xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 7fe2f639)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(struct log	*log,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_tail(struct log *log);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 static void
99 xlog_grant_sub_space(
100 	struct log	*log,
101 	atomic64_t	*head,
102 	int		bytes)
103 {
104 	int64_t	head_val = atomic64_read(head);
105 	int64_t new, old;
106 
107 	do {
108 		int	cycle, space;
109 
110 		xlog_crack_grant_head_val(head_val, &cycle, &space);
111 
112 		space -= bytes;
113 		if (space < 0) {
114 			space += log->l_logsize;
115 			cycle--;
116 		}
117 
118 		old = head_val;
119 		new = xlog_assign_grant_head_val(cycle, space);
120 		head_val = atomic64_cmpxchg(head, old, new);
121 	} while (head_val != old);
122 }
123 
124 static void
125 xlog_grant_add_space(
126 	struct log	*log,
127 	atomic64_t	*head,
128 	int		bytes)
129 {
130 	int64_t	head_val = atomic64_read(head);
131 	int64_t new, old;
132 
133 	do {
134 		int		tmp;
135 		int		cycle, space;
136 
137 		xlog_crack_grant_head_val(head_val, &cycle, &space);
138 
139 		tmp = log->l_logsize - space;
140 		if (tmp > bytes)
141 			space += bytes;
142 		else {
143 			space = bytes - tmp;
144 			cycle++;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
155 {
156 	tic->t_res_num = 0;
157 	tic->t_res_arr_sum = 0;
158 	tic->t_res_num_ophdrs = 0;
159 }
160 
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
163 {
164 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 		/* add to overflow and start again */
166 		tic->t_res_o_flow += tic->t_res_arr_sum;
167 		tic->t_res_num = 0;
168 		tic->t_res_arr_sum = 0;
169 	}
170 
171 	tic->t_res_arr[tic->t_res_num].r_len = len;
172 	tic->t_res_arr[tic->t_res_num].r_type = type;
173 	tic->t_res_arr_sum += len;
174 	tic->t_res_num++;
175 }
176 
177 /*
178  * NOTES:
179  *
180  *	1. currblock field gets updated at startup and after in-core logs
181  *		marked as with WANT_SYNC.
182  */
183 
184 /*
185  * This routine is called when a user of a log manager ticket is done with
186  * the reservation.  If the ticket was ever used, then a commit record for
187  * the associated transaction is written out as a log operation header with
188  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
189  * a given ticket.  If the ticket was one with a permanent reservation, then
190  * a few operations are done differently.  Permanent reservation tickets by
191  * default don't release the reservation.  They just commit the current
192  * transaction with the belief that the reservation is still needed.  A flag
193  * must be passed in before permanent reservations are actually released.
194  * When these type of tickets are not released, they need to be set into
195  * the inited state again.  By doing this, a start record will be written
196  * out when the next write occurs.
197  */
198 xfs_lsn_t
199 xfs_log_done(
200 	struct xfs_mount	*mp,
201 	struct xlog_ticket	*ticket,
202 	struct xlog_in_core	**iclog,
203 	uint			flags)
204 {
205 	struct log		*log = mp->m_log;
206 	xfs_lsn_t		lsn = 0;
207 
208 	if (XLOG_FORCED_SHUTDOWN(log) ||
209 	    /*
210 	     * If nothing was ever written, don't write out commit record.
211 	     * If we get an error, just continue and give back the log ticket.
212 	     */
213 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 		lsn = (xfs_lsn_t) -1;
216 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 			flags |= XFS_LOG_REL_PERM_RESERV;
218 		}
219 	}
220 
221 
222 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
224 		trace_xfs_log_done_nonperm(log, ticket);
225 
226 		/*
227 		 * Release ticket if not permanent reservation or a specific
228 		 * request has been made to release a permanent reservation.
229 		 */
230 		xlog_ungrant_log_space(log, ticket);
231 		xfs_log_ticket_put(ticket);
232 	} else {
233 		trace_xfs_log_done_perm(log, ticket);
234 
235 		xlog_regrant_reserve_log_space(log, ticket);
236 		/* If this ticket was a permanent reservation and we aren't
237 		 * trying to release it, reset the inited flags; so next time
238 		 * we write, a start record will be written out.
239 		 */
240 		ticket->t_flags |= XLOG_TIC_INITED;
241 	}
242 
243 	return lsn;
244 }
245 
246 /*
247  * Attaches a new iclog I/O completion callback routine during
248  * transaction commit.  If the log is in error state, a non-zero
249  * return code is handed back and the caller is responsible for
250  * executing the callback at an appropriate time.
251  */
252 int
253 xfs_log_notify(
254 	struct xfs_mount	*mp,
255 	struct xlog_in_core	*iclog,
256 	xfs_log_callback_t	*cb)
257 {
258 	int	abortflg;
259 
260 	spin_lock(&iclog->ic_callback_lock);
261 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 	if (!abortflg) {
263 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 		cb->cb_next = NULL;
266 		*(iclog->ic_callback_tail) = cb;
267 		iclog->ic_callback_tail = &(cb->cb_next);
268 	}
269 	spin_unlock(&iclog->ic_callback_lock);
270 	return abortflg;
271 }
272 
273 int
274 xfs_log_release_iclog(
275 	struct xfs_mount	*mp,
276 	struct xlog_in_core	*iclog)
277 {
278 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 		return EIO;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
288  *	to the reservation.
289  *  2. Potentially, push buffers at tail of log to disk.
290  *
291  * Each reservation is going to reserve extra space for a log record header.
292  * When writes happen to the on-disk log, we don't subtract the length of the
293  * log record header from any reservation.  By wasting space in each
294  * reservation, we prevent over allocation problems.
295  */
296 int
297 xfs_log_reserve(
298 	struct xfs_mount	*mp,
299 	int		 	unit_bytes,
300 	int		 	cnt,
301 	struct xlog_ticket	**ticket,
302 	__uint8_t	 	client,
303 	uint		 	flags,
304 	uint		 	t_type)
305 {
306 	struct log		*log = mp->m_log;
307 	struct xlog_ticket	*internal_ticket;
308 	int			retval = 0;
309 
310 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
311 
312 	if (XLOG_FORCED_SHUTDOWN(log))
313 		return XFS_ERROR(EIO);
314 
315 	XFS_STATS_INC(xs_try_logspace);
316 
317 
318 	if (*ticket != NULL) {
319 		ASSERT(flags & XFS_LOG_PERM_RESERV);
320 		internal_ticket = *ticket;
321 
322 		/*
323 		 * this is a new transaction on the ticket, so we need to
324 		 * change the transaction ID so that the next transaction has a
325 		 * different TID in the log. Just add one to the existing tid
326 		 * so that we can see chains of rolling transactions in the log
327 		 * easily.
328 		 */
329 		internal_ticket->t_tid++;
330 
331 		trace_xfs_log_reserve(log, internal_ticket);
332 
333 		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 		retval = xlog_regrant_write_log_space(log, internal_ticket);
335 	} else {
336 		/* may sleep if need to allocate more tickets */
337 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 						  client, flags,
339 						  KM_SLEEP|KM_MAYFAIL);
340 		if (!internal_ticket)
341 			return XFS_ERROR(ENOMEM);
342 		internal_ticket->t_trans_type = t_type;
343 		*ticket = internal_ticket;
344 
345 		trace_xfs_log_reserve(log, internal_ticket);
346 
347 		xlog_grant_push_ail(log,
348 				    (internal_ticket->t_unit_res *
349 				     internal_ticket->t_cnt));
350 		retval = xlog_grant_log_space(log, internal_ticket);
351 	}
352 
353 	return retval;
354 }	/* xfs_log_reserve */
355 
356 
357 /*
358  * Mount a log filesystem
359  *
360  * mp		- ubiquitous xfs mount point structure
361  * log_target	- buftarg of on-disk log device
362  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
363  * num_bblocks	- Number of BBSIZE blocks in on-disk log
364  *
365  * Return error or zero.
366  */
367 int
368 xfs_log_mount(
369 	xfs_mount_t	*mp,
370 	xfs_buftarg_t	*log_target,
371 	xfs_daddr_t	blk_offset,
372 	int		num_bblks)
373 {
374 	int		error;
375 
376 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 		xfs_notice(mp, "Mounting Filesystem");
378 	else {
379 		xfs_notice(mp,
380 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
381 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
382 	}
383 
384 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
385 	if (IS_ERR(mp->m_log)) {
386 		error = -PTR_ERR(mp->m_log);
387 		goto out;
388 	}
389 
390 	/*
391 	 * Initialize the AIL now we have a log.
392 	 */
393 	error = xfs_trans_ail_init(mp);
394 	if (error) {
395 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
396 		goto out_free_log;
397 	}
398 	mp->m_log->l_ailp = mp->m_ail;
399 
400 	/*
401 	 * skip log recovery on a norecovery mount.  pretend it all
402 	 * just worked.
403 	 */
404 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
405 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
406 
407 		if (readonly)
408 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
409 
410 		error = xlog_recover(mp->m_log);
411 
412 		if (readonly)
413 			mp->m_flags |= XFS_MOUNT_RDONLY;
414 		if (error) {
415 			xfs_warn(mp, "log mount/recovery failed: error %d",
416 				error);
417 			goto out_destroy_ail;
418 		}
419 	}
420 
421 	/* Normal transactions can now occur */
422 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
423 
424 	/*
425 	 * Now the log has been fully initialised and we know were our
426 	 * space grant counters are, we can initialise the permanent ticket
427 	 * needed for delayed logging to work.
428 	 */
429 	xlog_cil_init_post_recovery(mp->m_log);
430 
431 	return 0;
432 
433 out_destroy_ail:
434 	xfs_trans_ail_destroy(mp);
435 out_free_log:
436 	xlog_dealloc_log(mp->m_log);
437 out:
438 	return error;
439 }
440 
441 /*
442  * Finish the recovery of the file system.  This is separate from
443  * the xfs_log_mount() call, because it depends on the code in
444  * xfs_mountfs() to read in the root and real-time bitmap inodes
445  * between calling xfs_log_mount() and here.
446  *
447  * mp		- ubiquitous xfs mount point structure
448  */
449 int
450 xfs_log_mount_finish(xfs_mount_t *mp)
451 {
452 	int	error;
453 
454 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 		error = xlog_recover_finish(mp->m_log);
456 	else {
457 		error = 0;
458 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
459 	}
460 
461 	return error;
462 }
463 
464 /*
465  * Final log writes as part of unmount.
466  *
467  * Mark the filesystem clean as unmount happens.  Note that during relocation
468  * this routine needs to be executed as part of source-bag while the
469  * deallocation must not be done until source-end.
470  */
471 
472 /*
473  * Unmount record used to have a string "Unmount filesystem--" in the
474  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475  * We just write the magic number now since that particular field isn't
476  * currently architecture converted and "nUmount" is a bit foo.
477  * As far as I know, there weren't any dependencies on the old behaviour.
478  */
479 
480 int
481 xfs_log_unmount_write(xfs_mount_t *mp)
482 {
483 	xlog_t		 *log = mp->m_log;
484 	xlog_in_core_t	 *iclog;
485 #ifdef DEBUG
486 	xlog_in_core_t	 *first_iclog;
487 #endif
488 	xlog_ticket_t	*tic = NULL;
489 	xfs_lsn_t	 lsn;
490 	int		 error;
491 
492 	/*
493 	 * Don't write out unmount record on read-only mounts.
494 	 * Or, if we are doing a forced umount (typically because of IO errors).
495 	 */
496 	if (mp->m_flags & XFS_MOUNT_RDONLY)
497 		return 0;
498 
499 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
501 
502 #ifdef DEBUG
503 	first_iclog = iclog = log->l_iclog;
504 	do {
505 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 			ASSERT(iclog->ic_offset == 0);
508 		}
509 		iclog = iclog->ic_next;
510 	} while (iclog != first_iclog);
511 #endif
512 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 		error = xfs_log_reserve(mp, 600, 1, &tic,
514 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 		if (!error) {
516 			/* the data section must be 32 bit size aligned */
517 			struct {
518 			    __uint16_t magic;
519 			    __uint16_t pad1;
520 			    __uint32_t pad2; /* may as well make it 64 bits */
521 			} magic = {
522 				.magic = XLOG_UNMOUNT_TYPE,
523 			};
524 			struct xfs_log_iovec reg = {
525 				.i_addr = &magic,
526 				.i_len = sizeof(magic),
527 				.i_type = XLOG_REG_TYPE_UNMOUNT,
528 			};
529 			struct xfs_log_vec vec = {
530 				.lv_niovecs = 1,
531 				.lv_iovecp = &reg,
532 			};
533 
534 			/* remove inited flag */
535 			tic->t_flags = 0;
536 			error = xlog_write(log, &vec, tic, &lsn,
537 					   NULL, XLOG_UNMOUNT_TRANS);
538 			/*
539 			 * At this point, we're umounting anyway,
540 			 * so there's no point in transitioning log state
541 			 * to IOERROR. Just continue...
542 			 */
543 		}
544 
545 		if (error)
546 			xfs_alert(mp, "%s: unmount record failed", __func__);
547 
548 
549 		spin_lock(&log->l_icloglock);
550 		iclog = log->l_iclog;
551 		atomic_inc(&iclog->ic_refcnt);
552 		xlog_state_want_sync(log, iclog);
553 		spin_unlock(&log->l_icloglock);
554 		error = xlog_state_release_iclog(log, iclog);
555 
556 		spin_lock(&log->l_icloglock);
557 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
558 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
559 			if (!XLOG_FORCED_SHUTDOWN(log)) {
560 				xlog_wait(&iclog->ic_force_wait,
561 							&log->l_icloglock);
562 			} else {
563 				spin_unlock(&log->l_icloglock);
564 			}
565 		} else {
566 			spin_unlock(&log->l_icloglock);
567 		}
568 		if (tic) {
569 			trace_xfs_log_umount_write(log, tic);
570 			xlog_ungrant_log_space(log, tic);
571 			xfs_log_ticket_put(tic);
572 		}
573 	} else {
574 		/*
575 		 * We're already in forced_shutdown mode, couldn't
576 		 * even attempt to write out the unmount transaction.
577 		 *
578 		 * Go through the motions of sync'ing and releasing
579 		 * the iclog, even though no I/O will actually happen,
580 		 * we need to wait for other log I/Os that may already
581 		 * be in progress.  Do this as a separate section of
582 		 * code so we'll know if we ever get stuck here that
583 		 * we're in this odd situation of trying to unmount
584 		 * a file system that went into forced_shutdown as
585 		 * the result of an unmount..
586 		 */
587 		spin_lock(&log->l_icloglock);
588 		iclog = log->l_iclog;
589 		atomic_inc(&iclog->ic_refcnt);
590 
591 		xlog_state_want_sync(log, iclog);
592 		spin_unlock(&log->l_icloglock);
593 		error =  xlog_state_release_iclog(log, iclog);
594 
595 		spin_lock(&log->l_icloglock);
596 
597 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
598 			|| iclog->ic_state == XLOG_STATE_DIRTY
599 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
600 
601 				xlog_wait(&iclog->ic_force_wait,
602 							&log->l_icloglock);
603 		} else {
604 			spin_unlock(&log->l_icloglock);
605 		}
606 	}
607 
608 	return error;
609 }	/* xfs_log_unmount_write */
610 
611 /*
612  * Deallocate log structures for unmount/relocation.
