xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 74e6a79f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*logoffsetp);
53 STATIC void
54 xlog_grant_push_ail(
55 	struct xlog		*log,
56 	int			need_bytes);
57 STATIC void
58 xlog_sync(
59 	struct xlog		*log,
60 	struct xlog_in_core	*iclog,
61 	struct xlog_ticket	*ticket);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_grant_tail(
65 	struct xlog *log);
66 STATIC void
67 xlog_verify_iclog(
68 	struct xlog		*log,
69 	struct xlog_in_core	*iclog,
70 	int			count);
71 STATIC void
72 xlog_verify_tail_lsn(
73 	struct xlog		*log,
74 	struct xlog_in_core	*iclog);
75 #else
76 #define xlog_verify_grant_tail(a)
77 #define xlog_verify_iclog(a,b,c)
78 #define xlog_verify_tail_lsn(a,b)
79 #endif
80 
81 STATIC int
82 xlog_iclogs_empty(
83 	struct xlog		*log);
84 
85 static int
86 xfs_log_cover(struct xfs_mount *);
87 
88 /*
89  * We need to make sure the buffer pointer returned is naturally aligned for the
90  * biggest basic data type we put into it. We have already accounted for this
91  * padding when sizing the buffer.
92  *
93  * However, this padding does not get written into the log, and hence we have to
94  * track the space used by the log vectors separately to prevent log space hangs
95  * due to inaccurate accounting (i.e. a leak) of the used log space through the
96  * CIL context ticket.
97  *
98  * We also add space for the xlog_op_header that describes this region in the
99  * log. This prepends the data region we return to the caller to copy their data
100  * into, so do all the static initialisation of the ophdr now. Because the ophdr
101  * is not 8 byte aligned, we have to be careful to ensure that we align the
102  * start of the buffer such that the region we return to the call is 8 byte
103  * aligned and packed against the tail of the ophdr.
104  */
105 void *
106 xlog_prepare_iovec(
107 	struct xfs_log_vec	*lv,
108 	struct xfs_log_iovec	**vecp,
109 	uint			type)
110 {
111 	struct xfs_log_iovec	*vec = *vecp;
112 	struct xlog_op_header	*oph;
113 	uint32_t		len;
114 	void			*buf;
115 
116 	if (vec) {
117 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
118 		vec++;
119 	} else {
120 		vec = &lv->lv_iovecp[0];
121 	}
122 
123 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
124 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
125 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
126 					sizeof(struct xlog_op_header);
127 	}
128 
129 	vec->i_type = type;
130 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
131 
132 	oph = vec->i_addr;
133 	oph->oh_clientid = XFS_TRANSACTION;
134 	oph->oh_res2 = 0;
135 	oph->oh_flags = 0;
136 
137 	buf = vec->i_addr + sizeof(struct xlog_op_header);
138 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
139 
140 	*vecp = vec;
141 	return buf;
142 }
143 
144 static void
145 xlog_grant_sub_space(
146 	struct xlog		*log,
147 	atomic64_t		*head,
148 	int			bytes)
149 {
150 	int64_t	head_val = atomic64_read(head);
151 	int64_t new, old;
152 
153 	do {
154 		int	cycle, space;
155 
156 		xlog_crack_grant_head_val(head_val, &cycle, &space);
157 
158 		space -= bytes;
159 		if (space < 0) {
160 			space += log->l_logsize;
161 			cycle--;
162 		}
163 
164 		old = head_val;
165 		new = xlog_assign_grant_head_val(cycle, space);
166 		head_val = atomic64_cmpxchg(head, old, new);
167 	} while (head_val != old);
168 }
169 
170 static void
171 xlog_grant_add_space(
172 	struct xlog		*log,
173 	atomic64_t		*head,
174 	int			bytes)
175 {
176 	int64_t	head_val = atomic64_read(head);
177 	int64_t new, old;
178 
179 	do {
180 		int		tmp;
181 		int		cycle, space;
182 
183 		xlog_crack_grant_head_val(head_val, &cycle, &space);
184 
185 		tmp = log->l_logsize - space;
186 		if (tmp > bytes)
187 			space += bytes;
188 		else {
189 			space = bytes - tmp;
190 			cycle++;
191 		}
192 
193 		old = head_val;
194 		new = xlog_assign_grant_head_val(cycle, space);
195 		head_val = atomic64_cmpxchg(head, old, new);
196 	} while (head_val != old);
197 }
198 
199 STATIC void
200 xlog_grant_head_init(
201 	struct xlog_grant_head	*head)
202 {
203 	xlog_assign_grant_head(&head->grant, 1, 0);
204 	INIT_LIST_HEAD(&head->waiters);
205 	spin_lock_init(&head->lock);
206 }
207 
208 STATIC void
209 xlog_grant_head_wake_all(
210 	struct xlog_grant_head	*head)
211 {
212 	struct xlog_ticket	*tic;
213 
214 	spin_lock(&head->lock);
215 	list_for_each_entry(tic, &head->waiters, t_queue)
216 		wake_up_process(tic->t_task);
217 	spin_unlock(&head->lock);
218 }
219 
220 static inline int
221 xlog_ticket_reservation(
222 	struct xlog		*log,
223 	struct xlog_grant_head	*head,
224 	struct xlog_ticket	*tic)
225 {
226 	if (head == &log->l_write_head) {
227 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
228 		return tic->t_unit_res;
229 	}
230 
231 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
232 		return tic->t_unit_res * tic->t_cnt;
233 
234 	return tic->t_unit_res;
235 }
236 
237 STATIC bool
238 xlog_grant_head_wake(
239 	struct xlog		*log,
240 	struct xlog_grant_head	*head,
241 	int			*free_bytes)
242 {
243 	struct xlog_ticket	*tic;
244 	int			need_bytes;
245 	bool			woken_task = false;
246 
247 	list_for_each_entry(tic, &head->waiters, t_queue) {
248 
249 		/*
250 		 * There is a chance that the size of the CIL checkpoints in
251 		 * progress at the last AIL push target calculation resulted in
252 		 * limiting the target to the log head (l_last_sync_lsn) at the
253 		 * time. This may not reflect where the log head is now as the
254 		 * CIL checkpoints may have completed.
255 		 *
256 		 * Hence when we are woken here, it may be that the head of the
257 		 * log that has moved rather than the tail. As the tail didn't
258 		 * move, there still won't be space available for the
259 		 * reservation we require.  However, if the AIL has already
260 		 * pushed to the target defined by the old log head location, we
261 		 * will hang here waiting for something else to update the AIL
262 		 * push target.
263 		 *
264 		 * Therefore, if there isn't space to wake the first waiter on
265 		 * the grant head, we need to push the AIL again to ensure the
266 		 * target reflects both the current log tail and log head
267 		 * position before we wait for the tail to move again.
268 		 */
269 
270 		need_bytes = xlog_ticket_reservation(log, head, tic);
271 		if (*free_bytes < need_bytes) {
272 			if (!woken_task)
273 				xlog_grant_push_ail(log, need_bytes);
274 			return false;
275 		}
276 
277 		*free_bytes -= need_bytes;
278 		trace_xfs_log_grant_wake_up(log, tic);
279 		wake_up_process(tic->t_task);
280 		woken_task = true;
281 	}
282 
283 	return true;
284 }
285 
286 STATIC int
287 xlog_grant_head_wait(
288 	struct xlog		*log,
289 	struct xlog_grant_head	*head,
290 	struct xlog_ticket	*tic,
291 	int			need_bytes) __releases(&head->lock)
292 					    __acquires(&head->lock)
293 {
294 	list_add_tail(&tic->t_queue, &head->waiters);
295 
296 	do {
297 		if (xlog_is_shutdown(log))
298 			goto shutdown;
299 		xlog_grant_push_ail(log, need_bytes);
300 
301 		__set_current_state(TASK_UNINTERRUPTIBLE);
302 		spin_unlock(&head->lock);
303 
304 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
305 
306 		trace_xfs_log_grant_sleep(log, tic);
307 		schedule();
308 		trace_xfs_log_grant_wake(log, tic);
309 
310 		spin_lock(&head->lock);
311 		if (xlog_is_shutdown(log))
312 			goto shutdown;
313 	} while (xlog_space_left(log, &head->grant) < need_bytes);
314 
315 	list_del_init(&tic->t_queue);
316 	return 0;
317 shutdown:
318 	list_del_init(&tic->t_queue);
319 	return -EIO;
320 }
321 
322 /*
323  * Atomically get the log space required for a log ticket.
324  *
325  * Once a ticket gets put onto head->waiters, it will only return after the
326  * needed reservation is satisfied.
327  *
328  * This function is structured so that it has a lock free fast path. This is
329  * necessary because every new transaction reservation will come through this
330  * path. Hence any lock will be globally hot if we take it unconditionally on
331  * every pass.
332  *
333  * As tickets are only ever moved on and off head->waiters under head->lock, we
334  * only need to take that lock if we are going to add the ticket to the queue
335  * and sleep. We can avoid taking the lock if the ticket was never added to
336  * head->waiters because the t_queue list head will be empty and we hold the
337  * only reference to it so it can safely be checked unlocked.
338  */
339 STATIC int
340 xlog_grant_head_check(
341 	struct xlog		*log,
342 	struct xlog_grant_head	*head,
343 	struct xlog_ticket	*tic,
344 	int			*need_bytes)
345 {
346 	int			free_bytes;
347 	int			error = 0;
348 
349 	ASSERT(!xlog_in_recovery(log));
350 
351 	/*
352 	 * If there are other waiters on the queue then give them a chance at
353 	 * logspace before us.  Wake up the first waiters, if we do not wake
354 	 * up all the waiters then go to sleep waiting for more free space,
355 	 * otherwise try to get some space for this transaction.
356 	 */
357 	*need_bytes = xlog_ticket_reservation(log, head, tic);
358 	free_bytes = xlog_space_left(log, &head->grant);
359 	if (!list_empty_careful(&head->waiters)) {
360 		spin_lock(&head->lock);
361 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
362 		    free_bytes < *need_bytes) {
363 			error = xlog_grant_head_wait(log, head, tic,
364 						     *need_bytes);
365 		}
366 		spin_unlock(&head->lock);
367 	} else if (free_bytes < *need_bytes) {
368 		spin_lock(&head->lock);
369 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
370 		spin_unlock(&head->lock);
371 	}
372 
373 	return error;
374 }
375 
376 bool
377 xfs_log_writable(
378 	struct xfs_mount	*mp)
379 {
380 	/*
381 	 * Do not write to the log on norecovery mounts, if the data or log
382 	 * devices are read-only, or if the filesystem is shutdown. Read-only
383 	 * mounts allow internal writes for log recovery and unmount purposes,
384 	 * so don't restrict that case.
385 	 */
386 	if (xfs_has_norecovery(mp))
387 		return false;
388 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
389 		return false;
390 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
391 		return false;
392 	if (xlog_is_shutdown(mp->m_log))
393 		return false;
394 	return true;
395 }
396 
397 /*
398  * Replenish the byte reservation required by moving the grant write head.
399  */
400 int
401 xfs_log_regrant(
402 	struct xfs_mount	*mp,
403 	struct xlog_ticket	*tic)
404 {
405 	struct xlog		*log = mp->m_log;
406 	int			need_bytes;
407 	int			error = 0;
408 
409 	if (xlog_is_shutdown(log))
410 		return -EIO;
411 
412 	XFS_STATS_INC(mp, xs_try_logspace);
413 
414 	/*
415 	 * This is a new transaction on the ticket, so we need to change the
416 	 * transaction ID so that the next transaction has a different TID in
417 	 * the log. Just add one to the existing tid so that we can see chains
418 	 * of rolling transactions in the log easily.
419 	 */
420 	tic->t_tid++;
421 
422 	xlog_grant_push_ail(log, tic->t_unit_res);
423 
424 	tic->t_curr_res = tic->t_unit_res;
425 	if (tic->t_cnt > 0)
426 		return 0;
427 
428 	trace_xfs_log_regrant(log, tic);
429 
430 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
431 				      &need_bytes);
432 	if (error)
433 		goto out_error;
434 
435 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
436 	trace_xfs_log_regrant_exit(log, tic);
437 	xlog_verify_grant_tail(log);
438 	return 0;
439 
440 out_error:
441 	/*
442 	 * If we are failing, make sure the ticket doesn't have any current
443 	 * reservations.  We don't want to add this back when the ticket/
444 	 * transaction gets cancelled.
445 	 */
446 	tic->t_curr_res = 0;
447 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
448 	return error;
449 }
450 
451 /*
452  * Reserve log space and return a ticket corresponding to the reservation.
453  *
454  * Each reservation is going to reserve extra space for a log record header.
455  * When writes happen to the on-disk log, we don't subtract the length of the
456  * log record header from any reservation.  By wasting space in each
457  * reservation, we prevent over allocation problems.
458  */
459 int
460 xfs_log_reserve(
461 	struct xfs_mount	*mp,
462 	int			unit_bytes,
463 	int			cnt,
464 	struct xlog_ticket	**ticp,
465 	bool			permanent)
466 {
467 	struct xlog		*log = mp->m_log;
468 	struct xlog_ticket	*tic;
469 	int			need_bytes;
470 	int			error = 0;
471 
472 	if (xlog_is_shutdown(log))
473 		return -EIO;
474 
475 	XFS_STATS_INC(mp, xs_try_logspace);
476 
477 	ASSERT(*ticp == NULL);
478 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
479 	*ticp = tic;
480 
481 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
482 					    : tic->t_unit_res);
483 
484 	trace_xfs_log_reserve(log, tic);
485 
486 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
487 				      &need_bytes);
488 	if (error)
489 		goto out_error;
490 
491 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
492 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
493 	trace_xfs_log_reserve_exit(log, tic);
494 	xlog_verify_grant_tail(log);
495 	return 0;
496 
497 out_error:
498 	/*
499 	 * If we are failing, make sure the ticket doesn't have any current
500 	 * reservations.  We don't want to add this back when the ticket/
501 	 * transaction gets cancelled.
502 	 */
503 	tic->t_curr_res = 0;
504 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
505 	return error;
506 }
507 
508 /*
509  * Run all the pending iclog callbacks and wake log force waiters and iclog
510  * space waiters so they can process the newly set shutdown state. We really
511  * don't care what order we process callbacks here because the log is shut down
512  * and so state cannot change on disk anymore. However, we cannot wake waiters
513  * until the callbacks have been processed because we may be in unmount and
514  * we must ensure that all AIL operations the callbacks perform have completed
515  * before we tear down the AIL.
516  *
517  * We avoid processing actively referenced iclogs so that we don't run callbacks
518  * while the iclog owner might still be preparing the iclog for IO submssion.
519  * These will be caught by xlog_state_iclog_release() and call this function
520  * again to process any callbacks that may have been added to that iclog.
521  */
522 static void
523 xlog_state_shutdown_callbacks(
524 	struct xlog		*log)
525 {
526 	struct xlog_in_core	*iclog;
527 	LIST_HEAD(cb_list);
528 
529 	iclog = log->l_iclog;
530 	do {
531 		if (atomic_read(&iclog->ic_refcnt)) {
532 			/* Reference holder will re-run iclog callbacks. */
533 			continue;
534 		}
535 		list_splice_init(&iclog->ic_callbacks, &cb_list);
536 		spin_unlock(&log->l_icloglock);
537 
538 		xlog_cil_process_committed(&cb_list);
539 
540 		spin_lock(&log->l_icloglock);
541 		wake_up_all(&iclog->ic_write_wait);
542 		wake_up_all(&iclog->ic_force_wait);
543 	} while ((iclog = iclog->ic_next) != log->l_iclog);
544 
545 	wake_up_all(&log->l_flush_wait);
546 }
547 
548 /*
549  * Flush iclog to disk if this is the last reference to the given iclog and the
550  * it is in the WANT_SYNC state.
