xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 6189f1b0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	bool			regrant)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		regrant = false;
530 	}
531 
532 
533 	if (!regrant) {
534 		trace_xfs_log_done_nonperm(log, ticket);
535 
536 		/*
537 		 * Release ticket if not permanent reservation or a specific
538 		 * request has been made to release a permanent reservation.
539 		 */
540 		xlog_ungrant_log_space(log, ticket);
541 	} else {
542 		trace_xfs_log_done_perm(log, ticket);
543 
544 		xlog_regrant_reserve_log_space(log, ticket);
545 		/* If this ticket was a permanent reservation and we aren't
546 		 * trying to release it, reset the inited flags; so next time
547 		 * we write, a start record will be written out.
548 		 */
549 		ticket->t_flags |= XLOG_TIC_INITED;
550 	}
551 
552 	xfs_log_ticket_put(ticket);
553 	return lsn;
554 }
555 
556 /*
557  * Attaches a new iclog I/O completion callback routine during
558  * transaction commit.  If the log is in error state, a non-zero
559  * return code is handed back and the caller is responsible for
560  * executing the callback at an appropriate time.
561  */
562 int
563 xfs_log_notify(
564 	struct xfs_mount	*mp,
565 	struct xlog_in_core	*iclog,
566 	xfs_log_callback_t	*cb)
567 {
568 	int	abortflg;
569 
570 	spin_lock(&iclog->ic_callback_lock);
571 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 	if (!abortflg) {
573 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 		cb->cb_next = NULL;
576 		*(iclog->ic_callback_tail) = cb;
577 		iclog->ic_callback_tail = &(cb->cb_next);
578 	}
579 	spin_unlock(&iclog->ic_callback_lock);
580 	return abortflg;
581 }
582 
583 int
584 xfs_log_release_iclog(
585 	struct xfs_mount	*mp,
586 	struct xlog_in_core	*iclog)
587 {
588 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 		return -EIO;
591 	}
592 
593 	return 0;
594 }
595 
596 /*
597  * Mount a log filesystem
598  *
599  * mp		- ubiquitous xfs mount point structure
600  * log_target	- buftarg of on-disk log device
601  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
602  * num_bblocks	- Number of BBSIZE blocks in on-disk log
603  *
604  * Return error or zero.
605  */
606 int
607 xfs_log_mount(
608 	xfs_mount_t	*mp,
609 	xfs_buftarg_t	*log_target,
610 	xfs_daddr_t	blk_offset,
611 	int		num_bblks)
612 {
613 	int		error = 0;
614 	int		min_logfsbs;
615 
616 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 		xfs_notice(mp, "Mounting V%d Filesystem",
618 			   XFS_SB_VERSION_NUM(&mp->m_sb));
619 	} else {
620 		xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 			   XFS_SB_VERSION_NUM(&mp->m_sb));
623 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 	}
625 
626 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 	if (IS_ERR(mp->m_log)) {
628 		error = PTR_ERR(mp->m_log);
629 		goto out;
630 	}
631 
632 	/*
633 	 * Validate the given log space and drop a critical message via syslog
634 	 * if the log size is too small that would lead to some unexpected
635 	 * situations in transaction log space reservation stage.
636 	 *
637 	 * Note: we can't just reject the mount if the validation fails.  This
638 	 * would mean that people would have to downgrade their kernel just to
639 	 * remedy the situation as there is no way to grow the log (short of
640 	 * black magic surgery with xfs_db).
641 	 *
642 	 * We can, however, reject mounts for CRC format filesystems, as the
643 	 * mkfs binary being used to make the filesystem should never create a
644 	 * filesystem with a log that is too small.
645 	 */
646 	min_logfsbs = xfs_log_calc_minimum_size(mp);
647 
648 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 		xfs_warn(mp,
650 		"Log size %d blocks too small, minimum size is %d blocks",
651 			 mp->m_sb.sb_logblocks, min_logfsbs);
652 		error = -EINVAL;
653 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 		xfs_warn(mp,
655 		"Log size %d blocks too large, maximum size is %lld blocks",
656 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 		error = -EINVAL;
658 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 		xfs_warn(mp,
660 		"log size %lld bytes too large, maximum size is %lld bytes",
661 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 			 XFS_MAX_LOG_BYTES);
663 		error = -EINVAL;
664 	}
665 	if (error) {
666 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 			ASSERT(0);
669 			goto out_free_log;
670 		}
671 		xfs_crit(mp,
672 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
673 "experienced then please report this message in the bug report.");
674 	}
675 
676 	/*
677 	 * Initialize the AIL now we have a log.
678 	 */
679 	error = xfs_trans_ail_init(mp);
680 	if (error) {
681 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 		goto out_free_log;
683 	}
684 	mp->m_log->l_ailp = mp->m_ail;
685 
686 	/*
687 	 * skip log recovery on a norecovery mount.  pretend it all
688 	 * just worked.
689 	 */
690 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692 
693 		if (readonly)
694 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
695 
696 		error = xlog_recover(mp->m_log);
697 
698 		if (readonly)
699 			mp->m_flags |= XFS_MOUNT_RDONLY;
700 		if (error) {
701 			xfs_warn(mp, "log mount/recovery failed: error %d",
702 				error);
703 			goto out_destroy_ail;
704 		}
705 	}
706 
707 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
708 			       "log");
709 	if (error)
710 		goto out_destroy_ail;
711 
712 	/* Normal transactions can now occur */
713 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
714 
715 	/*
716 	 * Now the log has been fully initialised and we know were our
717 	 * space grant counters are, we can initialise the permanent ticket
718 	 * needed for delayed logging to work.
719 	 */
720 	xlog_cil_init_post_recovery(mp->m_log);
721 
722 	return 0;
723 
724 out_destroy_ail:
725 	xfs_trans_ail_destroy(mp);
726 out_free_log:
727 	xlog_dealloc_log(mp->m_log);
728 out:
729 	return error;
730 }
731 
732 /*
733  * Finish the recovery of the file system.  This is separate from the
734  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
735  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
736  * here.
737  *
738  * If we finish recovery successfully, start the background log work. If we are
739  * not doing recovery, then we have a RO filesystem and we don't need to start
740  * it.
741  */
742 int
743 xfs_log_mount_finish(xfs_mount_t *mp)
744 {
745 	int	error = 0;
746 
747 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
748 		error = xlog_recover_finish(mp->m_log);
749 		if (!error)
750 			xfs_log_work_queue(mp);
751 	} else {
752 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
753 	}
754 
755 
756 	return error;
757 }
758 
759 /*
760  * Final log writes as part of unmount.
761  *
762  * Mark the filesystem clean as unmount happens.  Note that during relocation
763  * this routine needs to be executed as part of source-bag while the
764  * deallocation must not be done until source-end.
765  */
766 
767 /*
768  * Unmount record used to have a string "Unmount filesystem--" in the
769  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
770  * We just write the magic number now since that particular field isn't
771  * currently architecture converted and "Unmount" is a bit foo.
772  * As far as I know, there weren't any dependencies on the old behaviour.
773  */
774 
775 int
776 xfs_log_unmount_write(xfs_mount_t *mp)
777 {
778 	struct xlog	 *log = mp->m_log;
779 	xlog_in_core_t	 *iclog;
780 #ifdef DEBUG
781 	xlog_in_core_t	 *first_iclog;
782 #endif
783 	xlog_ticket_t	*tic = NULL;
784 	xfs_lsn_t	 lsn;
785 	int		 error;
786 
787 	/*
788 	 * Don't write out unmount record on read-only mounts.
789 	 * Or, if we are doing a forced umount (typically because of IO errors).
790 	 */
791 	if (mp->m_flags & XFS_MOUNT_RDONLY)
792 		return 0;
793 
794 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
795 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
796 
797 #ifdef DEBUG
798 	first_iclog = iclog = log->l_iclog;
799 	do {
800 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
801 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
802 			ASSERT(iclog->ic_offset == 0);
803 		}
804 		iclog = iclog->ic_next;
805 	} while (iclog != first_iclog);
806 #endif
807 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
808 		error = xfs_log_reserve(mp, 600, 1, &tic,
809 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
810 		if (!error) {
811 			/* the data section must be 32 bit size aligned */
812 			struct {
813 			    __uint16_t magic;
814 			    __uint16_t pad1;
815 			    __uint32_t pad2; /* may as well make it 64 bits */
816 			} magic = {
817 				.magic = XLOG_UNMOUNT_TYPE,
818 			};
819 			struct xfs_log_iovec reg = {
820 				.i_addr = &magic,
821 				.i_len = sizeof(magic),
822 				.i_type = XLOG_REG_TYPE_UNMOUNT,
823 			};
824 			struct xfs_log_vec vec = {
825 				.lv_niovecs = 1,
826 				.lv_iovecp = &reg,
827 			};
828 
829 			/* remove inited flag, and account for space used */
830 			tic->t_flags = 0;
831 			tic->t_curr_res -= sizeof(magic);
832 			error = xlog_write(log, &vec, tic, &lsn,
833 					   NULL, XLOG_UNMOUNT_TRANS);
834 			/*
835 			 * At this point, we're umounting anyway,
836 			 * so there's no point in transitioning log state
837 			 * to IOERROR. Just continue...
838 			 */
839 		}
840 
841 		if (error)
842 			xfs_alert(mp, "%s: unmount record failed", __func__);
843 
844 
845 		spin_lock(&log->l_icloglock);
846 		iclog = log->l_iclog;
847 		atomic_inc(&iclog->ic_refcnt);
848 		xlog_state_want_sync(log, iclog);
849 		spin_unlock(&log->l_icloglock);
850 		error = xlog_state_release_iclog(log, iclog);
851 
852 		spin_lock(&log->l_icloglock);
853 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
854 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
855 			if (!XLOG_FORCED_SHUTDOWN(log)) {
856 				xlog_wait(&iclog->ic_force_wait,
857 							&log->l_icloglock);
858 			} else {
859 				spin_unlock(&log->l_icloglock);
860 			}
861 		} else {
862 			spin_unlock(&log->l_icloglock);
863 		}
864 		if (tic) {
865 			trace_xfs_log_umount_write(log, tic);
866 			xlog_ungrant_log_space(log, tic);
867 			xfs_log_ticket_put(tic);
868 		}
869 	} else {
870 		/*
871 		 * We're already in forced_shutdown mode, couldn't
872 		 * even attempt to write out the unmount transaction.
873 		 *
874 		 * Go through the motions of sync'ing and releasing
875 		 * the iclog, even though no I/O will actually happen,
876 		 * we need to wait for other log I/Os that may already
877 		 * be in progress.  Do this as a separate section of
878 		 * code so we'll know if we ever get stuck here that
879 		 * we're in this odd situation of trying to unmount
880 		 * a file system that went into forced_shutdown as
881 		 * the result of an unmount..
882 		 */
883 		spin_lock(&log->l_icloglock);
884 		iclog = log->l_iclog;
885 		atomic_inc(&iclog->ic_refcnt);
886 
887 		xlog_state_want_sync(log, iclog);
888 		spin_unlock(&log->l_icloglock);
889 		error =  xlog_state_release_iclog(log, iclog);
890 
891 		spin_lock(&log->l_icloglock);
892 
893 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
894 			|| iclog->ic_state == XLOG_STATE_DIRTY
895 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
896 
897 				xlog_wait(&iclog->ic_force_wait,
898 							&log->l_icloglock);
899 		} else {
900 			spin_unlock(&log->l_icloglock);
901 		}
902 	}
903 
904 	return error;
905 }	/* xfs_log_unmount_write */
906 
907 /*
908  * Empty the log for unmount/freeze.
909  *
910  * To do this, we first need to shut down the background log work so it is not
911  * trying to cover the log as we clean up. We then need to unpin all objects in
912  * the log so we can then flush them out. Once they have completed their IO and
913  * run the callbacks removing themselves from the AIL, we can write the unmount
914  * record.
915  */
916 void
917 xfs_log_quiesce(
918 	struct xfs_mount	*mp)
919 {
920 	cancel_delayed_work_sync(&mp->m_log->l_work);
921 	xfs_log_force(mp, XFS_LOG_SYNC);
922 
923 	/*
924 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
925 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
926 	 * xfs_buf_iowait() cannot be used because it was pushed with the
927 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
928 	 * the IO to complete.
929 	 */
930 	xfs_ail_push_all_sync(mp->m_ail);
931 	xfs_wait_buftarg(mp->m_ddev_targp);
932 	xfs_buf_lock(mp->m_sb_bp);
933 	xfs_buf_unlock(mp->m_sb_bp);
934 
935 	xfs_log_unmount_write(mp);
936 }
937 
938 /*
939  * Shut down and release the AIL and Log.
940  *
941  * During unmount, we need to ensure we flush all the dirty metadata objects
942  * from the AIL so that the log is empty before we write the unmount record to
943  * the log. Once this is done, we can tear down the AIL and the log.
944  */
945 void
946 xfs_log_unmount(
947 	struct xfs_mount	*mp)
948 {
949 	xfs_log_quiesce(mp);
950 
951 	xfs_trans_ail_destroy(mp);
952 
953 	xfs_sysfs_del(&mp->m_log->l_kobj);
954 
955 	xlog_dealloc_log(mp->m_log);
956 }
957 
958 void
959 xfs_log_item_init(
960 	struct xfs_mount	*mp,
961 	struct xfs_log_item	*item,
962 	int			type,
963 	const struct xfs_item_ops *ops)
964 {
965 	item->li_mountp = mp;
966 	item->li_ailp = mp->m_ail;
967 	item->li_type = type;
968 	item->li_ops = ops;
969 	item->li_lv = NULL;
970 
971 	INIT_LIST_HEAD(&item->li_ail);
972 	INIT_LIST_HEAD(&item->li_cil);
973 }
974 
975 /*
976  * Wake up processes waiting for log space after we have moved the log tail.
