		iclog->ic_data = bp->b_addr;
1532 #ifdef DEBUG
1533 		log->l_iclog_bak[i] = &iclog->ic_header;
1534 #endif
1535 		head = &iclog->ic_header;
1536 		memset(head, 0, sizeof(xlog_rec_header_t));
1537 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1538 		head->h_version = cpu_to_be32(
1539 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1540 		head->h_size = cpu_to_be32(log->l_iclog_size);
1541 		/* new fields */
1542 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1543 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1544 
1545 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1546 		iclog->ic_state = XLOG_STATE_ACTIVE;
1547 		iclog->ic_log = log;
1548 		atomic_set(&iclog->ic_refcnt, 0);
1549 		spin_lock_init(&iclog->ic_callback_lock);
1550 		iclog->ic_callback_tail = &(iclog->ic_callback);
1551 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1552 
1553 		init_waitqueue_head(&iclog->ic_force_wait);
1554 		init_waitqueue_head(&iclog->ic_write_wait);
1555 
1556 		iclogp = &iclog->ic_next;
1557 	}
1558 	*iclogp = log->l_iclog;			/* complete ring */
1559 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1560 
1561 	error = xlog_cil_init(log);
1562 	if (error)
1563 		goto out_free_iclog;
1564 	return log;
1565 
1566 out_free_iclog:
1567 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1568 		prev_iclog = iclog->ic_next;
1569 		if (iclog->ic_bp)
1570 			xfs_buf_free(iclog->ic_bp);
1571 		kmem_free(iclog);
1572 	}
1573 	spinlock_destroy(&log->l_icloglock);
1574 	xfs_buf_free(log->l_xbuf);
1575 out_free_log:
1576 	kmem_free(log);
1577 out:
1578 	return ERR_PTR(error);
1579 }	/* xlog_alloc_log */
1580 
1581 
1582 /*
1583  * Write out the commit record of a transaction associated with the given
1584  * ticket.  Return the lsn of the commit record.
1585  */
1586 STATIC int
1587 xlog_commit_record(
1588 	struct xlog		*log,
1589 	struct xlog_ticket	*ticket,
1590 	struct xlog_in_core	**iclog,
1591 	xfs_lsn_t		*commitlsnp)
1592 {
1593 	struct xfs_mount *mp = log->l_mp;
1594 	int	error;
1595 	struct xfs_log_iovec reg = {
1596 		.i_addr = NULL,
1597 		.i_len = 0,
1598 		.i_type = XLOG_REG_TYPE_COMMIT,
1599 	};
1600 	struct xfs_log_vec vec = {
1601 		.lv_niovecs = 1,
1602 		.lv_iovecp = &reg,
1603 	};
1604 
1605 	ASSERT_ALWAYS(iclog);
1606 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1607 					XLOG_COMMIT_TRANS);
1608 	if (error)
1609 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1610 	return error;
1611 }
1612 
1613 /*
1614  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1615  * log space.  This code pushes on the lsn which would supposedly free up
1616  * the 25% which we want to leave free.  We may need to adopt a policy which
1617  * pushes on an lsn which is further along in the log once we reach the high
1618  * water mark.  In this manner, we would be creating a low water mark.
1619  */
1620 STATIC void
1621 xlog_grant_push_ail(
1622 	struct xlog	*log,
1623 	int		need_bytes)
1624 {
1625 	xfs_lsn_t	threshold_lsn = 0;
1626 	xfs_lsn_t	last_sync_lsn;
1627 	int		free_blocks;
1628 	int		free_bytes;
1629 	int		threshold_block;
1630 	int		threshold_cycle;
1631 	int		free_threshold;
1632 
1633 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1634 
1635 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1636 	free_blocks = BTOBBT(free_bytes);
1637 
1638 	/*
1639 	 * Set the threshold for the minimum number of free blocks in the
1640 	 * log to the maximum of what the caller needs, one quarter of the
1641 	 * log, and 256 blocks.
1642 	 */
1643 	free_threshold = BTOBB(need_bytes);
1644 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1645 	free_threshold = MAX(free_threshold, 256);
1646 	if (free_blocks >= free_threshold)
1647 		return;
1648 
1649 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1650 						&threshold_block);
1651 	threshold_block += free_threshold;
1652 	if (threshold_block >= log->l_logBBsize) {
1653 		threshold_block -= log->l_logBBsize;
1654 		threshold_cycle += 1;
1655 	}
1656 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1657 					threshold_block);
1658 	/*
1659 	 * Don't pass in an lsn greater than the lsn of the last
1660 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1661 	 * so that it doesn't change between the compare and the set.
1662 	 */
1663 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1664 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1665 		threshold_lsn = last_sync_lsn;
1666 
1667 	/*
1668 	 * Get the transaction layer to kick the dirty buffers out to
1669 	 * disk asynchronously. No point in trying to do this if
1670 	 * the filesystem is shutting down.
1671 	 */
1672 	if (!XLOG_FORCED_SHUTDOWN(log))
1673 		xfs_ail_push(log->l_ailp, threshold_lsn);
1674 }
1675 
1676 /*
1677  * Stamp cycle number in every block
1678  */
1679 STATIC void
1680 xlog_pack_data(
1681 	struct xlog		*log,
1682 	struct xlog_in_core	*iclog,
1683 	int			roundoff)
1684 {
1685 	int			i, j, k;
1686 	int			size = iclog->ic_offset + roundoff;
1687 	__be32			cycle_lsn;
1688 	char			*dp;
1689 
1690 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1691 
1692 	dp = iclog->ic_datap;
1693 	for (i = 0; i < BTOBB(size); i++) {
1694 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1695 			break;
1696 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1697 		*(__be32 *)dp = cycle_lsn;
1698 		dp += BBSIZE;
1699 	}
1700 
1701 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1702 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1703 
1704 		for ( ; i < BTOBB(size); i++) {
1705 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1707 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1708 			*(__be32 *)dp = cycle_lsn;
1709 			dp += BBSIZE;
1710 		}
1711 
1712 		for (i = 1; i < log->l_iclog_heads; i++)
1713 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1714 	}
1715 }
1716 
1717 /*
1718  * Calculate the checksum for a log buffer.
1719  *
1720  * This is a little more complicated than it should be because the various
1721  * headers and the actual data are non-contiguous.
1722  */
1723 __le32
1724 xlog_cksum(
1725 	struct xlog		*log,
1726 	struct xlog_rec_header	*rhead,
1727 	char			*dp,
1728 	int			size)
1729 {
1730 	uint32_t		crc;
1731 
1732 	/* first generate the crc for the record header ... */
1733 	crc = xfs_start_cksum_update((char *)rhead,
1734 			      sizeof(struct xlog_rec_header),
1735 			      offsetof(struct xlog_rec_header, h_crc));
1736 
1737 	/* ... then for additional cycle data for v2 logs ... */
1738 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1739 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1740 		int		i;
1741 		int		xheads;
1742 
1743 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1744 		if (size % XLOG_HEADER_CYCLE_SIZE)
1745 			xheads++;
1746 
1747 		for (i = 1; i < xheads; i++) {
1748 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1749 				     sizeof(struct xlog_rec_ext_header));
1750 		}
1751 	}
1752 
1753 	/* ... and finally for the payload */
1754 	crc = crc32c(crc, dp, size);
1755 
1756 	return xfs_end_cksum(crc);
1757 }
1758 
1759 /*
1760  * The bdstrat callback function for log bufs. This gives us a central
1761  * place to trap bufs in case we get hit by a log I/O error and need to
1762  * shutdown. Actually, in practice, even when we didn't get a log error,
1763  * we transition the iclogs to IOERROR state *after* flushing all existing
1764  * iclogs to disk. This is because we don't want anymore new transactions to be
1765  * started or completed afterwards.
1766  *
1767  * We lock the iclogbufs here so that we can serialise against IO completion
1768  * during unmount. We might be processing a shutdown triggered during unmount,
1769  * and that can occur asynchronously to the unmount thread, and hence we need to
1770  * ensure that completes before tearing down the iclogbufs. Hence we need to
1771  * hold the buffer lock across the log IO to acheive that.
1772  */
1773 STATIC int
1774 xlog_bdstrat(
1775 	struct xfs_buf		*bp)
1776 {
1777 	struct xlog_in_core	*iclog = bp->b_log_item;
1778 
1779 	xfs_buf_lock(bp);
1780 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1781 		xfs_buf_ioerror(bp, -EIO);
1782 		xfs_buf_stale(bp);
1783 		xfs_buf_ioend(bp);
1784 		/*
1785 		 * It would seem logical to return EIO here, but we rely on
1786 		 * the log state machine to propagate I/O errors instead of
1787 		 * doing it here. Similarly, IO completion will unlock the
1788 		 * buffer, so we don't do it here.
1789 		 */
1790 		return 0;
1791 	}
1792 
1793 	xfs_buf_submit(bp);
1794 	return 0;
1795 }
1796 
1797 /*
1798  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1799  * fashion.  Previously, we should have moved the current iclog
1800  * ptr in the log to point to the next available iclog.  This allows further
1801  * write to continue while this code syncs out an iclog ready to go.
1802  * Before an in-core log can be written out, the data section must be scanned
1803  * to save away the 1st word of each BBSIZE block into the header.  We replace
1804  * it with the current cycle count.  Each BBSIZE block is tagged with the
1805  * cycle count because there in an implicit assumption that drives will
1806  * guarantee that entire 512 byte blocks get written at once.  In other words,
1807  * we can't have part of a 512 byte block written and part not written.  By
1808  * tagging each block, we will know which blocks are valid when recovering
1809  * after an unclean shutdown.
1810  *
1811  * This routine is single threaded on the iclog.  No other thread can be in
1812  * this routine with the same iclog.  Changing contents of iclog can there-
1813  * fore be done without grabbing the state machine lock.  Updating the global
1814  * log will require grabbing the lock though.
1815  *
1816  * The entire log manager uses a logical block numbering scheme.  Only
1817  * log_sync (and then only bwrite()) know about the fact that the log may
1818  * not start with block zero on a given device.  The log block start offset
1819  * is added immediately before calling bwrite().