551  *
552  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
553  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
554  * written to stable storage, and implies that a commit record is contained
555  * within the iclog. We need to ensure that the log tail does not move beyond
556  * the tail that the first commit record in the iclog ordered against, otherwise
557  * correct recovery of that checkpoint becomes dependent on future operations
558  * performed on this iclog.
559  *
560  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
561  * current tail into iclog. Once the iclog tail is set, future operations must
562  * not modify it, otherwise they potentially violate ordering constraints for
563  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
564  * the iclog will get zeroed on activation of the iclog after sync, so we
565  * always capture the tail lsn on the iclog on the first NEED_FUA release
566  * regardless of the number of active reference counts on this iclog.
567  */
568 int
569 xlog_state_release_iclog(
570 	struct xlog		*log,
571 	struct xlog_in_core	*iclog,
572 	struct xlog_ticket	*ticket)
573 {
574 	xfs_lsn_t		tail_lsn;
575 	bool			last_ref;
576 
577 	lockdep_assert_held(&log->l_icloglock);
578 
579 	trace_xlog_iclog_release(iclog, _RET_IP_);
580 	/*
581 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
582 	 * of the tail LSN into the iclog so we guarantee that the log tail does
583 	 * not move between the first time we know that the iclog needs to be
584 	 * made stable and when we eventually submit it.
585 	 */
586 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
587 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
588 	    !iclog->ic_header.h_tail_lsn) {
589 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
590 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
591 	}
592 
593 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
594 
595 	if (xlog_is_shutdown(log)) {
596 		/*
597 		 * If there are no more references to this iclog, process the
598 		 * pending iclog callbacks that were waiting on the release of
599 		 * this iclog.
600 		 */
601 		if (last_ref)
602 			xlog_state_shutdown_callbacks(log);
603 		return -EIO;
604 	}
605 
606 	if (!last_ref)
607 		return 0;
608 
609 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
610 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
611 		return 0;
612 	}
613 
614 	iclog->ic_state = XLOG_STATE_SYNCING;
615 	xlog_verify_tail_lsn(log, iclog);
616 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
617 
618 	spin_unlock(&log->l_icloglock);
619 	xlog_sync(log, iclog, ticket);
620 	spin_lock(&log->l_icloglock);
621 	return 0;
622 }
623 
624 /*
625  * Mount a log filesystem
626  *
627  * mp		- ubiquitous xfs mount point structure
628  * log_target	- buftarg of on-disk log device
629  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
630  * num_bblocks	- Number of BBSIZE blocks in on-disk log
631  *
632  * Return error or zero.
633  */
634 int
635 xfs_log_mount(
636 	xfs_mount_t	*mp,
637 	xfs_buftarg_t	*log_target,
638 	xfs_daddr_t	blk_offset,
639 	int		num_bblks)
640 {
641 	struct xlog	*log;
642 	bool		fatal = xfs_has_crc(mp);
643 	int		error = 0;
644 	int		min_logfsbs;
645 
646 	if (!xfs_has_norecovery(mp)) {
647 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
648 			   XFS_SB_VERSION_NUM(&mp->m_sb),
649 			   &mp->m_sb.sb_uuid);
650 	} else {
651 		xfs_notice(mp,
652 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
653 			   XFS_SB_VERSION_NUM(&mp->m_sb),
654 			   &mp->m_sb.sb_uuid);
655 		ASSERT(xfs_is_readonly(mp));
656 	}
657 
658 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
659 	if (IS_ERR(log)) {
660 		error = PTR_ERR(log);
661 		goto out;
662 	}
663 	mp->m_log = log;
664 
665 	/*
666 	 * Validate the given log space and drop a critical message via syslog
667 	 * if the log size is too small that would lead to some unexpected
668 	 * situations in transaction log space reservation stage.
669 	 *
670 	 * Note: we can't just reject the mount if the validation fails.  This
671 	 * would mean that people would have to downgrade their kernel just to
672 	 * remedy the situation as there is no way to grow the log (short of
673 	 * black magic surgery with xfs_db).
674 	 *
675 	 * We can, however, reject mounts for CRC format filesystems, as the
676 	 * mkfs binary being used to make the filesystem should never create a
677 	 * filesystem with a log that is too small.
678 	 */
679 	min_logfsbs = xfs_log_calc_minimum_size(mp);
680 
681 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
682 		xfs_warn(mp,
683 		"Log size %d blocks too small, minimum size is %d blocks",
684 			 mp->m_sb.sb_logblocks, min_logfsbs);
685 		error = -EINVAL;
686 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
687 		xfs_warn(mp,
688 		"Log size %d blocks too large, maximum size is %lld blocks",
689 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
690 		error = -EINVAL;
691 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
692 		xfs_warn(mp,
693 		"log size %lld bytes too large, maximum size is %lld bytes",
694 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
695 			 XFS_MAX_LOG_BYTES);
696 		error = -EINVAL;
697 	} else if (mp->m_sb.sb_logsunit > 1 &&
698 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
699 		xfs_warn(mp,
700 		"log stripe unit %u bytes must be a multiple of block size",
701 			 mp->m_sb.sb_logsunit);
702 		error = -EINVAL;
703 		fatal = true;
704 	}
705 	if (error) {
706 		/*
707 		 * Log check errors are always fatal on v5; or whenever bad
708 		 * metadata leads to a crash.
709 		 */
710 		if (fatal) {
711 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
712 			ASSERT(0);
713 			goto out_free_log;
714 		}
715 		xfs_crit(mp, "Log size out of supported range.");
716 		xfs_crit(mp,
717 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
718 	}
719 
720 	/*
721 	 * Initialize the AIL now we have a log.
722 	 */
723 	error = xfs_trans_ail_init(mp);
724 	if (error) {
725 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
726 		goto out_free_log;
727 	}
728 	log->l_ailp = mp->m_ail;
729 
730 	/*
731 	 * skip log recovery on a norecovery mount.  pretend it all
732 	 * just worked.
733 	 */
734 	if (!xfs_has_norecovery(mp)) {
735 		/*
736 		 * log recovery ignores readonly state and so we need to clear
737 		 * mount-based read only state so it can write to disk.
738 		 */
739 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
740 						&mp->m_opstate);
741 		error = xlog_recover(log);
742 		if (readonly)
743 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
744 		if (error) {
745 			xfs_warn(mp, "log mount/recovery failed: error %d",
746 				error);
747 			xlog_recover_cancel(log);
748 			goto out_destroy_ail;
749 		}
750 	}
751 
752 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
753 			       "log");
754 	if (error)
755 		goto out_destroy_ail;
756 
757 	/* Normal transactions can now occur */
758 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
759 
760 	/*
761 	 * Now the log has been fully initialised and we know were our
762 	 * space grant counters are, we can initialise the permanent ticket
763 	 * needed for delayed logging to work.
764 	 */
765 	xlog_cil_init_post_recovery(log);
766 
767 	return 0;
768 
769 out_destroy_ail:
770 	xfs_trans_ail_destroy(mp);
771 out_free_log:
772 	xlog_dealloc_log(log);
773 out:
774 	return error;
775 }
776 
777 /*
778  * Finish the recovery of the file system.  This is separate from the
779  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
780  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
781  * here.
782  *
783  * If we finish recovery successfully, start the background log work. If we are
784  * not doing recovery, then we have a RO filesystem and we don't need to start
785  * it.
786  */
787 int
788 xfs_log_mount_finish(
789 	struct xfs_mount	*mp)
790 {
791 	struct xlog		*log = mp->m_log;
792 	bool			readonly;
793 	int			error = 0;
794 
795 	if (xfs_has_norecovery(mp)) {
796 		ASSERT(xfs_is_readonly(mp));
797 		return 0;
798 	}
799 
800 	/*
801 	 * log recovery ignores readonly state and so we need to clear
802 	 * mount-based read only state so it can write to disk.
803 	 */
804 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
805 
806 	/*
807 	 * During the second phase of log recovery, we need iget and
808 	 * iput to behave like they do for an active filesystem.
809 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
810 	 * of inodes before we're done replaying log items on those
811 	 * inodes.  Turn it off immediately after recovery finishes
812 	 * so that we don't leak the quota inodes if subsequent mount
813 	 * activities fail.
814 	 *
815 	 * We let all inodes involved in redo item processing end up on
816 	 * the LRU instead of being evicted immediately so that if we do
817 	 * something to an unlinked inode, the irele won't cause
818 	 * premature truncation and freeing of the inode, which results
819 	 * in log recovery failure.  We have to evict the unreferenced
820 	 * lru inodes after clearing SB_ACTIVE because we don't
821 	 * otherwise clean up the lru if there's a subsequent failure in
822 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
823 	 * else (e.g. quotacheck) references the inodes before the
824 	 * mount failure occurs.
825 	 */
826 	mp->m_super->s_flags |= SB_ACTIVE;
827 	xfs_log_work_queue(mp);
828 	if (xlog_recovery_needed(log))
829 		error = xlog_recover_finish(log);
830 	mp->m_super->s_flags &= ~SB_ACTIVE;
831 	evict_inodes(mp->m_super);
832 
833 	/*
834 	 * Drain the buffer LRU after log recovery. This is required for v4
835 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
836 	 * but we do it unconditionally to make sure we're always in a clean
837 	 * cache state after mount.
838 	 *
839 	 * Don't push in the error case because the AIL may have pending intents
840 	 * that aren't removed until recovery is cancelled.
841 	 */
842 	if (xlog_recovery_needed(log)) {
843 		if (!error) {
844 			xfs_log_force(mp, XFS_LOG_SYNC);
845 			xfs_ail_push_all_sync(mp->m_ail);
846 		}
847 		xfs_notice(mp, "Ending recovery (logdev: %s)",
848 				mp->m_logname ? mp->m_logname : "internal");
849 	} else {
850 		xfs_info(mp, "Ending clean mount");
851 	}
852 	xfs_buftarg_drain(mp->m_ddev_targp);
853 
854 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
855 	if (readonly)
856 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
857 
858 	/* Make sure the log is dead if we're returning failure. */
859 	ASSERT(!error || xlog_is_shutdown(log));
860 
861 	return error;
862 }
863 
864 /*
865  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
866  * the log.
867  */
868 void
869 xfs_log_mount_cancel(
870 	struct xfs_mount	*mp)
871 {
872 	xlog_recover_cancel(mp->m_log);
873 	xfs_log_unmount(mp);
874 }
875 
876 /*
877  * Flush out the iclog to disk ensuring that device caches are flushed and
878  * the iclog hits stable storage before any completion waiters are woken.
879  */
880 static inline int
881 xlog_force_iclog(
882 	struct xlog_in_core	*iclog)
883 {
884 	atomic_inc(&iclog->ic_refcnt);
885 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
886 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
887 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
888 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
889 }
890 
891 /*
892  * Cycle all the iclogbuf locks to make sure all log IO completion
893  * is done before we tear down these buffers.
894  */
895 static void
896 xlog_wait_iclog_completion(struct xlog *log)
897 {
898 	int		i;
899 	struct xlog_in_core	*iclog = log->l_iclog;
900 
901 	for (i = 0; i < log->l_iclog_bufs; i++) {
902 		down(&iclog->ic_sema);
903 		up(&iclog->ic_sema);
904 		iclog = iclog->ic_next;
905 	}
906 }
907 
908 /*
909  * Wait for the iclog and all prior iclogs to be written disk as required by the
910  * log force state machine. Waiting on ic_force_wait ensures iclog completions
911  * have been ordered and callbacks run before we are woken here, hence
912  * guaranteeing that all the iclogs up to this one are on stable storage.
913  */
914 int
915 xlog_wait_on_iclog(
916 	struct xlog_in_core	*iclog)
917 		__releases(iclog->ic_log->l_icloglock)
918 {
919 	struct xlog		*log = iclog->ic_log;
920 
921 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
922 	if (!xlog_is_shutdown(log) &&
923 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
924 	    iclog->ic_state != XLOG_STATE_DIRTY) {
925 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
926 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
927 	} else {
928 		spin_unlock(&log->l_icloglock);
929 	}
930 
931 	if (xlog_is_shutdown(log))
932 		return -EIO;
933 	return 0;
934 }
935 
936 /*
937  * Write out an unmount record using the ticket provided. We have to account for
938  * the data space used in the unmount ticket as this write is not done from a
939  * transaction context that has already done the accounting for us.
940  */
941 static int
942 xlog_write_unmount_record(
943 	struct xlog		*log,
944 	struct xlog_ticket	*ticket)
945 {
946 	struct  {
947 		struct xlog_op_header ophdr;
948 		struct xfs_unmount_log_format ulf;
949 	} unmount_rec = {
950 		.ophdr = {
951 			.oh_clientid = XFS_LOG,
952 			.oh_tid = cpu_to_be32(ticket->t_tid),
953 			.oh_flags = XLOG_UNMOUNT_TRANS,
954 		},
955 		.ulf = {
956 			.magic = XLOG_UNMOUNT_TYPE,
957 		},
958 	};
959 	struct xfs_log_iovec reg = {
960 		.i_addr = &unmount_rec,
961 		.i_len = sizeof(unmount_rec),
962 		.i_type = XLOG_REG_TYPE_UNMOUNT,
963 	};
964 	struct xfs_log_vec vec = {
965 		.lv_niovecs = 1,
966 		.lv_iovecp = &reg,
967 	};
968 	LIST_HEAD(lv_chain);
969 	list_add(&vec.lv_list, &lv_chain);
970 
971 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
972 		      sizeof(struct xfs_unmount_log_format)) !=
973 							sizeof(unmount_rec));
974 
975 	/* account for space used by record data */
976 	ticket->t_curr_res -= sizeof(unmount_rec);
977 
978 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
979 }
980 
981 /*
982  * Mark the filesystem clean by writing an unmount record to the head of the
983  * log.
984  */
985 static void
986 xlog_unmount_write(
987 	struct xlog		*log)
988 {
989 	struct xfs_mount	*mp = log->l_mp;
990 	struct xlog_in_core	*iclog;
991 	struct xlog_ticket	*tic = NULL;
992 	int			error;
993 
994 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
995 	if (error)
996 		goto out_err;
997 
998 	error = xlog_write_unmount_record(log, tic);
999 	/*
1000 	 * At this point, we're umounting anyway, so there's no point in
1001 	 * transitioning log state to shutdown. Just continue...
1002 	 */
1003 out_err:
1004 	if (error)
1005 		xfs_alert(mp, "%s: unmount record failed", __func__);
1006 
1007 	spin_lock(&log->l_icloglock);
1008 	iclog = log->l_iclog;
1009 	error = xlog_force_iclog(iclog);
1010 	xlog_wait_on_iclog(iclog);
1011 
1012 	if (tic) {
1013 		trace_xfs_log_umount_write(log, tic);
1014 		xfs_log_ticket_ungrant(log, tic);
1015 	}
1016 }
1017 
1018 static void
1019 xfs_log_unmount_verify_iclog(
1020 	struct xlog		*log)
1021 {
1022 	struct xlog_in_core	*iclog = log->l_iclog;
1023 
1024 	do {
1025 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1026 		ASSERT(iclog->ic_offset == 0);
1027 	} while ((iclog = iclog->ic_next) != log->l_iclog);
1028 }
1029 
1030 /*
1031  * Unmount record used to have a string "Unmount filesystem--" in the
1032  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1033  * We just write the magic number now since that particular field isn't
1034  * currently architecture converted and "Unmount" is a bit foo.
1035  * As far as I know, there weren't any dependencies on the old behaviour.
