1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 uint8_t client, 438 bool permanent) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(mp, xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 /* 555 * Attaches a new iclog I/O completion callback routine during 556 * transaction commit. If the log is in error state, a non-zero 557 * return code is handed back and the caller is responsible for 558 * executing the callback at an appropriate time. 559 */ 560 int 561 xfs_log_notify( 562 struct xfs_mount *mp, 563 struct xlog_in_core *iclog, 564 xfs_log_callback_t *cb) 565 { 566 int abortflg; 567 568 spin_lock(&iclog->ic_callback_lock); 569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 570 if (!abortflg) { 571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 572 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 573 cb->cb_next = NULL; 574 *(iclog->ic_callback_tail) = cb; 575 iclog->ic_callback_tail = &(cb->cb_next); 576 } 577 spin_unlock(&iclog->ic_callback_lock); 578 return abortflg; 579 } 580 581 int 582 xfs_log_release_iclog( 583 struct xfs_mount *mp, 584 struct xlog_in_core *iclog) 585 { 586 if (xlog_state_release_iclog(mp->m_log, iclog)) { 587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 588 return -EIO; 589 } 590 591 return 0; 592 } 593 594 /* 595 * Mount a log filesystem 596 * 597 * mp - ubiquitous xfs mount point structure 598 * log_target - buftarg of on-disk log device 599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 600 * num_bblocks - Number of BBSIZE blocks in on-disk log 601 * 602 * Return error or zero. 603 */ 604 int 605 xfs_log_mount( 606 xfs_mount_t *mp, 607 xfs_buftarg_t *log_target, 608 xfs_daddr_t blk_offset, 609 int num_bblks) 610 { 611 int error = 0; 612 int min_logfsbs; 613 614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 615 xfs_notice(mp, "Mounting V%d Filesystem", 616 XFS_SB_VERSION_NUM(&mp->m_sb)); 617 } else { 618 xfs_notice(mp, 619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 622 } 623 624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 625 if (IS_ERR(mp->m_log)) { 626 error = PTR_ERR(mp->m_log); 627 goto out; 628 } 629 630 /* 631 * Validate the given log space and drop a critical message via syslog 632 * if the log size is too small that would lead to some unexpected 633 * situations in transaction log space reservation stage. 634 * 635 * Note: we can't just reject the mount if the validation fails. This 636 * would mean that people would have to downgrade their kernel just to 637 * remedy the situation as there is no way to grow the log (short of 638 * black magic surgery with xfs_db). 639 * 640 * We can, however, reject mounts for CRC format filesystems, as the 641 * mkfs binary being used to make the filesystem should never create a 642 * filesystem with a log that is too small. 643 */ 644 min_logfsbs = xfs_log_calc_minimum_size(mp); 645 646 if (mp->m_sb.sb_logblocks < min_logfsbs) { 647 xfs_warn(mp, 648 "Log size %d blocks too small, minimum size is %d blocks", 649 mp->m_sb.sb_logblocks, min_logfsbs); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 652 xfs_warn(mp, 653 "Log size %d blocks too large, maximum size is %lld blocks", 654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 655 error = -EINVAL; 656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 657 xfs_warn(mp, 658 "log size %lld bytes too large, maximum size is %lld bytes", 659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 660 XFS_MAX_LOG_BYTES); 661 error = -EINVAL; 662 } 663 if (error) { 664 if (xfs_sb_version_hascrc(&mp->m_sb)) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 return 0; 750 } 751 752 error = xlog_recover_finish(mp->m_log); 753 if (!error) 754 xfs_log_work_queue(mp); 755 756 return error; 757 } 758 759 /* 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 761 * the log. 762 */ 763 int 764 xfs_log_mount_cancel( 765 struct xfs_mount *mp) 766 { 767 int error; 768 769 error = xlog_recover_cancel(mp->m_log); 770 xfs_log_unmount(mp); 771 772 return error; 773 } 774 775 /* 776 * Final log writes as part of unmount. 777 * 778 * Mark the filesystem clean as unmount happens. Note that during relocation 779 * this routine needs to be executed as part of source-bag while the 780 * deallocation must not be done until source-end. 781 */ 782 783 /* 784 * Unmount record used to have a string "Unmount filesystem--" in the 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 786 * We just write the magic number now since that particular field isn't 787 * currently architecture converted and "Unmount" is a bit foo. 788 * As far as I know, there weren't any dependencies on the old behaviour. 789 */ 790 791 static int 792 xfs_log_unmount_write(xfs_mount_t *mp) 793 { 794 struct xlog *log = mp->m_log; 795 xlog_in_core_t *iclog; 796 #ifdef DEBUG 797 xlog_in_core_t *first_iclog; 798 #endif 799 xlog_ticket_t *tic = NULL; 800 xfs_lsn_t lsn; 801 int error; 802 803 /* 804 * Don't write out unmount record on read-only mounts. 805 * Or, if we are doing a forced umount (typically because of IO errors). 806 */ 807 if (mp->m_flags & XFS_MOUNT_RDONLY) 808 return 0; 809 810 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 811 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 812 813 #ifdef DEBUG 814 first_iclog = iclog = log->l_iclog; 815 do { 816 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 817 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 818 ASSERT(iclog->ic_offset == 0); 819 } 820 iclog = iclog->ic_next; 821 } while (iclog != first_iclog); 822 #endif 823 if (! (XLOG_FORCED_SHUTDOWN(log))) { 824 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 825 if (!error) { 826 /* the data section must be 32 bit size aligned */ 827 struct { 828 uint16_t magic; 829 uint16_t pad1; 830 uint32_t pad2; /* may as well make it 64 bits */ 831 } magic = { 832 .magic = XLOG_UNMOUNT_TYPE, 833 }; 834 struct xfs_log_iovec reg = { 835 .i_addr = &magic, 836 .i_len = sizeof(magic), 837 .i_type = XLOG_REG_TYPE_UNMOUNT, 838 }; 839 struct xfs_log_vec vec = { 840 .lv_niovecs = 1, 841 .lv_iovecp = ®, 842 }; 843 844 /* remove inited flag, and account for space used */ 845 tic->t_flags = 0; 846 tic->t_curr_res -= sizeof(magic); 847 error = xlog_write(log, &vec, tic, &lsn, 848 NULL, XLOG_UNMOUNT_TRANS); 849 /* 850 * At this point, we're umounting anyway, 851 * so there's no point in transitioning log state 852 * to IOERROR. Just continue... 853 */ 854 } 855 856 if (error) 857 xfs_alert(mp, "%s: unmount record failed", __func__); 858 859 860 spin_lock(&log->l_icloglock); 861 iclog = log->l_iclog; 862 atomic_inc(&iclog->ic_refcnt); 863 xlog_state_want_sync(log, iclog); 864 spin_unlock(&log->l_icloglock); 865 error = xlog_state_release_iclog(log, iclog); 866 867 spin_lock(&log->l_icloglock); 868 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 869 iclog->ic_state == XLOG_STATE_DIRTY)) { 870 if (!XLOG_FORCED_SHUTDOWN(log)) { 871 xlog_wait(&iclog->ic_force_wait, 872 &log->l_icloglock); 873 } else { 874 spin_unlock(&log->l_icloglock); 875 } 876 } else { 877 spin_unlock(&log->l_icloglock); 878 } 879 if (tic) { 880 trace_xfs_log_umount_write(log, tic); 881 xlog_ungrant_log_space(log, tic); 882 xfs_log_ticket_put(tic); 883 } 884 } else { 885 /* 886 * We're already in forced_shutdown mode, couldn't 887 * even attempt to write out the unmount transaction. 888 * 889 * Go through the motions of sync'ing and releasing 890 * the iclog, even though no I/O will actually happen, 891 * we need to wait for other log I/Os that may already 892 * be in progress. Do this as a separate section of 893 * code so we'll know if we ever get stuck here that 894 * we're in this odd situation of trying to unmount 895 * a file system that went into forced_shutdown as 896 * the result of an unmount.. 897 */ 898 spin_lock(&log->l_icloglock); 899 iclog = log->l_iclog; 900 atomic_inc(&iclog->ic_refcnt); 901 902 xlog_state_want_sync(log, iclog); 903 spin_unlock(&log->l_icloglock); 904 error = xlog_state_release_iclog(log, iclog); 905 906 spin_lock(&log->l_icloglock); 907 908 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 909 || iclog->ic_state == XLOG_STATE_DIRTY 910 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 911 912 xlog_wait(&iclog->ic_force_wait, 913 &log->l_icloglock); 914 } else { 915 spin_unlock(&log->l_icloglock); 916 } 917 } 918 919 return error; 920 } /* xfs_log_unmount_write */ 921 922 /* 923 * Empty the log for unmount/freeze. 