613  *
614  * We need to stop the aild from running before we destroy
615  * and deallocate the log as the aild references the log.
616  */
617 void
618 xfs_log_unmount(xfs_mount_t *mp)
619 {
620 	xfs_trans_ail_destroy(mp);
621 	xlog_dealloc_log(mp->m_log);
622 }
623 
624 void
625 xfs_log_item_init(
626 	struct xfs_mount	*mp,
627 	struct xfs_log_item	*item,
628 	int			type,
629 	struct xfs_item_ops	*ops)
630 {
631 	item->li_mountp = mp;
632 	item->li_ailp = mp->m_ail;
633 	item->li_type = type;
634 	item->li_ops = ops;
635 	item->li_lv = NULL;
636 
637 	INIT_LIST_HEAD(&item->li_ail);
638 	INIT_LIST_HEAD(&item->li_cil);
639 }
640 
641 /*
642  * Write region vectors to log.  The write happens using the space reservation
643  * of the ticket (tic).  It is not a requirement that all writes for a given
644  * transaction occur with one call to xfs_log_write(). However, it is important
645  * to note that the transaction reservation code makes an assumption about the
646  * number of log headers a transaction requires that may be violated if you
647  * don't pass all the transaction vectors in one call....
648  */
649 int
650 xfs_log_write(
651 	struct xfs_mount	*mp,
652 	struct xfs_log_iovec	reg[],
653 	int			nentries,
654 	struct xlog_ticket	*tic,
655 	xfs_lsn_t		*start_lsn)
656 {
657 	struct log		*log = mp->m_log;
658 	int			error;
659 	struct xfs_log_vec	vec = {
660 		.lv_niovecs = nentries,
661 		.lv_iovecp = reg,
662 	};
663 
664 	if (XLOG_FORCED_SHUTDOWN(log))
665 		return XFS_ERROR(EIO);
666 
667 	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
668 	if (error)
669 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
670 	return error;
671 }
672 
673 void
674 xfs_log_move_tail(xfs_mount_t	*mp,
675 		  xfs_lsn_t	tail_lsn)
676 {
677 	xlog_ticket_t	*tic;
678 	xlog_t		*log = mp->m_log;
679 	int		need_bytes, free_bytes;
680 
681 	if (XLOG_FORCED_SHUTDOWN(log))
682 		return;
683 
684 	if (tail_lsn == 0)
685 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
686 
687 	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
688 	if (tail_lsn != 1)
689 		atomic64_set(&log->l_tail_lsn, tail_lsn);
690 
691 	if (!list_empty_careful(&log->l_writeq)) {
692 #ifdef DEBUG
693 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
694 			panic("Recovery problem");
695 #endif
696 		spin_lock(&log->l_grant_write_lock);
697 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
698 		list_for_each_entry(tic, &log->l_writeq, t_queue) {
699 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
700 
701 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
702 				break;
703 			tail_lsn = 0;
704 			free_bytes -= tic->t_unit_res;
705 			trace_xfs_log_regrant_write_wake_up(log, tic);
706 			wake_up(&tic->t_wait);
707 		}
708 		spin_unlock(&log->l_grant_write_lock);
709 	}
710 
711 	if (!list_empty_careful(&log->l_reserveq)) {
712 #ifdef DEBUG
713 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
714 			panic("Recovery problem");
715 #endif
716 		spin_lock(&log->l_grant_reserve_lock);
717 		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
718 		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
719 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
720 				need_bytes = tic->t_unit_res*tic->t_cnt;
721 			else
722 				need_bytes = tic->t_unit_res;
723 			if (free_bytes < need_bytes && tail_lsn != 1)
724 				break;
725 			tail_lsn = 0;
726 			free_bytes -= need_bytes;
727 			trace_xfs_log_grant_wake_up(log, tic);
728 			wake_up(&tic->t_wait);
729 		}
730 		spin_unlock(&log->l_grant_reserve_lock);
731 	}
732 }
733 
734 /*
735  * Determine if we have a transaction that has gone to disk
736  * that needs to be covered. To begin the transition to the idle state
737  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738  * If we are then in a state where covering is needed, the caller is informed
739  * that dummy transactions are required to move the log into the idle state.
740  *
741  * Because this is called as part of the sync process, we should also indicate
742  * that dummy transactions should be issued in anything but the covered or
743  * idle states. This ensures that the log tail is accurately reflected in
744  * the log at the end of the sync, hence if a crash occurrs avoids replay
745  * of transactions where the metadata is already on disk.
746  */
747 int
748 xfs_log_need_covered(xfs_mount_t *mp)
749 {
750 	int		needed = 0;
751 	xlog_t		*log = mp->m_log;
752 
753 	if (!xfs_fs_writable(mp))
754 		return 0;
755 
756 	spin_lock(&log->l_icloglock);
757 	switch (log->l_covered_state) {
758 	case XLOG_STATE_COVER_DONE:
759 	case XLOG_STATE_COVER_DONE2:
760 	case XLOG_STATE_COVER_IDLE:
761 		break;
762 	case XLOG_STATE_COVER_NEED:
763 	case XLOG_STATE_COVER_NEED2:
764 		if (!xfs_ail_min_lsn(log->l_ailp) &&
765 		    xlog_iclogs_empty(log)) {
766 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
767 				log->l_covered_state = XLOG_STATE_COVER_DONE;
768 			else
769 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
770 		}
771 		/* FALLTHRU */
772 	default:
773 		needed = 1;
774 		break;
775 	}
776 	spin_unlock(&log->l_icloglock);
777 	return needed;
778 }
779 
780 /******************************************************************************
781  *
782  *	local routines
783  *
784  ******************************************************************************
785  */
786 
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788  * The log manager must keep track of the last LR which was committed
789  * to disk.  The lsn of this LR will become the new tail_lsn whenever
790  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
791  * the situation where stuff could be written into the log but nothing
792  * was ever in the AIL when asked.  Eventually, we panic since the
793  * tail hits the head.
794  *
795  * We may be holding the log iclog lock upon entering this routine.
796  */
797 xfs_lsn_t
798 xlog_assign_tail_lsn(
799 	struct xfs_mount	*mp)
800 {
801 	xfs_lsn_t		tail_lsn;
802 	struct log		*log = mp->m_log;
803 
804 	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
805 	if (!tail_lsn)
806 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
807 
808 	atomic64_set(&log->l_tail_lsn, tail_lsn);
809 	return tail_lsn;
810 }
811 
812 /*
813  * Return the space in the log between the tail and the head.  The head
814  * is passed in the cycle/bytes formal parms.  In the special case where
815  * the reserve head has wrapped passed the tail, this calculation is no
816  * longer valid.  In this case, just return 0 which means there is no space
817  * in the log.  This works for all places where this function is called
818  * with the reserve head.  Of course, if the write head were to ever
819  * wrap the tail, we should blow up.  Rather than catch this case here,
820  * we depend on other ASSERTions in other parts of the code.   XXXmiken
821  *
822  * This code also handles the case where the reservation head is behind
823  * the tail.  The details of this case are described below, but the end
824  * result is that we return the size of the log as the amount of space left.
825  */
826 STATIC int
827 xlog_space_left(
828 	struct log	*log,
829 	atomic64_t	*head)
830 {
831 	int		free_bytes;
832 	int		tail_bytes;
833 	int		tail_cycle;
834 	int		head_cycle;
835 	int		head_bytes;
836 
837 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
838 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
839 	tail_bytes = BBTOB(tail_bytes);
840 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
841 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
842 	else if (tail_cycle + 1 < head_cycle)
843 		return 0;
844 	else if (tail_cycle < head_cycle) {
845 		ASSERT(tail_cycle == (head_cycle - 1));
846 		free_bytes = tail_bytes - head_bytes;
847 	} else {
848 		/*
849 		 * The reservation head is behind the tail.
850 		 * In this case we just want to return the size of the
851 		 * log as the amount of space left.
852 		 */
853 		xfs_alert(log->l_mp,
854 			"xlog_space_left: head behind tail\n"
855 			"  tail_cycle = %d, tail_bytes = %d\n"
856 			"  GH   cycle = %d, GH   bytes = %d",
857 			tail_cycle, tail_bytes, head_cycle, head_bytes);
858 		ASSERT(0);
859 		free_bytes = log->l_logsize;
860 	}
861 	return free_bytes;
862 }
863 
864 
865 /*
866  * Log function which is called when an io completes.
867  *
868  * The log manager needs its own routine, in order to control what
869  * happens with the buffer after the write completes.
870  */
871 void
872 xlog_iodone(xfs_buf_t *bp)
873 {
874 	xlog_in_core_t	*iclog;
875 	xlog_t		*l;
876 	int		aborted;
877 
878 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
879 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
880 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
881 	aborted = 0;
882 	l = iclog->ic_log;
883 
884 	/*
885 	 * Race to shutdown the filesystem if we see an error.
886 	 */
887 	if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
888 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
889 		xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
890 		XFS_BUF_STALE(bp);
891 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
892 		/*
893 		 * This flag will be propagated to the trans-committed
894 		 * callback routines to let them know that the log-commit
895 		 * didn't succeed.
896 		 */
897 		aborted = XFS_LI_ABORTED;
898 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
899 		aborted = XFS_LI_ABORTED;
900 	}
901 
902 	/* log I/O is always issued ASYNC */
903 	ASSERT(XFS_BUF_ISASYNC(bp));
904 	xlog_state_done_syncing(iclog, aborted);
905 	/*
906 	 * do not reference the buffer (bp) here as we could race
907 	 * with it being freed after writing the unmount record to the
908 	 * log.
909 	 */
910 
911 }	/* xlog_iodone */
912 
913 /*
914  * Return size of each in-core log record buffer.
915  *
916  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
917  *
918  * If the filesystem blocksize is too large, we may need to choose a
919  * larger size since the directory code currently logs entire blocks.
920  */
921 
922 STATIC void
923 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
924 			   xlog_t	*log)
925 {
926 	int size;
927 	int xhdrs;
928 
929 	if (mp->m_logbufs <= 0)
930 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
931 	else
932 		log->l_iclog_bufs = mp->m_logbufs;
933 
934 	/*
935 	 * Buffer size passed in from mount system call.
936 	 */
937 	if (mp->m_logbsize > 0) {
938 		size = log->l_iclog_size = mp->m_logbsize;
939 		log->l_iclog_size_log = 0;
940 		while (size != 1) {
941 			log->l_iclog_size_log++;
942 			size >>= 1;
943 		}
944 
945 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
946 			/* # headers = size / 32k
947 			 * one header holds cycles from 32k of data
948 			 */
949 
950 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
951 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
952 				xhdrs++;
953 			log->l_iclog_hsize = xhdrs << BBSHIFT;
954 			log->l_iclog_heads = xhdrs;
955 		} else {
956 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
957 			log->l_iclog_hsize = BBSIZE;
958 			log->l_iclog_heads = 1;
959 		}
960 		goto done;
961 	}
962 
963 	/* All machines use 32kB buffers by default. */
964 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
965 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
966 
967 	/* the default log size is 16k or 32k which is one header sector */
968 	log->l_iclog_hsize = BBSIZE;
969 	log->l_iclog_heads = 1;
970 
971 done:
972 	/* are we being asked to make the sizes selected above visible? */
973 	if (mp->m_logbufs == 0)
974 		mp->m_logbufs = log->l_iclog_bufs;
975 	if (mp->m_logbsize == 0)
976 		mp->m_logbsize = log->l_iclog_size;
977 }	/* xlog_get_iclog_buffer_size */
978 
979 
980 /*
981  * This routine initializes some of the log structure for a given mount point.
982  * Its primary purpose is to fill in enough, so recovery can occur.  However,
983  * some other stuff may be filled in too.
984  */
985 STATIC xlog_t *
986 xlog_alloc_log(xfs_mount_t	*mp,
987 	       xfs_buftarg_t	*log_target,
988 	       xfs_daddr_t	blk_offset,
989 	       int		num_bblks)
990 {
991 	xlog_t			*log;
992 	xlog_rec_header_t	*head;
993 	xlog_in_core_t		**iclogp;
994 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
995 	xfs_buf_t		*bp;
996 	int			i;
997 	int			error = ENOMEM;
998 	uint			log2_size = 0;
999 
1000 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1001 	if (!log) {
1002 		xfs_warn(mp, "Log allocation failed: No memory!");
1003 		goto out;
1004 	}
1005 
1006 	log->l_mp	   = mp;
1007 	log->l_targ	   = log_target;
1008 	log->l_logsize     = BBTOB(num_bblks);
1009 	log->l_logBBstart  = blk_offset;
1010 	log->l_logBBsize   = num_bblks;
1011 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1012 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1013 
1014 	log->l_prev_block  = -1;
1015 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1016 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1017 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1018 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1019 	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1020 	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1021 	INIT_LIST_HEAD(&log->l_reserveq);
1022 	INIT_LIST_HEAD(&log->l_writeq);
1023 	spin_lock_init(&log->l_grant_reserve_lock);
1024 	spin_lock_init(&log->l_grant_write_lock);
1025 
1026 	error = EFSCORRUPTED;
1027 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1028 	        log2_size = mp->m_sb.sb_logsectlog;
1029 		if (log2_size < BBSHIFT) {
1030 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1031 				log2_size, BBSHIFT);
1032 			goto out_free_log;
1033 		}
1034 
1035 	        log2_size -= BBSHIFT;
1036 		if (log2_size > mp->m_sectbb_log) {
1037 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1038 				log2_size, mp->m_sectbb_log);
1039 			goto out_free_log;
1040 		}
1041 
1042 		/* for larger sector sizes, must have v2 or external log */
1043 		if (log2_size && log->l_logBBstart > 0 &&
1044 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1045 			xfs_warn(mp,
1046 		"log sector size (0x%x) invalid for configuration.",
1047 				log2_size);
1048 			goto out_free_log;
1049 		}
1050 	}
1051 	log->l_sectBBsize = 1 << log2_size;
1052 
1053 	xlog_get_iclog_buffer_size(mp, log);
1054 
1055 	error = ENOMEM;
1056 	bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1057 	if (!bp)
1058 		goto out_free_log;
1059 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1060 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1061 	ASSERT(XFS_BUF_ISBUSY(bp));
1062 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1063 	log->l_xbuf = bp;
1064 
1065 	spin_lock_init(&log->l_icloglock);
1066 	init_waitqueue_head(&log->l_flush_wait);
1067 
1068 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1069 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1070 
1071 	iclogp = &log->l_iclog;
1072 	/*
1073 	 * The amount of memory to allocate for the iclog structure is
1074 	 * rather funky due to the way the structure is defined.  It is
1075 	 * done this way so that we can use different sizes for machines
1076 	 * with different amounts of memory.  See the definition of
1077 	 * xlog_in_core_t in xfs_log_priv.h for details.
