xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 6774def6)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37 #include "xfs_sysfs.h"
38 
39 kmem_zone_t	*xfs_log_ticket_zone;
40 
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 	struct xlog		*log,
45 	struct xlog_ticket	*ticket,
46 	struct xlog_in_core	**iclog,
47 	xfs_lsn_t		*commitlsnp);
48 
49 STATIC struct xlog *
50 xlog_alloc_log(
51 	struct xfs_mount	*mp,
52 	struct xfs_buftarg	*log_target,
53 	xfs_daddr_t		blk_offset,
54 	int			num_bblks);
55 STATIC int
56 xlog_space_left(
57 	struct xlog		*log,
58 	atomic64_t		*head);
59 STATIC int
60 xlog_sync(
61 	struct xlog		*log,
62 	struct xlog_in_core	*iclog);
63 STATIC void
64 xlog_dealloc_log(
65 	struct xlog		*log);
66 
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 	struct xlog		*log,
72 	int			aborted,
73 	struct xlog_in_core	*iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 	struct xlog		*log,
77 	int			len,
78 	struct xlog_in_core	**iclog,
79 	struct xlog_ticket	*ticket,
80 	int			*continued_write,
81 	int			*logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 	struct xlog		*log,
85 	struct xlog_in_core	*iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 	struct xlog		*log,
89 	struct xlog_in_core	*iclog,
90 	int			eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 	struct xlog		*log,
94 	struct xlog_in_core	*iclog);
95 
96 STATIC void
97 xlog_grant_push_ail(
98 	struct xlog		*log,
99 	int			need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 	struct xlog		*log,
103 	struct xlog_ticket	*ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 	struct xlog		*log,
107 	struct xlog_ticket	*ticket);
108 
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 	struct xlog		*log,
113 	char			*ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 	struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 	struct xlog		*log,
120 	struct xlog_in_core	*iclog,
121 	int			count,
122 	bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 	struct xlog		*log,
126 	struct xlog_in_core	*iclog,
127 	xfs_lsn_t		tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134 
135 STATIC int
136 xlog_iclogs_empty(
137 	struct xlog		*log);
138 
139 static void
140 xlog_grant_sub_space(
141 	struct xlog		*log,
142 	atomic64_t		*head,
143 	int			bytes)
144 {
145 	int64_t	head_val = atomic64_read(head);
146 	int64_t new, old;
147 
148 	do {
149 		int	cycle, space;
150 
151 		xlog_crack_grant_head_val(head_val, &cycle, &space);
152 
153 		space -= bytes;
154 		if (space < 0) {
155 			space += log->l_logsize;
156 			cycle--;
157 		}
158 
159 		old = head_val;
160 		new = xlog_assign_grant_head_val(cycle, space);
161 		head_val = atomic64_cmpxchg(head, old, new);
162 	} while (head_val != old);
163 }
164 
165 static void
166 xlog_grant_add_space(
167 	struct xlog		*log,
168 	atomic64_t		*head,
169 	int			bytes)
170 {
171 	int64_t	head_val = atomic64_read(head);
172 	int64_t new, old;
173 
174 	do {
175 		int		tmp;
176 		int		cycle, space;
177 
178 		xlog_crack_grant_head_val(head_val, &cycle, &space);
179 
180 		tmp = log->l_logsize - space;
181 		if (tmp > bytes)
182 			space += bytes;
183 		else {
184 			space = bytes - tmp;
185 			cycle++;
186 		}
187 
188 		old = head_val;
189 		new = xlog_assign_grant_head_val(cycle, space);
190 		head_val = atomic64_cmpxchg(head, old, new);
191 	} while (head_val != old);
192 }
193 
194 STATIC void
195 xlog_grant_head_init(
196 	struct xlog_grant_head	*head)
197 {
198 	xlog_assign_grant_head(&head->grant, 1, 0);
199 	INIT_LIST_HEAD(&head->waiters);
200 	spin_lock_init(&head->lock);
201 }
202 
203 STATIC void
204 xlog_grant_head_wake_all(
205 	struct xlog_grant_head	*head)
206 {
207 	struct xlog_ticket	*tic;
208 
209 	spin_lock(&head->lock);
210 	list_for_each_entry(tic, &head->waiters, t_queue)
211 		wake_up_process(tic->t_task);
212 	spin_unlock(&head->lock);
213 }
214 
215 static inline int
216 xlog_ticket_reservation(
217 	struct xlog		*log,
218 	struct xlog_grant_head	*head,
219 	struct xlog_ticket	*tic)
220 {
221 	if (head == &log->l_write_head) {
222 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 		return tic->t_unit_res;
224 	} else {
225 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 			return tic->t_unit_res * tic->t_cnt;
227 		else
228 			return tic->t_unit_res;
229 	}
230 }
231 
232 STATIC bool
233 xlog_grant_head_wake(
234 	struct xlog		*log,
235 	struct xlog_grant_head	*head,
236 	int			*free_bytes)
237 {
238 	struct xlog_ticket	*tic;
239 	int			need_bytes;
240 
241 	list_for_each_entry(tic, &head->waiters, t_queue) {
242 		need_bytes = xlog_ticket_reservation(log, head, tic);
243 		if (*free_bytes < need_bytes)
244 			return false;
245 
246 		*free_bytes -= need_bytes;
247 		trace_xfs_log_grant_wake_up(log, tic);
248 		wake_up_process(tic->t_task);
249 	}
250 
251 	return true;
252 }
253 
254 STATIC int
255 xlog_grant_head_wait(
256 	struct xlog		*log,
257 	struct xlog_grant_head	*head,
258 	struct xlog_ticket	*tic,
259 	int			need_bytes) __releases(&head->lock)
260 					    __acquires(&head->lock)
261 {
262 	list_add_tail(&tic->t_queue, &head->waiters);
263 
264 	do {
265 		if (XLOG_FORCED_SHUTDOWN(log))
266 			goto shutdown;
267 		xlog_grant_push_ail(log, need_bytes);
268 
269 		__set_current_state(TASK_UNINTERRUPTIBLE);
270 		spin_unlock(&head->lock);
271 
272 		XFS_STATS_INC(xs_sleep_logspace);
273 
274 		trace_xfs_log_grant_sleep(log, tic);
275 		schedule();
276 		trace_xfs_log_grant_wake(log, tic);
277 
278 		spin_lock(&head->lock);
279 		if (XLOG_FORCED_SHUTDOWN(log))
280 			goto shutdown;
281 	} while (xlog_space_left(log, &head->grant) < need_bytes);
282 
283 	list_del_init(&tic->t_queue);
284 	return 0;
285 shutdown:
286 	list_del_init(&tic->t_queue);
287 	return -EIO;
288 }
289 
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309 	struct xlog		*log,
310 	struct xlog_grant_head	*head,
311 	struct xlog_ticket	*tic,
312 	int			*need_bytes)
313 {
314 	int			free_bytes;
315 	int			error = 0;
316 
317 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318 
319 	/*
320 	 * If there are other waiters on the queue then give them a chance at
321 	 * logspace before us.  Wake up the first waiters, if we do not wake
322 	 * up all the waiters then go to sleep waiting for more free space,
323 	 * otherwise try to get some space for this transaction.
324 	 */
325 	*need_bytes = xlog_ticket_reservation(log, head, tic);
326 	free_bytes = xlog_space_left(log, &head->grant);
327 	if (!list_empty_careful(&head->waiters)) {
328 		spin_lock(&head->lock);
329 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 		    free_bytes < *need_bytes) {
331 			error = xlog_grant_head_wait(log, head, tic,
332 						     *need_bytes);
333 		}
334 		spin_unlock(&head->lock);
335 	} else if (free_bytes < *need_bytes) {
336 		spin_lock(&head->lock);
337 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 		spin_unlock(&head->lock);
339 	}
340 
341 	return error;
342 }
343 
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 	tic->t_res_num = 0;
348 	tic->t_res_arr_sum = 0;
349 	tic->t_res_num_ophdrs = 0;
350 }
351 
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 		/* add to overflow and start again */
357 		tic->t_res_o_flow += tic->t_res_arr_sum;
358 		tic->t_res_num = 0;
359 		tic->t_res_arr_sum = 0;
360 	}
361 
362 	tic->t_res_arr[tic->t_res_num].r_len = len;
363 	tic->t_res_arr[tic->t_res_num].r_type = type;
364 	tic->t_res_arr_sum += len;
365 	tic->t_res_num++;
366 }
367 
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373 	struct xfs_mount	*mp,
374 	struct xlog_ticket	*tic)
375 {
376 	struct xlog		*log = mp->m_log;
377 	int			need_bytes;
378 	int			error = 0;
379 
380 	if (XLOG_FORCED_SHUTDOWN(log))
381 		return -EIO;
382 
383 	XFS_STATS_INC(xs_try_logspace);
384 
385 	/*
386 	 * This is a new transaction on the ticket, so we need to change the
387 	 * transaction ID so that the next transaction has a different TID in
388 	 * the log. Just add one to the existing tid so that we can see chains
389 	 * of rolling transactions in the log easily.
390 	 */
391 	tic->t_tid++;
392 
393 	xlog_grant_push_ail(log, tic->t_unit_res);
394 
395 	tic->t_curr_res = tic->t_unit_res;
396 	xlog_tic_reset_res(tic);
397 
398 	if (tic->t_cnt > 0)
399 		return 0;
400 
401 	trace_xfs_log_regrant(log, tic);
402 
403 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 				      &need_bytes);
405 	if (error)
406 		goto out_error;
407 
408 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 	trace_xfs_log_regrant_exit(log, tic);
410 	xlog_verify_grant_tail(log);
411 	return 0;
412 
413 out_error:
414 	/*
415 	 * If we are failing, make sure the ticket doesn't have any current
416 	 * reservations.  We don't want to add this back when the ticket/
417 	 * transaction gets cancelled.
418 	 */
419 	tic->t_curr_res = 0;
420 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
421 	return error;
422 }
423 
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434 	struct xfs_mount	*mp,
435 	int		 	unit_bytes,
436 	int		 	cnt,
437 	struct xlog_ticket	**ticp,
438 	__uint8_t	 	client,
439 	bool			permanent,
440 	uint		 	t_type)
441 {
442 	struct xlog		*log = mp->m_log;
443 	struct xlog_ticket	*tic;
444 	int			need_bytes;
445 	int			error = 0;
446 
447 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 
449 	if (XLOG_FORCED_SHUTDOWN(log))
450 		return -EIO;
451 
452 	XFS_STATS_INC(xs_try_logspace);
453 
454 	ASSERT(*ticp == NULL);
455 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456 				KM_SLEEP | KM_MAYFAIL);
457 	if (!tic)
458 		return -ENOMEM;
459 
460 	tic->t_trans_type = t_type;
461 	*ticp = tic;
462 
463 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 					    : tic->t_unit_res);
465 
466 	trace_xfs_log_reserve(log, tic);
467 
468 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 				      &need_bytes);
470 	if (error)
471 		goto out_error;
472 
473 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 	trace_xfs_log_reserve_exit(log, tic);
476 	xlog_verify_grant_tail(log);
477 	return 0;
478 
479 out_error:
480 	/*
481 	 * If we are failing, make sure the ticket doesn't have any current
482 	 * reservations.  We don't want to add this back when the ticket/
483 	 * transaction gets cancelled.
484 	 */
485 	tic->t_curr_res = 0;
486 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487 	return error;
488 }
489 
490 
491 /*
492  * NOTES:
493  *
494  *	1. currblock field gets updated at startup and after in-core logs
495  *		marked as with WANT_SYNC.
496  */
497 
498 /*
499  * This routine is called when a user of a log manager ticket is done with
500  * the reservation.  If the ticket was ever used, then a commit record for
501  * the associated transaction is written out as a log operation header with
502  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
503  * a given ticket.  If the ticket was one with a permanent reservation, then
504  * a few operations are done differently.  Permanent reservation tickets by
505  * default don't release the reservation.  They just commit the current
506  * transaction with the belief that the reservation is still needed.  A flag
507  * must be passed in before permanent reservations are actually released.
508  * When these type of tickets are not released, they need to be set into
509  * the inited state again.  By doing this, a start record will be written
510  * out when the next write occurs.
511  */
512 xfs_lsn_t
513 xfs_log_done(
514 	struct xfs_mount	*mp,
515 	struct xlog_ticket	*ticket,
516 	struct xlog_in_core	**iclog,
517 	uint			flags)
518 {
519 	struct xlog		*log = mp->m_log;
520 	xfs_lsn_t		lsn = 0;
521 
522 	if (XLOG_FORCED_SHUTDOWN(log) ||
523 	    /*
524 	     * If nothing was ever written, don't write out commit record.
525 	     * If we get an error, just continue and give back the log ticket.
526 	     */
527 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529 		lsn = (xfs_lsn_t) -1;
530 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531 			flags |= XFS_LOG_REL_PERM_RESERV;
532 		}
533 	}
534 
535 
536 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
538 		trace_xfs_log_done_nonperm(log, ticket);
539 
540 		/*
541 		 * Release ticket if not permanent reservation or a specific
542 		 * request has been made to release a permanent reservation.
543 		 */
544 		xlog_ungrant_log_space(log, ticket);
545 		xfs_log_ticket_put(ticket);
546 	} else {
547 		trace_xfs_log_done_perm(log, ticket);
548 
549 		xlog_regrant_reserve_log_space(log, ticket);
550 		/* If this ticket was a permanent reservation and we aren't
551 		 * trying to release it, reset the inited flags; so next time
552 		 * we write, a start record will be written out.
553 		 */
554 		ticket->t_flags |= XLOG_TIC_INITED;
555 	}
556 
557 	return lsn;
558 }
559 
560 /*
561  * Attaches a new iclog I/O completion callback routine during
562  * transaction commit.  If the log is in error state, a non-zero
563  * return code is handed back and the caller is responsible for
564  * executing the callback at an appropriate time.
565  */
566 int
567 xfs_log_notify(
568 	struct xfs_mount	*mp,
569 	struct xlog_in_core	*iclog,
570 	xfs_log_callback_t	*cb)
571 {
572 	int	abortflg;
573 
574 	spin_lock(&iclog->ic_callback_lock);
575 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576 	if (!abortflg) {
577 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579 		cb->cb_next = NULL;
580 		*(iclog->ic_callback_tail) = cb;
581 		iclog->ic_callback_tail = &(cb->cb_next);
582 	}
583 	spin_unlock(&iclog->ic_callback_lock);
584 	return abortflg;
585 }
586 
587 int
588 xfs_log_release_iclog(
589 	struct xfs_mount	*mp,
590 	struct xlog_in_core	*iclog)
591 {
592 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
593 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594 		return -EIO;
595 	}
596 
597 	return 0;
598 }
599 
600 /*
601  * Mount a log filesystem
602  *
603  * mp		- ubiquitous xfs mount point structure
604  * log_target	- buftarg of on-disk log device
605  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
606  * num_bblocks	- Number of BBSIZE blocks in on-disk log
607  *
608  * Return error or zero.
609  */
610 int
611 xfs_log_mount(
612 	xfs_mount_t	*mp,
613 	xfs_buftarg_t	*log_target,
614 	xfs_daddr_t	blk_offset,
615 	int		num_bblks)
616 {
617 	int		error = 0;
618 	int		min_logfsbs;
619 
620 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
621 		xfs_notice(mp, "Mounting V%d Filesystem",
622 			   XFS_SB_VERSION_NUM(&mp->m_sb));
623 	} else {
624 		xfs_notice(mp,
625 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
626 			   XFS_SB_VERSION_NUM(&mp->m_sb));
627 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
628 	}
629 
630 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
631 	if (IS_ERR(mp->m_log)) {
632 		error = PTR_ERR(mp->m_log);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Validate the given log space and drop a critical message via syslog
638 	 * if the log size is too small that would lead to some unexpected
639 	 * situations in transaction log space reservation stage.