1820  */
1821 
1822 STATIC int
1823 xlog_sync(
1824 	struct xlog		*log,
1825 	struct xlog_in_core	*iclog)
1826 {
1827 	xfs_buf_t	*bp;
1828 	int		i;
1829 	uint		count;		/* byte count of bwrite */
1830 	uint		count_init;	/* initial count before roundup */
1831 	int		roundoff;       /* roundoff to BB or stripe */
1832 	int		split = 0;	/* split write into two regions */
1833 	int		error;
1834 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1835 	int		size;
1836 
1837 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1838 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1839 
1840 	/* Add for LR header */
1841 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1842 
1843 	/* Round out the log write size */
1844 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1845 		/* we have a v2 stripe unit to use */
1846 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1847 	} else {
1848 		count = BBTOB(BTOBB(count_init));
1849 	}
1850 	roundoff = count - count_init;
1851 	ASSERT(roundoff >= 0);
1852 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1853                 roundoff < log->l_mp->m_sb.sb_logsunit)
1854 		||
1855 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1856 		 roundoff < BBTOB(1)));
1857 
1858 	/* move grant heads by roundoff in sync */
1859 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1860 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1861 
1862 	/* put cycle number in every block */
1863 	xlog_pack_data(log, iclog, roundoff);
1864 
1865 	/* real byte length */
1866 	size = iclog->ic_offset;
1867 	if (v2)
1868 		size += roundoff;
1869 	iclog->ic_header.h_len = cpu_to_be32(size);
1870 
1871 	bp = iclog->ic_bp;
1872 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1873 
1874 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1875 
1876 	/* Do we need to split this write into 2 parts? */
1877 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1878 		char		*dptr;
1879 
1880 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1881 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1882 		iclog->ic_bwritecnt = 2;
1883 
1884 		/*
1885 		 * Bump the cycle numbers at the start of each block in the
1886 		 * part of the iclog that ends up in the buffer that gets
1887 		 * written to the start of the log.
1888 		 *
1889 		 * Watch out for the header magic number case, though.
1890 		 */
1891 		dptr = (char *)&iclog->ic_header + count;
1892 		for (i = 0; i < split; i += BBSIZE) {
1893 			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1894 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1895 				cycle++;
1896 			*(__be32 *)dptr = cpu_to_be32(cycle);
1897 
1898 			dptr += BBSIZE;
1899 		}
1900 	} else {
1901 		iclog->ic_bwritecnt = 1;
1902 	}
1903 
1904 	/* calculcate the checksum */
1905 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1906 					    iclog->ic_datap, size);
1907 	/*
1908 	 * Intentionally corrupt the log record CRC based on the error injection
1909 	 * frequency, if defined. This facilitates testing log recovery in the
1910 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1911 	 * write on I/O completion and shutdown the fs. The subsequent mount
1912 	 * detects the bad CRC and attempts to recover.
1913 	 */
1914 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1915 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1916 		iclog->ic_state |= XLOG_STATE_IOABORT;
1917 		xfs_warn(log->l_mp,
1918 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1919 			 be64_to_cpu(iclog->ic_header.h_lsn));
1920 	}
1921 
1922 	bp->b_io_length = BTOBB(count);
1923 	bp->b_log_item = iclog;
1924 	bp->b_flags &= ~XBF_FLUSH;
1925 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1926 
1927 	/*
1928 	 * Flush the data device before flushing the log to make sure all meta
1929 	 * data written back from the AIL actually made it to disk before
1930 	 * stamping the new log tail LSN into the log buffer.  For an external
1931 	 * log we need to issue the flush explicitly, and unfortunately
1932 	 * synchronously here; for an internal log we can simply use the block
1933 	 * layer state machine for preflushes.
1934 	 */
1935 	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1936 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1937 	else
1938 		bp->b_flags |= XBF_FLUSH;
1939 
1940 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1941 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1942 
1943 	xlog_verify_iclog(log, iclog, count, true);
1944 
1945 	/* account for log which doesn't start at block #0 */
1946 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1947 
1948 	/*
1949 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1950 	 * is shutting down.
1951 	 */
1952 	error = xlog_bdstrat(bp);
1953 	if (error) {
1954 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1955 		return error;
1956 	}
1957 	if (split) {
1958 		bp = iclog->ic_log->l_xbuf;
1959 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1960 		xfs_buf_associate_memory(bp,
1961 				(char *)&iclog->ic_header + count, split);
1962 		bp->b_log_item = iclog;
1963 		bp->b_flags &= ~XBF_FLUSH;
1964 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1965 
1966 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1967 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1968 
1969 		/* account for internal log which doesn't start at block #0 */
1970 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1971 		error = xlog_bdstrat(bp);
1972 		if (error) {
1973 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1974 			return error;
1975 		}
1976 	}
1977 	return 0;
1978 }	/* xlog_sync */
1979 
1980 /*
1981  * Deallocate a log structure
1982  */
1983 STATIC void
1984 xlog_dealloc_log(
1985 	struct xlog	*log)
1986 {
1987 	xlog_in_core_t	*iclog, *next_iclog;
1988 	int		i;
1989 
1990 	xlog_cil_destroy(log);
1991 
1992 	/*
1993 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 	 * is done before we tear down these buffers.
1995 	 */
1996 	iclog = log->l_iclog;
1997 	for (i = 0; i < log->l_iclog_bufs; i++) {
1998 		xfs_buf_lock(iclog->ic_bp);
1999 		xfs_buf_unlock(iclog->ic_bp);
2000 		iclog = iclog->ic_next;
2001 	}
2002 
2003 	/*
2004 	 * Always need to ensure that the extra buffer does not point to memory
2005 	 * owned by another log buffer before we free it. Also, cycle the lock
2006 	 * first to ensure we've completed IO on it.
2007 	 */
2008 	xfs_buf_lock(log->l_xbuf);
2009 	xfs_buf_unlock(log->l_xbuf);
2010 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2011 	xfs_buf_free(log->l_xbuf);
2012 
2013 	iclog = log->l_iclog;
2014 	for (i = 0; i < log->l_iclog_bufs; i++) {
2015 		xfs_buf_free(iclog->ic_bp);
2016 		next_iclog = iclog->ic_next;
2017 		kmem_free(iclog);
2018 		iclog = next_iclog;
2019 	}
2020 	spinlock_destroy(&log->l_icloglock);
2021 
2022 	log->l_mp->m_log = NULL;
2023 	kmem_free(log);
2024 }	/* xlog_dealloc_log */
2025 
2026 /*
2027  * Update counters atomically now that memcpy is done.
2028  */
2029 /* ARGSUSED */
2030 static inline void
2031 xlog_state_finish_copy(
2032 	struct xlog		*log,
2033 	struct xlog_in_core	*iclog,
2034 	int			record_cnt,
2035 	int			copy_bytes)
2036 {
2037 	spin_lock(&log->l_icloglock);
2038 
2039 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2040 	iclog->ic_offset += copy_bytes;
2041 
2042 	spin_unlock(&log->l_icloglock);
2043 }	/* xlog_state_finish_copy */
2044 
2045 
2046 
2047 
2048 /*
2049  * print out info relating to regions written which consume
2050  * the reservation
2051  */
2052 void
2053 xlog_print_tic_res(
2054 	struct xfs_mount	*mp,
2055 	struct xlog_ticket	*ticket)
2056 {
2057 	uint i;
2058 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2059 
2060 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2061 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2062 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2063 	    REG_TYPE_STR(BFORMAT, "bformat"),
2064 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2065 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2066 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2067 	    REG_TYPE_STR(IFORMAT, "iformat"),
2068 	    REG_TYPE_STR(ICORE, "icore"),
2069 	    REG_TYPE_STR(IEXT, "iext"),
2070 	    REG_TYPE_STR(IBROOT, "ibroot"),
2071 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2072 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2073 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2074 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2075 	    REG_TYPE_STR(QFORMAT, "qformat"),
2076 	    REG_TYPE_STR(DQUOT, "dquot"),
2077 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2078 	    REG_TYPE_STR(LRHEADER, "LR header"),
2079 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2080 	    REG_TYPE_STR(COMMIT, "commit"),
2081 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2082 	    REG_TYPE_STR(ICREATE, "inode create")
2083 	};
2084 #undef REG_TYPE_STR
2085 
2086 	xfs_warn(mp, "ticket reservation summary:");
2087 	xfs_warn(mp, "  unit res    = %d bytes",
2088 		 ticket->t_unit_res);
2089 	xfs_warn(mp, "  current res = %d bytes",
2090 		 ticket->t_curr_res);
2091 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094 		 ticket->t_res_num_ophdrs, ophdr_spc);
2095 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2096 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097 	xfs_warn(mp, "  num regions = %u",
2098 		 ticket->t_res_num);
2099 
2100 	for (i = 0; i < ticket->t_res_num; i++) {
2101 		uint r_type = ticket->t_res_arr[i].r_type;
2102 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104 			    "bad-rtype" : res_type_str[r_type]),
2105 			    ticket->t_res_arr[i].r_len);
2106 	}
2107 }
2108 
2109 /*
2110  * Print a summary of the transaction.
2111  */
2112 void
2113 xlog_print_trans(
2114 	struct xfs_trans		*tp)
2115 {
2116 	struct xfs_mount		*mp = tp->t_mountp;
2117 	struct xfs_log_item_desc	*lidp;
2118 
2119 	/* dump core transaction and ticket info */
2120 	xfs_warn(mp, "transaction summary:");
2121 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2122 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2123 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2124 
2125 	xlog_print_tic_res(mp, tp->t_ticket);
2126 
2127 	/* dump each log item */
2128 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2129 		struct xfs_log_item	*lip = lidp->lid_item;
2130 		struct xfs_log_vec	*lv = lip->li_lv;
2131 		struct xfs_log_iovec	*vec;
2132 		int			i;
2133 
2134 		xfs_warn(mp, "log item: ");
2135 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2136 		xfs_warn(mp, "  flags	= 0x%x", lip->li_flags);
2137 		if (!lv)
2138 			continue;
2139 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2140 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2141 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2142 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2143 
2144 		/* dump each iovec for the log item */
2145 		vec = lv->lv_iovecp;
2146 		for (i = 0; i < lv->lv_niovecs; i++) {
2147 			int dumplen = min(vec->i_len, 32);
2148 
2149 			xfs_warn(mp, "  iovec[%d]", i);
2150 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2151 			xfs_warn(mp, "    len	= %d", vec->i_len);
2152 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2153 			xfs_hex_dump(vec->i_addr, dumplen);
2154 
2155 			vec++;
2156 		}
2157 	}
2158 }
2159 
2160 /*
2161  * Calculate the potential space needed by the log vector.  Each region gets
2162  * its own xlog_op_header_t and may need to be double word aligned.