924 * 925 * To do this, we first need to shut down the background log work so it is not 926 * trying to cover the log as we clean up. We then need to unpin all objects in 927 * the log so we can then flush them out. Once they have completed their IO and 928 * run the callbacks removing themselves from the AIL, we can write the unmount 929 * record. 930 */ 931 void 932 xfs_log_quiesce( 933 struct xfs_mount *mp) 934 { 935 cancel_delayed_work_sync(&mp->m_log->l_work); 936 xfs_log_force(mp, XFS_LOG_SYNC); 937 938 /* 939 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 940 * will push it, xfs_wait_buftarg() will not wait for it. Further, 941 * xfs_buf_iowait() cannot be used because it was pushed with the 942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 943 * the IO to complete. 944 */ 945 xfs_ail_push_all_sync(mp->m_ail); 946 xfs_wait_buftarg(mp->m_ddev_targp); 947 xfs_buf_lock(mp->m_sb_bp); 948 xfs_buf_unlock(mp->m_sb_bp); 949 950 xfs_log_unmount_write(mp); 951 } 952 953 /* 954 * Shut down and release the AIL and Log. 955 * 956 * During unmount, we need to ensure we flush all the dirty metadata objects 957 * from the AIL so that the log is empty before we write the unmount record to 958 * the log. Once this is done, we can tear down the AIL and the log. 959 */ 960 void 961 xfs_log_unmount( 962 struct xfs_mount *mp) 963 { 964 xfs_log_quiesce(mp); 965 966 xfs_trans_ail_destroy(mp); 967 968 xfs_sysfs_del(&mp->m_log->l_kobj); 969 970 xlog_dealloc_log(mp->m_log); 971 } 972 973 void 974 xfs_log_item_init( 975 struct xfs_mount *mp, 976 struct xfs_log_item *item, 977 int type, 978 const struct xfs_item_ops *ops) 979 { 980 item->li_mountp = mp; 981 item->li_ailp = mp->m_ail; 982 item->li_type = type; 983 item->li_ops = ops; 984 item->li_lv = NULL; 985 986 INIT_LIST_HEAD(&item->li_ail); 987 INIT_LIST_HEAD(&item->li_cil); 988 } 989 990 /* 991 * Wake up processes waiting for log space after we have moved the log tail. 992 */ 993 void 994 xfs_log_space_wake( 995 struct xfs_mount *mp) 996 { 997 struct xlog *log = mp->m_log; 998 int free_bytes; 999 1000 if (XLOG_FORCED_SHUTDOWN(log)) 1001 return; 1002 1003 if (!list_empty_careful(&log->l_write_head.waiters)) { 1004 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1005 1006 spin_lock(&log->l_write_head.lock); 1007 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1008 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1009 spin_unlock(&log->l_write_head.lock); 1010 } 1011 1012 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1013 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1014 1015 spin_lock(&log->l_reserve_head.lock); 1016 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1017 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1018 spin_unlock(&log->l_reserve_head.lock); 1019 } 1020 } 1021 1022 /* 1023 * Determine if we have a transaction that has gone to disk that needs to be 1024 * covered. To begin the transition to the idle state firstly the log needs to 1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1026 * we start attempting to cover the log. 1027 * 1028 * Only if we are then in a state where covering is needed, the caller is 1029 * informed that dummy transactions are required to move the log into the idle 1030 * state. 1031 * 1032 * If there are any items in the AIl or CIL, then we do not want to attempt to 1033 * cover the log as we may be in a situation where there isn't log space 1034 * available to run a dummy transaction and this can lead to deadlocks when the 1035 * tail of the log is pinned by an item that is modified in the CIL. Hence 1036 * there's no point in running a dummy transaction at this point because we 1037 * can't start trying to idle the log until both the CIL and AIL are empty. 1038 */ 1039 static int 1040 xfs_log_need_covered(xfs_mount_t *mp) 1041 { 1042 struct xlog *log = mp->m_log; 1043 int needed = 0; 1044 1045 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1046 return 0; 1047 1048 if (!xlog_cil_empty(log)) 1049 return 0; 1050 1051 spin_lock(&log->l_icloglock); 1052 switch (log->l_covered_state) { 1053 case XLOG_STATE_COVER_DONE: 1054 case XLOG_STATE_COVER_DONE2: 1055 case XLOG_STATE_COVER_IDLE: 1056 break; 1057 case XLOG_STATE_COVER_NEED: 1058 case XLOG_STATE_COVER_NEED2: 1059 if (xfs_ail_min_lsn(log->l_ailp)) 1060 break; 1061 if (!xlog_iclogs_empty(log)) 1062 break; 1063 1064 needed = 1; 1065 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1066 log->l_covered_state = XLOG_STATE_COVER_DONE; 1067 else 1068 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1069 break; 1070 default: 1071 needed = 1; 1072 break; 1073 } 1074 spin_unlock(&log->l_icloglock); 1075 return needed; 1076 } 1077 1078 /* 1079 * We may be holding the log iclog lock upon entering this routine. 1080 */ 1081 xfs_lsn_t 1082 xlog_assign_tail_lsn_locked( 1083 struct xfs_mount *mp) 1084 { 1085 struct xlog *log = mp->m_log; 1086 struct xfs_log_item *lip; 1087 xfs_lsn_t tail_lsn; 1088 1089 assert_spin_locked(&mp->m_ail->xa_lock); 1090 1091 /* 1092 * To make sure we always have a valid LSN for the log tail we keep 1093 * track of the last LSN which was committed in log->l_last_sync_lsn, 1094 * and use that when the AIL was empty. 1095 */ 1096 lip = xfs_ail_min(mp->m_ail); 1097 if (lip) 1098 tail_lsn = lip->li_lsn; 1099 else 1100 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1101 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1102 atomic64_set(&log->l_tail_lsn, tail_lsn); 1103 return tail_lsn; 1104 } 1105 1106 xfs_lsn_t 1107 xlog_assign_tail_lsn( 1108 struct xfs_mount *mp) 1109 { 1110 xfs_lsn_t tail_lsn; 1111 1112 spin_lock(&mp->m_ail->xa_lock); 1113 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1114 spin_unlock(&mp->m_ail->xa_lock); 1115 1116 return tail_lsn; 1117 } 1118 1119 /* 1120 * Return the space in the log between the tail and the head. The head 1121 * is passed in the cycle/bytes formal parms. In the special case where 1122 * the reserve head has wrapped passed the tail, this calculation is no 1123 * longer valid. In this case, just return 0 which means there is no space 1124 * in the log. This works for all places where this function is called 1125 * with the reserve head. Of course, if the write head were to ever 1126 * wrap the tail, we should blow up. Rather than catch this case here, 1127 * we depend on other ASSERTions in other parts of the code. XXXmiken 1128 * 1129 * This code also handles the case where the reservation head is behind 1130 * the tail. The details of this case are described below, but the end 1131 * result is that we return the size of the log as the amount of space left. 1132 */ 1133 STATIC int 1134 xlog_space_left( 1135 struct xlog *log, 1136 atomic64_t *head) 1137 { 1138 int free_bytes; 1139 int tail_bytes; 1140 int tail_cycle; 1141 int head_cycle; 1142 int head_bytes; 1143 1144 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1145 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1146 tail_bytes = BBTOB(tail_bytes); 1147 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1148 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1149 else if (tail_cycle + 1 < head_cycle) 1150 return 0; 1151 else if (tail_cycle < head_cycle) { 1152 ASSERT(tail_cycle == (head_cycle - 1)); 1153 free_bytes = tail_bytes - head_bytes; 1154 } else { 1155 /* 1156 * The reservation head is behind the tail. 1157 * In this case we just want to return the size of the 1158 * log as the amount of space left. 1159 */ 1160 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1161 xfs_alert(log->l_mp, 1162 " tail_cycle = %d, tail_bytes = %d", 1163 tail_cycle, tail_bytes); 1164 xfs_alert(log->l_mp, 1165 " GH cycle = %d, GH bytes = %d", 1166 head_cycle, head_bytes); 1167 ASSERT(0); 1168 free_bytes = log->l_logsize; 1169 } 1170 return free_bytes; 1171 } 1172 1173 1174 /* 1175 * Log function which is called when an io completes. 1176 * 1177 * The log manager needs its own routine, in order to control what 1178 * happens with the buffer after the write completes. 1179 */ 1180 static void 1181 xlog_iodone(xfs_buf_t *bp) 1182 { 1183 struct xlog_in_core *iclog = bp->b_fspriv; 1184 struct xlog *l = iclog->ic_log; 1185 int aborted = 0; 1186 1187 /* 1188 * Race to shutdown the filesystem if we see an error or the iclog is in 1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1190 * CRC errors into log recovery. 