977  */
978 void
979 xfs_log_space_wake(
980 	struct xfs_mount	*mp)
981 {
982 	struct xlog		*log = mp->m_log;
983 	int			free_bytes;
984 
985 	if (XLOG_FORCED_SHUTDOWN(log))
986 		return;
987 
988 	if (!list_empty_careful(&log->l_write_head.waiters)) {
989 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
990 
991 		spin_lock(&log->l_write_head.lock);
992 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
993 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
994 		spin_unlock(&log->l_write_head.lock);
995 	}
996 
997 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
998 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
999 
1000 		spin_lock(&log->l_reserve_head.lock);
1001 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1002 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1003 		spin_unlock(&log->l_reserve_head.lock);
1004 	}
1005 }
1006 
1007 /*
1008  * Determine if we have a transaction that has gone to disk that needs to be
1009  * covered. To begin the transition to the idle state firstly the log needs to
1010  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1011  * we start attempting to cover the log.
1012  *
1013  * Only if we are then in a state where covering is needed, the caller is
1014  * informed that dummy transactions are required to move the log into the idle
1015  * state.
1016  *
1017  * If there are any items in the AIl or CIL, then we do not want to attempt to
1018  * cover the log as we may be in a situation where there isn't log space
1019  * available to run a dummy transaction and this can lead to deadlocks when the
1020  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1021  * there's no point in running a dummy transaction at this point because we
1022  * can't start trying to idle the log until both the CIL and AIL are empty.
1023  */
1024 int
1025 xfs_log_need_covered(xfs_mount_t *mp)
1026 {
1027 	struct xlog	*log = mp->m_log;
1028 	int		needed = 0;
1029 
1030 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1031 		return 0;
1032 
1033 	if (!xlog_cil_empty(log))
1034 		return 0;
1035 
1036 	spin_lock(&log->l_icloglock);
1037 	switch (log->l_covered_state) {
1038 	case XLOG_STATE_COVER_DONE:
1039 	case XLOG_STATE_COVER_DONE2:
1040 	case XLOG_STATE_COVER_IDLE:
1041 		break;
1042 	case XLOG_STATE_COVER_NEED:
1043 	case XLOG_STATE_COVER_NEED2:
1044 		if (xfs_ail_min_lsn(log->l_ailp))
1045 			break;
1046 		if (!xlog_iclogs_empty(log))
1047 			break;
1048 
1049 		needed = 1;
1050 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1051 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1052 		else
1053 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1054 		break;
1055 	default:
1056 		needed = 1;
1057 		break;
1058 	}
1059 	spin_unlock(&log->l_icloglock);
1060 	return needed;
1061 }
1062 
1063 /*
1064  * We may be holding the log iclog lock upon entering this routine.
1065  */
1066 xfs_lsn_t
1067 xlog_assign_tail_lsn_locked(
1068 	struct xfs_mount	*mp)
1069 {
1070 	struct xlog		*log = mp->m_log;
1071 	struct xfs_log_item	*lip;
1072 	xfs_lsn_t		tail_lsn;
1073 
1074 	assert_spin_locked(&mp->m_ail->xa_lock);
1075 
1076 	/*
1077 	 * To make sure we always have a valid LSN for the log tail we keep
1078 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1079 	 * and use that when the AIL was empty.
1080 	 */
1081 	lip = xfs_ail_min(mp->m_ail);
1082 	if (lip)
1083 		tail_lsn = lip->li_lsn;
1084 	else
1085 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1086 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1087 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1088 	return tail_lsn;
1089 }
1090 
1091 xfs_lsn_t
1092 xlog_assign_tail_lsn(
1093 	struct xfs_mount	*mp)
1094 {
1095 	xfs_lsn_t		tail_lsn;
1096 
1097 	spin_lock(&mp->m_ail->xa_lock);
1098 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1099 	spin_unlock(&mp->m_ail->xa_lock);
1100 
1101 	return tail_lsn;
1102 }
1103 
1104 /*
1105  * Return the space in the log between the tail and the head.  The head
1106  * is passed in the cycle/bytes formal parms.  In the special case where
1107  * the reserve head has wrapped passed the tail, this calculation is no
1108  * longer valid.  In this case, just return 0 which means there is no space
1109  * in the log.  This works for all places where this function is called
1110  * with the reserve head.  Of course, if the write head were to ever
1111  * wrap the tail, we should blow up.  Rather than catch this case here,
1112  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1113  *
1114  * This code also handles the case where the reservation head is behind
1115  * the tail.  The details of this case are described below, but the end
1116  * result is that we return the size of the log as the amount of space left.
1117  */
1118 STATIC int
1119 xlog_space_left(
1120 	struct xlog	*log,
1121 	atomic64_t	*head)
1122 {
1123 	int		free_bytes;
1124 	int		tail_bytes;
1125 	int		tail_cycle;
1126 	int		head_cycle;
1127 	int		head_bytes;
1128 
1129 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1130 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1131 	tail_bytes = BBTOB(tail_bytes);
1132 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1133 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1134 	else if (tail_cycle + 1 < head_cycle)
1135 		return 0;
1136 	else if (tail_cycle < head_cycle) {
1137 		ASSERT(tail_cycle == (head_cycle - 1));
1138 		free_bytes = tail_bytes - head_bytes;
1139 	} else {
1140 		/*
1141 		 * The reservation head is behind the tail.
1142 		 * In this case we just want to return the size of the
1143 		 * log as the amount of space left.
1144 		 */
1145 		xfs_alert(log->l_mp,
1146 			"xlog_space_left: head behind tail\n"
1147 			"  tail_cycle = %d, tail_bytes = %d\n"
1148 			"  GH   cycle = %d, GH   bytes = %d",
1149 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1150 		ASSERT(0);
1151 		free_bytes = log->l_logsize;
1152 	}
1153 	return free_bytes;
1154 }
1155 
1156 
1157 /*
1158  * Log function which is called when an io completes.
1159  *
1160  * The log manager needs its own routine, in order to control what
1161  * happens with the buffer after the write completes.
1162  */
1163 void
1164 xlog_iodone(xfs_buf_t *bp)
1165 {
1166 	struct xlog_in_core	*iclog = bp->b_fspriv;
1167 	struct xlog		*l = iclog->ic_log;
1168 	int			aborted = 0;
1169 
1170 	/*
1171 	 * Race to shutdown the filesystem if we see an error.
1172 	 */
1173 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1174 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1175 		xfs_buf_ioerror_alert(bp, __func__);
1176 		xfs_buf_stale(bp);
1177 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1178 		/*
1179 		 * This flag will be propagated to the trans-committed
1180 		 * callback routines to let them know that the log-commit
1181 		 * didn't succeed.
1182 		 */
1183 		aborted = XFS_LI_ABORTED;
1184 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1185 		aborted = XFS_LI_ABORTED;
1186 	}
1187 
1188 	/* log I/O is always issued ASYNC */
1189 	ASSERT(XFS_BUF_ISASYNC(bp));
1190 	xlog_state_done_syncing(iclog, aborted);
1191 
1192 	/*
1193 	 * drop the buffer lock now that we are done. Nothing references
1194 	 * the buffer after this, so an unmount waiting on this lock can now
1195 	 * tear it down safely. As such, it is unsafe to reference the buffer
1196 	 * (bp) after the unlock as we could race with it being freed.
1197 	 */
1198 	xfs_buf_unlock(bp);
1199 }
1200 
1201 /*
1202  * Return size of each in-core log record buffer.
1203  *
1204  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1205  *
1206  * If the filesystem blocksize is too large, we may need to choose a
1207  * larger size since the directory code currently logs entire blocks.
1208  */
1209 
1210 STATIC void
1211 xlog_get_iclog_buffer_size(
1212 	struct xfs_mount	*mp,
1213 	struct xlog		*log)
1214 {
1215 	int size;
1216 	int xhdrs;
1217 
1218 	if (mp->m_logbufs <= 0)
1219 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1220 	else
1221 		log->l_iclog_bufs = mp->m_logbufs;
1222 
1223 	/*
1224 	 * Buffer size passed in from mount system call.
1225 	 */
1226 	if (mp->m_logbsize > 0) {
1227 		size = log->l_iclog_size = mp->m_logbsize;
1228 		log->l_iclog_size_log = 0;
1229 		while (size != 1) {
1230 			log->l_iclog_size_log++;
1231 			size >>= 1;
1232 		}
1233 
1234 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1235 			/* # headers = size / 32k
1236 			 * one header holds cycles from 32k of data
1237 			 */
1238 
1239 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1240 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1241 				xhdrs++;
1242 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1243 			log->l_iclog_heads = xhdrs;
1244 		} else {
1245 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1246 			log->l_iclog_hsize = BBSIZE;
1247 			log->l_iclog_heads = 1;
1248 		}
1249 		goto done;
1250 	}
1251 
1252 	/* All machines use 32kB buffers by default. */
1253 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1254 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1255 
1256 	/* the default log size is 16k or 32k which is one header sector */
1257 	log->l_iclog_hsize = BBSIZE;
1258 	log->l_iclog_heads = 1;
1259 
1260 done:
1261 	/* are we being asked to make the sizes selected above visible? */
1262 	if (mp->m_logbufs == 0)
1263 		mp->m_logbufs = log->l_iclog_bufs;
1264 	if (mp->m_logbsize == 0)
1265 		mp->m_logbsize = log->l_iclog_size;
1266 }	/* xlog_get_iclog_buffer_size */
1267 
1268 
1269 void
1270 xfs_log_work_queue(
1271 	struct xfs_mount        *mp)
1272 {
1273 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1274 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1275 }
1276 
1277 /*
1278  * Every sync period we need to unpin all items in the AIL and push them to
1279  * disk. If there is nothing dirty, then we might need to cover the log to
1280  * indicate that the filesystem is idle.
1281  */
1282 void
1283 xfs_log_worker(
1284 	struct work_struct	*work)
1285 {
1286 	struct xlog		*log = container_of(to_delayed_work(work),
1287 						struct xlog, l_work);
1288 	struct xfs_mount	*mp = log->l_mp;
1289 
1290 	/* dgc: errors ignored - not fatal and nowhere to report them */
1291 	if (xfs_log_need_covered(mp)) {
1292 		/*
1293 		 * Dump a transaction into the log that contains no real change.
1294 		 * This is needed to stamp the current tail LSN into the log
1295 		 * during the covering operation.
1296 		 *
1297 		 * We cannot use an inode here for this - that will push dirty
1298 		 * state back up into the VFS and then periodic inode flushing
1299 		 * will prevent log covering from making progress. Hence we
1300 		 * synchronously log the superblock instead to ensure the
1301 		 * superblock is immediately unpinned and can be written back.
1302 		 */
1303 		xfs_sync_sb(mp, true);
1304 	} else
1305 		xfs_log_force(mp, 0);
1306 
1307 	/* start pushing all the metadata that is currently dirty */
1308 	xfs_ail_push_all(mp->m_ail);
1309 
1310 	/* queue us up again */
1311 	xfs_log_work_queue(mp);
1312 }
1313 
1314 /*
1315  * This routine initializes some of the log structure for a given mount point.
1316  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1317  * some other stuff may be filled in too.
1318  */
1319 STATIC struct xlog *
1320 xlog_alloc_log(
1321 	struct xfs_mount	*mp,
1322 	struct xfs_buftarg	*log_target,
1323 	xfs_daddr_t		blk_offset,
1324 	int			num_bblks)
1325 {
1326 	struct xlog		*log;
1327 	xlog_rec_header_t	*head;
1328 	xlog_in_core_t		**iclogp;
1329 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1330 	xfs_buf_t		*bp;
1331 	int			i;
1332 	int			error = -ENOMEM;
1333 	uint			log2_size = 0;
1334 
1335 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1336 	if (!log) {
1337 		xfs_warn(mp, "Log allocation failed: No memory!");
1338 		goto out;
1339 	}
1340 
1341 	log->l_mp	   = mp;
1342 	log->l_targ	   = log_target;
1343 	log->l_logsize     = BBTOB(num_bblks);
1344 	log->l_logBBstart  = blk_offset;
1345 	log->l_logBBsize   = num_bblks;
1346 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1347 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1348 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1349 
1350 	log->l_prev_block  = -1;
1351 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1352 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1353 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1354 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1355 
1356 	xlog_grant_head_init(&log->l_reserve_head);
1357 	xlog_grant_head_init(&log->l_write_head);
1358 
1359 	error = -EFSCORRUPTED;
1360 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1361 	        log2_size = mp->m_sb.sb_logsectlog;
1362 		if (log2_size < BBSHIFT) {
1363 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1364 				log2_size, BBSHIFT);
1365 			goto out_free_log;
1366 		}
1367 
1368 	        log2_size -= BBSHIFT;
1369 		if (log2_size > mp->m_sectbb_log) {
1370 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1371 				log2_size, mp->m_sectbb_log);
1372 			goto out_free_log;
1373 		}
1374 
1375 		/* for larger sector sizes, must have v2 or external log */
1376 		if (log2_size && log->l_logBBstart > 0 &&
1377 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1378 			xfs_warn(mp,
1379 		"log sector size (0x%x) invalid for configuration.",
1380 				log2_size);
1381 			goto out_free_log;
1382 		}
1383 	}
1384 	log->l_sectBBsize = 1 << log2_size;
1385 
1386 	xlog_get_iclog_buffer_size(mp, log);
1387 
1388 	/*
1389 	 * Use a NULL block for the extra log buffer used during splits so that
1390 	 * it will trigger errors if we ever try to do IO on it without first
1391 	 * having set it up properly.
1392 	 */
1393 	error = -ENOMEM;
1394 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1395 			   BTOBB(log->l_iclog_size), 0);
1396 	if (!bp)
1397 		goto out_free_log;
1398 
1399 	/*
1400 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1401 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1402 	 * when appropriately.
1403 	 */
1404 	ASSERT(xfs_buf_islocked(bp));
1405 	xfs_buf_unlock(bp);
1406 
1407 	/* use high priority wq for log I/O completion */
1408 	bp->b_ioend_wq = mp->m_log_workqueue;
1409 	bp->b_iodone = xlog_iodone;
1410 	log->l_xbuf = bp;
1411 
1412 	spin_lock_init(&log->l_icloglock);
1413 	init_waitqueue_head(&log->l_flush_wait);
1414 
1415 	iclogp = &log->l_iclog;
1416 	/*
1417 	 * The amount of memory to allocate for the iclog structure is
1418 	 * rather funky due to the way the structure is defined.  It is
1419 	 * done this way so that we can use different sizes for machines
1420 	 * with different amounts of memory.  See the definition of
1421 	 * xlog_in_core_t in xfs_log_priv.h for details.