1036  */
1037 static void
1038 xfs_log_unmount_write(
1039 	struct xfs_mount	*mp)
1040 {
1041 	struct xlog		*log = mp->m_log;
1042 
1043 	if (!xfs_log_writable(mp))
1044 		return;
1045 
1046 	xfs_log_force(mp, XFS_LOG_SYNC);
1047 
1048 	if (xlog_is_shutdown(log))
1049 		return;
1050 
1051 	/*
1052 	 * If we think the summary counters are bad, avoid writing the unmount
1053 	 * record to force log recovery at next mount, after which the summary
1054 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1055 	 * more details.
1056 	 */
1057 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1058 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1059 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1060 				__func__);
1061 		return;
1062 	}
1063 
1064 	xfs_log_unmount_verify_iclog(log);
1065 	xlog_unmount_write(log);
1066 }
1067 
1068 /*
1069  * Empty the log for unmount/freeze.
1070  *
1071  * To do this, we first need to shut down the background log work so it is not
1072  * trying to cover the log as we clean up. We then need to unpin all objects in
1073  * the log so we can then flush them out. Once they have completed their IO and
1074  * run the callbacks removing themselves from the AIL, we can cover the log.
1075  */
1076 int
1077 xfs_log_quiesce(
1078 	struct xfs_mount	*mp)
1079 {
1080 	/*
1081 	 * Clear log incompat features since we're quiescing the log.  Report
1082 	 * failures, though it's not fatal to have a higher log feature
1083 	 * protection level than the log contents actually require.
1084 	 */
1085 	if (xfs_clear_incompat_log_features(mp)) {
1086 		int error;
1087 
1088 		error = xfs_sync_sb(mp, false);
1089 		if (error)
1090 			xfs_warn(mp,
1091 	"Failed to clear log incompat features on quiesce");
1092 	}
1093 
1094 	cancel_delayed_work_sync(&mp->m_log->l_work);
1095 	xfs_log_force(mp, XFS_LOG_SYNC);
1096 
1097 	/*
1098 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1099 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1100 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1101 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1102 	 * the IO to complete.
1103 	 */
1104 	xfs_ail_push_all_sync(mp->m_ail);
1105 	xfs_buftarg_wait(mp->m_ddev_targp);
1106 	xfs_buf_lock(mp->m_sb_bp);
1107 	xfs_buf_unlock(mp->m_sb_bp);
1108 
1109 	return xfs_log_cover(mp);
1110 }
1111 
1112 void
1113 xfs_log_clean(
1114 	struct xfs_mount	*mp)
1115 {
1116 	xfs_log_quiesce(mp);
1117 	xfs_log_unmount_write(mp);
1118 }
1119 
1120 /*
1121  * Shut down and release the AIL and Log.
1122  *
1123  * During unmount, we need to ensure we flush all the dirty metadata objects
1124  * from the AIL so that the log is empty before we write the unmount record to
1125  * the log. Once this is done, we can tear down the AIL and the log.
1126  */
1127 void
1128 xfs_log_unmount(
1129 	struct xfs_mount	*mp)
1130 {
1131 	xfs_log_clean(mp);
1132 
1133 	/*
1134 	 * If shutdown has come from iclog IO context, the log
1135 	 * cleaning will have been skipped and so we need to wait
1136 	 * for the iclog to complete shutdown processing before we
1137 	 * tear anything down.
1138 	 */
1139 	xlog_wait_iclog_completion(mp->m_log);
1140 
1141 	xfs_buftarg_drain(mp->m_ddev_targp);
1142 
1143 	xfs_trans_ail_destroy(mp);
1144 
1145 	xfs_sysfs_del(&mp->m_log->l_kobj);
1146 
1147 	xlog_dealloc_log(mp->m_log);
1148 }
1149 
1150 void
1151 xfs_log_item_init(
1152 	struct xfs_mount	*mp,
1153 	struct xfs_log_item	*item,
1154 	int			type,
1155 	const struct xfs_item_ops *ops)
1156 {
1157 	item->li_log = mp->m_log;
1158 	item->li_ailp = mp->m_ail;
1159 	item->li_type = type;
1160 	item->li_ops = ops;
1161 	item->li_lv = NULL;
1162 
1163 	INIT_LIST_HEAD(&item->li_ail);
1164 	INIT_LIST_HEAD(&item->li_cil);
1165 	INIT_LIST_HEAD(&item->li_bio_list);
1166 	INIT_LIST_HEAD(&item->li_trans);
1167 }
1168 
1169 /*
1170  * Wake up processes waiting for log space after we have moved the log tail.
1171  */
1172 void
1173 xfs_log_space_wake(
1174 	struct xfs_mount	*mp)
1175 {
1176 	struct xlog		*log = mp->m_log;
1177 	int			free_bytes;
1178 
1179 	if (xlog_is_shutdown(log))
1180 		return;
1181 
1182 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1183 		ASSERT(!xlog_in_recovery(log));
1184 
1185 		spin_lock(&log->l_write_head.lock);
1186 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1187 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1188 		spin_unlock(&log->l_write_head.lock);
1189 	}
1190 
1191 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1192 		ASSERT(!xlog_in_recovery(log));
1193 
1194 		spin_lock(&log->l_reserve_head.lock);
1195 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1196 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1197 		spin_unlock(&log->l_reserve_head.lock);
1198 	}
1199 }
1200 
1201 /*
1202  * Determine if we have a transaction that has gone to disk that needs to be
1203  * covered. To begin the transition to the idle state firstly the log needs to
1204  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1205  * we start attempting to cover the log.
1206  *
1207  * Only if we are then in a state where covering is needed, the caller is
1208  * informed that dummy transactions are required to move the log into the idle
1209  * state.
1210  *
1211  * If there are any items in the AIl or CIL, then we do not want to attempt to
1212  * cover the log as we may be in a situation where there isn't log space
1213  * available to run a dummy transaction and this can lead to deadlocks when the
1214  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1215  * there's no point in running a dummy transaction at this point because we
1216  * can't start trying to idle the log until both the CIL and AIL are empty.
1217  */
1218 static bool
1219 xfs_log_need_covered(
1220 	struct xfs_mount	*mp)
1221 {
1222 	struct xlog		*log = mp->m_log;
1223 	bool			needed = false;
1224 
1225 	if (!xlog_cil_empty(log))
1226 		return false;
1227 
1228 	spin_lock(&log->l_icloglock);
1229 	switch (log->l_covered_state) {
1230 	case XLOG_STATE_COVER_DONE:
1231 	case XLOG_STATE_COVER_DONE2:
1232 	case XLOG_STATE_COVER_IDLE:
1233 		break;
1234 	case XLOG_STATE_COVER_NEED:
1235 	case XLOG_STATE_COVER_NEED2:
1236 		if (xfs_ail_min_lsn(log->l_ailp))
1237 			break;
1238 		if (!xlog_iclogs_empty(log))
1239 			break;
1240 
1241 		needed = true;
1242 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1243 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1244 		else
1245 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1246 		break;
1247 	default:
1248 		needed = true;
1249 		break;
1250 	}
1251 	spin_unlock(&log->l_icloglock);
1252 	return needed;
1253 }
1254 
1255 /*
1256  * Explicitly cover the log. This is similar to background log covering but
1257  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1258  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1259  * must all be empty.
1260  */
1261 static int
1262 xfs_log_cover(
1263 	struct xfs_mount	*mp)
1264 {
1265 	int			error = 0;
1266 	bool			need_covered;
1267 
1268 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1269 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1270 		xlog_is_shutdown(mp->m_log));
1271 
1272 	if (!xfs_log_writable(mp))
1273 		return 0;
1274 
1275 	/*
1276 	 * xfs_log_need_covered() is not idempotent because it progresses the
1277 	 * state machine if the log requires covering. Therefore, we must call
1278 	 * this function once and use the result until we've issued an sb sync.
1279 	 * Do so first to make that abundantly clear.
1280 	 *
1281 	 * Fall into the covering sequence if the log needs covering or the
1282 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1283 	 * used for covering accumulates the in-core counters, so covering
1284 	 * handles this for us.
1285 	 */
1286 	need_covered = xfs_log_need_covered(mp);
1287 	if (!need_covered && !xfs_has_lazysbcount(mp))
1288 		return 0;
1289 
1290 	/*
1291 	 * To cover the log, commit the superblock twice (at most) in
1292 	 * independent checkpoints. The first serves as a reference for the
1293 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1294 	 * updates the in-core tail to the LSN of the first checkpoint. The
1295 	 * second commit updates the on-disk tail with the in-core LSN,
1296 	 * covering the log. Push the AIL one more time to leave it empty, as
1297 	 * we found it.
1298 	 */
1299 	do {
1300 		error = xfs_sync_sb(mp, true);
1301 		if (error)
1302 			break;
1303 		xfs_ail_push_all_sync(mp->m_ail);
1304 	} while (xfs_log_need_covered(mp));
1305 
1306 	return error;
1307 }
1308 
1309 /*
1310  * We may be holding the log iclog lock upon entering this routine.
1311  */
1312 xfs_lsn_t
1313 xlog_assign_tail_lsn_locked(
1314 	struct xfs_mount	*mp)
1315 {
1316 	struct xlog		*log = mp->m_log;
1317 	struct xfs_log_item	*lip;
1318 	xfs_lsn_t		tail_lsn;
1319 
1320 	assert_spin_locked(&mp->m_ail->ail_lock);
1321 
1322 	/*
1323 	 * To make sure we always have a valid LSN for the log tail we keep
1324 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1325 	 * and use that when the AIL was empty.
1326 	 */
1327 	lip = xfs_ail_min(mp->m_ail);
1328 	if (lip)
1329 		tail_lsn = lip->li_lsn;
1330 	else
1331 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1332 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1333 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1334 	return tail_lsn;
1335 }
1336 
1337 xfs_lsn_t
1338 xlog_assign_tail_lsn(
1339 	struct xfs_mount	*mp)
1340 {
1341 	xfs_lsn_t		tail_lsn;
1342 
1343 	spin_lock(&mp->m_ail->ail_lock);
1344 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1345 	spin_unlock(&mp->m_ail->ail_lock);
1346 
1347 	return tail_lsn;
1348 }
1349 
1350 /*
1351  * Return the space in the log between the tail and the head.  The head
1352  * is passed in the cycle/bytes formal parms.  In the special case where
1353  * the reserve head has wrapped passed the tail, this calculation is no
1354  * longer valid.  In this case, just return 0 which means there is no space
1355  * in the log.  This works for all places where this function is called
1356  * with the reserve head.  Of course, if the write head were to ever
1357  * wrap the tail, we should blow up.  Rather than catch this case here,
1358  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1359  *
1360  * If reservation head is behind the tail, we have a problem. Warn about it,
1361  * but then treat it as if the log is empty.
1362  *
1363  * If the log is shut down, the head and tail may be invalid or out of whack, so
1364  * shortcut invalidity asserts in this case so that we don't trigger them
1365  * falsely.
1366  */
1367 STATIC int
1368 xlog_space_left(
1369 	struct xlog	*log,
1370 	atomic64_t	*head)
1371 {
1372 	int		tail_bytes;
1373 	int		tail_cycle;
1374 	int		head_cycle;
1375 	int		head_bytes;
1376 
1377 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1378 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1379 	tail_bytes = BBTOB(tail_bytes);
1380 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1381 		return log->l_logsize - (head_bytes - tail_bytes);
1382 	if (tail_cycle + 1 < head_cycle)
1383 		return 0;
1384 
1385 	/* Ignore potential inconsistency when shutdown. */
1386 	if (xlog_is_shutdown(log))
1387 		return log->l_logsize;
1388 
1389 	if (tail_cycle < head_cycle) {
1390 		ASSERT(tail_cycle == (head_cycle - 1));
1391 		return tail_bytes - head_bytes;
1392 	}
1393 
1394 	/*
1395 	 * The reservation head is behind the tail. In this case we just want to
1396 	 * return the size of the log as the amount of space left.
1397 	 */
1398 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1399 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1400 		  tail_cycle, tail_bytes);
1401 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1402 		  head_cycle, head_bytes);
1403 	ASSERT(0);
1404 	return log->l_logsize;
1405 }
1406 
1407 
1408 static void
1409 xlog_ioend_work(
1410 	struct work_struct	*work)
1411 {
1412 	struct xlog_in_core     *iclog =
1413 		container_of(work, struct xlog_in_core, ic_end_io_work);
1414 	struct xlog		*log = iclog->ic_log;
1415 	int			error;
1416 
1417 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1418 #ifdef DEBUG
1419 	/* treat writes with injected CRC errors as failed */
1420 	if (iclog->ic_fail_crc)
1421 		error = -EIO;
1422 #endif
1423 
1424 	/*
1425 	 * Race to shutdown the filesystem if we see an error.
1426 	 */
1427 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1428 		xfs_alert(log->l_mp, "log I/O error %d", error);
1429 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1430 	}
1431 
1432 	xlog_state_done_syncing(iclog);
1433 	bio_uninit(&iclog->ic_bio);
1434 
1435 	/*
1436 	 * Drop the lock to signal that we are done. Nothing references the
1437 	 * iclog after this, so an unmount waiting on this lock can now tear it
1438 	 * down safely. As such, it is unsafe to reference the iclog after the
1439 	 * unlock as we could race with it being freed.
1440 	 */
1441 	up(&iclog->ic_sema);
1442 }
1443 
1444 /*
1445  * Return size of each in-core log record buffer.
1446  *
1447  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1448  *
1449  * If the filesystem blocksize is too large, we may need to choose a
1450  * larger size since the directory code currently logs entire blocks.
1451  */
1452 STATIC void
1453 xlog_get_iclog_buffer_size(
1454 	struct xfs_mount	*mp,
1455 	struct xlog		*log)
1456 {
1457 	if (mp->m_logbufs <= 0)
1458 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1459 	if (mp->m_logbsize <= 0)
1460 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1461 
1462 	log->l_iclog_bufs = mp->m_logbufs;
1463 	log->l_iclog_size = mp->m_logbsize;
1464 
1465 	/*
1466 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1467 	 */
1468 	log->l_iclog_heads =
1469 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1470 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1471 }
1472 
1473 void
1474 xfs_log_work_queue(
1475 	struct xfs_mount        *mp)
1476 {
1477 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1478 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1479 }
1480 
1481 /*
1482  * Clear the log incompat flags if we have the opportunity.
1483  *
1484  * This only happens if we're about to log the second dummy transaction as part
1485  * of covering the log and we can get the log incompat feature usage lock.
1486  */
1487 static inline void
1488 xlog_clear_incompat(
1489 	struct xlog		*log)
1490 {
1491 	struct xfs_mount	*mp = log->l_mp;
1492 
1493 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1494 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1495 		return;
1496 
1497 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1498 		return;
1499 
1500 	if (!down_write_trylock(&log->l_incompat_users))
1501 		return;
1502 
1503 	xfs_clear_incompat_log_features(mp);
1504 	up_write(&log->l_incompat_users);
1505 }
1506 
1507 /*
1508  * Every sync period we need to unpin all items in the AIL and push them to
1509  * disk. If there is nothing dirty, then we might need to cover the log to
1510  * indicate that the filesystem is idle.
1511  */
1512 static void
1513 xfs_log_worker(
1514 	struct work_struct	*work)
1515 {
1516 	struct xlog		*log = container_of(to_delayed_work(work),
1517 						struct xlog, l_work);
1518 	struct xfs_mount	*mp = log->l_mp;
1519 
1520 	/* dgc: errors ignored - not fatal and nowhere to report them */
1521 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1522 		/*
1523 		 * Dump a transaction into the log that contains no real change.
1524 		 * This is needed to stamp the current tail LSN into the log
1525 		 * during the covering operation.