640 	 *
641 	 * Note: we can't just reject the mount if the validation fails.  This
642 	 * would mean that people would have to downgrade their kernel just to
643 	 * remedy the situation as there is no way to grow the log (short of
644 	 * black magic surgery with xfs_db).
645 	 *
646 	 * We can, however, reject mounts for CRC format filesystems, as the
647 	 * mkfs binary being used to make the filesystem should never create a
648 	 * filesystem with a log that is too small.
649 	 */
650 	min_logfsbs = xfs_log_calc_minimum_size(mp);
651 
652 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
653 		xfs_warn(mp,
654 		"Log size %d blocks too small, minimum size is %d blocks",
655 			 mp->m_sb.sb_logblocks, min_logfsbs);
656 		error = -EINVAL;
657 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
658 		xfs_warn(mp,
659 		"Log size %d blocks too large, maximum size is %lld blocks",
660 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
661 		error = -EINVAL;
662 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
663 		xfs_warn(mp,
664 		"log size %lld bytes too large, maximum size is %lld bytes",
665 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
666 			 XFS_MAX_LOG_BYTES);
667 		error = -EINVAL;
668 	}
669 	if (error) {
670 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
671 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
672 			ASSERT(0);
673 			goto out_free_log;
674 		}
675 		xfs_crit(mp,
676 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
677 "experienced then please report this message in the bug report.");
678 	}
679 
680 	/*
681 	 * Initialize the AIL now we have a log.
682 	 */
683 	error = xfs_trans_ail_init(mp);
684 	if (error) {
685 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
686 		goto out_free_log;
687 	}
688 	mp->m_log->l_ailp = mp->m_ail;
689 
690 	/*
691 	 * skip log recovery on a norecovery mount.  pretend it all
692 	 * just worked.
693 	 */
694 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
695 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
696 
697 		if (readonly)
698 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
699 
700 		error = xlog_recover(mp->m_log);
701 
702 		if (readonly)
703 			mp->m_flags |= XFS_MOUNT_RDONLY;
704 		if (error) {
705 			xfs_warn(mp, "log mount/recovery failed: error %d",
706 				error);
707 			goto out_destroy_ail;
708 		}
709 	}
710 
711 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
712 			       "log");
713 	if (error)
714 		goto out_destroy_ail;
715 
716 	/* Normal transactions can now occur */
717 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
718 
719 	/*
720 	 * Now the log has been fully initialised and we know were our
721 	 * space grant counters are, we can initialise the permanent ticket
722 	 * needed for delayed logging to work.
723 	 */
724 	xlog_cil_init_post_recovery(mp->m_log);
725 
726 	return 0;
727 
728 out_destroy_ail:
729 	xfs_trans_ail_destroy(mp);
730 out_free_log:
731 	xlog_dealloc_log(mp->m_log);
732 out:
733 	return error;
734 }
735 
736 /*
737  * Finish the recovery of the file system.  This is separate from the
738  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
739  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
740  * here.
741  *
742  * If we finish recovery successfully, start the background log work. If we are
743  * not doing recovery, then we have a RO filesystem and we don't need to start
744  * it.
745  */
746 int
747 xfs_log_mount_finish(xfs_mount_t *mp)
748 {
749 	int	error = 0;
750 
751 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
752 		error = xlog_recover_finish(mp->m_log);
753 		if (!error)
754 			xfs_log_work_queue(mp);
755 	} else {
756 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
757 	}
758 
759 
760 	return error;
761 }
762 
763 /*
764  * Final log writes as part of unmount.
765  *
766  * Mark the filesystem clean as unmount happens.  Note that during relocation
767  * this routine needs to be executed as part of source-bag while the
768  * deallocation must not be done until source-end.
769  */
770 
771 /*
772  * Unmount record used to have a string "Unmount filesystem--" in the
773  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
774  * We just write the magic number now since that particular field isn't
775  * currently architecture converted and "Unmount" is a bit foo.
776  * As far as I know, there weren't any dependencies on the old behaviour.
777  */
778 
779 int
780 xfs_log_unmount_write(xfs_mount_t *mp)
781 {
782 	struct xlog	 *log = mp->m_log;
783 	xlog_in_core_t	 *iclog;
784 #ifdef DEBUG
785 	xlog_in_core_t	 *first_iclog;
786 #endif
787 	xlog_ticket_t	*tic = NULL;
788 	xfs_lsn_t	 lsn;
789 	int		 error;
790 
791 	/*
792 	 * Don't write out unmount record on read-only mounts.
793 	 * Or, if we are doing a forced umount (typically because of IO errors).
794 	 */
795 	if (mp->m_flags & XFS_MOUNT_RDONLY)
796 		return 0;
797 
798 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
799 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
800 
801 #ifdef DEBUG
802 	first_iclog = iclog = log->l_iclog;
803 	do {
804 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
805 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
806 			ASSERT(iclog->ic_offset == 0);
807 		}
808 		iclog = iclog->ic_next;
809 	} while (iclog != first_iclog);
810 #endif
811 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
812 		error = xfs_log_reserve(mp, 600, 1, &tic,
813 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
814 		if (!error) {
815 			/* the data section must be 32 bit size aligned */
816 			struct {
817 			    __uint16_t magic;
818 			    __uint16_t pad1;
819 			    __uint32_t pad2; /* may as well make it 64 bits */
820 			} magic = {
821 				.magic = XLOG_UNMOUNT_TYPE,
822 			};
823 			struct xfs_log_iovec reg = {
824 				.i_addr = &magic,
825 				.i_len = sizeof(magic),
826 				.i_type = XLOG_REG_TYPE_UNMOUNT,
827 			};
828 			struct xfs_log_vec vec = {
829 				.lv_niovecs = 1,
830 				.lv_iovecp = &reg,
831 			};
832 
833 			/* remove inited flag, and account for space used */
834 			tic->t_flags = 0;
835 			tic->t_curr_res -= sizeof(magic);
836 			error = xlog_write(log, &vec, tic, &lsn,
837 					   NULL, XLOG_UNMOUNT_TRANS);
838 			/*
839 			 * At this point, we're umounting anyway,
840 			 * so there's no point in transitioning log state
841 			 * to IOERROR. Just continue...
842 			 */
843 		}
844 
845 		if (error)
846 			xfs_alert(mp, "%s: unmount record failed", __func__);
847 
848 
849 		spin_lock(&log->l_icloglock);
850 		iclog = log->l_iclog;
851 		atomic_inc(&iclog->ic_refcnt);
852 		xlog_state_want_sync(log, iclog);
853 		spin_unlock(&log->l_icloglock);
854 		error = xlog_state_release_iclog(log, iclog);
855 
856 		spin_lock(&log->l_icloglock);
857 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
858 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
859 			if (!XLOG_FORCED_SHUTDOWN(log)) {
860 				xlog_wait(&iclog->ic_force_wait,
861 							&log->l_icloglock);
862 			} else {
863 				spin_unlock(&log->l_icloglock);
864 			}
865 		} else {
866 			spin_unlock(&log->l_icloglock);
867 		}
868 		if (tic) {
869 			trace_xfs_log_umount_write(log, tic);
870 			xlog_ungrant_log_space(log, tic);
871 			xfs_log_ticket_put(tic);
872 		}
873 	} else {
874 		/*
875 		 * We're already in forced_shutdown mode, couldn't
876 		 * even attempt to write out the unmount transaction.
877 		 *
878 		 * Go through the motions of sync'ing and releasing
879 		 * the iclog, even though no I/O will actually happen,
880 		 * we need to wait for other log I/Os that may already
881 		 * be in progress.  Do this as a separate section of
882 		 * code so we'll know if we ever get stuck here that
883 		 * we're in this odd situation of trying to unmount
884 		 * a file system that went into forced_shutdown as
885 		 * the result of an unmount..
886 		 */
887 		spin_lock(&log->l_icloglock);
888 		iclog = log->l_iclog;
889 		atomic_inc(&iclog->ic_refcnt);
890 
891 		xlog_state_want_sync(log, iclog);
892 		spin_unlock(&log->l_icloglock);
893 		error =  xlog_state_release_iclog(log, iclog);
894 
895 		spin_lock(&log->l_icloglock);
896 
897 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
898 			|| iclog->ic_state == XLOG_STATE_DIRTY
899 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
900 
901 				xlog_wait(&iclog->ic_force_wait,
902 							&log->l_icloglock);
903 		} else {
904 			spin_unlock(&log->l_icloglock);
905 		}
906 	}
907 
908 	return error;
909 }	/* xfs_log_unmount_write */
910 
911 /*
912  * Empty the log for unmount/freeze.
913  *
914  * To do this, we first need to shut down the background log work so it is not
915  * trying to cover the log as we clean up. We then need to unpin all objects in
916  * the log so we can then flush them out. Once they have completed their IO and
917  * run the callbacks removing themselves from the AIL, we can write the unmount
918  * record.
919  */
920 void
921 xfs_log_quiesce(
922 	struct xfs_mount	*mp)
923 {
924 	cancel_delayed_work_sync(&mp->m_log->l_work);
925 	xfs_log_force(mp, XFS_LOG_SYNC);
926 
927 	/*
928 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
929 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
930 	 * xfs_buf_iowait() cannot be used because it was pushed with the
931 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
932 	 * the IO to complete.
933 	 */
934 	xfs_ail_push_all_sync(mp->m_ail);
935 	xfs_wait_buftarg(mp->m_ddev_targp);
936 	xfs_buf_lock(mp->m_sb_bp);
937 	xfs_buf_unlock(mp->m_sb_bp);
938 
939 	xfs_log_unmount_write(mp);
940 }
941 
942 /*
943  * Shut down and release the AIL and Log.
944  *
945  * During unmount, we need to ensure we flush all the dirty metadata objects
946  * from the AIL so that the log is empty before we write the unmount record to
947  * the log. Once this is done, we can tear down the AIL and the log.
948  */
949 void
950 xfs_log_unmount(
951 	struct xfs_mount	*mp)
952 {
953 	xfs_log_quiesce(mp);
954 
955 	xfs_trans_ail_destroy(mp);
956 
957 	xfs_sysfs_del(&mp->m_log->l_kobj);
958 
959 	xlog_dealloc_log(mp->m_log);
960 }
961 
962 void
963 xfs_log_item_init(
964 	struct xfs_mount	*mp,
965 	struct xfs_log_item	*item,
966 	int			type,
967 	const struct xfs_item_ops *ops)
968 {
969 	item->li_mountp = mp;
970 	item->li_ailp = mp->m_ail;
971 	item->li_type = type;
972 	item->li_ops = ops;
973 	item->li_lv = NULL;
974 
975 	INIT_LIST_HEAD(&item->li_ail);
976 	INIT_LIST_HEAD(&item->li_cil);
977 }
978 
979 /*
980  * Wake up processes waiting for log space after we have moved the log tail.
981  */
982 void
983 xfs_log_space_wake(
984 	struct xfs_mount	*mp)
985 {
986 	struct xlog		*log = mp->m_log;
987 	int			free_bytes;
988 
989 	if (XLOG_FORCED_SHUTDOWN(log))
990 		return;
991 
992 	if (!list_empty_careful(&log->l_write_head.waiters)) {
993 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994 
995 		spin_lock(&log->l_write_head.lock);
996 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
997 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
998 		spin_unlock(&log->l_write_head.lock);
999 	}
1000 
1001 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1002 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1003 
1004 		spin_lock(&log->l_reserve_head.lock);
1005 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1006 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1007 		spin_unlock(&log->l_reserve_head.lock);
1008 	}
1009 }
1010 
1011 /*
1012  * Determine if we have a transaction that has gone to disk that needs to be
1013  * covered. To begin the transition to the idle state firstly the log needs to
1014  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1015  * we start attempting to cover the log.
1016  *
1017  * Only if we are then in a state where covering is needed, the caller is
1018  * informed that dummy transactions are required to move the log into the idle
1019  * state.
1020  *
1021  * If there are any items in the AIl or CIL, then we do not want to attempt to
1022  * cover the log as we may be in a situation where there isn't log space
1023  * available to run a dummy transaction and this can lead to deadlocks when the
1024  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1025  * there's no point in running a dummy transaction at this point because we
1026  * can't start trying to idle the log until both the CIL and AIL are empty.
1027  */
1028 int
1029 xfs_log_need_covered(xfs_mount_t *mp)
1030 {
1031 	struct xlog	*log = mp->m_log;
1032 	int		needed = 0;
1033 
1034 	if (!xfs_fs_writable(mp))
1035 		return 0;
1036 
1037 	if (!xlog_cil_empty(log))
1038 		return 0;
1039 
1040 	spin_lock(&log->l_icloglock);
1041 	switch (log->l_covered_state) {
1042 	case XLOG_STATE_COVER_DONE:
1043 	case XLOG_STATE_COVER_DONE2:
1044 	case XLOG_STATE_COVER_IDLE:
1045 		break;
1046 	case XLOG_STATE_COVER_NEED:
1047 	case XLOG_STATE_COVER_NEED2:
1048 		if (xfs_ail_min_lsn(log->l_ailp))
1049 			break;
1050 		if (!xlog_iclogs_empty(log))
1051 			break;
1052 
1053 		needed = 1;
1054 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1055 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1056 		else
1057 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1058 		break;
1059 	default:
1060 		needed = 1;
1061 		break;
1062 	}
1063 	spin_unlock(&log->l_icloglock);
1064 	return needed;
1065 }
1066 
1067 /*
1068  * We may be holding the log iclog lock upon entering this routine.
1069  */
1070 xfs_lsn_t
1071 xlog_assign_tail_lsn_locked(
1072 	struct xfs_mount	*mp)
1073 {
1074 	struct xlog		*log = mp->m_log;
1075 	struct xfs_log_item	*lip;
1076 	xfs_lsn_t		tail_lsn;
1077 
1078 	assert_spin_locked(&mp->m_ail->xa_lock);
1079 
1080 	/*
1081 	 * To make sure we always have a valid LSN for the log tail we keep
1082 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1083 	 * and use that when the AIL was empty.
1084 	 */
1085 	lip = xfs_ail_min(mp->m_ail);
1086 	if (lip)
1087 		tail_lsn = lip->li_lsn;
1088 	else
1089 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1090 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1091 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1092 	return tail_lsn;
1093 }
1094 
1095 xfs_lsn_t
1096 xlog_assign_tail_lsn(
1097 	struct xfs_mount	*mp)
1098 {
1099 	xfs_lsn_t		tail_lsn;
1100 
1101 	spin_lock(&mp->m_ail->xa_lock);
1102 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1103 	spin_unlock(&mp->m_ail->xa_lock);
1104 
1105 	return tail_lsn;
1106 }
1107 
1108 /*
1109  * Return the space in the log between the tail and the head.  The head
1110  * is passed in the cycle/bytes formal parms.  In the special case where
1111  * the reserve head has wrapped passed the tail, this calculation is no
1112  * longer valid.  In this case, just return 0 which means there is no space
1113  * in the log.  This works for all places where this function is called
1114  * with the reserve head.  Of course, if the write head were to ever
1115  * wrap the tail, we should blow up.  Rather than catch this case here,
1116  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1117  *
1118  * This code also handles the case where the reservation head is behind
1119  * the tail.  The details of this case are described below, but the end
1120  * result is that we return the size of the log as the amount of space left.