1422 	 */
1423 	ASSERT(log->l_iclog_size >= 4096);
1424 	for (i=0; i < log->l_iclog_bufs; i++) {
1425 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1426 		if (!*iclogp)
1427 			goto out_free_iclog;
1428 
1429 		iclog = *iclogp;
1430 		iclog->ic_prev = prev_iclog;
1431 		prev_iclog = iclog;
1432 
1433 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1434 						BTOBB(log->l_iclog_size), 0);
1435 		if (!bp)
1436 			goto out_free_iclog;
1437 
1438 		ASSERT(xfs_buf_islocked(bp));
1439 		xfs_buf_unlock(bp);
1440 
1441 		/* use high priority wq for log I/O completion */
1442 		bp->b_ioend_wq = mp->m_log_workqueue;
1443 		bp->b_iodone = xlog_iodone;
1444 		iclog->ic_bp = bp;
1445 		iclog->ic_data = bp->b_addr;
1446 #ifdef DEBUG
1447 		log->l_iclog_bak[i] = &iclog->ic_header;
1448 #endif
1449 		head = &iclog->ic_header;
1450 		memset(head, 0, sizeof(xlog_rec_header_t));
1451 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1452 		head->h_version = cpu_to_be32(
1453 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1454 		head->h_size = cpu_to_be32(log->l_iclog_size);
1455 		/* new fields */
1456 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1457 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1458 
1459 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1460 		iclog->ic_state = XLOG_STATE_ACTIVE;
1461 		iclog->ic_log = log;
1462 		atomic_set(&iclog->ic_refcnt, 0);
1463 		spin_lock_init(&iclog->ic_callback_lock);
1464 		iclog->ic_callback_tail = &(iclog->ic_callback);
1465 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1466 
1467 		init_waitqueue_head(&iclog->ic_force_wait);
1468 		init_waitqueue_head(&iclog->ic_write_wait);
1469 
1470 		iclogp = &iclog->ic_next;
1471 	}
1472 	*iclogp = log->l_iclog;			/* complete ring */
1473 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1474 
1475 	error = xlog_cil_init(log);
1476 	if (error)
1477 		goto out_free_iclog;
1478 	return log;
1479 
1480 out_free_iclog:
1481 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1482 		prev_iclog = iclog->ic_next;
1483 		if (iclog->ic_bp)
1484 			xfs_buf_free(iclog->ic_bp);
1485 		kmem_free(iclog);
1486 	}
1487 	spinlock_destroy(&log->l_icloglock);
1488 	xfs_buf_free(log->l_xbuf);
1489 out_free_log:
1490 	kmem_free(log);
1491 out:
1492 	return ERR_PTR(error);
1493 }	/* xlog_alloc_log */
1494 
1495 
1496 /*
1497  * Write out the commit record of a transaction associated with the given
1498  * ticket.  Return the lsn of the commit record.
1499  */
1500 STATIC int
1501 xlog_commit_record(
1502 	struct xlog		*log,
1503 	struct xlog_ticket	*ticket,
1504 	struct xlog_in_core	**iclog,
1505 	xfs_lsn_t		*commitlsnp)
1506 {
1507 	struct xfs_mount *mp = log->l_mp;
1508 	int	error;
1509 	struct xfs_log_iovec reg = {
1510 		.i_addr = NULL,
1511 		.i_len = 0,
1512 		.i_type = XLOG_REG_TYPE_COMMIT,
1513 	};
1514 	struct xfs_log_vec vec = {
1515 		.lv_niovecs = 1,
1516 		.lv_iovecp = &reg,
1517 	};
1518 
1519 	ASSERT_ALWAYS(iclog);
1520 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1521 					XLOG_COMMIT_TRANS);
1522 	if (error)
1523 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1524 	return error;
1525 }
1526 
1527 /*
1528  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1529  * log space.  This code pushes on the lsn which would supposedly free up
1530  * the 25% which we want to leave free.  We may need to adopt a policy which
1531  * pushes on an lsn which is further along in the log once we reach the high
1532  * water mark.  In this manner, we would be creating a low water mark.
1533  */
1534 STATIC void
1535 xlog_grant_push_ail(
1536 	struct xlog	*log,
1537 	int		need_bytes)
1538 {
1539 	xfs_lsn_t	threshold_lsn = 0;
1540 	xfs_lsn_t	last_sync_lsn;
1541 	int		free_blocks;
1542 	int		free_bytes;
1543 	int		threshold_block;
1544 	int		threshold_cycle;
1545 	int		free_threshold;
1546 
1547 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1548 
1549 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1550 	free_blocks = BTOBBT(free_bytes);
1551 
1552 	/*
1553 	 * Set the threshold for the minimum number of free blocks in the
1554 	 * log to the maximum of what the caller needs, one quarter of the
1555 	 * log, and 256 blocks.
1556 	 */
1557 	free_threshold = BTOBB(need_bytes);
1558 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1559 	free_threshold = MAX(free_threshold, 256);
1560 	if (free_blocks >= free_threshold)
1561 		return;
1562 
1563 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1564 						&threshold_block);
1565 	threshold_block += free_threshold;
1566 	if (threshold_block >= log->l_logBBsize) {
1567 		threshold_block -= log->l_logBBsize;
1568 		threshold_cycle += 1;
1569 	}
1570 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1571 					threshold_block);
1572 	/*
1573 	 * Don't pass in an lsn greater than the lsn of the last
1574 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1575 	 * so that it doesn't change between the compare and the set.
1576 	 */
1577 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1578 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1579 		threshold_lsn = last_sync_lsn;
1580 
1581 	/*
1582 	 * Get the transaction layer to kick the dirty buffers out to
1583 	 * disk asynchronously. No point in trying to do this if
1584 	 * the filesystem is shutting down.
1585 	 */
1586 	if (!XLOG_FORCED_SHUTDOWN(log))
1587 		xfs_ail_push(log->l_ailp, threshold_lsn);
1588 }
1589 
1590 /*
1591  * Stamp cycle number in every block
1592  */
1593 STATIC void
1594 xlog_pack_data(
1595 	struct xlog		*log,
1596 	struct xlog_in_core	*iclog,
1597 	int			roundoff)
1598 {
1599 	int			i, j, k;
1600 	int			size = iclog->ic_offset + roundoff;
1601 	__be32			cycle_lsn;
1602 	char			*dp;
1603 
1604 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1605 
1606 	dp = iclog->ic_datap;
1607 	for (i = 0; i < BTOBB(size); i++) {
1608 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1609 			break;
1610 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1611 		*(__be32 *)dp = cycle_lsn;
1612 		dp += BBSIZE;
1613 	}
1614 
1615 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1616 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1617 
1618 		for ( ; i < BTOBB(size); i++) {
1619 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1620 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1621 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1622 			*(__be32 *)dp = cycle_lsn;
1623 			dp += BBSIZE;
1624 		}
1625 
1626 		for (i = 1; i < log->l_iclog_heads; i++)
1627 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1628 	}
1629 }
1630 
1631 /*
1632  * Calculate the checksum for a log buffer.
1633  *
1634  * This is a little more complicated than it should be because the various
1635  * headers and the actual data are non-contiguous.
1636  */
1637 __le32
1638 xlog_cksum(
1639 	struct xlog		*log,
1640 	struct xlog_rec_header	*rhead,
1641 	char			*dp,
1642 	int			size)
1643 {
1644 	__uint32_t		crc;
1645 
1646 	/* first generate the crc for the record header ... */
1647 	crc = xfs_start_cksum((char *)rhead,
1648 			      sizeof(struct xlog_rec_header),
1649 			      offsetof(struct xlog_rec_header, h_crc));
1650 
1651 	/* ... then for additional cycle data for v2 logs ... */
1652 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1653 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1654 		int		i;
1655 
1656 		for (i = 1; i < log->l_iclog_heads; i++) {
1657 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1658 				     sizeof(struct xlog_rec_ext_header));
1659 		}
1660 	}
1661 
1662 	/* ... and finally for the payload */
1663 	crc = crc32c(crc, dp, size);
1664 
1665 	return xfs_end_cksum(crc);
1666 }
1667 
1668 /*
1669  * The bdstrat callback function for log bufs. This gives us a central
1670  * place to trap bufs in case we get hit by a log I/O error and need to
1671  * shutdown. Actually, in practice, even when we didn't get a log error,
1672  * we transition the iclogs to IOERROR state *after* flushing all existing
1673  * iclogs to disk. This is because we don't want anymore new transactions to be
1674  * started or completed afterwards.
1675  *
1676  * We lock the iclogbufs here so that we can serialise against IO completion
1677  * during unmount. We might be processing a shutdown triggered during unmount,
1678  * and that can occur asynchronously to the unmount thread, and hence we need to
1679  * ensure that completes before tearing down the iclogbufs. Hence we need to
1680  * hold the buffer lock across the log IO to acheive that.
1681  */
1682 STATIC int
1683 xlog_bdstrat(
1684 	struct xfs_buf		*bp)
1685 {
1686 	struct xlog_in_core	*iclog = bp->b_fspriv;
1687 
1688 	xfs_buf_lock(bp);
1689 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1690 		xfs_buf_ioerror(bp, -EIO);
1691 		xfs_buf_stale(bp);
1692 		xfs_buf_ioend(bp);
1693 		/*
1694 		 * It would seem logical to return EIO here, but we rely on
1695 		 * the log state machine to propagate I/O errors instead of
1696 		 * doing it here. Similarly, IO completion will unlock the
1697 		 * buffer, so we don't do it here.
1698 		 */
1699 		return 0;
1700 	}
1701 
1702 	xfs_buf_submit(bp);
1703 	return 0;
1704 }
1705 
1706 /*
1707  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1708  * fashion.  Previously, we should have moved the current iclog
1709  * ptr in the log to point to the next available iclog.  This allows further
1710  * write to continue while this code syncs out an iclog ready to go.
1711  * Before an in-core log can be written out, the data section must be scanned
1712  * to save away the 1st word of each BBSIZE block into the header.  We replace
1713  * it with the current cycle count.  Each BBSIZE block is tagged with the
1714  * cycle count because there in an implicit assumption that drives will
1715  * guarantee that entire 512 byte blocks get written at once.  In other words,
1716  * we can't have part of a 512 byte block written and part not written.  By
1717  * tagging each block, we will know which blocks are valid when recovering
1718  * after an unclean shutdown.
1719  *
1720  * This routine is single threaded on the iclog.  No other thread can be in
1721  * this routine with the same iclog.  Changing contents of iclog can there-
1722  * fore be done without grabbing the state machine lock.  Updating the global
1723  * log will require grabbing the lock though.
1724  *
1725  * The entire log manager uses a logical block numbering scheme.  Only
1726  * log_sync (and then only bwrite()) know about the fact that the log may
1727  * not start with block zero on a given device.  The log block start offset
1728  * is added immediately before calling bwrite().
1729  */
1730 
1731 STATIC int
1732 xlog_sync(
1733 	struct xlog		*log,
1734 	struct xlog_in_core	*iclog)
1735 {
1736 	xfs_buf_t	*bp;
1737 	int		i;
1738 	uint		count;		/* byte count of bwrite */
1739 	uint		count_init;	/* initial count before roundup */
1740 	int		roundoff;       /* roundoff to BB or stripe */
1741 	int		split = 0;	/* split write into two regions */
1742 	int		error;
1743 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1744 	int		size;
1745 
1746 	XFS_STATS_INC(xs_log_writes);
1747 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1748 
1749 	/* Add for LR header */
1750 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1751 
1752 	/* Round out the log write size */
1753 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1754 		/* we have a v2 stripe unit to use */
1755 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1756 	} else {
1757 		count = BBTOB(BTOBB(count_init));
1758 	}
1759 	roundoff = count - count_init;
1760 	ASSERT(roundoff >= 0);
1761 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1762                 roundoff < log->l_mp->m_sb.sb_logsunit)
1763 		||
1764 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1765 		 roundoff < BBTOB(1)));
1766 
1767 	/* move grant heads by roundoff in sync */
1768 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1769 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1770 
1771 	/* put cycle number in every block */
1772 	xlog_pack_data(log, iclog, roundoff);
1773 
1774 	/* real byte length */
1775 	size = iclog->ic_offset;
1776 	if (v2)
1777 		size += roundoff;
1778 	iclog->ic_header.h_len = cpu_to_be32(size);
1779 
1780 	bp = iclog->ic_bp;
1781 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1782 
1783 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1784 
1785 	/* Do we need to split this write into 2 parts? */
1786 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1787 		char		*dptr;
1788 
1789 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1790 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1791 		iclog->ic_bwritecnt = 2;
1792 
1793 		/*
1794 		 * Bump the cycle numbers at the start of each block in the
1795 		 * part of the iclog that ends up in the buffer that gets
1796 		 * written to the start of the log.
1797 		 *
1798 		 * Watch out for the header magic number case, though.
1799 		 */
1800 		dptr = (char *)&iclog->ic_header + count;
1801 		for (i = 0; i < split; i += BBSIZE) {
1802 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1803 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1804 				cycle++;
1805 			*(__be32 *)dptr = cpu_to_be32(cycle);
1806 
1807 			dptr += BBSIZE;
1808 		}
1809 	} else {
1810 		iclog->ic_bwritecnt = 1;
1811 	}
1812 
1813 	/* calculcate the checksum */
1814 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1815 					    iclog->ic_datap, size);
1816 
1817 	bp->b_io_length = BTOBB(count);
1818 	bp->b_fspriv = iclog;
1819 	XFS_BUF_ZEROFLAGS(bp);
1820 	XFS_BUF_ASYNC(bp);
1821 	bp->b_flags |= XBF_SYNCIO;
1822 
1823 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1824 		bp->b_flags |= XBF_FUA;
1825 
1826 		/*
1827 		 * Flush the data device before flushing the log to make
1828 		 * sure all meta data written back from the AIL actually made
1829 		 * it to disk before stamping the new log tail LSN into the
1830 		 * log buffer.  For an external log we need to issue the
1831 		 * flush explicitly, and unfortunately synchronously here;
1832 		 * for an internal log we can simply use the block layer
1833 		 * state machine for preflushes.
