1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 char *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent, 439 uint t_type) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return -EIO; 450 451 XFS_STATS_INC(xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return -ENOMEM; 458 459 tic->t_trans_type = t_type; 460 *ticp = tic; 461 462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 463 : tic->t_unit_res); 464 465 trace_xfs_log_reserve(log, tic); 466 467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 468 &need_bytes); 469 if (error) 470 goto out_error; 471 472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 474 trace_xfs_log_reserve_exit(log, tic); 475 xlog_verify_grant_tail(log); 476 return 0; 477 478 out_error: 479 /* 480 * If we are failing, make sure the ticket doesn't have any current 481 * reservations. We don't want to add this back when the ticket/ 482 * transaction gets cancelled. 483 */ 484 tic->t_curr_res = 0; 485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 486 return error; 487 } 488 489 490 /* 491 * NOTES: 492 * 493 * 1. currblock field gets updated at startup and after in-core logs 494 * marked as with WANT_SYNC. 495 */ 496 497 /* 498 * This routine is called when a user of a log manager ticket is done with 499 * the reservation. If the ticket was ever used, then a commit record for 500 * the associated transaction is written out as a log operation header with 501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 502 * a given ticket. If the ticket was one with a permanent reservation, then 503 * a few operations are done differently. Permanent reservation tickets by 504 * default don't release the reservation. They just commit the current 505 * transaction with the belief that the reservation is still needed. A flag 506 * must be passed in before permanent reservations are actually released. 507 * When these type of tickets are not released, they need to be set into 508 * the inited state again. By doing this, a start record will be written 509 * out when the next write occurs. 510 */ 511 xfs_lsn_t 512 xfs_log_done( 513 struct xfs_mount *mp, 514 struct xlog_ticket *ticket, 515 struct xlog_in_core **iclog, 516 uint flags) 517 { 518 struct xlog *log = mp->m_log; 519 xfs_lsn_t lsn = 0; 520 521 if (XLOG_FORCED_SHUTDOWN(log) || 522 /* 523 * If nothing was ever written, don't write out commit record. 524 * If we get an error, just continue and give back the log ticket. 525 */ 526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 527 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 528 lsn = (xfs_lsn_t) -1; 529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 530 flags |= XFS_LOG_REL_PERM_RESERV; 531 } 532 } 533 534 535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 536 (flags & XFS_LOG_REL_PERM_RESERV)) { 537 trace_xfs_log_done_nonperm(log, ticket); 538 539 /* 540 * Release ticket if not permanent reservation or a specific 541 * request has been made to release a permanent reservation. 542 */ 543 xlog_ungrant_log_space(log, ticket); 544 xfs_log_ticket_put(ticket); 545 } else { 546 trace_xfs_log_done_perm(log, ticket); 547 548 xlog_regrant_reserve_log_space(log, ticket); 549 /* If this ticket was a permanent reservation and we aren't 550 * trying to release it, reset the inited flags; so next time 551 * we write, a start record will be written out. 552 */ 553 ticket->t_flags |= XLOG_TIC_INITED; 554 } 555 556 return lsn; 557 } 558 559 /* 560 * Attaches a new iclog I/O completion callback routine during 561 * transaction commit. If the log is in error state, a non-zero 562 * return code is handed back and the caller is responsible for 563 * executing the callback at an appropriate time. 564 */ 565 int 566 xfs_log_notify( 567 struct xfs_mount *mp, 568 struct xlog_in_core *iclog, 569 xfs_log_callback_t *cb) 570 { 571 int abortflg; 572 573 spin_lock(&iclog->ic_callback_lock); 574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 575 if (!abortflg) { 576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 577 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 578 cb->cb_next = NULL; 579 *(iclog->ic_callback_tail) = cb; 580 iclog->ic_callback_tail = &(cb->cb_next); 581 } 582 spin_unlock(&iclog->ic_callback_lock); 583 return abortflg; 584 } 585 586 int 587 xfs_log_release_iclog( 588 struct xfs_mount *mp, 589 struct xlog_in_core *iclog) 590 { 591 if (xlog_state_release_iclog(mp->m_log, iclog)) { 592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 593 return -EIO; 594 } 595 596 return 0; 597 } 598 599 /* 600 * Mount a log filesystem 601 * 602 * mp - ubiquitous xfs mount point structure 603 * log_target - buftarg of on-disk log device 604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 605 * num_bblocks - Number of BBSIZE blocks in on-disk log 606 * 607 * Return error or zero. 608 */ 609 int 610 xfs_log_mount( 611 xfs_mount_t *mp, 612 xfs_buftarg_t *log_target, 613 xfs_daddr_t blk_offset, 614 int num_bblks) 615 { 616 int error = 0; 617 int min_logfsbs; 618 619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 620 xfs_notice(mp, "Mounting V%d Filesystem", 621 XFS_SB_VERSION_NUM(&mp->m_sb)); 622 } else { 623 xfs_notice(mp, 624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 625 XFS_SB_VERSION_NUM(&mp->m_sb)); 626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 627 } 628 629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 630 if (IS_ERR(mp->m_log)) { 631 error = PTR_ERR(mp->m_log); 632 goto out; 633 } 634 635 /* 636 * Validate the given log space and drop a critical message via syslog 637 * if the log size is too small that would lead to some unexpected 638 * situations in transaction log space reservation stage. 639 * 640 * Note: we can't just reject the mount if the validation fails. This 641 * would mean that people would have to downgrade their kernel just to 642 * remedy the situation as there is no way to grow the log (short of 643 * black magic surgery with xfs_db). 644 * 645 * We can, however, reject mounts for CRC format filesystems, as the 646 * mkfs binary being used to make the filesystem should never create a 647 * filesystem with a log that is too small. 648 */ 649 min_logfsbs = xfs_log_calc_minimum_size(mp); 650 651 if (mp->m_sb.sb_logblocks < min_logfsbs) { 652 xfs_warn(mp, 653 "Log size %d blocks too small, minimum size is %d blocks", 654 mp->m_sb.sb_logblocks, min_logfsbs); 655 error = -EINVAL; 656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 657 xfs_warn(mp, 658 "Log size %d blocks too large, maximum size is %lld blocks", 659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 660 error = -EINVAL; 661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 662 xfs_warn(mp, 663 "log size %lld bytes too large, maximum size is %lld bytes", 664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 665 XFS_MAX_LOG_BYTES); 666 error = -EINVAL; 667 } 668 if (error) { 669 if (xfs_sb_version_hascrc(&mp->m_sb)) { 670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 671 ASSERT(0); 672 goto out_free_log; 673 } 674 xfs_crit(mp, 675 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 676 "experienced then please report this message in the bug report."); 677 } 678 679 /* 680 * Initialize the AIL now we have a log. 681 */ 682 error = xfs_trans_ail_init(mp); 683 if (error) { 684 xfs_warn(mp, "AIL initialisation failed: error %d", error); 685 goto out_free_log; 686 } 687 mp->m_log->l_ailp = mp->m_ail; 688 689 /* 690 * skip log recovery on a norecovery mount. pretend it all 691 * just worked. 692 */ 693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 695 696 if (readonly) 697 mp->m_flags &= ~XFS_MOUNT_RDONLY; 698 699 error = xlog_recover(mp->m_log); 700 701 if (readonly) 702 mp->m_flags |= XFS_MOUNT_RDONLY; 703 if (error) { 704 xfs_warn(mp, "log mount/recovery failed: error %d", 705 error); 706 goto out_destroy_ail; 707 } 708 } 709 710 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 711 "log"); 712 if (error) 713 goto out_destroy_ail; 714 715 /* Normal transactions can now occur */ 716 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 717 718 /* 719 * Now the log has been fully initialised and we know were our 720 * space grant counters are, we can initialise the permanent ticket 721 * needed for delayed logging to work. 722 */ 723 xlog_cil_init_post_recovery(mp->m_log); 724 725 return 0; 726 727 out_destroy_ail: 728 xfs_trans_ail_destroy(mp); 729 out_free_log: 730 xlog_dealloc_log(mp->m_log); 731 out: 732 return error; 733 } 734 735 /* 736 * Finish the recovery of the file system. This is separate from the 737 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 738 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 739 * here. 740 * 741 * If we finish recovery successfully, start the background log work. If we are 742 * not doing recovery, then we have a RO filesystem and we don't need to start 743 * it. 744 */ 745 int 746 xfs_log_mount_finish(xfs_mount_t *mp) 747 { 748 int error = 0; 749 750 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 751 error = xlog_recover_finish(mp->m_log); 752 if (!error) 753 xfs_log_work_queue(mp); 754 } else { 755 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 756 } 757 758 759 return error; 760 } 761 762 /* 763 * Final log writes as part of unmount. 764 * 765 * Mark the filesystem clean as unmount happens. Note that during relocation 766 * this routine needs to be executed as part of source-bag while the 767 * deallocation must not be done until source-end. 768 */ 769 770 /* 771 * Unmount record used to have a string "Unmount filesystem--" in the 772 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 773 * We just write the magic number now since that particular field isn't 774 * currently architecture converted and "Unmount" is a bit foo. 775 * As far as I know, there weren't any dependencies on the old behaviour. 776 */ 777 778 int 779 xfs_log_unmount_write(xfs_mount_t *mp) 780 { 781 struct xlog *log = mp->m_log; 782 xlog_in_core_t *iclog; 783 #ifdef DEBUG 784 xlog_in_core_t *first_iclog; 785 #endif 786 xlog_ticket_t *tic = NULL; 787 xfs_lsn_t lsn; 788 int error; 789 790 /* 791 * Don't write out unmount record on read-only mounts. 792 * Or, if we are doing a forced umount (typically because of IO errors). 793 */ 794 if (mp->m_flags & XFS_MOUNT_RDONLY) 795 return 0; 796 797 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 798 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 799 800 #ifdef DEBUG 801 first_iclog = iclog = log->l_iclog; 802 do { 803 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 804 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 805 ASSERT(iclog->ic_offset == 0); 806 } 807 iclog = iclog->ic_next; 808 } while (iclog != first_iclog); 809 #endif 810 if (! (XLOG_FORCED_SHUTDOWN(log))) { 811 error = xfs_log_reserve(mp, 600, 1, &tic, 812 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 813 if (!error) { 814 /* the data section must be 32 bit size aligned */ 815 struct { 816 __uint16_t magic; 817 __uint16_t pad1; 818 __uint32_t pad2; /* may as well make it 64 bits */ 819 } magic = { 820 .magic = XLOG_UNMOUNT_TYPE, 821 }; 822 struct xfs_log_iovec reg = { 823 .i_addr = &magic, 824 .i_len = sizeof(magic), 825 .i_type = XLOG_REG_TYPE_UNMOUNT, 826 }; 827 struct xfs_log_vec vec = { 828 .lv_niovecs = 1, 829 .lv_iovecp = ®, 830 }; 831 832 /* remove inited flag, and account for space used */ 833 tic->t_flags = 0; 834 tic->t_curr_res -= sizeof(magic); 835 error = xlog_write(log, &vec, tic, &lsn, 836 NULL, XLOG_UNMOUNT_TRANS); 837 /* 838 * At this point, we're umounting anyway, 839 * so there's no point in transitioning log state 840 * to IOERROR. Just continue... 841 */ 842 } 843 844 if (error) 845 xfs_alert(mp, "%s: unmount record failed", __func__); 846 847 848 spin_lock(&log->l_icloglock); 849 iclog = log->l_iclog; 850 atomic_inc(&iclog->ic_refcnt); 851 xlog_state_want_sync(log, iclog); 852 spin_unlock(&log->l_icloglock); 853 error = xlog_state_release_iclog(log, iclog); 854 855 spin_lock(&log->l_icloglock); 856 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 857 iclog->ic_state == XLOG_STATE_DIRTY)) { 858 if (!XLOG_FORCED_SHUTDOWN(log)) { 859 xlog_wait(&iclog->ic_force_wait, 860 &log->l_icloglock); 861 } else { 862 spin_unlock(&log->l_icloglock); 863 } 864 } else { 865 spin_unlock(&log->l_icloglock); 866 } 867 if (tic) { 868 trace_xfs_log_umount_write(log, tic); 869 xlog_ungrant_log_space(log, tic); 870 xfs_log_ticket_put(tic); 871 } 872 } else { 873 /* 874 * We're already in forced_shutdown mode, couldn't 875 * even attempt to write out the unmount transaction. 876 * 877 * Go through the motions of sync'ing and releasing 878 * the iclog, even though no I/O will actually happen, 879 * we need to wait for other log I/Os that may already 880 * be in progress. Do this as a separate section of 881 * code so we'll know if we ever get stuck here that 882 * we're in this odd situation of trying to unmount 883 * a file system that went into forced_shutdown as 884 * the result of an unmount.. 885 */ 886 spin_lock(&log->l_icloglock); 887 iclog = log->l_iclog; 888 atomic_inc(&iclog->ic_refcnt); 889 890 xlog_state_want_sync(log, iclog); 891 spin_unlock(&log->l_icloglock); 892 error = xlog_state_release_iclog(log, iclog); 893 894 spin_lock(&log->l_icloglock); 895 896 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 897 || iclog->ic_state == XLOG_STATE_DIRTY 898 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 899 900 xlog_wait(&iclog->ic_force_wait, 901 &log->l_icloglock); 902 } else { 903 spin_unlock(&log->l_icloglock); 904 } 905 } 906 907 return error; 908 } /* xfs_log_unmount_write */ 909 910 /* 911 * Empty the log for unmount/freeze. 