1191 */ 1192 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1193 iclog->ic_state & XLOG_STATE_IOABORT) { 1194 if (iclog->ic_state & XLOG_STATE_IOABORT) 1195 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1196 1197 xfs_buf_ioerror_alert(bp, __func__); 1198 xfs_buf_stale(bp); 1199 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1200 /* 1201 * This flag will be propagated to the trans-committed 1202 * callback routines to let them know that the log-commit 1203 * didn't succeed. 1204 */ 1205 aborted = XFS_LI_ABORTED; 1206 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1207 aborted = XFS_LI_ABORTED; 1208 } 1209 1210 /* log I/O is always issued ASYNC */ 1211 ASSERT(bp->b_flags & XBF_ASYNC); 1212 xlog_state_done_syncing(iclog, aborted); 1213 1214 /* 1215 * drop the buffer lock now that we are done. Nothing references 1216 * the buffer after this, so an unmount waiting on this lock can now 1217 * tear it down safely. As such, it is unsafe to reference the buffer 1218 * (bp) after the unlock as we could race with it being freed. 1219 */ 1220 xfs_buf_unlock(bp); 1221 } 1222 1223 /* 1224 * Return size of each in-core log record buffer. 1225 * 1226 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1227 * 1228 * If the filesystem blocksize is too large, we may need to choose a 1229 * larger size since the directory code currently logs entire blocks. 1230 */ 1231 1232 STATIC void 1233 xlog_get_iclog_buffer_size( 1234 struct xfs_mount *mp, 1235 struct xlog *log) 1236 { 1237 int size; 1238 int xhdrs; 1239 1240 if (mp->m_logbufs <= 0) 1241 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1242 else 1243 log->l_iclog_bufs = mp->m_logbufs; 1244 1245 /* 1246 * Buffer size passed in from mount system call. 1247 */ 1248 if (mp->m_logbsize > 0) { 1249 size = log->l_iclog_size = mp->m_logbsize; 1250 log->l_iclog_size_log = 0; 1251 while (size != 1) { 1252 log->l_iclog_size_log++; 1253 size >>= 1; 1254 } 1255 1256 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1257 /* # headers = size / 32k 1258 * one header holds cycles from 32k of data 1259 */ 1260 1261 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1262 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1263 xhdrs++; 1264 log->l_iclog_hsize = xhdrs << BBSHIFT; 1265 log->l_iclog_heads = xhdrs; 1266 } else { 1267 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1268 log->l_iclog_hsize = BBSIZE; 1269 log->l_iclog_heads = 1; 1270 } 1271 goto done; 1272 } 1273 1274 /* All machines use 32kB buffers by default. */ 1275 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1276 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1277 1278 /* the default log size is 16k or 32k which is one header sector */ 1279 log->l_iclog_hsize = BBSIZE; 1280 log->l_iclog_heads = 1; 1281 1282 done: 1283 /* are we being asked to make the sizes selected above visible? */ 1284 if (mp->m_logbufs == 0) 1285 mp->m_logbufs = log->l_iclog_bufs; 1286 if (mp->m_logbsize == 0) 1287 mp->m_logbsize = log->l_iclog_size; 1288 } /* xlog_get_iclog_buffer_size */ 1289 1290 1291 void 1292 xfs_log_work_queue( 1293 struct xfs_mount *mp) 1294 { 1295 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1296 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1297 } 1298 1299 /* 1300 * Every sync period we need to unpin all items in the AIL and push them to 1301 * disk. If there is nothing dirty, then we might need to cover the log to 1302 * indicate that the filesystem is idle. 1303 */ 1304 static void 1305 xfs_log_worker( 1306 struct work_struct *work) 1307 { 1308 struct xlog *log = container_of(to_delayed_work(work), 1309 struct xlog, l_work); 1310 struct xfs_mount *mp = log->l_mp; 1311 1312 /* dgc: errors ignored - not fatal and nowhere to report them */ 1313 if (xfs_log_need_covered(mp)) { 1314 /* 1315 * Dump a transaction into the log that contains no real change. 1316 * This is needed to stamp the current tail LSN into the log 1317 * during the covering operation. 1318 * 1319 * We cannot use an inode here for this - that will push dirty 1320 * state back up into the VFS and then periodic inode flushing 1321 * will prevent log covering from making progress. Hence we 1322 * synchronously log the superblock instead to ensure the 1323 * superblock is immediately unpinned and can be written back. 1324 */ 1325 xfs_sync_sb(mp, true); 1326 } else 1327 xfs_log_force(mp, 0); 1328 1329 /* start pushing all the metadata that is currently dirty */ 1330 xfs_ail_push_all(mp->m_ail); 1331 1332 /* queue us up again */ 1333 xfs_log_work_queue(mp); 1334 } 1335 1336 /* 1337 * This routine initializes some of the log structure for a given mount point. 1338 * Its primary purpose is to fill in enough, so recovery can occur. However, 1339 * some other stuff may be filled in too. 1340 */ 1341 STATIC struct xlog * 1342 xlog_alloc_log( 1343 struct xfs_mount *mp, 1344 struct xfs_buftarg *log_target, 1345 xfs_daddr_t blk_offset, 1346 int num_bblks) 1347 { 1348 struct xlog *log; 1349 xlog_rec_header_t *head; 1350 xlog_in_core_t **iclogp; 1351 xlog_in_core_t *iclog, *prev_iclog=NULL; 1352 xfs_buf_t *bp; 1353 int i; 1354 int error = -ENOMEM; 1355 uint log2_size = 0; 1356 1357 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1358 if (!log) { 1359 xfs_warn(mp, "Log allocation failed: No memory!"); 1360 goto out; 1361 } 1362 1363 log->l_mp = mp; 1364 log->l_targ = log_target; 1365 log->l_logsize = BBTOB(num_bblks); 1366 log->l_logBBstart = blk_offset; 1367 log->l_logBBsize = num_bblks; 1368 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1369 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1370 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1371 1372 log->l_prev_block = -1; 1373 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1374 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1375 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1376 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1377 1378 xlog_grant_head_init(&log->l_reserve_head); 1379 xlog_grant_head_init(&log->l_write_head); 1380 1381 error = -EFSCORRUPTED; 1382 if (xfs_sb_version_hassector(&mp->m_sb)) { 1383 log2_size = mp->m_sb.sb_logsectlog; 1384 if (log2_size < BBSHIFT) { 1385 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1386 log2_size, BBSHIFT); 1387 goto out_free_log; 1388 } 1389 1390 log2_size -= BBSHIFT; 1391 if (log2_size > mp->m_sectbb_log) { 1392 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1393 log2_size, mp->m_sectbb_log); 1394 goto out_free_log; 1395 } 1396 1397 /* for larger sector sizes, must have v2 or external log */ 1398 if (log2_size && log->l_logBBstart > 0 && 1399 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1400 xfs_warn(mp, 1401 "log sector size (0x%x) invalid for configuration.", 1402 log2_size); 1403 goto out_free_log; 1404 } 1405 } 1406 log->l_sectBBsize = 1 << log2_size; 1407 1408 xlog_get_iclog_buffer_size(mp, log); 1409 1410 /* 1411 * Use a NULL block for the extra log buffer used during splits so that 1412 * it will trigger errors if we ever try to do IO on it without first 1413 * having set it up properly. 1414 */ 1415 error = -ENOMEM; 1416 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1417 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1418 if (!bp) 1419 goto out_free_log; 1420 1421 /* 1422 * The iclogbuf buffer locks are held over IO but we are not going to do 1423 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1424 * when appropriately. 1425 */ 1426 ASSERT(xfs_buf_islocked(bp)); 1427 xfs_buf_unlock(bp); 1428 1429 /* use high priority wq for log I/O completion */ 1430 bp->b_ioend_wq = mp->m_log_workqueue; 1431 bp->b_iodone = xlog_iodone; 1432 log->l_xbuf = bp; 1433 1434 spin_lock_init(&log->l_icloglock); 1435 init_waitqueue_head(&log->l_flush_wait); 1436 1437 iclogp = &log->l_iclog; 1438 /* 1439 * The amount of memory to allocate for the iclog structure is 1440 * rather funky due to the way the structure is defined. It is 1441 * done this way so that we can use different sizes for machines 1442 * with different amounts of memory. See the definition of 1443 * xlog_in_core_t in xfs_log_priv.h for details. 1444 */ 1445 ASSERT(log->l_iclog_size >= 4096); 1446 for (i=0; i < log->l_iclog_bufs; i++) { 1447 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1448 if (!