1834 		 */
1835 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1836 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1837 		else
1838 			bp->b_flags |= XBF_FLUSH;
1839 	}
1840 
1841 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1842 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1843 
1844 	xlog_verify_iclog(log, iclog, count, true);
1845 
1846 	/* account for log which doesn't start at block #0 */
1847 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1848 	/*
1849 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1850 	 * is shutting down.
1851 	 */
1852 	XFS_BUF_WRITE(bp);
1853 
1854 	error = xlog_bdstrat(bp);
1855 	if (error) {
1856 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1857 		return error;
1858 	}
1859 	if (split) {
1860 		bp = iclog->ic_log->l_xbuf;
1861 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1862 		xfs_buf_associate_memory(bp,
1863 				(char *)&iclog->ic_header + count, split);
1864 		bp->b_fspriv = iclog;
1865 		XFS_BUF_ZEROFLAGS(bp);
1866 		XFS_BUF_ASYNC(bp);
1867 		bp->b_flags |= XBF_SYNCIO;
1868 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1869 			bp->b_flags |= XBF_FUA;
1870 
1871 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1872 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1873 
1874 		/* account for internal log which doesn't start at block #0 */
1875 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1876 		XFS_BUF_WRITE(bp);
1877 		error = xlog_bdstrat(bp);
1878 		if (error) {
1879 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1880 			return error;
1881 		}
1882 	}
1883 	return 0;
1884 }	/* xlog_sync */
1885 
1886 /*
1887  * Deallocate a log structure
1888  */
1889 STATIC void
1890 xlog_dealloc_log(
1891 	struct xlog	*log)
1892 {
1893 	xlog_in_core_t	*iclog, *next_iclog;
1894 	int		i;
1895 
1896 	xlog_cil_destroy(log);
1897 
1898 	/*
1899 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1900 	 * is done before we tear down these buffers.
1901 	 */
1902 	iclog = log->l_iclog;
1903 	for (i = 0; i < log->l_iclog_bufs; i++) {
1904 		xfs_buf_lock(iclog->ic_bp);
1905 		xfs_buf_unlock(iclog->ic_bp);
1906 		iclog = iclog->ic_next;
1907 	}
1908 
1909 	/*
1910 	 * Always need to ensure that the extra buffer does not point to memory
1911 	 * owned by another log buffer before we free it. Also, cycle the lock
1912 	 * first to ensure we've completed IO on it.
1913 	 */
1914 	xfs_buf_lock(log->l_xbuf);
1915 	xfs_buf_unlock(log->l_xbuf);
1916 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1917 	xfs_buf_free(log->l_xbuf);
1918 
1919 	iclog = log->l_iclog;
1920 	for (i = 0; i < log->l_iclog_bufs; i++) {
1921 		xfs_buf_free(iclog->ic_bp);
1922 		next_iclog = iclog->ic_next;
1923 		kmem_free(iclog);
1924 		iclog = next_iclog;
1925 	}
1926 	spinlock_destroy(&log->l_icloglock);
1927 
1928 	log->l_mp->m_log = NULL;
1929 	kmem_free(log);
1930 }	/* xlog_dealloc_log */
1931 
1932 /*
1933  * Update counters atomically now that memcpy is done.
1934  */
1935 /* ARGSUSED */
1936 static inline void
1937 xlog_state_finish_copy(
1938 	struct xlog		*log,
1939 	struct xlog_in_core	*iclog,
1940 	int			record_cnt,
1941 	int			copy_bytes)
1942 {
1943 	spin_lock(&log->l_icloglock);
1944 
1945 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1946 	iclog->ic_offset += copy_bytes;
1947 
1948 	spin_unlock(&log->l_icloglock);
1949 }	/* xlog_state_finish_copy */
1950 
1951 
1952 
1953 
1954 /*
1955  * print out info relating to regions written which consume
1956  * the reservation
1957  */
1958 void
1959 xlog_print_tic_res(
1960 	struct xfs_mount	*mp,
1961 	struct xlog_ticket	*ticket)
1962 {
1963 	uint i;
1964 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1965 
1966 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1967 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1968 	    "bformat",
1969 	    "bchunk",
1970 	    "efi_format",
1971 	    "efd_format",
1972 	    "iformat",
1973 	    "icore",
1974 	    "iext",
1975 	    "ibroot",
1976 	    "ilocal",
1977 	    "iattr_ext",
1978 	    "iattr_broot",
1979 	    "iattr_local",
1980 	    "qformat",
1981 	    "dquot",
1982 	    "quotaoff",
1983 	    "LR header",
1984 	    "unmount",
1985 	    "commit",
1986 	    "trans header"
1987 	};
1988 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1989 	    "SETATTR_NOT_SIZE",
1990 	    "SETATTR_SIZE",
1991 	    "INACTIVE",
1992 	    "CREATE",
1993 	    "CREATE_TRUNC",
1994 	    "TRUNCATE_FILE",
1995 	    "REMOVE",
1996 	    "LINK",
1997 	    "RENAME",
1998 	    "MKDIR",
1999 	    "RMDIR",
2000 	    "SYMLINK",
2001 	    "SET_DMATTRS",
2002 	    "GROWFS",
2003 	    "STRAT_WRITE",
2004 	    "DIOSTRAT",
2005 	    "WRITE_SYNC",
2006 	    "WRITEID",
2007 	    "ADDAFORK",
2008 	    "ATTRINVAL",
2009 	    "ATRUNCATE",
2010 	    "ATTR_SET",
2011 	    "ATTR_RM",
2012 	    "ATTR_FLAG",
2013 	    "CLEAR_AGI_BUCKET",
2014 	    "QM_SBCHANGE",
2015 	    "DUMMY1",
2016 	    "DUMMY2",
2017 	    "QM_QUOTAOFF",
2018 	    "QM_DQALLOC",
2019 	    "QM_SETQLIM",
2020 	    "QM_DQCLUSTER",
2021 	    "QM_QINOCREATE",
2022 	    "QM_QUOTAOFF_END",
2023 	    "SB_UNIT",
2024 	    "FSYNC_TS",
2025 	    "GROWFSRT_ALLOC",
2026 	    "GROWFSRT_ZERO",
2027 	    "GROWFSRT_FREE",
2028 	    "SWAPEXT"
2029 	};
2030 
2031 	xfs_warn(mp,
2032 		"xlog_write: reservation summary:\n"
2033 		"  trans type  = %s (%u)\n"
2034 		"  unit res    = %d bytes\n"
2035 		"  current res = %d bytes\n"
2036 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2037 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2038 		"  ophdr + reg = %u bytes\n"
2039 		"  num regions = %u",
2040 		((ticket->t_trans_type <= 0 ||
2041 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2042 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2043 		ticket->t_trans_type,
2044 		ticket->t_unit_res,
2045 		ticket->t_curr_res,
2046 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2047 		ticket->t_res_num_ophdrs, ophdr_spc,
2048 		ticket->t_res_arr_sum +
2049 		ticket->t_res_o_flow + ophdr_spc,
2050 		ticket->t_res_num);
2051 
2052 	for (i = 0; i < ticket->t_res_num; i++) {
2053 		uint r_type = ticket->t_res_arr[i].r_type;
2054 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2055 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2056 			    "bad-rtype" : res_type_str[r_type-1]),
2057 			    ticket->t_res_arr[i].r_len);
2058 	}
2059 
2060 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2061 		"xlog_write: reservation ran out. Need to up reservation");
2062 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2063 }
2064 
2065 /*
2066  * Calculate the potential space needed by the log vector.  Each region gets
2067  * its own xlog_op_header_t and may need to be double word aligned.
2068  */
2069 static int
2070 xlog_write_calc_vec_length(
2071 	struct xlog_ticket	*ticket,
2072 	struct xfs_log_vec	*log_vector)
2073 {
2074 	struct xfs_log_vec	*lv;
2075 	int			headers = 0;
2076 	int			len = 0;
2077 	int			i;
2078 
2079 	/* acct for start rec of xact */
2080 	if (ticket->t_flags & XLOG_TIC_INITED)
2081 		headers++;
2082 
2083 	for (lv = log_vector; lv; lv = lv->lv_next) {
2084 		/* we don't write ordered log vectors */
2085 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2086 			continue;
2087 
2088 		headers += lv->lv_niovecs;
2089 
2090 		for (i = 0; i < lv->lv_niovecs; i++) {
2091 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2092 
2093 			len += vecp->i_len;
2094 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2095 		}
2096 	}
2097 
2098 	ticket->t_res_num_ophdrs += headers;
2099 	len += headers * sizeof(struct xlog_op_header);
2100 
2101 	return len;
2102 }
2103 
2104 /*
2105  * If first write for transaction, insert start record  We can't be trying to
2106  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2107  */
2108 static int
2109 xlog_write_start_rec(
2110 	struct xlog_op_header	*ophdr,
2111 	struct xlog_ticket	*ticket)
2112 {
2113 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2114 		return 0;
2115 
2116 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2117 	ophdr->oh_clientid = ticket->t_clientid;
2118 	ophdr->oh_len = 0;
2119 	ophdr->oh_flags = XLOG_START_TRANS;
2120 	ophdr->oh_res2 = 0;
2121 
2122 	ticket->t_flags &= ~XLOG_TIC_INITED;
2123 
2124 	return sizeof(struct xlog_op_header);
2125 }
2126 
2127 static xlog_op_header_t *
2128 xlog_write_setup_ophdr(
2129 	struct xlog		*log,
2130 	struct xlog_op_header	*ophdr,
2131 	struct xlog_ticket	*ticket,
2132 	uint			flags)
2133 {
2134 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2135 	ophdr->oh_clientid = ticket->t_clientid;
2136 	ophdr->oh_res2 = 0;
2137 
2138 	/* are we copying a commit or unmount record? */
2139 	ophdr->oh_flags = flags;
2140 
2141 	/*
2142 	 * We've seen logs corrupted with bad transaction client ids.  This
2143 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2144 	 * and shut down the filesystem.
2145 	 */
2146 	switch (ophdr->oh_clientid)  {
2147 	case XFS_TRANSACTION:
2148 	case XFS_VOLUME:
2149 	case XFS_LOG:
2150 		break;
2151 	default:
2152 		xfs_warn(log->l_mp,
2153 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2154 			ophdr->oh_clientid, ticket);
2155 		return NULL;
2156 	}
2157 
2158 	return ophdr;
2159 }
2160 
2161 /*
2162  * Set up the parameters of the region copy into the log. This has
2163  * to handle region write split across multiple log buffers - this
2164  * state is kept external to this function so that this code can
2165  * be written in an obvious, self documenting manner.
2166  */
2167 static int
2168 xlog_write_setup_copy(
2169 	struct xlog_ticket	*ticket,
2170 	struct xlog_op_header	*ophdr,
2171 	int			space_available,
2172 	int			space_required,
2173 	int			*copy_off,
2174 	int			*copy_len,
2175 	int			*last_was_partial_copy,
2176 	int			*bytes_consumed)
2177 {
2178 	int			still_to_copy;
2179 
2180 	still_to_copy = space_required - *bytes_consumed;
2181 	*copy_off = *bytes_consumed;
2182 
2183 	if (still_to_copy <= space_available) {
2184 		/* write of region completes here */
2185 		*copy_len = still_to_copy;
2186 		ophdr->oh_len = cpu_to_be32(*copy_len);
2187 		if (*last_was_partial_copy)
2188 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2189 		*last_was_partial_copy = 0;
2190 		*bytes_consumed = 0;
2191 		return 0;
2192 	}
2193 
2194 	/* partial write of region, needs extra log op header reservation */
2195 	*copy_len = space_available;
2196 	ophdr->oh_len = cpu_to_be32(*copy_len);
2197 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2198 	if (*last_was_partial_copy)
2199 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2200 	*bytes_consumed += *copy_len;
2201 	(*last_was_partial_copy)++;
2202 
2203 	/* account for new log op header */
2204 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2205 	ticket->t_res_num_ophdrs++;
2206 
2207 	return sizeof(struct xlog_op_header);
2208 }
2209 
2210 static int
2211 xlog_write_copy_finish(
2212 	struct xlog		*log,
2213 	struct xlog_in_core	*iclog,
2214 	uint			flags,
2215 	int			*record_cnt,
2216 	int			*data_cnt,
2217 	int			*partial_copy,
2218 	int			*partial_copy_len,
2219 	int			log_offset,
2220 	struct xlog_in_core	**commit_iclog)
2221 {
2222 	if (*partial_copy) {
2223 		/*
2224 		 * This iclog has already been marked WANT_SYNC by
2225 		 * xlog_state_get_iclog_space.
2226 		 */
2227 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2228 		*record_cnt = 0;
2229 		*data_cnt = 0;
2230 		return xlog_state_release_iclog(log, iclog);
2231 	}
2232 
2233 	*partial_copy = 0;
2234 	*partial_copy_len = 0;
2235 
2236 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2237 		/* no more space in this iclog - push it. */
2238 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2239 		*record_cnt = 0;
2240 		*data_cnt = 0;
2241 
2242 		spin_lock(&log->l_icloglock);
2243 		xlog_state_want_sync(log, iclog);
2244 		spin_unlock(&log->l_icloglock);
2245 
2246 		if (!commit_iclog)
2247 			return xlog_state_release_iclog(log, iclog);
2248 		ASSERT(flags & XLOG_COMMIT_TRANS);
2249 		*commit_iclog = iclog;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * Write some region out to in-core log
2257  *
2258  * This will be called when writing externally provided regions or when
2259  * writing out a commit record for a given transaction.
2260  *
2261  * General algorithm:
2262  *	1. Find total length of this write.  This may include adding to the
2263  *		lengths passed in.
2264  *	2. Check whether we violate the tickets reservation.
2265  *	3. While writing to this iclog
2266  *	    A. Reserve as much space in this iclog as can get
2267  *	    B. If this is first write, save away start lsn
2268  *	    C. While writing this region:
2269  *		1. If first write of transaction, write start record
2270  *		2. Write log operation header (header per region)
2271  *		3. Find out if we can fit entire region into this iclog
2272  *		4. Potentially, verify destination memcpy ptr
2273  *		5. Memcpy (partial) region
2274  *		6. If partial copy, release iclog; otherwise, continue
2275  *			copying more regions into current iclog
2276  *	4. Mark want sync bit (in simulation mode)
2277  *	5. Release iclog for potential flush to on-disk log.