2163  */
2164 static int
2165 xlog_write_calc_vec_length(
2166 	struct xlog_ticket	*ticket,
2167 	struct xfs_log_vec	*log_vector)
2168 {
2169 	struct xfs_log_vec	*lv;
2170 	int			headers = 0;
2171 	int			len = 0;
2172 	int			i;
2173 
2174 	/* acct for start rec of xact */
2175 	if (ticket->t_flags & XLOG_TIC_INITED)
2176 		headers++;
2177 
2178 	for (lv = log_vector; lv; lv = lv->lv_next) {
2179 		/* we don't write ordered log vectors */
2180 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2181 			continue;
2182 
2183 		headers += lv->lv_niovecs;
2184 
2185 		for (i = 0; i < lv->lv_niovecs; i++) {
2186 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2187 
2188 			len += vecp->i_len;
2189 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2190 		}
2191 	}
2192 
2193 	ticket->t_res_num_ophdrs += headers;
2194 	len += headers * sizeof(struct xlog_op_header);
2195 
2196 	return len;
2197 }
2198 
2199 /*
2200  * If first write for transaction, insert start record  We can't be trying to
2201  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2202  */
2203 static int
2204 xlog_write_start_rec(
2205 	struct xlog_op_header	*ophdr,
2206 	struct xlog_ticket	*ticket)
2207 {
2208 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2209 		return 0;
2210 
2211 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2212 	ophdr->oh_clientid = ticket->t_clientid;
2213 	ophdr->oh_len = 0;
2214 	ophdr->oh_flags = XLOG_START_TRANS;
2215 	ophdr->oh_res2 = 0;
2216 
2217 	ticket->t_flags &= ~XLOG_TIC_INITED;
2218 
2219 	return sizeof(struct xlog_op_header);
2220 }
2221 
2222 static xlog_op_header_t *
2223 xlog_write_setup_ophdr(
2224 	struct xlog		*log,
2225 	struct xlog_op_header	*ophdr,
2226 	struct xlog_ticket	*ticket,
2227 	uint			flags)
2228 {
2229 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2230 	ophdr->oh_clientid = ticket->t_clientid;
2231 	ophdr->oh_res2 = 0;
2232 
2233 	/* are we copying a commit or unmount record? */
2234 	ophdr->oh_flags = flags;
2235 
2236 	/*
2237 	 * We've seen logs corrupted with bad transaction client ids.  This
2238 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2239 	 * and shut down the filesystem.
2240 	 */
2241 	switch (ophdr->oh_clientid)  {
2242 	case XFS_TRANSACTION:
2243 	case XFS_VOLUME:
2244 	case XFS_LOG:
2245 		break;
2246 	default:
2247 		xfs_warn(log->l_mp,
2248 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2249 			ophdr->oh_clientid, ticket);
2250 		return NULL;
2251 	}
2252 
2253 	return ophdr;
2254 }
2255 
2256 /*
2257  * Set up the parameters of the region copy into the log. This has
2258  * to handle region write split across multiple log buffers - this
2259  * state is kept external to this function so that this code can
2260  * be written in an obvious, self documenting manner.
2261  */
2262 static int
2263 xlog_write_setup_copy(
2264 	struct xlog_ticket	*ticket,
2265 	struct xlog_op_header	*ophdr,
2266 	int			space_available,
2267 	int			space_required,
2268 	int			*copy_off,
2269 	int			*copy_len,
2270 	int			*last_was_partial_copy,
2271 	int			*bytes_consumed)
2272 {
2273 	int			still_to_copy;
2274 
2275 	still_to_copy = space_required - *bytes_consumed;
2276 	*copy_off = *bytes_consumed;
2277 
2278 	if (still_to_copy <= space_available) {
2279 		/* write of region completes here */
2280 		*copy_len = still_to_copy;
2281 		ophdr->oh_len = cpu_to_be32(*copy_len);
2282 		if (*last_was_partial_copy)
2283 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2284 		*last_was_partial_copy = 0;
2285 		*bytes_consumed = 0;
2286 		return 0;
2287 	}
2288 
2289 	/* partial write of region, needs extra log op header reservation */
2290 	*copy_len = space_available;
2291 	ophdr->oh_len = cpu_to_be32(*copy_len);
2292 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2293 	if (*last_was_partial_copy)
2294 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2295 	*bytes_consumed += *copy_len;
2296 	(*last_was_partial_copy)++;
2297 
2298 	/* account for new log op header */
2299 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2300 	ticket->t_res_num_ophdrs++;
2301 
2302 	return sizeof(struct xlog_op_header);
2303 }
2304 
2305 static int
2306 xlog_write_copy_finish(
2307 	struct xlog		*log,
2308 	struct xlog_in_core	*iclog,
2309 	uint			flags,
2310 	int			*record_cnt,
2311 	int			*data_cnt,
2312 	int			*partial_copy,
2313 	int			*partial_copy_len,
2314 	int			log_offset,
2315 	struct xlog_in_core	**commit_iclog)
2316 {
2317 	if (*partial_copy) {
2318 		/*
2319 		 * This iclog has already been marked WANT_SYNC by
2320 		 * xlog_state_get_iclog_space.
2321 		 */
2322 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2323 		*record_cnt = 0;
2324 		*data_cnt = 0;
2325 		return xlog_state_release_iclog(log, iclog);
2326 	}
2327 
2328 	*partial_copy = 0;
2329 	*partial_copy_len = 0;
2330 
2331 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2332 		/* no more space in this iclog - push it. */
2333 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2334 		*record_cnt = 0;
2335 		*data_cnt = 0;
2336 
2337 		spin_lock(&log->l_icloglock);
2338 		xlog_state_want_sync(log, iclog);
2339 		spin_unlock(&log->l_icloglock);
2340 
2341 		if (!commit_iclog)
2342 			return xlog_state_release_iclog(log, iclog);
2343 		ASSERT(flags & XLOG_COMMIT_TRANS);
2344 		*commit_iclog = iclog;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Write some region out to in-core log
2352  *
2353  * This will be called when writing externally provided regions or when
2354  * writing out a commit record for a given transaction.
2355  *
2356  * General algorithm:
2357  *	1. Find total length of this write.  This may include adding to the
2358  *		lengths passed in.
2359  *	2. Check whether we violate the tickets reservation.
2360  *	3. While writing to this iclog
2361  *	    A. Reserve as much space in this iclog as can get
2362  *	    B. If this is first write, save away start lsn
2363  *	    C. While writing this region:
2364  *		1. If first write of transaction, write start record
2365  *		2. Write log operation header (header per region)
2366  *		3. Find out if we can fit entire region into this iclog
2367  *		4. Potentially, verify destination memcpy ptr
2368  *		5. Memcpy (partial) region
2369  *		6. If partial copy, release iclog; otherwise, continue
2370  *			copying more regions into current iclog
2371  *	4. Mark want sync bit (in simulation mode)
2372  *	5. Release iclog for potential flush to on-disk log.
2373  *
2374  * ERRORS:
2375  * 1.	Panic if reservation is overrun.  This should never happen since
2376  *	reservation amounts are generated internal to the filesystem.
2377  * NOTES:
2378  * 1. Tickets are single threaded data structures.
2379  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2380  *	syncing routine.  When a single log_write region needs to span
2381  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2382  *	on all log operation writes which don't contain the end of the
2383  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2384  *	operation which contains the end of the continued log_write region.
2385  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2386  *	we don't really know exactly how much space will be used.  As a result,
2387  *	we don't update ic_offset until the end when we know exactly how many
2388  *	bytes have been written out.
2389  */
2390 int
2391 xlog_write(
2392 	struct xlog		*log,
2393 	struct xfs_log_vec	*log_vector,
2394 	struct xlog_ticket	*ticket,
2395 	xfs_lsn_t		*start_lsn,
2396 	struct xlog_in_core	**commit_iclog,
2397 	uint			flags)
2398 {
2399 	struct xlog_in_core	*iclog = NULL;
2400 	struct xfs_log_iovec	*vecp;
2401 	struct xfs_log_vec	*lv;
2402 	int			len;
2403 	int			index;
2404 	int			partial_copy = 0;
2405 	int			partial_copy_len = 0;
2406 	int			contwr = 0;
2407 	int			record_cnt = 0;
2408 	int			data_cnt = 0;
2409 	int			error;
2410 
2411 	*start_lsn = 0;
2412 
2413 	len = xlog_write_calc_vec_length(ticket, log_vector);
2414 
2415 	/*
2416 	 * Region headers and bytes are already accounted for.
2417 	 * We only need to take into account start records and
2418 	 * split regions in this function.
2419 	 */
2420 	if (ticket->t_flags & XLOG_TIC_INITED)
2421 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2422 
2423 	/*
2424 	 * Commit record headers need to be accounted for. These
2425 	 * come in as separate writes so are easy to detect.
2426 	 */
2427 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2428 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2429 
2430 	if (ticket->t_curr_res < 0) {
2431 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2432 		     "ctx ticket reservation ran out. Need to up reservation");
2433 		xlog_print_tic_res(log->l_mp, ticket);
2434 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2435 	}
2436 
2437 	index = 0;
2438 	lv = log_vector;
2439 	vecp = lv->lv_iovecp;
2440 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2441 		void		*ptr;
2442 		int		log_offset;
2443 
2444 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2445 						   &contwr, &log_offset);
2446 		if (error)
2447 			return error;
2448 
2449 		ASSERT(log_offset <= iclog->ic_size - 1);
2450 		ptr = iclog->ic_datap + log_offset;
2451 
2452 		/* start_lsn is the first lsn written to. That's all we need. */
2453 		if (!*start_lsn)
2454 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2455 
2456 		/*
2457 		 * This loop writes out as many regions as can fit in the amount
2458 		 * of space which was allocated by xlog_state_get_iclog_space().
2459 		 */
2460 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2461 			struct xfs_log_iovec	*reg;
2462 			struct xlog_op_header	*ophdr;
2463 			int			start_rec_copy;
2464 			int			copy_len;
2465 			int			copy_off;
2466 			bool			ordered = false;
2467 
2468 			/* ordered log vectors have no regions to write */
2469 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2470 				ASSERT(lv->lv_niovecs == 0);
2471 				ordered = true;
2472 				goto next_lv;
2473 			}
2474 
2475 			reg = &vecp[index];
2476 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2477 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2478 
2479 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2480 			if (start_rec_copy) {
2481 				record_cnt++;
2482 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2483 						   start_rec_copy);
2484 			}
2485 
2486 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2487 			if (!ophdr)
2488 				return -EIO;
2489 
2490 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2491 					   sizeof(struct xlog_op_header));
2492 
2493 			len += xlog_write_setup_copy(ticket, ophdr,
2494 						     iclog->ic_size-log_offset,
2495 						     reg->i_len,
2496 						     &copy_off, &copy_len,
2497 						     &partial_copy,
2498 						     &partial_copy_len);
2499 			xlog_verify_dest_ptr(log, ptr);
2500 
2501 			/*
2502 			 * Copy region.
2503 			 *
2504 			 * Unmount records just log an opheader, so can have
2505 			 * empty payloads with no data region to copy. Hence we
2506 			 * only copy the payload if the vector says it has data
2507 			 * to copy.