1121  */
1122 STATIC int
1123 xlog_space_left(
1124 	struct xlog	*log,
1125 	atomic64_t	*head)
1126 {
1127 	int		free_bytes;
1128 	int		tail_bytes;
1129 	int		tail_cycle;
1130 	int		head_cycle;
1131 	int		head_bytes;
1132 
1133 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1134 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1135 	tail_bytes = BBTOB(tail_bytes);
1136 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1137 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1138 	else if (tail_cycle + 1 < head_cycle)
1139 		return 0;
1140 	else if (tail_cycle < head_cycle) {
1141 		ASSERT(tail_cycle == (head_cycle - 1));
1142 		free_bytes = tail_bytes - head_bytes;
1143 	} else {
1144 		/*
1145 		 * The reservation head is behind the tail.
1146 		 * In this case we just want to return the size of the
1147 		 * log as the amount of space left.
1148 		 */
1149 		xfs_alert(log->l_mp,
1150 			"xlog_space_left: head behind tail\n"
1151 			"  tail_cycle = %d, tail_bytes = %d\n"
1152 			"  GH   cycle = %d, GH   bytes = %d",
1153 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1154 		ASSERT(0);
1155 		free_bytes = log->l_logsize;
1156 	}
1157 	return free_bytes;
1158 }
1159 
1160 
1161 /*
1162  * Log function which is called when an io completes.
1163  *
1164  * The log manager needs its own routine, in order to control what
1165  * happens with the buffer after the write completes.
1166  */
1167 void
1168 xlog_iodone(xfs_buf_t *bp)
1169 {
1170 	struct xlog_in_core	*iclog = bp->b_fspriv;
1171 	struct xlog		*l = iclog->ic_log;
1172 	int			aborted = 0;
1173 
1174 	/*
1175 	 * Race to shutdown the filesystem if we see an error.
1176 	 */
1177 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1178 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1179 		xfs_buf_ioerror_alert(bp, __func__);
1180 		xfs_buf_stale(bp);
1181 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1182 		/*
1183 		 * This flag will be propagated to the trans-committed
1184 		 * callback routines to let them know that the log-commit
1185 		 * didn't succeed.
1186 		 */
1187 		aborted = XFS_LI_ABORTED;
1188 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1189 		aborted = XFS_LI_ABORTED;
1190 	}
1191 
1192 	/* log I/O is always issued ASYNC */
1193 	ASSERT(XFS_BUF_ISASYNC(bp));
1194 	xlog_state_done_syncing(iclog, aborted);
1195 
1196 	/*
1197 	 * drop the buffer lock now that we are done. Nothing references
1198 	 * the buffer after this, so an unmount waiting on this lock can now
1199 	 * tear it down safely. As such, it is unsafe to reference the buffer
1200 	 * (bp) after the unlock as we could race with it being freed.
1201 	 */
1202 	xfs_buf_unlock(bp);
1203 }
1204 
1205 /*
1206  * Return size of each in-core log record buffer.
1207  *
1208  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1209  *
1210  * If the filesystem blocksize is too large, we may need to choose a
1211  * larger size since the directory code currently logs entire blocks.
1212  */
1213 
1214 STATIC void
1215 xlog_get_iclog_buffer_size(
1216 	struct xfs_mount	*mp,
1217 	struct xlog		*log)
1218 {
1219 	int size;
1220 	int xhdrs;
1221 
1222 	if (mp->m_logbufs <= 0)
1223 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1224 	else
1225 		log->l_iclog_bufs = mp->m_logbufs;
1226 
1227 	/*
1228 	 * Buffer size passed in from mount system call.
1229 	 */
1230 	if (mp->m_logbsize > 0) {
1231 		size = log->l_iclog_size = mp->m_logbsize;
1232 		log->l_iclog_size_log = 0;
1233 		while (size != 1) {
1234 			log->l_iclog_size_log++;
1235 			size >>= 1;
1236 		}
1237 
1238 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1239 			/* # headers = size / 32k
1240 			 * one header holds cycles from 32k of data
1241 			 */
1242 
1243 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1244 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1245 				xhdrs++;
1246 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1247 			log->l_iclog_heads = xhdrs;
1248 		} else {
1249 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1250 			log->l_iclog_hsize = BBSIZE;
1251 			log->l_iclog_heads = 1;
1252 		}
1253 		goto done;
1254 	}
1255 
1256 	/* All machines use 32kB buffers by default. */
1257 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1258 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1259 
1260 	/* the default log size is 16k or 32k which is one header sector */
1261 	log->l_iclog_hsize = BBSIZE;
1262 	log->l_iclog_heads = 1;
1263 
1264 done:
1265 	/* are we being asked to make the sizes selected above visible? */
1266 	if (mp->m_logbufs == 0)
1267 		mp->m_logbufs = log->l_iclog_bufs;
1268 	if (mp->m_logbsize == 0)
1269 		mp->m_logbsize = log->l_iclog_size;
1270 }	/* xlog_get_iclog_buffer_size */
1271 
1272 
1273 void
1274 xfs_log_work_queue(
1275 	struct xfs_mount        *mp)
1276 {
1277 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1278 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1279 }
1280 
1281 /*
1282  * Every sync period we need to unpin all items in the AIL and push them to
1283  * disk. If there is nothing dirty, then we might need to cover the log to
1284  * indicate that the filesystem is idle.
1285  */
1286 void
1287 xfs_log_worker(
1288 	struct work_struct	*work)
1289 {
1290 	struct xlog		*log = container_of(to_delayed_work(work),
1291 						struct xlog, l_work);
1292 	struct xfs_mount	*mp = log->l_mp;
1293 
1294 	/* dgc: errors ignored - not fatal and nowhere to report them */
1295 	if (xfs_log_need_covered(mp))
1296 		xfs_fs_log_dummy(mp);
1297 	else
1298 		xfs_log_force(mp, 0);
1299 
1300 	/* start pushing all the metadata that is currently dirty */
1301 	xfs_ail_push_all(mp->m_ail);
1302 
1303 	/* queue us up again */
1304 	xfs_log_work_queue(mp);
1305 }
1306 
1307 /*
1308  * This routine initializes some of the log structure for a given mount point.
1309  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1310  * some other stuff may be filled in too.
1311  */
1312 STATIC struct xlog *
1313 xlog_alloc_log(
1314 	struct xfs_mount	*mp,
1315 	struct xfs_buftarg	*log_target,
1316 	xfs_daddr_t		blk_offset,
1317 	int			num_bblks)
1318 {
1319 	struct xlog		*log;
1320 	xlog_rec_header_t	*head;
1321 	xlog_in_core_t		**iclogp;
1322 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1323 	xfs_buf_t		*bp;
1324 	int			i;
1325 	int			error = -ENOMEM;
1326 	uint			log2_size = 0;
1327 
1328 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1329 	if (!log) {
1330 		xfs_warn(mp, "Log allocation failed: No memory!");
1331 		goto out;
1332 	}
1333 
1334 	log->l_mp	   = mp;
1335 	log->l_targ	   = log_target;
1336 	log->l_logsize     = BBTOB(num_bblks);
1337 	log->l_logBBstart  = blk_offset;
1338 	log->l_logBBsize   = num_bblks;
1339 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1340 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1341 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1342 
1343 	log->l_prev_block  = -1;
1344 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1345 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1346 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1347 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1348 
1349 	xlog_grant_head_init(&log->l_reserve_head);
1350 	xlog_grant_head_init(&log->l_write_head);
1351 
1352 	error = -EFSCORRUPTED;
1353 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1354 	        log2_size = mp->m_sb.sb_logsectlog;
1355 		if (log2_size < BBSHIFT) {
1356 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1357 				log2_size, BBSHIFT);
1358 			goto out_free_log;
1359 		}
1360 
1361 	        log2_size -= BBSHIFT;
1362 		if (log2_size > mp->m_sectbb_log) {
1363 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1364 				log2_size, mp->m_sectbb_log);
1365 			goto out_free_log;
1366 		}
1367 
1368 		/* for larger sector sizes, must have v2 or external log */
1369 		if (log2_size && log->l_logBBstart > 0 &&
1370 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1371 			xfs_warn(mp,
1372 		"log sector size (0x%x) invalid for configuration.",
1373 				log2_size);
1374 			goto out_free_log;
1375 		}
1376 	}
1377 	log->l_sectBBsize = 1 << log2_size;
1378 
1379 	xlog_get_iclog_buffer_size(mp, log);
1380 
1381 	/*
1382 	 * Use a NULL block for the extra log buffer used during splits so that
1383 	 * it will trigger errors if we ever try to do IO on it without first
1384 	 * having set it up properly.
1385 	 */
1386 	error = -ENOMEM;
1387 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1388 			   BTOBB(log->l_iclog_size), 0);
1389 	if (!bp)
1390 		goto out_free_log;
1391 
1392 	/*
1393 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1394 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1395 	 * when appropriately.
1396 	 */
1397 	ASSERT(xfs_buf_islocked(bp));
1398 	xfs_buf_unlock(bp);
1399 
1400 	bp->b_iodone = xlog_iodone;
1401 	log->l_xbuf = bp;
1402 
1403 	spin_lock_init(&log->l_icloglock);
1404 	init_waitqueue_head(&log->l_flush_wait);
1405 
1406 	iclogp = &log->l_iclog;
1407 	/*
1408 	 * The amount of memory to allocate for the iclog structure is
1409 	 * rather funky due to the way the structure is defined.  It is
1410 	 * done this way so that we can use different sizes for machines
1411 	 * with different amounts of memory.  See the definition of
1412 	 * xlog_in_core_t in xfs_log_priv.h for details.
1413 	 */
1414 	ASSERT(log->l_iclog_size >= 4096);
1415 	for (i=0; i < log->l_iclog_bufs; i++) {
1416 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1417 		if (!*iclogp)
1418 			goto out_free_iclog;
1419 
1420 		iclog = *iclogp;
1421 		iclog->ic_prev = prev_iclog;
1422 		prev_iclog = iclog;
1423 
1424 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1425 						BTOBB(log->l_iclog_size), 0);
1426 		if (!bp)
1427 			goto out_free_iclog;
1428 
1429 		ASSERT(xfs_buf_islocked(bp));
1430 		xfs_buf_unlock(bp);
1431 
1432 		bp->b_iodone = xlog_iodone;
1433 		iclog->ic_bp = bp;
1434 		iclog->ic_data = bp->b_addr;
1435 #ifdef DEBUG
1436 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1437 #endif
1438 		head = &iclog->ic_header;
1439 		memset(head, 0, sizeof(xlog_rec_header_t));
1440 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1441 		head->h_version = cpu_to_be32(
1442 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1443 		head->h_size = cpu_to_be32(log->l_iclog_size);
1444 		/* new fields */
1445 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1446 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1447 
1448 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1449 		iclog->ic_state = XLOG_STATE_ACTIVE;
1450 		iclog->ic_log = log;
1451 		atomic_set(&iclog->ic_refcnt, 0);
1452 		spin_lock_init(&iclog->ic_callback_lock);
1453 		iclog->ic_callback_tail = &(iclog->ic_callback);
1454 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1455 
1456 		init_waitqueue_head(&iclog->ic_force_wait);
1457 		init_waitqueue_head(&iclog->ic_write_wait);
1458 
1459 		iclogp = &iclog->ic_next;
1460 	}
1461 	*iclogp = log->l_iclog;			/* complete ring */
1462 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1463 
1464 	error = xlog_cil_init(log);
1465 	if (error)
1466 		goto out_free_iclog;
1467 	return log;
1468 
1469 out_free_iclog:
1470 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1471 		prev_iclog = iclog->ic_next;
1472 		if (iclog->ic_bp)
1473 			xfs_buf_free(iclog->ic_bp);
1474 		kmem_free(iclog);
1475 	}
1476 	spinlock_destroy(&log->l_icloglock);
1477 	xfs_buf_free(log->l_xbuf);
1478 out_free_log:
1479 	kmem_free(log);
1480 out:
1481 	return ERR_PTR(error);
1482 }	/* xlog_alloc_log */
1483 
1484 
1485 /*
1486  * Write out the commit record of a transaction associated with the given
1487  * ticket.  Return the lsn of the commit record.
1488  */
1489 STATIC int
1490 xlog_commit_record(
1491 	struct xlog		*log,
1492 	struct xlog_ticket	*ticket,
1493 	struct xlog_in_core	**iclog,
1494 	xfs_lsn_t		*commitlsnp)
1495 {
1496 	struct xfs_mount *mp = log->l_mp;
1497 	int	error;
1498 	struct xfs_log_iovec reg = {
1499 		.i_addr = NULL,
1500 		.i_len = 0,
1501 		.i_type = XLOG_REG_TYPE_COMMIT,
1502 	};
1503 	struct xfs_log_vec vec = {
1504 		.lv_niovecs = 1,
1505 		.lv_iovecp = &reg,
1506 	};
1507 
1508 	ASSERT_ALWAYS(iclog);
1509 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1510 					XLOG_COMMIT_TRANS);
1511 	if (error)
1512 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1513 	return error;
1514 }
1515 
1516 /*
1517  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1518  * log space.  This code pushes on the lsn which would supposedly free up
1519  * the 25% which we want to leave free.  We may need to adopt a policy which
1520  * pushes on an lsn which is further along in the log once we reach the high
1521  * water mark.  In this manner, we would be creating a low water mark.
1522  */
1523 STATIC void
1524 xlog_grant_push_ail(
1525 	struct xlog	*log,
1526 	int		need_bytes)
1527 {
1528 	xfs_lsn_t	threshold_lsn = 0;
1529 	xfs_lsn_t	last_sync_lsn;
1530 	int		free_blocks;
1531 	int		free_bytes;
1532 	int		threshold_block;
1533 	int		threshold_cycle;
1534 	int		free_threshold;
1535 
1536 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1537 
1538 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1539 	free_blocks = BTOBBT(free_bytes);
1540 
1541 	/*
1542 	 * Set the threshold for the minimum number of free blocks in the
1543 	 * log to the maximum of what the caller needs, one quarter of the
1544 	 * log, and 256 blocks.
1545 	 */
1546 	free_threshold = BTOBB(need_bytes);
1547 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1548 	free_threshold = MAX(free_threshold, 256);
1549 	if (free_blocks >= free_threshold)
1550 		return;
1551 
1552 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1553 						&threshold_block);
1554 	threshold_block += free_threshold;
1555 	if (threshold_block >= log->l_logBBsize) {
1556 		threshold_block -= log->l_logBBsize;
1557 		threshold_cycle += 1;
1558 	}
1559 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1560 					threshold_block);
1561 	/*
1562 	 * Don't pass in an lsn greater than the lsn of the last
1563 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1564 	 * so that it doesn't change between the compare and the set.
1565 	 */
1566 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1567 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1568 		threshold_lsn = last_sync_lsn;
1569 
1570 	/*
1571 	 * Get the transaction layer to kick the dirty buffers out to
1572 	 * disk asynchronously. No point in trying to do this if
1573 	 * the filesystem is shutting down.
1574 	 */
1575 	if (!XLOG_FORCED_SHUTDOWN(log))
1576 		xfs_ail_push(log->l_ailp, threshold_lsn);
1577 }
1578 
1579 /*
1580  * Stamp cycle number in every block
1581  */
1582 STATIC void
1583 xlog_pack_data(
1584 	struct xlog		*log,
1585 	struct xlog_in_core	*iclog,
1586 	int			roundoff)
1587 {
1588 	int			i, j, k;
1589 	int			size = iclog->ic_offset + roundoff;
1590 	__be32			cycle_lsn;
1591 	xfs_caddr_t		dp;
1592 
1593 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1594 
1595 	dp = iclog->ic_datap;
1596 	for (i = 0; i < BTOBB(size); i++) {
1597 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1598 			break;
1599 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1600 		*(__be32 *)dp = cycle_lsn;
1601 		dp += BBSIZE;
1602 	}
1603 
1604 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1605 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1606 
1607 		for ( ; i < BTOBB(size); i++) {
1608 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1609 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1610 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1611 			*(__be32 *)dp = cycle_lsn;
1612 			dp += BBSIZE;
1613 		}
1614 
1615 		for (i = 1; i < log->l_iclog_heads; i++)
1616 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1617 	}
1618 }
1619 
1620 /*
1621  * Calculate the checksum for a log buffer.