2278  *
2279  * ERRORS:
2280  * 1.	Panic if reservation is overrun.  This should never happen since
2281  *	reservation amounts are generated internal to the filesystem.
2282  * NOTES:
2283  * 1. Tickets are single threaded data structures.
2284  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2285  *	syncing routine.  When a single log_write region needs to span
2286  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2287  *	on all log operation writes which don't contain the end of the
2288  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2289  *	operation which contains the end of the continued log_write region.
2290  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2291  *	we don't really know exactly how much space will be used.  As a result,
2292  *	we don't update ic_offset until the end when we know exactly how many
2293  *	bytes have been written out.
2294  */
2295 int
2296 xlog_write(
2297 	struct xlog		*log,
2298 	struct xfs_log_vec	*log_vector,
2299 	struct xlog_ticket	*ticket,
2300 	xfs_lsn_t		*start_lsn,
2301 	struct xlog_in_core	**commit_iclog,
2302 	uint			flags)
2303 {
2304 	struct xlog_in_core	*iclog = NULL;
2305 	struct xfs_log_iovec	*vecp;
2306 	struct xfs_log_vec	*lv;
2307 	int			len;
2308 	int			index;
2309 	int			partial_copy = 0;
2310 	int			partial_copy_len = 0;
2311 	int			contwr = 0;
2312 	int			record_cnt = 0;
2313 	int			data_cnt = 0;
2314 	int			error;
2315 
2316 	*start_lsn = 0;
2317 
2318 	len = xlog_write_calc_vec_length(ticket, log_vector);
2319 
2320 	/*
2321 	 * Region headers and bytes are already accounted for.
2322 	 * We only need to take into account start records and
2323 	 * split regions in this function.
2324 	 */
2325 	if (ticket->t_flags & XLOG_TIC_INITED)
2326 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2327 
2328 	/*
2329 	 * Commit record headers need to be accounted for. These
2330 	 * come in as separate writes so are easy to detect.
2331 	 */
2332 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2333 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2334 
2335 	if (ticket->t_curr_res < 0)
2336 		xlog_print_tic_res(log->l_mp, ticket);
2337 
2338 	index = 0;
2339 	lv = log_vector;
2340 	vecp = lv->lv_iovecp;
2341 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2342 		void		*ptr;
2343 		int		log_offset;
2344 
2345 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2346 						   &contwr, &log_offset);
2347 		if (error)
2348 			return error;
2349 
2350 		ASSERT(log_offset <= iclog->ic_size - 1);
2351 		ptr = iclog->ic_datap + log_offset;
2352 
2353 		/* start_lsn is the first lsn written to. That's all we need. */
2354 		if (!*start_lsn)
2355 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2356 
2357 		/*
2358 		 * This loop writes out as many regions as can fit in the amount
2359 		 * of space which was allocated by xlog_state_get_iclog_space().
2360 		 */
2361 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2362 			struct xfs_log_iovec	*reg;
2363 			struct xlog_op_header	*ophdr;
2364 			int			start_rec_copy;
2365 			int			copy_len;
2366 			int			copy_off;
2367 			bool			ordered = false;
2368 
2369 			/* ordered log vectors have no regions to write */
2370 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2371 				ASSERT(lv->lv_niovecs == 0);
2372 				ordered = true;
2373 				goto next_lv;
2374 			}
2375 
2376 			reg = &vecp[index];
2377 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2378 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2379 
2380 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2381 			if (start_rec_copy) {
2382 				record_cnt++;
2383 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2384 						   start_rec_copy);
2385 			}
2386 
2387 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2388 			if (!ophdr)
2389 				return -EIO;
2390 
2391 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2392 					   sizeof(struct xlog_op_header));
2393 
2394 			len += xlog_write_setup_copy(ticket, ophdr,
2395 						     iclog->ic_size-log_offset,
2396 						     reg->i_len,
2397 						     &copy_off, &copy_len,
2398 						     &partial_copy,
2399 						     &partial_copy_len);
2400 			xlog_verify_dest_ptr(log, ptr);
2401 
2402 			/* copy region */
2403 			ASSERT(copy_len >= 0);
2404 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2405 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2406 
2407 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2408 			record_cnt++;
2409 			data_cnt += contwr ? copy_len : 0;
2410 
2411 			error = xlog_write_copy_finish(log, iclog, flags,
2412 						       &record_cnt, &data_cnt,
2413 						       &partial_copy,
2414 						       &partial_copy_len,
2415 						       log_offset,
2416 						       commit_iclog);
2417 			if (error)
2418 				return error;
2419 
2420 			/*
2421 			 * if we had a partial copy, we need to get more iclog
2422 			 * space but we don't want to increment the region
2423 			 * index because there is still more is this region to
2424 			 * write.
2425 			 *
2426 			 * If we completed writing this region, and we flushed
2427 			 * the iclog (indicated by resetting of the record
2428 			 * count), then we also need to get more log space. If
2429 			 * this was the last record, though, we are done and
2430 			 * can just return.
2431 			 */
2432 			if (partial_copy)
2433 				break;
2434 
2435 			if (++index == lv->lv_niovecs) {
2436 next_lv:
2437 				lv = lv->lv_next;
2438 				index = 0;
2439 				if (lv)
2440 					vecp = lv->lv_iovecp;
2441 			}
2442 			if (record_cnt == 0 && ordered == false) {
2443 				if (!lv)
2444 					return 0;
2445 				break;
2446 			}
2447 		}
2448 	}
2449 
2450 	ASSERT(len == 0);
2451 
2452 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2453 	if (!commit_iclog)
2454 		return xlog_state_release_iclog(log, iclog);
2455 
2456 	ASSERT(flags & XLOG_COMMIT_TRANS);
2457 	*commit_iclog = iclog;
2458 	return 0;
2459 }
2460 
2461 
2462 /*****************************************************************************
2463  *
2464  *		State Machine functions
2465  *
2466  *****************************************************************************
2467  */
2468 
2469 /* Clean iclogs starting from the head.  This ordering must be
2470  * maintained, so an iclog doesn't become ACTIVE beyond one that
2471  * is SYNCING.  This is also required to maintain the notion that we use
2472  * a ordered wait queue to hold off would be writers to the log when every
2473  * iclog is trying to sync to disk.
2474  *
2475  * State Change: DIRTY -> ACTIVE
2476  */
2477 STATIC void
2478 xlog_state_clean_log(
2479 	struct xlog *log)
2480 {
2481 	xlog_in_core_t	*iclog;
2482 	int changed = 0;
2483 
2484 	iclog = log->l_iclog;
2485 	do {
2486 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2487 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2488 			iclog->ic_offset       = 0;
2489 			ASSERT(iclog->ic_callback == NULL);
2490 			/*
2491 			 * If the number of ops in this iclog indicate it just
2492 			 * contains the dummy transaction, we can
2493 			 * change state into IDLE (the second time around).
2494 			 * Otherwise we should change the state into
2495 			 * NEED a dummy.
2496 			 * We don't need to cover the dummy.
2497 			 */
2498 			if (!changed &&
2499 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2500 			   		XLOG_COVER_OPS)) {
2501 				changed = 1;
2502 			} else {
2503 				/*
2504 				 * We have two dirty iclogs so start over
2505 				 * This could also be num of ops indicates
2506 				 * this is not the dummy going out.
2507 				 */
2508 				changed = 2;
2509 			}
2510 			iclog->ic_header.h_num_logops = 0;
2511 			memset(iclog->ic_header.h_cycle_data, 0,
2512 			      sizeof(iclog->ic_header.h_cycle_data));
2513 			iclog->ic_header.h_lsn = 0;
2514 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2515 			/* do nothing */;
2516 		else
2517 			break;	/* stop cleaning */
2518 		iclog = iclog->ic_next;
2519 	} while (iclog != log->l_iclog);
2520 
2521 	/* log is locked when we are called */
2522 	/*
2523 	 * Change state for the dummy log recording.
2524 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2525 	 * we are done writing the dummy record.
2526 	 * If we are done with the second dummy recored (DONE2), then
2527 	 * we go to IDLE.
2528 	 */
2529 	if (changed) {
2530 		switch (log->l_covered_state) {
2531 		case XLOG_STATE_COVER_IDLE:
2532 		case XLOG_STATE_COVER_NEED:
2533 		case XLOG_STATE_COVER_NEED2:
2534 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2535 			break;
2536 
2537 		case XLOG_STATE_COVER_DONE:
2538 			if (changed == 1)
2539 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2540 			else
2541 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2542 			break;
2543 
2544 		case XLOG_STATE_COVER_DONE2:
2545 			if (changed == 1)
2546 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2547 			else
2548 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2549 			break;
2550 
2551 		default:
2552 			ASSERT(0);
2553 		}
2554 	}
2555 }	/* xlog_state_clean_log */
2556 
2557 STATIC xfs_lsn_t
2558 xlog_get_lowest_lsn(
2559 	struct xlog	*log)
2560 {
2561 	xlog_in_core_t  *lsn_log;
2562 	xfs_lsn_t	lowest_lsn, lsn;
2563 
2564 	lsn_log = log->l_iclog;
2565 	lowest_lsn = 0;
2566 	do {
2567 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2568 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2569 		if ((lsn && !lowest_lsn) ||
2570 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2571 			lowest_lsn = lsn;
2572 		}
2573 	    }
2574 	    lsn_log = lsn_log->ic_next;
2575 	} while (lsn_log != log->l_iclog);
2576 	return lowest_lsn;
2577 }
2578 
2579 
2580 STATIC void
2581 xlog_state_do_callback(
2582 	struct xlog		*log,
2583 	int			aborted,
2584 	struct xlog_in_core	*ciclog)
2585 {
2586 	xlog_in_core_t	   *iclog;
2587 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2588 						 * processed all iclogs once */
2589 	xfs_log_callback_t *cb, *cb_next;
2590 	int		   flushcnt = 0;
2591 	xfs_lsn_t	   lowest_lsn;
2592 	int		   ioerrors;	/* counter: iclogs with errors */
2593 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2594 	int		   funcdidcallbacks; /* flag: function did callbacks */
2595 	int		   repeats;	/* for issuing console warnings if
2596 					 * looping too many times */
2597 	int		   wake = 0;
2598 
2599 	spin_lock(&log->l_icloglock);
2600 	first_iclog = iclog = log->l_iclog;
2601 	ioerrors = 0;
2602 	funcdidcallbacks = 0;
2603 	repeats = 0;
2604 
2605 	do {
2606 		/*
2607 		 * Scan all iclogs starting with the one pointed to by the
2608 		 * log.  Reset this starting point each time the log is
2609 		 * unlocked (during callbacks).
2610 		 *
2611 		 * Keep looping through iclogs until one full pass is made
2612 		 * without running any callbacks.
2613 		 */
2614 		first_iclog = log->l_iclog;
2615 		iclog = log->l_iclog;
2616 		loopdidcallbacks = 0;
2617 		repeats++;
2618 
2619 		do {
2620 
2621 			/* skip all iclogs in the ACTIVE & DIRTY states */
2622 			if (iclog->ic_state &
2623 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2624 				iclog = iclog->ic_next;
2625 				continue;
2626 			}
2627 
2628 			/*
2629 			 * Between marking a filesystem SHUTDOWN and stopping
2630 			 * the log, we do flush all iclogs to disk (if there
2631 			 * wasn't a log I/O error). So, we do want things to
2632 			 * go smoothly in case of just a SHUTDOWN  w/o a
2633 			 * LOG_IO_ERROR.
2634 			 */
2635 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2636 				/*
2637 				 * Can only perform callbacks in order.  Since
2638 				 * this iclog is not in the DONE_SYNC/
2639 				 * DO_CALLBACK state, we skip the rest and
2640 				 * just try to clean up.  If we set our iclog
2641 				 * to DO_CALLBACK, we will not process it when
2642 				 * we retry since a previous iclog is in the
2643 				 * CALLBACK and the state cannot change since
2644 				 * we are holding the l_icloglock.
2645 				 */
2646 				if (!(iclog->ic_state &
2647 					(XLOG_STATE_DONE_SYNC |
2648 						 XLOG_STATE_DO_CALLBACK))) {
2649 					if (ciclog && (ciclog->ic_state ==
2650 							XLOG_STATE_DONE_SYNC)) {
2651 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2652 					}
2653 					break;
2654 				}
2655 				/*
2656 				 * We now have an iclog that is in either the
2657 				 * DO_CALLBACK or DONE_SYNC states. The other
2658 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2659 				 * caught by the above if and are going to
2660 				 * clean (i.e. we aren't doing their callbacks)
2661 				 * see the above if.
2662 				 */
2663 
2664 				/*
2665 				 * We will do one more check here to see if we
2666 				 * have chased our tail around.
2667 				 */
2668 
2669 				lowest_lsn = xlog_get_lowest_lsn(log);
2670 				if (lowest_lsn &&
2671 				    XFS_LSN_CMP(lowest_lsn,
2672 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2673 					iclog = iclog->ic_next;
2674 					continue; /* Leave this iclog for
2675 						   * another thread */
2676 				}
2677 
2678 				iclog->ic_state = XLOG_STATE_CALLBACK;
2679 
2680 
2681 				/*
2682 				 * Completion of a iclog IO does not imply that
2683 				 * a transaction has completed, as transactions
2684 				 * can be large enough to span many iclogs. We
2685 				 * cannot change the tail of the log half way
2686 				 * through a transaction as this may be the only
2687 				 * transaction in the log and moving th etail to
2688 				 * point to the middle of it will prevent
2689 				 * recovery from finding the start of the
2690 				 * transaction. Hence we should only update the
2691 				 * last_sync_lsn if this iclog contains
2692 				 * transaction completion callbacks on it.
2693 				 *
2694 				 * We have to do this before we drop the
2695 				 * icloglock to ensure we are the only one that
2696 				 * can update it.