1078 	 */
1079 	ASSERT(log->l_iclog_size >= 4096);
1080 	for (i=0; i < log->l_iclog_bufs; i++) {
1081 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1082 		if (!*iclogp)
1083 			goto out_free_iclog;
1084 
1085 		iclog = *iclogp;
1086 		iclog->ic_prev = prev_iclog;
1087 		prev_iclog = iclog;
1088 
1089 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1090 						log->l_iclog_size, 0);
1091 		if (!bp)
1092 			goto out_free_iclog;
1093 		if (!XFS_BUF_CPSEMA(bp))
1094 			ASSERT(0);
1095 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1096 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1097 		iclog->ic_bp = bp;
1098 		iclog->ic_data = bp->b_addr;
1099 #ifdef DEBUG
1100 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1101 #endif
1102 		head = &iclog->ic_header;
1103 		memset(head, 0, sizeof(xlog_rec_header_t));
1104 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1105 		head->h_version = cpu_to_be32(
1106 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 		head->h_size = cpu_to_be32(log->l_iclog_size);
1108 		/* new fields */
1109 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1110 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1111 
1112 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1113 		iclog->ic_state = XLOG_STATE_ACTIVE;
1114 		iclog->ic_log = log;
1115 		atomic_set(&iclog->ic_refcnt, 0);
1116 		spin_lock_init(&iclog->ic_callback_lock);
1117 		iclog->ic_callback_tail = &(iclog->ic_callback);
1118 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1119 
1120 		ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1121 		ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1122 		init_waitqueue_head(&iclog->ic_force_wait);
1123 		init_waitqueue_head(&iclog->ic_write_wait);
1124 
1125 		iclogp = &iclog->ic_next;
1126 	}
1127 	*iclogp = log->l_iclog;			/* complete ring */
1128 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1129 
1130 	error = xlog_cil_init(log);
1131 	if (error)
1132 		goto out_free_iclog;
1133 	return log;
1134 
1135 out_free_iclog:
1136 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1137 		prev_iclog = iclog->ic_next;
1138 		if (iclog->ic_bp)
1139 			xfs_buf_free(iclog->ic_bp);
1140 		kmem_free(iclog);
1141 	}
1142 	spinlock_destroy(&log->l_icloglock);
1143 	xfs_buf_free(log->l_xbuf);
1144 out_free_log:
1145 	kmem_free(log);
1146 out:
1147 	return ERR_PTR(-error);
1148 }	/* xlog_alloc_log */
1149 
1150 
1151 /*
1152  * Write out the commit record of a transaction associated with the given
1153  * ticket.  Return the lsn of the commit record.
1154  */
1155 STATIC int
1156 xlog_commit_record(
1157 	struct log		*log,
1158 	struct xlog_ticket	*ticket,
1159 	struct xlog_in_core	**iclog,
1160 	xfs_lsn_t		*commitlsnp)
1161 {
1162 	struct xfs_mount *mp = log->l_mp;
1163 	int	error;
1164 	struct xfs_log_iovec reg = {
1165 		.i_addr = NULL,
1166 		.i_len = 0,
1167 		.i_type = XLOG_REG_TYPE_COMMIT,
1168 	};
1169 	struct xfs_log_vec vec = {
1170 		.lv_niovecs = 1,
1171 		.lv_iovecp = &reg,
1172 	};
1173 
1174 	ASSERT_ALWAYS(iclog);
1175 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1176 					XLOG_COMMIT_TRANS);
1177 	if (error)
1178 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1179 	return error;
1180 }
1181 
1182 /*
1183  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1184  * log space.  This code pushes on the lsn which would supposedly free up
1185  * the 25% which we want to leave free.  We may need to adopt a policy which
1186  * pushes on an lsn which is further along in the log once we reach the high
1187  * water mark.  In this manner, we would be creating a low water mark.
1188  */
1189 STATIC void
1190 xlog_grant_push_ail(
1191 	struct log	*log,
1192 	int		need_bytes)
1193 {
1194 	xfs_lsn_t	threshold_lsn = 0;
1195 	xfs_lsn_t	last_sync_lsn;
1196 	int		free_blocks;
1197 	int		free_bytes;
1198 	int		threshold_block;
1199 	int		threshold_cycle;
1200 	int		free_threshold;
1201 
1202 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1203 
1204 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1205 	free_blocks = BTOBBT(free_bytes);
1206 
1207 	/*
1208 	 * Set the threshold for the minimum number of free blocks in the
1209 	 * log to the maximum of what the caller needs, one quarter of the
1210 	 * log, and 256 blocks.
1211 	 */
1212 	free_threshold = BTOBB(need_bytes);
1213 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1214 	free_threshold = MAX(free_threshold, 256);
1215 	if (free_blocks >= free_threshold)
1216 		return;
1217 
1218 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1219 						&threshold_block);
1220 	threshold_block += free_threshold;
1221 	if (threshold_block >= log->l_logBBsize) {
1222 		threshold_block -= log->l_logBBsize;
1223 		threshold_cycle += 1;
1224 	}
1225 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1226 					threshold_block);
1227 	/*
1228 	 * Don't pass in an lsn greater than the lsn of the last
1229 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1230 	 * so that it doesn't change between the compare and the set.
1231 	 */
1232 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1233 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1234 		threshold_lsn = last_sync_lsn;
1235 
1236 	/*
1237 	 * Get the transaction layer to kick the dirty buffers out to
1238 	 * disk asynchronously. No point in trying to do this if
1239 	 * the filesystem is shutting down.
1240 	 */
1241 	if (!XLOG_FORCED_SHUTDOWN(log))
1242 		xfs_ail_push(log->l_ailp, threshold_lsn);
1243 }
1244 
1245 /*
1246  * The bdstrat callback function for log bufs. This gives us a central
1247  * place to trap bufs in case we get hit by a log I/O error and need to
1248  * shutdown. Actually, in practice, even when we didn't get a log error,
1249  * we transition the iclogs to IOERROR state *after* flushing all existing
1250  * iclogs to disk. This is because we don't want anymore new transactions to be
1251  * started or completed afterwards.
1252  */
1253 STATIC int
1254 xlog_bdstrat(
1255 	struct xfs_buf		*bp)
1256 {
1257 	struct xlog_in_core	*iclog;
1258 
1259 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1260 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1261 		XFS_BUF_ERROR(bp, EIO);
1262 		XFS_BUF_STALE(bp);
1263 		xfs_buf_ioend(bp, 0);
1264 		/*
1265 		 * It would seem logical to return EIO here, but we rely on
1266 		 * the log state machine to propagate I/O errors instead of
1267 		 * doing it here.
1268 		 */
1269 		return 0;
1270 	}
1271 
1272 	bp->b_flags |= _XBF_RUN_QUEUES;
1273 	xfs_buf_iorequest(bp);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1279  * fashion.  Previously, we should have moved the current iclog
1280  * ptr in the log to point to the next available iclog.  This allows further
1281  * write to continue while this code syncs out an iclog ready to go.
1282  * Before an in-core log can be written out, the data section must be scanned
1283  * to save away the 1st word of each BBSIZE block into the header.  We replace
1284  * it with the current cycle count.  Each BBSIZE block is tagged with the
1285  * cycle count because there in an implicit assumption that drives will
1286  * guarantee that entire 512 byte blocks get written at once.  In other words,
1287  * we can't have part of a 512 byte block written and part not written.  By
1288  * tagging each block, we will know which blocks are valid when recovering
1289  * after an unclean shutdown.
1290  *
1291  * This routine is single threaded on the iclog.  No other thread can be in
1292  * this routine with the same iclog.  Changing contents of iclog can there-
1293  * fore be done without grabbing the state machine lock.  Updating the global
1294  * log will require grabbing the lock though.
1295  *
1296  * The entire log manager uses a logical block numbering scheme.  Only
1297  * log_sync (and then only bwrite()) know about the fact that the log may
1298  * not start with block zero on a given device.  The log block start offset
1299  * is added immediately before calling bwrite().
1300  */
1301 
1302 STATIC int
1303 xlog_sync(xlog_t		*log,
1304 	  xlog_in_core_t	*iclog)
1305 {
1306 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1307 	xfs_buf_t	*bp;
1308 	int		i;
1309 	uint		count;		/* byte count of bwrite */
1310 	uint		count_init;	/* initial count before roundup */
1311 	int		roundoff;       /* roundoff to BB or stripe */
1312 	int		split = 0;	/* split write into two regions */
1313 	int		error;
1314 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1315 
1316 	XFS_STATS_INC(xs_log_writes);
1317 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1318 
1319 	/* Add for LR header */
1320 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1321 
1322 	/* Round out the log write size */
1323 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1324 		/* we have a v2 stripe unit to use */
1325 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1326 	} else {
1327 		count = BBTOB(BTOBB(count_init));
1328 	}
1329 	roundoff = count - count_init;
1330 	ASSERT(roundoff >= 0);
1331 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1332                 roundoff < log->l_mp->m_sb.sb_logsunit)
1333 		||
1334 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1335 		 roundoff < BBTOB(1)));
1336 
1337 	/* move grant heads by roundoff in sync */
1338 	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1339 	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1340 
1341 	/* put cycle number in every block */
1342 	xlog_pack_data(log, iclog, roundoff);
1343 
1344 	/* real byte length */
1345 	if (v2) {
1346 		iclog->ic_header.h_len =
1347 			cpu_to_be32(iclog->ic_offset + roundoff);
1348 	} else {
1349 		iclog->ic_header.h_len =
1350 			cpu_to_be32(iclog->ic_offset);
1351 	}
1352 
1353 	bp = iclog->ic_bp;
1354 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1355 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1356 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1357 
1358 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1359 
1360 	/* Do we need to split this write into 2 parts? */
1361 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1362 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1363 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1364 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1365 	} else {
1366 		iclog->ic_bwritecnt = 1;
1367 	}
1368 	XFS_BUF_SET_COUNT(bp, count);
1369 	XFS_BUF_SET_FSPRIVATE(bp, iclog);	/* save for later */
1370 	XFS_BUF_ZEROFLAGS(bp);
1371 	XFS_BUF_BUSY(bp);
1372 	XFS_BUF_ASYNC(bp);
1373 	bp->b_flags |= XBF_LOG_BUFFER;
1374 
1375 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1376 		/*
1377 		 * If we have an external log device, flush the data device
1378 		 * before flushing the log to make sure all meta data
1379 		 * written back from the AIL actually made it to disk
1380 		 * before writing out the new log tail LSN in the log buffer.
1381 		 */
1382 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1383 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1384 		XFS_BUF_ORDERED(bp);
1385 	}
1386 
1387 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1388 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1389 
1390 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1391 
1392 	/* account for log which doesn't start at block #0 */
1393 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1394 	/*
1395 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1396 	 * is shutting down.
1397 	 */
1398 	XFS_BUF_WRITE(bp);
1399 
1400 	if ((error = xlog_bdstrat(bp))) {
1401 		xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1402 				  XFS_BUF_ADDR(bp));
1403 		return error;
1404 	}
1405 	if (split) {
1406 		bp = iclog->ic_log->l_xbuf;
1407 		ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1408 							(unsigned long)1);
1409 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1410 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1411 		XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1412 					    (__psint_t)count), split);
1413 		XFS_BUF_SET_FSPRIVATE(bp, iclog);
1414 		XFS_BUF_ZEROFLAGS(bp);
1415 		XFS_BUF_BUSY(bp);
1416 		XFS_BUF_ASYNC(bp);
1417 		bp->b_flags |= XBF_LOG_BUFFER;
1418 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1419 			XFS_BUF_ORDERED(bp);
1420 		dptr = XFS_BUF_PTR(bp);
1421 		/*
1422 		 * Bump the cycle numbers at the start of each block
1423 		 * since this part of the buffer is at the start of
1424 		 * a new cycle.  Watch out for the header magic number
1425 		 * case, though.
1426 		 */
1427 		for (i = 0; i < split; i += BBSIZE) {
1428 			be32_add_cpu((__be32 *)dptr, 1);
1429 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1430 				be32_add_cpu((__be32 *)dptr, 1);
1431 			dptr += BBSIZE;
1432 		}
1433 
1434 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1435 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1436 
1437 		/* account for internal log which doesn't start at block #0 */
1438 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1439 		XFS_BUF_WRITE(bp);
1440 		if ((error = xlog_bdstrat(bp))) {
1441 			xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1442 					  bp, XFS_BUF_ADDR(bp));
1443 			return error;
1444 		}
1445 	}
1446 	return 0;
1447 }	/* xlog_sync */
1448 
1449 
1450 /*
1451  * Deallocate a log structure
1452  */
1453 STATIC void
1454 xlog_dealloc_log(xlog_t *log)
1455 {
1456 	xlog_in_core_t	*iclog, *next_iclog;
1457 	int		i;
1458 
1459 	xlog_cil_destroy(log);
1460 
1461 	/*
1462 	 * always need to ensure that the extra buffer does not point to memory
1463 	 * owned by another log buffer before we free it.
1464 	 */
1465 	xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1466 	xfs_buf_free(log->l_xbuf);
1467 
1468 	iclog = log->l_iclog;
1469 	for (i=0; i<log->l_iclog_bufs; i++) {
1470 		xfs_buf_free(iclog->ic_bp);
1471 		next_iclog = iclog->ic_next;
1472 		kmem_free(iclog);
1473 		iclog = next_iclog;
1474 	}
1475 	spinlock_destroy(&log->l_icloglock);
1476 
1477 	log->l_mp->m_log = NULL;
1478 	kmem_free(log);
1479 }	/* xlog_dealloc_log */
1480 
1481 /*
1482  * Update counters atomically now that memcpy is done.