1526 		 *
1527 		 * We cannot use an inode here for this - that will push dirty
1528 		 * state back up into the VFS and then periodic inode flushing
1529 		 * will prevent log covering from making progress. Hence we
1530 		 * synchronously log the superblock instead to ensure the
1531 		 * superblock is immediately unpinned and can be written back.
1532 		 */
1533 		xlog_clear_incompat(log);
1534 		xfs_sync_sb(mp, true);
1535 	} else
1536 		xfs_log_force(mp, 0);
1537 
1538 	/* start pushing all the metadata that is currently dirty */
1539 	xfs_ail_push_all(mp->m_ail);
1540 
1541 	/* queue us up again */
1542 	xfs_log_work_queue(mp);
1543 }
1544 
1545 /*
1546  * This routine initializes some of the log structure for a given mount point.
1547  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1548  * some other stuff may be filled in too.
1549  */
1550 STATIC struct xlog *
1551 xlog_alloc_log(
1552 	struct xfs_mount	*mp,
1553 	struct xfs_buftarg	*log_target,
1554 	xfs_daddr_t		blk_offset,
1555 	int			num_bblks)
1556 {
1557 	struct xlog		*log;
1558 	xlog_rec_header_t	*head;
1559 	xlog_in_core_t		**iclogp;
1560 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1561 	int			i;
1562 	int			error = -ENOMEM;
1563 	uint			log2_size = 0;
1564 
1565 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1566 	if (!log) {
1567 		xfs_warn(mp, "Log allocation failed: No memory!");
1568 		goto out;
1569 	}
1570 
1571 	log->l_mp	   = mp;
1572 	log->l_targ	   = log_target;
1573 	log->l_logsize     = BBTOB(num_bblks);
1574 	log->l_logBBstart  = blk_offset;
1575 	log->l_logBBsize   = num_bblks;
1576 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1577 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1578 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1579 
1580 	log->l_prev_block  = -1;
1581 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1582 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1583 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1584 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1585 
1586 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1587 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1588 	else
1589 		log->l_iclog_roundoff = BBSIZE;
1590 
1591 	xlog_grant_head_init(&log->l_reserve_head);
1592 	xlog_grant_head_init(&log->l_write_head);
1593 
1594 	error = -EFSCORRUPTED;
1595 	if (xfs_has_sector(mp)) {
1596 	        log2_size = mp->m_sb.sb_logsectlog;
1597 		if (log2_size < BBSHIFT) {
1598 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1599 				log2_size, BBSHIFT);
1600 			goto out_free_log;
1601 		}
1602 
1603 	        log2_size -= BBSHIFT;
1604 		if (log2_size > mp->m_sectbb_log) {
1605 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1606 				log2_size, mp->m_sectbb_log);
1607 			goto out_free_log;
1608 		}
1609 
1610 		/* for larger sector sizes, must have v2 or external log */
1611 		if (log2_size && log->l_logBBstart > 0 &&
1612 			    !xfs_has_logv2(mp)) {
1613 			xfs_warn(mp,
1614 		"log sector size (0x%x) invalid for configuration.",
1615 				log2_size);
1616 			goto out_free_log;
1617 		}
1618 	}
1619 	log->l_sectBBsize = 1 << log2_size;
1620 
1621 	init_rwsem(&log->l_incompat_users);
1622 
1623 	xlog_get_iclog_buffer_size(mp, log);
1624 
1625 	spin_lock_init(&log->l_icloglock);
1626 	init_waitqueue_head(&log->l_flush_wait);
1627 
1628 	iclogp = &log->l_iclog;
1629 	/*
1630 	 * The amount of memory to allocate for the iclog structure is
1631 	 * rather funky due to the way the structure is defined.  It is
1632 	 * done this way so that we can use different sizes for machines
1633 	 * with different amounts of memory.  See the definition of
1634 	 * xlog_in_core_t in xfs_log_priv.h for details.
1635 	 */
1636 	ASSERT(log->l_iclog_size >= 4096);
1637 	for (i = 0; i < log->l_iclog_bufs; i++) {
1638 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1639 				sizeof(struct bio_vec);
1640 
1641 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1642 		if (!iclog)
1643 			goto out_free_iclog;
1644 
1645 		*iclogp = iclog;
1646 		iclog->ic_prev = prev_iclog;
1647 		prev_iclog = iclog;
1648 
1649 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1650 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1651 		if (!iclog->ic_data)
1652 			goto out_free_iclog;
1653 		head = &iclog->ic_header;
1654 		memset(head, 0, sizeof(xlog_rec_header_t));
1655 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1656 		head->h_version = cpu_to_be32(
1657 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1658 		head->h_size = cpu_to_be32(log->l_iclog_size);
1659 		/* new fields */
1660 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1661 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1662 
1663 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1664 		iclog->ic_state = XLOG_STATE_ACTIVE;
1665 		iclog->ic_log = log;
1666 		atomic_set(&iclog->ic_refcnt, 0);
1667 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1668 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1669 
1670 		init_waitqueue_head(&iclog->ic_force_wait);
1671 		init_waitqueue_head(&iclog->ic_write_wait);
1672 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1673 		sema_init(&iclog->ic_sema, 1);
1674 
1675 		iclogp = &iclog->ic_next;
1676 	}
1677 	*iclogp = log->l_iclog;			/* complete ring */
1678 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1679 
1680 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1681 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1682 				    WQ_HIGHPRI),
1683 			0, mp->m_super->s_id);
1684 	if (!log->l_ioend_workqueue)
1685 		goto out_free_iclog;
1686 
1687 	error = xlog_cil_init(log);
1688 	if (error)
1689 		goto out_destroy_workqueue;
1690 	return log;
1691 
1692 out_destroy_workqueue:
1693 	destroy_workqueue(log->l_ioend_workqueue);
1694 out_free_iclog:
1695 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1696 		prev_iclog = iclog->ic_next;
1697 		kmem_free(iclog->ic_data);
1698 		kmem_free(iclog);
1699 		if (prev_iclog == log->l_iclog)
1700 			break;
1701 	}
1702 out_free_log:
1703 	kmem_free(log);
1704 out:
1705 	return ERR_PTR(error);
1706 }	/* xlog_alloc_log */
1707 
1708 /*
1709  * Compute the LSN that we'd need to push the log tail towards in order to have
1710  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1711  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1712  * log free space already meets all three thresholds, this function returns
1713  * NULLCOMMITLSN.
1714  */
1715 xfs_lsn_t
1716 xlog_grant_push_threshold(
1717 	struct xlog	*log,
1718 	int		need_bytes)
1719 {
1720 	xfs_lsn_t	threshold_lsn = 0;
1721 	xfs_lsn_t	last_sync_lsn;
1722 	int		free_blocks;
1723 	int		free_bytes;
1724 	int		threshold_block;
1725 	int		threshold_cycle;
1726 	int		free_threshold;
1727 
1728 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1729 
1730 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1731 	free_blocks = BTOBBT(free_bytes);
1732 
1733 	/*
1734 	 * Set the threshold for the minimum number of free blocks in the
1735 	 * log to the maximum of what the caller needs, one quarter of the
1736 	 * log, and 256 blocks.
1737 	 */
1738 	free_threshold = BTOBB(need_bytes);
1739 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1740 	free_threshold = max(free_threshold, 256);
1741 	if (free_blocks >= free_threshold)
1742 		return NULLCOMMITLSN;
1743 
1744 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1745 						&threshold_block);
1746 	threshold_block += free_threshold;
1747 	if (threshold_block >= log->l_logBBsize) {
1748 		threshold_block -= log->l_logBBsize;
1749 		threshold_cycle += 1;
1750 	}
1751 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1752 					threshold_block);
1753 	/*
1754 	 * Don't pass in an lsn greater than the lsn of the last
1755 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1756 	 * so that it doesn't change between the compare and the set.
1757 	 */
1758 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1759 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1760 		threshold_lsn = last_sync_lsn;
1761 
1762 	return threshold_lsn;
1763 }
1764 
1765 /*
1766  * Push the tail of the log if we need to do so to maintain the free log space
1767  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1768  * policy which pushes on an lsn which is further along in the log once we
1769  * reach the high water mark.  In this manner, we would be creating a low water
1770  * mark.
1771  */
1772 STATIC void
1773 xlog_grant_push_ail(
1774 	struct xlog	*log,
1775 	int		need_bytes)
1776 {
1777 	xfs_lsn_t	threshold_lsn;
1778 
1779 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1780 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1781 		return;
1782 
1783 	/*
1784 	 * Get the transaction layer to kick the dirty buffers out to
1785 	 * disk asynchronously. No point in trying to do this if
1786 	 * the filesystem is shutting down.
1787 	 */
1788 	xfs_ail_push(log->l_ailp, threshold_lsn);
1789 }
1790 
1791 /*
1792  * Stamp cycle number in every block
1793  */
1794 STATIC void
1795 xlog_pack_data(
1796 	struct xlog		*log,
1797 	struct xlog_in_core	*iclog,
1798 	int			roundoff)
1799 {
1800 	int			i, j, k;
1801 	int			size = iclog->ic_offset + roundoff;
1802 	__be32			cycle_lsn;
1803 	char			*dp;
1804 
1805 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1806 
1807 	dp = iclog->ic_datap;
1808 	for (i = 0; i < BTOBB(size); i++) {
1809 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1810 			break;
1811 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1812 		*(__be32 *)dp = cycle_lsn;
1813 		dp += BBSIZE;
1814 	}
1815 
1816 	if (xfs_has_logv2(log->l_mp)) {
1817 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1818 
1819 		for ( ; i < BTOBB(size); i++) {
1820 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1821 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1822 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1823 			*(__be32 *)dp = cycle_lsn;
1824 			dp += BBSIZE;
1825 		}
1826 
1827 		for (i = 1; i < log->l_iclog_heads; i++)
1828 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1829 	}
1830 }
1831 
1832 /*
1833  * Calculate the checksum for a log buffer.
1834  *
1835  * This is a little more complicated than it should be because the various
1836  * headers and the actual data are non-contiguous.
1837  */
1838 __le32
1839 xlog_cksum(
1840 	struct xlog		*log,
1841 	struct xlog_rec_header	*rhead,
1842 	char			*dp,
1843 	int			size)
1844 {
1845 	uint32_t		crc;
1846 
1847 	/* first generate the crc for the record header ... */
1848 	crc = xfs_start_cksum_update((char *)rhead,
1849 			      sizeof(struct xlog_rec_header),
1850 			      offsetof(struct xlog_rec_header, h_crc));
1851 
1852 	/* ... then for additional cycle data for v2 logs ... */
1853 	if (xfs_has_logv2(log->l_mp)) {
1854 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1855 		int		i;
1856 		int		xheads;
1857 
1858 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1859 
1860 		for (i = 1; i < xheads; i++) {
1861 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1862 				     sizeof(struct xlog_rec_ext_header));
1863 		}
1864 	}
1865 
1866 	/* ... and finally for the payload */
1867 	crc = crc32c(crc, dp, size);
1868 
1869 	return xfs_end_cksum(crc);
1870 }
1871 
1872 static void
1873 xlog_bio_end_io(
1874 	struct bio		*bio)
1875 {
1876 	struct xlog_in_core	*iclog = bio->bi_private;
1877 
1878 	queue_work(iclog->ic_log->l_ioend_workqueue,
1879 		   &iclog->ic_end_io_work);
1880 }
1881 
1882 static int
1883 xlog_map_iclog_data(
1884 	struct bio		*bio,
1885 	void			*data,
1886 	size_t			count)
1887 {
1888 	do {
1889 		struct page	*page = kmem_to_page(data);
1890 		unsigned int	off = offset_in_page(data);
1891 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1892 
1893 		if (bio_add_page(bio, page, len, off) != len)
1894 			return -EIO;
1895 
1896 		data += len;
1897 		count -= len;
1898 	} while (count);
1899 
1900 	return 0;
1901 }
1902 
1903 STATIC void
1904 xlog_write_iclog(
1905 	struct xlog		*log,
1906 	struct xlog_in_core	*iclog,
1907 	uint64_t		bno,
1908 	unsigned int		count)
1909 {
1910 	ASSERT(bno < log->l_logBBsize);
1911 	trace_xlog_iclog_write(iclog, _RET_IP_);
1912 
1913 	/*
1914 	 * We lock the iclogbufs here so that we can serialise against I/O
1915 	 * completion during unmount.  We might be processing a shutdown
1916 	 * triggered during unmount, and that can occur asynchronously to the
1917 	 * unmount thread, and hence we need to ensure that completes before
1918 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1919 	 * across the log IO to archieve that.
1920 	 */
1921 	down(&iclog->ic_sema);
1922 	if (xlog_is_shutdown(log)) {
1923 		/*
1924 		 * It would seem logical to return EIO here, but we rely on
1925 		 * the log state machine to propagate I/O errors instead of
1926 		 * doing it here.  We kick of the state machine and unlock
1927 		 * the buffer manually, the code needs to be kept in sync
1928 		 * with the I/O completion path.
1929 		 */
1930 		xlog_state_done_syncing(iclog);
1931 		up(&iclog->ic_sema);
1932 		return;
1933 	}
1934 
1935 	/*
1936 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1937 	 * IOs coming immediately after this one. This prevents the block layer
1938 	 * writeback throttle from throttling log writes behind background
1939 	 * metadata writeback and causing priority inversions.
1940 	 */
1941 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1942 		 howmany(count, PAGE_SIZE),
1943 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1944 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1945 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1946 	iclog->ic_bio.bi_private = iclog;
1947 
1948 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1949 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1950 		/*
1951 		 * For external log devices, we also need to flush the data
1952 		 * device cache first to ensure all metadata writeback covered
1953 		 * by the LSN in this iclog is on stable storage. This is slow,
1954 		 * but it *must* complete before we issue the external log IO.
1955 		 *
1956 		 * If the flush fails, we cannot conclude that past metadata
1957 		 * writeback from the log succeeded.  Repeating the flush is
1958 		 * not possible, hence we must shut down with log IO error to
1959 		 * avoid shutdown re-entering this path and erroring out again.
1960 		 */
1961 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1962 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) {
1963 			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1964 			return;
1965 		}
1966 	}
1967 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1968 		iclog->ic_bio.bi_opf |= REQ_FUA;
1969 
1970 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1971 
1972 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1973 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1974 		return;
1975 	}
1976 	if (is_vmalloc_addr(iclog->ic_data))
1977 		flush_kernel_vmap_range(iclog->ic_data, count);
1978 
1979 	/*
1980 	 * If this log buffer would straddle the end of the log we will have
1981 	 * to split it up into two bios, so that we can continue at the start.
1982 	 */
1983 	if (bno + BTOBB(count) > log->l_logBBsize) {
1984 		struct bio *split;
1985 
1986 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1987 				  GFP_NOIO, &fs_bio_set);
1988 		bio_chain(split, &iclog->ic_bio);
1989 		submit_bio(split);
1990 
1991 		/* restart at logical offset zero for the remainder */
1992 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1993 	}
1994 
1995 	submit_bio(&iclog->ic_bio);
1996 }
1997 
1998 /*
1999  * We need to bump cycle number for the part of the iclog that is
2000  * written to the start of the log. Watch out for the header magic
2001  * number case, though.