2697 				 */
2698 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2699 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2700 				if (iclog->ic_callback)
2701 					atomic64_set(&log->l_last_sync_lsn,
2702 						be64_to_cpu(iclog->ic_header.h_lsn));
2703 
2704 			} else
2705 				ioerrors++;
2706 
2707 			spin_unlock(&log->l_icloglock);
2708 
2709 			/*
2710 			 * Keep processing entries in the callback list until
2711 			 * we come around and it is empty.  We need to
2712 			 * atomically see that the list is empty and change the
2713 			 * state to DIRTY so that we don't miss any more
2714 			 * callbacks being added.
2715 			 */
2716 			spin_lock(&iclog->ic_callback_lock);
2717 			cb = iclog->ic_callback;
2718 			while (cb) {
2719 				iclog->ic_callback_tail = &(iclog->ic_callback);
2720 				iclog->ic_callback = NULL;
2721 				spin_unlock(&iclog->ic_callback_lock);
2722 
2723 				/* perform callbacks in the order given */
2724 				for (; cb; cb = cb_next) {
2725 					cb_next = cb->cb_next;
2726 					cb->cb_func(cb->cb_arg, aborted);
2727 				}
2728 				spin_lock(&iclog->ic_callback_lock);
2729 				cb = iclog->ic_callback;
2730 			}
2731 
2732 			loopdidcallbacks++;
2733 			funcdidcallbacks++;
2734 
2735 			spin_lock(&log->l_icloglock);
2736 			ASSERT(iclog->ic_callback == NULL);
2737 			spin_unlock(&iclog->ic_callback_lock);
2738 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2739 				iclog->ic_state = XLOG_STATE_DIRTY;
2740 
2741 			/*
2742 			 * Transition from DIRTY to ACTIVE if applicable.
2743 			 * NOP if STATE_IOERROR.
2744 			 */
2745 			xlog_state_clean_log(log);
2746 
2747 			/* wake up threads waiting in xfs_log_force() */
2748 			wake_up_all(&iclog->ic_force_wait);
2749 
2750 			iclog = iclog->ic_next;
2751 		} while (first_iclog != iclog);
2752 
2753 		if (repeats > 5000) {
2754 			flushcnt += repeats;
2755 			repeats = 0;
2756 			xfs_warn(log->l_mp,
2757 				"%s: possible infinite loop (%d iterations)",
2758 				__func__, flushcnt);
2759 		}
2760 	} while (!ioerrors && loopdidcallbacks);
2761 
2762 	/*
2763 	 * make one last gasp attempt to see if iclogs are being left in
2764 	 * limbo..
2765 	 */
2766 #ifdef DEBUG
2767 	if (funcdidcallbacks) {
2768 		first_iclog = iclog = log->l_iclog;
2769 		do {
2770 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2771 			/*
2772 			 * Terminate the loop if iclogs are found in states
2773 			 * which will cause other threads to clean up iclogs.
2774 			 *
2775 			 * SYNCING - i/o completion will go through logs
2776 			 * DONE_SYNC - interrupt thread should be waiting for
2777 			 *              l_icloglock
2778 			 * IOERROR - give up hope all ye who enter here
2779 			 */
2780 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2781 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2782 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2783 			    iclog->ic_state == XLOG_STATE_IOERROR )
2784 				break;
2785 			iclog = iclog->ic_next;
2786 		} while (first_iclog != iclog);
2787 	}
2788 #endif
2789 
2790 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2791 		wake = 1;
2792 	spin_unlock(&log->l_icloglock);
2793 
2794 	if (wake)
2795 		wake_up_all(&log->l_flush_wait);
2796 }
2797 
2798 
2799 /*
2800  * Finish transitioning this iclog to the dirty state.
2801  *
2802  * Make sure that we completely execute this routine only when this is
2803  * the last call to the iclog.  There is a good chance that iclog flushes,
2804  * when we reach the end of the physical log, get turned into 2 separate
2805  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2806  * routine.  By using the reference count bwritecnt, we guarantee that only
2807  * the second completion goes through.
2808  *
2809  * Callbacks could take time, so they are done outside the scope of the
2810  * global state machine log lock.
2811  */
2812 STATIC void
2813 xlog_state_done_syncing(
2814 	xlog_in_core_t	*iclog,
2815 	int		aborted)
2816 {
2817 	struct xlog	   *log = iclog->ic_log;
2818 
2819 	spin_lock(&log->l_icloglock);
2820 
2821 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2822 	       iclog->ic_state == XLOG_STATE_IOERROR);
2823 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2824 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2825 
2826 
2827 	/*
2828 	 * If we got an error, either on the first buffer, or in the case of
2829 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2830 	 * and none should ever be attempted to be written to disk
2831 	 * again.
2832 	 */
2833 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2834 		if (--iclog->ic_bwritecnt == 1) {
2835 			spin_unlock(&log->l_icloglock);
2836 			return;
2837 		}
2838 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2839 	}
2840 
2841 	/*
2842 	 * Someone could be sleeping prior to writing out the next
2843 	 * iclog buffer, we wake them all, one will get to do the
2844 	 * I/O, the others get to wait for the result.
2845 	 */
2846 	wake_up_all(&iclog->ic_write_wait);
2847 	spin_unlock(&log->l_icloglock);
2848 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2849 }	/* xlog_state_done_syncing */
2850 
2851 
2852 /*
2853  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2854  * sleep.  We wait on the flush queue on the head iclog as that should be
2855  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2856  * we will wait here and all new writes will sleep until a sync completes.
2857  *
2858  * The in-core logs are used in a circular fashion. They are not used
2859  * out-of-order even when an iclog past the head is free.
2860  *
2861  * return:
2862  *	* log_offset where xlog_write() can start writing into the in-core
2863  *		log's data space.
2864  *	* in-core log pointer to which xlog_write() should write.
2865  *	* boolean indicating this is a continued write to an in-core log.
2866  *		If this is the last write, then the in-core log's offset field
2867  *		needs to be incremented, depending on the amount of data which
2868  *		is copied.
2869  */
2870 STATIC int
2871 xlog_state_get_iclog_space(
2872 	struct xlog		*log,
2873 	int			len,
2874 	struct xlog_in_core	**iclogp,
2875 	struct xlog_ticket	*ticket,
2876 	int			*continued_write,
2877 	int			*logoffsetp)
2878 {
2879 	int		  log_offset;
2880 	xlog_rec_header_t *head;
2881 	xlog_in_core_t	  *iclog;
2882 	int		  error;
2883 
2884 restart:
2885 	spin_lock(&log->l_icloglock);
2886 	if (XLOG_FORCED_SHUTDOWN(log)) {
2887 		spin_unlock(&log->l_icloglock);
2888 		return -EIO;
2889 	}
2890 
2891 	iclog = log->l_iclog;
2892 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2893 		XFS_STATS_INC(xs_log_noiclogs);
2894 
2895 		/* Wait for log writes to have flushed */
2896 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2897 		goto restart;
2898 	}
2899 
2900 	head = &iclog->ic_header;
2901 
2902 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2903 	log_offset = iclog->ic_offset;
2904 
2905 	/* On the 1st write to an iclog, figure out lsn.  This works
2906 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2907 	 * committing to.  If the offset is set, that's how many blocks
2908 	 * must be written.
2909 	 */
2910 	if (log_offset == 0) {
2911 		ticket->t_curr_res -= log->l_iclog_hsize;
2912 		xlog_tic_add_region(ticket,
2913 				    log->l_iclog_hsize,
2914 				    XLOG_REG_TYPE_LRHEADER);
2915 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2916 		head->h_lsn = cpu_to_be64(
2917 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2918 		ASSERT(log->l_curr_block >= 0);
2919 	}
2920 
2921 	/* If there is enough room to write everything, then do it.  Otherwise,
2922 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2923 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2924 	 * until you know exactly how many bytes get copied.  Therefore, wait
2925 	 * until later to update ic_offset.
2926 	 *
2927 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2928 	 * can fit into remaining data section.
2929 	 */
2930 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2931 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2932 
2933 		/*
2934 		 * If I'm the only one writing to this iclog, sync it to disk.
2935 		 * We need to do an atomic compare and decrement here to avoid
2936 		 * racing with concurrent atomic_dec_and_lock() calls in
2937 		 * xlog_state_release_iclog() when there is more than one
2938 		 * reference to the iclog.
2939 		 */
2940 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2941 			/* we are the only one */
2942 			spin_unlock(&log->l_icloglock);
2943 			error = xlog_state_release_iclog(log, iclog);
2944 			if (error)
2945 				return error;
2946 		} else {
2947 			spin_unlock(&log->l_icloglock);
2948 		}
2949 		goto restart;
2950 	}
2951 
2952 	/* Do we have enough room to write the full amount in the remainder
2953 	 * of this iclog?  Or must we continue a write on the next iclog and
2954 	 * mark this iclog as completely taken?  In the case where we switch
2955 	 * iclogs (to mark it taken), this particular iclog will release/sync
2956 	 * to disk in xlog_write().
2957 	 */
2958 	if (len <= iclog->ic_size - iclog->ic_offset) {
2959 		*continued_write = 0;
2960 		iclog->ic_offset += len;
2961 	} else {
2962 		*continued_write = 1;
2963 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2964 	}
2965 	*iclogp = iclog;
2966 
2967 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2968 	spin_unlock(&log->l_icloglock);
2969 
2970 	*logoffsetp = log_offset;
2971 	return 0;
2972 }	/* xlog_state_get_iclog_space */
2973 
2974 /* The first cnt-1 times through here we don't need to
2975  * move the grant write head because the permanent
2976  * reservation has reserved cnt times the unit amount.
2977  * Release part of current permanent unit reservation and
2978  * reset current reservation to be one units worth.  Also
2979  * move grant reservation head forward.
2980  */
2981 STATIC void
2982 xlog_regrant_reserve_log_space(
2983 	struct xlog		*log,
2984 	struct xlog_ticket	*ticket)
2985 {
2986 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2987 
2988 	if (ticket->t_cnt > 0)
2989 		ticket->t_cnt--;
2990 
2991 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2992 					ticket->t_curr_res);
2993 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2994 					ticket->t_curr_res);
2995 	ticket->t_curr_res = ticket->t_unit_res;
2996 	xlog_tic_reset_res(ticket);
2997 
2998 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2999 
3000 	/* just return if we still have some of the pre-reserved space */
3001 	if (ticket->t_cnt > 0)
3002 		return;
3003 
3004 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3005 					ticket->t_unit_res);
3006 
3007 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3008 
3009 	ticket->t_curr_res = ticket->t_unit_res;
3010 	xlog_tic_reset_res(ticket);
3011 }	/* xlog_regrant_reserve_log_space */
3012 
3013 
3014 /*
3015  * Give back the space left from a reservation.
3016  *
3017  * All the information we need to make a correct determination of space left
3018  * is present.  For non-permanent reservations, things are quite easy.  The
3019  * count should have been decremented to zero.  We only need to deal with the
3020  * space remaining in the current reservation part of the ticket.  If the
3021  * ticket contains a permanent reservation, there may be left over space which
3022  * needs to be released.  A count of N means that N-1 refills of the current
3023  * reservation can be done before we need to ask for more space.  The first
3024  * one goes to fill up the first current reservation.  Once we run out of
3025  * space, the count will stay at zero and the only space remaining will be
3026  * in the current reservation field.
3027  */
3028 STATIC void
3029 xlog_ungrant_log_space(
3030 	struct xlog		*log,
3031 	struct xlog_ticket	*ticket)
3032 {
3033 	int	bytes;
3034 
3035 	if (ticket->t_cnt > 0)
3036 		ticket->t_cnt--;
3037 
3038 	trace_xfs_log_ungrant_enter(log, ticket);
3039 	trace_xfs_log_ungrant_sub(log, ticket);
3040 
3041 	/*
3042 	 * If this is a permanent reservation ticket, we may be able to free
3043 	 * up more space based on the remaining count.
3044 	 */
3045 	bytes = ticket->t_curr_res;
3046 	if (ticket->t_cnt > 0) {
3047 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3048 		bytes += ticket->t_unit_res*ticket->t_cnt;
3049 	}
3050 
3051 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3052 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3053 
3054 	trace_xfs_log_ungrant_exit(log, ticket);
3055 
3056 	xfs_log_space_wake(log->l_mp);
3057 }
3058 
3059 /*
3060  * Flush iclog to disk if this is the last reference to the given iclog and
3061  * the WANT_SYNC bit is set.
3062  *
3063  * When this function is entered, the iclog is not necessarily in the
3064  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3065  *
3066  *
3067  */
3068 STATIC int
3069 xlog_state_release_iclog(
3070 	struct xlog		*log,
3071 	struct xlog_in_core	*iclog)
3072 {
3073 	int		sync = 0;	/* do we sync? */
3074 
3075 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3076 		return -EIO;
3077 
3078 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3079 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3080 		return 0;
3081 
3082 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3083 		spin_unlock(&log->l_icloglock);
3084 		return -EIO;
3085 	}
3086 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3087 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3088 
3089 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3090 		/* update tail before writing to iclog */
3091 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3092 		sync++;
3093 		iclog->ic_state = XLOG_STATE_SYNCING;
3094 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3095 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3096 		/* cycle incremented when incrementing curr_block */
3097 	}
3098 	spin_unlock(&log->l_icloglock);
3099 
3100 	/*
3101 	 * We let the log lock go, so it's possible that we hit a log I/O
3102 	 * error or some other SHUTDOWN condition that marks the iclog
3103 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3104 	 * this iclog has consistent data, so we ignore IOERROR
3105 	 * flags after this point.
3106 	 */
3107 	if (sync)
3108 		return xlog_sync(log, iclog);
3109 	return 0;
3110 }	/* xlog_state_release_iclog */
3111 
3112 
3113 /*
3114  * This routine will mark the current iclog in the ring as WANT_SYNC
3115  * and move the current iclog pointer to the next iclog in the ring.
3116  * When this routine is called from xlog_state_get_iclog_space(), the
3117  * exact size of the iclog has not yet been determined.  All we know is
3118  * that every data block.  We have run out of space in this log record.