1483  */
1484 /* ARGSUSED */
1485 static inline void
1486 xlog_state_finish_copy(xlog_t		*log,
1487 		       xlog_in_core_t	*iclog,
1488 		       int		record_cnt,
1489 		       int		copy_bytes)
1490 {
1491 	spin_lock(&log->l_icloglock);
1492 
1493 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1494 	iclog->ic_offset += copy_bytes;
1495 
1496 	spin_unlock(&log->l_icloglock);
1497 }	/* xlog_state_finish_copy */
1498 
1499 
1500 
1501 
1502 /*
1503  * print out info relating to regions written which consume
1504  * the reservation
1505  */
1506 void
1507 xlog_print_tic_res(
1508 	struct xfs_mount	*mp,
1509 	struct xlog_ticket	*ticket)
1510 {
1511 	uint i;
1512 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1513 
1514 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1515 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1516 	    "bformat",
1517 	    "bchunk",
1518 	    "efi_format",
1519 	    "efd_format",
1520 	    "iformat",
1521 	    "icore",
1522 	    "iext",
1523 	    "ibroot",
1524 	    "ilocal",
1525 	    "iattr_ext",
1526 	    "iattr_broot",
1527 	    "iattr_local",
1528 	    "qformat",
1529 	    "dquot",
1530 	    "quotaoff",
1531 	    "LR header",
1532 	    "unmount",
1533 	    "commit",
1534 	    "trans header"
1535 	};
1536 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1537 	    "SETATTR_NOT_SIZE",
1538 	    "SETATTR_SIZE",
1539 	    "INACTIVE",
1540 	    "CREATE",
1541 	    "CREATE_TRUNC",
1542 	    "TRUNCATE_FILE",
1543 	    "REMOVE",
1544 	    "LINK",
1545 	    "RENAME",
1546 	    "MKDIR",
1547 	    "RMDIR",
1548 	    "SYMLINK",
1549 	    "SET_DMATTRS",
1550 	    "GROWFS",
1551 	    "STRAT_WRITE",
1552 	    "DIOSTRAT",
1553 	    "WRITE_SYNC",
1554 	    "WRITEID",
1555 	    "ADDAFORK",
1556 	    "ATTRINVAL",
1557 	    "ATRUNCATE",
1558 	    "ATTR_SET",
1559 	    "ATTR_RM",
1560 	    "ATTR_FLAG",
1561 	    "CLEAR_AGI_BUCKET",
1562 	    "QM_SBCHANGE",
1563 	    "DUMMY1",
1564 	    "DUMMY2",
1565 	    "QM_QUOTAOFF",
1566 	    "QM_DQALLOC",
1567 	    "QM_SETQLIM",
1568 	    "QM_DQCLUSTER",
1569 	    "QM_QINOCREATE",
1570 	    "QM_QUOTAOFF_END",
1571 	    "SB_UNIT",
1572 	    "FSYNC_TS",
1573 	    "GROWFSRT_ALLOC",
1574 	    "GROWFSRT_ZERO",
1575 	    "GROWFSRT_FREE",
1576 	    "SWAPEXT"
1577 	};
1578 
1579 	xfs_warn(mp,
1580 		"xfs_log_write: reservation summary:\n"
1581 		"  trans type  = %s (%u)\n"
1582 		"  unit res    = %d bytes\n"
1583 		"  current res = %d bytes\n"
1584 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1585 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1586 		"  ophdr + reg = %u bytes\n"
1587 		"  num regions = %u\n",
1588 		((ticket->t_trans_type <= 0 ||
1589 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1590 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1591 		ticket->t_trans_type,
1592 		ticket->t_unit_res,
1593 		ticket->t_curr_res,
1594 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1595 		ticket->t_res_num_ophdrs, ophdr_spc,
1596 		ticket->t_res_arr_sum +
1597 		ticket->t_res_o_flow + ophdr_spc,
1598 		ticket->t_res_num);
1599 
1600 	for (i = 0; i < ticket->t_res_num; i++) {
1601 		uint r_type = ticket->t_res_arr[i].r_type;
1602 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1603 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1604 			    "bad-rtype" : res_type_str[r_type-1]),
1605 			    ticket->t_res_arr[i].r_len);
1606 	}
1607 
1608 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1609 		"xfs_log_write: reservation ran out. Need to up reservation");
1610 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1611 }
1612 
1613 /*
1614  * Calculate the potential space needed by the log vector.  Each region gets
1615  * its own xlog_op_header_t and may need to be double word aligned.
1616  */
1617 static int
1618 xlog_write_calc_vec_length(
1619 	struct xlog_ticket	*ticket,
1620 	struct xfs_log_vec	*log_vector)
1621 {
1622 	struct xfs_log_vec	*lv;
1623 	int			headers = 0;
1624 	int			len = 0;
1625 	int			i;
1626 
1627 	/* acct for start rec of xact */
1628 	if (ticket->t_flags & XLOG_TIC_INITED)
1629 		headers++;
1630 
1631 	for (lv = log_vector; lv; lv = lv->lv_next) {
1632 		headers += lv->lv_niovecs;
1633 
1634 		for (i = 0; i < lv->lv_niovecs; i++) {
1635 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1636 
1637 			len += vecp->i_len;
1638 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1639 		}
1640 	}
1641 
1642 	ticket->t_res_num_ophdrs += headers;
1643 	len += headers * sizeof(struct xlog_op_header);
1644 
1645 	return len;
1646 }
1647 
1648 /*
1649  * If first write for transaction, insert start record  We can't be trying to
1650  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1651  */
1652 static int
1653 xlog_write_start_rec(
1654 	struct xlog_op_header	*ophdr,
1655 	struct xlog_ticket	*ticket)
1656 {
1657 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1658 		return 0;
1659 
1660 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1661 	ophdr->oh_clientid = ticket->t_clientid;
1662 	ophdr->oh_len = 0;
1663 	ophdr->oh_flags = XLOG_START_TRANS;
1664 	ophdr->oh_res2 = 0;
1665 
1666 	ticket->t_flags &= ~XLOG_TIC_INITED;
1667 
1668 	return sizeof(struct xlog_op_header);
1669 }
1670 
1671 static xlog_op_header_t *
1672 xlog_write_setup_ophdr(
1673 	struct log		*log,
1674 	struct xlog_op_header	*ophdr,
1675 	struct xlog_ticket	*ticket,
1676 	uint			flags)
1677 {
1678 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1679 	ophdr->oh_clientid = ticket->t_clientid;
1680 	ophdr->oh_res2 = 0;
1681 
1682 	/* are we copying a commit or unmount record? */
1683 	ophdr->oh_flags = flags;
1684 
1685 	/*
1686 	 * We've seen logs corrupted with bad transaction client ids.  This
1687 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1688 	 * and shut down the filesystem.
1689 	 */
1690 	switch (ophdr->oh_clientid)  {
1691 	case XFS_TRANSACTION:
1692 	case XFS_VOLUME:
1693 	case XFS_LOG:
1694 		break;
1695 	default:
1696 		xfs_warn(log->l_mp,
1697 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1698 			ophdr->oh_clientid, ticket);
1699 		return NULL;
1700 	}
1701 
1702 	return ophdr;
1703 }
1704 
1705 /*
1706  * Set up the parameters of the region copy into the log. This has
1707  * to handle region write split across multiple log buffers - this
1708  * state is kept external to this function so that this code can
1709  * can be written in an obvious, self documenting manner.
1710  */
1711 static int
1712 xlog_write_setup_copy(
1713 	struct xlog_ticket	*ticket,
1714 	struct xlog_op_header	*ophdr,
1715 	int			space_available,
1716 	int			space_required,
1717 	int			*copy_off,
1718 	int			*copy_len,
1719 	int			*last_was_partial_copy,
1720 	int			*bytes_consumed)
1721 {
1722 	int			still_to_copy;
1723 
1724 	still_to_copy = space_required - *bytes_consumed;
1725 	*copy_off = *bytes_consumed;
1726 
1727 	if (still_to_copy <= space_available) {
1728 		/* write of region completes here */
1729 		*copy_len = still_to_copy;
1730 		ophdr->oh_len = cpu_to_be32(*copy_len);
1731 		if (*last_was_partial_copy)
1732 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1733 		*last_was_partial_copy = 0;
1734 		*bytes_consumed = 0;
1735 		return 0;
1736 	}
1737 
1738 	/* partial write of region, needs extra log op header reservation */
1739 	*copy_len = space_available;
1740 	ophdr->oh_len = cpu_to_be32(*copy_len);
1741 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1742 	if (*last_was_partial_copy)
1743 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1744 	*bytes_consumed += *copy_len;
1745 	(*last_was_partial_copy)++;
1746 
1747 	/* account for new log op header */
1748 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1749 	ticket->t_res_num_ophdrs++;
1750 
1751 	return sizeof(struct xlog_op_header);
1752 }
1753 
1754 static int
1755 xlog_write_copy_finish(
1756 	struct log		*log,
1757 	struct xlog_in_core	*iclog,
1758 	uint			flags,
1759 	int			*record_cnt,
1760 	int			*data_cnt,
1761 	int			*partial_copy,
1762 	int			*partial_copy_len,
1763 	int			log_offset,
1764 	struct xlog_in_core	**commit_iclog)
1765 {
1766 	if (*partial_copy) {
1767 		/*
1768 		 * This iclog has already been marked WANT_SYNC by
1769 		 * xlog_state_get_iclog_space.
1770 		 */
1771 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1772 		*record_cnt = 0;
1773 		*data_cnt = 0;
1774 		return xlog_state_release_iclog(log, iclog);
1775 	}
1776 
1777 	*partial_copy = 0;
1778 	*partial_copy_len = 0;
1779 
1780 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1781 		/* no more space in this iclog - push it. */
1782 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1783 		*record_cnt = 0;
1784 		*data_cnt = 0;
1785 
1786 		spin_lock(&log->l_icloglock);
1787 		xlog_state_want_sync(log, iclog);
1788 		spin_unlock(&log->l_icloglock);
1789 
1790 		if (!commit_iclog)
1791 			return xlog_state_release_iclog(log, iclog);
1792 		ASSERT(flags & XLOG_COMMIT_TRANS);
1793 		*commit_iclog = iclog;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 /*
1800  * Write some region out to in-core log
1801  *
1802  * This will be called when writing externally provided regions or when
1803  * writing out a commit record for a given transaction.
1804  *
1805  * General algorithm:
1806  *	1. Find total length of this write.  This may include adding to the
1807  *		lengths passed in.
1808  *	2. Check whether we violate the tickets reservation.
1809  *	3. While writing to this iclog
1810  *	    A. Reserve as much space in this iclog as can get
1811  *	    B. If this is first write, save away start lsn
1812  *	    C. While writing this region:
1813  *		1. If first write of transaction, write start record
1814  *		2. Write log operation header (header per region)
1815  *		3. Find out if we can fit entire region into this iclog
1816  *		4. Potentially, verify destination memcpy ptr
1817  *		5. Memcpy (partial) region
1818  *		6. If partial copy, release iclog; otherwise, continue
1819  *			copying more regions into current iclog
1820  *	4. Mark want sync bit (in simulation mode)
1821  *	5. Release iclog for potential flush to on-disk log.
1822  *
1823  * ERRORS:
1824  * 1.	Panic if reservation is overrun.  This should never happen since
1825  *	reservation amounts are generated internal to the filesystem.
1826  * NOTES:
1827  * 1. Tickets are single threaded data structures.
1828  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1829  *	syncing routine.  When a single log_write region needs to span
1830  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1831  *	on all log operation writes which don't contain the end of the
1832  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1833  *	operation which contains the end of the continued log_write region.
1834  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1835  *	we don't really know exactly how much space will be used.  As a result,
1836  *	we don't update ic_offset until the end when we know exactly how many
1837  *	bytes have been written out.
1838  */
1839 int
1840 xlog_write(
1841 	struct log		*log,
1842 	struct xfs_log_vec	*log_vector,
1843 	struct xlog_ticket	*ticket,
1844 	xfs_lsn_t		*start_lsn,
1845 	struct xlog_in_core	**commit_iclog,
1846 	uint			flags)
1847 {
1848 	struct xlog_in_core	*iclog = NULL;
1849 	struct xfs_log_iovec	*vecp;
1850 	struct xfs_log_vec	*lv;
1851 	int			len;
1852 	int			index;
1853 	int			partial_copy = 0;
1854 	int			partial_copy_len = 0;
1855 	int			contwr = 0;
1856 	int			record_cnt = 0;
1857 	int			data_cnt = 0;
1858 	int			error;
1859 
1860 	*start_lsn = 0;
1861 
1862 	len = xlog_write_calc_vec_length(ticket, log_vector);
1863 	if (log->l_cilp) {
1864 		/*
1865 		 * Region headers and bytes are already accounted for.
1866 		 * We only need to take into account start records and
1867 		 * split regions in this function.
1868 		 */
1869 		if (ticket->t_flags & XLOG_TIC_INITED)
1870 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1871 
1872 		/*
1873 		 * Commit record headers need to be accounted for. These
1874 		 * come in as separate writes so are easy to detect.
1875 		 */
1876 		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1877 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1878 	} else
1879 		ticket->t_curr_res -= len;
1880 
1881 	if (ticket->t_curr_res < 0)
1882 		xlog_print_tic_res(log->l_mp, ticket);
1883 
1884 	index = 0;
1885 	lv = log_vector;
1886 	vecp = lv->lv_iovecp;
1887 	while (lv && index < lv->lv_niovecs) {
1888 		void		*ptr;
1889 		int		log_offset;
1890 
1891 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1892 						   &contwr, &log_offset);
1893 		if (error)
1894 			return error;
1895 
1896 		ASSERT(log_offset <= iclog->ic_size - 1);
1897 		ptr = iclog->ic_datap + log_offset;
1898 
1899 		/* start_lsn is the first lsn written to. That's all we need. */
1900 		if (!*start_lsn)
1901 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1902 
1903 		/*
1904 		 * This loop writes out as many regions as can fit in the amount
1905 		 * of space which was allocated by xlog_state_get_iclog_space().
1906 		 */
1907 		while (lv && index < lv->lv_niovecs) {
1908 			struct xfs_log_iovec	*reg = &vecp[index];
1909 			struct xlog_op_header	*ophdr;
1910 			int			start_rec_copy;
1911 			int			copy_len;
1912 			int			copy_off;
1913 
1914 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1915 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1916 
1917 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1918 			if (start_rec_copy) {
1919 				record_cnt++;
1920 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1921 						   start_rec_copy);
1922 			}
1923 
1924 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1925 			if (!ophdr)
1926 				return XFS_ERROR(EIO);
1927 
1928 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1929 					   sizeof(struct xlog_op_header));
1930 
1931 			len += xlog_write_setup_copy(ticket, ophdr,
1932 						     iclog->ic_size-log_offset,
1933 						     reg->i_len,
1934 						     &copy_off, &copy_len,
1935 						     &partial_copy,
1936 						     &partial_copy_len);
1937 			xlog_verify_dest_ptr(log, ptr);
1938 
1939 			/* copy region */
1940 			ASSERT(copy_len >= 0);
1941 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1942 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1943 
1944 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1945 			record_cnt++;
1946 			data_cnt += contwr ? copy_len : 0;
1947 
1948 			error = xlog_write_copy_finish(log, iclog, flags,
1949 						       &record_cnt, &data_cnt,
1950 						       &partial_copy,
1951 						       &partial_copy_len,
1952 						       log_offset,
1953 						       commit_iclog);
1954 			if (error)
1955 				return error;
1956 
1957 			/*
1958 			 * if we had a partial copy, we need to get more iclog
1959 			 * space but we don't want to increment the region
1960 			 * index because there is still more is this region to
1961 			 * write.
1962 			 *
1963 			 * If we completed writing this region, and we flushed
1964 			 * the iclog (indicated by resetting of the record
1965 			 * count), then we also need to get more log space. If
1966 			 * this was the last record, though, we are done and
1967 			 * can just return.