1622  *
1623  * This is a little more complicated than it should be because the various
1624  * headers and the actual data are non-contiguous.
1625  */
1626 __le32
1627 xlog_cksum(
1628 	struct xlog		*log,
1629 	struct xlog_rec_header	*rhead,
1630 	char			*dp,
1631 	int			size)
1632 {
1633 	__uint32_t		crc;
1634 
1635 	/* first generate the crc for the record header ... */
1636 	crc = xfs_start_cksum((char *)rhead,
1637 			      sizeof(struct xlog_rec_header),
1638 			      offsetof(struct xlog_rec_header, h_crc));
1639 
1640 	/* ... then for additional cycle data for v2 logs ... */
1641 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1643 		int		i;
1644 
1645 		for (i = 1; i < log->l_iclog_heads; i++) {
1646 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1647 				     sizeof(struct xlog_rec_ext_header));
1648 		}
1649 	}
1650 
1651 	/* ... and finally for the payload */
1652 	crc = crc32c(crc, dp, size);
1653 
1654 	return xfs_end_cksum(crc);
1655 }
1656 
1657 /*
1658  * The bdstrat callback function for log bufs. This gives us a central
1659  * place to trap bufs in case we get hit by a log I/O error and need to
1660  * shutdown. Actually, in practice, even when we didn't get a log error,
1661  * we transition the iclogs to IOERROR state *after* flushing all existing
1662  * iclogs to disk. This is because we don't want anymore new transactions to be
1663  * started or completed afterwards.
1664  *
1665  * We lock the iclogbufs here so that we can serialise against IO completion
1666  * during unmount. We might be processing a shutdown triggered during unmount,
1667  * and that can occur asynchronously to the unmount thread, and hence we need to
1668  * ensure that completes before tearing down the iclogbufs. Hence we need to
1669  * hold the buffer lock across the log IO to acheive that.
1670  */
1671 STATIC int
1672 xlog_bdstrat(
1673 	struct xfs_buf		*bp)
1674 {
1675 	struct xlog_in_core	*iclog = bp->b_fspriv;
1676 
1677 	xfs_buf_lock(bp);
1678 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1679 		xfs_buf_ioerror(bp, -EIO);
1680 		xfs_buf_stale(bp);
1681 		xfs_buf_ioend(bp);
1682 		/*
1683 		 * It would seem logical to return EIO here, but we rely on
1684 		 * the log state machine to propagate I/O errors instead of
1685 		 * doing it here. Similarly, IO completion will unlock the
1686 		 * buffer, so we don't do it here.
1687 		 */
1688 		return 0;
1689 	}
1690 
1691 	xfs_buf_submit(bp);
1692 	return 0;
1693 }
1694 
1695 /*
1696  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1697  * fashion.  Previously, we should have moved the current iclog
1698  * ptr in the log to point to the next available iclog.  This allows further
1699  * write to continue while this code syncs out an iclog ready to go.
1700  * Before an in-core log can be written out, the data section must be scanned
1701  * to save away the 1st word of each BBSIZE block into the header.  We replace
1702  * it with the current cycle count.  Each BBSIZE block is tagged with the
1703  * cycle count because there in an implicit assumption that drives will
1704  * guarantee that entire 512 byte blocks get written at once.  In other words,
1705  * we can't have part of a 512 byte block written and part not written.  By
1706  * tagging each block, we will know which blocks are valid when recovering
1707  * after an unclean shutdown.
1708  *
1709  * This routine is single threaded on the iclog.  No other thread can be in
1710  * this routine with the same iclog.  Changing contents of iclog can there-
1711  * fore be done without grabbing the state machine lock.  Updating the global
1712  * log will require grabbing the lock though.
1713  *
1714  * The entire log manager uses a logical block numbering scheme.  Only
1715  * log_sync (and then only bwrite()) know about the fact that the log may
1716  * not start with block zero on a given device.  The log block start offset
1717  * is added immediately before calling bwrite().
1718  */
1719 
1720 STATIC int
1721 xlog_sync(
1722 	struct xlog		*log,
1723 	struct xlog_in_core	*iclog)
1724 {
1725 	xfs_buf_t	*bp;
1726 	int		i;
1727 	uint		count;		/* byte count of bwrite */
1728 	uint		count_init;	/* initial count before roundup */
1729 	int		roundoff;       /* roundoff to BB or stripe */
1730 	int		split = 0;	/* split write into two regions */
1731 	int		error;
1732 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1733 	int		size;
1734 
1735 	XFS_STATS_INC(xs_log_writes);
1736 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1737 
1738 	/* Add for LR header */
1739 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1740 
1741 	/* Round out the log write size */
1742 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1743 		/* we have a v2 stripe unit to use */
1744 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1745 	} else {
1746 		count = BBTOB(BTOBB(count_init));
1747 	}
1748 	roundoff = count - count_init;
1749 	ASSERT(roundoff >= 0);
1750 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1751                 roundoff < log->l_mp->m_sb.sb_logsunit)
1752 		||
1753 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1754 		 roundoff < BBTOB(1)));
1755 
1756 	/* move grant heads by roundoff in sync */
1757 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1758 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1759 
1760 	/* put cycle number in every block */
1761 	xlog_pack_data(log, iclog, roundoff);
1762 
1763 	/* real byte length */
1764 	size = iclog->ic_offset;
1765 	if (v2)
1766 		size += roundoff;
1767 	iclog->ic_header.h_len = cpu_to_be32(size);
1768 
1769 	bp = iclog->ic_bp;
1770 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1771 
1772 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1773 
1774 	/* Do we need to split this write into 2 parts? */
1775 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1776 		char		*dptr;
1777 
1778 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1779 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1780 		iclog->ic_bwritecnt = 2;
1781 
1782 		/*
1783 		 * Bump the cycle numbers at the start of each block in the
1784 		 * part of the iclog that ends up in the buffer that gets
1785 		 * written to the start of the log.
1786 		 *
1787 		 * Watch out for the header magic number case, though.
1788 		 */
1789 		dptr = (char *)&iclog->ic_header + count;
1790 		for (i = 0; i < split; i += BBSIZE) {
1791 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1792 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1793 				cycle++;
1794 			*(__be32 *)dptr = cpu_to_be32(cycle);
1795 
1796 			dptr += BBSIZE;
1797 		}
1798 	} else {
1799 		iclog->ic_bwritecnt = 1;
1800 	}
1801 
1802 	/* calculcate the checksum */
1803 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1804 					    iclog->ic_datap, size);
1805 
1806 	bp->b_io_length = BTOBB(count);
1807 	bp->b_fspriv = iclog;
1808 	XFS_BUF_ZEROFLAGS(bp);
1809 	XFS_BUF_ASYNC(bp);
1810 	bp->b_flags |= XBF_SYNCIO;
1811 
1812 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1813 		bp->b_flags |= XBF_FUA;
1814 
1815 		/*
1816 		 * Flush the data device before flushing the log to make
1817 		 * sure all meta data written back from the AIL actually made
1818 		 * it to disk before stamping the new log tail LSN into the
1819 		 * log buffer.  For an external log we need to issue the
1820 		 * flush explicitly, and unfortunately synchronously here;
1821 		 * for an internal log we can simply use the block layer
1822 		 * state machine for preflushes.
1823 		 */
1824 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1825 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1826 		else
1827 			bp->b_flags |= XBF_FLUSH;
1828 	}
1829 
1830 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1831 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1832 
1833 	xlog_verify_iclog(log, iclog, count, true);
1834 
1835 	/* account for log which doesn't start at block #0 */
1836 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1837 	/*
1838 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1839 	 * is shutting down.
1840 	 */
1841 	XFS_BUF_WRITE(bp);
1842 
1843 	error = xlog_bdstrat(bp);
1844 	if (error) {
1845 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1846 		return error;
1847 	}
1848 	if (split) {
1849 		bp = iclog->ic_log->l_xbuf;
1850 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1851 		xfs_buf_associate_memory(bp,
1852 				(char *)&iclog->ic_header + count, split);
1853 		bp->b_fspriv = iclog;
1854 		XFS_BUF_ZEROFLAGS(bp);
1855 		XFS_BUF_ASYNC(bp);
1856 		bp->b_flags |= XBF_SYNCIO;
1857 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1858 			bp->b_flags |= XBF_FUA;
1859 
1860 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1861 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1862 
1863 		/* account for internal log which doesn't start at block #0 */
1864 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1865 		XFS_BUF_WRITE(bp);
1866 		error = xlog_bdstrat(bp);
1867 		if (error) {
1868 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1869 			return error;
1870 		}
1871 	}
1872 	return 0;
1873 }	/* xlog_sync */
1874 
1875 /*
1876  * Deallocate a log structure
1877  */
1878 STATIC void
1879 xlog_dealloc_log(
1880 	struct xlog	*log)
1881 {
1882 	xlog_in_core_t	*iclog, *next_iclog;
1883 	int		i;
1884 
1885 	xlog_cil_destroy(log);
1886 
1887 	/*
1888 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1889 	 * is done before we tear down these buffers.
1890 	 */
1891 	iclog = log->l_iclog;
1892 	for (i = 0; i < log->l_iclog_bufs; i++) {
1893 		xfs_buf_lock(iclog->ic_bp);
1894 		xfs_buf_unlock(iclog->ic_bp);
1895 		iclog = iclog->ic_next;
1896 	}
1897 
1898 	/*
1899 	 * Always need to ensure that the extra buffer does not point to memory
1900 	 * owned by another log buffer before we free it. Also, cycle the lock
1901 	 * first to ensure we've completed IO on it.
1902 	 */
1903 	xfs_buf_lock(log->l_xbuf);
1904 	xfs_buf_unlock(log->l_xbuf);
1905 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1906 	xfs_buf_free(log->l_xbuf);
1907 
1908 	iclog = log->l_iclog;
1909 	for (i = 0; i < log->l_iclog_bufs; i++) {
1910 		xfs_buf_free(iclog->ic_bp);
1911 		next_iclog = iclog->ic_next;
1912 		kmem_free(iclog);
1913 		iclog = next_iclog;
1914 	}
1915 	spinlock_destroy(&log->l_icloglock);
1916 
1917 	log->l_mp->m_log = NULL;
1918 	kmem_free(log);
1919 }	/* xlog_dealloc_log */
1920 
1921 /*
1922  * Update counters atomically now that memcpy is done.
1923  */
1924 /* ARGSUSED */
1925 static inline void
1926 xlog_state_finish_copy(
1927 	struct xlog		*log,
1928 	struct xlog_in_core	*iclog,
1929 	int			record_cnt,
1930 	int			copy_bytes)
1931 {
1932 	spin_lock(&log->l_icloglock);
1933 
1934 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1935 	iclog->ic_offset += copy_bytes;
1936 
1937 	spin_unlock(&log->l_icloglock);
1938 }	/* xlog_state_finish_copy */
1939 
1940 
1941 
1942 
1943 /*
1944  * print out info relating to regions written which consume
1945  * the reservation
1946  */
1947 void
1948 xlog_print_tic_res(
1949 	struct xfs_mount	*mp,
1950 	struct xlog_ticket	*ticket)
1951 {
1952 	uint i;
1953 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1954 
1955 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1956 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1957 	    "bformat",
1958 	    "bchunk",
1959 	    "efi_format",
1960 	    "efd_format",
1961 	    "iformat",
1962 	    "icore",
1963 	    "iext",
1964 	    "ibroot",
1965 	    "ilocal",
1966 	    "iattr_ext",
1967 	    "iattr_broot",
1968 	    "iattr_local",
1969 	    "qformat",
1970 	    "dquot",
1971 	    "quotaoff",
1972 	    "LR header",
1973 	    "unmount",
1974 	    "commit",
1975 	    "trans header"
1976 	};
1977 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1978 	    "SETATTR_NOT_SIZE",
1979 	    "SETATTR_SIZE",
1980 	    "INACTIVE",
1981 	    "CREATE",
1982 	    "CREATE_TRUNC",
1983 	    "TRUNCATE_FILE",
1984 	    "REMOVE",
1985 	    "LINK",
1986 	    "RENAME",
1987 	    "MKDIR",
1988 	    "RMDIR",
1989 	    "SYMLINK",
1990 	    "SET_DMATTRS",
1991 	    "GROWFS",
1992 	    "STRAT_WRITE",
1993 	    "DIOSTRAT",
1994 	    "WRITE_SYNC",
1995 	    "WRITEID",
1996 	    "ADDAFORK",
1997 	    "ATTRINVAL",
1998 	    "ATRUNCATE",
1999 	    "ATTR_SET",
2000 	    "ATTR_RM",
2001 	    "ATTR_FLAG",
2002 	    "CLEAR_AGI_BUCKET",
2003 	    "QM_SBCHANGE",
2004 	    "DUMMY1",
2005 	    "DUMMY2",
2006 	    "QM_QUOTAOFF",
2007 	    "QM_DQALLOC",
2008 	    "QM_SETQLIM",
2009 	    "QM_DQCLUSTER",
2010 	    "QM_QINOCREATE",
2011 	    "QM_QUOTAOFF_END",
2012 	    "SB_UNIT",
2013 	    "FSYNC_TS",
2014 	    "GROWFSRT_ALLOC",
2015 	    "GROWFSRT_ZERO",
2016 	    "GROWFSRT_FREE",
2017 	    "SWAPEXT"
2018 	};
2019 
2020 	xfs_warn(mp,
2021 		"xlog_write: reservation summary:\n"
2022 		"  trans type  = %s (%u)\n"
2023 		"  unit res    = %d bytes\n"
2024 		"  current res = %d bytes\n"
2025 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2026 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2027 		"  ophdr + reg = %u bytes\n"
2028 		"  num regions = %u\n",
2029 		((ticket->t_trans_type <= 0 ||
2030 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2031 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2032 		ticket->t_trans_type,
2033 		ticket->t_unit_res,
2034 		ticket->t_curr_res,
2035 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2036 		ticket->t_res_num_ophdrs, ophdr_spc,
2037 		ticket->t_res_arr_sum +
2038 		ticket->t_res_o_flow + ophdr_spc,
2039 		ticket->t_res_num);
2040 
2041 	for (i = 0; i < ticket->t_res_num; i++) {
2042 		uint r_type = ticket->t_res_arr[i].r_type;
2043 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2044 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2045 			    "bad-rtype" : res_type_str[r_type-1]),
2046 			    ticket->t_res_arr[i].r_len);
2047 	}
2048 
2049 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2050 		"xlog_write: reservation ran out. Need to up reservation");
2051 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2052 }
2053 
2054 /*
2055  * Calculate the potential space needed by the log vector.  Each region gets
2056  * its own xlog_op_header_t and may need to be double word aligned.