2508 			 */
2509 			ASSERT(copy_len >= 0);
2510 			if (copy_len > 0) {
2511 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2512 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2513 						   copy_len);
2514 			}
2515 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2516 			record_cnt++;
2517 			data_cnt += contwr ? copy_len : 0;
2518 
2519 			error = xlog_write_copy_finish(log, iclog, flags,
2520 						       &record_cnt, &data_cnt,
2521 						       &partial_copy,
2522 						       &partial_copy_len,
2523 						       log_offset,
2524 						       commit_iclog);
2525 			if (error)
2526 				return error;
2527 
2528 			/*
2529 			 * if we had a partial copy, we need to get more iclog
2530 			 * space but we don't want to increment the region
2531 			 * index because there is still more is this region to
2532 			 * write.
2533 			 *
2534 			 * If we completed writing this region, and we flushed
2535 			 * the iclog (indicated by resetting of the record
2536 			 * count), then we also need to get more log space. If
2537 			 * this was the last record, though, we are done and
2538 			 * can just return.
2539 			 */
2540 			if (partial_copy)
2541 				break;
2542 
2543 			if (++index == lv->lv_niovecs) {
2544 next_lv:
2545 				lv = lv->lv_next;
2546 				index = 0;
2547 				if (lv)
2548 					vecp = lv->lv_iovecp;
2549 			}
2550 			if (record_cnt == 0 && !ordered) {
2551 				if (!lv)
2552 					return 0;
2553 				break;
2554 			}
2555 		}
2556 	}
2557 
2558 	ASSERT(len == 0);
2559 
2560 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2561 	if (!commit_iclog)
2562 		return xlog_state_release_iclog(log, iclog);
2563 
2564 	ASSERT(flags & XLOG_COMMIT_TRANS);
2565 	*commit_iclog = iclog;
2566 	return 0;
2567 }
2568 
2569 
2570 /*****************************************************************************
2571  *
2572  *		State Machine functions
2573  *
2574  *****************************************************************************
2575  */
2576 
2577 /* Clean iclogs starting from the head.  This ordering must be
2578  * maintained, so an iclog doesn't become ACTIVE beyond one that
2579  * is SYNCING.  This is also required to maintain the notion that we use
2580  * a ordered wait queue to hold off would be writers to the log when every
2581  * iclog is trying to sync to disk.
2582  *
2583  * State Change: DIRTY -> ACTIVE
2584  */
2585 STATIC void
2586 xlog_state_clean_log(
2587 	struct xlog *log)
2588 {
2589 	xlog_in_core_t	*iclog;
2590 	int changed = 0;
2591 
2592 	iclog = log->l_iclog;
2593 	do {
2594 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2595 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2596 			iclog->ic_offset       = 0;
2597 			ASSERT(iclog->ic_callback == NULL);
2598 			/*
2599 			 * If the number of ops in this iclog indicate it just
2600 			 * contains the dummy transaction, we can
2601 			 * change state into IDLE (the second time around).
2602 			 * Otherwise we should change the state into
2603 			 * NEED a dummy.
2604 			 * We don't need to cover the dummy.
2605 			 */
2606 			if (!changed &&
2607 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2608 			   		XLOG_COVER_OPS)) {
2609 				changed = 1;
2610 			} else {
2611 				/*
2612 				 * We have two dirty iclogs so start over
2613 				 * This could also be num of ops indicates
2614 				 * this is not the dummy going out.
2615 				 */
2616 				changed = 2;
2617 			}
2618 			iclog->ic_header.h_num_logops = 0;
2619 			memset(iclog->ic_header.h_cycle_data, 0,
2620 			      sizeof(iclog->ic_header.h_cycle_data));
2621 			iclog->ic_header.h_lsn = 0;
2622 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2623 			/* do nothing */;
2624 		else
2625 			break;	/* stop cleaning */
2626 		iclog = iclog->ic_next;
2627 	} while (iclog != log->l_iclog);
2628 
2629 	/* log is locked when we are called */
2630 	/*
2631 	 * Change state for the dummy log recording.
2632 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2633 	 * we are done writing the dummy record.
2634 	 * If we are done with the second dummy recored (DONE2), then
2635 	 * we go to IDLE.
2636 	 */
2637 	if (changed) {
2638 		switch (log->l_covered_state) {
2639 		case XLOG_STATE_COVER_IDLE:
2640 		case XLOG_STATE_COVER_NEED:
2641 		case XLOG_STATE_COVER_NEED2:
2642 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2643 			break;
2644 
2645 		case XLOG_STATE_COVER_DONE:
2646 			if (changed == 1)
2647 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2648 			else
2649 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2650 			break;
2651 
2652 		case XLOG_STATE_COVER_DONE2:
2653 			if (changed == 1)
2654 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2655 			else
2656 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2657 			break;
2658 
2659 		default:
2660 			ASSERT(0);
2661 		}
2662 	}
2663 }	/* xlog_state_clean_log */
2664 
2665 STATIC xfs_lsn_t
2666 xlog_get_lowest_lsn(
2667 	struct xlog	*log)
2668 {
2669 	xlog_in_core_t  *lsn_log;
2670 	xfs_lsn_t	lowest_lsn, lsn;
2671 
2672 	lsn_log = log->l_iclog;
2673 	lowest_lsn = 0;
2674 	do {
2675 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2676 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2677 		if ((lsn && !lowest_lsn) ||
2678 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2679 			lowest_lsn = lsn;
2680 		}
2681 	    }
2682 	    lsn_log = lsn_log->ic_next;
2683 	} while (lsn_log != log->l_iclog);
2684 	return lowest_lsn;
2685 }
2686 
2687 
2688 STATIC void
2689 xlog_state_do_callback(
2690 	struct xlog		*log,
2691 	int			aborted,
2692 	struct xlog_in_core	*ciclog)
2693 {
2694 	xlog_in_core_t	   *iclog;
2695 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2696 						 * processed all iclogs once */
2697 	xfs_log_callback_t *cb, *cb_next;
2698 	int		   flushcnt = 0;
2699 	xfs_lsn_t	   lowest_lsn;
2700 	int		   ioerrors;	/* counter: iclogs with errors */
2701 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2702 	int		   funcdidcallbacks; /* flag: function did callbacks */
2703 	int		   repeats;	/* for issuing console warnings if
2704 					 * looping too many times */
2705 	int		   wake = 0;
2706 
2707 	spin_lock(&log->l_icloglock);
2708 	first_iclog = iclog = log->l_iclog;
2709 	ioerrors = 0;
2710 	funcdidcallbacks = 0;
2711 	repeats = 0;
2712 
2713 	do {
2714 		/*
2715 		 * Scan all iclogs starting with the one pointed to by the
2716 		 * log.  Reset this starting point each time the log is
2717 		 * unlocked (during callbacks).
2718 		 *
2719 		 * Keep looping through iclogs until one full pass is made
2720 		 * without running any callbacks.
2721 		 */
2722 		first_iclog = log->l_iclog;
2723 		iclog = log->l_iclog;
2724 		loopdidcallbacks = 0;
2725 		repeats++;
2726 
2727 		do {
2728 
2729 			/* skip all iclogs in the ACTIVE & DIRTY states */
2730 			if (iclog->ic_state &
2731 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2732 				iclog = iclog->ic_next;
2733 				continue;
2734 			}
2735 
2736 			/*
2737 			 * Between marking a filesystem SHUTDOWN and stopping
2738 			 * the log, we do flush all iclogs to disk (if there
2739 			 * wasn't a log I/O error). So, we do want things to
2740 			 * go smoothly in case of just a SHUTDOWN  w/o a
2741 			 * LOG_IO_ERROR.
2742 			 */
2743 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2744 				/*
2745 				 * Can only perform callbacks in order.  Since
2746 				 * this iclog is not in the DONE_SYNC/
2747 				 * DO_CALLBACK state, we skip the rest and
2748 				 * just try to clean up.  If we set our iclog
2749 				 * to DO_CALLBACK, we will not process it when
2750 				 * we retry since a previous iclog is in the
2751 				 * CALLBACK and the state cannot change since
2752 				 * we are holding the l_icloglock.
2753 				 */
2754 				if (!(iclog->ic_state &
2755 					(XLOG_STATE_DONE_SYNC |
2756 						 XLOG_STATE_DO_CALLBACK))) {
2757 					if (ciclog && (ciclog->ic_state ==
2758 							XLOG_STATE_DONE_SYNC)) {
2759 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2760 					}
2761 					break;
2762 				}
2763 				/*
2764 				 * We now have an iclog that is in either the
2765 				 * DO_CALLBACK or DONE_SYNC states. The other
2766 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2767 				 * caught by the above if and are going to
2768 				 * clean (i.e. we aren't doing their callbacks)
2769 				 * see the above if.
2770 				 */
2771 
2772 				/*
2773 				 * We will do one more check here to see if we
2774 				 * have chased our tail around.
2775 				 */
2776 
2777 				lowest_lsn = xlog_get_lowest_lsn(log);
2778 				if (lowest_lsn &&
2779 				    XFS_LSN_CMP(lowest_lsn,
2780 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2781 					iclog = iclog->ic_next;
2782 					continue; /* Leave this iclog for
2783 						   * another thread */
2784 				}
2785 
2786 				iclog->ic_state = XLOG_STATE_CALLBACK;
2787 
2788 
2789 				/*
2790 				 * Completion of a iclog IO does not imply that
2791 				 * a transaction has completed, as transactions
2792 				 * can be large enough to span many iclogs. We
2793 				 * cannot change the tail of the log half way
2794 				 * through a transaction as this may be the only
2795 				 * transaction in the log and moving th etail to
2796 				 * point to the middle of it will prevent
2797 				 * recovery from finding the start of the
2798 				 * transaction. Hence we should only update the
2799 				 * last_sync_lsn if this iclog contains
2800 				 * transaction completion callbacks on it.
2801 				 *
2802 				 * We have to do this before we drop the
2803 				 * icloglock to ensure we are the only one that
2804 				 * can update it.
2805 				 */
2806 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2807 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2808 				if (iclog->ic_callback)
2809 					atomic64_set(&log->l_last_sync_lsn,
2810 						be64_to_cpu(iclog->ic_header.h_lsn));
2811 
2812 			} else
2813 				ioerrors++;
2814 
2815 			spin_unlock(&log->l_icloglock);
2816 
2817 			/*
2818 			 * Keep processing entries in the callback list until
2819 			 * we come around and it is empty.  We need to
2820 			 * atomically see that the list is empty and change the
2821 			 * state to DIRTY so that we don't miss any more
2822 			 * callbacks being added.