3119  */
3120 STATIC void
3121 xlog_state_switch_iclogs(
3122 	struct xlog		*log,
3123 	struct xlog_in_core	*iclog,
3124 	int			eventual_size)
3125 {
3126 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3127 	if (!eventual_size)
3128 		eventual_size = iclog->ic_offset;
3129 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3130 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3131 	log->l_prev_block = log->l_curr_block;
3132 	log->l_prev_cycle = log->l_curr_cycle;
3133 
3134 	/* roll log?: ic_offset changed later */
3135 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3136 
3137 	/* Round up to next log-sunit */
3138 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3139 	    log->l_mp->m_sb.sb_logsunit > 1) {
3140 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3141 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3142 	}
3143 
3144 	if (log->l_curr_block >= log->l_logBBsize) {
3145 		log->l_curr_cycle++;
3146 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3147 			log->l_curr_cycle++;
3148 		log->l_curr_block -= log->l_logBBsize;
3149 		ASSERT(log->l_curr_block >= 0);
3150 	}
3151 	ASSERT(iclog == log->l_iclog);
3152 	log->l_iclog = iclog->ic_next;
3153 }	/* xlog_state_switch_iclogs */
3154 
3155 /*
3156  * Write out all data in the in-core log as of this exact moment in time.
3157  *
3158  * Data may be written to the in-core log during this call.  However,
3159  * we don't guarantee this data will be written out.  A change from past
3160  * implementation means this routine will *not* write out zero length LRs.
3161  *
3162  * Basically, we try and perform an intelligent scan of the in-core logs.
3163  * If we determine there is no flushable data, we just return.  There is no
3164  * flushable data if:
3165  *
3166  *	1. the current iclog is active and has no data; the previous iclog
3167  *		is in the active or dirty state.
3168  *	2. the current iclog is drity, and the previous iclog is in the
3169  *		active or dirty state.
3170  *
3171  * We may sleep if:
3172  *
3173  *	1. the current iclog is not in the active nor dirty state.
3174  *	2. the current iclog dirty, and the previous iclog is not in the
3175  *		active nor dirty state.
3176  *	3. the current iclog is active, and there is another thread writing
3177  *		to this particular iclog.
3178  *	4. a) the current iclog is active and has no other writers
3179  *	   b) when we return from flushing out this iclog, it is still
3180  *		not in the active nor dirty state.
3181  */
3182 int
3183 _xfs_log_force(
3184 	struct xfs_mount	*mp,
3185 	uint			flags,
3186 	int			*log_flushed)
3187 {
3188 	struct xlog		*log = mp->m_log;
3189 	struct xlog_in_core	*iclog;
3190 	xfs_lsn_t		lsn;
3191 
3192 	XFS_STATS_INC(xs_log_force);
3193 
3194 	xlog_cil_force(log);
3195 
3196 	spin_lock(&log->l_icloglock);
3197 
3198 	iclog = log->l_iclog;
3199 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3200 		spin_unlock(&log->l_icloglock);
3201 		return -EIO;
3202 	}
3203 
3204 	/* If the head iclog is not active nor dirty, we just attach
3205 	 * ourselves to the head and go to sleep.
3206 	 */
3207 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3208 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3209 		/*
3210 		 * If the head is dirty or (active and empty), then
3211 		 * we need to look at the previous iclog.  If the previous
3212 		 * iclog is active or dirty we are done.  There is nothing
3213 		 * to sync out.  Otherwise, we attach ourselves to the
3214 		 * previous iclog and go to sleep.
3215 		 */
3216 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3217 		    (atomic_read(&iclog->ic_refcnt) == 0
3218 		     && iclog->ic_offset == 0)) {
3219 			iclog = iclog->ic_prev;
3220 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3221 			    iclog->ic_state == XLOG_STATE_DIRTY)
3222 				goto no_sleep;
3223 			else
3224 				goto maybe_sleep;
3225 		} else {
3226 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3227 				/* We are the only one with access to this
3228 				 * iclog.  Flush it out now.  There should
3229 				 * be a roundoff of zero to show that someone
3230 				 * has already taken care of the roundoff from
3231 				 * the previous sync.
3232 				 */
3233 				atomic_inc(&iclog->ic_refcnt);
3234 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3235 				xlog_state_switch_iclogs(log, iclog, 0);
3236 				spin_unlock(&log->l_icloglock);
3237 
3238 				if (xlog_state_release_iclog(log, iclog))
3239 					return -EIO;
3240 
3241 				if (log_flushed)
3242 					*log_flushed = 1;
3243 				spin_lock(&log->l_icloglock);
3244 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3245 				    iclog->ic_state != XLOG_STATE_DIRTY)
3246 					goto maybe_sleep;
3247 				else
3248 					goto no_sleep;
3249 			} else {
3250 				/* Someone else is writing to this iclog.
3251 				 * Use its call to flush out the data.  However,
3252 				 * the other thread may not force out this LR,
3253 				 * so we mark it WANT_SYNC.
3254 				 */
3255 				xlog_state_switch_iclogs(log, iclog, 0);
3256 				goto maybe_sleep;
3257 			}
3258 		}
3259 	}
3260 
3261 	/* By the time we come around again, the iclog could've been filled
3262 	 * which would give it another lsn.  If we have a new lsn, just
3263 	 * return because the relevant data has been flushed.
3264 	 */
3265 maybe_sleep:
3266 	if (flags & XFS_LOG_SYNC) {
3267 		/*
3268 		 * We must check if we're shutting down here, before
3269 		 * we wait, while we're holding the l_icloglock.
3270 		 * Then we check again after waking up, in case our
3271 		 * sleep was disturbed by a bad news.
3272 		 */
3273 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3274 			spin_unlock(&log->l_icloglock);
3275 			return -EIO;
3276 		}
3277 		XFS_STATS_INC(xs_log_force_sleep);
3278 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3279 		/*
3280 		 * No need to grab the log lock here since we're
3281 		 * only deciding whether or not to return EIO
3282 		 * and the memory read should be atomic.
3283 		 */
3284 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3285 			return -EIO;
3286 		if (log_flushed)
3287 			*log_flushed = 1;
3288 	} else {
3289 
3290 no_sleep:
3291 		spin_unlock(&log->l_icloglock);
3292 	}
3293 	return 0;
3294 }
3295 
3296 /*
3297  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3298  * about errors or whether the log was flushed or not. This is the normal
3299  * interface to use when trying to unpin items or move the log forward.
3300  */
3301 void
3302 xfs_log_force(
3303 	xfs_mount_t	*mp,
3304 	uint		flags)
3305 {
3306 	int	error;
3307 
3308 	trace_xfs_log_force(mp, 0);
3309 	error = _xfs_log_force(mp, flags, NULL);
3310 	if (error)
3311 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3312 }
3313 
3314 /*
3315  * Force the in-core log to disk for a specific LSN.
3316  *
3317  * Find in-core log with lsn.
3318  *	If it is in the DIRTY state, just return.
3319  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3320  *		state and go to sleep or return.
3321  *	If it is in any other state, go to sleep or return.
3322  *
3323  * Synchronous forces are implemented with a signal variable. All callers
3324  * to force a given lsn to disk will wait on a the sv attached to the
3325  * specific in-core log.  When given in-core log finally completes its
3326  * write to disk, that thread will wake up all threads waiting on the
3327  * sv.
3328  */
3329 int
3330 _xfs_log_force_lsn(
3331 	struct xfs_mount	*mp,
3332 	xfs_lsn_t		lsn,
3333 	uint			flags,
3334 	int			*log_flushed)
3335 {
3336 	struct xlog		*log = mp->m_log;
3337 	struct xlog_in_core	*iclog;
3338 	int			already_slept = 0;
3339 
3340 	ASSERT(lsn != 0);
3341 
3342 	XFS_STATS_INC(xs_log_force);
3343 
3344 	lsn = xlog_cil_force_lsn(log, lsn);
3345 	if (lsn == NULLCOMMITLSN)
3346 		return 0;
3347 
3348 try_again:
3349 	spin_lock(&log->l_icloglock);
3350 	iclog = log->l_iclog;
3351 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3352 		spin_unlock(&log->l_icloglock);
3353 		return -EIO;
3354 	}
3355 
3356 	do {
3357 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3358 			iclog = iclog->ic_next;
3359 			continue;
3360 		}
3361 
3362 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3363 			spin_unlock(&log->l_icloglock);
3364 			return 0;
3365 		}
3366 
3367 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3368 			/*
3369 			 * We sleep here if we haven't already slept (e.g.
3370 			 * this is the first time we've looked at the correct
3371 			 * iclog buf) and the buffer before us is going to
3372 			 * be sync'ed. The reason for this is that if we
3373 			 * are doing sync transactions here, by waiting for
3374 			 * the previous I/O to complete, we can allow a few
3375 			 * more transactions into this iclog before we close
3376 			 * it down.
3377 			 *
3378 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3379 			 * up the refcnt so we can release the log (which
3380 			 * drops the ref count).  The state switch keeps new
3381 			 * transaction commits from using this buffer.  When
3382 			 * the current commits finish writing into the buffer,
3383 			 * the refcount will drop to zero and the buffer will
3384 			 * go out then.
3385 			 */
3386 			if (!already_slept &&
3387 			    (iclog->ic_prev->ic_state &
3388 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3389 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3390 
3391 				XFS_STATS_INC(xs_log_force_sleep);
3392 
3393 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3394 							&log->l_icloglock);
3395 				if (log_flushed)
3396 					*log_flushed = 1;
3397 				already_slept = 1;
3398 				goto try_again;
3399 			}
3400 			atomic_inc(&iclog->ic_refcnt);
3401 			xlog_state_switch_iclogs(log, iclog, 0);
3402 			spin_unlock(&log->l_icloglock);
3403 			if (xlog_state_release_iclog(log, iclog))
3404 				return -EIO;
3405 			if (log_flushed)
3406 				*log_flushed = 1;
3407 			spin_lock(&log->l_icloglock);
3408 		}
3409 
3410 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3411 		    !(iclog->ic_state &
3412 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3413 			/*
3414 			 * Don't wait on completion if we know that we've
3415 			 * gotten a log write error.
3416 			 */
3417 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3418 				spin_unlock(&log->l_icloglock);
3419 				return -EIO;
3420 			}
3421 			XFS_STATS_INC(xs_log_force_sleep);
3422 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3423 			/*
3424 			 * No need to grab the log lock here since we're
3425 			 * only deciding whether or not to return EIO
3426 			 * and the memory read should be atomic.
3427 			 */
3428 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3429 				return -EIO;
3430 
3431 			if (log_flushed)
3432 				*log_flushed = 1;
3433 		} else {		/* just return */
3434 			spin_unlock(&log->l_icloglock);
3435 		}
3436 
3437 		return 0;
3438 	} while (iclog != log->l_iclog);
3439 
3440 	spin_unlock(&log->l_icloglock);
3441 	return 0;
3442 }
3443 
3444 /*
3445  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3446  * about errors or whether the log was flushed or not. This is the normal
3447  * interface to use when trying to unpin items or move the log forward.
3448  */
3449 void
3450 xfs_log_force_lsn(
3451 	xfs_mount_t	*mp,
3452 	xfs_lsn_t	lsn,
3453 	uint		flags)
3454 {
3455 	int	error;
3456 
3457 	trace_xfs_log_force(mp, lsn);
3458 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3459 	if (error)
3460 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3461 }
3462 
3463 /*
3464  * Called when we want to mark the current iclog as being ready to sync to
3465  * disk.
3466  */
3467 STATIC void
3468 xlog_state_want_sync(
3469 	struct xlog		*log,
3470 	struct xlog_in_core	*iclog)
3471 {
3472 	assert_spin_locked(&log->l_icloglock);
3473 
3474 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3475 		xlog_state_switch_iclogs(log, iclog, 0);
3476 	} else {
3477 		ASSERT(iclog->ic_state &
3478 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3479 	}
3480 }
3481 
3482 
3483 /*****************************************************************************
3484  *
3485  *		TICKET functions
3486  *
3487  *****************************************************************************
3488  */
3489 
3490 /*
3491  * Free a used ticket when its refcount falls to zero.
3492  */
3493 void
3494 xfs_log_ticket_put(
3495 	xlog_ticket_t	*ticket)
3496 {
3497 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3498 	if (atomic_dec_and_test(&ticket->t_ref))
3499 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3500 }
3501 
3502 xlog_ticket_t *
3503 xfs_log_ticket_get(
3504 	xlog_ticket_t	*ticket)
3505 {
3506 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3507 	atomic_inc(&ticket->t_ref);
3508 	return ticket;
3509 }
3510 
3511 /*
3512  * Figure out the total log space unit (in bytes) that would be
3513  * required for a log ticket.
3514  */
3515 int
3516 xfs_log_calc_unit_res(
3517 	struct xfs_mount	*mp,
3518 	int			unit_bytes)
3519 {
3520 	struct xlog		*log = mp->m_log;
3521 	int			iclog_space;
3522 	uint			num_headers;
3523 
3524 	/*
3525 	 * Permanent reservations have up to 'cnt'-1 active log operations
3526 	 * in the log.  A unit in this case is the amount of space for one
3527 	 * of these log operations.  Normal reservations have a cnt of 1
3528 	 * and their unit amount is the total amount of space required.
3529 	 *
3530 	 * The following lines of code account for non-transaction data
3531 	 * which occupy space in the on-disk log.
3532 	 *
3533 	 * Normal form of a transaction is:
3534 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3535 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3536 	 *
3537 	 * We need to account for all the leadup data and trailer data
3538 	 * around the transaction data.
3539 	 * And then we need to account for the worst case in terms of using
3540 	 * more space.
3541 	 * The worst case will happen if:
3542 	 * - the placement of the transaction happens to be such that the
3543 	 *   roundoff is at its maximum
3544 	 * - the transaction data is synced before the commit record is synced
3545 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3546 	 *   Therefore the commit record is in its own Log Record.
3547 	 *   This can happen as the commit record is called with its
3548 	 *   own region to xlog_write().
3549 	 *   This then means that in the worst case, roundoff can happen for
3550 	 *   the commit-rec as well.
3551 	 *   The commit-rec is smaller than padding in this scenario and so it is
3552 	 *   not added separately.