2057  */
2058 static int
2059 xlog_write_calc_vec_length(
2060 	struct xlog_ticket	*ticket,
2061 	struct xfs_log_vec	*log_vector)
2062 {
2063 	struct xfs_log_vec	*lv;
2064 	int			headers = 0;
2065 	int			len = 0;
2066 	int			i;
2067 
2068 	/* acct for start rec of xact */
2069 	if (ticket->t_flags & XLOG_TIC_INITED)
2070 		headers++;
2071 
2072 	for (lv = log_vector; lv; lv = lv->lv_next) {
2073 		/* we don't write ordered log vectors */
2074 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2075 			continue;
2076 
2077 		headers += lv->lv_niovecs;
2078 
2079 		for (i = 0; i < lv->lv_niovecs; i++) {
2080 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2081 
2082 			len += vecp->i_len;
2083 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2084 		}
2085 	}
2086 
2087 	ticket->t_res_num_ophdrs += headers;
2088 	len += headers * sizeof(struct xlog_op_header);
2089 
2090 	return len;
2091 }
2092 
2093 /*
2094  * If first write for transaction, insert start record  We can't be trying to
2095  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2096  */
2097 static int
2098 xlog_write_start_rec(
2099 	struct xlog_op_header	*ophdr,
2100 	struct xlog_ticket	*ticket)
2101 {
2102 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2103 		return 0;
2104 
2105 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2106 	ophdr->oh_clientid = ticket->t_clientid;
2107 	ophdr->oh_len = 0;
2108 	ophdr->oh_flags = XLOG_START_TRANS;
2109 	ophdr->oh_res2 = 0;
2110 
2111 	ticket->t_flags &= ~XLOG_TIC_INITED;
2112 
2113 	return sizeof(struct xlog_op_header);
2114 }
2115 
2116 static xlog_op_header_t *
2117 xlog_write_setup_ophdr(
2118 	struct xlog		*log,
2119 	struct xlog_op_header	*ophdr,
2120 	struct xlog_ticket	*ticket,
2121 	uint			flags)
2122 {
2123 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2124 	ophdr->oh_clientid = ticket->t_clientid;
2125 	ophdr->oh_res2 = 0;
2126 
2127 	/* are we copying a commit or unmount record? */
2128 	ophdr->oh_flags = flags;
2129 
2130 	/*
2131 	 * We've seen logs corrupted with bad transaction client ids.  This
2132 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2133 	 * and shut down the filesystem.
2134 	 */
2135 	switch (ophdr->oh_clientid)  {
2136 	case XFS_TRANSACTION:
2137 	case XFS_VOLUME:
2138 	case XFS_LOG:
2139 		break;
2140 	default:
2141 		xfs_warn(log->l_mp,
2142 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2143 			ophdr->oh_clientid, ticket);
2144 		return NULL;
2145 	}
2146 
2147 	return ophdr;
2148 }
2149 
2150 /*
2151  * Set up the parameters of the region copy into the log. This has
2152  * to handle region write split across multiple log buffers - this
2153  * state is kept external to this function so that this code can
2154  * be written in an obvious, self documenting manner.
2155  */
2156 static int
2157 xlog_write_setup_copy(
2158 	struct xlog_ticket	*ticket,
2159 	struct xlog_op_header	*ophdr,
2160 	int			space_available,
2161 	int			space_required,
2162 	int			*copy_off,
2163 	int			*copy_len,
2164 	int			*last_was_partial_copy,
2165 	int			*bytes_consumed)
2166 {
2167 	int			still_to_copy;
2168 
2169 	still_to_copy = space_required - *bytes_consumed;
2170 	*copy_off = *bytes_consumed;
2171 
2172 	if (still_to_copy <= space_available) {
2173 		/* write of region completes here */
2174 		*copy_len = still_to_copy;
2175 		ophdr->oh_len = cpu_to_be32(*copy_len);
2176 		if (*last_was_partial_copy)
2177 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2178 		*last_was_partial_copy = 0;
2179 		*bytes_consumed = 0;
2180 		return 0;
2181 	}
2182 
2183 	/* partial write of region, needs extra log op header reservation */
2184 	*copy_len = space_available;
2185 	ophdr->oh_len = cpu_to_be32(*copy_len);
2186 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2187 	if (*last_was_partial_copy)
2188 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2189 	*bytes_consumed += *copy_len;
2190 	(*last_was_partial_copy)++;
2191 
2192 	/* account for new log op header */
2193 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2194 	ticket->t_res_num_ophdrs++;
2195 
2196 	return sizeof(struct xlog_op_header);
2197 }
2198 
2199 static int
2200 xlog_write_copy_finish(
2201 	struct xlog		*log,
2202 	struct xlog_in_core	*iclog,
2203 	uint			flags,
2204 	int			*record_cnt,
2205 	int			*data_cnt,
2206 	int			*partial_copy,
2207 	int			*partial_copy_len,
2208 	int			log_offset,
2209 	struct xlog_in_core	**commit_iclog)
2210 {
2211 	if (*partial_copy) {
2212 		/*
2213 		 * This iclog has already been marked WANT_SYNC by
2214 		 * xlog_state_get_iclog_space.
2215 		 */
2216 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2217 		*record_cnt = 0;
2218 		*data_cnt = 0;
2219 		return xlog_state_release_iclog(log, iclog);
2220 	}
2221 
2222 	*partial_copy = 0;
2223 	*partial_copy_len = 0;
2224 
2225 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2226 		/* no more space in this iclog - push it. */
2227 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2228 		*record_cnt = 0;
2229 		*data_cnt = 0;
2230 
2231 		spin_lock(&log->l_icloglock);
2232 		xlog_state_want_sync(log, iclog);
2233 		spin_unlock(&log->l_icloglock);
2234 
2235 		if (!commit_iclog)
2236 			return xlog_state_release_iclog(log, iclog);
2237 		ASSERT(flags & XLOG_COMMIT_TRANS);
2238 		*commit_iclog = iclog;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 /*
2245  * Write some region out to in-core log
2246  *
2247  * This will be called when writing externally provided regions or when
2248  * writing out a commit record for a given transaction.
2249  *
2250  * General algorithm:
2251  *	1. Find total length of this write.  This may include adding to the
2252  *		lengths passed in.
2253  *	2. Check whether we violate the tickets reservation.
2254  *	3. While writing to this iclog
2255  *	    A. Reserve as much space in this iclog as can get
2256  *	    B. If this is first write, save away start lsn
2257  *	    C. While writing this region:
2258  *		1. If first write of transaction, write start record
2259  *		2. Write log operation header (header per region)
2260  *		3. Find out if we can fit entire region into this iclog
2261  *		4. Potentially, verify destination memcpy ptr
2262  *		5. Memcpy (partial) region
2263  *		6. If partial copy, release iclog; otherwise, continue
2264  *			copying more regions into current iclog
2265  *	4. Mark want sync bit (in simulation mode)
2266  *	5. Release iclog for potential flush to on-disk log.
2267  *
2268  * ERRORS:
2269  * 1.	Panic if reservation is overrun.  This should never happen since
2270  *	reservation amounts are generated internal to the filesystem.
2271  * NOTES:
2272  * 1. Tickets are single threaded data structures.
2273  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2274  *	syncing routine.  When a single log_write region needs to span
2275  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2276  *	on all log operation writes which don't contain the end of the
2277  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2278  *	operation which contains the end of the continued log_write region.
2279  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2280  *	we don't really know exactly how much space will be used.  As a result,
2281  *	we don't update ic_offset until the end when we know exactly how many
2282  *	bytes have been written out.
2283  */
2284 int
2285 xlog_write(
2286 	struct xlog		*log,
2287 	struct xfs_log_vec	*log_vector,
2288 	struct xlog_ticket	*ticket,
2289 	xfs_lsn_t		*start_lsn,
2290 	struct xlog_in_core	**commit_iclog,
2291 	uint			flags)
2292 {
2293 	struct xlog_in_core	*iclog = NULL;
2294 	struct xfs_log_iovec	*vecp;
2295 	struct xfs_log_vec	*lv;
2296 	int			len;
2297 	int			index;
2298 	int			partial_copy = 0;
2299 	int			partial_copy_len = 0;
2300 	int			contwr = 0;
2301 	int			record_cnt = 0;
2302 	int			data_cnt = 0;
2303 	int			error;
2304 
2305 	*start_lsn = 0;
2306 
2307 	len = xlog_write_calc_vec_length(ticket, log_vector);
2308 
2309 	/*
2310 	 * Region headers and bytes are already accounted for.
2311 	 * We only need to take into account start records and
2312 	 * split regions in this function.
2313 	 */
2314 	if (ticket->t_flags & XLOG_TIC_INITED)
2315 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2316 
2317 	/*
2318 	 * Commit record headers need to be accounted for. These
2319 	 * come in as separate writes so are easy to detect.
2320 	 */
2321 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2322 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323 
2324 	if (ticket->t_curr_res < 0)
2325 		xlog_print_tic_res(log->l_mp, ticket);
2326 
2327 	index = 0;
2328 	lv = log_vector;
2329 	vecp = lv->lv_iovecp;
2330 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2331 		void		*ptr;
2332 		int		log_offset;
2333 
2334 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2335 						   &contwr, &log_offset);
2336 		if (error)
2337 			return error;
2338 
2339 		ASSERT(log_offset <= iclog->ic_size - 1);
2340 		ptr = iclog->ic_datap + log_offset;
2341 
2342 		/* start_lsn is the first lsn written to. That's all we need. */
2343 		if (!*start_lsn)
2344 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2345 
2346 		/*
2347 		 * This loop writes out as many regions as can fit in the amount
2348 		 * of space which was allocated by xlog_state_get_iclog_space().
2349 		 */
2350 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2351 			struct xfs_log_iovec	*reg;
2352 			struct xlog_op_header	*ophdr;
2353 			int			start_rec_copy;
2354 			int			copy_len;
2355 			int			copy_off;
2356 			bool			ordered = false;
2357 
2358 			/* ordered log vectors have no regions to write */
2359 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2360 				ASSERT(lv->lv_niovecs == 0);
2361 				ordered = true;
2362 				goto next_lv;
2363 			}
2364 
2365 			reg = &vecp[index];
2366 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2367 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2368 
2369 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2370 			if (start_rec_copy) {
2371 				record_cnt++;
2372 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2373 						   start_rec_copy);
2374 			}
2375 
2376 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2377 			if (!ophdr)
2378 				return -EIO;
2379 
2380 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2381 					   sizeof(struct xlog_op_header));
2382 
2383 			len += xlog_write_setup_copy(ticket, ophdr,
2384 						     iclog->ic_size-log_offset,
2385 						     reg->i_len,
2386 						     &copy_off, &copy_len,
2387 						     &partial_copy,
2388 						     &partial_copy_len);
2389 			xlog_verify_dest_ptr(log, ptr);
2390 
2391 			/* copy region */
2392 			ASSERT(copy_len >= 0);
2393 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2394 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2395 
2396 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2397 			record_cnt++;
2398 			data_cnt += contwr ? copy_len : 0;
2399 
2400 			error = xlog_write_copy_finish(log, iclog, flags,
2401 						       &record_cnt, &data_cnt,
2402 						       &partial_copy,
2403 						       &partial_copy_len,
2404 						       log_offset,
2405 						       commit_iclog);
2406 			if (error)
2407 				return error;
2408 
2409 			/*
2410 			 * if we had a partial copy, we need to get more iclog
2411 			 * space but we don't want to increment the region
2412 			 * index because there is still more is this region to
2413 			 * write.
2414 			 *
2415 			 * If we completed writing this region, and we flushed
2416 			 * the iclog (indicated by resetting of the record
2417 			 * count), then we also need to get more log space. If
2418 			 * this was the last record, though, we are done and
2419 			 * can just return.
2420 			 */
2421 			if (partial_copy)
2422 				break;
2423 
2424 			if (++index == lv->lv_niovecs) {
2425 next_lv:
2426 				lv = lv->lv_next;
2427 				index = 0;
2428 				if (lv)
2429 					vecp = lv->lv_iovecp;
2430 			}
2431 			if (record_cnt == 0 && ordered == false) {
2432 				if (!lv)
2433 					return 0;
2434 				break;
2435 			}
2436 		}
2437 	}
2438 
2439 	ASSERT(len == 0);
2440 
2441 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2442 	if (!commit_iclog)
2443 		return xlog_state_release_iclog(log, iclog);
2444 
2445 	ASSERT(flags & XLOG_COMMIT_TRANS);
2446 	*commit_iclog = iclog;
2447 	return 0;
2448 }
2449 
2450 
2451 /*****************************************************************************
2452  *
2453  *		State Machine functions
2454  *
2455  *****************************************************************************
2456  */
2457 
2458 /* Clean iclogs starting from the head.  This ordering must be
2459  * maintained, so an iclog doesn't become ACTIVE beyond one that
2460  * is SYNCING.  This is also required to maintain the notion that we use
2461  * a ordered wait queue to hold off would be writers to the log when every
2462  * iclog is trying to sync to disk.
2463  *
2464  * State Change: DIRTY -> ACTIVE
2465  */
2466 STATIC void
2467 xlog_state_clean_log(
2468 	struct xlog *log)
2469 {
2470 	xlog_in_core_t	*iclog;
2471 	int changed = 0;
2472 
2473 	iclog = log->l_iclog;
2474 	do {
2475 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2476 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2477 			iclog->ic_offset       = 0;
2478 			ASSERT(iclog->ic_callback == NULL);
2479 			/*
2480 			 * If the number of ops in this iclog indicate it just
2481 			 * contains the dummy transaction, we can
2482 			 * change state into IDLE (the second time around).
2483 			 * Otherwise we should change the state into
2484 			 * NEED a dummy.
2485 			 * We don't need to cover the dummy.
2486 			 */
2487 			if (!changed &&
2488 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2489 			   		XLOG_COVER_OPS)) {
2490 				changed = 1;
2491 			} else {
2492 				/*
2493 				 * We have two dirty iclogs so start over
2494 				 * This could also be num of ops indicates
2495 				 * this is not the dummy going out.
2496 				 */
2497 				changed = 2;
2498 			}
2499 			iclog->ic_header.h_num_logops = 0;
2500 			memset(iclog->ic_header.h_cycle_data, 0,
2501 			      sizeof(iclog->ic_header.h_cycle_data));
2502 			iclog->ic_header.h_lsn = 0;
2503 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2504 			/* do nothing */;
2505 		else
2506 			break;	/* stop cleaning */
2507 		iclog = iclog->ic_next;
2508 	} while (iclog != log->l_iclog);
2509 
2510 	/* log is locked when we are called */
2511 	/*
2512 	 * Change state for the dummy log recording.
2513 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2514 	 * we are done writing the dummy record.
2515 	 * If we are done with the second dummy recored (DONE2), then
2516 	 * we go to IDLE.
2517 	 */
2518 	if (changed) {
2519 		switch (log->l_covered_state) {
2520 		case XLOG_STATE_COVER_IDLE:
2521 		case XLOG_STATE_COVER_NEED:
2522 		case XLOG_STATE_COVER_NEED2:
2523 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2524 			break;
2525 
2526 		case XLOG_STATE_COVER_DONE:
2527 			if (changed == 1)
2528 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2529 			else
2530 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2531 			break;
2532 
2533 		case XLOG_STATE_COVER_DONE2:
2534 			if (changed == 1)
2535 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2536 			else
2537 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2538 			break;
2539 
2540 		default:
2541 			ASSERT(0);
2542 		}
2543 	}
2544 }	/* xlog_state_clean_log */
2545 
2546 STATIC xfs_lsn_t
2547 xlog_get_lowest_lsn(
2548 	struct xlog	*log)
2549 {
2550 	xlog_in_core_t  *lsn_log;
2551 	xfs_lsn_t	lowest_lsn, lsn;
2552 
2553 	lsn_log = log->l_iclog;
2554 	lowest_lsn = 0;
2555 	do {
2556 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2557 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2558 		if ((lsn && !lowest_lsn) ||
2559 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2560 			lowest_lsn = lsn;
2561 		}
2562 	    }
2563 	    lsn_log = lsn_log->ic_next;
2564 	} while (lsn_log != log->l_iclog);
2565 	return lowest_lsn;
2566 }
2567 
2568 
2569 STATIC void
2570 xlog_state_do_callback(
2571 	struct xlog		*log,
2572 	int			aborted,
2573 	struct xlog_in_core	*ciclog)
2574 {
2575 	xlog_in_core_t	   *iclog;
2576 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2577 						 * processed all iclogs once */
2578 	xfs_log_callback_t *cb, *cb_next;
2579 	int		   flushcnt = 0;
2580 	xfs_lsn_t	   lowest_lsn;
2581 	int		   ioerrors;	/* counter: iclogs with errors */
2582 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2583 	int		   funcdidcallbacks; /* flag: function did callbacks */
2584 	int		   repeats;	/* for issuing console warnings if
2585 					 * looping too many times */
2586 	int		   wake = 0;
2587 
2588 	spin_lock(&log->l_icloglock);
2589 	first_iclog = iclog = log->l_iclog;
2590 	ioerrors = 0;
2591 	funcdidcallbacks = 0;
2592 	repeats = 0;
2593 
2594 	do {
2595 		/*
2596 		 * Scan all iclogs starting with the one pointed to by the
2597 		 * log.  Reset this starting point each time the log is
2598 		 * unlocked (during callbacks).