2823 			 */
2824 			spin_lock(&iclog->ic_callback_lock);
2825 			cb = iclog->ic_callback;
2826 			while (cb) {
2827 				iclog->ic_callback_tail = &(iclog->ic_callback);
2828 				iclog->ic_callback = NULL;
2829 				spin_unlock(&iclog->ic_callback_lock);
2830 
2831 				/* perform callbacks in the order given */
2832 				for (; cb; cb = cb_next) {
2833 					cb_next = cb->cb_next;
2834 					cb->cb_func(cb->cb_arg, aborted);
2835 				}
2836 				spin_lock(&iclog->ic_callback_lock);
2837 				cb = iclog->ic_callback;
2838 			}
2839 
2840 			loopdidcallbacks++;
2841 			funcdidcallbacks++;
2842 
2843 			spin_lock(&log->l_icloglock);
2844 			ASSERT(iclog->ic_callback == NULL);
2845 			spin_unlock(&iclog->ic_callback_lock);
2846 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2847 				iclog->ic_state = XLOG_STATE_DIRTY;
2848 
2849 			/*
2850 			 * Transition from DIRTY to ACTIVE if applicable.
2851 			 * NOP if STATE_IOERROR.
2852 			 */
2853 			xlog_state_clean_log(log);
2854 
2855 			/* wake up threads waiting in xfs_log_force() */
2856 			wake_up_all(&iclog->ic_force_wait);
2857 
2858 			iclog = iclog->ic_next;
2859 		} while (first_iclog != iclog);
2860 
2861 		if (repeats > 5000) {
2862 			flushcnt += repeats;
2863 			repeats = 0;
2864 			xfs_warn(log->l_mp,
2865 				"%s: possible infinite loop (%d iterations)",
2866 				__func__, flushcnt);
2867 		}
2868 	} while (!ioerrors && loopdidcallbacks);
2869 
2870 #ifdef DEBUG
2871 	/*
2872 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2873 	 * If the above loop finds an iclog earlier than the current iclog and
2874 	 * in one of the syncing states, the current iclog is put into
2875 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2876 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2877 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2878 	 * states.
2879 	 *
2880 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2881 	 * for ic_state == SYNCING.
2882 	 */
2883 	if (funcdidcallbacks) {
2884 		first_iclog = iclog = log->l_iclog;
2885 		do {
2886 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2887 			/*
2888 			 * Terminate the loop if iclogs are found in states
2889 			 * which will cause other threads to clean up iclogs.
2890 			 *
2891 			 * SYNCING - i/o completion will go through logs
2892 			 * DONE_SYNC - interrupt thread should be waiting for
2893 			 *              l_icloglock
2894 			 * IOERROR - give up hope all ye who enter here
2895 			 */
2896 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2897 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2898 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2899 			    iclog->ic_state == XLOG_STATE_IOERROR )
2900 				break;
2901 			iclog = iclog->ic_next;
2902 		} while (first_iclog != iclog);
2903 	}
2904 #endif
2905 
2906 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2907 		wake = 1;
2908 	spin_unlock(&log->l_icloglock);
2909 
2910 	if (wake)
2911 		wake_up_all(&log->l_flush_wait);
2912 }
2913 
2914 
2915 /*
2916  * Finish transitioning this iclog to the dirty state.
2917  *
2918  * Make sure that we completely execute this routine only when this is
2919  * the last call to the iclog.  There is a good chance that iclog flushes,
2920  * when we reach the end of the physical log, get turned into 2 separate
2921  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2922  * routine.  By using the reference count bwritecnt, we guarantee that only
2923  * the second completion goes through.
2924  *
2925  * Callbacks could take time, so they are done outside the scope of the
2926  * global state machine log lock.
2927  */
2928 STATIC void
2929 xlog_state_done_syncing(
2930 	xlog_in_core_t	*iclog,
2931 	int		aborted)
2932 {
2933 	struct xlog	   *log = iclog->ic_log;
2934 
2935 	spin_lock(&log->l_icloglock);
2936 
2937 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2938 	       iclog->ic_state == XLOG_STATE_IOERROR);
2939 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2940 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2941 
2942 
2943 	/*
2944 	 * If we got an error, either on the first buffer, or in the case of
2945 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2946 	 * and none should ever be attempted to be written to disk
2947 	 * again.
2948 	 */
2949 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2950 		if (--iclog->ic_bwritecnt == 1) {
2951 			spin_unlock(&log->l_icloglock);
2952 			return;
2953 		}
2954 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2955 	}
2956 
2957 	/*
2958 	 * Someone could be sleeping prior to writing out the next
2959 	 * iclog buffer, we wake them all, one will get to do the
2960 	 * I/O, the others get to wait for the result.
2961 	 */
2962 	wake_up_all(&iclog->ic_write_wait);
2963 	spin_unlock(&log->l_icloglock);
2964 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2965 }	/* xlog_state_done_syncing */
2966 
2967 
2968 /*
2969  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2970  * sleep.  We wait on the flush queue on the head iclog as that should be
2971  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2972  * we will wait here and all new writes will sleep until a sync completes.
2973  *
2974  * The in-core logs are used in a circular fashion. They are not used
2975  * out-of-order even when an iclog past the head is free.
2976  *
2977  * return:
2978  *	* log_offset where xlog_write() can start writing into the in-core
2979  *		log's data space.
2980  *	* in-core log pointer to which xlog_write() should write.
2981  *	* boolean indicating this is a continued write to an in-core log.
2982  *		If this is the last write, then the in-core log's offset field
2983  *		needs to be incremented, depending on the amount of data which
2984  *		is copied.
2985  */
2986 STATIC int
2987 xlog_state_get_iclog_space(
2988 	struct xlog		*log,
2989 	int			len,
2990 	struct xlog_in_core	**iclogp,
2991 	struct xlog_ticket	*ticket,
2992 	int			*continued_write,
2993 	int			*logoffsetp)
2994 {
2995 	int		  log_offset;
2996 	xlog_rec_header_t *head;
2997 	xlog_in_core_t	  *iclog;
2998 	int		  error;
2999 
3000 restart:
3001 	spin_lock(&log->l_icloglock);
3002 	if (XLOG_FORCED_SHUTDOWN(log)) {
3003 		spin_unlock(&log->l_icloglock);
3004 		return -EIO;
3005 	}
3006 
3007 	iclog = log->l_iclog;
3008 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3009 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3010 
3011 		/* Wait for log writes to have flushed */
3012 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3013 		goto restart;
3014 	}
3015 
3016 	head = &iclog->ic_header;
3017 
3018 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3019 	log_offset = iclog->ic_offset;
3020 
3021 	/* On the 1st write to an iclog, figure out lsn.  This works
3022 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3023 	 * committing to.  If the offset is set, that's how many blocks
3024 	 * must be written.
3025 	 */
3026 	if (log_offset == 0) {
3027 		ticket->t_curr_res -= log->l_iclog_hsize;
3028 		xlog_tic_add_region(ticket,
3029 				    log->l_iclog_hsize,
3030 				    XLOG_REG_TYPE_LRHEADER);
3031 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3032 		head->h_lsn = cpu_to_be64(
3033 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3034 		ASSERT(log->l_curr_block >= 0);
3035 	}
3036 
3037 	/* If there is enough room to write everything, then do it.  Otherwise,
3038 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3039 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3040 	 * until you know exactly how many bytes get copied.  Therefore, wait
3041 	 * until later to update ic_offset.
3042 	 *
3043 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3044 	 * can fit into remaining data section.
3045 	 */
3046 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3047 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3048 
3049 		/*
3050 		 * If I'm the only one writing to this iclog, sync it to disk.
3051 		 * We need to do an atomic compare and decrement here to avoid
3052 		 * racing with concurrent atomic_dec_and_lock() calls in
3053 		 * xlog_state_release_iclog() when there is more than one
3054 		 * reference to the iclog.
3055 		 */
3056 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3057 			/* we are the only one */
3058 			spin_unlock(&log->l_icloglock);
3059 			error = xlog_state_release_iclog(log, iclog);
3060 			if (error)
3061 				return error;
3062 		} else {
3063 			spin_unlock(&log->l_icloglock);
3064 		}
3065 		goto restart;
3066 	}
3067 
3068 	/* Do we have enough room to write the full amount in the remainder
3069 	 * of this iclog?  Or must we continue a write on the next iclog and
3070 	 * mark this iclog as completely taken?  In the case where we switch
3071 	 * iclogs (to mark it taken), this particular iclog will release/sync
3072 	 * to disk in xlog_write().
3073 	 */
3074 	if (len <= iclog->ic_size - iclog->ic_offset) {
3075 		*continued_write = 0;
3076 		iclog->ic_offset += len;
3077 	} else {
3078 		*continued_write = 1;
3079 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3080 	}
3081 	*iclogp = iclog;
3082 
3083 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3084 	spin_unlock(&log->l_icloglock);
3085 
3086 	*logoffsetp = log_offset;
3087 	return 0;
3088 }	/* xlog_state_get_iclog_space */
3089 
3090 /* The first cnt-1 times through here we don't need to
3091  * move the grant write head because the permanent
3092  * reservation has reserved cnt times the unit amount.
3093  * Release part of current permanent unit reservation and
3094  * reset current reservation to be one units worth.  Also
3095  * move grant reservation head forward.
3096  */
3097 STATIC void
3098 xlog_regrant_reserve_log_space(
3099 	struct xlog		*log,
3100 	struct xlog_ticket	*ticket)
3101 {
3102 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3103 
3104 	if (ticket->t_cnt > 0)
3105 		ticket->t_cnt--;
3106 
3107 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3108 					ticket->t_curr_res);
3109 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3110 					ticket->t_curr_res);
3111 	ticket->t_curr_res = ticket->t_unit_res;
3112 	xlog_tic_reset_res(ticket);
3113 
3114 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3115 
3116 	/* just return if we still have some of the pre-reserved space */
3117 	if (ticket->t_cnt > 0)
3118 		return;
3119 
3120 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3121 					ticket->t_unit_res);
3122 
3123 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3124 
3125 	ticket->t_curr_res = ticket->t_unit_res;
3126 	xlog_tic_reset_res(ticket);
3127 }	/* xlog_regrant_reserve_log_space */
3128 
3129 
3130 /*
3131  * Give back the space left from a reservation.
3132  *
3133  * All the information we need to make a correct determination of space left
3134  * is present.  For non-permanent reservations, things are quite easy.  The
3135  * count should have been decremented to zero.  We only need to deal with the
3136  * space remaining in the current reservation part of the ticket.  If the
3137  * ticket contains a permanent reservation, there may be left over space which
3138  * needs to be released.  A count of N means that N-1 refills of the current
3139  * reservation can be done before we need to ask for more space.  The first
3140  * one goes to fill up the first current reservation.  Once we run out of
3141  * space, the count will stay at zero and the only space remaining will be
3142  * in the current reservation field.
3143  */
3144 STATIC void
3145 xlog_ungrant_log_space(
3146 	struct xlog		*log,
3147 	struct xlog_ticket	*ticket)
3148 {
3149 	int	bytes;
3150 
3151 	if (ticket->t_cnt > 0)
3152 		ticket->t_cnt--;
3153 
3154 	trace_xfs_log_ungrant_enter(log, ticket);
3155 	trace_xfs_log_ungrant_sub(log, ticket);
3156 
3157 	/*
3158 	 * If this is a permanent reservation ticket, we may be able to free
3159 	 * up more space based on the remaining count.