2002  */
2003 static void
2004 xlog_split_iclog(
2005 	struct xlog		*log,
2006 	void			*data,
2007 	uint64_t		bno,
2008 	unsigned int		count)
2009 {
2010 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
2011 	unsigned int		i;
2012 
2013 	for (i = split_offset; i < count; i += BBSIZE) {
2014 		uint32_t cycle = get_unaligned_be32(data + i);
2015 
2016 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
2017 			cycle++;
2018 		put_unaligned_be32(cycle, data + i);
2019 	}
2020 }
2021 
2022 static int
2023 xlog_calc_iclog_size(
2024 	struct xlog		*log,
2025 	struct xlog_in_core	*iclog,
2026 	uint32_t		*roundoff)
2027 {
2028 	uint32_t		count_init, count;
2029 
2030 	/* Add for LR header */
2031 	count_init = log->l_iclog_hsize + iclog->ic_offset;
2032 	count = roundup(count_init, log->l_iclog_roundoff);
2033 
2034 	*roundoff = count - count_init;
2035 
2036 	ASSERT(count >= count_init);
2037 	ASSERT(*roundoff < log->l_iclog_roundoff);
2038 	return count;
2039 }
2040 
2041 /*
2042  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2043  * fashion.  Previously, we should have moved the current iclog
2044  * ptr in the log to point to the next available iclog.  This allows further
2045  * write to continue while this code syncs out an iclog ready to go.
2046  * Before an in-core log can be written out, the data section must be scanned
2047  * to save away the 1st word of each BBSIZE block into the header.  We replace
2048  * it with the current cycle count.  Each BBSIZE block is tagged with the
2049  * cycle count because there in an implicit assumption that drives will
2050  * guarantee that entire 512 byte blocks get written at once.  In other words,
2051  * we can't have part of a 512 byte block written and part not written.  By
2052  * tagging each block, we will know which blocks are valid when recovering
2053  * after an unclean shutdown.
2054  *
2055  * This routine is single threaded on the iclog.  No other thread can be in
2056  * this routine with the same iclog.  Changing contents of iclog can there-
2057  * fore be done without grabbing the state machine lock.  Updating the global
2058  * log will require grabbing the lock though.
2059  *
2060  * The entire log manager uses a logical block numbering scheme.  Only
2061  * xlog_write_iclog knows about the fact that the log may not start with
2062  * block zero on a given device.
2063  */
2064 STATIC void
2065 xlog_sync(
2066 	struct xlog		*log,
2067 	struct xlog_in_core	*iclog,
2068 	struct xlog_ticket	*ticket)
2069 {
2070 	unsigned int		count;		/* byte count of bwrite */
2071 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2072 	uint64_t		bno;
2073 	unsigned int		size;
2074 
2075 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2076 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2077 
2078 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2079 
2080 	/*
2081 	 * If we have a ticket, account for the roundoff via the ticket
2082 	 * reservation to avoid touching the hot grant heads needlessly.
2083 	 * Otherwise, we have to move grant heads directly.
2084 	 */
2085 	if (ticket) {
2086 		ticket->t_curr_res -= roundoff;
2087 	} else {
2088 		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2089 		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2090 	}
2091 
2092 	/* put cycle number in every block */
2093 	xlog_pack_data(log, iclog, roundoff);
2094 
2095 	/* real byte length */
2096 	size = iclog->ic_offset;
2097 	if (xfs_has_logv2(log->l_mp))
2098 		size += roundoff;
2099 	iclog->ic_header.h_len = cpu_to_be32(size);
2100 
2101 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2102 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2103 
2104 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2105 
2106 	/* Do we need to split this write into 2 parts? */
2107 	if (bno + BTOBB(count) > log->l_logBBsize)
2108 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2109 
2110 	/* calculcate the checksum */
2111 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2112 					    iclog->ic_datap, size);
2113 	/*
2114 	 * Intentionally corrupt the log record CRC based on the error injection
2115 	 * frequency, if defined. This facilitates testing log recovery in the
2116 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2117 	 * write on I/O completion and shutdown the fs. The subsequent mount
2118 	 * detects the bad CRC and attempts to recover.
2119 	 */
2120 #ifdef DEBUG
2121 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2122 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2123 		iclog->ic_fail_crc = true;
2124 		xfs_warn(log->l_mp,
2125 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2126 			 be64_to_cpu(iclog->ic_header.h_lsn));
2127 	}
2128 #endif
2129 	xlog_verify_iclog(log, iclog, count);
2130 	xlog_write_iclog(log, iclog, bno, count);
2131 }
2132 
2133 /*
2134  * Deallocate a log structure
2135  */
2136 STATIC void
2137 xlog_dealloc_log(
2138 	struct xlog	*log)
2139 {
2140 	xlog_in_core_t	*iclog, *next_iclog;
2141 	int		i;
2142 
2143 	/*
2144 	 * Destroy the CIL after waiting for iclog IO completion because an
2145 	 * iclog EIO error will try to shut down the log, which accesses the
2146 	 * CIL to wake up the waiters.
2147 	 */
2148 	xlog_cil_destroy(log);
2149 
2150 	iclog = log->l_iclog;
2151 	for (i = 0; i < log->l_iclog_bufs; i++) {
2152 		next_iclog = iclog->ic_next;
2153 		kmem_free(iclog->ic_data);
2154 		kmem_free(iclog);
2155 		iclog = next_iclog;
2156 	}
2157 
2158 	log->l_mp->m_log = NULL;
2159 	destroy_workqueue(log->l_ioend_workqueue);
2160 	kmem_free(log);
2161 }
2162 
2163 /*
2164  * Update counters atomically now that memcpy is done.
2165  */
2166 static inline void
2167 xlog_state_finish_copy(
2168 	struct xlog		*log,
2169 	struct xlog_in_core	*iclog,
2170 	int			record_cnt,
2171 	int			copy_bytes)
2172 {
2173 	lockdep_assert_held(&log->l_icloglock);
2174 
2175 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2176 	iclog->ic_offset += copy_bytes;
2177 }
2178 
2179 /*
2180  * print out info relating to regions written which consume
2181  * the reservation
2182  */
2183 void
2184 xlog_print_tic_res(
2185 	struct xfs_mount	*mp,
2186 	struct xlog_ticket	*ticket)
2187 {
2188 	xfs_warn(mp, "ticket reservation summary:");
2189 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2190 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2191 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2192 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2193 }
2194 
2195 /*
2196  * Print a summary of the transaction.
2197  */
2198 void
2199 xlog_print_trans(
2200 	struct xfs_trans	*tp)
2201 {
2202 	struct xfs_mount	*mp = tp->t_mountp;
2203 	struct xfs_log_item	*lip;
2204 
2205 	/* dump core transaction and ticket info */
2206 	xfs_warn(mp, "transaction summary:");
2207 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2208 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2209 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2210 
2211 	xlog_print_tic_res(mp, tp->t_ticket);
2212 
2213 	/* dump each log item */
2214 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2215 		struct xfs_log_vec	*lv = lip->li_lv;
2216 		struct xfs_log_iovec	*vec;
2217 		int			i;
2218 
2219 		xfs_warn(mp, "log item: ");
2220 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2221 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2222 		if (!lv)
2223 			continue;
2224 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2225 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2226 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2227 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2228 
2229 		/* dump each iovec for the log item */
2230 		vec = lv->lv_iovecp;
2231 		for (i = 0; i < lv->lv_niovecs; i++) {
2232 			int dumplen = min(vec->i_len, 32);
2233 
2234 			xfs_warn(mp, "  iovec[%d]", i);
2235 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2236 			xfs_warn(mp, "    len	= %d", vec->i_len);
2237 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2238 			xfs_hex_dump(vec->i_addr, dumplen);
2239 
2240 			vec++;
2241 		}
2242 	}
2243 }
2244 
2245 static inline void
2246 xlog_write_iovec(
2247 	struct xlog_in_core	*iclog,
2248 	uint32_t		*log_offset,
2249 	void			*data,
2250 	uint32_t		write_len,
2251 	int			*bytes_left,
2252 	uint32_t		*record_cnt,
2253 	uint32_t		*data_cnt)
2254 {
2255 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2256 	ASSERT(*log_offset % sizeof(int32_t) == 0);
2257 	ASSERT(write_len % sizeof(int32_t) == 0);
2258 
2259 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2260 	*log_offset += write_len;
2261 	*bytes_left -= write_len;
2262 	(*record_cnt)++;
2263 	*data_cnt += write_len;
2264 }
2265 
2266 /*
2267  * Write log vectors into a single iclog which is guaranteed by the caller
2268  * to have enough space to write the entire log vector into.
2269  */
2270 static void
2271 xlog_write_full(
2272 	struct xfs_log_vec	*lv,
2273 	struct xlog_ticket	*ticket,
2274 	struct xlog_in_core	*iclog,
2275 	uint32_t		*log_offset,
2276 	uint32_t		*len,
2277 	uint32_t		*record_cnt,
2278 	uint32_t		*data_cnt)
2279 {
2280 	int			index;
2281 
2282 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2283 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2284 
2285 	/*
2286 	 * Ordered log vectors have no regions to write so this
2287 	 * loop will naturally skip them.
2288 	 */
2289 	for (index = 0; index < lv->lv_niovecs; index++) {
2290 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2291 		struct xlog_op_header	*ophdr = reg->i_addr;
2292 
2293 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2294 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2295 				reg->i_len, len, record_cnt, data_cnt);
2296 	}
2297 }
2298 
2299 static int
2300 xlog_write_get_more_iclog_space(
2301 	struct xlog_ticket	*ticket,
2302 	struct xlog_in_core	**iclogp,
2303 	uint32_t		*log_offset,
2304 	uint32_t		len,
2305 	uint32_t		*record_cnt,
2306 	uint32_t		*data_cnt)
2307 {
2308 	struct xlog_in_core	*iclog = *iclogp;
2309 	struct xlog		*log = iclog->ic_log;
2310 	int			error;
2311 
2312 	spin_lock(&log->l_icloglock);
2313 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2314 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2315 	error = xlog_state_release_iclog(log, iclog, ticket);
2316 	spin_unlock(&log->l_icloglock);
2317 	if (error)
2318 		return error;
2319 
2320 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2321 					log_offset);
2322 	if (error)
2323 		return error;
2324 	*record_cnt = 0;
2325 	*data_cnt = 0;
2326 	*iclogp = iclog;
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Write log vectors into a single iclog which is smaller than the current chain
2332  * length. We write until we cannot fit a full record into the remaining space
2333  * and then stop. We return the log vector that is to be written that cannot
2334  * wholly fit in the iclog.
2335  */
2336 static int
2337 xlog_write_partial(
2338 	struct xfs_log_vec	*lv,
2339 	struct xlog_ticket	*ticket,
2340 	struct xlog_in_core	**iclogp,
2341 	uint32_t		*log_offset,
2342 	uint32_t		*len,
2343 	uint32_t		*record_cnt,
2344 	uint32_t		*data_cnt)
2345 {
2346 	struct xlog_in_core	*iclog = *iclogp;
2347 	struct xlog_op_header	*ophdr;
2348 	int			index = 0;
2349 	uint32_t		rlen;
2350 	int			error;
2351 
2352 	/* walk the logvec, copying until we run out of space in the iclog */
2353 	for (index = 0; index < lv->lv_niovecs; index++) {
2354 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2355 		uint32_t		reg_offset = 0;
2356 
2357 		/*
2358 		 * The first region of a continuation must have a non-zero
2359 		 * length otherwise log recovery will just skip over it and
2360 		 * start recovering from the next opheader it finds. Because we
2361 		 * mark the next opheader as a continuation, recovery will then
2362 		 * incorrectly add the continuation to the previous region and
2363 		 * that breaks stuff.
2364 		 *
2365 		 * Hence if there isn't space for region data after the
2366 		 * opheader, then we need to start afresh with a new iclog.
2367 		 */
2368 		if (iclog->ic_size - *log_offset <=
2369 					sizeof(struct xlog_op_header)) {
2370 			error = xlog_write_get_more_iclog_space(ticket,
2371 					&iclog, log_offset, *len, record_cnt,
2372 					data_cnt);
2373 			if (error)
2374 				return error;
2375 		}
2376 
2377 		ophdr = reg->i_addr;
2378 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2379 
2380 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2381 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2382 		if (rlen != reg->i_len)
2383 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2384 
2385 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2386 				rlen, len, record_cnt, data_cnt);
2387 
2388 		/* If we wrote the whole region, move to the next. */
2389 		if (rlen == reg->i_len)
2390 			continue;
2391 
2392 		/*
2393 		 * We now have a partially written iovec, but it can span
2394 		 * multiple iclogs so we loop here. First we release the iclog
2395 		 * we currently have, then we get a new iclog and add a new
2396 		 * opheader. Then we continue copying from where we were until
2397 		 * we either complete the iovec or fill the iclog. If we
2398 		 * complete the iovec, then we increment the index and go right
2399 		 * back to the top of the outer loop. if we fill the iclog, we
2400 		 * run the inner loop again.
2401 		 *
2402 		 * This is complicated by the tail of a region using all the
2403 		 * space in an iclog and hence requiring us to release the iclog
2404 		 * and get a new one before returning to the outer loop. We must
2405 		 * always guarantee that we exit this inner loop with at least
2406 		 * space for log transaction opheaders left in the current
2407 		 * iclog, hence we cannot just terminate the loop at the end
2408 		 * of the of the continuation. So we loop while there is no
2409 		 * space left in the current iclog, and check for the end of the
2410 		 * continuation after getting a new iclog.
2411 		 */
2412 		do {
2413 			/*
2414 			 * Ensure we include the continuation opheader in the
2415 			 * space we need in the new iclog by adding that size
2416 			 * to the length we require. This continuation opheader
2417 			 * needs to be accounted to the ticket as the space it
2418 			 * consumes hasn't been accounted to the lv we are
2419 			 * writing.
2420 			 */
2421 			error = xlog_write_get_more_iclog_space(ticket,
2422 					&iclog, log_offset,
2423 					*len + sizeof(struct xlog_op_header),
2424 					record_cnt, data_cnt);
2425 			if (error)
2426 				return error;
2427 
2428 			ophdr = iclog->ic_datap + *log_offset;
2429 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2430 			ophdr->oh_clientid = XFS_TRANSACTION;
2431 			ophdr->oh_res2 = 0;
2432 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2433 
2434 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2435 			*log_offset += sizeof(struct xlog_op_header);
2436 			*data_cnt += sizeof(struct xlog_op_header);
2437 
2438 			/*
2439 			 * If rlen fits in the iclog, then end the region
2440 			 * continuation. Otherwise we're going around again.
2441 			 */
2442 			reg_offset += rlen;
2443 			rlen = reg->i_len - reg_offset;
2444 			if (rlen <= iclog->ic_size - *log_offset)
2445 				ophdr->oh_flags |= XLOG_END_TRANS;
2446 			else
2447 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2448 
2449 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2450 			ophdr->oh_len = cpu_to_be32(rlen);
2451 
2452 			xlog_write_iovec(iclog, log_offset,
2453 					reg->i_addr + reg_offset,
2454 					rlen, len, record_cnt, data_cnt);
2455 
2456 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2457 	}
2458 
2459 	/*
2460 	 * No more iovecs remain in this logvec so return the next log vec to
2461 	 * the caller so it can go back to fast path copying.
2462 	 */
2463 	*iclogp = iclog;
2464 	return 0;
2465 }
2466 
2467 /*
2468  * Write some region out to in-core log
2469  *
2470  * This will be called when writing externally provided regions or when
2471  * writing out a commit record for a given transaction.
2472  *
2473  * General algorithm:
2474  *	1. Find total length of this write.  This may include adding to the
2475  *		lengths passed in.
2476  *	2. Check whether we violate the tickets reservation.
2477  *	3. While writing to this iclog
2478  *	    A. Reserve as much space in this iclog as can get
2479  *	    B. If this is first write, save away start lsn
2480  *	    C. While writing this region:
2481  *		1. If first write of transaction, write start record
2482  *		2. Write log operation header (header per region)
2483  *		3. Find out if we can fit entire region into this iclog
2484  *		4. Potentially, verify destination memcpy ptr
2485  *		5. Memcpy (partial) region
2486  *		6. If partial copy, release iclog; otherwise, continue
2487  *			copying more regions into current iclog
2488  *	4. Mark want sync bit (in simulation mode)
2489  *	5. Release iclog for potential flush to on-disk log.