912 * 913 * To do this, we first need to shut down the background log work so it is not 914 * trying to cover the log as we clean up. We then need to unpin all objects in 915 * the log so we can then flush them out. Once they have completed their IO and 916 * run the callbacks removing themselves from the AIL, we can write the unmount 917 * record. 918 */ 919 void 920 xfs_log_quiesce( 921 struct xfs_mount *mp) 922 { 923 cancel_delayed_work_sync(&mp->m_log->l_work); 924 xfs_log_force(mp, XFS_LOG_SYNC); 925 926 /* 927 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 928 * will push it, xfs_wait_buftarg() will not wait for it. Further, 929 * xfs_buf_iowait() cannot be used because it was pushed with the 930 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 931 * the IO to complete. 932 */ 933 xfs_ail_push_all_sync(mp->m_ail); 934 xfs_wait_buftarg(mp->m_ddev_targp); 935 xfs_buf_lock(mp->m_sb_bp); 936 xfs_buf_unlock(mp->m_sb_bp); 937 938 xfs_log_unmount_write(mp); 939 } 940 941 /* 942 * Shut down and release the AIL and Log. 943 * 944 * During unmount, we need to ensure we flush all the dirty metadata objects 945 * from the AIL so that the log is empty before we write the unmount record to 946 * the log. Once this is done, we can tear down the AIL and the log. 947 */ 948 void 949 xfs_log_unmount( 950 struct xfs_mount *mp) 951 { 952 xfs_log_quiesce(mp); 953 954 xfs_trans_ail_destroy(mp); 955 956 xfs_sysfs_del(&mp->m_log->l_kobj); 957 958 xlog_dealloc_log(mp->m_log); 959 } 960 961 void 962 xfs_log_item_init( 963 struct xfs_mount *mp, 964 struct xfs_log_item *item, 965 int type, 966 const struct xfs_item_ops *ops) 967 { 968 item->li_mountp = mp; 969 item->li_ailp = mp->m_ail; 970 item->li_type = type; 971 item->li_ops = ops; 972 item->li_lv = NULL; 973 974 INIT_LIST_HEAD(&item->li_ail); 975 INIT_LIST_HEAD(&item->li_cil); 976 } 977 978 /* 979 * Wake up processes waiting for log space after we have moved the log tail. 980 */ 981 void 982 xfs_log_space_wake( 983 struct xfs_mount *mp) 984 { 985 struct xlog *log = mp->m_log; 986 int free_bytes; 987 988 if (XLOG_FORCED_SHUTDOWN(log)) 989 return; 990 991 if (!list_empty_careful(&log->l_write_head.waiters)) { 992 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 993 994 spin_lock(&log->l_write_head.lock); 995 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 996 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 997 spin_unlock(&log->l_write_head.lock); 998 } 999 1000 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1001 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1002 1003 spin_lock(&log->l_reserve_head.lock); 1004 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1005 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1006 spin_unlock(&log->l_reserve_head.lock); 1007 } 1008 } 1009 1010 /* 1011 * Determine if we have a transaction that has gone to disk that needs to be 1012 * covered. To begin the transition to the idle state firstly the log needs to 1013 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1014 * we start attempting to cover the log. 1015 * 1016 * Only if we are then in a state where covering is needed, the caller is 1017 * informed that dummy transactions are required to move the log into the idle 1018 * state. 1019 * 1020 * If there are any items in the AIl or CIL, then we do not want to attempt to 1021 * cover the log as we may be in a situation where there isn't log space 1022 * available to run a dummy transaction and this can lead to deadlocks when the 1023 * tail of the log is pinned by an item that is modified in the CIL. Hence 1024 * there's no point in running a dummy transaction at this point because we 1025 * can't start trying to idle the log until both the CIL and AIL are empty. 1026 */ 1027 int 1028 xfs_log_need_covered(xfs_mount_t *mp) 1029 { 1030 struct xlog *log = mp->m_log; 1031 int needed = 0; 1032 1033 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1034 return 0; 1035 1036 if (!xlog_cil_empty(log)) 1037 return 0; 1038 1039 spin_lock(&log->l_icloglock); 1040 switch (log->l_covered_state) { 1041 case XLOG_STATE_COVER_DONE: 1042 case XLOG_STATE_COVER_DONE2: 1043 case XLOG_STATE_COVER_IDLE: 1044 break; 1045 case XLOG_STATE_COVER_NEED: 1046 case XLOG_STATE_COVER_NEED2: 1047 if (xfs_ail_min_lsn(log->l_ailp)) 1048 break; 1049 if (!xlog_iclogs_empty(log)) 1050 break; 1051 1052 needed = 1; 1053 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1054 log->l_covered_state = XLOG_STATE_COVER_DONE; 1055 else 1056 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1057 break; 1058 default: 1059 needed = 1; 1060 break; 1061 } 1062 spin_unlock(&log->l_icloglock); 1063 return needed; 1064 } 1065 1066 /* 1067 * We may be holding the log iclog lock upon entering this routine. 1068 */ 1069 xfs_lsn_t 1070 xlog_assign_tail_lsn_locked( 1071 struct xfs_mount *mp) 1072 { 1073 struct xlog *log = mp->m_log; 1074 struct xfs_log_item *lip; 1075 xfs_lsn_t tail_lsn; 1076 1077 assert_spin_locked(&mp->m_ail->xa_lock); 1078 1079 /* 1080 * To make sure we always have a valid LSN for the log tail we keep 1081 * track of the last LSN which was committed in log->l_last_sync_lsn, 1082 * and use that when the AIL was empty. 1083 */ 1084 lip = xfs_ail_min(mp->m_ail); 1085 if (lip) 1086 tail_lsn = lip->li_lsn; 1087 else 1088 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1089 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1090 atomic64_set(&log->l_tail_lsn, tail_lsn); 1091 return tail_lsn; 1092 } 1093 1094 xfs_lsn_t 1095 xlog_assign_tail_lsn( 1096 struct xfs_mount *mp) 1097 { 1098 xfs_lsn_t tail_lsn; 1099 1100 spin_lock(&mp->m_ail->xa_lock); 1101 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1102 spin_unlock(&mp->m_ail->xa_lock); 1103 1104 return tail_lsn; 1105 } 1106 1107 /* 1108 * Return the space in the log between the tail and the head. The head 1109 * is passed in the cycle/bytes formal parms. In the special case where 1110 * the reserve head has wrapped passed the tail, this calculation is no 1111 * longer valid. In this case, just return 0 which means there is no space 1112 * in the log. This works for all places where this function is called 1113 * with the reserve head. Of course, if the write head were to ever 1114 * wrap the tail, we should blow up. Rather than catch this case here, 1115 * we depend on other ASSERTions in other parts of the code. XXXmiken 1116 * 1117 * This code also handles the case where the reservation head is behind 1118 * the tail. The details of this case are described below, but the end 1119 * result is that we return the size of the log as the amount of space left. 1120 */ 1121 STATIC int 1122 xlog_space_left( 1123 struct xlog *log, 1124 atomic64_t *head) 1125 { 1126 int free_bytes; 1127 int tail_bytes; 1128 int tail_cycle; 1129 int head_cycle; 1130 int head_bytes; 1131 1132 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1133 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1134 tail_bytes = BBTOB(tail_bytes); 1135 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1136 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1137 else if (tail_cycle + 1 < head_cycle) 1138 return 0; 1139 else if (tail_cycle < head_cycle) { 1140 ASSERT(tail_cycle == (head_cycle - 1)); 1141 free_bytes = tail_bytes - head_bytes; 1142 } else { 1143 /* 1144 * The reservation head is behind the tail. 1145 * In this case we just want to return the size of the 1146 * log as the amount of space left. 1147 */ 1148 xfs_alert(log->l_mp, 1149 "xlog_space_left: head behind tail\n" 1150 " tail_cycle = %d, tail_bytes = %d\n" 1151 " GH cycle = %d, GH bytes = %d", 1152 tail_cycle, tail_bytes, head_cycle, head_bytes); 1153 ASSERT(0); 1154 free_bytes = log->l_logsize; 1155 } 1156 return free_bytes; 1157 } 1158 1159 1160 /* 1161 * Log function which is called when an io completes. 1162 * 1163 * The log manager needs its own routine, in order to control what 1164 * happens with the buffer after the write completes. 1165 */ 1166 void 1167 xlog_iodone(xfs_buf_t *bp) 1168 { 1169 struct xlog_in_core *iclog = bp->b_fspriv; 1170 struct xlog *l = iclog->ic_log; 1171 int aborted = 0; 1172 1173 /* 1174 * Race to shutdown the filesystem if we see an error. 1175 */ 1176 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, 1177 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1178 xfs_buf_ioerror_alert(bp, __func__); 1179 xfs_buf_stale(bp); 1180 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1181 /* 1182 * This flag will be propagated to the trans-committed 1183 * callback routines to let them know that the log-commit 1184 * didn't succeed. 1185 */ 1186 aborted = XFS_LI_ABORTED; 1187 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1188 aborted = XFS_LI_ABORTED; 1189 } 1190 1191 /* log I/O is always issued ASYNC */ 1192 ASSERT(XFS_BUF_ISASYNC(bp)); 1193 xlog_state_done_syncing(iclog, aborted); 1194 1195 /* 1196 * drop the buffer lock now that we are done. Nothing references 1197 * the buffer after this, so an unmount waiting on this lock can now 1198 * tear it down safely. As such, it is unsafe to reference the buffer 1199 * (bp) after the unlock as we could race with it being freed. 1200 */ 1201 xfs_buf_unlock(bp); 1202 } 1203 1204 /* 1205 * Return size of each in-core log record buffer. 1206 * 1207 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1208 * 1209 * If the filesystem blocksize is too large, we may need to choose a 1210 * larger size since the directory code currently logs entire blocks. 1211 */ 1212 1213 STATIC void 1214 xlog_get_iclog_buffer_size( 1215 struct xfs_mount *mp, 1216 struct xlog *log) 1217 { 1218 int size; 1219 int xhdrs; 1220 1221 if (mp->m_logbufs <= 0) 1222 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1223 else 1224 log->l_iclog_bufs = mp->m_logbufs; 1225 1226 /* 1227 * Buffer size passed in from mount system call. 1228 */ 1229 if (mp->m_logbsize > 0) { 1230 size = log->l_iclog_size = mp->m_logbsize; 1231 log->l_iclog_size_log = 0; 1232 while (size != 1) { 1233 log->l_iclog_size_log++; 1234 size >>= 1; 1235 } 1236 1237 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1238 /* # headers = size / 32k 1239 * one header holds cycles from 32k of data 1240 */ 1241 1242 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1243 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1244 xhdrs++; 1245 log->l_iclog_hsize = xhdrs << BBSHIFT; 1246 log->l_iclog_heads = xhdrs; 1247 } else { 1248 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1249 log->l_iclog_hsize = BBSIZE; 1250 log->l_iclog_heads = 1; 1251 } 1252 goto done; 1253 } 1254 1255 /* All machines use 32kB buffers by default. */ 1256 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1257 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1258 1259 /* the default log size is 16k or 32k which is one header sector */ 1260 log->l_iclog_hsize = BBSIZE; 1261 log->l_iclog_heads = 1; 1262 1263 done: 1264 /* are we being asked to make the sizes selected above visible? */ 1265 if (mp->m_logbufs == 0) 1266 mp->m_logbufs = log->l_iclog_bufs; 1267 if (mp->m_logbsize == 0) 1268 mp->m_logbsize = log->l_iclog_size; 1269 } /* xlog_get_iclog_buffer_size */ 1270 1271 1272 void 1273 xfs_log_work_queue( 1274 struct xfs_mount *mp) 1275 { 1276 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1277 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1278 } 1279 1280 /* 1281 * Every sync period we need to unpin all items in the AIL and push them to 1282 * disk. If there is nothing dirty, then we might need to cover the log to 1283 * indicate that the filesystem is idle. 1284 */ 1285 void 1286 xfs_log_worker( 1287 struct work_struct *work) 1288 { 1289 struct xlog *log = container_of(to_delayed_work(work), 1290 struct xlog, l_work); 1291 struct xfs_mount *mp = log->l_mp; 1292 1293 /* dgc: errors ignored - not fatal and nowhere to report them */ 1294 if (xfs_log_need_covered(mp)) { 1295 /* 1296 * Dump a transaction into the log that contains no real change. 1297 * This is needed to stamp the current tail LSN into the log 1298 * during the covering operation. 1299 * 1300 * We cannot use an inode here for this - that will push dirty 1301 * state back up into the VFS and then periodic inode flushing 1302 * will prevent log covering from making progress. Hence we 1303 * synchronously log the superblock instead to ensure the 1304 * superblock is immediately unpinned and can be written back. 1305 */ 1306 xfs_sync_sb(mp, true); 1307 } else 1308 xfs_log_force(mp, 0); 1309 1310 /* start pushing all the metadata that is currently dirty */ 1311 xfs_ail_push_all(mp->m_ail); 1312 1313 /* queue us up again */ 1314 xfs_log_work_queue(mp); 1315 } 1316 1317 /* 1318 * This routine initializes some of the log structure for a given mount point. 1319 * Its primary purpose is to fill in enough, so recovery can occur. However, 1320 * some other stuff may be filled in too. 1321 */ 1322 STATIC struct xlog * 1323 xlog_alloc_log( 1324 struct xfs_mount *mp, 1325 struct xfs_buftarg *log_target, 1326 xfs_daddr_t blk_offset, 1327 int num_bblks) 1328 { 1329 struct xlog *log; 1330 xlog_rec_header_t *head; 1331 xlog_in_core_t **iclogp; 1332 xlog_in_core_t *iclog, *prev_iclog=NULL; 1333 xfs_buf_t *bp; 1334 int i; 1335 int error = -ENOMEM; 1336 uint log2_size = 0; 1337 1338 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1339 if (!log) { 1340 xfs_warn(mp, "Log allocation failed: No memory!"); 1341 goto out; 1342 } 1343 1344 log->l_mp = mp; 1345 log->l_targ = log_target; 1346 log->l_logsize = BBTOB(num_bblks); 1347 log->l_logBBstart = blk_offset; 1348 log->l_logBBsize = num_bblks; 1349 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1350 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1351 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1352 1353 log->l_prev_block = -1; 1354 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1355 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1356 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1357 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1358 1359 xlog_grant_head_init(&log->l_reserve_head); 1360 xlog_grant_head_init(&log->l_write_head); 1361 1362 error = -EFSCORRUPTED; 1363 if (xfs_sb_version_hassector(&mp->m_sb)) { 1364 log2_size = mp->m_sb.sb_logsectlog; 1365 if (log2_size < BBSHIFT) { 1366 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1367 log2_size, BBSHIFT); 1368 goto out_free_log; 1369 } 1370 1371 log2_size -= BBSHIFT; 1372 if (log2_size > mp->m_sectbb_log) { 1373 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1374 log2_size, mp->m_sectbb_log); 1375 goto out_free_log; 1376 } 1377 1378 /* for larger sector sizes, must have v2 or external log */ 1379 if (log2_size && log->l_logBBstart > 0 && 1380 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1381 xfs_warn(mp, 1382 "log sector size (0x%x) invalid for configuration.", 1383 log2_size); 1384 goto out_free_log; 1385 } 1386 } 1387 log->l_sectBBsize = 1 << log2_size; 1388 1389 xlog_get_iclog_buffer_size(mp, log); 1390 1391 /* 1392 * Use a NULL block for the extra log buffer used during splits so that 1393 * it will trigger errors if we ever try to do IO on it without first 1394 * having set it up properly. 