2599 		 *
2600 		 * Keep looping through iclogs until one full pass is made
2601 		 * without running any callbacks.
2602 		 */
2603 		first_iclog = log->l_iclog;
2604 		iclog = log->l_iclog;
2605 		loopdidcallbacks = 0;
2606 		repeats++;
2607 
2608 		do {
2609 
2610 			/* skip all iclogs in the ACTIVE & DIRTY states */
2611 			if (iclog->ic_state &
2612 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2613 				iclog = iclog->ic_next;
2614 				continue;
2615 			}
2616 
2617 			/*
2618 			 * Between marking a filesystem SHUTDOWN and stopping
2619 			 * the log, we do flush all iclogs to disk (if there
2620 			 * wasn't a log I/O error). So, we do want things to
2621 			 * go smoothly in case of just a SHUTDOWN  w/o a
2622 			 * LOG_IO_ERROR.
2623 			 */
2624 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2625 				/*
2626 				 * Can only perform callbacks in order.  Since
2627 				 * this iclog is not in the DONE_SYNC/
2628 				 * DO_CALLBACK state, we skip the rest and
2629 				 * just try to clean up.  If we set our iclog
2630 				 * to DO_CALLBACK, we will not process it when
2631 				 * we retry since a previous iclog is in the
2632 				 * CALLBACK and the state cannot change since
2633 				 * we are holding the l_icloglock.
2634 				 */
2635 				if (!(iclog->ic_state &
2636 					(XLOG_STATE_DONE_SYNC |
2637 						 XLOG_STATE_DO_CALLBACK))) {
2638 					if (ciclog && (ciclog->ic_state ==
2639 							XLOG_STATE_DONE_SYNC)) {
2640 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2641 					}
2642 					break;
2643 				}
2644 				/*
2645 				 * We now have an iclog that is in either the
2646 				 * DO_CALLBACK or DONE_SYNC states. The other
2647 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2648 				 * caught by the above if and are going to
2649 				 * clean (i.e. we aren't doing their callbacks)
2650 				 * see the above if.
2651 				 */
2652 
2653 				/*
2654 				 * We will do one more check here to see if we
2655 				 * have chased our tail around.
2656 				 */
2657 
2658 				lowest_lsn = xlog_get_lowest_lsn(log);
2659 				if (lowest_lsn &&
2660 				    XFS_LSN_CMP(lowest_lsn,
2661 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2662 					iclog = iclog->ic_next;
2663 					continue; /* Leave this iclog for
2664 						   * another thread */
2665 				}
2666 
2667 				iclog->ic_state = XLOG_STATE_CALLBACK;
2668 
2669 
2670 				/*
2671 				 * Completion of a iclog IO does not imply that
2672 				 * a transaction has completed, as transactions
2673 				 * can be large enough to span many iclogs. We
2674 				 * cannot change the tail of the log half way
2675 				 * through a transaction as this may be the only
2676 				 * transaction in the log and moving th etail to
2677 				 * point to the middle of it will prevent
2678 				 * recovery from finding the start of the
2679 				 * transaction. Hence we should only update the
2680 				 * last_sync_lsn if this iclog contains
2681 				 * transaction completion callbacks on it.
2682 				 *
2683 				 * We have to do this before we drop the
2684 				 * icloglock to ensure we are the only one that
2685 				 * can update it.
2686 				 */
2687 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2688 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2689 				if (iclog->ic_callback)
2690 					atomic64_set(&log->l_last_sync_lsn,
2691 						be64_to_cpu(iclog->ic_header.h_lsn));
2692 
2693 			} else
2694 				ioerrors++;
2695 
2696 			spin_unlock(&log->l_icloglock);
2697 
2698 			/*
2699 			 * Keep processing entries in the callback list until
2700 			 * we come around and it is empty.  We need to
2701 			 * atomically see that the list is empty and change the
2702 			 * state to DIRTY so that we don't miss any more
2703 			 * callbacks being added.
2704 			 */
2705 			spin_lock(&iclog->ic_callback_lock);
2706 			cb = iclog->ic_callback;
2707 			while (cb) {
2708 				iclog->ic_callback_tail = &(iclog->ic_callback);
2709 				iclog->ic_callback = NULL;
2710 				spin_unlock(&iclog->ic_callback_lock);
2711 
2712 				/* perform callbacks in the order given */
2713 				for (; cb; cb = cb_next) {
2714 					cb_next = cb->cb_next;
2715 					cb->cb_func(cb->cb_arg, aborted);
2716 				}
2717 				spin_lock(&iclog->ic_callback_lock);
2718 				cb = iclog->ic_callback;
2719 			}
2720 
2721 			loopdidcallbacks++;
2722 			funcdidcallbacks++;
2723 
2724 			spin_lock(&log->l_icloglock);
2725 			ASSERT(iclog->ic_callback == NULL);
2726 			spin_unlock(&iclog->ic_callback_lock);
2727 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2728 				iclog->ic_state = XLOG_STATE_DIRTY;
2729 
2730 			/*
2731 			 * Transition from DIRTY to ACTIVE if applicable.
2732 			 * NOP if STATE_IOERROR.
2733 			 */
2734 			xlog_state_clean_log(log);
2735 
2736 			/* wake up threads waiting in xfs_log_force() */
2737 			wake_up_all(&iclog->ic_force_wait);
2738 
2739 			iclog = iclog->ic_next;
2740 		} while (first_iclog != iclog);
2741 
2742 		if (repeats > 5000) {
2743 			flushcnt += repeats;
2744 			repeats = 0;
2745 			xfs_warn(log->l_mp,
2746 				"%s: possible infinite loop (%d iterations)",
2747 				__func__, flushcnt);
2748 		}
2749 	} while (!ioerrors && loopdidcallbacks);
2750 
2751 	/*
2752 	 * make one last gasp attempt to see if iclogs are being left in
2753 	 * limbo..
2754 	 */
2755 #ifdef DEBUG
2756 	if (funcdidcallbacks) {
2757 		first_iclog = iclog = log->l_iclog;
2758 		do {
2759 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2760 			/*
2761 			 * Terminate the loop if iclogs are found in states
2762 			 * which will cause other threads to clean up iclogs.
2763 			 *
2764 			 * SYNCING - i/o completion will go through logs
2765 			 * DONE_SYNC - interrupt thread should be waiting for
2766 			 *              l_icloglock
2767 			 * IOERROR - give up hope all ye who enter here
2768 			 */
2769 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2770 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2771 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2772 			    iclog->ic_state == XLOG_STATE_IOERROR )
2773 				break;
2774 			iclog = iclog->ic_next;
2775 		} while (first_iclog != iclog);
2776 	}
2777 #endif
2778 
2779 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2780 		wake = 1;
2781 	spin_unlock(&log->l_icloglock);
2782 
2783 	if (wake)
2784 		wake_up_all(&log->l_flush_wait);
2785 }
2786 
2787 
2788 /*
2789  * Finish transitioning this iclog to the dirty state.
2790  *
2791  * Make sure that we completely execute this routine only when this is
2792  * the last call to the iclog.  There is a good chance that iclog flushes,
2793  * when we reach the end of the physical log, get turned into 2 separate
2794  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2795  * routine.  By using the reference count bwritecnt, we guarantee that only
2796  * the second completion goes through.
2797  *
2798  * Callbacks could take time, so they are done outside the scope of the
2799  * global state machine log lock.
2800  */
2801 STATIC void
2802 xlog_state_done_syncing(
2803 	xlog_in_core_t	*iclog,
2804 	int		aborted)
2805 {
2806 	struct xlog	   *log = iclog->ic_log;
2807 
2808 	spin_lock(&log->l_icloglock);
2809 
2810 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2811 	       iclog->ic_state == XLOG_STATE_IOERROR);
2812 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2813 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2814 
2815 
2816 	/*
2817 	 * If we got an error, either on the first buffer, or in the case of
2818 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2819 	 * and none should ever be attempted to be written to disk
2820 	 * again.
2821 	 */
2822 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2823 		if (--iclog->ic_bwritecnt == 1) {
2824 			spin_unlock(&log->l_icloglock);
2825 			return;
2826 		}
2827 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2828 	}
2829 
2830 	/*
2831 	 * Someone could be sleeping prior to writing out the next
2832 	 * iclog buffer, we wake them all, one will get to do the
2833 	 * I/O, the others get to wait for the result.
2834 	 */
2835 	wake_up_all(&iclog->ic_write_wait);
2836 	spin_unlock(&log->l_icloglock);
2837 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2838 }	/* xlog_state_done_syncing */
2839 
2840 
2841 /*
2842  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2843  * sleep.  We wait on the flush queue on the head iclog as that should be
2844  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2845  * we will wait here and all new writes will sleep until a sync completes.
2846  *
2847  * The in-core logs are used in a circular fashion. They are not used
2848  * out-of-order even when an iclog past the head is free.
2849  *
2850  * return:
2851  *	* log_offset where xlog_write() can start writing into the in-core
2852  *		log's data space.
2853  *	* in-core log pointer to which xlog_write() should write.
2854  *	* boolean indicating this is a continued write to an in-core log.
2855  *		If this is the last write, then the in-core log's offset field
2856  *		needs to be incremented, depending on the amount of data which
2857  *		is copied.
2858  */
2859 STATIC int
2860 xlog_state_get_iclog_space(
2861 	struct xlog		*log,
2862 	int			len,
2863 	struct xlog_in_core	**iclogp,
2864 	struct xlog_ticket	*ticket,
2865 	int			*continued_write,
2866 	int			*logoffsetp)
2867 {
2868 	int		  log_offset;
2869 	xlog_rec_header_t *head;
2870 	xlog_in_core_t	  *iclog;
2871 	int		  error;
2872 
2873 restart:
2874 	spin_lock(&log->l_icloglock);
2875 	if (XLOG_FORCED_SHUTDOWN(log)) {
2876 		spin_unlock(&log->l_icloglock);
2877 		return -EIO;
2878 	}
2879 
2880 	iclog = log->l_iclog;
2881 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2882 		XFS_STATS_INC(xs_log_noiclogs);
2883 
2884 		/* Wait for log writes to have flushed */
2885 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2886 		goto restart;
2887 	}
2888 
2889 	head = &iclog->ic_header;
2890 
2891 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2892 	log_offset = iclog->ic_offset;
2893 
2894 	/* On the 1st write to an iclog, figure out lsn.  This works
2895 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2896 	 * committing to.  If the offset is set, that's how many blocks
2897 	 * must be written.
2898 	 */
2899 	if (log_offset == 0) {
2900 		ticket->t_curr_res -= log->l_iclog_hsize;
2901 		xlog_tic_add_region(ticket,
2902 				    log->l_iclog_hsize,
2903 				    XLOG_REG_TYPE_LRHEADER);
2904 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2905 		head->h_lsn = cpu_to_be64(
2906 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2907 		ASSERT(log->l_curr_block >= 0);
2908 	}
2909 
2910 	/* If there is enough room to write everything, then do it.  Otherwise,
2911 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2912 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2913 	 * until you know exactly how many bytes get copied.  Therefore, wait
2914 	 * until later to update ic_offset.
2915 	 *
2916 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2917 	 * can fit into remaining data section.
2918 	 */
2919 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2920 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2921 
2922 		/*
2923 		 * If I'm the only one writing to this iclog, sync it to disk.
2924 		 * We need to do an atomic compare and decrement here to avoid
2925 		 * racing with concurrent atomic_dec_and_lock() calls in
2926 		 * xlog_state_release_iclog() when there is more than one
2927 		 * reference to the iclog.
2928 		 */
2929 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2930 			/* we are the only one */
2931 			spin_unlock(&log->l_icloglock);
2932 			error = xlog_state_release_iclog(log, iclog);
2933 			if (error)
2934 				return error;
2935 		} else {
2936 			spin_unlock(&log->l_icloglock);
2937 		}
2938 		goto restart;
2939 	}
2940 
2941 	/* Do we have enough room to write the full amount in the remainder
2942 	 * of this iclog?  Or must we continue a write on the next iclog and
2943 	 * mark this iclog as completely taken?  In the case where we switch
2944 	 * iclogs (to mark it taken), this particular iclog will release/sync
2945 	 * to disk in xlog_write().
2946 	 */
2947 	if (len <= iclog->ic_size - iclog->ic_offset) {
2948 		*continued_write = 0;
2949 		iclog->ic_offset += len;
2950 	} else {
2951 		*continued_write = 1;
2952 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2953 	}
2954 	*iclogp = iclog;
2955 
2956 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2957 	spin_unlock(&log->l_icloglock);
2958 
2959 	*logoffsetp = log_offset;
2960 	return 0;
2961 }	/* xlog_state_get_iclog_space */
2962 
2963 /* The first cnt-1 times through here we don't need to
2964  * move the grant write head because the permanent
2965  * reservation has reserved cnt times the unit amount.
2966  * Release part of current permanent unit reservation and
2967  * reset current reservation to be one units worth.  Also
2968  * move grant reservation head forward.
2969  */
2970 STATIC void
2971 xlog_regrant_reserve_log_space(
2972 	struct xlog		*log,
2973 	struct xlog_ticket	*ticket)
2974 {
2975 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2976 
2977 	if (ticket->t_cnt > 0)
2978 		ticket->t_cnt--;
2979 
2980 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2981 					ticket->t_curr_res);
2982 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2983 					ticket->t_curr_res);
2984 	ticket->t_curr_res = ticket->t_unit_res;
2985 	xlog_tic_reset_res(ticket);
2986 
2987 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2988 
2989 	/* just return if we still have some of the pre-reserved space */
2990 	if (ticket->t_cnt > 0)
2991 		return;
2992 
2993 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2994 					ticket->t_unit_res);
2995 
2996 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2997 
2998 	ticket->t_curr_res = ticket->t_unit_res;
2999 	xlog_tic_reset_res(ticket);
3000 }	/* xlog_regrant_reserve_log_space */
3001 
3002 
3003 /*
3004  * Give back the space left from a reservation.
3005  *
3006  * All the information we need to make a correct determination of space left
3007  * is present.  For non-permanent reservations, things are quite easy.  The
3008  * count should have been decremented to zero.  We only need to deal with the
3009  * space remaining in the current reservation part of the ticket.  If the
3010  * ticket contains a permanent reservation, there may be left over space which
3011  * needs to be released.  A count of N means that N-1 refills of the current
3012  * reservation can be done before we need to ask for more space.  The first
3013  * one goes to fill up the first current reservation.  Once we run out of
3014  * space, the count will stay at zero and the only space remaining will be
3015  * in the current reservation field.