2490  *
2491  * ERRORS:
2492  * 1.	Panic if reservation is overrun.  This should never happen since
2493  *	reservation amounts are generated internal to the filesystem.
2494  * NOTES:
2495  * 1. Tickets are single threaded data structures.
2496  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2497  *	syncing routine.  When a single log_write region needs to span
2498  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2499  *	on all log operation writes which don't contain the end of the
2500  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2501  *	operation which contains the end of the continued log_write region.
2502  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2503  *	we don't really know exactly how much space will be used.  As a result,
2504  *	we don't update ic_offset until the end when we know exactly how many
2505  *	bytes have been written out.
2506  */
2507 int
2508 xlog_write(
2509 	struct xlog		*log,
2510 	struct xfs_cil_ctx	*ctx,
2511 	struct list_head	*lv_chain,
2512 	struct xlog_ticket	*ticket,
2513 	uint32_t		len)
2514 
2515 {
2516 	struct xlog_in_core	*iclog = NULL;
2517 	struct xfs_log_vec	*lv;
2518 	uint32_t		record_cnt = 0;
2519 	uint32_t		data_cnt = 0;
2520 	int			error = 0;
2521 	int			log_offset;
2522 
2523 	if (ticket->t_curr_res < 0) {
2524 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2525 		     "ctx ticket reservation ran out. Need to up reservation");
2526 		xlog_print_tic_res(log->l_mp, ticket);
2527 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2528 	}
2529 
2530 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2531 					   &log_offset);
2532 	if (error)
2533 		return error;
2534 
2535 	ASSERT(log_offset <= iclog->ic_size - 1);
2536 
2537 	/*
2538 	 * If we have a context pointer, pass it the first iclog we are
2539 	 * writing to so it can record state needed for iclog write
2540 	 * ordering.
2541 	 */
2542 	if (ctx)
2543 		xlog_cil_set_ctx_write_state(ctx, iclog);
2544 
2545 	list_for_each_entry(lv, lv_chain, lv_list) {
2546 		/*
2547 		 * If the entire log vec does not fit in the iclog, punt it to
2548 		 * the partial copy loop which can handle this case.
2549 		 */
2550 		if (lv->lv_niovecs &&
2551 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2552 			error = xlog_write_partial(lv, ticket, &iclog,
2553 					&log_offset, &len, &record_cnt,
2554 					&data_cnt);
2555 			if (error) {
2556 				/*
2557 				 * We have no iclog to release, so just return
2558 				 * the error immediately.
2559 				 */
2560 				return error;
2561 			}
2562 		} else {
2563 			xlog_write_full(lv, ticket, iclog, &log_offset,
2564 					 &len, &record_cnt, &data_cnt);
2565 		}
2566 	}
2567 	ASSERT(len == 0);
2568 
2569 	/*
2570 	 * We've already been guaranteed that the last writes will fit inside
2571 	 * the current iclog, and hence it will already have the space used by
2572 	 * those writes accounted to it. Hence we do not need to update the
2573 	 * iclog with the number of bytes written here.
2574 	 */
2575 	spin_lock(&log->l_icloglock);
2576 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2577 	error = xlog_state_release_iclog(log, iclog, ticket);
2578 	spin_unlock(&log->l_icloglock);
2579 
2580 	return error;
2581 }
2582 
2583 static void
2584 xlog_state_activate_iclog(
2585 	struct xlog_in_core	*iclog,
2586 	int			*iclogs_changed)
2587 {
2588 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2589 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2590 
2591 	/*
2592 	 * If the number of ops in this iclog indicate it just contains the
2593 	 * dummy transaction, we can change state into IDLE (the second time
2594 	 * around). Otherwise we should change the state into NEED a dummy.
2595 	 * We don't need to cover the dummy.
2596 	 */
2597 	if (*iclogs_changed == 0 &&
2598 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2599 		*iclogs_changed = 1;
2600 	} else {
2601 		/*
2602 		 * We have two dirty iclogs so start over.  This could also be
2603 		 * num of ops indicating this is not the dummy going out.
2604 		 */
2605 		*iclogs_changed = 2;
2606 	}
2607 
2608 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2609 	iclog->ic_offset = 0;
2610 	iclog->ic_header.h_num_logops = 0;
2611 	memset(iclog->ic_header.h_cycle_data, 0,
2612 		sizeof(iclog->ic_header.h_cycle_data));
2613 	iclog->ic_header.h_lsn = 0;
2614 	iclog->ic_header.h_tail_lsn = 0;
2615 }
2616 
2617 /*
2618  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2619  * ACTIVE after iclog I/O has completed.
2620  */
2621 static void
2622 xlog_state_activate_iclogs(
2623 	struct xlog		*log,
2624 	int			*iclogs_changed)
2625 {
2626 	struct xlog_in_core	*iclog = log->l_iclog;
2627 
2628 	do {
2629 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2630 			xlog_state_activate_iclog(iclog, iclogs_changed);
2631 		/*
2632 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2633 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2634 		 */
2635 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2636 			break;
2637 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2638 }
2639 
2640 static int
2641 xlog_covered_state(
2642 	int			prev_state,
2643 	int			iclogs_changed)
2644 {
2645 	/*
2646 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2647 	 * wrote the first covering record (DONE). We go to IDLE if we just
2648 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2649 	 * non-covering write occurs.
2650 	 */
2651 	switch (prev_state) {
2652 	case XLOG_STATE_COVER_IDLE:
2653 		if (iclogs_changed == 1)
2654 			return XLOG_STATE_COVER_IDLE;
2655 		fallthrough;
2656 	case XLOG_STATE_COVER_NEED:
2657 	case XLOG_STATE_COVER_NEED2:
2658 		break;
2659 	case XLOG_STATE_COVER_DONE:
2660 		if (iclogs_changed == 1)
2661 			return XLOG_STATE_COVER_NEED2;
2662 		break;
2663 	case XLOG_STATE_COVER_DONE2:
2664 		if (iclogs_changed == 1)
2665 			return XLOG_STATE_COVER_IDLE;
2666 		break;
2667 	default:
2668 		ASSERT(0);
2669 	}
2670 
2671 	return XLOG_STATE_COVER_NEED;
2672 }
2673 
2674 STATIC void
2675 xlog_state_clean_iclog(
2676 	struct xlog		*log,
2677 	struct xlog_in_core	*dirty_iclog)
2678 {
2679 	int			iclogs_changed = 0;
2680 
2681 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2682 
2683 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2684 
2685 	xlog_state_activate_iclogs(log, &iclogs_changed);
2686 	wake_up_all(&dirty_iclog->ic_force_wait);
2687 
2688 	if (iclogs_changed) {
2689 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2690 				iclogs_changed);
2691 	}
2692 }
2693 
2694 STATIC xfs_lsn_t
2695 xlog_get_lowest_lsn(
2696 	struct xlog		*log)
2697 {
2698 	struct xlog_in_core	*iclog = log->l_iclog;
2699 	xfs_lsn_t		lowest_lsn = 0, lsn;
2700 
2701 	do {
2702 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2703 		    iclog->ic_state == XLOG_STATE_DIRTY)
2704 			continue;
2705 
2706 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2707 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2708 			lowest_lsn = lsn;
2709 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2710 
2711 	return lowest_lsn;
2712 }
2713 
2714 /*
2715  * Completion of a iclog IO does not imply that a transaction has completed, as
2716  * transactions can be large enough to span many iclogs. We cannot change the
2717  * tail of the log half way through a transaction as this may be the only
2718  * transaction in the log and moving the tail to point to the middle of it
2719  * will prevent recovery from finding the start of the transaction. Hence we
2720  * should only update the last_sync_lsn if this iclog contains transaction
2721  * completion callbacks on it.
2722  *
2723  * We have to do this before we drop the icloglock to ensure we are the only one
2724  * that can update it.
2725  *
2726  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2727  * the reservation grant head pushing. This is due to the fact that the push
2728  * target is bound by the current last_sync_lsn value. Hence if we have a large
2729  * amount of log space bound up in this committing transaction then the
2730  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2731  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2732  * should push the AIL to ensure the push target (and hence the grant head) is
2733  * no longer bound by the old log head location and can move forwards and make
2734  * progress again.
2735  */
2736 static void
2737 xlog_state_set_callback(
2738 	struct xlog		*log,
2739 	struct xlog_in_core	*iclog,
2740 	xfs_lsn_t		header_lsn)
2741 {
2742 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2743 	iclog->ic_state = XLOG_STATE_CALLBACK;
2744 
2745 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2746 			   header_lsn) <= 0);
2747 
2748 	if (list_empty_careful(&iclog->ic_callbacks))
2749 		return;
2750 
2751 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2752 	xlog_grant_push_ail(log, 0);
2753 }
2754 
2755 /*
2756  * Return true if we need to stop processing, false to continue to the next
2757  * iclog. The caller will need to run callbacks if the iclog is returned in the
2758  * XLOG_STATE_CALLBACK state.
2759  */
2760 static bool
2761 xlog_state_iodone_process_iclog(
2762 	struct xlog		*log,
2763 	struct xlog_in_core	*iclog)
2764 {
2765 	xfs_lsn_t		lowest_lsn;
2766 	xfs_lsn_t		header_lsn;
2767 
2768 	switch (iclog->ic_state) {
2769 	case XLOG_STATE_ACTIVE:
2770 	case XLOG_STATE_DIRTY:
2771 		/*
2772 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2773 		 */
2774 		return false;
2775 	case XLOG_STATE_DONE_SYNC:
2776 		/*
2777 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2778 		 * one more check here to see if we have chased our tail around.
2779 		 * If this is not the lowest lsn iclog, then we will leave it
2780 		 * for another completion to process.
2781 		 */
2782 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2783 		lowest_lsn = xlog_get_lowest_lsn(log);
2784 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2785 			return false;
2786 		xlog_state_set_callback(log, iclog, header_lsn);
2787 		return false;
2788 	default:
2789 		/*
2790 		 * Can only perform callbacks in order.  Since this iclog is not
2791 		 * in the DONE_SYNC state, we skip the rest and just try to
2792 		 * clean up.
2793 		 */
2794 		return true;
2795 	}
2796 }
2797 
2798 /*
2799  * Loop over all the iclogs, running attached callbacks on them. Return true if
2800  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2801  * to handle transient shutdown state here at all because
2802  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2803  * cleanup of the callbacks.
2804  */
2805 static bool
2806 xlog_state_do_iclog_callbacks(
2807 	struct xlog		*log)
2808 		__releases(&log->l_icloglock)
2809 		__acquires(&log->l_icloglock)
2810 {
2811 	struct xlog_in_core	*first_iclog = log->l_iclog;
2812 	struct xlog_in_core	*iclog = first_iclog;
2813 	bool			ran_callback = false;
2814 
2815 	do {
2816 		LIST_HEAD(cb_list);
2817 
2818 		if (xlog_state_iodone_process_iclog(log, iclog))
2819 			break;
2820 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2821 			iclog = iclog->ic_next;
2822 			continue;
2823 		}
2824 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2825 		spin_unlock(&log->l_icloglock);
2826 
2827 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2828 		xlog_cil_process_committed(&cb_list);
2829 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2830 		ran_callback = true;
2831 
2832 		spin_lock(&log->l_icloglock);
2833 		xlog_state_clean_iclog(log, iclog);
2834 		iclog = iclog->ic_next;
2835 	} while (iclog != first_iclog);
2836 
2837 	return ran_callback;
2838 }
2839 
2840 
2841 /*
2842  * Loop running iclog completion callbacks until there are no more iclogs in a
2843  * state that can run callbacks.
2844  */
2845 STATIC void
2846 xlog_state_do_callback(
2847 	struct xlog		*log)
2848 {
2849 	int			flushcnt = 0;
2850 	int			repeats = 0;
2851 
2852 	spin_lock(&log->l_icloglock);
2853 	while (xlog_state_do_iclog_callbacks(log)) {
2854 		if (xlog_is_shutdown(log))
2855 			break;
2856 
2857 		if (++repeats > 5000) {
2858 			flushcnt += repeats;
2859 			repeats = 0;
2860 			xfs_warn(log->l_mp,
2861 				"%s: possible infinite loop (%d iterations)",
2862 				__func__, flushcnt);
2863 		}
2864 	}
2865 
2866 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2867 		wake_up_all(&log->l_flush_wait);
2868 
2869 	spin_unlock(&log->l_icloglock);
2870 }
2871 
2872 
2873 /*
2874  * Finish transitioning this iclog to the dirty state.
2875  *
2876  * Callbacks could take time, so they are done outside the scope of the
2877  * global state machine log lock.
2878  */
2879 STATIC void
2880 xlog_state_done_syncing(
2881 	struct xlog_in_core	*iclog)
2882 {
2883 	struct xlog		*log = iclog->ic_log;
2884 
2885 	spin_lock(&log->l_icloglock);
2886 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2887 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2888 
2889 	/*
2890 	 * If we got an error, either on the first buffer, or in the case of
2891 	 * split log writes, on the second, we shut down the file system and
2892 	 * no iclogs should ever be attempted to be written to disk again.
2893 	 */
2894 	if (!xlog_is_shutdown(log)) {
2895 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2896 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2897 	}
2898 
2899 	/*
2900 	 * Someone could be sleeping prior to writing out the next
2901 	 * iclog buffer, we wake them all, one will get to do the
2902 	 * I/O, the others get to wait for the result.
2903 	 */
2904 	wake_up_all(&iclog->ic_write_wait);
2905 	spin_unlock(&log->l_icloglock);
2906 	xlog_state_do_callback(log);
2907 }
2908 
2909 /*
2910  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2911  * sleep.  We wait on the flush queue on the head iclog as that should be
2912  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2913  * we will wait here and all new writes will sleep until a sync completes.
2914  *
2915  * The in-core logs are used in a circular fashion. They are not used
2916  * out-of-order even when an iclog past the head is free.
2917  *
2918  * return:
2919  *	* log_offset where xlog_write() can start writing into the in-core
2920  *		log's data space.
2921  *	* in-core log pointer to which xlog_write() should write.
2922  *	* boolean indicating this is a continued write to an in-core log.
2923  *		If this is the last write, then the in-core log's offset field
2924  *		needs to be incremented, depending on the amount of data which
2925  *		is copied.
2926  */
2927 STATIC int
2928 xlog_state_get_iclog_space(
2929 	struct xlog		*log,
2930 	int			len,
2931 	struct xlog_in_core	**iclogp,
2932 	struct xlog_ticket	*ticket,
2933 	int			*logoffsetp)
2934 {
2935 	int		  log_offset;
2936 	xlog_rec_header_t *head;
2937 	xlog_in_core_t	  *iclog;
2938 
2939 restart:
2940 	spin_lock(&log->l_icloglock);
2941 	if (xlog_is_shutdown(log)) {
2942 		spin_unlock(&log->l_icloglock);
2943 		return -EIO;
2944 	}
2945 
2946 	iclog = log->l_iclog;
2947 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2948 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2949 
2950 		/* Wait for log writes to have flushed */
2951 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2952 		goto restart;
2953 	}
2954 
2955 	head = &iclog->ic_header;
2956 
2957 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2958 	log_offset = iclog->ic_offset;
2959 
2960 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2961 
2962 	/* On the 1st write to an iclog, figure out lsn.  This works
2963 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2964 	 * committing to.  If the offset is set, that's how many blocks
2965 	 * must be written.