1395 */ 1396 error = -ENOMEM; 1397 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1398 BTOBB(log->l_iclog_size), 0); 1399 if (!bp) 1400 goto out_free_log; 1401 1402 /* 1403 * The iclogbuf buffer locks are held over IO but we are not going to do 1404 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1405 * when appropriately. 1406 */ 1407 ASSERT(xfs_buf_islocked(bp)); 1408 xfs_buf_unlock(bp); 1409 1410 /* use high priority wq for log I/O completion */ 1411 bp->b_ioend_wq = mp->m_log_workqueue; 1412 bp->b_iodone = xlog_iodone; 1413 log->l_xbuf = bp; 1414 1415 spin_lock_init(&log->l_icloglock); 1416 init_waitqueue_head(&log->l_flush_wait); 1417 1418 iclogp = &log->l_iclog; 1419 /* 1420 * The amount of memory to allocate for the iclog structure is 1421 * rather funky due to the way the structure is defined. It is 1422 * done this way so that we can use different sizes for machines 1423 * with different amounts of memory. See the definition of 1424 * xlog_in_core_t in xfs_log_priv.h for details. 1425 */ 1426 ASSERT(log->l_iclog_size >= 4096); 1427 for (i=0; i < log->l_iclog_bufs; i++) { 1428 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1429 if (!*iclogp) 1430 goto out_free_iclog; 1431 1432 iclog = *iclogp; 1433 iclog->ic_prev = prev_iclog; 1434 prev_iclog = iclog; 1435 1436 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1437 BTOBB(log->l_iclog_size), 0); 1438 if (!bp) 1439 goto out_free_iclog; 1440 1441 ASSERT(xfs_buf_islocked(bp)); 1442 xfs_buf_unlock(bp); 1443 1444 /* use high priority wq for log I/O completion */ 1445 bp->b_ioend_wq = mp->m_log_workqueue; 1446 bp->b_iodone = xlog_iodone; 1447 iclog->ic_bp = bp; 1448 iclog->ic_data = bp->b_addr; 1449 #ifdef DEBUG 1450 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1451 #endif 1452 head = &iclog->ic_header; 1453 memset(head, 0, sizeof(xlog_rec_header_t)); 1454 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1455 head->h_version = cpu_to_be32( 1456 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1457 head->h_size = cpu_to_be32(log->l_iclog_size); 1458 /* new fields */ 1459 head->h_fmt = cpu_to_be32(XLOG_FMT); 1460 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1461 1462 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1463 iclog->ic_state = XLOG_STATE_ACTIVE; 1464 iclog->ic_log = log; 1465 atomic_set(&iclog->ic_refcnt, 0); 1466 spin_lock_init(&iclog->ic_callback_lock); 1467 iclog->ic_callback_tail = &(iclog->ic_callback); 1468 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1469 1470 init_waitqueue_head(&iclog->ic_force_wait); 1471 init_waitqueue_head(&iclog->ic_write_wait); 1472 1473 iclogp = &iclog->ic_next; 1474 } 1475 *iclogp = log->l_iclog; /* complete ring */ 1476 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1477 1478 error = xlog_cil_init(log); 1479 if (error) 1480 goto out_free_iclog; 1481 return log; 1482 1483 out_free_iclog: 1484 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1485 prev_iclog = iclog->ic_next; 1486 if (iclog->ic_bp) 1487 xfs_buf_free(iclog->ic_bp); 1488 kmem_free(iclog); 1489 } 1490 spinlock_destroy(&log->l_icloglock); 1491 xfs_buf_free(log->l_xbuf); 1492 out_free_log: 1493 kmem_free(log); 1494 out: 1495 return ERR_PTR(error); 1496 } /* xlog_alloc_log */ 1497 1498 1499 /* 1500 * Write out the commit record of a transaction associated with the given 1501 * ticket. Return the lsn of the commit record. 1502 */ 1503 STATIC int 1504 xlog_commit_record( 1505 struct xlog *log, 1506 struct xlog_ticket *ticket, 1507 struct xlog_in_core **iclog, 1508 xfs_lsn_t *commitlsnp) 1509 { 1510 struct xfs_mount *mp = log->l_mp; 1511 int error; 1512 struct xfs_log_iovec reg = { 1513 .i_addr = NULL, 1514 .i_len = 0, 1515 .i_type = XLOG_REG_TYPE_COMMIT, 1516 }; 1517 struct xfs_log_vec vec = { 1518 .lv_niovecs = 1, 1519 .lv_iovecp = ®, 1520 }; 1521 1522 ASSERT_ALWAYS(iclog); 1523 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1524 XLOG_COMMIT_TRANS); 1525 if (error) 1526 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1527 return error; 1528 } 1529 1530 /* 1531 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1532 * log space. This code pushes on the lsn which would supposedly free up 1533 * the 25% which we want to leave free. We may need to adopt a policy which 1534 * pushes on an lsn which is further along in the log once we reach the high 1535 * water mark. In this manner, we would be creating a low water mark. 1536 */ 1537 STATIC void 1538 xlog_grant_push_ail( 1539 struct xlog *log, 1540 int need_bytes) 1541 { 1542 xfs_lsn_t threshold_lsn = 0; 1543 xfs_lsn_t last_sync_lsn; 1544 int free_blocks; 1545 int free_bytes; 1546 int threshold_block; 1547 int threshold_cycle; 1548 int free_threshold; 1549 1550 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1551 1552 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1553 free_blocks = BTOBBT(free_bytes); 1554 1555 /* 1556 * Set the threshold for the minimum number of free blocks in the 1557 * log to the maximum of what the caller needs, one quarter of the 1558 * log, and 256 blocks. 1559 */ 1560 free_threshold = BTOBB(need_bytes); 1561 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1562 free_threshold = MAX(free_threshold, 256); 1563 if (free_blocks >= free_threshold) 1564 return; 1565 1566 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1567 &threshold_block); 1568 threshold_block += free_threshold; 1569 if (threshold_block >= log->l_logBBsize) { 1570 threshold_block -= log->l_logBBsize; 1571 threshold_cycle += 1; 1572 } 1573 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1574 threshold_block); 1575 /* 1576 * Don't pass in an lsn greater than the lsn of the last 1577 * log record known to be on disk. Use a snapshot of the last sync lsn 1578 * so that it doesn't change between the compare and the set. 1579 */ 1580 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1581 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1582 threshold_lsn = last_sync_lsn; 1583 1584 /* 1585 * Get the transaction layer to kick the dirty buffers out to 1586 * disk asynchronously. No point in trying to do this if 1587 * the filesystem is shutting down. 1588 */ 1589 if (!XLOG_FORCED_SHUTDOWN(log)) 1590 xfs_ail_push(log->l_ailp, threshold_lsn); 1591 } 1592 1593 /* 1594 * Stamp cycle number in every block 1595 */ 1596 STATIC void 1597 xlog_pack_data( 1598 struct xlog *log, 1599 struct xlog_in_core *iclog, 1600 int roundoff) 1601 { 1602 int i, j, k; 1603 int size = iclog->ic_offset + roundoff; 1604 __be32 cycle_lsn; 1605 xfs_caddr_t dp; 1606 1607 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1608 1609 dp = iclog->ic_datap; 1610 for (i = 0; i < BTOBB(size); i++) { 1611 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1612 break; 1613 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1614 *(__be32 *)dp = cycle_lsn; 1615 dp += BBSIZE; 1616 } 1617 1618 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1619 xlog_in_core_2_t *xhdr = iclog->ic_data; 1620 1621 for ( ; i < BTOBB(size); i++) { 1622 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1623 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1624 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1625 *(__be32 *)dp = cycle_lsn; 1626 dp += BBSIZE; 1627 } 1628 1629 for (i = 1; i < log->l_iclog_heads; i++) 1630 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1631 } 1632 } 1633 1634 /* 1635 * Calculate the checksum for a log buffer. 1636 * 1637 * This is a little more complicated than it should be because the various 1638 * headers and the actual data are non-contiguous. 1639 */ 1640 __le32 1641 xlog_cksum( 1642 struct xlog *log, 1643 struct xlog_rec_header *rhead, 1644 char *dp, 1645 int size) 1646 { 1647 __uint32_t crc; 1648 1649 /* first generate the crc for the record header ... */ 1650 crc = xfs_start_cksum((char *)rhead, 1651 sizeof(struct xlog_rec_header), 1652 offsetof(struct xlog_rec_header, h_crc)); 1653 1654 /* ... then for additional cycle data for v2 logs ... */ 1655 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1656 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1657 int i; 1658 1659 for (i = 1; i < log->l_iclog_heads; i++) { 1660 crc = crc32c(crc, &xhdr[i].hic_xheader, 1661 sizeof(struct xlog_rec_ext_header)); 1662 } 1663 } 1664 1665 /* ... and finally for the payload */ 1666 crc = crc32c(crc, dp, size); 1667 1668 return xfs_end_cksum(crc); 1669 } 1670 1671 /* 1672 * The bdstrat callback function for log bufs. This gives us a central 1673 * place to trap bufs in case we get hit by a log I/O error and need to 1674 * shutdown. Actually, in practice, even when we didn't get a log error, 1675 * we transition the iclogs to IOERROR state *after* flushing all existing 1676 * iclogs to disk. This is because we don't want anymore new transactions to be 1677 * started or completed afterwards. 1678 * 1679 * We lock the iclogbufs here so that we can serialise against IO completion 1680 * during unmount. We might be processing a shutdown triggered during unmount, 1681 * and that can occur asynchronously to the unmount thread, and hence we need to 1682 * ensure that completes before tearing down the iclogbufs. Hence we need to 1683 * hold the buffer lock across the log IO to acheive that. 1684 */ 1685 STATIC int 1686 xlog_bdstrat( 1687 struct xfs_buf *bp) 1688 { 1689 struct xlog_in_core *iclog = bp->b_fspriv; 1690 1691 xfs_buf_lock(bp); 1692 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1693 xfs_buf_ioerror(bp, -EIO); 1694 xfs_buf_stale(bp); 1695 xfs_buf_ioend(bp); 1696 /* 1697 * It would seem logical to return EIO here, but we rely on 1698 * the log state machine to propagate I/O errors instead of 1699 * doing it here. Similarly, IO completion will unlock the 1700 * buffer, so we don't do it here. 1701 */ 1702 return 0; 1703 } 1704 1705 xfs_buf_submit(bp); 1706 return 0; 1707 } 1708 1709 /* 1710 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1711 * fashion. Previously, we should have moved the current iclog 1712 * ptr in the log to point to the next available iclog. This allows further 1713 * write to continue while this code syncs out an iclog ready to go. 1714 * Before an in-core log can be written out, the data section must be scanned 1715 * to save away the 1st word of each BBSIZE block into the header. We replace 1716 * it with the current cycle count. Each BBSIZE block is tagged with the 1717 * cycle count because there in an implicit assumption that drives will 1718 * guarantee that entire 512 byte blocks get written at once. In other words, 1719 * we can't have part of a 512 byte block written and part not written. By 1720 * tagging each block, we will know which blocks are valid when recovering 1721 * after an unclean shutdown. 1722 * 1723 * This routine is single threaded on the iclog. No other thread can be in 1724 * this routine with the same iclog. Changing contents of iclog can there- 1725 * fore be done without grabbing the state machine lock. Updating the global 1726 * log will require grabbing the lock though. 1727 * 1728 * The entire log manager uses a logical block numbering scheme. Only 1729 * log_sync (and then only bwrite()) know about the fact that the log may 1730 * not start with block zero on a given device. The log block start offset 1731 * is added immediately before calling bwrite(). 1732 */ 1733 1734 STATIC int 1735 xlog_sync( 1736 struct xlog *log, 1737 struct xlog_in_core *iclog) 1738 { 1739 xfs_buf_t *bp; 1740 int i; 1741 uint count; /* byte count of bwrite */ 1742 uint count_init; /* initial count before roundup */ 1743 int roundoff; /* roundoff to BB or stripe */ 1744 int split = 0; /* split write into two regions */ 1745 int error; 1746 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1747 int size; 1748 1749 XFS_STATS_INC(xs_log_writes); 1750 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1751 1752 /* Add for LR header */ 1753 count_init = log->l_iclog_hsize + iclog->ic_offset; 1754 1755 /* Round out the log write size */ 1756 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1757 /* we have a v2 stripe unit to use */ 1758 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1759 } else { 1760 count = BBTOB(BTOBB(count_init)); 1761 } 1762 roundoff = count - count_init; 1763 ASSERT(roundoff >= 0); 1764 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1765 roundoff < log->l_mp->m_sb.sb_logsunit) 1766 || 1767 (log->l_mp->m_sb.sb_logsunit <= 1 && 1768 roundoff < BBTOB(1))); 1769 1770 /* move grant heads by roundoff in sync */ 1771 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1772 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1773 1774 /* put cycle number in every block */ 1775 xlog_pack_data(log, iclog, roundoff); 1776 1777 /* real byte length */ 1778 size = iclog->ic_offset; 1779 if (v2) 1780 size += roundoff; 1781 iclog->ic_header.h_len = cpu_to_be32(size); 1782 1783 bp = iclog->ic_bp; 1784 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1785 1786 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1787 1788 /* Do we need to split this write into 2 parts? */ 1789 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1790 char *dptr; 1791 1792 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1793 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1794 iclog->ic_bwritecnt = 2; 1795 1796 /* 1797 * Bump the cycle numbers at the start of each block in the 1798 * part of the iclog that ends up in the buffer that gets 1799 * written to the start of the log. 1800 * 1801 * Watch out for the header magic number case, though. 