*iclogp) 1449 goto out_free_iclog; 1450 1451 iclog = *iclogp; 1452 iclog->ic_prev = prev_iclog; 1453 prev_iclog = iclog; 1454 1455 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1456 BTOBB(log->l_iclog_size), 1457 XBF_NO_IOACCT); 1458 if (!bp) 1459 goto out_free_iclog; 1460 1461 ASSERT(xfs_buf_islocked(bp)); 1462 xfs_buf_unlock(bp); 1463 1464 /* use high priority wq for log I/O completion */ 1465 bp->b_ioend_wq = mp->m_log_workqueue; 1466 bp->b_iodone = xlog_iodone; 1467 iclog->ic_bp = bp; 1468 iclog->ic_data = bp->b_addr; 1469 #ifdef DEBUG 1470 log->l_iclog_bak[i] = &iclog->ic_header; 1471 #endif 1472 head = &iclog->ic_header; 1473 memset(head, 0, sizeof(xlog_rec_header_t)); 1474 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1475 head->h_version = cpu_to_be32( 1476 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1477 head->h_size = cpu_to_be32(log->l_iclog_size); 1478 /* new fields */ 1479 head->h_fmt = cpu_to_be32(XLOG_FMT); 1480 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1481 1482 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1483 iclog->ic_state = XLOG_STATE_ACTIVE; 1484 iclog->ic_log = log; 1485 atomic_set(&iclog->ic_refcnt, 0); 1486 spin_lock_init(&iclog->ic_callback_lock); 1487 iclog->ic_callback_tail = &(iclog->ic_callback); 1488 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1489 1490 init_waitqueue_head(&iclog->ic_force_wait); 1491 init_waitqueue_head(&iclog->ic_write_wait); 1492 1493 iclogp = &iclog->ic_next; 1494 } 1495 *iclogp = log->l_iclog; /* complete ring */ 1496 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1497 1498 error = xlog_cil_init(log); 1499 if (error) 1500 goto out_free_iclog; 1501 return log; 1502 1503 out_free_iclog: 1504 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1505 prev_iclog = iclog->ic_next; 1506 if (iclog->ic_bp) 1507 xfs_buf_free(iclog->ic_bp); 1508 kmem_free(iclog); 1509 } 1510 spinlock_destroy(&log->l_icloglock); 1511 xfs_buf_free(log->l_xbuf); 1512 out_free_log: 1513 kmem_free(log); 1514 out: 1515 return ERR_PTR(error); 1516 } /* xlog_alloc_log */ 1517 1518 1519 /* 1520 * Write out the commit record of a transaction associated with the given 1521 * ticket. Return the lsn of the commit record. 1522 */ 1523 STATIC int 1524 xlog_commit_record( 1525 struct xlog *log, 1526 struct xlog_ticket *ticket, 1527 struct xlog_in_core **iclog, 1528 xfs_lsn_t *commitlsnp) 1529 { 1530 struct xfs_mount *mp = log->l_mp; 1531 int error; 1532 struct xfs_log_iovec reg = { 1533 .i_addr = NULL, 1534 .i_len = 0, 1535 .i_type = XLOG_REG_TYPE_COMMIT, 1536 }; 1537 struct xfs_log_vec vec = { 1538 .lv_niovecs = 1, 1539 .lv_iovecp = ®, 1540 }; 1541 1542 ASSERT_ALWAYS(iclog); 1543 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1544 XLOG_COMMIT_TRANS); 1545 if (error) 1546 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1547 return error; 1548 } 1549 1550 /* 1551 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1552 * log space. This code pushes on the lsn which would supposedly free up 1553 * the 25% which we want to leave free. We may need to adopt a policy which 1554 * pushes on an lsn which is further along in the log once we reach the high 1555 * water mark. In this manner, we would be creating a low water mark. 1556 */ 1557 STATIC void 1558 xlog_grant_push_ail( 1559 struct xlog *log, 1560 int need_bytes) 1561 { 1562 xfs_lsn_t threshold_lsn = 0; 1563 xfs_lsn_t last_sync_lsn; 1564 int free_blocks; 1565 int free_bytes; 1566 int threshold_block; 1567 int threshold_cycle; 1568 int free_threshold; 1569 1570 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1571 1572 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1573 free_blocks = BTOBBT(free_bytes); 1574 1575 /* 1576 * Set the threshold for the minimum number of free blocks in the 1577 * log to the maximum of what the caller needs, one quarter of the 1578 * log, and 256 blocks. 1579 */ 1580 free_threshold = BTOBB(need_bytes); 1581 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1582 free_threshold = MAX(free_threshold, 256); 1583 if (free_blocks >= free_threshold) 1584 return; 1585 1586 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1587 &threshold_block); 1588 threshold_block += free_threshold; 1589 if (threshold_block >= log->l_logBBsize) { 1590 threshold_block -= log->l_logBBsize; 1591 threshold_cycle += 1; 1592 } 1593 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1594 threshold_block); 1595 /* 1596 * Don't pass in an lsn greater than the lsn of the last 1597 * log record known to be on disk. Use a snapshot of the last sync lsn 1598 * so that it doesn't change between the compare and the set. 1599 */ 1600 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1601 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1602 threshold_lsn = last_sync_lsn; 1603 1604 /* 1605 * Get the transaction layer to kick the dirty buffers out to 1606 * disk asynchronously. No point in trying to do this if 1607 * the filesystem is shutting down. 1608 */ 1609 if (!XLOG_FORCED_SHUTDOWN(log)) 1610 xfs_ail_push(log->l_ailp, threshold_lsn); 1611 } 1612 1613 /* 1614 * Stamp cycle number in every block 1615 */ 1616 STATIC void 1617 xlog_pack_data( 1618 struct xlog *log, 1619 struct xlog_in_core *iclog, 1620 int roundoff) 1621 { 1622 int i, j, k; 1623 int size = iclog->ic_offset + roundoff; 1624 __be32 cycle_lsn; 1625 char *dp; 1626 1627 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1628 1629 dp = iclog->ic_datap; 1630 for (i = 0; i < BTOBB(size); i++) { 1631 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1632 break; 1633 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1634 *(__be32 *)dp = cycle_lsn; 1635 dp += BBSIZE; 1636 } 1637 1638 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1639 xlog_in_core_2_t *xhdr = iclog->ic_data; 1640 1641 for ( ; i < BTOBB(size); i++) { 1642 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1643 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1644 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1645 *(__be32 *)dp = cycle_lsn; 1646 dp += BBSIZE; 1647 } 1648 1649 for (i = 1; i < log->l_iclog_heads; i++) 1650 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1651 } 1652 } 1653 1654 /* 1655 * Calculate the checksum for a log buffer. 1656 * 1657 * This is a little more complicated than it should be because the various 1658 * headers and the actual data are non-contiguous. 1659 */ 1660 __le32 1661 xlog_cksum( 1662 struct xlog *log, 1663 struct xlog_rec_header *rhead, 1664 char *dp, 1665 int size) 1666 { 1667 uint32_t crc; 1668 1669 /* first generate the crc for the record header ... */ 1670 crc = xfs_start_cksum_update((char *)rhead, 1671 sizeof(struct xlog_rec_header), 1672 offsetof(struct xlog_rec_header, h_crc)); 1673 1674 /* ... then for additional cycle data for v2 logs ... */ 1675 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1676 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1677 int i; 1678 int xheads; 1679 1680 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1681 if (size % XLOG_HEADER_CYCLE_SIZE) 1682 xheads++; 1683 1684 for (i = 1; i < xheads; i++) { 1685 crc = crc32c(crc, &xhdr[i].hic_xheader, 1686 sizeof(struct xlog_rec_ext_header)); 1687 } 1688 } 1689 1690 /* ... and finally for the payload */ 1691 crc = crc32c(crc, dp, size); 1692 1693 return xfs_end_cksum(crc); 1694 } 1695 1696 /* 1697 * The bdstrat callback function for log bufs. This gives us a central 1698 * place to trap bufs in case we get hit by a log I/O error and need to 1699 * shutdown. Actually, in practice, even when we didn't get a log error, 1700 * we transition the iclogs to IOERROR state *after* flushing all existing 1701 * iclogs to disk. This is because we don't want anymore new transactions to be 1702 * started or completed afterwards. 