1968 			 */
1969 			if (partial_copy)
1970 				break;
1971 
1972 			if (++index == lv->lv_niovecs) {
1973 				lv = lv->lv_next;
1974 				index = 0;
1975 				if (lv)
1976 					vecp = lv->lv_iovecp;
1977 			}
1978 			if (record_cnt == 0) {
1979 				if (!lv)
1980 					return 0;
1981 				break;
1982 			}
1983 		}
1984 	}
1985 
1986 	ASSERT(len == 0);
1987 
1988 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1989 	if (!commit_iclog)
1990 		return xlog_state_release_iclog(log, iclog);
1991 
1992 	ASSERT(flags & XLOG_COMMIT_TRANS);
1993 	*commit_iclog = iclog;
1994 	return 0;
1995 }
1996 
1997 
1998 /*****************************************************************************
1999  *
2000  *		State Machine functions
2001  *
2002  *****************************************************************************
2003  */
2004 
2005 /* Clean iclogs starting from the head.  This ordering must be
2006  * maintained, so an iclog doesn't become ACTIVE beyond one that
2007  * is SYNCING.  This is also required to maintain the notion that we use
2008  * a ordered wait queue to hold off would be writers to the log when every
2009  * iclog is trying to sync to disk.
2010  *
2011  * State Change: DIRTY -> ACTIVE
2012  */
2013 STATIC void
2014 xlog_state_clean_log(xlog_t *log)
2015 {
2016 	xlog_in_core_t	*iclog;
2017 	int changed = 0;
2018 
2019 	iclog = log->l_iclog;
2020 	do {
2021 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2022 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2023 			iclog->ic_offset       = 0;
2024 			ASSERT(iclog->ic_callback == NULL);
2025 			/*
2026 			 * If the number of ops in this iclog indicate it just
2027 			 * contains the dummy transaction, we can
2028 			 * change state into IDLE (the second time around).
2029 			 * Otherwise we should change the state into
2030 			 * NEED a dummy.
2031 			 * We don't need to cover the dummy.
2032 			 */
2033 			if (!changed &&
2034 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2035 			   		XLOG_COVER_OPS)) {
2036 				changed = 1;
2037 			} else {
2038 				/*
2039 				 * We have two dirty iclogs so start over
2040 				 * This could also be num of ops indicates
2041 				 * this is not the dummy going out.
2042 				 */
2043 				changed = 2;
2044 			}
2045 			iclog->ic_header.h_num_logops = 0;
2046 			memset(iclog->ic_header.h_cycle_data, 0,
2047 			      sizeof(iclog->ic_header.h_cycle_data));
2048 			iclog->ic_header.h_lsn = 0;
2049 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2050 			/* do nothing */;
2051 		else
2052 			break;	/* stop cleaning */
2053 		iclog = iclog->ic_next;
2054 	} while (iclog != log->l_iclog);
2055 
2056 	/* log is locked when we are called */
2057 	/*
2058 	 * Change state for the dummy log recording.
2059 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2060 	 * we are done writing the dummy record.
2061 	 * If we are done with the second dummy recored (DONE2), then
2062 	 * we go to IDLE.
2063 	 */
2064 	if (changed) {
2065 		switch (log->l_covered_state) {
2066 		case XLOG_STATE_COVER_IDLE:
2067 		case XLOG_STATE_COVER_NEED:
2068 		case XLOG_STATE_COVER_NEED2:
2069 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2070 			break;
2071 
2072 		case XLOG_STATE_COVER_DONE:
2073 			if (changed == 1)
2074 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2075 			else
2076 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2077 			break;
2078 
2079 		case XLOG_STATE_COVER_DONE2:
2080 			if (changed == 1)
2081 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2082 			else
2083 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2084 			break;
2085 
2086 		default:
2087 			ASSERT(0);
2088 		}
2089 	}
2090 }	/* xlog_state_clean_log */
2091 
2092 STATIC xfs_lsn_t
2093 xlog_get_lowest_lsn(
2094 	xlog_t		*log)
2095 {
2096 	xlog_in_core_t  *lsn_log;
2097 	xfs_lsn_t	lowest_lsn, lsn;
2098 
2099 	lsn_log = log->l_iclog;
2100 	lowest_lsn = 0;
2101 	do {
2102 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2103 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2104 		if ((lsn && !lowest_lsn) ||
2105 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2106 			lowest_lsn = lsn;
2107 		}
2108 	    }
2109 	    lsn_log = lsn_log->ic_next;
2110 	} while (lsn_log != log->l_iclog);
2111 	return lowest_lsn;
2112 }
2113 
2114 
2115 STATIC void
2116 xlog_state_do_callback(
2117 	xlog_t		*log,
2118 	int		aborted,
2119 	xlog_in_core_t	*ciclog)
2120 {
2121 	xlog_in_core_t	   *iclog;
2122 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2123 						 * processed all iclogs once */
2124 	xfs_log_callback_t *cb, *cb_next;
2125 	int		   flushcnt = 0;
2126 	xfs_lsn_t	   lowest_lsn;
2127 	int		   ioerrors;	/* counter: iclogs with errors */
2128 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2129 	int		   funcdidcallbacks; /* flag: function did callbacks */
2130 	int		   repeats;	/* for issuing console warnings if
2131 					 * looping too many times */
2132 	int		   wake = 0;
2133 
2134 	spin_lock(&log->l_icloglock);
2135 	first_iclog = iclog = log->l_iclog;
2136 	ioerrors = 0;
2137 	funcdidcallbacks = 0;
2138 	repeats = 0;
2139 
2140 	do {
2141 		/*
2142 		 * Scan all iclogs starting with the one pointed to by the
2143 		 * log.  Reset this starting point each time the log is
2144 		 * unlocked (during callbacks).
2145 		 *
2146 		 * Keep looping through iclogs until one full pass is made
2147 		 * without running any callbacks.
2148 		 */
2149 		first_iclog = log->l_iclog;
2150 		iclog = log->l_iclog;
2151 		loopdidcallbacks = 0;
2152 		repeats++;
2153 
2154 		do {
2155 
2156 			/* skip all iclogs in the ACTIVE & DIRTY states */
2157 			if (iclog->ic_state &
2158 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2159 				iclog = iclog->ic_next;
2160 				continue;
2161 			}
2162 
2163 			/*
2164 			 * Between marking a filesystem SHUTDOWN and stopping
2165 			 * the log, we do flush all iclogs to disk (if there
2166 			 * wasn't a log I/O error). So, we do want things to
2167 			 * go smoothly in case of just a SHUTDOWN  w/o a
2168 			 * LOG_IO_ERROR.
2169 			 */
2170 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2171 				/*
2172 				 * Can only perform callbacks in order.  Since
2173 				 * this iclog is not in the DONE_SYNC/
2174 				 * DO_CALLBACK state, we skip the rest and
2175 				 * just try to clean up.  If we set our iclog
2176 				 * to DO_CALLBACK, we will not process it when
2177 				 * we retry since a previous iclog is in the
2178 				 * CALLBACK and the state cannot change since
2179 				 * we are holding the l_icloglock.
2180 				 */
2181 				if (!(iclog->ic_state &
2182 					(XLOG_STATE_DONE_SYNC |
2183 						 XLOG_STATE_DO_CALLBACK))) {
2184 					if (ciclog && (ciclog->ic_state ==
2185 							XLOG_STATE_DONE_SYNC)) {
2186 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2187 					}
2188 					break;
2189 				}
2190 				/*
2191 				 * We now have an iclog that is in either the
2192 				 * DO_CALLBACK or DONE_SYNC states. The other
2193 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2194 				 * caught by the above if and are going to
2195 				 * clean (i.e. we aren't doing their callbacks)
2196 				 * see the above if.
2197 				 */
2198 
2199 				/*
2200 				 * We will do one more check here to see if we
2201 				 * have chased our tail around.
2202 				 */
2203 
2204 				lowest_lsn = xlog_get_lowest_lsn(log);
2205 				if (lowest_lsn &&
2206 				    XFS_LSN_CMP(lowest_lsn,
2207 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2208 					iclog = iclog->ic_next;
2209 					continue; /* Leave this iclog for
2210 						   * another thread */
2211 				}
2212 
2213 				iclog->ic_state = XLOG_STATE_CALLBACK;
2214 
2215 
2216 				/*
2217 				 * update the last_sync_lsn before we drop the
2218 				 * icloglock to ensure we are the only one that
2219 				 * can update it.
2220 				 */
2221 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2222 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2223 				atomic64_set(&log->l_last_sync_lsn,
2224 					be64_to_cpu(iclog->ic_header.h_lsn));
2225 
2226 			} else
2227 				ioerrors++;
2228 
2229 			spin_unlock(&log->l_icloglock);
2230 
2231 			/*
2232 			 * Keep processing entries in the callback list until
2233 			 * we come around and it is empty.  We need to
2234 			 * atomically see that the list is empty and change the
2235 			 * state to DIRTY so that we don't miss any more
2236 			 * callbacks being added.
2237 			 */
2238 			spin_lock(&iclog->ic_callback_lock);
2239 			cb = iclog->ic_callback;
2240 			while (cb) {
2241 				iclog->ic_callback_tail = &(iclog->ic_callback);
2242 				iclog->ic_callback = NULL;
2243 				spin_unlock(&iclog->ic_callback_lock);
2244 
2245 				/* perform callbacks in the order given */
2246 				for (; cb; cb = cb_next) {
2247 					cb_next = cb->cb_next;
2248 					cb->cb_func(cb->cb_arg, aborted);
2249 				}
2250 				spin_lock(&iclog->ic_callback_lock);
2251 				cb = iclog->ic_callback;
2252 			}
2253 
2254 			loopdidcallbacks++;
2255 			funcdidcallbacks++;
2256 
2257 			spin_lock(&log->l_icloglock);
2258 			ASSERT(iclog->ic_callback == NULL);
2259 			spin_unlock(&iclog->ic_callback_lock);
2260 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2261 				iclog->ic_state = XLOG_STATE_DIRTY;
2262 
2263 			/*
2264 			 * Transition from DIRTY to ACTIVE if applicable.
2265 			 * NOP if STATE_IOERROR.
2266 			 */
2267 			xlog_state_clean_log(log);
2268 
2269 			/* wake up threads waiting in xfs_log_force() */
2270 			wake_up_all(&iclog->ic_force_wait);
2271 
2272 			iclog = iclog->ic_next;
2273 		} while (first_iclog != iclog);
2274 
2275 		if (repeats > 5000) {
2276 			flushcnt += repeats;
2277 			repeats = 0;
2278 			xfs_warn(log->l_mp,
2279 				"%s: possible infinite loop (%d iterations)",
2280 				__func__, flushcnt);
2281 		}
2282 	} while (!ioerrors && loopdidcallbacks);
2283 
2284 	/*
2285 	 * make one last gasp attempt to see if iclogs are being left in
2286 	 * limbo..
2287 	 */
2288 #ifdef DEBUG
2289 	if (funcdidcallbacks) {
2290 		first_iclog = iclog = log->l_iclog;
2291 		do {
2292 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2293 			/*
2294 			 * Terminate the loop if iclogs are found in states
2295 			 * which will cause other threads to clean up iclogs.
2296 			 *
2297 			 * SYNCING - i/o completion will go through logs
2298 			 * DONE_SYNC - interrupt thread should be waiting for
2299 			 *              l_icloglock
2300 			 * IOERROR - give up hope all ye who enter here
2301 			 */
2302 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2303 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2304 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2305 			    iclog->ic_state == XLOG_STATE_IOERROR )
2306 				break;
2307 			iclog = iclog->ic_next;
2308 		} while (first_iclog != iclog);
2309 	}
2310 #endif
2311 
2312 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2313 		wake = 1;
2314 	spin_unlock(&log->l_icloglock);
2315 
2316 	if (wake)
2317 		wake_up_all(&log->l_flush_wait);
2318 }
2319 
2320 
2321 /*
2322  * Finish transitioning this iclog to the dirty state.
2323  *
2324  * Make sure that we completely execute this routine only when this is
2325  * the last call to the iclog.  There is a good chance that iclog flushes,
2326  * when we reach the end of the physical log, get turned into 2 separate
2327  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2328  * routine.  By using the reference count bwritecnt, we guarantee that only
2329  * the second completion goes through.
2330  *
2331  * Callbacks could take time, so they are done outside the scope of the
2332  * global state machine log lock.
2333  */
2334 STATIC void
2335 xlog_state_done_syncing(
2336 	xlog_in_core_t	*iclog,
2337 	int		aborted)
2338 {
2339 	xlog_t		   *log = iclog->ic_log;
2340 
2341 	spin_lock(&log->l_icloglock);
2342 
2343 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2344 	       iclog->ic_state == XLOG_STATE_IOERROR);
2345 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2346 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2347 
2348 
2349 	/*
2350 	 * If we got an error, either on the first buffer, or in the case of
2351 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2352 	 * and none should ever be attempted to be written to disk
2353 	 * again.
2354 	 */
2355 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2356 		if (--iclog->ic_bwritecnt == 1) {
2357 			spin_unlock(&log->l_icloglock);
2358 			return;
2359 		}
2360 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2361 	}
2362 
2363 	/*
2364 	 * Someone could be sleeping prior to writing out the next
2365 	 * iclog buffer, we wake them all, one will get to do the
2366 	 * I/O, the others get to wait for the result.
2367 	 */
2368 	wake_up_all(&iclog->ic_write_wait);
2369 	spin_unlock(&log->l_icloglock);
2370 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2371 }	/* xlog_state_done_syncing */
2372 
2373 
2374 /*
2375  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2376  * sleep.  We wait on the flush queue on the head iclog as that should be
2377  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2378  * we will wait here and all new writes will sleep until a sync completes.
2379  *
2380  * The in-core logs are used in a circular fashion. They are not used
2381  * out-of-order even when an iclog past the head is free.
2382  *
2383  * return:
2384  *	* log_offset where xlog_write() can start writing into the in-core
2385  *		log's data space.
2386  *	* in-core log pointer to which xlog_write() should write.
2387  *	* boolean indicating this is a continued write to an in-core log.
2388  *		If this is the last write, then the in-core log's offset field
2389  *		needs to be incremented, depending on the amount of data which
2390  *		is copied.
2391  */
2392 STATIC int
2393 xlog_state_get_iclog_space(xlog_t	  *log,
2394 			   int		  len,
2395 			   xlog_in_core_t **iclogp,
2396 			   xlog_ticket_t  *ticket,
2397 			   int		  *continued_write,
2398 			   int		  *logoffsetp)
2399 {
2400 	int		  log_offset;
2401 	xlog_rec_header_t *head;
2402 	xlog_in_core_t	  *iclog;
2403 	int		  error;
2404 
2405 restart:
2406 	spin_lock(&log->l_icloglock);
2407 	if (XLOG_FORCED_SHUTDOWN(log)) {
2408 		spin_unlock(&log->l_icloglock);
2409 		return XFS_ERROR(EIO);
2410 	}
2411 
2412 	iclog = log->l_iclog;
2413 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2414 		XFS_STATS_INC(xs_log_noiclogs);
2415 
2416 		/* Wait for log writes to have flushed */
2417 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2418 		goto restart;
2419 	}
2420 
2421 	head = &iclog->ic_header;
2422 
2423 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2424 	log_offset = iclog->ic_offset;
2425 
2426 	/* On the 1st write to an iclog, figure out lsn.  This works
2427 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2428 	 * committing to.  If the offset is set, that's how many blocks
2429 	 * must be written.