1802 */ 1803 dptr = (char *)&iclog->ic_header + count; 1804 for (i = 0; i < split; i += BBSIZE) { 1805 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1806 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1807 cycle++; 1808 *(__be32 *)dptr = cpu_to_be32(cycle); 1809 1810 dptr += BBSIZE; 1811 } 1812 } else { 1813 iclog->ic_bwritecnt = 1; 1814 } 1815 1816 /* calculcate the checksum */ 1817 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1818 iclog->ic_datap, size); 1819 1820 bp->b_io_length = BTOBB(count); 1821 bp->b_fspriv = iclog; 1822 XFS_BUF_ZEROFLAGS(bp); 1823 XFS_BUF_ASYNC(bp); 1824 bp->b_flags |= XBF_SYNCIO; 1825 1826 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1827 bp->b_flags |= XBF_FUA; 1828 1829 /* 1830 * Flush the data device before flushing the log to make 1831 * sure all meta data written back from the AIL actually made 1832 * it to disk before stamping the new log tail LSN into the 1833 * log buffer. For an external log we need to issue the 1834 * flush explicitly, and unfortunately synchronously here; 1835 * for an internal log we can simply use the block layer 1836 * state machine for preflushes. 1837 */ 1838 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1839 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1840 else 1841 bp->b_flags |= XBF_FLUSH; 1842 } 1843 1844 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1845 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1846 1847 xlog_verify_iclog(log, iclog, count, true); 1848 1849 /* account for log which doesn't start at block #0 */ 1850 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1851 /* 1852 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1853 * is shutting down. 1854 */ 1855 XFS_BUF_WRITE(bp); 1856 1857 error = xlog_bdstrat(bp); 1858 if (error) { 1859 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1860 return error; 1861 } 1862 if (split) { 1863 bp = iclog->ic_log->l_xbuf; 1864 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1865 xfs_buf_associate_memory(bp, 1866 (char *)&iclog->ic_header + count, split); 1867 bp->b_fspriv = iclog; 1868 XFS_BUF_ZEROFLAGS(bp); 1869 XFS_BUF_ASYNC(bp); 1870 bp->b_flags |= XBF_SYNCIO; 1871 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1872 bp->b_flags |= XBF_FUA; 1873 1874 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1875 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1876 1877 /* account for internal log which doesn't start at block #0 */ 1878 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1879 XFS_BUF_WRITE(bp); 1880 error = xlog_bdstrat(bp); 1881 if (error) { 1882 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1883 return error; 1884 } 1885 } 1886 return 0; 1887 } /* xlog_sync */ 1888 1889 /* 1890 * Deallocate a log structure 1891 */ 1892 STATIC void 1893 xlog_dealloc_log( 1894 struct xlog *log) 1895 { 1896 xlog_in_core_t *iclog, *next_iclog; 1897 int i; 1898 1899 xlog_cil_destroy(log); 1900 1901 /* 1902 * Cycle all the iclogbuf locks to make sure all log IO completion 1903 * is done before we tear down these buffers. 1904 */ 1905 iclog = log->l_iclog; 1906 for (i = 0; i < log->l_iclog_bufs; i++) { 1907 xfs_buf_lock(iclog->ic_bp); 1908 xfs_buf_unlock(iclog->ic_bp); 1909 iclog = iclog->ic_next; 1910 } 1911 1912 /* 1913 * Always need to ensure that the extra buffer does not point to memory 1914 * owned by another log buffer before we free it. Also, cycle the lock 1915 * first to ensure we've completed IO on it. 1916 */ 1917 xfs_buf_lock(log->l_xbuf); 1918 xfs_buf_unlock(log->l_xbuf); 1919 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1920 xfs_buf_free(log->l_xbuf); 1921 1922 iclog = log->l_iclog; 1923 for (i = 0; i < log->l_iclog_bufs; i++) { 1924 xfs_buf_free(iclog->ic_bp); 1925 next_iclog = iclog->ic_next; 1926 kmem_free(iclog); 1927 iclog = next_iclog; 1928 } 1929 spinlock_destroy(&log->l_icloglock); 1930 1931 log->l_mp->m_log = NULL; 1932 kmem_free(log); 1933 } /* xlog_dealloc_log */ 1934 1935 /* 1936 * Update counters atomically now that memcpy is done. 1937 */ 1938 /* ARGSUSED */ 1939 static inline void 1940 xlog_state_finish_copy( 1941 struct xlog *log, 1942 struct xlog_in_core *iclog, 1943 int record_cnt, 1944 int copy_bytes) 1945 { 1946 spin_lock(&log->l_icloglock); 1947 1948 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1949 iclog->ic_offset += copy_bytes; 1950 1951 spin_unlock(&log->l_icloglock); 1952 } /* xlog_state_finish_copy */ 1953 1954 1955 1956 1957 /* 1958 * print out info relating to regions written which consume 1959 * the reservation 1960 */ 1961 void 1962 xlog_print_tic_res( 1963 struct xfs_mount *mp, 1964 struct xlog_ticket *ticket) 1965 { 1966 uint i; 1967 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1968 1969 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1970 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1971 "bformat", 1972 "bchunk", 1973 "efi_format", 1974 "efd_format", 1975 "iformat", 1976 "icore", 1977 "iext", 1978 "ibroot", 1979 "ilocal", 1980 "iattr_ext", 1981 "iattr_broot", 1982 "iattr_local", 1983 "qformat", 1984 "dquot", 1985 "quotaoff", 1986 "LR header", 1987 "unmount", 1988 "commit", 1989 "trans header" 1990 }; 1991 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1992 "SETATTR_NOT_SIZE", 1993 "SETATTR_SIZE", 1994 "INACTIVE", 1995 "CREATE", 1996 "CREATE_TRUNC", 1997 "TRUNCATE_FILE", 1998 "REMOVE", 1999 "LINK", 2000 "RENAME", 2001 "MKDIR", 2002 "RMDIR", 2003 "SYMLINK", 2004 "SET_DMATTRS", 2005 "GROWFS", 2006 "STRAT_WRITE", 2007 "DIOSTRAT", 2008 "WRITE_SYNC", 2009 "WRITEID", 2010 "ADDAFORK", 2011 "ATTRINVAL", 2012 "ATRUNCATE", 2013 "ATTR_SET", 2014 "ATTR_RM", 2015 "ATTR_FLAG", 2016 "CLEAR_AGI_BUCKET", 2017 "QM_SBCHANGE", 2018 "DUMMY1", 2019 "DUMMY2", 2020 "QM_QUOTAOFF", 2021 "QM_DQALLOC", 2022 "QM_SETQLIM", 2023 "QM_DQCLUSTER", 2024 "QM_QINOCREATE", 2025 "QM_QUOTAOFF_END", 2026 "SB_UNIT", 2027 "FSYNC_TS", 2028 "GROWFSRT_ALLOC", 2029 "GROWFSRT_ZERO", 2030 "GROWFSRT_FREE", 2031 "SWAPEXT" 2032 }; 2033 2034 xfs_warn(mp, 2035 "xlog_write: reservation summary:\n" 2036 " trans type = %s (%u)\n" 2037 " unit res = %d bytes\n" 2038 " current res = %d bytes\n" 2039 " total reg = %u bytes (o/flow = %u bytes)\n" 2040 " ophdrs = %u (ophdr space = %u bytes)\n" 2041 " ophdr + reg = %u bytes\n" 2042 " num regions = %u", 2043 ((ticket->t_trans_type <= 0 || 2044 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 2045 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 2046 ticket->t_trans_type, 2047 ticket->t_unit_res, 2048 ticket->t_curr_res, 2049 ticket->t_res_arr_sum, ticket->t_res_o_flow, 2050 ticket->t_res_num_ophdrs, ophdr_spc, 2051 ticket->t_res_arr_sum + 2052 ticket->t_res_o_flow + ophdr_spc, 2053 ticket->t_res_num); 2054 2055 for (i = 0; i < ticket->t_res_num; i++) { 2056 uint r_type = ticket->t_res_arr[i].r_type; 2057 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2058 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2059 "bad-rtype" : res_type_str[r_type-1]), 2060 ticket->t_res_arr[i].r_len); 2061 } 2062 2063 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2064 "xlog_write: reservation ran out. Need to up reservation"); 2065 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2066 } 2067 2068 /* 2069 * Calculate the potential space needed by the log vector. Each region gets 2070 * its own xlog_op_header_t and may need to be double word aligned. 2071 */ 2072 static int 2073 xlog_write_calc_vec_length( 2074 struct xlog_ticket *ticket, 2075 struct xfs_log_vec *log_vector) 2076 { 2077 struct xfs_log_vec *lv; 2078 int headers = 0; 2079 int len = 0; 2080 int i; 2081 2082 /* acct for start rec of xact */ 2083 if (ticket->t_flags & XLOG_TIC_INITED) 2084 headers++; 2085 2086 for (lv = log_vector; lv; lv = lv->lv_next) { 2087 /* we don't write ordered log vectors */ 2088 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2089 continue; 2090 2091 headers += lv->lv_niovecs; 2092 2093 for (i = 0; i < lv->lv_niovecs; i++) { 2094 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2095 2096 len += vecp->i_len; 2097 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2098 } 2099 } 2100 2101 ticket->t_res_num_ophdrs += headers; 2102 len += headers * sizeof(struct xlog_op_header); 2103 2104 return len; 2105 } 2106 2107 /* 2108 * If first write for transaction, insert start record We can't be trying to 2109 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2110 */ 2111 static int 2112 xlog_write_start_rec( 2113 struct xlog_op_header *ophdr, 2114 struct xlog_ticket *ticket) 2115 { 2116 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2117 return 0; 2118 2119 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2120 ophdr->oh_clientid = ticket->t_clientid; 2121 ophdr->oh_len = 0; 2122 ophdr->oh_flags = XLOG_START_TRANS; 2123 ophdr->oh_res2 = 0; 2124 2125 ticket->t_flags &= ~XLOG_TIC_INITED; 2126 2127 return sizeof(struct xlog_op_header); 2128 } 2129 2130 static xlog_op_header_t * 2131 xlog_write_setup_ophdr( 2132 struct xlog *log, 2133 struct xlog_op_header *ophdr, 2134 struct xlog_ticket *ticket, 2135 uint flags) 2136 { 2137 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2138 ophdr->oh_clientid = ticket->t_clientid; 2139 ophdr->oh_res2 = 0; 2140 2141 /* are we copying a commit or unmount record? */ 2142 ophdr->oh_flags = flags; 2143 2144 /* 2145 * We've seen logs corrupted with bad transaction client ids. This 2146 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2147 * and shut down the filesystem. 2148 */ 2149 switch (ophdr->oh_clientid) { 2150 case XFS_TRANSACTION: 2151 case XFS_VOLUME: 2152 case XFS_LOG: 2153 break; 2154 default: 2155 xfs_warn(log->l_mp, 2156 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2157 ophdr->oh_clientid, ticket); 2158 return NULL; 2159 } 2160 2161 return ophdr; 2162 } 2163 2164 /* 2165 * Set up the parameters of the region copy into the log. This has 2166 * to handle region write split across multiple log buffers - this 2167 * state is kept external to this function so that this code can 2168 * be written in an obvious, self documenting manner. 2169 */ 2170 static int 2171 xlog_write_setup_copy( 2172 struct xlog_ticket *ticket, 2173 struct xlog_op_header *ophdr, 2174 int space_available, 2175 int space_required, 2176 int *copy_off, 2177 int *copy_len, 2178 int *last_was_partial_copy, 2179 int *bytes_consumed) 2180 { 2181 int still_to_copy; 2182 2183 still_to_copy = space_required - *bytes_consumed; 2184 *copy_off = *bytes_consumed; 2185 2186 if (still_to_copy <= space_available) { 2187 /* write of region completes here */ 2188 *copy_len = still_to_copy; 2189 ophdr->oh_len = cpu_to_be32(*copy_len); 2190 if (*last_was_partial_copy) 2191 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2192 *last_was_partial_copy = 0; 2193 *bytes_consumed = 0; 2194 return 0; 2195 } 2196 2197 /* partial write of region, needs extra log op header reservation */ 2198 *copy_len = space_available; 2199 ophdr->oh_len = cpu_to_be32(*copy_len); 2200 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2201 if (*last_was_partial_copy) 2202 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2203 *bytes_consumed += *copy_len; 2204 (*last_was_partial_copy)++; 2205 2206 /* account for new log op header */ 2207 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2208 ticket->t_res_num_ophdrs++; 2209 2210 return sizeof(struct xlog_op_header); 2211 } 2212 2213 static int 2214 xlog_write_copy_finish( 2215 struct xlog *log, 2216 struct xlog_in_core *iclog, 2217 uint flags, 2218 int *record_cnt, 2219 int *data_cnt, 2220 int *partial_copy, 2221 int *partial_copy_len, 2222 int log_offset, 2223 struct xlog_in_core **commit_iclog) 2224 { 2225 if (*partial_copy) { 2226 /* 2227 * This iclog has already been marked WANT_SYNC by 2228 * xlog_state_get_iclog_space. 2229 */ 2230 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2231 *record_cnt = 0; 2232 *data_cnt = 0; 2233 return xlog_state_release_iclog(log, iclog); 2234 } 2235 2236 *partial_copy = 0; 2237 *partial_copy_len = 0; 2238 2239 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2240 /* no more space in this iclog - push it. */ 2241 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2242 *record_cnt = 0; 2243 *data_cnt = 0; 2244 2245 spin_lock(&log->l_icloglock); 2246 xlog_state_want_sync(log, iclog); 2247 spin_unlock(&log->l_icloglock); 2248 2249 if (!commit_iclog) 2250 return xlog_state_release_iclog(log, iclog); 2251 ASSERT(flags & XLOG_COMMIT_TRANS); 2252 *commit_iclog = iclog; 2253 } 2254 2255 return 0; 2256 } 2257 2258 /* 2259 * Write some region out to in-core log 2260 * 2261 * This will be called when writing externally provided regions or when 2262 * writing out a commit record for a given transaction. 2263 * 2264 * General algorithm: 2265 * 1. Find total length of this write. This may include adding to the 2266 * lengths passed in. 2267 * 2. Check whether we violate the tickets reservation. 