1703 * 1704 * We lock the iclogbufs here so that we can serialise against IO completion 1705 * during unmount. We might be processing a shutdown triggered during unmount, 1706 * and that can occur asynchronously to the unmount thread, and hence we need to 1707 * ensure that completes before tearing down the iclogbufs. Hence we need to 1708 * hold the buffer lock across the log IO to acheive that. 1709 */ 1710 STATIC int 1711 xlog_bdstrat( 1712 struct xfs_buf *bp) 1713 { 1714 struct xlog_in_core *iclog = bp->b_fspriv; 1715 1716 xfs_buf_lock(bp); 1717 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1718 xfs_buf_ioerror(bp, -EIO); 1719 xfs_buf_stale(bp); 1720 xfs_buf_ioend(bp); 1721 /* 1722 * It would seem logical to return EIO here, but we rely on 1723 * the log state machine to propagate I/O errors instead of 1724 * doing it here. Similarly, IO completion will unlock the 1725 * buffer, so we don't do it here. 1726 */ 1727 return 0; 1728 } 1729 1730 xfs_buf_submit(bp); 1731 return 0; 1732 } 1733 1734 /* 1735 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1736 * fashion. Previously, we should have moved the current iclog 1737 * ptr in the log to point to the next available iclog. This allows further 1738 * write to continue while this code syncs out an iclog ready to go. 1739 * Before an in-core log can be written out, the data section must be scanned 1740 * to save away the 1st word of each BBSIZE block into the header. We replace 1741 * it with the current cycle count. Each BBSIZE block is tagged with the 1742 * cycle count because there in an implicit assumption that drives will 1743 * guarantee that entire 512 byte blocks get written at once. In other words, 1744 * we can't have part of a 512 byte block written and part not written. By 1745 * tagging each block, we will know which blocks are valid when recovering 1746 * after an unclean shutdown. 1747 * 1748 * This routine is single threaded on the iclog. No other thread can be in 1749 * this routine with the same iclog. Changing contents of iclog can there- 1750 * fore be done without grabbing the state machine lock. Updating the global 1751 * log will require grabbing the lock though. 1752 * 1753 * The entire log manager uses a logical block numbering scheme. Only 1754 * log_sync (and then only bwrite()) know about the fact that the log may 1755 * not start with block zero on a given device. The log block start offset 1756 * is added immediately before calling bwrite(). 1757 */ 1758 1759 STATIC int 1760 xlog_sync( 1761 struct xlog *log, 1762 struct xlog_in_core *iclog) 1763 { 1764 xfs_buf_t *bp; 1765 int i; 1766 uint count; /* byte count of bwrite */ 1767 uint count_init; /* initial count before roundup */ 1768 int roundoff; /* roundoff to BB or stripe */ 1769 int split = 0; /* split write into two regions */ 1770 int error; 1771 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1772 int size; 1773 1774 XFS_STATS_INC(log->l_mp, xs_log_writes); 1775 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1776 1777 /* Add for LR header */ 1778 count_init = log->l_iclog_hsize + iclog->ic_offset; 1779 1780 /* Round out the log write size */ 1781 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1782 /* we have a v2 stripe unit to use */ 1783 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1784 } else { 1785 count = BBTOB(BTOBB(count_init)); 1786 } 1787 roundoff = count - count_init; 1788 ASSERT(roundoff >= 0); 1789 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1790 roundoff < log->l_mp->m_sb.sb_logsunit) 1791 || 1792 (log->l_mp->m_sb.sb_logsunit <= 1 && 1793 roundoff < BBTOB(1))); 1794 1795 /* move grant heads by roundoff in sync */ 1796 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1797 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1798 1799 /* put cycle number in every block */ 1800 xlog_pack_data(log, iclog, roundoff); 1801 1802 /* real byte length */ 1803 size = iclog->ic_offset; 1804 if (v2) 1805 size += roundoff; 1806 iclog->ic_header.h_len = cpu_to_be32(size); 1807 1808 bp = iclog->ic_bp; 1809 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1810 1811 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1812 1813 /* Do we need to split this write into 2 parts? */ 1814 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1815 char *dptr; 1816 1817 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1818 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1819 iclog->ic_bwritecnt = 2; 1820 1821 /* 1822 * Bump the cycle numbers at the start of each block in the 1823 * part of the iclog that ends up in the buffer that gets 1824 * written to the start of the log. 1825 * 1826 * Watch out for the header magic number case, though. 1827 */ 1828 dptr = (char *)&iclog->ic_header + count; 1829 for (i = 0; i < split; i += BBSIZE) { 1830 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1831 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1832 cycle++; 1833 *(__be32 *)dptr = cpu_to_be32(cycle); 1834 1835 dptr += BBSIZE; 1836 } 1837 } else { 1838 iclog->ic_bwritecnt = 1; 1839 } 1840 1841 /* calculcate the checksum */ 1842 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1843 iclog->ic_datap, size); 1844 /* 1845 * Intentionally corrupt the log record CRC based on the error injection 1846 * frequency, if defined. This facilitates testing log recovery in the 1847 * event of torn writes. Hence, set the IOABORT state to abort the log 1848 * write on I/O completion and shutdown the fs. The subsequent mount 1849 * detects the bad CRC and attempts to recover. 1850 */ 1851 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1852 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1853 iclog->ic_state |= XLOG_STATE_IOABORT; 1854 xfs_warn(log->l_mp, 1855 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1856 be64_to_cpu(iclog->ic_header.h_lsn)); 1857 } 1858 1859 bp->b_io_length = BTOBB(count); 1860 bp->b_fspriv = iclog; 1861 bp->b_flags &= ~XBF_FLUSH; 1862 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1863 1864 /* 1865 * Flush the data device before flushing the log to make sure all meta 1866 * data written back from the AIL actually made it to disk before 1867 * stamping the new log tail LSN into the log buffer. For an external 1868 * log we need to issue the flush explicitly, and unfortunately 1869 * synchronously here; for an internal log we can simply use the block 1870 * layer state machine for preflushes. 1871 */ 1872 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1873 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1874 else 1875 bp->b_flags |= XBF_FLUSH; 1876 1877 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1878 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1879 1880 xlog_verify_iclog(log, iclog, count, true); 1881 1882 /* account for log which doesn't start at block #0 */ 1883 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1884 1885 /* 1886 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1887 * is shutting down. 1888 */ 1889 error = xlog_bdstrat(bp); 1890 if (error) { 1891 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1892 return error; 1893 } 1894 if (split) { 1895 bp = iclog->ic_log->l_xbuf; 1896 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1897 xfs_buf_associate_memory(bp, 1898 (char *)&iclog->ic_header + count, split); 1899 bp->b_fspriv = iclog; 1900 bp->b_flags &= ~XBF_FLUSH; 1901 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1902 1903 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1904 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1905 1906 /* account for internal log which doesn't start at block #0 */ 1907 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1908 error = xlog_bdstrat(bp); 1909 if (error) { 1910 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1911 return error; 1912 } 1913 } 1914 return 0; 1915 } /* xlog_sync */ 1916 1917 /* 1918 * Deallocate a log structure 1919 */ 1920 STATIC void 1921 xlog_dealloc_log( 1922 struct xlog *log) 1923 { 1924 xlog_in_core_t *iclog, *next_iclog; 1925 int i; 1926 1927 xlog_cil_destroy(log); 1928 1929 /* 1930 * Cycle all the iclogbuf locks to make sure all log IO completion 1931 * is done before we tear down these buffers. 