2430 	 */
2431 	if (log_offset == 0) {
2432 		ticket->t_curr_res -= log->l_iclog_hsize;
2433 		xlog_tic_add_region(ticket,
2434 				    log->l_iclog_hsize,
2435 				    XLOG_REG_TYPE_LRHEADER);
2436 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2437 		head->h_lsn = cpu_to_be64(
2438 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2439 		ASSERT(log->l_curr_block >= 0);
2440 	}
2441 
2442 	/* If there is enough room to write everything, then do it.  Otherwise,
2443 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2444 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2445 	 * until you know exactly how many bytes get copied.  Therefore, wait
2446 	 * until later to update ic_offset.
2447 	 *
2448 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2449 	 * can fit into remaining data section.
2450 	 */
2451 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2452 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2453 
2454 		/*
2455 		 * If I'm the only one writing to this iclog, sync it to disk.
2456 		 * We need to do an atomic compare and decrement here to avoid
2457 		 * racing with concurrent atomic_dec_and_lock() calls in
2458 		 * xlog_state_release_iclog() when there is more than one
2459 		 * reference to the iclog.
2460 		 */
2461 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2462 			/* we are the only one */
2463 			spin_unlock(&log->l_icloglock);
2464 			error = xlog_state_release_iclog(log, iclog);
2465 			if (error)
2466 				return error;
2467 		} else {
2468 			spin_unlock(&log->l_icloglock);
2469 		}
2470 		goto restart;
2471 	}
2472 
2473 	/* Do we have enough room to write the full amount in the remainder
2474 	 * of this iclog?  Or must we continue a write on the next iclog and
2475 	 * mark this iclog as completely taken?  In the case where we switch
2476 	 * iclogs (to mark it taken), this particular iclog will release/sync
2477 	 * to disk in xlog_write().
2478 	 */
2479 	if (len <= iclog->ic_size - iclog->ic_offset) {
2480 		*continued_write = 0;
2481 		iclog->ic_offset += len;
2482 	} else {
2483 		*continued_write = 1;
2484 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2485 	}
2486 	*iclogp = iclog;
2487 
2488 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2489 	spin_unlock(&log->l_icloglock);
2490 
2491 	*logoffsetp = log_offset;
2492 	return 0;
2493 }	/* xlog_state_get_iclog_space */
2494 
2495 /*
2496  * Atomically get the log space required for a log ticket.
2497  *
2498  * Once a ticket gets put onto the reserveq, it will only return after
2499  * the needed reservation is satisfied.
2500  *
2501  * This function is structured so that it has a lock free fast path. This is
2502  * necessary because every new transaction reservation will come through this
2503  * path. Hence any lock will be globally hot if we take it unconditionally on
2504  * every pass.
2505  *
2506  * As tickets are only ever moved on and off the reserveq under the
2507  * l_grant_reserve_lock, we only need to take that lock if we are going
2508  * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2509  * ticket was never added to the reserveq because the t_queue list head will be
2510  * empty and we hold the only reference to it so it can safely be checked
2511  * unlocked.
2512  */
2513 STATIC int
2514 xlog_grant_log_space(xlog_t	   *log,
2515 		     xlog_ticket_t *tic)
2516 {
2517 	int		 free_bytes;
2518 	int		 need_bytes;
2519 
2520 #ifdef DEBUG
2521 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2522 		panic("grant Recovery problem");
2523 #endif
2524 
2525 	trace_xfs_log_grant_enter(log, tic);
2526 
2527 	need_bytes = tic->t_unit_res;
2528 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2529 		need_bytes *= tic->t_ocnt;
2530 
2531 	/* something is already sleeping; insert new transaction at end */
2532 	if (!list_empty_careful(&log->l_reserveq)) {
2533 		spin_lock(&log->l_grant_reserve_lock);
2534 		/* recheck the queue now we are locked */
2535 		if (list_empty(&log->l_reserveq)) {
2536 			spin_unlock(&log->l_grant_reserve_lock);
2537 			goto redo;
2538 		}
2539 		list_add_tail(&tic->t_queue, &log->l_reserveq);
2540 
2541 		trace_xfs_log_grant_sleep1(log, tic);
2542 
2543 		/*
2544 		 * Gotta check this before going to sleep, while we're
2545 		 * holding the grant lock.
2546 		 */
2547 		if (XLOG_FORCED_SHUTDOWN(log))
2548 			goto error_return;
2549 
2550 		XFS_STATS_INC(xs_sleep_logspace);
2551 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2552 
2553 		/*
2554 		 * If we got an error, and the filesystem is shutting down,
2555 		 * we'll catch it down below. So just continue...
2556 		 */
2557 		trace_xfs_log_grant_wake1(log, tic);
2558 	}
2559 
2560 redo:
2561 	if (XLOG_FORCED_SHUTDOWN(log))
2562 		goto error_return_unlocked;
2563 
2564 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2565 	if (free_bytes < need_bytes) {
2566 		spin_lock(&log->l_grant_reserve_lock);
2567 		if (list_empty(&tic->t_queue))
2568 			list_add_tail(&tic->t_queue, &log->l_reserveq);
2569 
2570 		trace_xfs_log_grant_sleep2(log, tic);
2571 
2572 		if (XLOG_FORCED_SHUTDOWN(log))
2573 			goto error_return;
2574 
2575 		xlog_grant_push_ail(log, need_bytes);
2576 
2577 		XFS_STATS_INC(xs_sleep_logspace);
2578 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2579 
2580 		trace_xfs_log_grant_wake2(log, tic);
2581 		goto redo;
2582 	}
2583 
2584 	if (!list_empty(&tic->t_queue)) {
2585 		spin_lock(&log->l_grant_reserve_lock);
2586 		list_del_init(&tic->t_queue);
2587 		spin_unlock(&log->l_grant_reserve_lock);
2588 	}
2589 
2590 	/* we've got enough space */
2591 	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2592 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2593 	trace_xfs_log_grant_exit(log, tic);
2594 	xlog_verify_grant_tail(log);
2595 	return 0;
2596 
2597 error_return_unlocked:
2598 	spin_lock(&log->l_grant_reserve_lock);
2599 error_return:
2600 	list_del_init(&tic->t_queue);
2601 	spin_unlock(&log->l_grant_reserve_lock);
2602 	trace_xfs_log_grant_error(log, tic);
2603 
2604 	/*
2605 	 * If we are failing, make sure the ticket doesn't have any
2606 	 * current reservations. We don't want to add this back when
2607 	 * the ticket/transaction gets cancelled.
2608 	 */
2609 	tic->t_curr_res = 0;
2610 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2611 	return XFS_ERROR(EIO);
2612 }	/* xlog_grant_log_space */
2613 
2614 
2615 /*
2616  * Replenish the byte reservation required by moving the grant write head.
2617  *
2618  * Similar to xlog_grant_log_space, the function is structured to have a lock
2619  * free fast path.
2620  */
2621 STATIC int
2622 xlog_regrant_write_log_space(xlog_t	   *log,
2623 			     xlog_ticket_t *tic)
2624 {
2625 	int		free_bytes, need_bytes;
2626 
2627 	tic->t_curr_res = tic->t_unit_res;
2628 	xlog_tic_reset_res(tic);
2629 
2630 	if (tic->t_cnt > 0)
2631 		return 0;
2632 
2633 #ifdef DEBUG
2634 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2635 		panic("regrant Recovery problem");
2636 #endif
2637 
2638 	trace_xfs_log_regrant_write_enter(log, tic);
2639 	if (XLOG_FORCED_SHUTDOWN(log))
2640 		goto error_return_unlocked;
2641 
2642 	/* If there are other waiters on the queue then give them a
2643 	 * chance at logspace before us. Wake up the first waiters,
2644 	 * if we do not wake up all the waiters then go to sleep waiting
2645 	 * for more free space, otherwise try to get some space for
2646 	 * this transaction.
2647 	 */
2648 	need_bytes = tic->t_unit_res;
2649 	if (!list_empty_careful(&log->l_writeq)) {
2650 		struct xlog_ticket *ntic;
2651 
2652 		spin_lock(&log->l_grant_write_lock);
2653 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2654 		list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2655 			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2656 
2657 			if (free_bytes < ntic->t_unit_res)
2658 				break;
2659 			free_bytes -= ntic->t_unit_res;
2660 			wake_up(&ntic->t_wait);
2661 		}
2662 
2663 		if (ntic != list_first_entry(&log->l_writeq,
2664 						struct xlog_ticket, t_queue)) {
2665 			if (list_empty(&tic->t_queue))
2666 				list_add_tail(&tic->t_queue, &log->l_writeq);
2667 			trace_xfs_log_regrant_write_sleep1(log, tic);
2668 
2669 			xlog_grant_push_ail(log, need_bytes);
2670 
2671 			XFS_STATS_INC(xs_sleep_logspace);
2672 			xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2673 			trace_xfs_log_regrant_write_wake1(log, tic);
2674 		} else
2675 			spin_unlock(&log->l_grant_write_lock);
2676 	}
2677 
2678 redo:
2679 	if (XLOG_FORCED_SHUTDOWN(log))
2680 		goto error_return_unlocked;
2681 
2682 	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2683 	if (free_bytes < need_bytes) {
2684 		spin_lock(&log->l_grant_write_lock);
2685 		if (list_empty(&tic->t_queue))
2686 			list_add_tail(&tic->t_queue, &log->l_writeq);
2687 
2688 		if (XLOG_FORCED_SHUTDOWN(log))
2689 			goto error_return;
2690 
2691 		xlog_grant_push_ail(log, need_bytes);
2692 
2693 		XFS_STATS_INC(xs_sleep_logspace);
2694 		trace_xfs_log_regrant_write_sleep2(log, tic);
2695 		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2696 
2697 		trace_xfs_log_regrant_write_wake2(log, tic);
2698 		goto redo;
2699 	}
2700 
2701 	if (!list_empty(&tic->t_queue)) {
2702 		spin_lock(&log->l_grant_write_lock);
2703 		list_del_init(&tic->t_queue);
2704 		spin_unlock(&log->l_grant_write_lock);
2705 	}
2706 
2707 	/* we've got enough space */
2708 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2709 	trace_xfs_log_regrant_write_exit(log, tic);
2710 	xlog_verify_grant_tail(log);
2711 	return 0;
2712 
2713 
2714  error_return_unlocked:
2715 	spin_lock(&log->l_grant_write_lock);
2716  error_return:
2717 	list_del_init(&tic->t_queue);
2718 	spin_unlock(&log->l_grant_write_lock);
2719 	trace_xfs_log_regrant_write_error(log, tic);
2720 
2721 	/*
2722 	 * If we are failing, make sure the ticket doesn't have any
2723 	 * current reservations. We don't want to add this back when
2724 	 * the ticket/transaction gets cancelled.
2725 	 */
2726 	tic->t_curr_res = 0;
2727 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2728 	return XFS_ERROR(EIO);
2729 }	/* xlog_regrant_write_log_space */
2730 
2731 
2732 /* The first cnt-1 times through here we don't need to
2733  * move the grant write head because the permanent
2734  * reservation has reserved cnt times the unit amount.
2735  * Release part of current permanent unit reservation and
2736  * reset current reservation to be one units worth.  Also
2737  * move grant reservation head forward.
2738  */
2739 STATIC void
2740 xlog_regrant_reserve_log_space(xlog_t	     *log,
2741 			       xlog_ticket_t *ticket)
2742 {
2743 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2744 
2745 	if (ticket->t_cnt > 0)
2746 		ticket->t_cnt--;
2747 
2748 	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2749 					ticket->t_curr_res);
2750 	xlog_grant_sub_space(log, &log->l_grant_write_head,
2751 					ticket->t_curr_res);
2752 	ticket->t_curr_res = ticket->t_unit_res;
2753 	xlog_tic_reset_res(ticket);
2754 
2755 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2756 
2757 	/* just return if we still have some of the pre-reserved space */
2758 	if (ticket->t_cnt > 0)
2759 		return;
2760 
2761 	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2762 					ticket->t_unit_res);
2763 
2764 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2765 
2766 	ticket->t_curr_res = ticket->t_unit_res;
2767 	xlog_tic_reset_res(ticket);
2768 }	/* xlog_regrant_reserve_log_space */
2769 
2770 
2771 /*
2772  * Give back the space left from a reservation.
2773  *
2774  * All the information we need to make a correct determination of space left
2775  * is present.  For non-permanent reservations, things are quite easy.  The
2776  * count should have been decremented to zero.  We only need to deal with the
2777  * space remaining in the current reservation part of the ticket.  If the
2778  * ticket contains a permanent reservation, there may be left over space which
2779  * needs to be released.  A count of N means that N-1 refills of the current
2780  * reservation can be done before we need to ask for more space.  The first
2781  * one goes to fill up the first current reservation.  Once we run out of
2782  * space, the count will stay at zero and the only space remaining will be
2783  * in the current reservation field.
2784  */
2785 STATIC void
2786 xlog_ungrant_log_space(xlog_t	     *log,
2787 		       xlog_ticket_t *ticket)
2788 {
2789 	int	bytes;
2790 
2791 	if (ticket->t_cnt > 0)
2792 		ticket->t_cnt--;
2793 
2794 	trace_xfs_log_ungrant_enter(log, ticket);
2795 	trace_xfs_log_ungrant_sub(log, ticket);
2796 
2797 	/*
2798 	 * If this is a permanent reservation ticket, we may be able to free
2799 	 * up more space based on the remaining count.
2800 	 */
2801 	bytes = ticket->t_curr_res;
2802 	if (ticket->t_cnt > 0) {
2803 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2804 		bytes += ticket->t_unit_res*ticket->t_cnt;
2805 	}
2806 
2807 	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2808 	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2809 
2810 	trace_xfs_log_ungrant_exit(log, ticket);
2811 
2812 	xfs_log_move_tail(log->l_mp, 1);
2813 }	/* xlog_ungrant_log_space */
2814 
2815 
2816 /*
2817  * Flush iclog to disk if this is the last reference to the given iclog and
2818  * the WANT_SYNC bit is set.
2819  *
2820  * When this function is entered, the iclog is not necessarily in the
2821  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2822  *
2823  *
2824  */
2825 STATIC int
2826 xlog_state_release_iclog(
2827 	xlog_t		*log,
2828 	xlog_in_core_t	*iclog)
2829 {
2830 	int		sync = 0;	/* do we sync? */
2831 
2832 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2833 		return XFS_ERROR(EIO);
2834 
2835 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2836 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2837 		return 0;
2838 
2839 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2840 		spin_unlock(&log->l_icloglock);
2841 		return XFS_ERROR(EIO);
2842 	}
2843 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2844 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2845 
2846 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2847 		/* update tail before writing to iclog */
2848 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2849 		sync++;
2850 		iclog->ic_state = XLOG_STATE_SYNCING;
2851 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2852 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2853 		/* cycle incremented when incrementing curr_block */
2854 	}
2855 	spin_unlock(&log->l_icloglock);
2856 
2857 	/*
2858 	 * We let the log lock go, so it's possible that we hit a log I/O
2859 	 * error or some other SHUTDOWN condition that marks the iclog
2860 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2861 	 * this iclog has consistent data, so we ignore IOERROR
2862 	 * flags after this point.