3160 	 */
3161 	bytes = ticket->t_curr_res;
3162 	if (ticket->t_cnt > 0) {
3163 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3164 		bytes += ticket->t_unit_res*ticket->t_cnt;
3165 	}
3166 
3167 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3168 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3169 
3170 	trace_xfs_log_ungrant_exit(log, ticket);
3171 
3172 	xfs_log_space_wake(log->l_mp);
3173 }
3174 
3175 /*
3176  * Flush iclog to disk if this is the last reference to the given iclog and
3177  * the WANT_SYNC bit is set.
3178  *
3179  * When this function is entered, the iclog is not necessarily in the
3180  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3181  *
3182  *
3183  */
3184 STATIC int
3185 xlog_state_release_iclog(
3186 	struct xlog		*log,
3187 	struct xlog_in_core	*iclog)
3188 {
3189 	int		sync = 0;	/* do we sync? */
3190 
3191 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3192 		return -EIO;
3193 
3194 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3195 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3196 		return 0;
3197 
3198 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3199 		spin_unlock(&log->l_icloglock);
3200 		return -EIO;
3201 	}
3202 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3203 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3204 
3205 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3206 		/* update tail before writing to iclog */
3207 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3208 		sync++;
3209 		iclog->ic_state = XLOG_STATE_SYNCING;
3210 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3211 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3212 		/* cycle incremented when incrementing curr_block */
3213 	}
3214 	spin_unlock(&log->l_icloglock);
3215 
3216 	/*
3217 	 * We let the log lock go, so it's possible that we hit a log I/O
3218 	 * error or some other SHUTDOWN condition that marks the iclog
3219 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3220 	 * this iclog has consistent data, so we ignore IOERROR
3221 	 * flags after this point.
3222 	 */
3223 	if (sync)
3224 		return xlog_sync(log, iclog);
3225 	return 0;
3226 }	/* xlog_state_release_iclog */
3227 
3228 
3229 /*
3230  * This routine will mark the current iclog in the ring as WANT_SYNC
3231  * and move the current iclog pointer to the next iclog in the ring.
3232  * When this routine is called from xlog_state_get_iclog_space(), the
3233  * exact size of the iclog has not yet been determined.  All we know is
3234  * that every data block.  We have run out of space in this log record.
3235  */
3236 STATIC void
3237 xlog_state_switch_iclogs(
3238 	struct xlog		*log,
3239 	struct xlog_in_core	*iclog,
3240 	int			eventual_size)
3241 {
3242 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3243 	if (!eventual_size)
3244 		eventual_size = iclog->ic_offset;
3245 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3246 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3247 	log->l_prev_block = log->l_curr_block;
3248 	log->l_prev_cycle = log->l_curr_cycle;
3249 
3250 	/* roll log?: ic_offset changed later */
3251 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3252 
3253 	/* Round up to next log-sunit */
3254 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3255 	    log->l_mp->m_sb.sb_logsunit > 1) {
3256 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3257 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3258 	}
3259 
3260 	if (log->l_curr_block >= log->l_logBBsize) {
3261 		/*
3262 		 * Rewind the current block before the cycle is bumped to make
3263 		 * sure that the combined LSN never transiently moves forward
3264 		 * when the log wraps to the next cycle. This is to support the
3265 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3266 		 * other cases should acquire l_icloglock.
3267 		 */
3268 		log->l_curr_block -= log->l_logBBsize;
3269 		ASSERT(log->l_curr_block >= 0);
3270 		smp_wmb();
3271 		log->l_curr_cycle++;
3272 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3273 			log->l_curr_cycle++;
3274 	}
3275 	ASSERT(iclog == log->l_iclog);
3276 	log->l_iclog = iclog->ic_next;
3277 }	/* xlog_state_switch_iclogs */
3278 
3279 /*
3280  * Write out all data in the in-core log as of this exact moment in time.
3281  *
3282  * Data may be written to the in-core log during this call.  However,
3283  * we don't guarantee this data will be written out.  A change from past
3284  * implementation means this routine will *not* write out zero length LRs.
3285  *
3286  * Basically, we try and perform an intelligent scan of the in-core logs.
3287  * If we determine there is no flushable data, we just return.  There is no
3288  * flushable data if:
3289  *
3290  *	1. the current iclog is active and has no data; the previous iclog
3291  *		is in the active or dirty state.
3292  *	2. the current iclog is drity, and the previous iclog is in the
3293  *		active or dirty state.
3294  *
3295  * We may sleep if:
3296  *
3297  *	1. the current iclog is not in the active nor dirty state.
3298  *	2. the current iclog dirty, and the previous iclog is not in the
3299  *		active nor dirty state.
3300  *	3. the current iclog is active, and there is another thread writing
3301  *		to this particular iclog.
3302  *	4. a) the current iclog is active and has no other writers
3303  *	   b) when we return from flushing out this iclog, it is still
3304  *		not in the active nor dirty state.
3305  */
3306 int
3307 _xfs_log_force(
3308 	struct xfs_mount	*mp,
3309 	uint			flags,
3310 	int			*log_flushed)
3311 {
3312 	struct xlog		*log = mp->m_log;
3313 	struct xlog_in_core	*iclog;
3314 	xfs_lsn_t		lsn;
3315 
3316 	XFS_STATS_INC(mp, xs_log_force);
3317 
3318 	xlog_cil_force(log);
3319 
3320 	spin_lock(&log->l_icloglock);
3321 
3322 	iclog = log->l_iclog;
3323 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3324 		spin_unlock(&log->l_icloglock);
3325 		return -EIO;
3326 	}
3327 
3328 	/* If the head iclog is not active nor dirty, we just attach
3329 	 * ourselves to the head and go to sleep.
3330 	 */
3331 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3332 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3333 		/*
3334 		 * If the head is dirty or (active and empty), then
3335 		 * we need to look at the previous iclog.  If the previous
3336 		 * iclog is active or dirty we are done.  There is nothing
3337 		 * to sync out.  Otherwise, we attach ourselves to the
3338 		 * previous iclog and go to sleep.
3339 		 */
3340 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3341 		    (atomic_read(&iclog->ic_refcnt) == 0
3342 		     && iclog->ic_offset == 0)) {
3343 			iclog = iclog->ic_prev;
3344 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3345 			    iclog->ic_state == XLOG_STATE_DIRTY)
3346 				goto no_sleep;
3347 			else
3348 				goto maybe_sleep;
3349 		} else {
3350 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3351 				/* We are the only one with access to this
3352 				 * iclog.  Flush it out now.  There should
3353 				 * be a roundoff of zero to show that someone
3354 				 * has already taken care of the roundoff from
3355 				 * the previous sync.
3356 				 */
3357 				atomic_inc(&iclog->ic_refcnt);
3358 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3359 				xlog_state_switch_iclogs(log, iclog, 0);
3360 				spin_unlock(&log->l_icloglock);
3361 
3362 				if (xlog_state_release_iclog(log, iclog))
3363 					return -EIO;
3364 
3365 				if (log_flushed)
3366 					*log_flushed = 1;
3367 				spin_lock(&log->l_icloglock);
3368 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3369 				    iclog->ic_state != XLOG_STATE_DIRTY)
3370 					goto maybe_sleep;
3371 				else
3372 					goto no_sleep;
3373 			} else {
3374 				/* Someone else is writing to this iclog.
3375 				 * Use its call to flush out the data.  However,
3376 				 * the other thread may not force out this LR,
3377 				 * so we mark it WANT_SYNC.
3378 				 */
3379 				xlog_state_switch_iclogs(log, iclog, 0);
3380 				goto maybe_sleep;
3381 			}
3382 		}
3383 	}
3384 
3385 	/* By the time we come around again, the iclog could've been filled
3386 	 * which would give it another lsn.  If we have a new lsn, just
3387 	 * return because the relevant data has been flushed.
3388 	 */
3389 maybe_sleep:
3390 	if (flags & XFS_LOG_SYNC) {
3391 		/*
3392 		 * We must check if we're shutting down here, before
3393 		 * we wait, while we're holding the l_icloglock.
3394 		 * Then we check again after waking up, in case our
3395 		 * sleep was disturbed by a bad news.
3396 		 */
3397 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3398 			spin_unlock(&log->l_icloglock);
3399 			return -EIO;
3400 		}
3401 		XFS_STATS_INC(mp, xs_log_force_sleep);
3402 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3403 		/*
3404 		 * No need to grab the log lock here since we're
3405 		 * only deciding whether or not to return EIO
3406 		 * and the memory read should be atomic.
3407 		 */
3408 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3409 			return -EIO;
3410 	} else {
3411 
3412 no_sleep:
3413 		spin_unlock(&log->l_icloglock);
3414 	}
3415 	return 0;
3416 }
3417 
3418 /*
3419  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3420  * about errors or whether the log was flushed or not. This is the normal
3421  * interface to use when trying to unpin items or move the log forward.
3422  */
3423 void
3424 xfs_log_force(
3425 	xfs_mount_t	*mp,
3426 	uint		flags)
3427 {
3428 	trace_xfs_log_force(mp, 0, _RET_IP_);
3429 	_xfs_log_force(mp, flags, NULL);
3430 }
3431 
3432 /*
3433  * Force the in-core log to disk for a specific LSN.
3434  *
3435  * Find in-core log with lsn.
3436  *	If it is in the DIRTY state, just return.
3437  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3438  *		state and go to sleep or return.
3439  *	If it is in any other state, go to sleep or return.
3440  *
3441  * Synchronous forces are implemented with a signal variable. All callers
3442  * to force a given lsn to disk will wait on a the sv attached to the
3443  * specific in-core log.  When given in-core log finally completes its
3444  * write to disk, that thread will wake up all threads waiting on the
3445  * sv.
3446  */
3447 int
3448 _xfs_log_force_lsn(
3449 	struct xfs_mount	*mp,
3450 	xfs_lsn_t		lsn,
3451 	uint			flags,
3452 	int			*log_flushed)
3453 {
3454 	struct xlog		*log = mp->m_log;
3455 	struct xlog_in_core	*iclog;
3456 	int			already_slept = 0;
3457 
3458 	ASSERT(lsn != 0);
3459 
3460 	XFS_STATS_INC(mp, xs_log_force);
3461 
3462 	lsn = xlog_cil_force_lsn(log, lsn);
3463 	if (lsn == NULLCOMMITLSN)
3464 		return 0;
3465 
3466 try_again:
3467 	spin_lock(&log->l_icloglock);
3468 	iclog = log->l_iclog;
3469 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3470 		spin_unlock(&log->l_icloglock);
3471 		return -EIO;
3472 	}
3473 
3474 	do {
3475 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3476 			iclog = iclog->ic_next;
3477 			continue;
3478 		}
3479 
3480 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3481 			spin_unlock(&log->l_icloglock);
3482 			return 0;
3483 		}
3484 
3485 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3486 			/*
3487 			 * We sleep here if we haven't already slept (e.g.