2966 	 */
2967 	if (log_offset == 0) {
2968 		ticket->t_curr_res -= log->l_iclog_hsize;
2969 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2970 		head->h_lsn = cpu_to_be64(
2971 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2972 		ASSERT(log->l_curr_block >= 0);
2973 	}
2974 
2975 	/* If there is enough room to write everything, then do it.  Otherwise,
2976 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2977 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2978 	 * until you know exactly how many bytes get copied.  Therefore, wait
2979 	 * until later to update ic_offset.
2980 	 *
2981 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2982 	 * can fit into remaining data section.
2983 	 */
2984 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2985 		int		error = 0;
2986 
2987 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2988 
2989 		/*
2990 		 * If we are the only one writing to this iclog, sync it to
2991 		 * disk.  We need to do an atomic compare and decrement here to
2992 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2993 		 * xlog_state_release_iclog() when there is more than one
2994 		 * reference to the iclog.
2995 		 */
2996 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2997 			error = xlog_state_release_iclog(log, iclog, ticket);
2998 		spin_unlock(&log->l_icloglock);
2999 		if (error)
3000 			return error;
3001 		goto restart;
3002 	}
3003 
3004 	/* Do we have enough room to write the full amount in the remainder
3005 	 * of this iclog?  Or must we continue a write on the next iclog and
3006 	 * mark this iclog as completely taken?  In the case where we switch
3007 	 * iclogs (to mark it taken), this particular iclog will release/sync
3008 	 * to disk in xlog_write().
3009 	 */
3010 	if (len <= iclog->ic_size - iclog->ic_offset)
3011 		iclog->ic_offset += len;
3012 	else
3013 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3014 	*iclogp = iclog;
3015 
3016 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3017 	spin_unlock(&log->l_icloglock);
3018 
3019 	*logoffsetp = log_offset;
3020 	return 0;
3021 }
3022 
3023 /*
3024  * The first cnt-1 times a ticket goes through here we don't need to move the
3025  * grant write head because the permanent reservation has reserved cnt times the
3026  * unit amount.  Release part of current permanent unit reservation and reset
3027  * current reservation to be one units worth.  Also move grant reservation head
3028  * forward.
3029  */
3030 void
3031 xfs_log_ticket_regrant(
3032 	struct xlog		*log,
3033 	struct xlog_ticket	*ticket)
3034 {
3035 	trace_xfs_log_ticket_regrant(log, ticket);
3036 
3037 	if (ticket->t_cnt > 0)
3038 		ticket->t_cnt--;
3039 
3040 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3041 					ticket->t_curr_res);
3042 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3043 					ticket->t_curr_res);
3044 	ticket->t_curr_res = ticket->t_unit_res;
3045 
3046 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3047 
3048 	/* just return if we still have some of the pre-reserved space */
3049 	if (!ticket->t_cnt) {
3050 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3051 				     ticket->t_unit_res);
3052 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3053 
3054 		ticket->t_curr_res = ticket->t_unit_res;
3055 	}
3056 
3057 	xfs_log_ticket_put(ticket);
3058 }
3059 
3060 /*
3061  * Give back the space left from a reservation.
3062  *
3063  * All the information we need to make a correct determination of space left
3064  * is present.  For non-permanent reservations, things are quite easy.  The
3065  * count should have been decremented to zero.  We only need to deal with the
3066  * space remaining in the current reservation part of the ticket.  If the
3067  * ticket contains a permanent reservation, there may be left over space which
3068  * needs to be released.  A count of N means that N-1 refills of the current
3069  * reservation can be done before we need to ask for more space.  The first
3070  * one goes to fill up the first current reservation.  Once we run out of
3071  * space, the count will stay at zero and the only space remaining will be
3072  * in the current reservation field.
3073  */
3074 void
3075 xfs_log_ticket_ungrant(
3076 	struct xlog		*log,
3077 	struct xlog_ticket	*ticket)
3078 {
3079 	int			bytes;
3080 
3081 	trace_xfs_log_ticket_ungrant(log, ticket);
3082 
3083 	if (ticket->t_cnt > 0)
3084 		ticket->t_cnt--;
3085 
3086 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3087 
3088 	/*
3089 	 * If this is a permanent reservation ticket, we may be able to free
3090 	 * up more space based on the remaining count.
3091 	 */
3092 	bytes = ticket->t_curr_res;
3093 	if (ticket->t_cnt > 0) {
3094 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3095 		bytes += ticket->t_unit_res*ticket->t_cnt;
3096 	}
3097 
3098 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3099 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3100 
3101 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3102 
3103 	xfs_log_space_wake(log->l_mp);
3104 	xfs_log_ticket_put(ticket);
3105 }
3106 
3107 /*
3108  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3109  * the current iclog pointer to the next iclog in the ring.
3110  */
3111 void
3112 xlog_state_switch_iclogs(
3113 	struct xlog		*log,
3114 	struct xlog_in_core	*iclog,
3115 	int			eventual_size)
3116 {
3117 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3118 	assert_spin_locked(&log->l_icloglock);
3119 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3120 
3121 	if (!eventual_size)
3122 		eventual_size = iclog->ic_offset;
3123 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3124 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3125 	log->l_prev_block = log->l_curr_block;
3126 	log->l_prev_cycle = log->l_curr_cycle;
3127 
3128 	/* roll log?: ic_offset changed later */
3129 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3130 
3131 	/* Round up to next log-sunit */
3132 	if (log->l_iclog_roundoff > BBSIZE) {
3133 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3134 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3135 	}
3136 
3137 	if (log->l_curr_block >= log->l_logBBsize) {
3138 		/*
3139 		 * Rewind the current block before the cycle is bumped to make
3140 		 * sure that the combined LSN never transiently moves forward
3141 		 * when the log wraps to the next cycle. This is to support the
3142 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3143 		 * other cases should acquire l_icloglock.
3144 		 */
3145 		log->l_curr_block -= log->l_logBBsize;
3146 		ASSERT(log->l_curr_block >= 0);
3147 		smp_wmb();
3148 		log->l_curr_cycle++;
3149 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150 			log->l_curr_cycle++;
3151 	}
3152 	ASSERT(iclog == log->l_iclog);
3153 	log->l_iclog = iclog->ic_next;
3154 }
3155 
3156 /*
3157  * Force the iclog to disk and check if the iclog has been completed before
3158  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3159  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3160  * If completion has already occurred, tell the caller so that it can avoid an
3161  * unnecessary wait on the iclog.
3162  */
3163 static int
3164 xlog_force_and_check_iclog(
3165 	struct xlog_in_core	*iclog,
3166 	bool			*completed)
3167 {
3168 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3169 	int			error;
3170 
3171 	*completed = false;
3172 	error = xlog_force_iclog(iclog);
3173 	if (error)
3174 		return error;
3175 
3176 	/*
3177 	 * If the iclog has already been completed and reused the header LSN
3178 	 * will have been rewritten by completion
3179 	 */
3180 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3181 		*completed = true;
3182 	return 0;
3183 }
3184 
3185 /*
3186  * Write out all data in the in-core log as of this exact moment in time.
3187  *
3188  * Data may be written to the in-core log during this call.  However,
3189  * we don't guarantee this data will be written out.  A change from past
3190  * implementation means this routine will *not* write out zero length LRs.
3191  *
3192  * Basically, we try and perform an intelligent scan of the in-core logs.
3193  * If we determine there is no flushable data, we just return.  There is no
3194  * flushable data if:
3195  *
3196  *	1. the current iclog is active and has no data; the previous iclog
3197  *		is in the active or dirty state.
3198  *	2. the current iclog is drity, and the previous iclog is in the
3199  *		active or dirty state.
3200  *
3201  * We may sleep if:
3202  *
3203  *	1. the current iclog is not in the active nor dirty state.
3204  *	2. the current iclog dirty, and the previous iclog is not in the
3205  *		active nor dirty state.
3206  *	3. the current iclog is active, and there is another thread writing
3207  *		to this particular iclog.
3208  *	4. a) the current iclog is active and has no other writers
3209  *	   b) when we return from flushing out this iclog, it is still
3210  *		not in the active nor dirty state.
3211  */
3212 int
3213 xfs_log_force(
3214 	struct xfs_mount	*mp,
3215 	uint			flags)
3216 {
3217 	struct xlog		*log = mp->m_log;
3218 	struct xlog_in_core	*iclog;
3219 
3220 	XFS_STATS_INC(mp, xs_log_force);
3221 	trace_xfs_log_force(mp, 0, _RET_IP_);
3222 
3223 	xlog_cil_force(log);
3224 
3225 	spin_lock(&log->l_icloglock);
3226 	if (xlog_is_shutdown(log))
3227 		goto out_error;
3228 
3229 	iclog = log->l_iclog;
3230 	trace_xlog_iclog_force(iclog, _RET_IP_);
3231 
3232 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3233 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3234 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3235 		/*
3236 		 * If the head is dirty or (active and empty), then we need to
3237 		 * look at the previous iclog.
3238 		 *
3239 		 * If the previous iclog is active or dirty we are done.  There
3240 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3241 		 * previous iclog and go to sleep.
3242 		 */
3243 		iclog = iclog->ic_prev;
3244 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3245 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3246 			/* We have exclusive access to this iclog. */
3247 			bool	completed;
3248 
3249 			if (xlog_force_and_check_iclog(iclog, &completed))
3250 				goto out_error;
3251 
3252 			if (completed)
3253 				goto out_unlock;
3254 		} else {
3255 			/*
3256 			 * Someone else is still writing to this iclog, so we
3257 			 * need to ensure that when they release the iclog it
3258 			 * gets synced immediately as we may be waiting on it.
3259 			 */
3260 			xlog_state_switch_iclogs(log, iclog, 0);
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * The iclog we are about to wait on may contain the checkpoint pushed
3266 	 * by the above xlog_cil_force() call, but it may not have been pushed
3267 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3268 	 * are flushed when this iclog is written.
3269 	 */
3270 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3271 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3272 
3273 	if (flags & XFS_LOG_SYNC)
3274 		return xlog_wait_on_iclog(iclog);
3275 out_unlock:
3276 	spin_unlock(&log->l_icloglock);
3277 	return 0;
3278 out_error:
3279 	spin_unlock(&log->l_icloglock);
3280 	return -EIO;
3281 }
3282 
3283 /*
3284  * Force the log to a specific LSN.
3285  *
3286  * If an iclog with that lsn can be found:
3287  *	If it is in the DIRTY state, just return.
3288  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3289  *		state and go to sleep or return.
3290  *	If it is in any other state, go to sleep or return.
3291  *
3292  * Synchronous forces are implemented with a wait queue.  All callers trying
3293  * to force a given lsn to disk must wait on the queue attached to the
3294  * specific in-core log.  When given in-core log finally completes its write
3295  * to disk, that thread will wake up all threads waiting on the queue.
3296  */
3297 static int
3298 xlog_force_lsn(
3299 	struct xlog		*log,
3300 	xfs_lsn_t		lsn,
3301 	uint			flags,
3302 	int			*log_flushed,
3303 	bool			already_slept)
3304 {
3305 	struct xlog_in_core	*iclog;
3306 	bool			completed;
3307 
3308 	spin_lock(&log->l_icloglock);
3309 	if (xlog_is_shutdown(log))
3310 		goto out_error;
3311 
3312 	iclog = log->l_iclog;
3313 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3314 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3315 		iclog = iclog->ic_next;
3316 		if (iclog == log->l_iclog)
3317 			goto out_unlock;
3318 	}
3319 
3320 	switch (iclog->ic_state) {
3321 	case XLOG_STATE_ACTIVE:
3322 		/*
3323 		 * We sleep here if we haven't already slept (e.g. this is the
3324 		 * first time we've looked at the correct iclog buf) and the
3325 		 * buffer before us is going to be sync'ed.  The reason for this
3326 		 * is that if we are doing sync transactions here, by waiting
3327 		 * for the previous I/O to complete, we can allow a few more
3328 		 * transactions into this iclog before we close it down.
3329 		 *
3330 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3331 		 * refcnt so we can release the log (which drops the ref count).
3332 		 * The state switch keeps new transaction commits from using
3333 		 * this buffer.  When the current commits finish writing into
3334 		 * the buffer, the refcount will drop to zero and the buffer
3335 		 * will go out then.
3336 		 */
3337 		if (!already_slept &&
3338 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3339 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3340 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3341 					&log->l_icloglock);
3342 			return -EAGAIN;
3343 		}
3344 		if (xlog_force_and_check_iclog(iclog, &completed))
3345 			goto out_error;
3346 		if (log_flushed)
3347 			*log_flushed = 1;
3348 		if (completed)
3349 			goto out_unlock;
3350 		break;
3351 	case XLOG_STATE_WANT_SYNC:
3352 		/*
3353 		 * This iclog may contain the checkpoint pushed by the
3354 		 * xlog_cil_force_seq() call, but there are other writers still
3355 		 * accessing it so it hasn't been pushed to disk yet. Like the
3356 		 * ACTIVE case above, we need to make sure caches are flushed
3357 		 * when this iclog is written.
3358 		 */
3359 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3360 		break;
3361 	default:
3362 		/*
3363 		 * The entire checkpoint was written by the CIL force and is on
3364 		 * its way to disk already. It will be stable when it
3365 		 * completes, so we don't need to manipulate caches here at all.
3366 		 * We just need to wait for completion if necessary.
3367 		 */
3368 		break;
3369 	}
3370 
3371 	if (flags & XFS_LOG_SYNC)
3372 		return xlog_wait_on_iclog(iclog);
3373 out_unlock:
3374 	spin_unlock(&log->l_icloglock);
3375 	return 0;
3376 out_error:
3377 	spin_unlock(&log->l_icloglock);
3378 	return -EIO;
3379 }
3380 
3381 /*
3382  * Force the log to a specific checkpoint sequence.
3383  *
3384  * First force the CIL so that all the required changes have been flushed to the
3385  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3386  * the iclog that needs to be flushed to stable storage. If the caller needs
3387  * a synchronous log force, we will wait on the iclog with the LSN returned by
3388  * xlog_cil_force_seq() to be completed.
3389  */
3390 int
3391 xfs_log_force_seq(
3392 	struct xfs_mount	*mp,
3393 	xfs_csn_t		seq,
3394 	uint			flags,
3395 	int			*log_flushed)
3396 {
3397 	struct xlog		*log = mp->m_log;
3398 	xfs_lsn_t		lsn;
3399 	int			ret;
3400 	ASSERT(seq != 0);
3401 
3402 	XFS_STATS_INC(mp, xs_log_force);
3403 	trace_xfs_log_force(mp, seq, _RET_IP_);
3404 
3405 	lsn = xlog_cil_force_seq(log, seq);
3406 	if (lsn == NULLCOMMITLSN)
3407 		return 0;
3408 
3409 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3410 	if (ret == -EAGAIN) {
3411 		XFS_STATS_INC(mp, xs_log_force_sleep);
3412 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3413 	}
3414 	return ret;
3415 }
3416 
3417 /*
3418  * Free a used ticket when its refcount falls to zero.
3419  */
3420 void
3421 xfs_log_ticket_put(
3422 	xlog_ticket_t	*ticket)
3423 {
3424 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3425 	if (atomic_dec_and_test(&ticket->t_ref))
3426 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3427 }
3428 
3429 xlog_ticket_t *
3430 xfs_log_ticket_get(
3431 	xlog_ticket_t	*ticket)
3432 {
3433 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3434 	atomic_inc(&ticket->t_ref);
3435 	return ticket;
3436 }
3437 
3438 /*
3439  * Figure out the total log space unit (in bytes) that would be
3440  * required for a log ticket.