3016  */
3017 STATIC void
3018 xlog_ungrant_log_space(
3019 	struct xlog		*log,
3020 	struct xlog_ticket	*ticket)
3021 {
3022 	int	bytes;
3023 
3024 	if (ticket->t_cnt > 0)
3025 		ticket->t_cnt--;
3026 
3027 	trace_xfs_log_ungrant_enter(log, ticket);
3028 	trace_xfs_log_ungrant_sub(log, ticket);
3029 
3030 	/*
3031 	 * If this is a permanent reservation ticket, we may be able to free
3032 	 * up more space based on the remaining count.
3033 	 */
3034 	bytes = ticket->t_curr_res;
3035 	if (ticket->t_cnt > 0) {
3036 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3037 		bytes += ticket->t_unit_res*ticket->t_cnt;
3038 	}
3039 
3040 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3041 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3042 
3043 	trace_xfs_log_ungrant_exit(log, ticket);
3044 
3045 	xfs_log_space_wake(log->l_mp);
3046 }
3047 
3048 /*
3049  * Flush iclog to disk if this is the last reference to the given iclog and
3050  * the WANT_SYNC bit is set.
3051  *
3052  * When this function is entered, the iclog is not necessarily in the
3053  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3054  *
3055  *
3056  */
3057 STATIC int
3058 xlog_state_release_iclog(
3059 	struct xlog		*log,
3060 	struct xlog_in_core	*iclog)
3061 {
3062 	int		sync = 0;	/* do we sync? */
3063 
3064 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3065 		return -EIO;
3066 
3067 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3068 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3069 		return 0;
3070 
3071 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3072 		spin_unlock(&log->l_icloglock);
3073 		return -EIO;
3074 	}
3075 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3076 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3077 
3078 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3079 		/* update tail before writing to iclog */
3080 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3081 		sync++;
3082 		iclog->ic_state = XLOG_STATE_SYNCING;
3083 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3084 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3085 		/* cycle incremented when incrementing curr_block */
3086 	}
3087 	spin_unlock(&log->l_icloglock);
3088 
3089 	/*
3090 	 * We let the log lock go, so it's possible that we hit a log I/O
3091 	 * error or some other SHUTDOWN condition that marks the iclog
3092 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3093 	 * this iclog has consistent data, so we ignore IOERROR
3094 	 * flags after this point.
3095 	 */
3096 	if (sync)
3097 		return xlog_sync(log, iclog);
3098 	return 0;
3099 }	/* xlog_state_release_iclog */
3100 
3101 
3102 /*
3103  * This routine will mark the current iclog in the ring as WANT_SYNC
3104  * and move the current iclog pointer to the next iclog in the ring.
3105  * When this routine is called from xlog_state_get_iclog_space(), the
3106  * exact size of the iclog has not yet been determined.  All we know is
3107  * that every data block.  We have run out of space in this log record.
3108  */
3109 STATIC void
3110 xlog_state_switch_iclogs(
3111 	struct xlog		*log,
3112 	struct xlog_in_core	*iclog,
3113 	int			eventual_size)
3114 {
3115 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3116 	if (!eventual_size)
3117 		eventual_size = iclog->ic_offset;
3118 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3119 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3120 	log->l_prev_block = log->l_curr_block;
3121 	log->l_prev_cycle = log->l_curr_cycle;
3122 
3123 	/* roll log?: ic_offset changed later */
3124 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3125 
3126 	/* Round up to next log-sunit */
3127 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3128 	    log->l_mp->m_sb.sb_logsunit > 1) {
3129 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3130 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3131 	}
3132 
3133 	if (log->l_curr_block >= log->l_logBBsize) {
3134 		log->l_curr_cycle++;
3135 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3136 			log->l_curr_cycle++;
3137 		log->l_curr_block -= log->l_logBBsize;
3138 		ASSERT(log->l_curr_block >= 0);
3139 	}
3140 	ASSERT(iclog == log->l_iclog);
3141 	log->l_iclog = iclog->ic_next;
3142 }	/* xlog_state_switch_iclogs */
3143 
3144 /*
3145  * Write out all data in the in-core log as of this exact moment in time.
3146  *
3147  * Data may be written to the in-core log during this call.  However,
3148  * we don't guarantee this data will be written out.  A change from past
3149  * implementation means this routine will *not* write out zero length LRs.
3150  *
3151  * Basically, we try and perform an intelligent scan of the in-core logs.
3152  * If we determine there is no flushable data, we just return.  There is no
3153  * flushable data if:
3154  *
3155  *	1. the current iclog is active and has no data; the previous iclog
3156  *		is in the active or dirty state.
3157  *	2. the current iclog is drity, and the previous iclog is in the
3158  *		active or dirty state.
3159  *
3160  * We may sleep if:
3161  *
3162  *	1. the current iclog is not in the active nor dirty state.
3163  *	2. the current iclog dirty, and the previous iclog is not in the
3164  *		active nor dirty state.
3165  *	3. the current iclog is active, and there is another thread writing
3166  *		to this particular iclog.
3167  *	4. a) the current iclog is active and has no other writers
3168  *	   b) when we return from flushing out this iclog, it is still
3169  *		not in the active nor dirty state.
3170  */
3171 int
3172 _xfs_log_force(
3173 	struct xfs_mount	*mp,
3174 	uint			flags,
3175 	int			*log_flushed)
3176 {
3177 	struct xlog		*log = mp->m_log;
3178 	struct xlog_in_core	*iclog;
3179 	xfs_lsn_t		lsn;
3180 
3181 	XFS_STATS_INC(xs_log_force);
3182 
3183 	xlog_cil_force(log);
3184 
3185 	spin_lock(&log->l_icloglock);
3186 
3187 	iclog = log->l_iclog;
3188 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3189 		spin_unlock(&log->l_icloglock);
3190 		return -EIO;
3191 	}
3192 
3193 	/* If the head iclog is not active nor dirty, we just attach
3194 	 * ourselves to the head and go to sleep.
3195 	 */
3196 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3197 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3198 		/*
3199 		 * If the head is dirty or (active and empty), then
3200 		 * we need to look at the previous iclog.  If the previous
3201 		 * iclog is active or dirty we are done.  There is nothing
3202 		 * to sync out.  Otherwise, we attach ourselves to the
3203 		 * previous iclog and go to sleep.
3204 		 */
3205 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3206 		    (atomic_read(&iclog->ic_refcnt) == 0
3207 		     && iclog->ic_offset == 0)) {
3208 			iclog = iclog->ic_prev;
3209 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3210 			    iclog->ic_state == XLOG_STATE_DIRTY)
3211 				goto no_sleep;
3212 			else
3213 				goto maybe_sleep;
3214 		} else {
3215 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3216 				/* We are the only one with access to this
3217 				 * iclog.  Flush it out now.  There should
3218 				 * be a roundoff of zero to show that someone
3219 				 * has already taken care of the roundoff from
3220 				 * the previous sync.
3221 				 */
3222 				atomic_inc(&iclog->ic_refcnt);
3223 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3224 				xlog_state_switch_iclogs(log, iclog, 0);
3225 				spin_unlock(&log->l_icloglock);
3226 
3227 				if (xlog_state_release_iclog(log, iclog))
3228 					return -EIO;
3229 
3230 				if (log_flushed)
3231 					*log_flushed = 1;
3232 				spin_lock(&log->l_icloglock);
3233 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3234 				    iclog->ic_state != XLOG_STATE_DIRTY)
3235 					goto maybe_sleep;
3236 				else
3237 					goto no_sleep;
3238 			} else {
3239 				/* Someone else is writing to this iclog.
3240 				 * Use its call to flush out the data.  However,
3241 				 * the other thread may not force out this LR,
3242 				 * so we mark it WANT_SYNC.
3243 				 */
3244 				xlog_state_switch_iclogs(log, iclog, 0);
3245 				goto maybe_sleep;
3246 			}
3247 		}
3248 	}
3249 
3250 	/* By the time we come around again, the iclog could've been filled
3251 	 * which would give it another lsn.  If we have a new lsn, just
3252 	 * return because the relevant data has been flushed.
3253 	 */
3254 maybe_sleep:
3255 	if (flags & XFS_LOG_SYNC) {
3256 		/*
3257 		 * We must check if we're shutting down here, before
3258 		 * we wait, while we're holding the l_icloglock.
3259 		 * Then we check again after waking up, in case our
3260 		 * sleep was disturbed by a bad news.
3261 		 */
3262 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3263 			spin_unlock(&log->l_icloglock);
3264 			return -EIO;
3265 		}
3266 		XFS_STATS_INC(xs_log_force_sleep);
3267 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3268 		/*
3269 		 * No need to grab the log lock here since we're
3270 		 * only deciding whether or not to return EIO
3271 		 * and the memory read should be atomic.
3272 		 */
3273 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3274 			return -EIO;
3275 		if (log_flushed)
3276 			*log_flushed = 1;
3277 	} else {
3278 
3279 no_sleep:
3280 		spin_unlock(&log->l_icloglock);
3281 	}
3282 	return 0;
3283 }
3284 
3285 /*
3286  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3287  * about errors or whether the log was flushed or not. This is the normal
3288  * interface to use when trying to unpin items or move the log forward.
3289  */
3290 void
3291 xfs_log_force(
3292 	xfs_mount_t	*mp,
3293 	uint		flags)
3294 {
3295 	int	error;
3296 
3297 	trace_xfs_log_force(mp, 0);
3298 	error = _xfs_log_force(mp, flags, NULL);
3299 	if (error)
3300 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3301 }
3302 
3303 /*
3304  * Force the in-core log to disk for a specific LSN.
3305  *
3306  * Find in-core log with lsn.
3307  *	If it is in the DIRTY state, just return.
3308  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3309  *		state and go to sleep or return.
3310  *	If it is in any other state, go to sleep or return.
3311  *
3312  * Synchronous forces are implemented with a signal variable. All callers
3313  * to force a given lsn to disk will wait on a the sv attached to the
3314  * specific in-core log.  When given in-core log finally completes its
3315  * write to disk, that thread will wake up all threads waiting on the
3316  * sv.
3317  */
3318 int
3319 _xfs_log_force_lsn(
3320 	struct xfs_mount	*mp,
3321 	xfs_lsn_t		lsn,
3322 	uint			flags,
3323 	int			*log_flushed)
3324 {
3325 	struct xlog		*log = mp->m_log;
3326 	struct xlog_in_core	*iclog;
3327 	int			already_slept = 0;
3328 
3329 	ASSERT(lsn != 0);
3330 
3331 	XFS_STATS_INC(xs_log_force);
3332 
3333 	lsn = xlog_cil_force_lsn(log, lsn);
3334 	if (lsn == NULLCOMMITLSN)
3335 		return 0;
3336 
3337 try_again:
3338 	spin_lock(&log->l_icloglock);
3339 	iclog = log->l_iclog;
3340 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3341 		spin_unlock(&log->l_icloglock);
3342 		return -EIO;
3343 	}
3344 
3345 	do {
3346 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3347 			iclog = iclog->ic_next;
3348 			continue;
3349 		}
3350 
3351 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3352 			spin_unlock(&log->l_icloglock);
3353 			return 0;
3354 		}
3355 
3356 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3357 			/*
3358 			 * We sleep here if we haven't already slept (e.g.
3359 			 * this is the first time we've looked at the correct
3360 			 * iclog buf) and the buffer before us is going to
3361 			 * be sync'ed. The reason for this is that if we
3362 			 * are doing sync transactions here, by waiting for
3363 			 * the previous I/O to complete, we can allow a few
3364 			 * more transactions into this iclog before we close
3365 			 * it down.
3366 			 *
3367 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3368 			 * up the refcnt so we can release the log (which
3369 			 * drops the ref count).  The state switch keeps new
3370 			 * transaction commits from using this buffer.  When
3371 			 * the current commits finish writing into the buffer,
3372 			 * the refcount will drop to zero and the buffer will
3373 			 * go out then.
3374 			 */
3375 			if (!already_slept &&
3376 			    (iclog->ic_prev->ic_state &
3377 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3378 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3379 
3380 				XFS_STATS_INC(xs_log_force_sleep);
3381 
3382 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3383 							&log->l_icloglock);
3384 				if (log_flushed)
3385 					*log_flushed = 1;
3386 				already_slept = 1;
3387 				goto try_again;
3388 			}
3389 			atomic_inc(&iclog->ic_refcnt);
3390 			xlog_state_switch_iclogs(log, iclog, 0);
3391 			spin_unlock(&log->l_icloglock);
3392 			if (xlog_state_release_iclog(log, iclog))
3393 				return -EIO;
3394 			if (log_flushed)
3395 				*log_flushed = 1;
3396 			spin_lock(&log->l_icloglock);
3397 		}
3398 
3399 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3400 		    !(iclog->ic_state &
3401 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3402 			/*
3403 			 * Don't wait on completion if we know that we've
3404 			 * gotten a log write error.
3405 			 */
3406 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3407 				spin_unlock(&log->l_icloglock);
3408 				return -EIO;
3409 			}
3410 			XFS_STATS_INC(xs_log_force_sleep);
3411 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3412 			/*
3413 			 * No need to grab the log lock here since we're
3414 			 * only deciding whether or not to return EIO
3415 			 * and the memory read should be atomic.
3416 			 */
3417 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3418 				return -EIO;
3419 
3420 			if (log_flushed)
3421 				*log_flushed = 1;
3422 		} else {		/* just return */
3423 			spin_unlock(&log->l_icloglock);
3424 		}
3425 
3426 		return 0;
3427 	} while (iclog != log->l_iclog);
3428 
3429 	spin_unlock(&log->l_icloglock);
3430 	return 0;
3431 }
3432 
3433 /*
3434  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3435  * about errors or whether the log was flushed or not. This is the normal
3436  * interface to use when trying to unpin items or move the log forward.
3437  */
3438 void
3439 xfs_log_force_lsn(
3440 	xfs_mount_t	*mp,
3441 	xfs_lsn_t	lsn,
3442 	uint		flags)
3443 {
3444 	int	error;
3445 
3446 	trace_xfs_log_force(mp, lsn);
3447 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3448 	if (error)
3449 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3450 }
3451 
3452 /*
3453  * Called when we want to mark the current iclog as being ready to sync to
3454  * disk.
3455  */
3456 STATIC void
3457 xlog_state_want_sync(
3458 	struct xlog		*log,
3459 	struct xlog_in_core	*iclog)
3460 {
3461 	assert_spin_locked(&log->l_icloglock);
3462 
3463 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3464 		xlog_state_switch_iclogs(log, iclog, 0);
3465 	} else {
3466 		ASSERT(iclog->ic_state &
3467 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3468 	}
3469 }
3470 
3471 
3472 /*****************************************************************************
3473  *
3474  *		TICKET functions
3475  *
3476  *****************************************************************************
3477  */
3478 
3479 /*
3480  * Free a used ticket when its refcount falls to zero.
3481  */
3482 void
3483 xfs_log_ticket_put(
3484 	xlog_ticket_t	*ticket)
3485 {
3486 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3487 	if (atomic_dec_and_test(&ticket->t_ref))
3488 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3489 }
3490 
3491 xlog_ticket_t *
3492 xfs_log_ticket_get(
3493 	xlog_ticket_t	*ticket)
3494 {
3495 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3496 	atomic_inc(&ticket->t_ref);
3497 	return ticket;
3498 }
3499 
3500 /*
3501  * Figure out the total log space unit (in bytes) that would be
3502  * required for a log ticket.