3488 			 * this is the first time we've looked at the correct
3489 			 * iclog buf) and the buffer before us is going to
3490 			 * be sync'ed. The reason for this is that if we
3491 			 * are doing sync transactions here, by waiting for
3492 			 * the previous I/O to complete, we can allow a few
3493 			 * more transactions into this iclog before we close
3494 			 * it down.
3495 			 *
3496 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3497 			 * up the refcnt so we can release the log (which
3498 			 * drops the ref count).  The state switch keeps new
3499 			 * transaction commits from using this buffer.  When
3500 			 * the current commits finish writing into the buffer,
3501 			 * the refcount will drop to zero and the buffer will
3502 			 * go out then.
3503 			 */
3504 			if (!already_slept &&
3505 			    (iclog->ic_prev->ic_state &
3506 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3507 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3508 
3509 				XFS_STATS_INC(mp, xs_log_force_sleep);
3510 
3511 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3512 							&log->l_icloglock);
3513 				already_slept = 1;
3514 				goto try_again;
3515 			}
3516 			atomic_inc(&iclog->ic_refcnt);
3517 			xlog_state_switch_iclogs(log, iclog, 0);
3518 			spin_unlock(&log->l_icloglock);
3519 			if (xlog_state_release_iclog(log, iclog))
3520 				return -EIO;
3521 			if (log_flushed)
3522 				*log_flushed = 1;
3523 			spin_lock(&log->l_icloglock);
3524 		}
3525 
3526 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3527 		    !(iclog->ic_state &
3528 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3529 			/*
3530 			 * Don't wait on completion if we know that we've
3531 			 * gotten a log write error.
3532 			 */
3533 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3534 				spin_unlock(&log->l_icloglock);
3535 				return -EIO;
3536 			}
3537 			XFS_STATS_INC(mp, xs_log_force_sleep);
3538 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3539 			/*
3540 			 * No need to grab the log lock here since we're
3541 			 * only deciding whether or not to return EIO
3542 			 * and the memory read should be atomic.
3543 			 */
3544 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3545 				return -EIO;
3546 		} else {		/* just return */
3547 			spin_unlock(&log->l_icloglock);
3548 		}
3549 
3550 		return 0;
3551 	} while (iclog != log->l_iclog);
3552 
3553 	spin_unlock(&log->l_icloglock);
3554 	return 0;
3555 }
3556 
3557 /*
3558  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3559  * about errors or whether the log was flushed or not. This is the normal
3560  * interface to use when trying to unpin items or move the log forward.
3561  */
3562 void
3563 xfs_log_force_lsn(
3564 	xfs_mount_t	*mp,
3565 	xfs_lsn_t	lsn,
3566 	uint		flags)
3567 {
3568 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3569 	_xfs_log_force_lsn(mp, lsn, flags, NULL);
3570 }
3571 
3572 /*
3573  * Called when we want to mark the current iclog as being ready to sync to
3574  * disk.
3575  */
3576 STATIC void
3577 xlog_state_want_sync(
3578 	struct xlog		*log,
3579 	struct xlog_in_core	*iclog)
3580 {
3581 	assert_spin_locked(&log->l_icloglock);
3582 
3583 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3584 		xlog_state_switch_iclogs(log, iclog, 0);
3585 	} else {
3586 		ASSERT(iclog->ic_state &
3587 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3588 	}
3589 }
3590 
3591 
3592 /*****************************************************************************
3593  *
3594  *		TICKET functions
3595  *
3596  *****************************************************************************
3597  */
3598 
3599 /*
3600  * Free a used ticket when its refcount falls to zero.
3601  */
3602 void
3603 xfs_log_ticket_put(
3604 	xlog_ticket_t	*ticket)
3605 {
3606 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3607 	if (atomic_dec_and_test(&ticket->t_ref))
3608 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3609 }
3610 
3611 xlog_ticket_t *
3612 xfs_log_ticket_get(
3613 	xlog_ticket_t	*ticket)
3614 {
3615 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3616 	atomic_inc(&ticket->t_ref);
3617 	return ticket;
3618 }
3619 
3620 /*
3621  * Figure out the total log space unit (in bytes) that would be
3622  * required for a log ticket.
3623  */
3624 int
3625 xfs_log_calc_unit_res(
3626 	struct xfs_mount	*mp,
3627 	int			unit_bytes)
3628 {
3629 	struct xlog		*log = mp->m_log;
3630 	int			iclog_space;
3631 	uint			num_headers;
3632 
3633 	/*
3634 	 * Permanent reservations have up to 'cnt'-1 active log operations
3635 	 * in the log.  A unit in this case is the amount of space for one
3636 	 * of these log operations.  Normal reservations have a cnt of 1
3637 	 * and their unit amount is the total amount of space required.
3638 	 *
3639 	 * The following lines of code account for non-transaction data
3640 	 * which occupy space in the on-disk log.
3641 	 *
3642 	 * Normal form of a transaction is:
3643 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3644 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3645 	 *
3646 	 * We need to account for all the leadup data and trailer data
3647 	 * around the transaction data.
3648 	 * And then we need to account for the worst case in terms of using
3649 	 * more space.
3650 	 * The worst case will happen if:
3651 	 * - the placement of the transaction happens to be such that the
3652 	 *   roundoff is at its maximum
3653 	 * - the transaction data is synced before the commit record is synced
3654 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3655 	 *   Therefore the commit record is in its own Log Record.
3656 	 *   This can happen as the commit record is called with its
3657 	 *   own region to xlog_write().
3658 	 *   This then means that in the worst case, roundoff can happen for
3659 	 *   the commit-rec as well.
3660 	 *   The commit-rec is smaller than padding in this scenario and so it is
3661 	 *   not added separately.
3662 	 */
3663 
3664 	/* for trans header */
3665 	unit_bytes += sizeof(xlog_op_header_t);
3666 	unit_bytes += sizeof(xfs_trans_header_t);
3667 
3668 	/* for start-rec */
3669 	unit_bytes += sizeof(xlog_op_header_t);
3670 
3671 	/*
3672 	 * for LR headers - the space for data in an iclog is the size minus
3673 	 * the space used for the headers. If we use the iclog size, then we
3674 	 * undercalculate the number of headers required.
3675 	 *
3676 	 * Furthermore - the addition of op headers for split-recs might
3677 	 * increase the space required enough to require more log and op
3678 	 * headers, so take that into account too.
3679 	 *
3680 	 * IMPORTANT: This reservation makes the assumption that if this
3681 	 * transaction is the first in an iclog and hence has the LR headers
3682 	 * accounted to it, then the remaining space in the iclog is
3683 	 * exclusively for this transaction.  i.e. if the transaction is larger
3684 	 * than the iclog, it will be the only thing in that iclog.
3685 	 * Fundamentally, this means we must pass the entire log vector to
3686 	 * xlog_write to guarantee this.
3687 	 */
3688 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3689 	num_headers = howmany(unit_bytes, iclog_space);
3690 
3691 	/* for split-recs - ophdrs added when data split over LRs */
3692 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3693 
3694 	/* add extra header reservations if we overrun */
3695 	while (!num_headers ||
3696 	       howmany(unit_bytes, iclog_space) > num_headers) {
3697 		unit_bytes += sizeof(xlog_op_header_t);
3698 		num_headers++;
3699 	}
3700 	unit_bytes += log->l_iclog_hsize * num_headers;
3701 
3702 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3703 	unit_bytes += log->l_iclog_hsize;
3704 
3705 	/* for roundoff padding for transaction data and one for commit record */
3706 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3707 		/* log su roundoff */
3708 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3709 	} else {
3710 		/* BB roundoff */
3711 		unit_bytes += 2 * BBSIZE;
3712         }
3713 
3714 	return unit_bytes;
3715 }
3716 
3717 /*
3718  * Allocate and initialise a new log ticket.
3719  */
3720 struct xlog_ticket *
3721 xlog_ticket_alloc(
3722 	struct xlog		*log,
3723 	int			unit_bytes,
3724 	int			cnt,
3725 	char			client,
3726 	bool			permanent,
3727 	xfs_km_flags_t		alloc_flags)
3728 {
3729 	struct xlog_ticket	*tic;
3730 	int			unit_res;
3731 
3732 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3733 	if (!tic)
3734 		return NULL;
3735 
3736 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3737 
3738 	atomic_set(&tic->t_ref, 1);
3739 	tic->t_task		= current;
3740 	INIT_LIST_HEAD(&tic->t_queue);
3741 	tic->t_unit_res		= unit_res;
3742 	tic->t_curr_res		= unit_res;
3743 	tic->t_cnt		= cnt;
3744 	tic->t_ocnt		= cnt;
3745 	tic->t_tid		= prandom_u32();
3746 	tic->t_clientid		= client;
3747 	tic->t_flags		= XLOG_TIC_INITED;
3748 	if (permanent)
3749 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3750 
3751 	xlog_tic_reset_res(tic);
3752 
3753 	return tic;
3754 }
3755 
3756 
3757 /******************************************************************************
3758  *
3759  *		Log debug routines
3760  *
3761  ******************************************************************************
3762  */
3763 #if defined(DEBUG)
3764 /*
3765  * Make sure that the destination ptr is within the valid data region of
3766  * one of the iclogs.  This uses backup pointers stored in a different
3767  * part of the log in case we trash the log structure.
3768  */
3769 STATIC void
3770 xlog_verify_dest_ptr(
3771 	struct xlog	*log,
3772 	void		*ptr)
3773 {
3774 	int i;
3775 	int good_ptr = 0;
3776 
3777 	for (i = 0; i < log->l_iclog_bufs; i++) {
3778 		if (ptr >= log->l_iclog_bak[i] &&
3779 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3780 			good_ptr++;
3781 	}
3782 
3783 	if (!good_ptr)
3784 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3785 }
3786 
3787 /*
3788  * Check to make sure the grant write head didn't just over lap the tail.  If
3789  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3790  * the cycles differ by exactly one and check the byte count.
3791  *
3792  * This check is run unlocked, so can give false positives. Rather than assert
3793  * on failures, use a warn-once flag and a panic tag to allow the admin to
3794  * determine if they want to panic the machine when such an error occurs. For
3795  * debug kernels this will have the same effect as using an assert but, unlinke
3796  * an assert, it can be turned off at runtime.