2863 	 */
2864 	if (sync)
2865 		return xlog_sync(log, iclog);
2866 	return 0;
2867 }	/* xlog_state_release_iclog */
2868 
2869 
2870 /*
2871  * This routine will mark the current iclog in the ring as WANT_SYNC
2872  * and move the current iclog pointer to the next iclog in the ring.
2873  * When this routine is called from xlog_state_get_iclog_space(), the
2874  * exact size of the iclog has not yet been determined.  All we know is
2875  * that every data block.  We have run out of space in this log record.
2876  */
2877 STATIC void
2878 xlog_state_switch_iclogs(xlog_t		*log,
2879 			 xlog_in_core_t *iclog,
2880 			 int		eventual_size)
2881 {
2882 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2883 	if (!eventual_size)
2884 		eventual_size = iclog->ic_offset;
2885 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2886 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2887 	log->l_prev_block = log->l_curr_block;
2888 	log->l_prev_cycle = log->l_curr_cycle;
2889 
2890 	/* roll log?: ic_offset changed later */
2891 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2892 
2893 	/* Round up to next log-sunit */
2894 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2895 	    log->l_mp->m_sb.sb_logsunit > 1) {
2896 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2897 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2898 	}
2899 
2900 	if (log->l_curr_block >= log->l_logBBsize) {
2901 		log->l_curr_cycle++;
2902 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2903 			log->l_curr_cycle++;
2904 		log->l_curr_block -= log->l_logBBsize;
2905 		ASSERT(log->l_curr_block >= 0);
2906 	}
2907 	ASSERT(iclog == log->l_iclog);
2908 	log->l_iclog = iclog->ic_next;
2909 }	/* xlog_state_switch_iclogs */
2910 
2911 /*
2912  * Write out all data in the in-core log as of this exact moment in time.
2913  *
2914  * Data may be written to the in-core log during this call.  However,
2915  * we don't guarantee this data will be written out.  A change from past
2916  * implementation means this routine will *not* write out zero length LRs.
2917  *
2918  * Basically, we try and perform an intelligent scan of the in-core logs.
2919  * If we determine there is no flushable data, we just return.  There is no
2920  * flushable data if:
2921  *
2922  *	1. the current iclog is active and has no data; the previous iclog
2923  *		is in the active or dirty state.
2924  *	2. the current iclog is drity, and the previous iclog is in the
2925  *		active or dirty state.
2926  *
2927  * We may sleep if:
2928  *
2929  *	1. the current iclog is not in the active nor dirty state.
2930  *	2. the current iclog dirty, and the previous iclog is not in the
2931  *		active nor dirty state.
2932  *	3. the current iclog is active, and there is another thread writing
2933  *		to this particular iclog.
2934  *	4. a) the current iclog is active and has no other writers
2935  *	   b) when we return from flushing out this iclog, it is still
2936  *		not in the active nor dirty state.
2937  */
2938 int
2939 _xfs_log_force(
2940 	struct xfs_mount	*mp,
2941 	uint			flags,
2942 	int			*log_flushed)
2943 {
2944 	struct log		*log = mp->m_log;
2945 	struct xlog_in_core	*iclog;
2946 	xfs_lsn_t		lsn;
2947 
2948 	XFS_STATS_INC(xs_log_force);
2949 
2950 	if (log->l_cilp)
2951 		xlog_cil_force(log);
2952 
2953 	spin_lock(&log->l_icloglock);
2954 
2955 	iclog = log->l_iclog;
2956 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2957 		spin_unlock(&log->l_icloglock);
2958 		return XFS_ERROR(EIO);
2959 	}
2960 
2961 	/* If the head iclog is not active nor dirty, we just attach
2962 	 * ourselves to the head and go to sleep.
2963 	 */
2964 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2965 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2966 		/*
2967 		 * If the head is dirty or (active and empty), then
2968 		 * we need to look at the previous iclog.  If the previous
2969 		 * iclog is active or dirty we are done.  There is nothing
2970 		 * to sync out.  Otherwise, we attach ourselves to the
2971 		 * previous iclog and go to sleep.
2972 		 */
2973 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2974 		    (atomic_read(&iclog->ic_refcnt) == 0
2975 		     && iclog->ic_offset == 0)) {
2976 			iclog = iclog->ic_prev;
2977 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2978 			    iclog->ic_state == XLOG_STATE_DIRTY)
2979 				goto no_sleep;
2980 			else
2981 				goto maybe_sleep;
2982 		} else {
2983 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2984 				/* We are the only one with access to this
2985 				 * iclog.  Flush it out now.  There should
2986 				 * be a roundoff of zero to show that someone
2987 				 * has already taken care of the roundoff from
2988 				 * the previous sync.
2989 				 */
2990 				atomic_inc(&iclog->ic_refcnt);
2991 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2992 				xlog_state_switch_iclogs(log, iclog, 0);
2993 				spin_unlock(&log->l_icloglock);
2994 
2995 				if (xlog_state_release_iclog(log, iclog))
2996 					return XFS_ERROR(EIO);
2997 
2998 				if (log_flushed)
2999 					*log_flushed = 1;
3000 				spin_lock(&log->l_icloglock);
3001 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3002 				    iclog->ic_state != XLOG_STATE_DIRTY)
3003 					goto maybe_sleep;
3004 				else
3005 					goto no_sleep;
3006 			} else {
3007 				/* Someone else is writing to this iclog.
3008 				 * Use its call to flush out the data.  However,
3009 				 * the other thread may not force out this LR,
3010 				 * so we mark it WANT_SYNC.
3011 				 */
3012 				xlog_state_switch_iclogs(log, iclog, 0);
3013 				goto maybe_sleep;
3014 			}
3015 		}
3016 	}
3017 
3018 	/* By the time we come around again, the iclog could've been filled
3019 	 * which would give it another lsn.  If we have a new lsn, just
3020 	 * return because the relevant data has been flushed.
3021 	 */
3022 maybe_sleep:
3023 	if (flags & XFS_LOG_SYNC) {
3024 		/*
3025 		 * We must check if we're shutting down here, before
3026 		 * we wait, while we're holding the l_icloglock.
3027 		 * Then we check again after waking up, in case our
3028 		 * sleep was disturbed by a bad news.
3029 		 */
3030 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3031 			spin_unlock(&log->l_icloglock);
3032 			return XFS_ERROR(EIO);
3033 		}
3034 		XFS_STATS_INC(xs_log_force_sleep);
3035 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3036 		/*
3037 		 * No need to grab the log lock here since we're
3038 		 * only deciding whether or not to return EIO
3039 		 * and the memory read should be atomic.
3040 		 */
3041 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3042 			return XFS_ERROR(EIO);
3043 		if (log_flushed)
3044 			*log_flushed = 1;
3045 	} else {
3046 
3047 no_sleep:
3048 		spin_unlock(&log->l_icloglock);
3049 	}
3050 	return 0;
3051 }
3052 
3053 /*
3054  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3055  * about errors or whether the log was flushed or not. This is the normal
3056  * interface to use when trying to unpin items or move the log forward.
3057  */
3058 void
3059 xfs_log_force(
3060 	xfs_mount_t	*mp,
3061 	uint		flags)
3062 {
3063 	int	error;
3064 
3065 	error = _xfs_log_force(mp, flags, NULL);
3066 	if (error)
3067 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3068 }
3069 
3070 /*
3071  * Force the in-core log to disk for a specific LSN.
3072  *
3073  * Find in-core log with lsn.
3074  *	If it is in the DIRTY state, just return.
3075  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3076  *		state and go to sleep or return.
3077  *	If it is in any other state, go to sleep or return.
3078  *
3079  * Synchronous forces are implemented with a signal variable. All callers
3080  * to force a given lsn to disk will wait on a the sv attached to the
3081  * specific in-core log.  When given in-core log finally completes its
3082  * write to disk, that thread will wake up all threads waiting on the
3083  * sv.
3084  */
3085 int
3086 _xfs_log_force_lsn(
3087 	struct xfs_mount	*mp,
3088 	xfs_lsn_t		lsn,
3089 	uint			flags,
3090 	int			*log_flushed)
3091 {
3092 	struct log		*log = mp->m_log;
3093 	struct xlog_in_core	*iclog;
3094 	int			already_slept = 0;
3095 
3096 	ASSERT(lsn != 0);
3097 
3098 	XFS_STATS_INC(xs_log_force);
3099 
3100 	if (log->l_cilp) {
3101 		lsn = xlog_cil_force_lsn(log, lsn);
3102 		if (lsn == NULLCOMMITLSN)
3103 			return 0;
3104 	}
3105 
3106 try_again:
3107 	spin_lock(&log->l_icloglock);
3108 	iclog = log->l_iclog;
3109 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3110 		spin_unlock(&log->l_icloglock);
3111 		return XFS_ERROR(EIO);
3112 	}
3113 
3114 	do {
3115 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3116 			iclog = iclog->ic_next;
3117 			continue;
3118 		}
3119 
3120 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3121 			spin_unlock(&log->l_icloglock);
3122 			return 0;
3123 		}
3124 
3125 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3126 			/*
3127 			 * We sleep here if we haven't already slept (e.g.
3128 			 * this is the first time we've looked at the correct
3129 			 * iclog buf) and the buffer before us is going to
3130 			 * be sync'ed. The reason for this is that if we
3131 			 * are doing sync transactions here, by waiting for
3132 			 * the previous I/O to complete, we can allow a few
3133 			 * more transactions into this iclog before we close
3134 			 * it down.
3135 			 *
3136 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3137 			 * up the refcnt so we can release the log (which
3138 			 * drops the ref count).  The state switch keeps new
3139 			 * transaction commits from using this buffer.  When
3140 			 * the current commits finish writing into the buffer,
3141 			 * the refcount will drop to zero and the buffer will
3142 			 * go out then.
3143 			 */
3144 			if (!already_slept &&
3145 			    (iclog->ic_prev->ic_state &
3146 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3147 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3148 
3149 				XFS_STATS_INC(xs_log_force_sleep);
3150 
3151 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3152 							&log->l_icloglock);
3153 				if (log_flushed)
3154 					*log_flushed = 1;
3155 				already_slept = 1;
3156 				goto try_again;
3157 			}
3158 			atomic_inc(&iclog->ic_refcnt);
3159 			xlog_state_switch_iclogs(log, iclog, 0);
3160 			spin_unlock(&log->l_icloglock);
3161 			if (xlog_state_release_iclog(log, iclog))
3162 				return XFS_ERROR(EIO);
3163 			if (log_flushed)
3164 				*log_flushed = 1;
3165 			spin_lock(&log->l_icloglock);
3166 		}
3167 
3168 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3169 		    !(iclog->ic_state &
3170 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3171 			/*
3172 			 * Don't wait on completion if we know that we've
3173 			 * gotten a log write error.
3174 			 */
3175 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3176 				spin_unlock(&log->l_icloglock);
3177 				return XFS_ERROR(EIO);
3178 			}
3179 			XFS_STATS_INC(xs_log_force_sleep);
3180 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3181 			/*
3182 			 * No need to grab the log lock here since we're
3183 			 * only deciding whether or not to return EIO
3184 			 * and the memory read should be atomic.
3185 			 */
3186 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3187 				return XFS_ERROR(EIO);
3188 
3189 			if (log_flushed)
3190 				*log_flushed = 1;
3191 		} else {		/* just return */
3192 			spin_unlock(&log->l_icloglock);
3193 		}
3194 
3195 		return 0;
3196 	} while (iclog != log->l_iclog);
3197 
3198 	spin_unlock(&log->l_icloglock);
3199 	return 0;
3200 }
3201 
3202 /*
3203  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3204  * about errors or whether the log was flushed or not. This is the normal
3205  * interface to use when trying to unpin items or move the log forward.
3206  */
3207 void
3208 xfs_log_force_lsn(
3209 	xfs_mount_t	*mp,
3210 	xfs_lsn_t	lsn,
3211 	uint		flags)
3212 {
3213 	int	error;
3214 
3215 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3216 	if (error)
3217 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3218 }
3219 
3220 /*
3221  * Called when we want to mark the current iclog as being ready to sync to
3222  * disk.
3223  */
3224 STATIC void
3225 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3226 {
3227 	assert_spin_locked(&log->l_icloglock);
3228 
3229 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3230 		xlog_state_switch_iclogs(log, iclog, 0);
3231 	} else {
3232 		ASSERT(iclog->ic_state &
3233 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3234 	}
3235 }
3236 
3237 
3238 /*****************************************************************************
3239  *
3240  *		TICKET functions
3241  *
3242  *****************************************************************************
3243  */
3244 
3245 /*
3246  * Free a used ticket when its refcount falls to zero.
3247  */
3248 void
3249 xfs_log_ticket_put(
3250 	xlog_ticket_t	*ticket)
3251 {
3252 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3253 	if (atomic_dec_and_test(&ticket->t_ref))
3254 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3255 }
3256 
3257 xlog_ticket_t *
3258 xfs_log_ticket_get(
3259 	xlog_ticket_t	*ticket)
3260 {
3261 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3262 	atomic_inc(&ticket->t_ref);
3263 	return ticket;
3264 }
3265 
3266 /*
3267  * Allocate and initialise a new log ticket.
3268  */
3269 xlog_ticket_t *
3270 xlog_ticket_alloc(
3271 	struct log	*log,
3272 	int		unit_bytes,
3273 	int		cnt,
3274 	char		client,
3275 	uint		xflags,
3276 	int		alloc_flags)
3277 {
3278 	struct xlog_ticket *tic;
3279 	uint		num_headers;
3280 	int		iclog_space;
3281 
3282 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3283 	if (!tic)
3284 		return NULL;
3285 
3286 	/*
3287 	 * Permanent reservations have up to 'cnt'-1 active log operations
3288 	 * in the log.  A unit in this case is the amount of space for one
3289 	 * of these log operations.  Normal reservations have a cnt of 1
3290 	 * and their unit amount is the total amount of space required.
3291 	 *
3292 	 * The following lines of code account for non-transaction data
3293 	 * which occupy space in the on-disk log.
3294 	 *
3295 	 * Normal form of a transaction is:
3296 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3297 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3298 	 *
3299 	 * We need to account for all the leadup data and trailer data
3300 	 * around the transaction data.
3301 	 * And then we need to account for the worst case in terms of using
3302 	 * more space.
3303 	 * The worst case will happen if:
3304 	 * - the placement of the transaction happens to be such that the
3305 	 *   roundoff is at its maximum
3306 	 * - the transaction data is synced before the commit record is synced
3307 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3308 	 *   Therefore the commit record is in its own Log Record.