1932 */ 1933 iclog = log->l_iclog; 1934 for (i = 0; i < log->l_iclog_bufs; i++) { 1935 xfs_buf_lock(iclog->ic_bp); 1936 xfs_buf_unlock(iclog->ic_bp); 1937 iclog = iclog->ic_next; 1938 } 1939 1940 /* 1941 * Always need to ensure that the extra buffer does not point to memory 1942 * owned by another log buffer before we free it. Also, cycle the lock 1943 * first to ensure we've completed IO on it. 1944 */ 1945 xfs_buf_lock(log->l_xbuf); 1946 xfs_buf_unlock(log->l_xbuf); 1947 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1948 xfs_buf_free(log->l_xbuf); 1949 1950 iclog = log->l_iclog; 1951 for (i = 0; i < log->l_iclog_bufs; i++) { 1952 xfs_buf_free(iclog->ic_bp); 1953 next_iclog = iclog->ic_next; 1954 kmem_free(iclog); 1955 iclog = next_iclog; 1956 } 1957 spinlock_destroy(&log->l_icloglock); 1958 1959 log->l_mp->m_log = NULL; 1960 kmem_free(log); 1961 } /* xlog_dealloc_log */ 1962 1963 /* 1964 * Update counters atomically now that memcpy is done. 1965 */ 1966 /* ARGSUSED */ 1967 static inline void 1968 xlog_state_finish_copy( 1969 struct xlog *log, 1970 struct xlog_in_core *iclog, 1971 int record_cnt, 1972 int copy_bytes) 1973 { 1974 spin_lock(&log->l_icloglock); 1975 1976 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1977 iclog->ic_offset += copy_bytes; 1978 1979 spin_unlock(&log->l_icloglock); 1980 } /* xlog_state_finish_copy */ 1981 1982 1983 1984 1985 /* 1986 * print out info relating to regions written which consume 1987 * the reservation 1988 */ 1989 void 1990 xlog_print_tic_res( 1991 struct xfs_mount *mp, 1992 struct xlog_ticket *ticket) 1993 { 1994 uint i; 1995 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1996 1997 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1998 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 1999 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2000 REG_TYPE_STR(BFORMAT, "bformat"), 2001 REG_TYPE_STR(BCHUNK, "bchunk"), 2002 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2003 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2004 REG_TYPE_STR(IFORMAT, "iformat"), 2005 REG_TYPE_STR(ICORE, "icore"), 2006 REG_TYPE_STR(IEXT, "iext"), 2007 REG_TYPE_STR(IBROOT, "ibroot"), 2008 REG_TYPE_STR(ILOCAL, "ilocal"), 2009 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2010 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2011 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2012 REG_TYPE_STR(QFORMAT, "qformat"), 2013 REG_TYPE_STR(DQUOT, "dquot"), 2014 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2015 REG_TYPE_STR(LRHEADER, "LR header"), 2016 REG_TYPE_STR(UNMOUNT, "unmount"), 2017 REG_TYPE_STR(COMMIT, "commit"), 2018 REG_TYPE_STR(TRANSHDR, "trans header"), 2019 REG_TYPE_STR(ICREATE, "inode create") 2020 }; 2021 #undef REG_TYPE_STR 2022 2023 xfs_warn(mp, "ticket reservation summary:"); 2024 xfs_warn(mp, " unit res = %d bytes", 2025 ticket->t_unit_res); 2026 xfs_warn(mp, " current res = %d bytes", 2027 ticket->t_curr_res); 2028 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2029 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2030 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2031 ticket->t_res_num_ophdrs, ophdr_spc); 2032 xfs_warn(mp, " ophdr + reg = %u bytes", 2033 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2034 xfs_warn(mp, " num regions = %u", 2035 ticket->t_res_num); 2036 2037 for (i = 0; i < ticket->t_res_num; i++) { 2038 uint r_type = ticket->t_res_arr[i].r_type; 2039 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2040 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2041 "bad-rtype" : res_type_str[r_type]), 2042 ticket->t_res_arr[i].r_len); 2043 } 2044 } 2045 2046 /* 2047 * Print a summary of the transaction. 2048 */ 2049 void 2050 xlog_print_trans( 2051 struct xfs_trans *tp) 2052 { 2053 struct xfs_mount *mp = tp->t_mountp; 2054 struct xfs_log_item_desc *lidp; 2055 2056 /* dump core transaction and ticket info */ 2057 xfs_warn(mp, "transaction summary:"); 2058 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2059 2060 xlog_print_tic_res(mp, tp->t_ticket); 2061 2062 /* dump each log item */ 2063 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 2064 struct xfs_log_item *lip = lidp->lid_item; 2065 struct xfs_log_vec *lv = lip->li_lv; 2066 struct xfs_log_iovec *vec; 2067 int i; 2068 2069 xfs_warn(mp, "log item: "); 2070 xfs_warn(mp, " type = 0x%x", lip->li_type); 2071 xfs_warn(mp, " flags = 0x%x", lip->li_flags); 2072 if (!lv) 2073 continue; 2074 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2075 xfs_warn(mp, " size = %d", lv->lv_size); 2076 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2077 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2078 2079 /* dump each iovec for the log item */ 2080 vec = lv->lv_iovecp; 2081 for (i = 0; i < lv->lv_niovecs; i++) { 2082 int dumplen = min(vec->i_len, 32); 2083 2084 xfs_warn(mp, " iovec[%d]", i); 2085 xfs_warn(mp, " type = 0x%x", vec->i_type); 2086 xfs_warn(mp, " len = %d", vec->i_len); 2087 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2088 xfs_hex_dump(vec->i_addr, dumplen); 2089 2090 vec++; 2091 } 2092 } 2093 } 2094 2095 /* 2096 * Calculate the potential space needed by the log vector. Each region gets 2097 * its own xlog_op_header_t and may need to be double word aligned. 2098 */ 2099 static int 2100 xlog_write_calc_vec_length( 2101 struct xlog_ticket *ticket, 2102 struct xfs_log_vec *log_vector) 2103 { 2104 struct xfs_log_vec *lv; 2105 int headers = 0; 2106 int len = 0; 2107 int i; 2108 2109 /* acct for start rec of xact */ 2110 if (ticket->t_flags & XLOG_TIC_INITED) 2111 headers++; 2112 2113 for (lv = log_vector; lv; lv = lv->lv_next) { 2114 /* we don't write ordered log vectors */ 2115 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2116 continue; 2117 2118 headers += lv->lv_niovecs; 2119 2120 for (i = 0; i < lv->lv_niovecs; i++) { 2121 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2122 2123 len += vecp->i_len; 2124 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2125 } 2126 } 2127 2128 ticket->t_res_num_ophdrs += headers; 2129 len += headers * sizeof(struct xlog_op_header); 2130 2131 return len; 2132 } 2133 2134 /* 2135 * If first write for transaction, insert start record We can't be trying to 2136 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2137 */ 2138 static int 2139 xlog_write_start_rec( 2140 struct xlog_op_header *ophdr, 2141 struct xlog_ticket *ticket) 2142 { 2143 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2144 return 0; 2145 2146 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2147 ophdr->oh_clientid = ticket->t_clientid; 2148 ophdr->oh_len = 0; 2149 ophdr->oh_flags = XLOG_START_TRANS; 2150 ophdr->oh_res2 = 0; 2151 2152 ticket->t_flags &= ~XLOG_TIC_INITED; 2153 2154 return sizeof(struct xlog_op_header); 2155 } 2156 2157 static xlog_op_header_t * 2158 xlog_write_setup_ophdr( 2159 struct xlog *log, 2160 struct xlog_op_header *ophdr, 2161 struct xlog_ticket *ticket, 2162 uint flags) 2163 { 2164 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2165 ophdr->oh_clientid = ticket->t_clientid; 2166 ophdr->oh_res2 = 0; 2167 2168 /* are we copying a commit or unmount record? */ 2169 ophdr->oh_flags = flags; 2170 2171 /* 2172 * We've seen logs corrupted with bad transaction client ids. This 2173 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2174 * and shut down the filesystem. 2175 */ 2176 switch (ophdr->oh_clientid) { 2177 case XFS_TRANSACTION: 2178 case XFS_VOLUME: 2179 case XFS_LOG: 2180 break; 2181 default: 2182 xfs_warn(log->l_mp, 2183 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2184 ophdr->oh_clientid, ticket); 2185 return NULL; 2186 } 2187 2188 return ophdr; 2189 } 2190 2191 /* 2192 * Set up the parameters of the region copy into the log. This has 2193 * to handle region write split across multiple log buffers - this 2194 * state is kept external to this function so that this code can 2195 * be written in an obvious, self documenting manner. 2196 */ 2197 static int 2198 xlog_write_setup_copy( 2199 struct xlog_ticket *ticket, 2200 struct xlog_op_header *ophdr, 2201 int space_available, 2202 int space_required, 2203 int *copy_off, 2204 int *copy_len, 2205 int *last_was_partial_copy, 2206 int *bytes_consumed) 2207 { 2208 int still_to_copy; 2209 2210 still_to_copy = space_required - *bytes_consumed; 2211 *copy_off = *bytes_consumed; 2212 2213 if (still_to_copy <= space_available) { 2214 /* write of region completes here */ 2215 *copy_len = still_to_copy; 2216 ophdr->oh_len = cpu_to_be32(*copy_len); 2217 if (*last_was_partial_copy) 2218 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2219 *last_was_partial_copy = 0; 2220 *bytes_consumed = 0; 2221 return 0; 2222 } 2223 2224 /* partial write of region, needs extra log op header reservation */ 2225 *copy_len = space_available; 2226 ophdr->oh_len = cpu_to_be32(*copy_len); 2227 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2228 if (*last_was_partial_copy) 2229 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2230 *bytes_consumed += *copy_len; 2231 (*last_was_partial_copy)++; 2232 2233 /* account for new log op header */ 2234 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2235 ticket->t_res_num_ophdrs++; 2236 2237 return sizeof(struct xlog_op_header); 2238 } 2239 2240 static int 2241 xlog_write_copy_finish( 2242 struct xlog *log, 2243 struct xlog_in_core *iclog, 2244 uint flags, 2245 int *record_cnt, 2246 int *data_cnt, 2247 int *partial_copy, 2248 int *partial_copy_len, 2249 int log_offset, 2250 struct xlog_in_core **commit_iclog) 2251 { 2252 if (*partial_copy) { 2253 /* 2254 * This iclog has already been marked WANT_SYNC by 2255 * xlog_state_get_iclog_space. 