3797  */
3798 STATIC void
3799 xlog_verify_grant_tail(
3800 	struct xlog	*log)
3801 {
3802 	int		tail_cycle, tail_blocks;
3803 	int		cycle, space;
3804 
3805 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3806 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3807 	if (tail_cycle != cycle) {
3808 		if (cycle - 1 != tail_cycle &&
3809 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3810 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3811 				"%s: cycle - 1 != tail_cycle", __func__);
3812 			log->l_flags |= XLOG_TAIL_WARN;
3813 		}
3814 
3815 		if (space > BBTOB(tail_blocks) &&
3816 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3817 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3818 				"%s: space > BBTOB(tail_blocks)", __func__);
3819 			log->l_flags |= XLOG_TAIL_WARN;
3820 		}
3821 	}
3822 }
3823 
3824 /* check if it will fit */
3825 STATIC void
3826 xlog_verify_tail_lsn(
3827 	struct xlog		*log,
3828 	struct xlog_in_core	*iclog,
3829 	xfs_lsn_t		tail_lsn)
3830 {
3831     int blocks;
3832 
3833     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3834 	blocks =
3835 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3836 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3837 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3838     } else {
3839 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3840 
3841 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3842 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3843 
3844 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3845 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3846 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3847     }
3848 }	/* xlog_verify_tail_lsn */
3849 
3850 /*
3851  * Perform a number of checks on the iclog before writing to disk.
3852  *
3853  * 1. Make sure the iclogs are still circular
3854  * 2. Make sure we have a good magic number
3855  * 3. Make sure we don't have magic numbers in the data
3856  * 4. Check fields of each log operation header for:
3857  *	A. Valid client identifier
3858  *	B. tid ptr value falls in valid ptr space (user space code)
3859  *	C. Length in log record header is correct according to the
3860  *		individual operation headers within record.
3861  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3862  *	log, check the preceding blocks of the physical log to make sure all
3863  *	the cycle numbers agree with the current cycle number.
3864  */
3865 STATIC void
3866 xlog_verify_iclog(
3867 	struct xlog		*log,
3868 	struct xlog_in_core	*iclog,
3869 	int			count,
3870 	bool                    syncing)
3871 {
3872 	xlog_op_header_t	*ophead;
3873 	xlog_in_core_t		*icptr;
3874 	xlog_in_core_2_t	*xhdr;
3875 	void			*base_ptr, *ptr, *p;
3876 	ptrdiff_t		field_offset;
3877 	uint8_t			clientid;
3878 	int			len, i, j, k, op_len;
3879 	int			idx;
3880 
3881 	/* check validity of iclog pointers */
3882 	spin_lock(&log->l_icloglock);
3883 	icptr = log->l_iclog;
3884 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3885 		ASSERT(icptr);
3886 
3887 	if (icptr != log->l_iclog)
3888 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3889 	spin_unlock(&log->l_icloglock);
3890 
3891 	/* check log magic numbers */
3892 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3893 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3894 
3895 	base_ptr = ptr = &iclog->ic_header;
3896 	p = &iclog->ic_header;
3897 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3898 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3899 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3900 				__func__);
3901 	}
3902 
3903 	/* check fields */
3904 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3905 	base_ptr = ptr = iclog->ic_datap;
3906 	ophead = ptr;
3907 	xhdr = iclog->ic_data;
3908 	for (i = 0; i < len; i++) {
3909 		ophead = ptr;
3910 
3911 		/* clientid is only 1 byte */
3912 		p = &ophead->oh_clientid;
3913 		field_offset = p - base_ptr;
3914 		if (!syncing || (field_offset & 0x1ff)) {
3915 			clientid = ophead->oh_clientid;
3916 		} else {
3917 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3918 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3919 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3920 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3921 				clientid = xlog_get_client_id(
3922 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3923 			} else {
3924 				clientid = xlog_get_client_id(
3925 					iclog->ic_header.h_cycle_data[idx]);
3926 			}
3927 		}
3928 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3929 			xfs_warn(log->l_mp,
3930 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3931 				__func__, clientid, ophead,
3932 				(unsigned long)field_offset);
3933 
3934 		/* check length */
3935 		p = &ophead->oh_len;
3936 		field_offset = p - base_ptr;
3937 		if (!syncing || (field_offset & 0x1ff)) {
3938 			op_len = be32_to_cpu(ophead->oh_len);
3939 		} else {
3940 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3941 				    (uintptr_t)iclog->ic_datap);
3942 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3943 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3944 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3945 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3946 			} else {
3947 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3948 			}
3949 		}
3950 		ptr += sizeof(xlog_op_header_t) + op_len;
3951 	}
3952 }	/* xlog_verify_iclog */
3953 #endif
3954 
3955 /*
3956  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3957  */
3958 STATIC int
3959 xlog_state_ioerror(
3960 	struct xlog	*log)
3961 {
3962 	xlog_in_core_t	*iclog, *ic;
3963 
3964 	iclog = log->l_iclog;
3965 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3966 		/*
3967 		 * Mark all the incore logs IOERROR.
3968 		 * From now on, no log flushes will result.
3969 		 */
3970 		ic = iclog;
3971 		do {
3972 			ic->ic_state = XLOG_STATE_IOERROR;
3973 			ic = ic->ic_next;
3974 		} while (ic != iclog);
3975 		return 0;
3976 	}
3977 	/*
3978 	 * Return non-zero, if state transition has already happened.
3979 	 */
3980 	return 1;
3981 }
3982 
3983 /*
3984  * This is called from xfs_force_shutdown, when we're forcibly
3985  * shutting down the filesystem, typically because of an IO error.
3986  * Our main objectives here are to make sure that:
3987  *	a. if !logerror, flush the logs to disk. Anything modified
3988  *	   after this is ignored.
3989  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3990  *	   parties to find out, 'atomically'.
3991  *	c. those who're sleeping on log reservations, pinned objects and
3992  *	    other resources get woken up, and be told the bad news.
3993  *	d. nothing new gets queued up after (b) and (c) are done.
3994  *
3995  * Note: for the !logerror case we need to flush the regions held in memory out
3996  * to disk first. This needs to be done before the log is marked as shutdown,
3997  * otherwise the iclog writes will fail.
3998  */
3999 int
4000 xfs_log_force_umount(
4001 	struct xfs_mount	*mp,
4002 	int			logerror)
4003 {
4004 	struct xlog	*log;
4005 	int		retval;
4006 
4007 	log = mp->m_log;
4008 
4009 	/*
4010 	 * If this happens during log recovery, don't worry about
4011 	 * locking; the log isn't open for business yet.
4012 	 */
4013 	if (!log ||
4014 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
4015 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4016 		if (mp->m_sb_bp)
4017 			mp->m_sb_bp->b_flags |= XBF_DONE;
4018 		return 0;
4019 	}
4020 
4021 	/*
4022 	 * Somebody could've already done the hard work for us.
4023 	 * No need to get locks for this.
4024 	 */
4025 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4026 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
4027 		return 1;
4028 	}
4029 
4030 	/*
4031 	 * Flush all the completed transactions to disk before marking the log
4032 	 * being shut down. We need to do it in this order to ensure that
4033 	 * completed operations are safely on disk before we shut down, and that
4034 	 * we don't have to issue any buffer IO after the shutdown flags are set
4035 	 * to guarantee this.
4036 	 */
4037 	if (!logerror)
4038 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4039 
4040 	/*
4041 	 * mark the filesystem and the as in a shutdown state and wake
4042 	 * everybody up to tell them the bad news.
4043 	 */
4044 	spin_lock(&log->l_icloglock);
4045 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4046 	if (mp->m_sb_bp)
4047 		mp->m_sb_bp->b_flags |= XBF_DONE;
4048 
4049 	/*
4050 	 * Mark the log and the iclogs with IO error flags to prevent any
4051 	 * further log IO from being issued or completed.
4052 	 */
4053 	log->l_flags |= XLOG_IO_ERROR;
4054 	retval = xlog_state_ioerror(log);
4055 	spin_unlock(&log->l_icloglock);
4056 
4057 	/*
4058 	 * We don't want anybody waiting for log reservations after this. That
4059 	 * means we have to wake up everybody queued up on reserveq as well as
4060 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4061 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4062 	 * action is protected by the grant locks.
4063 	 */
4064 	xlog_grant_head_wake_all(&log->l_reserve_head);
4065 	xlog_grant_head_wake_all(&log->l_write_head);
4066 
4067 	/*
4068 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4069 	 * as if the log writes were completed. The abort handling in the log
4070 	 * item committed callback functions will do this again under lock to
4071 	 * avoid races.
4072 	 */
4073 	wake_up_all(&log->l_cilp->xc_commit_wait);
4074 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4075 
4076 #ifdef XFSERRORDEBUG
4077 	{
4078 		xlog_in_core_t	*iclog;
4079 
4080 		spin_lock(&log->l_icloglock);
4081 		iclog = log->l_iclog;
4082 		do {
4083 			ASSERT(iclog->ic_callback == 0);
4084 			iclog = iclog->ic_next;
4085 		} while (iclog != log->l_iclog);
4086 		spin_unlock(&log->l_icloglock);
4087 	}
4088 #endif
4089 	/* return non-zero if log IOERROR transition had already happened */
4090 	return retval;
4091 }
4092 
4093 STATIC int
4094 xlog_iclogs_empty(
4095 	struct xlog	*log)
4096 {
4097 	xlog_in_core_t	*iclog;
4098 
4099 	iclog = log->l_iclog;
4100 	do {
4101 		/* endianness does not matter here, zero is zero in
4102 		 * any language.
4103 		 */
4104 		if (iclog->ic_header.h_num_logops)
4105 			return 0;
4106 		iclog = iclog->ic_next;
4107 	} while (iclog != log->l_iclog);
4108 	return 1;
4109 }
4110 
4111 /*
4112  * Verify that an LSN stamped into a piece of metadata is valid. This is
4113  * intended for use in read verifiers on v5 superblocks.
4114  */
4115 bool
4116 xfs_log_check_lsn(
4117 	struct xfs_mount	*mp,
4118 	xfs_lsn_t		lsn)
4119 {
4120 	struct xlog		*log = mp->m_log;
4121 	bool			valid;
4122 
4123 	/*
4124 	 * norecovery mode skips mount-time log processing and unconditionally
4125 	 * resets the in-core LSN. We can't validate in this mode, but
4126 	 * modifications are not allowed anyways so just return true.
4127 	 */
4128 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4129 		return true;
4130 
4131 	/*
4132 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4133 	 * handled by recovery and thus safe to ignore here.
4134 	 */
4135 	if (lsn == NULLCOMMITLSN)
4136 		return true;
4137 
4138 	valid = xlog_valid_lsn(mp->m_log, lsn);
4139 
4140 	/* warn the user about what's gone wrong before verifier failure */
4141 	if (!valid) {
4142 		spin_lock(&log->l_icloglock);
4143 		xfs_warn(mp,
4144 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4145 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4146 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4147 			 log->l_curr_cycle, log->l_curr_block);
4148 		spin_unlock(&log->l_icloglock);
4149 	}
4150 
4151 	return valid;
4152 }
4153