2268 * 3. While writing to this iclog 2269 * A. Reserve as much space in this iclog as can get 2270 * B. If this is first write, save away start lsn 2271 * C. While writing this region: 2272 * 1. If first write of transaction, write start record 2273 * 2. Write log operation header (header per region) 2274 * 3. Find out if we can fit entire region into this iclog 2275 * 4. Potentially, verify destination memcpy ptr 2276 * 5. Memcpy (partial) region 2277 * 6. If partial copy, release iclog; otherwise, continue 2278 * copying more regions into current iclog 2279 * 4. Mark want sync bit (in simulation mode) 2280 * 5. Release iclog for potential flush to on-disk log. 2281 * 2282 * ERRORS: 2283 * 1. Panic if reservation is overrun. This should never happen since 2284 * reservation amounts are generated internal to the filesystem. 2285 * NOTES: 2286 * 1. Tickets are single threaded data structures. 2287 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2288 * syncing routine. When a single log_write region needs to span 2289 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2290 * on all log operation writes which don't contain the end of the 2291 * region. The XLOG_END_TRANS bit is used for the in-core log 2292 * operation which contains the end of the continued log_write region. 2293 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2294 * we don't really know exactly how much space will be used. As a result, 2295 * we don't update ic_offset until the end when we know exactly how many 2296 * bytes have been written out. 2297 */ 2298 int 2299 xlog_write( 2300 struct xlog *log, 2301 struct xfs_log_vec *log_vector, 2302 struct xlog_ticket *ticket, 2303 xfs_lsn_t *start_lsn, 2304 struct xlog_in_core **commit_iclog, 2305 uint flags) 2306 { 2307 struct xlog_in_core *iclog = NULL; 2308 struct xfs_log_iovec *vecp; 2309 struct xfs_log_vec *lv; 2310 int len; 2311 int index; 2312 int partial_copy = 0; 2313 int partial_copy_len = 0; 2314 int contwr = 0; 2315 int record_cnt = 0; 2316 int data_cnt = 0; 2317 int error; 2318 2319 *start_lsn = 0; 2320 2321 len = xlog_write_calc_vec_length(ticket, log_vector); 2322 2323 /* 2324 * Region headers and bytes are already accounted for. 2325 * We only need to take into account start records and 2326 * split regions in this function. 2327 */ 2328 if (ticket->t_flags & XLOG_TIC_INITED) 2329 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2330 2331 /* 2332 * Commit record headers need to be accounted for. These 2333 * come in as separate writes so are easy to detect. 2334 */ 2335 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2336 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2337 2338 if (ticket->t_curr_res < 0) 2339 xlog_print_tic_res(log->l_mp, ticket); 2340 2341 index = 0; 2342 lv = log_vector; 2343 vecp = lv->lv_iovecp; 2344 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2345 void *ptr; 2346 int log_offset; 2347 2348 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2349 &contwr, &log_offset); 2350 if (error) 2351 return error; 2352 2353 ASSERT(log_offset <= iclog->ic_size - 1); 2354 ptr = iclog->ic_datap + log_offset; 2355 2356 /* start_lsn is the first lsn written to. That's all we need. */ 2357 if (!*start_lsn) 2358 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2359 2360 /* 2361 * This loop writes out as many regions as can fit in the amount 2362 * of space which was allocated by xlog_state_get_iclog_space(). 2363 */ 2364 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2365 struct xfs_log_iovec *reg; 2366 struct xlog_op_header *ophdr; 2367 int start_rec_copy; 2368 int copy_len; 2369 int copy_off; 2370 bool ordered = false; 2371 2372 /* ordered log vectors have no regions to write */ 2373 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2374 ASSERT(lv->lv_niovecs == 0); 2375 ordered = true; 2376 goto next_lv; 2377 } 2378 2379 reg = &vecp[index]; 2380 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2381 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2382 2383 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2384 if (start_rec_copy) { 2385 record_cnt++; 2386 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2387 start_rec_copy); 2388 } 2389 2390 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2391 if (!ophdr) 2392 return -EIO; 2393 2394 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2395 sizeof(struct xlog_op_header)); 2396 2397 len += xlog_write_setup_copy(ticket, ophdr, 2398 iclog->ic_size-log_offset, 2399 reg->i_len, 2400 ©_off, ©_len, 2401 &partial_copy, 2402 &partial_copy_len); 2403 xlog_verify_dest_ptr(log, ptr); 2404 2405 /* copy region */ 2406 ASSERT(copy_len >= 0); 2407 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2408 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2409 2410 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2411 record_cnt++; 2412 data_cnt += contwr ? copy_len : 0; 2413 2414 error = xlog_write_copy_finish(log, iclog, flags, 2415 &record_cnt, &data_cnt, 2416 &partial_copy, 2417 &partial_copy_len, 2418 log_offset, 2419 commit_iclog); 2420 if (error) 2421 return error; 2422 2423 /* 2424 * if we had a partial copy, we need to get more iclog 2425 * space but we don't want to increment the region 2426 * index because there is still more is this region to 2427 * write. 2428 * 2429 * If we completed writing this region, and we flushed 2430 * the iclog (indicated by resetting of the record 2431 * count), then we also need to get more log space. If 2432 * this was the last record, though, we are done and 2433 * can just return. 2434 */ 2435 if (partial_copy) 2436 break; 2437 2438 if (++index == lv->lv_niovecs) { 2439 next_lv: 2440 lv = lv->lv_next; 2441 index = 0; 2442 if (lv) 2443 vecp = lv->lv_iovecp; 2444 } 2445 if (record_cnt == 0 && ordered == false) { 2446 if (!lv) 2447 return 0; 2448 break; 2449 } 2450 } 2451 } 2452 2453 ASSERT(len == 0); 2454 2455 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2456 if (!commit_iclog) 2457 return xlog_state_release_iclog(log, iclog); 2458 2459 ASSERT(flags & XLOG_COMMIT_TRANS); 2460 *commit_iclog = iclog; 2461 return 0; 2462 } 2463 2464 2465 /***************************************************************************** 2466 * 2467 * State Machine functions 2468 * 2469 ***************************************************************************** 2470 */ 2471 2472 /* Clean iclogs starting from the head. This ordering must be 2473 * maintained, so an iclog doesn't become ACTIVE beyond one that 2474 * is SYNCING. This is also required to maintain the notion that we use 2475 * a ordered wait queue to hold off would be writers to the log when every 2476 * iclog is trying to sync to disk. 2477 * 2478 * State Change: DIRTY -> ACTIVE 2479 */ 2480 STATIC void 2481 xlog_state_clean_log( 2482 struct xlog *log) 2483 { 2484 xlog_in_core_t *iclog; 2485 int changed = 0; 2486 2487 iclog = log->l_iclog; 2488 do { 2489 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2490 iclog->ic_state = XLOG_STATE_ACTIVE; 2491 iclog->ic_offset = 0; 2492 ASSERT(iclog->ic_callback == NULL); 2493 /* 2494 * If the number of ops in this iclog indicate it just 2495 * contains the dummy transaction, we can 2496 * change state into IDLE (the second time around). 2497 * Otherwise we should change the state into 2498 * NEED a dummy. 2499 * We don't need to cover the dummy. 2500 */ 2501 if (!changed && 2502 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2503 XLOG_COVER_OPS)) { 2504 changed = 1; 2505 } else { 2506 /* 2507 * We have two dirty iclogs so start over 2508 * This could also be num of ops indicates 2509 * this is not the dummy going out. 2510 */ 2511 changed = 2; 2512 } 2513 iclog->ic_header.h_num_logops = 0; 2514 memset(iclog->ic_header.h_cycle_data, 0, 2515 sizeof(iclog->ic_header.h_cycle_data)); 2516 iclog->ic_header.h_lsn = 0; 2517 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2518 /* do nothing */; 2519 else 2520 break; /* stop cleaning */ 2521 iclog = iclog->ic_next; 2522 } while (iclog != log->l_iclog); 2523 2524 /* log is locked when we are called */ 2525 /* 2526 * Change state for the dummy log recording. 2527 * We usually go to NEED. But we go to NEED2 if the changed indicates 2528 * we are done writing the dummy record. 2529 * If we are done with the second dummy recored (DONE2), then 2530 * we go to IDLE. 2531 */ 2532 if (changed) { 2533 switch (log->l_covered_state) { 2534 case XLOG_STATE_COVER_IDLE: 2535 case XLOG_STATE_COVER_NEED: 2536 case XLOG_STATE_COVER_NEED2: 2537 log->l_covered_state = XLOG_STATE_COVER_NEED; 2538 break; 2539 2540 case XLOG_STATE_COVER_DONE: 2541 if (changed == 1) 2542 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2543 else 2544 log->l_covered_state = XLOG_STATE_COVER_NEED; 2545 break; 2546 2547 case XLOG_STATE_COVER_DONE2: 2548 if (changed == 1) 2549 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2550 else 2551 log->l_covered_state = XLOG_STATE_COVER_NEED; 2552 break; 2553 2554 default: 2555 ASSERT(0); 2556 } 2557 } 2558 } /* xlog_state_clean_log */ 2559 2560 STATIC xfs_lsn_t 2561 xlog_get_lowest_lsn( 2562 struct xlog *log) 2563 { 2564 xlog_in_core_t *lsn_log; 2565 xfs_lsn_t lowest_lsn, lsn; 2566 2567 lsn_log = log->l_iclog; 2568 lowest_lsn = 0; 2569 do { 2570 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2571 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2572 if ((lsn && !lowest_lsn) || 2573 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2574 lowest_lsn = lsn; 2575 } 2576 } 2577 lsn_log = lsn_log->ic_next; 2578 } while (lsn_log != log->l_iclog); 2579 return lowest_lsn; 2580 } 2581 2582 2583 STATIC void 2584 xlog_state_do_callback( 2585 struct xlog *log, 2586 int aborted, 2587 struct xlog_in_core *ciclog) 2588 { 2589 xlog_in_core_t *iclog; 2590 xlog_in_core_t *first_iclog; /* used to know when we've 2591 * processed all iclogs once */ 2592 xfs_log_callback_t *cb, *cb_next; 2593 int flushcnt = 0; 2594 xfs_lsn_t lowest_lsn; 2595 int ioerrors; /* counter: iclogs with errors */ 2596 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2597 int funcdidcallbacks; /* flag: function did callbacks */ 2598 int repeats; /* for issuing console warnings if 2599 * looping too many times */ 2600 int wake = 0; 2601 2602 spin_lock(&log->l_icloglock); 2603 first_iclog = iclog = log->l_iclog; 2604 ioerrors = 0; 2605 funcdidcallbacks = 0; 2606 repeats = 0; 2607 2608 do { 2609 /* 2610 * Scan all iclogs starting with the one pointed to by the 2611 * log. Reset this starting point each time the log is 2612 * unlocked (during callbacks). 2613 * 2614 * Keep looping through iclogs until one full pass is made 2615 * without running any callbacks. 2616 */ 2617 first_iclog = log->l_iclog; 2618 iclog = log->l_iclog; 2619 loopdidcallbacks = 0; 2620 repeats++; 2621 2622 do { 2623 2624 /* skip all iclogs in the ACTIVE & DIRTY states */ 2625 if (iclog->ic_state & 2626 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2627 iclog = iclog->ic_next; 2628 continue; 2629 } 2630 2631 /* 2632 * Between marking a filesystem SHUTDOWN and stopping 2633 * the log, we do flush all iclogs to disk (if there 2634 * wasn't a log I/O error). So, we do want things to 2635 * go smoothly in case of just a SHUTDOWN w/o a 2636 * LOG_IO_ERROR. 2637 */ 2638 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2639 /* 2640 * Can only perform callbacks in order. Since 2641 * this iclog is not in the DONE_SYNC/ 2642 * DO_CALLBACK state, we skip the rest and 2643 * just try to clean up. If we set our iclog 2644 * to DO_CALLBACK, we will not process it when 2645 * we retry since a previous iclog is in the 2646 * CALLBACK and the state cannot change since 2647 * we are holding the l_icloglock. 2648 */ 2649 if (!(iclog->ic_state & 2650 (XLOG_STATE_DONE_SYNC | 2651 XLOG_STATE_DO_CALLBACK))) { 2652 if (ciclog && (ciclog->ic_state == 2653 XLOG_STATE_DONE_SYNC)) { 2654 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2655 } 2656 break; 2657 } 2658 /* 2659 * We now have an iclog that is in either the 2660 * DO_CALLBACK or DONE_SYNC states. The other 2661 * states (WANT_SYNC, SYNCING, or CALLBACK were 2662 * caught by the above if and are going to 2663 * clean (i.e. we aren't doing their callbacks) 2664 * see the above if. 2665 */ 2666 2667 /* 2668 * We will do one more check here to see if we 2669 * have chased our tail around. 2670 */ 2671 2672 lowest_lsn = xlog_get_lowest_lsn(log); 2673 if (lowest_lsn && 2674 XFS_LSN_CMP(lowest_lsn, 2675 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2676 iclog = iclog->ic_next; 2677 continue; /* Leave this iclog for 2678 * another thread */ 2679 } 2680 2681 iclog->ic_state = XLOG_STATE_CALLBACK; 2682 2683 2684 /* 2685 * Completion of a iclog IO does not imply that 2686 * a transaction has completed, as transactions 2687 * can be large enough to span many iclogs. We 2688 * cannot change the tail of the log half way 2689 * through a transaction as this may be the only 2690 * transaction in the log and moving th etail to 2691 * point to the middle of it will prevent 2692 * recovery from finding the start of the 2693 * transaction. Hence we should only update the 2694 * last_sync_lsn if this iclog contains 2695 * transaction completion callbacks on it. 2696 * 2697 * We have to do this before we drop the 2698 * icloglock to ensure we are the only one that 2699 * can update it. 2700 */ 2701 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2702 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2703 if (iclog->ic_callback) 2704 atomic64_set(&log->l_last_sync_lsn, 2705 be64_to_cpu(iclog->ic_header.h_lsn)); 2706 2707 } else 2708 ioerrors++; 2709 2710 spin_unlock(&log->l_icloglock); 2711 2712 /* 2713 * Keep processing entries in the callback list until 2714 * we come around and it is empty. We need to 2715 * atomically see that the list is empty and change the 2716 * state to DIRTY so that we don't miss any more 2717 * callbacks being added. 