3309 	 *   This can happen as the commit record is called with its
3310 	 *   own region to xlog_write().
3311 	 *   This then means that in the worst case, roundoff can happen for
3312 	 *   the commit-rec as well.
3313 	 *   The commit-rec is smaller than padding in this scenario and so it is
3314 	 *   not added separately.
3315 	 */
3316 
3317 	/* for trans header */
3318 	unit_bytes += sizeof(xlog_op_header_t);
3319 	unit_bytes += sizeof(xfs_trans_header_t);
3320 
3321 	/* for start-rec */
3322 	unit_bytes += sizeof(xlog_op_header_t);
3323 
3324 	/*
3325 	 * for LR headers - the space for data in an iclog is the size minus
3326 	 * the space used for the headers. If we use the iclog size, then we
3327 	 * undercalculate the number of headers required.
3328 	 *
3329 	 * Furthermore - the addition of op headers for split-recs might
3330 	 * increase the space required enough to require more log and op
3331 	 * headers, so take that into account too.
3332 	 *
3333 	 * IMPORTANT: This reservation makes the assumption that if this
3334 	 * transaction is the first in an iclog and hence has the LR headers
3335 	 * accounted to it, then the remaining space in the iclog is
3336 	 * exclusively for this transaction.  i.e. if the transaction is larger
3337 	 * than the iclog, it will be the only thing in that iclog.
3338 	 * Fundamentally, this means we must pass the entire log vector to
3339 	 * xlog_write to guarantee this.
3340 	 */
3341 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3342 	num_headers = howmany(unit_bytes, iclog_space);
3343 
3344 	/* for split-recs - ophdrs added when data split over LRs */
3345 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3346 
3347 	/* add extra header reservations if we overrun */
3348 	while (!num_headers ||
3349 	       howmany(unit_bytes, iclog_space) > num_headers) {
3350 		unit_bytes += sizeof(xlog_op_header_t);
3351 		num_headers++;
3352 	}
3353 	unit_bytes += log->l_iclog_hsize * num_headers;
3354 
3355 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3356 	unit_bytes += log->l_iclog_hsize;
3357 
3358 	/* for roundoff padding for transaction data and one for commit record */
3359 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3360 	    log->l_mp->m_sb.sb_logsunit > 1) {
3361 		/* log su roundoff */
3362 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3363 	} else {
3364 		/* BB roundoff */
3365 		unit_bytes += 2*BBSIZE;
3366         }
3367 
3368 	atomic_set(&tic->t_ref, 1);
3369 	INIT_LIST_HEAD(&tic->t_queue);
3370 	tic->t_unit_res		= unit_bytes;
3371 	tic->t_curr_res		= unit_bytes;
3372 	tic->t_cnt		= cnt;
3373 	tic->t_ocnt		= cnt;
3374 	tic->t_tid		= random32();
3375 	tic->t_clientid		= client;
3376 	tic->t_flags		= XLOG_TIC_INITED;
3377 	tic->t_trans_type	= 0;
3378 	if (xflags & XFS_LOG_PERM_RESERV)
3379 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3380 	init_waitqueue_head(&tic->t_wait);
3381 
3382 	xlog_tic_reset_res(tic);
3383 
3384 	return tic;
3385 }
3386 
3387 
3388 /******************************************************************************
3389  *
3390  *		Log debug routines
3391  *
3392  ******************************************************************************
3393  */
3394 #if defined(DEBUG)
3395 /*
3396  * Make sure that the destination ptr is within the valid data region of
3397  * one of the iclogs.  This uses backup pointers stored in a different
3398  * part of the log in case we trash the log structure.
3399  */
3400 void
3401 xlog_verify_dest_ptr(
3402 	struct log	*log,
3403 	char		*ptr)
3404 {
3405 	int i;
3406 	int good_ptr = 0;
3407 
3408 	for (i = 0; i < log->l_iclog_bufs; i++) {
3409 		if (ptr >= log->l_iclog_bak[i] &&
3410 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3411 			good_ptr++;
3412 	}
3413 
3414 	if (!good_ptr)
3415 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3416 }
3417 
3418 /*
3419  * Check to make sure the grant write head didn't just over lap the tail.  If
3420  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3421  * the cycles differ by exactly one and check the byte count.
3422  *
3423  * This check is run unlocked, so can give false positives. Rather than assert
3424  * on failures, use a warn-once flag and a panic tag to allow the admin to
3425  * determine if they want to panic the machine when such an error occurs. For
3426  * debug kernels this will have the same effect as using an assert but, unlinke
3427  * an assert, it can be turned off at runtime.
3428  */
3429 STATIC void
3430 xlog_verify_grant_tail(
3431 	struct log	*log)
3432 {
3433 	int		tail_cycle, tail_blocks;
3434 	int		cycle, space;
3435 
3436 	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3437 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3438 	if (tail_cycle != cycle) {
3439 		if (cycle - 1 != tail_cycle &&
3440 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3441 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3442 				"%s: cycle - 1 != tail_cycle", __func__);
3443 			log->l_flags |= XLOG_TAIL_WARN;
3444 		}
3445 
3446 		if (space > BBTOB(tail_blocks) &&
3447 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3448 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3449 				"%s: space > BBTOB(tail_blocks)", __func__);
3450 			log->l_flags |= XLOG_TAIL_WARN;
3451 		}
3452 	}
3453 }
3454 
3455 /* check if it will fit */
3456 STATIC void
3457 xlog_verify_tail_lsn(xlog_t	    *log,
3458 		     xlog_in_core_t *iclog,
3459 		     xfs_lsn_t	    tail_lsn)
3460 {
3461     int blocks;
3462 
3463     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3464 	blocks =
3465 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3466 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3467 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3468     } else {
3469 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3470 
3471 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3472 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3473 
3474 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3475 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3476 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3477     }
3478 }	/* xlog_verify_tail_lsn */
3479 
3480 /*
3481  * Perform a number of checks on the iclog before writing to disk.
3482  *
3483  * 1. Make sure the iclogs are still circular
3484  * 2. Make sure we have a good magic number
3485  * 3. Make sure we don't have magic numbers in the data
3486  * 4. Check fields of each log operation header for:
3487  *	A. Valid client identifier
3488  *	B. tid ptr value falls in valid ptr space (user space code)
3489  *	C. Length in log record header is correct according to the
3490  *		individual operation headers within record.
3491  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3492  *	log, check the preceding blocks of the physical log to make sure all
3493  *	the cycle numbers agree with the current cycle number.
3494  */
3495 STATIC void
3496 xlog_verify_iclog(xlog_t	 *log,
3497 		  xlog_in_core_t *iclog,
3498 		  int		 count,
3499 		  boolean_t	 syncing)
3500 {
3501 	xlog_op_header_t	*ophead;
3502 	xlog_in_core_t		*icptr;
3503 	xlog_in_core_2_t	*xhdr;
3504 	xfs_caddr_t		ptr;
3505 	xfs_caddr_t		base_ptr;
3506 	__psint_t		field_offset;
3507 	__uint8_t		clientid;
3508 	int			len, i, j, k, op_len;
3509 	int			idx;
3510 
3511 	/* check validity of iclog pointers */
3512 	spin_lock(&log->l_icloglock);
3513 	icptr = log->l_iclog;
3514 	for (i=0; i < log->l_iclog_bufs; i++) {
3515 		if (icptr == NULL)
3516 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3517 		icptr = icptr->ic_next;
3518 	}
3519 	if (icptr != log->l_iclog)
3520 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3521 	spin_unlock(&log->l_icloglock);
3522 
3523 	/* check log magic numbers */
3524 	if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3525 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3526 
3527 	ptr = (xfs_caddr_t) &iclog->ic_header;
3528 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3529 	     ptr += BBSIZE) {
3530 		if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3531 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3532 				__func__);
3533 	}
3534 
3535 	/* check fields */
3536 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3537 	ptr = iclog->ic_datap;
3538 	base_ptr = ptr;
3539 	ophead = (xlog_op_header_t *)ptr;
3540 	xhdr = iclog->ic_data;
3541 	for (i = 0; i < len; i++) {
3542 		ophead = (xlog_op_header_t *)ptr;
3543 
3544 		/* clientid is only 1 byte */
3545 		field_offset = (__psint_t)
3546 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3547 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3548 			clientid = ophead->oh_clientid;
3549 		} else {
3550 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3551 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3552 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3553 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3554 				clientid = xlog_get_client_id(
3555 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3556 			} else {
3557 				clientid = xlog_get_client_id(
3558 					iclog->ic_header.h_cycle_data[idx]);
3559 			}
3560 		}
3561 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3562 			xfs_warn(log->l_mp,
3563 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3564 				__func__, clientid, ophead,
3565 				(unsigned long)field_offset);
3566 
3567 		/* check length */
3568 		field_offset = (__psint_t)
3569 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3570 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3571 			op_len = be32_to_cpu(ophead->oh_len);
3572 		} else {
3573 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3574 				    (__psint_t)iclog->ic_datap);
3575 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3576 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3577 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3578 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3579 			} else {
3580 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3581 			}
3582 		}
3583 		ptr += sizeof(xlog_op_header_t) + op_len;
3584 	}
3585 }	/* xlog_verify_iclog */
3586 #endif
3587 
3588 /*
3589  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3590  */
3591 STATIC int
3592 xlog_state_ioerror(
3593 	xlog_t	*log)
3594 {
3595 	xlog_in_core_t	*iclog, *ic;
3596 
3597 	iclog = log->l_iclog;
3598 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3599 		/*
3600 		 * Mark all the incore logs IOERROR.
3601 		 * From now on, no log flushes will result.
3602 		 */
3603 		ic = iclog;
3604 		do {
3605 			ic->ic_state = XLOG_STATE_IOERROR;
3606 			ic = ic->ic_next;
3607 		} while (ic != iclog);
3608 		return 0;
3609 	}
3610 	/*
3611 	 * Return non-zero, if state transition has already happened.
3612 	 */
3613 	return 1;
3614 }
3615 
3616 /*
3617  * This is called from xfs_force_shutdown, when we're forcibly
3618  * shutting down the filesystem, typically because of an IO error.
3619  * Our main objectives here are to make sure that:
3620  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3621  *	   parties to find out, 'atomically'.
3622  *	b. those who're sleeping on log reservations, pinned objects and
3623  *	    other resources get woken up, and be told the bad news.
3624  *	c. nothing new gets queued up after (a) and (b) are done.
3625  *	d. if !logerror, flush the iclogs to disk, then seal them off
3626  *	   for business.
3627  *
3628  * Note: for delayed logging the !logerror case needs to flush the regions
3629  * held in memory out to the iclogs before flushing them to disk. This needs
3630  * to be done before the log is marked as shutdown, otherwise the flush to the
3631  * iclogs will fail.
3632  */
3633 int
3634 xfs_log_force_umount(
3635 	struct xfs_mount	*mp,
3636 	int			logerror)
3637 {
3638 	xlog_ticket_t	*tic;
3639 	xlog_t		*log;
3640 	int		retval;
3641 
3642 	log = mp->m_log;
3643 
3644 	/*
3645 	 * If this happens during log recovery, don't worry about
3646 	 * locking; the log isn't open for business yet.
3647 	 */
3648 	if (!log ||
3649 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3650 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3651 		if (mp->m_sb_bp)
3652 			XFS_BUF_DONE(mp->m_sb_bp);
3653 		return 0;
3654 	}
3655 
3656 	/*
3657 	 * Somebody could've already done the hard work for us.
3658 	 * No need to get locks for this.
3659 	 */
3660 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3661 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3662 		return 1;
3663 	}
3664 	retval = 0;
3665 
3666 	/*
3667 	 * Flush the in memory commit item list before marking the log as
3668 	 * being shut down. We need to do it in this order to ensure all the
3669 	 * completed transactions are flushed to disk with the xfs_log_force()
3670 	 * call below.
3671 	 */
3672 	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3673 		xlog_cil_force(log);
3674 
3675 	/*
3676 	 * mark the filesystem and the as in a shutdown state and wake
3677 	 * everybody up to tell them the bad news.
3678 	 */
3679 	spin_lock(&log->l_icloglock);
3680 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3681 	if (mp->m_sb_bp)
3682 		XFS_BUF_DONE(mp->m_sb_bp);
3683 
3684 	/*
3685 	 * This flag is sort of redundant because of the mount flag, but
3686 	 * it's good to maintain the separation between the log and the rest
3687 	 * of XFS.
3688 	 */
3689 	log->l_flags |= XLOG_IO_ERROR;
3690 
3691 	/*
3692 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3693 	 * while we're still holding the loglock.
3694 	 */
3695 	if (logerror)
3696 		retval = xlog_state_ioerror(log);
3697 	spin_unlock(&log->l_icloglock);
3698 
3699 	/*
3700 	 * We don't want anybody waiting for log reservations after this. That
3701 	 * means we have to wake up everybody queued up on reserveq as well as
3702 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3703 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3704 	 * action is protected by the grant locks.
3705 	 */
3706 	spin_lock(&log->l_grant_reserve_lock);
3707 	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3708 		wake_up(&tic->t_wait);
3709 	spin_unlock(&log->l_grant_reserve_lock);
3710 
3711 	spin_lock(&log->l_grant_write_lock);
3712 	list_for_each_entry(tic, &log->l_writeq, t_queue)
3713 		wake_up(&tic->t_wait);
3714 	spin_unlock(&log->l_grant_write_lock);
3715 
3716 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3717 		ASSERT(!logerror);
3718 		/*
3719 		 * Force the incore logs to disk before shutting the
3720 		 * log down completely.
3721 		 */
3722 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3723 
3724 		spin_lock(&log->l_icloglock);
3725 		retval = xlog_state_ioerror(log);
3726 		spin_unlock(&log->l_icloglock);
3727 	}
3728 	/*
3729 	 * Wake up everybody waiting on xfs_log_force.
3730 	 * Callback all log item committed functions as if the
3731 	 * log writes were completed.
3732 	 */
3733 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3734 
3735 #ifdef XFSERRORDEBUG
3736 	{
3737 		xlog_in_core_t	*iclog;
3738 
3739 		spin_lock(&log->l_icloglock);
3740 		iclog = log->l_iclog;
3741 		do {
3742 			ASSERT(iclog->ic_callback == 0);
3743 			iclog = iclog->ic_next;
3744 		} while (iclog != log->l_iclog);
3745 		spin_unlock(&log->l_icloglock);
3746 	}
3747 #endif
3748 	/* return non-zero if log IOERROR transition had already happened */
3749 	return retval;
3750 }
3751 
3752 STATIC int
3753 xlog_iclogs_empty(xlog_t *log)
3754 {
3755 	xlog_in_core_t	*iclog;
3756 
3757 	iclog = log->l_iclog;
3758 	do {
3759 		/* endianness does not matter here, zero is zero in
3760 		 * any language.
3761 		 */
3762 		if (iclog->ic_header.h_num_logops)
3763 			return 0;
3764 		iclog = iclog->ic_next;
3765 	} while (iclog != log->l_iclog);
3766 	return 1;
3767 }
3768