2256 */ 2257 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2258 *record_cnt = 0; 2259 *data_cnt = 0; 2260 return xlog_state_release_iclog(log, iclog); 2261 } 2262 2263 *partial_copy = 0; 2264 *partial_copy_len = 0; 2265 2266 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2267 /* no more space in this iclog - push it. */ 2268 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2269 *record_cnt = 0; 2270 *data_cnt = 0; 2271 2272 spin_lock(&log->l_icloglock); 2273 xlog_state_want_sync(log, iclog); 2274 spin_unlock(&log->l_icloglock); 2275 2276 if (!commit_iclog) 2277 return xlog_state_release_iclog(log, iclog); 2278 ASSERT(flags & XLOG_COMMIT_TRANS); 2279 *commit_iclog = iclog; 2280 } 2281 2282 return 0; 2283 } 2284 2285 /* 2286 * Write some region out to in-core log 2287 * 2288 * This will be called when writing externally provided regions or when 2289 * writing out a commit record for a given transaction. 2290 * 2291 * General algorithm: 2292 * 1. Find total length of this write. This may include adding to the 2293 * lengths passed in. 2294 * 2. Check whether we violate the tickets reservation. 2295 * 3. While writing to this iclog 2296 * A. Reserve as much space in this iclog as can get 2297 * B. If this is first write, save away start lsn 2298 * C. While writing this region: 2299 * 1. If first write of transaction, write start record 2300 * 2. Write log operation header (header per region) 2301 * 3. Find out if we can fit entire region into this iclog 2302 * 4. Potentially, verify destination memcpy ptr 2303 * 5. Memcpy (partial) region 2304 * 6. If partial copy, release iclog; otherwise, continue 2305 * copying more regions into current iclog 2306 * 4. Mark want sync bit (in simulation mode) 2307 * 5. Release iclog for potential flush to on-disk log. 2308 * 2309 * ERRORS: 2310 * 1. Panic if reservation is overrun. This should never happen since 2311 * reservation amounts are generated internal to the filesystem. 2312 * NOTES: 2313 * 1. Tickets are single threaded data structures. 2314 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2315 * syncing routine. When a single log_write region needs to span 2316 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2317 * on all log operation writes which don't contain the end of the 2318 * region. The XLOG_END_TRANS bit is used for the in-core log 2319 * operation which contains the end of the continued log_write region. 2320 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2321 * we don't really know exactly how much space will be used. As a result, 2322 * we don't update ic_offset until the end when we know exactly how many 2323 * bytes have been written out. 2324 */ 2325 int 2326 xlog_write( 2327 struct xlog *log, 2328 struct xfs_log_vec *log_vector, 2329 struct xlog_ticket *ticket, 2330 xfs_lsn_t *start_lsn, 2331 struct xlog_in_core **commit_iclog, 2332 uint flags) 2333 { 2334 struct xlog_in_core *iclog = NULL; 2335 struct xfs_log_iovec *vecp; 2336 struct xfs_log_vec *lv; 2337 int len; 2338 int index; 2339 int partial_copy = 0; 2340 int partial_copy_len = 0; 2341 int contwr = 0; 2342 int record_cnt = 0; 2343 int data_cnt = 0; 2344 int error; 2345 2346 *start_lsn = 0; 2347 2348 len = xlog_write_calc_vec_length(ticket, log_vector); 2349 2350 /* 2351 * Region headers and bytes are already accounted for. 2352 * We only need to take into account start records and 2353 * split regions in this function. 2354 */ 2355 if (ticket->t_flags & XLOG_TIC_INITED) 2356 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2357 2358 /* 2359 * Commit record headers need to be accounted for. These 2360 * come in as separate writes so are easy to detect. 2361 */ 2362 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2363 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2364 2365 if (ticket->t_curr_res < 0) { 2366 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2367 "ctx ticket reservation ran out. Need to up reservation"); 2368 xlog_print_tic_res(log->l_mp, ticket); 2369 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2370 } 2371 2372 index = 0; 2373 lv = log_vector; 2374 vecp = lv->lv_iovecp; 2375 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2376 void *ptr; 2377 int log_offset; 2378 2379 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2380 &contwr, &log_offset); 2381 if (error) 2382 return error; 2383 2384 ASSERT(log_offset <= iclog->ic_size - 1); 2385 ptr = iclog->ic_datap + log_offset; 2386 2387 /* start_lsn is the first lsn written to. That's all we need. */ 2388 if (!*start_lsn) 2389 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2390 2391 /* 2392 * This loop writes out as many regions as can fit in the amount 2393 * of space which was allocated by xlog_state_get_iclog_space(). 2394 */ 2395 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2396 struct xfs_log_iovec *reg; 2397 struct xlog_op_header *ophdr; 2398 int start_rec_copy; 2399 int copy_len; 2400 int copy_off; 2401 bool ordered = false; 2402 2403 /* ordered log vectors have no regions to write */ 2404 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2405 ASSERT(lv->lv_niovecs == 0); 2406 ordered = true; 2407 goto next_lv; 2408 } 2409 2410 reg = &vecp[index]; 2411 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2412 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2413 2414 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2415 if (start_rec_copy) { 2416 record_cnt++; 2417 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2418 start_rec_copy); 2419 } 2420 2421 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2422 if (!ophdr) 2423 return -EIO; 2424 2425 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2426 sizeof(struct xlog_op_header)); 2427 2428 len += xlog_write_setup_copy(ticket, ophdr, 2429 iclog->ic_size-log_offset, 2430 reg->i_len, 2431 ©_off, ©_len, 2432 &partial_copy, 2433 &partial_copy_len); 2434 xlog_verify_dest_ptr(log, ptr); 2435 2436 /* 2437 * Copy region. 2438 * 2439 * Unmount records just log an opheader, so can have 2440 * empty payloads with no data region to copy. Hence we 2441 * only copy the payload if the vector says it has data 2442 * to copy. 2443 */ 2444 ASSERT(copy_len >= 0); 2445 if (copy_len > 0) { 2446 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2447 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2448 copy_len); 2449 } 2450 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2451 record_cnt++; 2452 data_cnt += contwr ? copy_len : 0; 2453 2454 error = xlog_write_copy_finish(log, iclog, flags, 2455 &record_cnt, &data_cnt, 2456 &partial_copy, 2457 &partial_copy_len, 2458 log_offset, 2459 commit_iclog); 2460 if (error) 2461 return error; 2462 2463 /* 2464 * if we had a partial copy, we need to get more iclog 2465 * space but we don't want to increment the region 2466 * index because there is still more is this region to 2467 * write. 2468 * 2469 * If we completed writing this region, and we flushed 2470 * the iclog (indicated by resetting of the record 2471 * count), then we also need to get more log space. If 2472 * this was the last record, though, we are done and 2473 * can just return. 2474 */ 2475 if (partial_copy) 2476 break; 2477 2478 if (++index == lv->lv_niovecs) { 2479 next_lv: 2480 lv = lv->lv_next; 2481 index = 0; 2482 if (lv) 2483 vecp = lv->lv_iovecp; 2484 } 2485 if (record_cnt == 0 && ordered == false) { 2486 if (!lv) 2487 return 0; 2488 break; 2489 } 2490 } 2491 } 2492 2493 ASSERT(len == 0); 2494 2495 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2496 if (!commit_iclog) 2497 return xlog_state_release_iclog(log, iclog); 2498 2499 ASSERT(flags & XLOG_COMMIT_TRANS); 2500 *commit_iclog = iclog; 2501 return 0; 2502 } 2503 2504 2505 /***************************************************************************** 2506 * 2507 * State Machine functions 2508 * 2509 ***************************************************************************** 2510 */ 2511 2512 /* Clean iclogs starting from the head. This ordering must be 2513 * maintained, so an iclog doesn't become ACTIVE beyond one that 2514 * is SYNCING. This is also required to maintain the notion that we use 2515 * a ordered wait queue to hold off would be writers to the log when every 2516 * iclog is trying to sync to disk. 2517 * 2518 * State Change: DIRTY -> ACTIVE 2519 */ 2520 STATIC void 2521 xlog_state_clean_log( 2522 struct xlog *log) 2523 { 2524 xlog_in_core_t *iclog; 2525 int changed = 0; 2526 2527 iclog = log->l_iclog; 2528 do { 2529 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2530 iclog->ic_state = XLOG_STATE_ACTIVE; 2531 iclog->ic_offset = 0; 2532 ASSERT(iclog->ic_callback == NULL); 2533 /* 2534 * If the number of ops in this iclog indicate it just 2535 * contains the dummy transaction, we can 2536 * change state into IDLE (the second time around). 