3503  */
3504 int
3505 xfs_log_calc_unit_res(
3506 	struct xfs_mount	*mp,
3507 	int			unit_bytes)
3508 {
3509 	struct xlog		*log = mp->m_log;
3510 	int			iclog_space;
3511 	uint			num_headers;
3512 
3513 	/*
3514 	 * Permanent reservations have up to 'cnt'-1 active log operations
3515 	 * in the log.  A unit in this case is the amount of space for one
3516 	 * of these log operations.  Normal reservations have a cnt of 1
3517 	 * and their unit amount is the total amount of space required.
3518 	 *
3519 	 * The following lines of code account for non-transaction data
3520 	 * which occupy space in the on-disk log.
3521 	 *
3522 	 * Normal form of a transaction is:
3523 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3524 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3525 	 *
3526 	 * We need to account for all the leadup data and trailer data
3527 	 * around the transaction data.
3528 	 * And then we need to account for the worst case in terms of using
3529 	 * more space.
3530 	 * The worst case will happen if:
3531 	 * - the placement of the transaction happens to be such that the
3532 	 *   roundoff is at its maximum
3533 	 * - the transaction data is synced before the commit record is synced
3534 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3535 	 *   Therefore the commit record is in its own Log Record.
3536 	 *   This can happen as the commit record is called with its
3537 	 *   own region to xlog_write().
3538 	 *   This then means that in the worst case, roundoff can happen for
3539 	 *   the commit-rec as well.
3540 	 *   The commit-rec is smaller than padding in this scenario and so it is
3541 	 *   not added separately.
3542 	 */
3543 
3544 	/* for trans header */
3545 	unit_bytes += sizeof(xlog_op_header_t);
3546 	unit_bytes += sizeof(xfs_trans_header_t);
3547 
3548 	/* for start-rec */
3549 	unit_bytes += sizeof(xlog_op_header_t);
3550 
3551 	/*
3552 	 * for LR headers - the space for data in an iclog is the size minus
3553 	 * the space used for the headers. If we use the iclog size, then we
3554 	 * undercalculate the number of headers required.
3555 	 *
3556 	 * Furthermore - the addition of op headers for split-recs might
3557 	 * increase the space required enough to require more log and op
3558 	 * headers, so take that into account too.
3559 	 *
3560 	 * IMPORTANT: This reservation makes the assumption that if this
3561 	 * transaction is the first in an iclog and hence has the LR headers
3562 	 * accounted to it, then the remaining space in the iclog is
3563 	 * exclusively for this transaction.  i.e. if the transaction is larger
3564 	 * than the iclog, it will be the only thing in that iclog.
3565 	 * Fundamentally, this means we must pass the entire log vector to
3566 	 * xlog_write to guarantee this.
3567 	 */
3568 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3569 	num_headers = howmany(unit_bytes, iclog_space);
3570 
3571 	/* for split-recs - ophdrs added when data split over LRs */
3572 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3573 
3574 	/* add extra header reservations if we overrun */
3575 	while (!num_headers ||
3576 	       howmany(unit_bytes, iclog_space) > num_headers) {
3577 		unit_bytes += sizeof(xlog_op_header_t);
3578 		num_headers++;
3579 	}
3580 	unit_bytes += log->l_iclog_hsize * num_headers;
3581 
3582 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3583 	unit_bytes += log->l_iclog_hsize;
3584 
3585 	/* for roundoff padding for transaction data and one for commit record */
3586 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3587 		/* log su roundoff */
3588 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3589 	} else {
3590 		/* BB roundoff */
3591 		unit_bytes += 2 * BBSIZE;
3592         }
3593 
3594 	return unit_bytes;
3595 }
3596 
3597 /*
3598  * Allocate and initialise a new log ticket.
3599  */
3600 struct xlog_ticket *
3601 xlog_ticket_alloc(
3602 	struct xlog		*log,
3603 	int			unit_bytes,
3604 	int			cnt,
3605 	char			client,
3606 	bool			permanent,
3607 	xfs_km_flags_t		alloc_flags)
3608 {
3609 	struct xlog_ticket	*tic;
3610 	int			unit_res;
3611 
3612 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3613 	if (!tic)
3614 		return NULL;
3615 
3616 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3617 
3618 	atomic_set(&tic->t_ref, 1);
3619 	tic->t_task		= current;
3620 	INIT_LIST_HEAD(&tic->t_queue);
3621 	tic->t_unit_res		= unit_res;
3622 	tic->t_curr_res		= unit_res;
3623 	tic->t_cnt		= cnt;
3624 	tic->t_ocnt		= cnt;
3625 	tic->t_tid		= prandom_u32();
3626 	tic->t_clientid		= client;
3627 	tic->t_flags		= XLOG_TIC_INITED;
3628 	tic->t_trans_type	= 0;
3629 	if (permanent)
3630 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3631 
3632 	xlog_tic_reset_res(tic);
3633 
3634 	return tic;
3635 }
3636 
3637 
3638 /******************************************************************************
3639  *
3640  *		Log debug routines
3641  *
3642  ******************************************************************************
3643  */
3644 #if defined(DEBUG)
3645 /*
3646  * Make sure that the destination ptr is within the valid data region of
3647  * one of the iclogs.  This uses backup pointers stored in a different
3648  * part of the log in case we trash the log structure.
3649  */
3650 void
3651 xlog_verify_dest_ptr(
3652 	struct xlog	*log,
3653 	char		*ptr)
3654 {
3655 	int i;
3656 	int good_ptr = 0;
3657 
3658 	for (i = 0; i < log->l_iclog_bufs; i++) {
3659 		if (ptr >= log->l_iclog_bak[i] &&
3660 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3661 			good_ptr++;
3662 	}
3663 
3664 	if (!good_ptr)
3665 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3666 }
3667 
3668 /*
3669  * Check to make sure the grant write head didn't just over lap the tail.  If
3670  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3671  * the cycles differ by exactly one and check the byte count.
3672  *
3673  * This check is run unlocked, so can give false positives. Rather than assert
3674  * on failures, use a warn-once flag and a panic tag to allow the admin to
3675  * determine if they want to panic the machine when such an error occurs. For
3676  * debug kernels this will have the same effect as using an assert but, unlinke
3677  * an assert, it can be turned off at runtime.
3678  */
3679 STATIC void
3680 xlog_verify_grant_tail(
3681 	struct xlog	*log)
3682 {
3683 	int		tail_cycle, tail_blocks;
3684 	int		cycle, space;
3685 
3686 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3687 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3688 	if (tail_cycle != cycle) {
3689 		if (cycle - 1 != tail_cycle &&
3690 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3691 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3692 				"%s: cycle - 1 != tail_cycle", __func__);
3693 			log->l_flags |= XLOG_TAIL_WARN;
3694 		}
3695 
3696 		if (space > BBTOB(tail_blocks) &&
3697 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3698 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3699 				"%s: space > BBTOB(tail_blocks)", __func__);
3700 			log->l_flags |= XLOG_TAIL_WARN;
3701 		}
3702 	}
3703 }
3704 
3705 /* check if it will fit */
3706 STATIC void
3707 xlog_verify_tail_lsn(
3708 	struct xlog		*log,
3709 	struct xlog_in_core	*iclog,
3710 	xfs_lsn_t		tail_lsn)
3711 {
3712     int blocks;
3713 
3714     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3715 	blocks =
3716 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3717 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3718 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3719     } else {
3720 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3721 
3722 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3723 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3724 
3725 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3726 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3727 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3728     }
3729 }	/* xlog_verify_tail_lsn */
3730 
3731 /*
3732  * Perform a number of checks on the iclog before writing to disk.
3733  *
3734  * 1. Make sure the iclogs are still circular
3735  * 2. Make sure we have a good magic number
3736  * 3. Make sure we don't have magic numbers in the data
3737  * 4. Check fields of each log operation header for:
3738  *	A. Valid client identifier
3739  *	B. tid ptr value falls in valid ptr space (user space code)
3740  *	C. Length in log record header is correct according to the
3741  *		individual operation headers within record.
3742  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3743  *	log, check the preceding blocks of the physical log to make sure all
3744  *	the cycle numbers agree with the current cycle number.
3745  */
3746 STATIC void
3747 xlog_verify_iclog(
3748 	struct xlog		*log,
3749 	struct xlog_in_core	*iclog,
3750 	int			count,
3751 	bool                    syncing)
3752 {
3753 	xlog_op_header_t	*ophead;
3754 	xlog_in_core_t		*icptr;
3755 	xlog_in_core_2_t	*xhdr;
3756 	xfs_caddr_t		ptr;
3757 	xfs_caddr_t		base_ptr;
3758 	__psint_t		field_offset;
3759 	__uint8_t		clientid;
3760 	int			len, i, j, k, op_len;
3761 	int			idx;
3762 
3763 	/* check validity of iclog pointers */
3764 	spin_lock(&log->l_icloglock);
3765 	icptr = log->l_iclog;
3766 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3767 		ASSERT(icptr);
3768 
3769 	if (icptr != log->l_iclog)
3770 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3771 	spin_unlock(&log->l_icloglock);
3772 
3773 	/* check log magic numbers */
3774 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3775 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3776 
3777 	ptr = (xfs_caddr_t) &iclog->ic_header;
3778 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3779 	     ptr += BBSIZE) {
3780 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3781 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3782 				__func__);
3783 	}
3784 
3785 	/* check fields */
3786 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3787 	ptr = iclog->ic_datap;
3788 	base_ptr = ptr;
3789 	ophead = (xlog_op_header_t *)ptr;
3790 	xhdr = iclog->ic_data;
3791 	for (i = 0; i < len; i++) {
3792 		ophead = (xlog_op_header_t *)ptr;
3793 
3794 		/* clientid is only 1 byte */
3795 		field_offset = (__psint_t)
3796 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3797 		if (!syncing || (field_offset & 0x1ff)) {
3798 			clientid = ophead->oh_clientid;
3799 		} else {
3800 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3801 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3802 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3803 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3804 				clientid = xlog_get_client_id(
3805 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3806 			} else {
3807 				clientid = xlog_get_client_id(
3808 					iclog->ic_header.h_cycle_data[idx]);
3809 			}
3810 		}
3811 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3812 			xfs_warn(log->l_mp,
3813 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3814 				__func__, clientid, ophead,
3815 				(unsigned long)field_offset);
3816 
3817 		/* check length */
3818 		field_offset = (__psint_t)
3819 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3820 		if (!syncing || (field_offset & 0x1ff)) {
3821 			op_len = be32_to_cpu(ophead->oh_len);
3822 		} else {
3823 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3824 				    (__psint_t)iclog->ic_datap);
3825 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3826 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3827 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3828 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3829 			} else {
3830 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3831 			}
3832 		}
3833 		ptr += sizeof(xlog_op_header_t) + op_len;
3834 	}
3835 }	/* xlog_verify_iclog */
3836 #endif
3837 
3838 /*
3839  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3840  */
3841 STATIC int
3842 xlog_state_ioerror(
3843 	struct xlog	*log)
3844 {
3845 	xlog_in_core_t	*iclog, *ic;
3846 
3847 	iclog = log->l_iclog;
3848 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3849 		/*
3850 		 * Mark all the incore logs IOERROR.
3851 		 * From now on, no log flushes will result.
3852 		 */
3853 		ic = iclog;
3854 		do {
3855 			ic->ic_state = XLOG_STATE_IOERROR;
3856 			ic = ic->ic_next;
3857 		} while (ic != iclog);
3858 		return 0;
3859 	}
3860 	/*
3861 	 * Return non-zero, if state transition has already happened.
3862 	 */
3863 	return 1;
3864 }
3865 
3866 /*
3867  * This is called from xfs_force_shutdown, when we're forcibly
3868  * shutting down the filesystem, typically because of an IO error.
3869  * Our main objectives here are to make sure that:
3870  *	a. if !logerror, flush the logs to disk. Anything modified
3871  *	   after this is ignored.
3872  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3873  *	   parties to find out, 'atomically'.
3874  *	c. those who're sleeping on log reservations, pinned objects and
3875  *	    other resources get woken up, and be told the bad news.
3876  *	d. nothing new gets queued up after (b) and (c) are done.
3877  *
3878  * Note: for the !logerror case we need to flush the regions held in memory out
3879  * to disk first. This needs to be done before the log is marked as shutdown,
3880  * otherwise the iclog writes will fail.
3881  */
3882 int
3883 xfs_log_force_umount(
3884 	struct xfs_mount	*mp,
3885 	int			logerror)
3886 {
3887 	struct xlog	*log;
3888 	int		retval;
3889 
3890 	log = mp->m_log;
3891 
3892 	/*
3893 	 * If this happens during log recovery, don't worry about
3894 	 * locking; the log isn't open for business yet.
3895 	 */
3896 	if (!log ||
3897 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3898 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3899 		if (mp->m_sb_bp)
3900 			XFS_BUF_DONE(mp->m_sb_bp);
3901 		return 0;
3902 	}
3903 
3904 	/*
3905 	 * Somebody could've already done the hard work for us.
3906 	 * No need to get locks for this.
3907 	 */
3908 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3909 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3910 		return 1;
3911 	}
3912 
3913 	/*
3914 	 * Flush all the completed transactions to disk before marking the log
3915 	 * being shut down. We need to do it in this order to ensure that
3916 	 * completed operations are safely on disk before we shut down, and that
3917 	 * we don't have to issue any buffer IO after the shutdown flags are set
3918 	 * to guarantee this.
3919 	 */
3920 	if (!logerror)
3921 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3922 
3923 	/*
3924 	 * mark the filesystem and the as in a shutdown state and wake
3925 	 * everybody up to tell them the bad news.
3926 	 */
3927 	spin_lock(&log->l_icloglock);
3928 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3929 	if (mp->m_sb_bp)
3930 		XFS_BUF_DONE(mp->m_sb_bp);
3931 
3932 	/*
3933 	 * Mark the log and the iclogs with IO error flags to prevent any
3934 	 * further log IO from being issued or completed.
3935 	 */
3936 	log->l_flags |= XLOG_IO_ERROR;
3937 	retval = xlog_state_ioerror(log);
3938 	spin_unlock(&log->l_icloglock);
3939 
3940 	/*
3941 	 * We don't want anybody waiting for log reservations after this. That
3942 	 * means we have to wake up everybody queued up on reserveq as well as
3943 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3944 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3945 	 * action is protected by the grant locks.
3946 	 */
3947 	xlog_grant_head_wake_all(&log->l_reserve_head);
3948 	xlog_grant_head_wake_all(&log->l_write_head);
3949 
3950 	/*
3951 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3952 	 * as if the log writes were completed. The abort handling in the log
3953 	 * item committed callback functions will do this again under lock to
3954 	 * avoid races.
3955 	 */
3956 	wake_up_all(&log->l_cilp->xc_commit_wait);
3957 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3958 
3959 #ifdef XFSERRORDEBUG
3960 	{
3961 		xlog_in_core_t	*iclog;
3962 
3963 		spin_lock(&log->l_icloglock);
3964 		iclog = log->l_iclog;
3965 		do {
3966 			ASSERT(iclog->ic_callback == 0);
3967 			iclog = iclog->ic_next;
3968 		} while (iclog != log->l_iclog);
3969 		spin_unlock(&log->l_icloglock);
3970 	}
3971 #endif
3972 	/* return non-zero if log IOERROR transition had already happened */
3973 	return retval;
3974 }
3975 
3976 STATIC int
3977 xlog_iclogs_empty(
3978 	struct xlog	*log)
3979 {
3980 	xlog_in_core_t	*iclog;
3981 
3982 	iclog = log->l_iclog;
3983 	do {
3984 		/* endianness does not matter here, zero is zero in
3985 		 * any language.
3986 		 */
3987 		if (iclog->ic_header.h_num_logops)
3988 			return 0;
3989 		iclog = iclog->ic_next;
3990 	} while (iclog != log->l_iclog);
3991 	return 1;
3992 }
3993 
3994