2718 */ 2719 spin_lock(&iclog->ic_callback_lock); 2720 cb = iclog->ic_callback; 2721 while (cb) { 2722 iclog->ic_callback_tail = &(iclog->ic_callback); 2723 iclog->ic_callback = NULL; 2724 spin_unlock(&iclog->ic_callback_lock); 2725 2726 /* perform callbacks in the order given */ 2727 for (; cb; cb = cb_next) { 2728 cb_next = cb->cb_next; 2729 cb->cb_func(cb->cb_arg, aborted); 2730 } 2731 spin_lock(&iclog->ic_callback_lock); 2732 cb = iclog->ic_callback; 2733 } 2734 2735 loopdidcallbacks++; 2736 funcdidcallbacks++; 2737 2738 spin_lock(&log->l_icloglock); 2739 ASSERT(iclog->ic_callback == NULL); 2740 spin_unlock(&iclog->ic_callback_lock); 2741 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2742 iclog->ic_state = XLOG_STATE_DIRTY; 2743 2744 /* 2745 * Transition from DIRTY to ACTIVE if applicable. 2746 * NOP if STATE_IOERROR. 2747 */ 2748 xlog_state_clean_log(log); 2749 2750 /* wake up threads waiting in xfs_log_force() */ 2751 wake_up_all(&iclog->ic_force_wait); 2752 2753 iclog = iclog->ic_next; 2754 } while (first_iclog != iclog); 2755 2756 if (repeats > 5000) { 2757 flushcnt += repeats; 2758 repeats = 0; 2759 xfs_warn(log->l_mp, 2760 "%s: possible infinite loop (%d iterations)", 2761 __func__, flushcnt); 2762 } 2763 } while (!ioerrors && loopdidcallbacks); 2764 2765 /* 2766 * make one last gasp attempt to see if iclogs are being left in 2767 * limbo.. 2768 */ 2769 #ifdef DEBUG 2770 if (funcdidcallbacks) { 2771 first_iclog = iclog = log->l_iclog; 2772 do { 2773 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2774 /* 2775 * Terminate the loop if iclogs are found in states 2776 * which will cause other threads to clean up iclogs. 2777 * 2778 * SYNCING - i/o completion will go through logs 2779 * DONE_SYNC - interrupt thread should be waiting for 2780 * l_icloglock 2781 * IOERROR - give up hope all ye who enter here 2782 */ 2783 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2784 iclog->ic_state == XLOG_STATE_SYNCING || 2785 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2786 iclog->ic_state == XLOG_STATE_IOERROR ) 2787 break; 2788 iclog = iclog->ic_next; 2789 } while (first_iclog != iclog); 2790 } 2791 #endif 2792 2793 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2794 wake = 1; 2795 spin_unlock(&log->l_icloglock); 2796 2797 if (wake) 2798 wake_up_all(&log->l_flush_wait); 2799 } 2800 2801 2802 /* 2803 * Finish transitioning this iclog to the dirty state. 2804 * 2805 * Make sure that we completely execute this routine only when this is 2806 * the last call to the iclog. There is a good chance that iclog flushes, 2807 * when we reach the end of the physical log, get turned into 2 separate 2808 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2809 * routine. By using the reference count bwritecnt, we guarantee that only 2810 * the second completion goes through. 2811 * 2812 * Callbacks could take time, so they are done outside the scope of the 2813 * global state machine log lock. 2814 */ 2815 STATIC void 2816 xlog_state_done_syncing( 2817 xlog_in_core_t *iclog, 2818 int aborted) 2819 { 2820 struct xlog *log = iclog->ic_log; 2821 2822 spin_lock(&log->l_icloglock); 2823 2824 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2825 iclog->ic_state == XLOG_STATE_IOERROR); 2826 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2827 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2828 2829 2830 /* 2831 * If we got an error, either on the first buffer, or in the case of 2832 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2833 * and none should ever be attempted to be written to disk 2834 * again. 2835 */ 2836 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2837 if (--iclog->ic_bwritecnt == 1) { 2838 spin_unlock(&log->l_icloglock); 2839 return; 2840 } 2841 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2842 } 2843 2844 /* 2845 * Someone could be sleeping prior to writing out the next 2846 * iclog buffer, we wake them all, one will get to do the 2847 * I/O, the others get to wait for the result. 2848 */ 2849 wake_up_all(&iclog->ic_write_wait); 2850 spin_unlock(&log->l_icloglock); 2851 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2852 } /* xlog_state_done_syncing */ 2853 2854 2855 /* 2856 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2857 * sleep. We wait on the flush queue on the head iclog as that should be 2858 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2859 * we will wait here and all new writes will sleep until a sync completes. 2860 * 2861 * The in-core logs are used in a circular fashion. They are not used 2862 * out-of-order even when an iclog past the head is free. 2863 * 2864 * return: 2865 * * log_offset where xlog_write() can start writing into the in-core 2866 * log's data space. 2867 * * in-core log pointer to which xlog_write() should write. 2868 * * boolean indicating this is a continued write to an in-core log. 2869 * If this is the last write, then the in-core log's offset field 2870 * needs to be incremented, depending on the amount of data which 2871 * is copied. 2872 */ 2873 STATIC int 2874 xlog_state_get_iclog_space( 2875 struct xlog *log, 2876 int len, 2877 struct xlog_in_core **iclogp, 2878 struct xlog_ticket *ticket, 2879 int *continued_write, 2880 int *logoffsetp) 2881 { 2882 int log_offset; 2883 xlog_rec_header_t *head; 2884 xlog_in_core_t *iclog; 2885 int error; 2886 2887 restart: 2888 spin_lock(&log->l_icloglock); 2889 if (XLOG_FORCED_SHUTDOWN(log)) { 2890 spin_unlock(&log->l_icloglock); 2891 return -EIO; 2892 } 2893 2894 iclog = log->l_iclog; 2895 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2896 XFS_STATS_INC(xs_log_noiclogs); 2897 2898 /* Wait for log writes to have flushed */ 2899 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2900 goto restart; 2901 } 2902 2903 head = &iclog->ic_header; 2904 2905 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2906 log_offset = iclog->ic_offset; 2907 2908 /* On the 1st write to an iclog, figure out lsn. This works 2909 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2910 * committing to. If the offset is set, that's how many blocks 2911 * must be written. 2912 */ 2913 if (log_offset == 0) { 2914 ticket->t_curr_res -= log->l_iclog_hsize; 2915 xlog_tic_add_region(ticket, 2916 log->l_iclog_hsize, 2917 XLOG_REG_TYPE_LRHEADER); 2918 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2919 head->h_lsn = cpu_to_be64( 2920 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2921 ASSERT(log->l_curr_block >= 0); 2922 } 2923 2924 /* If there is enough room to write everything, then do it. Otherwise, 2925 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2926 * bit is on, so this will get flushed out. Don't update ic_offset 2927 * until you know exactly how many bytes get copied. Therefore, wait 2928 * until later to update ic_offset. 2929 * 2930 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2931 * can fit into remaining data section. 2932 */ 2933 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2934 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2935 2936 /* 2937 * If I'm the only one writing to this iclog, sync it to disk. 2938 * We need to do an atomic compare and decrement here to avoid 2939 * racing with concurrent atomic_dec_and_lock() calls in 2940 * xlog_state_release_iclog() when there is more than one 2941 * reference to the iclog. 2942 */ 2943 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2944 /* we are the only one */ 2945 spin_unlock(&log->l_icloglock); 2946 error = xlog_state_release_iclog(log, iclog); 2947 if (error) 2948 return error; 2949 } else { 2950 spin_unlock(&log->l_icloglock); 2951 } 2952 goto restart; 2953 } 2954 2955 /* Do we have enough room to write the full amount in the remainder 2956 * of this iclog? Or must we continue a write on the next iclog and 2957 * mark this iclog as completely taken? In the case where we switch 2958 * iclogs (to mark it taken), this particular iclog will release/sync 2959 * to disk in xlog_write(). 2960 */ 2961 if (len <= iclog->ic_size - iclog->ic_offset) { 2962 *continued_write = 0; 2963 iclog->ic_offset += len; 2964 } else { 2965 *continued_write = 1; 2966 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2967 } 2968 *iclogp = iclog; 2969 2970 ASSERT(iclog->ic_offset <= iclog->ic_size); 2971 spin_unlock(&log->l_icloglock); 2972 2973 *logoffsetp = log_offset; 2974 return 0; 2975 } /* xlog_state_get_iclog_space */ 2976 2977 /* The first cnt-1 times through here we don't need to 2978 * move the grant write head because the permanent 2979 * reservation has reserved cnt times the unit amount. 2980 * Release part of current permanent unit reservation and 2981 * reset current reservation to be one units worth. Also 2982 * move grant reservation head forward. 2983 */ 2984 STATIC void 2985 xlog_regrant_reserve_log_space( 2986 struct xlog *log, 2987 struct xlog_ticket *ticket) 2988 { 2989 trace_xfs_log_regrant_reserve_enter(log, ticket); 2990 2991 if (ticket->t_cnt > 0) 2992 ticket->t_cnt--; 2993 2994 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2995 ticket->t_curr_res); 2996 xlog_grant_sub_space(log, &log->l_write_head.grant, 2997 ticket->t_curr_res); 2998 ticket->t_curr_res = ticket->t_unit_res; 2999 xlog_tic_reset_res(ticket); 3000 3001 trace_xfs_log_regrant_reserve_sub(log, ticket); 3002 3003 /* just return if we still have some of the pre-reserved space */ 3004 if (ticket->t_cnt > 0) 3005 return; 3006 3007 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3008 ticket->t_unit_res); 3009 3010 trace_xfs_log_regrant_reserve_exit(log, ticket); 3011 3012 ticket->t_curr_res = ticket->t_unit_res; 3013 xlog_tic_reset_res(ticket); 3014 } /* xlog_regrant_reserve_log_space */ 3015 3016 3017 /* 3018 * Give back the space left from a reservation. 3019 * 3020 * All the information we need to make a correct determination of space left 3021 * is present. For non-permanent reservations, things are quite easy. The 3022 * count should have been decremented to zero. We only need to deal with the 3023 * space remaining in the current reservation part of the ticket. If the 3024 * ticket contains a permanent reservation, there may be left over space which 3025 * needs to be released. A count of N means that N-1 refills of the current 3026 * reservation can be done before we need to ask for more space. The first 3027 * one goes to fill up the first current reservation. Once we run out of 3028 * space, the count will stay at zero and the only space remaining will be 3029 * in the current reservation field. 3030 */ 3031 STATIC void 3032 xlog_ungrant_log_space( 3033 struct xlog *log, 3034 struct xlog_ticket *ticket) 3035 { 3036 int bytes; 3037 3038 if (ticket->t_cnt > 0) 3039 ticket->t_cnt--; 3040 3041 trace_xfs_log_ungrant_enter(log, ticket); 3042 trace_xfs_log_ungrant_sub(log, ticket); 3043 3044 /* 3045 * If this is a permanent reservation ticket, we may be able to free 3046 * up more space based on the remaining count. 3047 */ 3048 bytes = ticket->t_curr_res; 3049 if (ticket->t_cnt > 0) { 3050 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3051 bytes += ticket->t_unit_res*ticket->t_cnt; 3052 } 3053 3054 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3055 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3056 3057 trace_xfs_log_ungrant_exit(log, ticket); 3058 3059 xfs_log_space_wake(log->l_mp); 3060 } 3061 3062 /* 3063 * Flush iclog to disk if this is the last reference to the given iclog and 3064 * the WANT_SYNC bit is set. 3065 * 3066 * When this function is entered, the iclog is not necessarily in the 3067 * WANT_SYNC state. It may be sitting around waiting to get filled. 3068 * 3069 * 3070 */ 3071 STATIC int 3072 xlog_state_release_iclog( 3073 struct xlog *log, 3074 struct xlog_in_core *iclog) 3075 { 3076 int sync = 0; /* do we sync? */ 3077 3078 if (iclog->ic_state & XLOG_STATE_IOERROR) 3079 return -EIO; 3080 3081 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3082 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3083 return 0; 3084 3085 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3086 spin_unlock(&log->l_icloglock); 3087 return -EIO; 3088 } 3089 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3090 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3091 3092 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3093 /* update tail before writing to iclog */ 3094 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3095 sync++; 3096 iclog->ic_state = XLOG_STATE_SYNCING; 3097 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3098 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3099 /* cycle incremented when incrementing curr_block */ 3100 } 3101 spin_unlock(&log->l_icloglock); 3102 3103 /* 3104 * We let the log lock go, so it's possible that we hit a log I/O 3105 * error or some other SHUTDOWN condition that marks the iclog 3106 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3107 * this iclog has consistent data, so we ignore IOERROR 3108 * flags after this point. 3109 */ 3110 if (sync) 3111 return xlog_sync(log, iclog); 3112 return 0; 3113 } /* xlog_state_release_iclog */ 3114 3115 3116 /* 3117 * This routine will mark the current iclog in the ring as WANT_SYNC 3118 * and move the current iclog pointer to the next iclog in the ring. 3119 * When this routine is called from xlog_state_get_iclog_space(), the 3120 * exact size of the iclog has not yet been determined. All we know is 3121 * that every data block. We have run out of space in this log record. 