3553 	 */
3554 
3555 	/* for trans header */
3556 	unit_bytes += sizeof(xlog_op_header_t);
3557 	unit_bytes += sizeof(xfs_trans_header_t);
3558 
3559 	/* for start-rec */
3560 	unit_bytes += sizeof(xlog_op_header_t);
3561 
3562 	/*
3563 	 * for LR headers - the space for data in an iclog is the size minus
3564 	 * the space used for the headers. If we use the iclog size, then we
3565 	 * undercalculate the number of headers required.
3566 	 *
3567 	 * Furthermore - the addition of op headers for split-recs might
3568 	 * increase the space required enough to require more log and op
3569 	 * headers, so take that into account too.
3570 	 *
3571 	 * IMPORTANT: This reservation makes the assumption that if this
3572 	 * transaction is the first in an iclog and hence has the LR headers
3573 	 * accounted to it, then the remaining space in the iclog is
3574 	 * exclusively for this transaction.  i.e. if the transaction is larger
3575 	 * than the iclog, it will be the only thing in that iclog.
3576 	 * Fundamentally, this means we must pass the entire log vector to
3577 	 * xlog_write to guarantee this.
3578 	 */
3579 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3580 	num_headers = howmany(unit_bytes, iclog_space);
3581 
3582 	/* for split-recs - ophdrs added when data split over LRs */
3583 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3584 
3585 	/* add extra header reservations if we overrun */
3586 	while (!num_headers ||
3587 	       howmany(unit_bytes, iclog_space) > num_headers) {
3588 		unit_bytes += sizeof(xlog_op_header_t);
3589 		num_headers++;
3590 	}
3591 	unit_bytes += log->l_iclog_hsize * num_headers;
3592 
3593 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3594 	unit_bytes += log->l_iclog_hsize;
3595 
3596 	/* for roundoff padding for transaction data and one for commit record */
3597 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3598 		/* log su roundoff */
3599 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3600 	} else {
3601 		/* BB roundoff */
3602 		unit_bytes += 2 * BBSIZE;
3603         }
3604 
3605 	return unit_bytes;
3606 }
3607 
3608 /*
3609  * Allocate and initialise a new log ticket.
3610  */
3611 struct xlog_ticket *
3612 xlog_ticket_alloc(
3613 	struct xlog		*log,
3614 	int			unit_bytes,
3615 	int			cnt,
3616 	char			client,
3617 	bool			permanent,
3618 	xfs_km_flags_t		alloc_flags)
3619 {
3620 	struct xlog_ticket	*tic;
3621 	int			unit_res;
3622 
3623 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3624 	if (!tic)
3625 		return NULL;
3626 
3627 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3628 
3629 	atomic_set(&tic->t_ref, 1);
3630 	tic->t_task		= current;
3631 	INIT_LIST_HEAD(&tic->t_queue);
3632 	tic->t_unit_res		= unit_res;
3633 	tic->t_curr_res		= unit_res;
3634 	tic->t_cnt		= cnt;
3635 	tic->t_ocnt		= cnt;
3636 	tic->t_tid		= prandom_u32();
3637 	tic->t_clientid		= client;
3638 	tic->t_flags		= XLOG_TIC_INITED;
3639 	tic->t_trans_type	= 0;
3640 	if (permanent)
3641 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3642 
3643 	xlog_tic_reset_res(tic);
3644 
3645 	return tic;
3646 }
3647 
3648 
3649 /******************************************************************************
3650  *
3651  *		Log debug routines
3652  *
3653  ******************************************************************************
3654  */
3655 #if defined(DEBUG)
3656 /*
3657  * Make sure that the destination ptr is within the valid data region of
3658  * one of the iclogs.  This uses backup pointers stored in a different
3659  * part of the log in case we trash the log structure.
3660  */
3661 void
3662 xlog_verify_dest_ptr(
3663 	struct xlog	*log,
3664 	void		*ptr)
3665 {
3666 	int i;
3667 	int good_ptr = 0;
3668 
3669 	for (i = 0; i < log->l_iclog_bufs; i++) {
3670 		if (ptr >= log->l_iclog_bak[i] &&
3671 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3672 			good_ptr++;
3673 	}
3674 
3675 	if (!good_ptr)
3676 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3677 }
3678 
3679 /*
3680  * Check to make sure the grant write head didn't just over lap the tail.  If
3681  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3682  * the cycles differ by exactly one and check the byte count.
3683  *
3684  * This check is run unlocked, so can give false positives. Rather than assert
3685  * on failures, use a warn-once flag and a panic tag to allow the admin to
3686  * determine if they want to panic the machine when such an error occurs. For
3687  * debug kernels this will have the same effect as using an assert but, unlinke
3688  * an assert, it can be turned off at runtime.
3689  */
3690 STATIC void
3691 xlog_verify_grant_tail(
3692 	struct xlog	*log)
3693 {
3694 	int		tail_cycle, tail_blocks;
3695 	int		cycle, space;
3696 
3697 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3698 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3699 	if (tail_cycle != cycle) {
3700 		if (cycle - 1 != tail_cycle &&
3701 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3702 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3703 				"%s: cycle - 1 != tail_cycle", __func__);
3704 			log->l_flags |= XLOG_TAIL_WARN;
3705 		}
3706 
3707 		if (space > BBTOB(tail_blocks) &&
3708 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3709 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3710 				"%s: space > BBTOB(tail_blocks)", __func__);
3711 			log->l_flags |= XLOG_TAIL_WARN;
3712 		}
3713 	}
3714 }
3715 
3716 /* check if it will fit */
3717 STATIC void
3718 xlog_verify_tail_lsn(
3719 	struct xlog		*log,
3720 	struct xlog_in_core	*iclog,
3721 	xfs_lsn_t		tail_lsn)
3722 {
3723     int blocks;
3724 
3725     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3726 	blocks =
3727 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3728 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3729 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3730     } else {
3731 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3732 
3733 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3734 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3735 
3736 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3737 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3738 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3739     }
3740 }	/* xlog_verify_tail_lsn */
3741 
3742 /*
3743  * Perform a number of checks on the iclog before writing to disk.
3744  *
3745  * 1. Make sure the iclogs are still circular
3746  * 2. Make sure we have a good magic number
3747  * 3. Make sure we don't have magic numbers in the data
3748  * 4. Check fields of each log operation header for:
3749  *	A. Valid client identifier
3750  *	B. tid ptr value falls in valid ptr space (user space code)
3751  *	C. Length in log record header is correct according to the
3752  *		individual operation headers within record.
3753  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3754  *	log, check the preceding blocks of the physical log to make sure all
3755  *	the cycle numbers agree with the current cycle number.
3756  */
3757 STATIC void
3758 xlog_verify_iclog(
3759 	struct xlog		*log,
3760 	struct xlog_in_core	*iclog,
3761 	int			count,
3762 	bool                    syncing)
3763 {
3764 	xlog_op_header_t	*ophead;
3765 	xlog_in_core_t		*icptr;
3766 	xlog_in_core_2_t	*xhdr;
3767 	void			*base_ptr, *ptr, *p;
3768 	ptrdiff_t		field_offset;
3769 	__uint8_t		clientid;
3770 	int			len, i, j, k, op_len;
3771 	int			idx;
3772 
3773 	/* check validity of iclog pointers */
3774 	spin_lock(&log->l_icloglock);
3775 	icptr = log->l_iclog;
3776 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3777 		ASSERT(icptr);
3778 
3779 	if (icptr != log->l_iclog)
3780 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3781 	spin_unlock(&log->l_icloglock);
3782 
3783 	/* check log magic numbers */
3784 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3785 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3786 
3787 	base_ptr = ptr = &iclog->ic_header;
3788 	p = &iclog->ic_header;
3789 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3790 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3791 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3792 				__func__);
3793 	}
3794 
3795 	/* check fields */
3796 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3797 	base_ptr = ptr = iclog->ic_datap;
3798 	ophead = ptr;
3799 	xhdr = iclog->ic_data;
3800 	for (i = 0; i < len; i++) {
3801 		ophead = ptr;
3802 
3803 		/* clientid is only 1 byte */
3804 		p = &ophead->oh_clientid;
3805 		field_offset = p - base_ptr;
3806 		if (!syncing || (field_offset & 0x1ff)) {
3807 			clientid = ophead->oh_clientid;
3808 		} else {
3809 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3810 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3811 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3812 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813 				clientid = xlog_get_client_id(
3814 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3815 			} else {
3816 				clientid = xlog_get_client_id(
3817 					iclog->ic_header.h_cycle_data[idx]);
3818 			}
3819 		}
3820 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3821 			xfs_warn(log->l_mp,
3822 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3823 				__func__, clientid, ophead,
3824 				(unsigned long)field_offset);
3825 
3826 		/* check length */
3827 		p = &ophead->oh_len;
3828 		field_offset = p - base_ptr;
3829 		if (!syncing || (field_offset & 0x1ff)) {
3830 			op_len = be32_to_cpu(ophead->oh_len);
3831 		} else {
3832 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3833 				    (uintptr_t)iclog->ic_datap);
3834 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3835 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3836 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3837 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3838 			} else {
3839 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3840 			}
3841 		}
3842 		ptr += sizeof(xlog_op_header_t) + op_len;
3843 	}
3844 }	/* xlog_verify_iclog */
3845 #endif
3846 
3847 /*
3848  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3849  */
3850 STATIC int
3851 xlog_state_ioerror(
3852 	struct xlog	*log)
3853 {
3854 	xlog_in_core_t	*iclog, *ic;
3855 
3856 	iclog = log->l_iclog;
3857 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3858 		/*
3859 		 * Mark all the incore logs IOERROR.
3860 		 * From now on, no log flushes will result.
3861 		 */
3862 		ic = iclog;
3863 		do {
3864 			ic->ic_state = XLOG_STATE_IOERROR;
3865 			ic = ic->ic_next;
3866 		} while (ic != iclog);
3867 		return 0;
3868 	}
3869 	/*
3870 	 * Return non-zero, if state transition has already happened.
3871 	 */
3872 	return 1;
3873 }
3874 
3875 /*
3876  * This is called from xfs_force_shutdown, when we're forcibly
3877  * shutting down the filesystem, typically because of an IO error.
3878  * Our main objectives here are to make sure that:
3879  *	a. if !logerror, flush the logs to disk. Anything modified
3880  *	   after this is ignored.
3881  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3882  *	   parties to find out, 'atomically'.
3883  *	c. those who're sleeping on log reservations, pinned objects and
3884  *	    other resources get woken up, and be told the bad news.
3885  *	d. nothing new gets queued up after (b) and (c) are done.
3886  *
3887  * Note: for the !logerror case we need to flush the regions held in memory out
3888  * to disk first. This needs to be done before the log is marked as shutdown,
3889  * otherwise the iclog writes will fail.
3890  */
3891 int
3892 xfs_log_force_umount(
3893 	struct xfs_mount	*mp,
3894 	int			logerror)
3895 {
3896 	struct xlog	*log;
3897 	int		retval;
3898 
3899 	log = mp->m_log;
3900 
3901 	/*
3902 	 * If this happens during log recovery, don't worry about
3903 	 * locking; the log isn't open for business yet.
3904 	 */
3905 	if (!log ||
3906 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3907 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3908 		if (mp->m_sb_bp)
3909 			XFS_BUF_DONE(mp->m_sb_bp);
3910 		return 0;
3911 	}
3912 
3913 	/*
3914 	 * Somebody could've already done the hard work for us.
3915 	 * No need to get locks for this.
3916 	 */
3917 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3918 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3919 		return 1;
3920 	}
3921 
3922 	/*
3923 	 * Flush all the completed transactions to disk before marking the log
3924 	 * being shut down. We need to do it in this order to ensure that
3925 	 * completed operations are safely on disk before we shut down, and that
3926 	 * we don't have to issue any buffer IO after the shutdown flags are set
3927 	 * to guarantee this.
3928 	 */
3929 	if (!logerror)
3930 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3931 
3932 	/*
3933 	 * mark the filesystem and the as in a shutdown state and wake
3934 	 * everybody up to tell them the bad news.
3935 	 */
3936 	spin_lock(&log->l_icloglock);
3937 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3938 	if (mp->m_sb_bp)
3939 		XFS_BUF_DONE(mp->m_sb_bp);
3940 
3941 	/*
3942 	 * Mark the log and the iclogs with IO error flags to prevent any
3943 	 * further log IO from being issued or completed.
3944 	 */
3945 	log->l_flags |= XLOG_IO_ERROR;
3946 	retval = xlog_state_ioerror(log);
3947 	spin_unlock(&log->l_icloglock);
3948 
3949 	/*
3950 	 * We don't want anybody waiting for log reservations after this. That
3951 	 * means we have to wake up everybody queued up on reserveq as well as
3952 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3953 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3954 	 * action is protected by the grant locks.
3955 	 */
3956 	xlog_grant_head_wake_all(&log->l_reserve_head);
3957 	xlog_grant_head_wake_all(&log->l_write_head);
3958 
3959 	/*
3960 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3961 	 * as if the log writes were completed. The abort handling in the log
3962 	 * item committed callback functions will do this again under lock to
3963 	 * avoid races.
3964 	 */
3965 	wake_up_all(&log->l_cilp->xc_commit_wait);
3966 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3967 
3968 #ifdef XFSERRORDEBUG
3969 	{
3970 		xlog_in_core_t	*iclog;
3971 
3972 		spin_lock(&log->l_icloglock);
3973 		iclog = log->l_iclog;
3974 		do {
3975 			ASSERT(iclog->ic_callback == 0);
3976 			iclog = iclog->ic_next;
3977 		} while (iclog != log->l_iclog);
3978 		spin_unlock(&log->l_icloglock);
3979 	}
3980 #endif
3981 	/* return non-zero if log IOERROR transition had already happened */
3982 	return retval;
3983 }
3984 
3985 STATIC int
3986 xlog_iclogs_empty(
3987 	struct xlog	*log)
3988 {
3989 	xlog_in_core_t	*iclog;
3990 
3991 	iclog = log->l_iclog;
3992 	do {
3993 		/* endianness does not matter here, zero is zero in
3994 		 * any language.
3995 		 */
3996 		if (iclog->ic_header.h_num_logops)
3997 			return 0;
3998 		iclog = iclog->ic_next;
3999 	} while (iclog != log->l_iclog);
4000 	return 1;
4001 }
4002 
4003