3441  */
3442 static int
3443 xlog_calc_unit_res(
3444 	struct xlog		*log,
3445 	int			unit_bytes,
3446 	int			*niclogs)
3447 {
3448 	int			iclog_space;
3449 	uint			num_headers;
3450 
3451 	/*
3452 	 * Permanent reservations have up to 'cnt'-1 active log operations
3453 	 * in the log.  A unit in this case is the amount of space for one
3454 	 * of these log operations.  Normal reservations have a cnt of 1
3455 	 * and their unit amount is the total amount of space required.
3456 	 *
3457 	 * The following lines of code account for non-transaction data
3458 	 * which occupy space in the on-disk log.
3459 	 *
3460 	 * Normal form of a transaction is:
3461 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3462 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3463 	 *
3464 	 * We need to account for all the leadup data and trailer data
3465 	 * around the transaction data.
3466 	 * And then we need to account for the worst case in terms of using
3467 	 * more space.
3468 	 * The worst case will happen if:
3469 	 * - the placement of the transaction happens to be such that the
3470 	 *   roundoff is at its maximum
3471 	 * - the transaction data is synced before the commit record is synced
3472 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3473 	 *   Therefore the commit record is in its own Log Record.
3474 	 *   This can happen as the commit record is called with its
3475 	 *   own region to xlog_write().
3476 	 *   This then means that in the worst case, roundoff can happen for
3477 	 *   the commit-rec as well.
3478 	 *   The commit-rec is smaller than padding in this scenario and so it is
3479 	 *   not added separately.
3480 	 */
3481 
3482 	/* for trans header */
3483 	unit_bytes += sizeof(xlog_op_header_t);
3484 	unit_bytes += sizeof(xfs_trans_header_t);
3485 
3486 	/* for start-rec */
3487 	unit_bytes += sizeof(xlog_op_header_t);
3488 
3489 	/*
3490 	 * for LR headers - the space for data in an iclog is the size minus
3491 	 * the space used for the headers. If we use the iclog size, then we
3492 	 * undercalculate the number of headers required.
3493 	 *
3494 	 * Furthermore - the addition of op headers for split-recs might
3495 	 * increase the space required enough to require more log and op
3496 	 * headers, so take that into account too.
3497 	 *
3498 	 * IMPORTANT: This reservation makes the assumption that if this
3499 	 * transaction is the first in an iclog and hence has the LR headers
3500 	 * accounted to it, then the remaining space in the iclog is
3501 	 * exclusively for this transaction.  i.e. if the transaction is larger
3502 	 * than the iclog, it will be the only thing in that iclog.
3503 	 * Fundamentally, this means we must pass the entire log vector to
3504 	 * xlog_write to guarantee this.
3505 	 */
3506 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3507 	num_headers = howmany(unit_bytes, iclog_space);
3508 
3509 	/* for split-recs - ophdrs added when data split over LRs */
3510 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3511 
3512 	/* add extra header reservations if we overrun */
3513 	while (!num_headers ||
3514 	       howmany(unit_bytes, iclog_space) > num_headers) {
3515 		unit_bytes += sizeof(xlog_op_header_t);
3516 		num_headers++;
3517 	}
3518 	unit_bytes += log->l_iclog_hsize * num_headers;
3519 
3520 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3521 	unit_bytes += log->l_iclog_hsize;
3522 
3523 	/* roundoff padding for transaction data and one for commit record */
3524 	unit_bytes += 2 * log->l_iclog_roundoff;
3525 
3526 	if (niclogs)
3527 		*niclogs = num_headers;
3528 	return unit_bytes;
3529 }
3530 
3531 int
3532 xfs_log_calc_unit_res(
3533 	struct xfs_mount	*mp,
3534 	int			unit_bytes)
3535 {
3536 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3537 }
3538 
3539 /*
3540  * Allocate and initialise a new log ticket.
3541  */
3542 struct xlog_ticket *
3543 xlog_ticket_alloc(
3544 	struct xlog		*log,
3545 	int			unit_bytes,
3546 	int			cnt,
3547 	bool			permanent)
3548 {
3549 	struct xlog_ticket	*tic;
3550 	int			unit_res;
3551 
3552 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3553 
3554 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3555 
3556 	atomic_set(&tic->t_ref, 1);
3557 	tic->t_task		= current;
3558 	INIT_LIST_HEAD(&tic->t_queue);
3559 	tic->t_unit_res		= unit_res;
3560 	tic->t_curr_res		= unit_res;
3561 	tic->t_cnt		= cnt;
3562 	tic->t_ocnt		= cnt;
3563 	tic->t_tid		= get_random_u32();
3564 	if (permanent)
3565 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3566 
3567 	return tic;
3568 }
3569 
3570 #if defined(DEBUG)
3571 /*
3572  * Check to make sure the grant write head didn't just over lap the tail.  If
3573  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3574  * the cycles differ by exactly one and check the byte count.
3575  *
3576  * This check is run unlocked, so can give false positives. Rather than assert
3577  * on failures, use a warn-once flag and a panic tag to allow the admin to
3578  * determine if they want to panic the machine when such an error occurs. For
3579  * debug kernels this will have the same effect as using an assert but, unlinke
3580  * an assert, it can be turned off at runtime.
3581  */
3582 STATIC void
3583 xlog_verify_grant_tail(
3584 	struct xlog	*log)
3585 {
3586 	int		tail_cycle, tail_blocks;
3587 	int		cycle, space;
3588 
3589 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3590 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3591 	if (tail_cycle != cycle) {
3592 		if (cycle - 1 != tail_cycle &&
3593 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3594 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3595 				"%s: cycle - 1 != tail_cycle", __func__);
3596 		}
3597 
3598 		if (space > BBTOB(tail_blocks) &&
3599 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3600 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3601 				"%s: space > BBTOB(tail_blocks)", __func__);
3602 		}
3603 	}
3604 }
3605 
3606 /* check if it will fit */
3607 STATIC void
3608 xlog_verify_tail_lsn(
3609 	struct xlog		*log,
3610 	struct xlog_in_core	*iclog)
3611 {
3612 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3613 	int		blocks;
3614 
3615     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3616 	blocks =
3617 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3618 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3619 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3620     } else {
3621 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3622 
3623 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3624 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3625 
3626 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3627 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3628 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3629     }
3630 }
3631 
3632 /*
3633  * Perform a number of checks on the iclog before writing to disk.
3634  *
3635  * 1. Make sure the iclogs are still circular
3636  * 2. Make sure we have a good magic number
3637  * 3. Make sure we don't have magic numbers in the data
3638  * 4. Check fields of each log operation header for:
3639  *	A. Valid client identifier
3640  *	B. tid ptr value falls in valid ptr space (user space code)
3641  *	C. Length in log record header is correct according to the
3642  *		individual operation headers within record.
3643  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3644  *	log, check the preceding blocks of the physical log to make sure all
3645  *	the cycle numbers agree with the current cycle number.
3646  */
3647 STATIC void
3648 xlog_verify_iclog(
3649 	struct xlog		*log,
3650 	struct xlog_in_core	*iclog,
3651 	int			count)
3652 {
3653 	xlog_op_header_t	*ophead;
3654 	xlog_in_core_t		*icptr;
3655 	xlog_in_core_2_t	*xhdr;
3656 	void			*base_ptr, *ptr, *p;
3657 	ptrdiff_t		field_offset;
3658 	uint8_t			clientid;
3659 	int			len, i, j, k, op_len;
3660 	int			idx;
3661 
3662 	/* check validity of iclog pointers */
3663 	spin_lock(&log->l_icloglock);
3664 	icptr = log->l_iclog;
3665 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3666 		ASSERT(icptr);
3667 
3668 	if (icptr != log->l_iclog)
3669 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3670 	spin_unlock(&log->l_icloglock);
3671 
3672 	/* check log magic numbers */
3673 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3674 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3675 
3676 	base_ptr = ptr = &iclog->ic_header;
3677 	p = &iclog->ic_header;
3678 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3679 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3680 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3681 				__func__);
3682 	}
3683 
3684 	/* check fields */
3685 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3686 	base_ptr = ptr = iclog->ic_datap;
3687 	ophead = ptr;
3688 	xhdr = iclog->ic_data;
3689 	for (i = 0; i < len; i++) {
3690 		ophead = ptr;
3691 
3692 		/* clientid is only 1 byte */
3693 		p = &ophead->oh_clientid;
3694 		field_offset = p - base_ptr;
3695 		if (field_offset & 0x1ff) {
3696 			clientid = ophead->oh_clientid;
3697 		} else {
3698 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3699 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3700 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3701 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3702 				clientid = xlog_get_client_id(
3703 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3704 			} else {
3705 				clientid = xlog_get_client_id(
3706 					iclog->ic_header.h_cycle_data[idx]);
3707 			}
3708 		}
3709 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3710 			xfs_warn(log->l_mp,
3711 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3712 				__func__, i, clientid, ophead,
3713 				(unsigned long)field_offset);
3714 		}
3715 
3716 		/* check length */
3717 		p = &ophead->oh_len;
3718 		field_offset = p - base_ptr;
3719 		if (field_offset & 0x1ff) {
3720 			op_len = be32_to_cpu(ophead->oh_len);
3721 		} else {
3722 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3723 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3724 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3725 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3726 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3727 			} else {
3728 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3729 			}
3730 		}
3731 		ptr += sizeof(xlog_op_header_t) + op_len;
3732 	}
3733 }
3734 #endif
3735 
3736 /*
3737  * Perform a forced shutdown on the log.
3738  *
3739  * This can be called from low level log code to trigger a shutdown, or from the
3740  * high level mount shutdown code when the mount shuts down.
3741  *
3742  * Our main objectives here are to make sure that:
3743  *	a. if the shutdown was not due to a log IO error, flush the logs to
3744  *	   disk. Anything modified after this is ignored.
3745  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3746  *	   parties to find out. Nothing new gets queued after this is done.
3747  *	c. Tasks sleeping on log reservations, pinned objects and
3748  *	   other resources get woken up.
3749  *	d. The mount is also marked as shut down so that log triggered shutdowns
3750  *	   still behave the same as if they called xfs_forced_shutdown().
3751  *
3752  * Return true if the shutdown cause was a log IO error and we actually shut the
3753  * log down.
3754  */
3755 bool
3756 xlog_force_shutdown(
3757 	struct xlog	*log,
3758 	uint32_t	shutdown_flags)
3759 {
3760 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3761 
3762 	if (!log)
3763 		return false;
3764 
3765 	/*
3766 	 * Flush all the completed transactions to disk before marking the log
3767 	 * being shut down. We need to do this first as shutting down the log
3768 	 * before the force will prevent the log force from flushing the iclogs
3769 	 * to disk.
3770 	 *
3771 	 * When we are in recovery, there are no transactions to flush, and
3772 	 * we don't want to touch the log because we don't want to perturb the
3773 	 * current head/tail for future recovery attempts. Hence we need to
3774 	 * avoid a log force in this case.
3775 	 *
3776 	 * If we are shutting down due to a log IO error, then we must avoid
3777 	 * trying to write the log as that may just result in more IO errors and
3778 	 * an endless shutdown/force loop.
3779 	 */
3780 	if (!log_error && !xlog_in_recovery(log))
3781 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3782 
3783 	/*
3784 	 * Atomically set the shutdown state. If the shutdown state is already
3785 	 * set, there someone else is performing the shutdown and so we are done
3786 	 * here. This should never happen because we should only ever get called
3787 	 * once by the first shutdown caller.
3788 	 *
3789 	 * Much of the log state machine transitions assume that shutdown state
3790 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3791 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3792 	 * operation to set the shutdown state.
3793 	 */
3794 	spin_lock(&log->l_icloglock);
3795 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3796 		spin_unlock(&log->l_icloglock);
3797 		return false;
3798 	}
3799 	spin_unlock(&log->l_icloglock);
3800 
3801 	/*
3802 	 * If this log shutdown also sets the mount shutdown state, issue a
3803 	 * shutdown warning message.
3804 	 */
3805 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3806 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3807 "Filesystem has been shut down due to log error (0x%x).",
3808 				shutdown_flags);
3809 		xfs_alert(log->l_mp,
3810 "Please unmount the filesystem and rectify the problem(s).");
3811 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3812 			xfs_stack_trace();
3813 	}
3814 
3815 	/*
3816 	 * We don't want anybody waiting for log reservations after this. That
3817 	 * means we have to wake up everybody queued up on reserveq as well as
3818 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3819 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3820 	 * action is protected by the grant locks.
3821 	 */
3822 	xlog_grant_head_wake_all(&log->l_reserve_head);
3823 	xlog_grant_head_wake_all(&log->l_write_head);
3824 
3825 	/*
3826 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3827 	 * as if the log writes were completed. The abort handling in the log
3828 	 * item committed callback functions will do this again under lock to
3829 	 * avoid races.
3830 	 */
3831 	spin_lock(&log->l_cilp->xc_push_lock);
3832 	wake_up_all(&log->l_cilp->xc_start_wait);
3833 	wake_up_all(&log->l_cilp->xc_commit_wait);
3834 	spin_unlock(&log->l_cilp->xc_push_lock);
3835 
3836 	spin_lock(&log->l_icloglock);
3837 	xlog_state_shutdown_callbacks(log);
3838 	spin_unlock(&log->l_icloglock);
3839 
3840 	wake_up_var(&log->l_opstate);
3841 	return log_error;
3842 }
3843 
3844 STATIC int
3845 xlog_iclogs_empty(
3846 	struct xlog	*log)
3847 {
3848 	xlog_in_core_t	*iclog;
3849 
3850 	iclog = log->l_iclog;
3851 	do {
3852 		/* endianness does not matter here, zero is zero in
3853 		 * any language.
3854 		 */
3855 		if (iclog->ic_header.h_num_logops)
3856 			return 0;
3857 		iclog = iclog->ic_next;
3858 	} while (iclog != log->l_iclog);
3859 	return 1;
3860 }
3861 
3862 /*
3863  * Verify that an LSN stamped into a piece of metadata is valid. This is
3864  * intended for use in read verifiers on v5 superblocks.
3865  */
3866 bool
3867 xfs_log_check_lsn(
3868 	struct xfs_mount	*mp,
3869 	xfs_lsn_t		lsn)
3870 {
3871 	struct xlog		*log = mp->m_log;
3872 	bool			valid;
3873 
3874 	/*
3875 	 * norecovery mode skips mount-time log processing and unconditionally
3876 	 * resets the in-core LSN. We can't validate in this mode, but
3877 	 * modifications are not allowed anyways so just return true.
3878 	 */
3879 	if (xfs_has_norecovery(mp))
3880 		return true;
3881 
3882 	/*
3883 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3884 	 * handled by recovery and thus safe to ignore here.
3885 	 */
3886 	if (lsn == NULLCOMMITLSN)
3887 		return true;
3888 
3889 	valid = xlog_valid_lsn(mp->m_log, lsn);
3890 
3891 	/* warn the user about what's gone wrong before verifier failure */
3892 	if (!valid) {
3893 		spin_lock(&log->l_icloglock);
3894 		xfs_warn(mp,
3895 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3896 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3897 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3898 			 log->l_curr_cycle, log->l_curr_block);
3899 		spin_unlock(&log->l_icloglock);
3900 	}
3901 
3902 	return valid;
3903 }
3904 
3905 /*
3906  * Notify the log that we're about to start using a feature that is protected
3907  * by a log incompat feature flag.  This will prevent log covering from
3908  * clearing those flags.
3909  */
3910 void
3911 xlog_use_incompat_feat(
3912 	struct xlog		*log)
3913 {
3914 	down_read(&log->l_incompat_users);
3915 }
3916 
3917 /* Notify the log that we've finished using log incompat features. */
3918 void
3919 xlog_drop_incompat_feat(
3920 	struct xlog		*log)
3921 {
3922 	up_read(&log->l_incompat_users);
3923 }
3924