3122 */ 3123 STATIC void 3124 xlog_state_switch_iclogs( 3125 struct xlog *log, 3126 struct xlog_in_core *iclog, 3127 int eventual_size) 3128 { 3129 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3130 if (!eventual_size) 3131 eventual_size = iclog->ic_offset; 3132 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3133 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3134 log->l_prev_block = log->l_curr_block; 3135 log->l_prev_cycle = log->l_curr_cycle; 3136 3137 /* roll log?: ic_offset changed later */ 3138 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3139 3140 /* Round up to next log-sunit */ 3141 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3142 log->l_mp->m_sb.sb_logsunit > 1) { 3143 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3144 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3145 } 3146 3147 if (log->l_curr_block >= log->l_logBBsize) { 3148 log->l_curr_cycle++; 3149 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3150 log->l_curr_cycle++; 3151 log->l_curr_block -= log->l_logBBsize; 3152 ASSERT(log->l_curr_block >= 0); 3153 } 3154 ASSERT(iclog == log->l_iclog); 3155 log->l_iclog = iclog->ic_next; 3156 } /* xlog_state_switch_iclogs */ 3157 3158 /* 3159 * Write out all data in the in-core log as of this exact moment in time. 3160 * 3161 * Data may be written to the in-core log during this call. However, 3162 * we don't guarantee this data will be written out. A change from past 3163 * implementation means this routine will *not* write out zero length LRs. 3164 * 3165 * Basically, we try and perform an intelligent scan of the in-core logs. 3166 * If we determine there is no flushable data, we just return. There is no 3167 * flushable data if: 3168 * 3169 * 1. the current iclog is active and has no data; the previous iclog 3170 * is in the active or dirty state. 3171 * 2. the current iclog is drity, and the previous iclog is in the 3172 * active or dirty state. 3173 * 3174 * We may sleep if: 3175 * 3176 * 1. the current iclog is not in the active nor dirty state. 3177 * 2. the current iclog dirty, and the previous iclog is not in the 3178 * active nor dirty state. 3179 * 3. the current iclog is active, and there is another thread writing 3180 * to this particular iclog. 3181 * 4. a) the current iclog is active and has no other writers 3182 * b) when we return from flushing out this iclog, it is still 3183 * not in the active nor dirty state. 3184 */ 3185 int 3186 _xfs_log_force( 3187 struct xfs_mount *mp, 3188 uint flags, 3189 int *log_flushed) 3190 { 3191 struct xlog *log = mp->m_log; 3192 struct xlog_in_core *iclog; 3193 xfs_lsn_t lsn; 3194 3195 XFS_STATS_INC(xs_log_force); 3196 3197 xlog_cil_force(log); 3198 3199 spin_lock(&log->l_icloglock); 3200 3201 iclog = log->l_iclog; 3202 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3203 spin_unlock(&log->l_icloglock); 3204 return -EIO; 3205 } 3206 3207 /* If the head iclog is not active nor dirty, we just attach 3208 * ourselves to the head and go to sleep. 3209 */ 3210 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3211 iclog->ic_state == XLOG_STATE_DIRTY) { 3212 /* 3213 * If the head is dirty or (active and empty), then 3214 * we need to look at the previous iclog. If the previous 3215 * iclog is active or dirty we are done. There is nothing 3216 * to sync out. Otherwise, we attach ourselves to the 3217 * previous iclog and go to sleep. 3218 */ 3219 if (iclog->ic_state == XLOG_STATE_DIRTY || 3220 (atomic_read(&iclog->ic_refcnt) == 0 3221 && iclog->ic_offset == 0)) { 3222 iclog = iclog->ic_prev; 3223 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3224 iclog->ic_state == XLOG_STATE_DIRTY) 3225 goto no_sleep; 3226 else 3227 goto maybe_sleep; 3228 } else { 3229 if (atomic_read(&iclog->ic_refcnt) == 0) { 3230 /* We are the only one with access to this 3231 * iclog. Flush it out now. There should 3232 * be a roundoff of zero to show that someone 3233 * has already taken care of the roundoff from 3234 * the previous sync. 3235 */ 3236 atomic_inc(&iclog->ic_refcnt); 3237 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3238 xlog_state_switch_iclogs(log, iclog, 0); 3239 spin_unlock(&log->l_icloglock); 3240 3241 if (xlog_state_release_iclog(log, iclog)) 3242 return -EIO; 3243 3244 if (log_flushed) 3245 *log_flushed = 1; 3246 spin_lock(&log->l_icloglock); 3247 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3248 iclog->ic_state != XLOG_STATE_DIRTY) 3249 goto maybe_sleep; 3250 else 3251 goto no_sleep; 3252 } else { 3253 /* Someone else is writing to this iclog. 3254 * Use its call to flush out the data. However, 3255 * the other thread may not force out this LR, 3256 * so we mark it WANT_SYNC. 3257 */ 3258 xlog_state_switch_iclogs(log, iclog, 0); 3259 goto maybe_sleep; 3260 } 3261 } 3262 } 3263 3264 /* By the time we come around again, the iclog could've been filled 3265 * which would give it another lsn. If we have a new lsn, just 3266 * return because the relevant data has been flushed. 3267 */ 3268 maybe_sleep: 3269 if (flags & XFS_LOG_SYNC) { 3270 /* 3271 * We must check if we're shutting down here, before 3272 * we wait, while we're holding the l_icloglock. 3273 * Then we check again after waking up, in case our 3274 * sleep was disturbed by a bad news. 3275 */ 3276 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3277 spin_unlock(&log->l_icloglock); 3278 return -EIO; 3279 } 3280 XFS_STATS_INC(xs_log_force_sleep); 3281 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3282 /* 3283 * No need to grab the log lock here since we're 3284 * only deciding whether or not to return EIO 3285 * and the memory read should be atomic. 3286 */ 3287 if (iclog->ic_state & XLOG_STATE_IOERROR) 3288 return -EIO; 3289 if (log_flushed) 3290 *log_flushed = 1; 3291 } else { 3292 3293 no_sleep: 3294 spin_unlock(&log->l_icloglock); 3295 } 3296 return 0; 3297 } 3298 3299 /* 3300 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3301 * about errors or whether the log was flushed or not. This is the normal 3302 * interface to use when trying to unpin items or move the log forward. 3303 */ 3304 void 3305 xfs_log_force( 3306 xfs_mount_t *mp, 3307 uint flags) 3308 { 3309 int error; 3310 3311 trace_xfs_log_force(mp, 0); 3312 error = _xfs_log_force(mp, flags, NULL); 3313 if (error) 3314 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3315 } 3316 3317 /* 3318 * Force the in-core log to disk for a specific LSN. 3319 * 3320 * Find in-core log with lsn. 3321 * If it is in the DIRTY state, just return. 3322 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3323 * state and go to sleep or return. 3324 * If it is in any other state, go to sleep or return. 3325 * 3326 * Synchronous forces are implemented with a signal variable. All callers 3327 * to force a given lsn to disk will wait on a the sv attached to the 3328 * specific in-core log. When given in-core log finally completes its 3329 * write to disk, that thread will wake up all threads waiting on the 3330 * sv. 3331 */ 3332 int 3333 _xfs_log_force_lsn( 3334 struct xfs_mount *mp, 3335 xfs_lsn_t lsn, 3336 uint flags, 3337 int *log_flushed) 3338 { 3339 struct xlog *log = mp->m_log; 3340 struct xlog_in_core *iclog; 3341 int already_slept = 0; 3342 3343 ASSERT(lsn != 0); 3344 3345 XFS_STATS_INC(xs_log_force); 3346 3347 lsn = xlog_cil_force_lsn(log, lsn); 3348 if (lsn == NULLCOMMITLSN) 3349 return 0; 3350 3351 try_again: 3352 spin_lock(&log->l_icloglock); 3353 iclog = log->l_iclog; 3354 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3355 spin_unlock(&log->l_icloglock); 3356 return -EIO; 3357 } 3358 3359 do { 3360 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3361 iclog = iclog->ic_next; 3362 continue; 3363 } 3364 3365 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3366 spin_unlock(&log->l_icloglock); 3367 return 0; 3368 } 3369 3370 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3371 /* 3372 * We sleep here if we haven't already slept (e.g. 3373 * this is the first time we've looked at the correct 3374 * iclog buf) and the buffer before us is going to 3375 * be sync'ed. The reason for this is that if we 3376 * are doing sync transactions here, by waiting for 3377 * the previous I/O to complete, we can allow a few 3378 * more transactions into this iclog before we close 3379 * it down. 3380 * 3381 * Otherwise, we mark the buffer WANT_SYNC, and bump 3382 * up the refcnt so we can release the log (which 3383 * drops the ref count). The state switch keeps new 3384 * transaction commits from using this buffer. When 3385 * the current commits finish writing into the buffer, 3386 * the refcount will drop to zero and the buffer will 3387 * go out then. 3388 */ 3389 if (!already_slept && 3390 (iclog->ic_prev->ic_state & 3391 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3392 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3393 3394 XFS_STATS_INC(xs_log_force_sleep); 3395 3396 xlog_wait(&iclog->ic_prev->ic_write_wait, 3397 &log->l_icloglock); 3398 if (log_flushed) 3399 *log_flushed = 1; 3400 already_slept = 1; 3401 goto try_again; 3402 } 3403 atomic_inc(&iclog->ic_refcnt); 3404 xlog_state_switch_iclogs(log, iclog, 0); 3405 spin_unlock(&log->l_icloglock); 3406 if (xlog_state_release_iclog(log, iclog)) 3407 return -EIO; 3408 if (log_flushed) 3409 *log_flushed = 1; 3410 spin_lock(&log->l_icloglock); 3411 } 3412 3413 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3414 !(iclog->ic_state & 3415 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3416 /* 3417 * Don't wait on completion if we know that we've 3418 * gotten a log write error. 3419 */ 3420 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3421 spin_unlock(&log->l_icloglock); 3422 return -EIO; 3423 } 3424 XFS_STATS_INC(xs_log_force_sleep); 3425 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3426 /* 3427 * No need to grab the log lock here since we're 3428 * only deciding whether or not to return EIO 3429 * and the memory read should be atomic. 3430 */ 3431 if (iclog->ic_state & XLOG_STATE_IOERROR) 3432 return -EIO; 3433 3434 if (log_flushed) 3435 *log_flushed = 1; 3436 } else { /* just return */ 3437 spin_unlock(&log->l_icloglock); 3438 } 3439 3440 return 0; 3441 } while (iclog != log->l_iclog); 3442 3443 spin_unlock(&log->l_icloglock); 3444 return 0; 3445 } 3446 3447 /* 3448 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3449 * about errors or whether the log was flushed or not. This is the normal 3450 * interface to use when trying to unpin items or move the log forward. 3451 */ 3452 void 3453 xfs_log_force_lsn( 3454 xfs_mount_t *mp, 3455 xfs_lsn_t lsn, 3456 uint flags) 3457 { 3458 int error; 3459 3460 trace_xfs_log_force(mp, lsn); 3461 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3462 if (error) 3463 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3464 } 3465 3466 /* 3467 * Called when we want to mark the current iclog as being ready to sync to 3468 * disk. 3469 */ 3470 STATIC void 3471 xlog_state_want_sync( 3472 struct xlog *log, 3473 struct xlog_in_core *iclog) 3474 { 3475 assert_spin_locked(&log->l_icloglock); 3476 3477 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3478 xlog_state_switch_iclogs(log, iclog, 0); 3479 } else { 3480 ASSERT(iclog->ic_state & 3481 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3482 } 3483 } 3484 3485 3486 /***************************************************************************** 3487 * 3488 * TICKET functions 3489 * 3490 ***************************************************************************** 3491 */ 3492 3493 /* 3494 * Free a used ticket when its refcount falls to zero. 3495 */ 3496 void 3497 xfs_log_ticket_put( 3498 xlog_ticket_t *ticket) 3499 { 3500 ASSERT(atomic_read(&ticket->t_ref) > 0); 3501 if (atomic_dec_and_test(&ticket->t_ref)) 3502 kmem_zone_free(xfs_log_ticket_zone, ticket); 3503 } 3504 3505 xlog_ticket_t * 3506 xfs_log_ticket_get( 3507 xlog_ticket_t *ticket) 3508 { 3509 ASSERT(atomic_read(&ticket->t_ref) > 0); 3510 atomic_inc(&ticket->t_ref); 3511 return ticket; 3512 } 3513 3514 /* 3515 * Figure out the total log space unit (in bytes) that would be 3516 * required for a log ticket. 3517 */ 3518 int 3519 xfs_log_calc_unit_res( 3520 struct xfs_mount *mp, 3521 int unit_bytes) 3522 { 3523 struct xlog *log = mp->m_log; 3524 int iclog_space; 3525 uint num_headers; 3526 3527 /* 3528 * Permanent reservations have up to 'cnt'-1 active log operations 3529 * in the log. A unit in this case is the amount of space for one 3530 * of these log operations. Normal reservations have a cnt of 1 3531 * and their unit amount is the total amount of space required. 3532 * 3533 * The following lines of code account for non-transaction data 3534 * which occupy space in the on-disk log. 3535 * 3536 * Normal form of a transaction is: 3537 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3538 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3539 * 3540 * We need to account for all the leadup data and trailer data 3541 * around the transaction data. 3542 * And then we need to account for the worst case in terms of using 3543 * more space. 3544 * The worst case will happen if: 3545 * - the placement of the transaction happens to be such that the 3546 * roundoff is at its maximum 3547 * - the transaction data is synced before the commit record is synced 3548 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3549 * Therefore the commit record is in its own Log Record. 3550 * This can happen as the commit record is called with its 3551 * own region to xlog_write(). 3552 * This then means that in the worst case, roundoff can happen for 3553 * the commit-rec as well. 3554 * The commit-rec is smaller than padding in this scenario and so it is 3555 * not added separately. 3556 */ 3557 3558 /* for trans header */ 3559 unit_bytes += sizeof(xlog_op_header_t); 3560 unit_bytes += sizeof(xfs_trans_header_t); 3561 3562 /* for start-rec */ 3563 unit_bytes += sizeof(xlog_op_header_t); 3564 3565 /* 3566 * for LR headers - the space for data in an iclog is the size minus 3567 * the space used for the headers. If we use the iclog size, then we 3568 * undercalculate the number of headers required. 3569 * 3570 * Furthermore - the addition of op headers for split-recs might 3571 * increase the space required enough to require more log and op 3572 * headers, so take that into account too. 3573 * 3574 * IMPORTANT: This reservation makes the assumption that if this 3575 * transaction is the first in an iclog and hence has the LR headers 3576 * accounted to it, then the remaining space in the iclog is 3577 * exclusively for this transaction. i.e. if the transaction is larger 3578 * than the iclog, it will be the only thing in that iclog. 3579 * Fundamentally, this means we must pass the entire log vector to 3580 * xlog_write to guarantee this. 3581 */ 3582 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3583 num_headers = howmany(unit_bytes, iclog_space); 3584 3585 /* for split-recs - ophdrs added when data split over LRs */ 3586 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3587 3588 /* add extra header reservations if we overrun */ 3589 while (!num_headers || 3590 howmany(unit_bytes, iclog_space) > num_headers) { 3591 unit_bytes += sizeof(xlog_op_header_t); 3592 num_headers++; 3593 } 3594 unit_bytes += log->l_iclog_hsize * num_headers; 3595 3596 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3597 unit_bytes += log->l_iclog_hsize; 3598 3599 /* for roundoff padding for transaction data and one for commit record */ 3600 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3601 /* log su roundoff */ 3602 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3603 } else { 3604 /* BB roundoff */ 3605 unit_bytes += 2 * BBSIZE; 3606 } 3607 3608 return unit_bytes; 3609 } 3610 3611 /* 3612 * Allocate and initialise a new log ticket. 3613 */ 3614 struct xlog_ticket * 3615 xlog_ticket_alloc( 3616 struct xlog *log, 3617 int unit_bytes, 3618 int cnt, 3619 char client, 3620 bool permanent, 3621 xfs_km_flags_t alloc_flags) 3622 { 3623 struct xlog_ticket *tic; 3624 int unit_res; 3625 3626 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3627 if (!tic) 3628 return NULL; 3629 3630 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3631 3632 atomic_set(&tic->t_ref, 1); 3633 tic->t_task = current; 3634 INIT_LIST_HEAD(&tic->t_queue); 3635 tic->t_unit_res = unit_res; 3636 tic->t_curr_res = unit_res; 3637 tic->t_cnt = cnt; 3638 tic->t_ocnt = cnt; 3639 tic->t_tid = prandom_u32(); 3640 tic->t_clientid = client; 3641 tic->t_flags = XLOG_TIC_INITED; 3642 tic->t_trans_type = 0; 3643 if (permanent) 3644 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3645 3646 xlog_tic_reset_res(tic); 3647 3648 return tic; 3649 } 3650 3651 3652 /****************************************************************************** 3653 * 3654 * Log debug routines 3655 * 3656 ****************************************************************************** 3657 */ 3658 #if defined(DEBUG) 3659 /* 3660 * Make sure that the destination ptr is within the valid data region of 3661 * one of the iclogs. This uses backup pointers stored in a different 3662 * part of the log in case we trash the log structure. 3663 */ 3664 void 3665 xlog_verify_dest_ptr( 3666 struct xlog *log, 3667 char *ptr) 3668 { 3669 int i; 3670 int good_ptr = 0; 3671 3672 for (i = 0; i < log->l_iclog_bufs; i++) { 3673 if (ptr >= log->l_iclog_bak[i] && 3674 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3675 good_ptr++; 3676 } 3677 3678 if (!good_ptr) 3679 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3680 } 3681 3682 /* 3683 * Check to make sure the grant write head didn't just over lap the tail. If 3684 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3685 * the cycles differ by exactly one and check the byte count. 3686 * 3687 * This check is run unlocked, so can give false positives. Rather than assert 3688 * on failures, use a warn-once flag and a panic tag to allow the admin to 3689 * determine if they want to panic the machine when such an error occurs. For 3690 * debug kernels this will have the same effect as using an assert but, unlinke 3691 * an assert, it can be turned off at runtime. 3692 */ 3693 STATIC void 3694 xlog_verify_grant_tail( 3695 struct xlog *log) 3696 { 3697 int tail_cycle, tail_blocks; 3698 int cycle, space; 3699 3700 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3701 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3702 if (tail_cycle != cycle) { 3703 if (cycle - 1 != tail_cycle && 3704 !(log->l_flags & XLOG_TAIL_WARN)) { 3705 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3706 "%s: cycle - 1 != tail_cycle", __func__); 3707 log->l_flags |= XLOG_TAIL_WARN; 3708 } 3709 3710 if (space > BBTOB(tail_blocks) && 3711 !(log->l_flags & XLOG_TAIL_WARN)) { 3712 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3713 "%s: space > BBTOB(tail_blocks)", __func__); 3714 log->l_flags |= XLOG_TAIL_WARN; 3715 } 3716 } 3717 } 3718 3719 /* check if it will fit */ 3720 STATIC void 3721 xlog_verify_tail_lsn( 3722 struct xlog *log, 3723 struct xlog_in_core *iclog, 3724 xfs_lsn_t tail_lsn) 3725 { 3726 int blocks; 3727 3728 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3729 blocks = 3730 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3731 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3732 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3733 } else { 3734 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3735 3736 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3737 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3738 3739 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3740 if (blocks < BTOBB(iclog->ic_offset) + 1) 3741 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3742 } 3743 } /* xlog_verify_tail_lsn */ 3744 3745 /* 3746 * Perform a number of checks on the iclog before writing to disk. 3747 * 3748 * 1. Make sure the iclogs are still circular 3749 * 2. Make sure we have a good magic number 3750 * 3. Make sure we don't have magic numbers in the data 3751 * 4. Check fields of each log operation header for: 3752 * A. Valid client identifier 3753 * B. tid ptr value falls in valid ptr space (user space code) 3754 * C. Length in log record header is correct according to the 3755 * individual operation headers within record. 3756 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3757 * log, check the preceding blocks of the physical log to make sure all 3758 * the cycle numbers agree with the current cycle number. 3759 */ 3760 STATIC void 3761 xlog_verify_iclog( 3762 struct xlog *log, 3763 struct xlog_in_core *iclog, 3764 int count, 3765 bool syncing) 3766 { 3767 xlog_op_header_t *ophead; 3768 xlog_in_core_t *icptr; 3769 xlog_in_core_2_t *xhdr; 3770 xfs_caddr_t ptr; 3771 xfs_caddr_t base_ptr; 3772 __psint_t field_offset; 3773 __uint8_t clientid; 3774 int len, i, j, k, op_len; 3775 int idx; 3776 3777 /* check validity of iclog pointers */ 3778 spin_lock(&log->l_icloglock); 3779 icptr = log->l_iclog; 3780 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3781 ASSERT(icptr); 3782 3783 if (icptr != log->l_iclog) 3784 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3785 spin_unlock(&log->l_icloglock); 3786 3787 /* check log magic numbers */ 3788 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3789 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3790 3791 ptr = (xfs_caddr_t) &iclog->ic_header; 3792 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3793 ptr += BBSIZE) { 3794 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3795 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3796 __func__); 3797 } 3798 3799 /* check fields */ 3800 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3801 ptr = iclog->ic_datap; 3802 base_ptr = ptr; 3803 ophead = (xlog_op_header_t *)ptr; 3804 xhdr = iclog->ic_data; 3805 for (i = 0; i < len; i++) { 3806 ophead = (xlog_op_header_t *)ptr; 3807 3808 /* clientid is only 1 byte */ 3809 field_offset = (__psint_t) 3810 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3811 if (!syncing || (field_offset & 0x1ff)) { 3812 clientid = ophead->oh_clientid; 3813 } else { 3814 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3815 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3816 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3817 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3818 clientid = xlog_get_client_id( 3819 xhdr[j].hic_xheader.xh_cycle_data[k]); 3820 } else { 3821 clientid = xlog_get_client_id( 3822 iclog->ic_header.h_cycle_data[idx]); 3823 } 3824 } 3825 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3826 xfs_warn(log->l_mp, 3827 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3828 __func__, clientid, ophead, 3829 (unsigned long)field_offset); 3830 3831 /* check length */ 3832 field_offset = (__psint_t) 3833 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3834 if (!syncing || (field_offset & 0x1ff)) { 3835 op_len = be32_to_cpu(ophead->oh_len); 3836 } else { 3837 idx = BTOBBT((__psint_t)&ophead->oh_len - 3838 (__psint_t)iclog->ic_datap); 3839 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3840 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3841 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3842 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3843 } else { 3844 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3845 } 3846 } 3847 ptr += sizeof(xlog_op_header_t) + op_len; 3848 } 3849 } /* xlog_verify_iclog */ 3850 #endif 3851 3852 /* 3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3854 */ 3855 STATIC int 3856 xlog_state_ioerror( 3857 struct xlog *log) 3858 { 3859 xlog_in_core_t *iclog, *ic; 3860 3861 iclog = log->l_iclog; 3862 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3863 /* 3864 * Mark all the incore logs IOERROR. 3865 * From now on, no log flushes will result. 3866 */ 3867 ic = iclog; 3868 do { 3869 ic->ic_state = XLOG_STATE_IOERROR; 3870 ic = ic->ic_next; 3871 } while (ic != iclog); 3872 return 0; 3873 } 3874 /* 3875 * Return non-zero, if state transition has already happened. 3876 */ 3877 return 1; 3878 } 3879 3880 /* 3881 * This is called from xfs_force_shutdown, when we're forcibly 3882 * shutting down the filesystem, typically because of an IO error. 3883 * Our main objectives here are to make sure that: 3884 * a. if !logerror, flush the logs to disk. Anything modified 3885 * after this is ignored. 3886 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3887 * parties to find out, 'atomically'. 3888 * c. those who're sleeping on log reservations, pinned objects and 3889 * other resources get woken up, and be told the bad news. 3890 * d. nothing new gets queued up after (b) and (c) are done. 3891 * 3892 * Note: for the !logerror case we need to flush the regions held in memory out 3893 * to disk first. This needs to be done before the log is marked as shutdown, 3894 * otherwise the iclog writes will fail. 3895 */ 3896 int 3897 xfs_log_force_umount( 3898 struct xfs_mount *mp, 3899 int logerror) 3900 { 3901 struct xlog *log; 3902 int retval; 3903 3904 log = mp->m_log; 3905 3906 /* 3907 * If this happens during log recovery, don't worry about 3908 * locking; the log isn't open for business yet. 3909 */ 3910 if (!log || 3911 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3912 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3913 if (mp->m_sb_bp) 3914 XFS_BUF_DONE(mp->m_sb_bp); 3915 return 0; 3916 } 3917 3918 /* 3919 * Somebody could've already done the hard work for us. 3920 * No need to get locks for this. 3921 */ 3922 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3923 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3924 return 1; 3925 } 3926 3927 /* 3928 * Flush all the completed transactions to disk before marking the log 3929 * being shut down. We need to do it in this order to ensure that 3930 * completed operations are safely on disk before we shut down, and that 3931 * we don't have to issue any buffer IO after the shutdown flags are set 3932 * to guarantee this. 3933 */ 3934 if (!logerror) 3935 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3936 3937 /* 3938 * mark the filesystem and the as in a shutdown state and wake 3939 * everybody up to tell them the bad news. 3940 */ 3941 spin_lock(&log->l_icloglock); 3942 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3943 if (mp->m_sb_bp) 3944 XFS_BUF_DONE(mp->m_sb_bp); 3945 3946 /* 3947 * Mark the log and the iclogs with IO error flags to prevent any 3948 * further log IO from being issued or completed. 3949 */ 3950 log->l_flags |= XLOG_IO_ERROR; 3951 retval = xlog_state_ioerror(log); 3952 spin_unlock(&log->l_icloglock); 3953 3954 /* 3955 * We don't want anybody waiting for log reservations after this. That 3956 * means we have to wake up everybody queued up on reserveq as well as 3957 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3958 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3959 * action is protected by the grant locks. 3960 */ 3961 xlog_grant_head_wake_all(&log->l_reserve_head); 3962 xlog_grant_head_wake_all(&log->l_write_head); 3963 3964 /* 3965 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3966 * as if the log writes were completed. The abort handling in the log 3967 * item committed callback functions will do this again under lock to 3968 * avoid races. 3969 */ 3970 wake_up_all(&log->l_cilp->xc_commit_wait); 3971 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3972 3973 #ifdef XFSERRORDEBUG 3974 { 3975 xlog_in_core_t *iclog; 3976 3977 spin_lock(&log->l_icloglock); 3978 iclog = log->l_iclog; 3979 do { 3980 ASSERT(iclog->ic_callback == 0); 3981 iclog = iclog->ic_next; 3982 } while (iclog != log->l_iclog); 3983 spin_unlock(&log->l_icloglock); 3984 } 3985 #endif 3986 /* return non-zero if log IOERROR transition had already happened */ 3987 return retval; 3988 } 3989 3990 STATIC int 3991 xlog_iclogs_empty( 3992 struct xlog *log) 3993 { 3994 xlog_in_core_t *iclog; 3995 3996 iclog = log->l_iclog; 3997 do { 3998 /* endianness does not matter here, zero is zero in 3999 * any language. 4000 */ 4001 if (iclog->ic_header.h_num_logops) 4002 return 0; 4003 iclog = iclog->ic_next; 4004 } while (iclog != log->l_iclog); 4005 return 1; 4006 } 4007 4008