2537 * Otherwise we should change the state into 2538 * NEED a dummy. 2539 * We don't need to cover the dummy. 2540 */ 2541 if (!changed && 2542 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2543 XLOG_COVER_OPS)) { 2544 changed = 1; 2545 } else { 2546 /* 2547 * We have two dirty iclogs so start over 2548 * This could also be num of ops indicates 2549 * this is not the dummy going out. 2550 */ 2551 changed = 2; 2552 } 2553 iclog->ic_header.h_num_logops = 0; 2554 memset(iclog->ic_header.h_cycle_data, 0, 2555 sizeof(iclog->ic_header.h_cycle_data)); 2556 iclog->ic_header.h_lsn = 0; 2557 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2558 /* do nothing */; 2559 else 2560 break; /* stop cleaning */ 2561 iclog = iclog->ic_next; 2562 } while (iclog != log->l_iclog); 2563 2564 /* log is locked when we are called */ 2565 /* 2566 * Change state for the dummy log recording. 2567 * We usually go to NEED. But we go to NEED2 if the changed indicates 2568 * we are done writing the dummy record. 2569 * If we are done with the second dummy recored (DONE2), then 2570 * we go to IDLE. 2571 */ 2572 if (changed) { 2573 switch (log->l_covered_state) { 2574 case XLOG_STATE_COVER_IDLE: 2575 case XLOG_STATE_COVER_NEED: 2576 case XLOG_STATE_COVER_NEED2: 2577 log->l_covered_state = XLOG_STATE_COVER_NEED; 2578 break; 2579 2580 case XLOG_STATE_COVER_DONE: 2581 if (changed == 1) 2582 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2583 else 2584 log->l_covered_state = XLOG_STATE_COVER_NEED; 2585 break; 2586 2587 case XLOG_STATE_COVER_DONE2: 2588 if (changed == 1) 2589 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2590 else 2591 log->l_covered_state = XLOG_STATE_COVER_NEED; 2592 break; 2593 2594 default: 2595 ASSERT(0); 2596 } 2597 } 2598 } /* xlog_state_clean_log */ 2599 2600 STATIC xfs_lsn_t 2601 xlog_get_lowest_lsn( 2602 struct xlog *log) 2603 { 2604 xlog_in_core_t *lsn_log; 2605 xfs_lsn_t lowest_lsn, lsn; 2606 2607 lsn_log = log->l_iclog; 2608 lowest_lsn = 0; 2609 do { 2610 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2611 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2612 if ((lsn && !lowest_lsn) || 2613 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2614 lowest_lsn = lsn; 2615 } 2616 } 2617 lsn_log = lsn_log->ic_next; 2618 } while (lsn_log != log->l_iclog); 2619 return lowest_lsn; 2620 } 2621 2622 2623 STATIC void 2624 xlog_state_do_callback( 2625 struct xlog *log, 2626 int aborted, 2627 struct xlog_in_core *ciclog) 2628 { 2629 xlog_in_core_t *iclog; 2630 xlog_in_core_t *first_iclog; /* used to know when we've 2631 * processed all iclogs once */ 2632 xfs_log_callback_t *cb, *cb_next; 2633 int flushcnt = 0; 2634 xfs_lsn_t lowest_lsn; 2635 int ioerrors; /* counter: iclogs with errors */ 2636 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2637 int funcdidcallbacks; /* flag: function did callbacks */ 2638 int repeats; /* for issuing console warnings if 2639 * looping too many times */ 2640 int wake = 0; 2641 2642 spin_lock(&log->l_icloglock); 2643 first_iclog = iclog = log->l_iclog; 2644 ioerrors = 0; 2645 funcdidcallbacks = 0; 2646 repeats = 0; 2647 2648 do { 2649 /* 2650 * Scan all iclogs starting with the one pointed to by the 2651 * log. Reset this starting point each time the log is 2652 * unlocked (during callbacks). 2653 * 2654 * Keep looping through iclogs until one full pass is made 2655 * without running any callbacks. 2656 */ 2657 first_iclog = log->l_iclog; 2658 iclog = log->l_iclog; 2659 loopdidcallbacks = 0; 2660 repeats++; 2661 2662 do { 2663 2664 /* skip all iclogs in the ACTIVE & DIRTY states */ 2665 if (iclog->ic_state & 2666 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2667 iclog = iclog->ic_next; 2668 continue; 2669 } 2670 2671 /* 2672 * Between marking a filesystem SHUTDOWN and stopping 2673 * the log, we do flush all iclogs to disk (if there 2674 * wasn't a log I/O error). So, we do want things to 2675 * go smoothly in case of just a SHUTDOWN w/o a 2676 * LOG_IO_ERROR. 2677 */ 2678 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2679 /* 2680 * Can only perform callbacks in order. Since 2681 * this iclog is not in the DONE_SYNC/ 2682 * DO_CALLBACK state, we skip the rest and 2683 * just try to clean up. If we set our iclog 2684 * to DO_CALLBACK, we will not process it when 2685 * we retry since a previous iclog is in the 2686 * CALLBACK and the state cannot change since 2687 * we are holding the l_icloglock. 2688 */ 2689 if (!(iclog->ic_state & 2690 (XLOG_STATE_DONE_SYNC | 2691 XLOG_STATE_DO_CALLBACK))) { 2692 if (ciclog && (ciclog->ic_state == 2693 XLOG_STATE_DONE_SYNC)) { 2694 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2695 } 2696 break; 2697 } 2698 /* 2699 * We now have an iclog that is in either the 2700 * DO_CALLBACK or DONE_SYNC states. The other 2701 * states (WANT_SYNC, SYNCING, or CALLBACK were 2702 * caught by the above if and are going to 2703 * clean (i.e. we aren't doing their callbacks) 2704 * see the above if. 2705 */ 2706 2707 /* 2708 * We will do one more check here to see if we 2709 * have chased our tail around. 2710 */ 2711 2712 lowest_lsn = xlog_get_lowest_lsn(log); 2713 if (lowest_lsn && 2714 XFS_LSN_CMP(lowest_lsn, 2715 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2716 iclog = iclog->ic_next; 2717 continue; /* Leave this iclog for 2718 * another thread */ 2719 } 2720 2721 iclog->ic_state = XLOG_STATE_CALLBACK; 2722 2723 2724 /* 2725 * Completion of a iclog IO does not imply that 2726 * a transaction has completed, as transactions 2727 * can be large enough to span many iclogs. We 2728 * cannot change the tail of the log half way 2729 * through a transaction as this may be the only 2730 * transaction in the log and moving th etail to 2731 * point to the middle of it will prevent 2732 * recovery from finding the start of the 2733 * transaction. Hence we should only update the 2734 * last_sync_lsn if this iclog contains 2735 * transaction completion callbacks on it. 2736 * 2737 * We have to do this before we drop the 2738 * icloglock to ensure we are the only one that 2739 * can update it. 2740 */ 2741 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2742 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2743 if (iclog->ic_callback) 2744 atomic64_set(&log->l_last_sync_lsn, 2745 be64_to_cpu(iclog->ic_header.h_lsn)); 2746 2747 } else 2748 ioerrors++; 2749 2750 spin_unlock(&log->l_icloglock); 2751 2752 /* 2753 * Keep processing entries in the callback list until 2754 * we come around and it is empty. We need to 2755 * atomically see that the list is empty and change the 2756 * state to DIRTY so that we don't miss any more 2757 * callbacks being added. 2758 */ 2759 spin_lock(&iclog->ic_callback_lock); 2760 cb = iclog->ic_callback; 2761 while (cb) { 2762 iclog->ic_callback_tail = &(iclog->ic_callback); 2763 iclog->ic_callback = NULL; 2764 spin_unlock(&iclog->ic_callback_lock); 2765 2766 /* perform callbacks in the order given */ 2767 for (; cb; cb = cb_next) { 2768 cb_next = cb->cb_next; 2769 cb->cb_func(cb->cb_arg, aborted); 2770 } 2771 spin_lock(&iclog->ic_callback_lock); 2772 cb = iclog->ic_callback; 2773 } 2774 2775 loopdidcallbacks++; 2776 funcdidcallbacks++; 2777 2778 spin_lock(&log->l_icloglock); 2779 ASSERT(iclog->ic_callback == NULL); 2780 spin_unlock(&iclog->ic_callback_lock); 2781 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2782 iclog->ic_state = XLOG_STATE_DIRTY; 2783 2784 /* 2785 * Transition from DIRTY to ACTIVE if applicable. 2786 * NOP if STATE_IOERROR. 2787 */ 2788 xlog_state_clean_log(log); 2789 2790 /* wake up threads waiting in xfs_log_force() */ 2791 wake_up_all(&iclog->ic_force_wait); 2792 2793 iclog = iclog->ic_next; 2794 } while (first_iclog != iclog); 2795 2796 if (repeats > 5000) { 2797 flushcnt += repeats; 2798 repeats = 0; 2799 xfs_warn(log->l_mp, 2800 "%s: possible infinite loop (%d iterations)", 2801 __func__, flushcnt); 2802 } 2803 } while (!ioerrors && loopdidcallbacks); 2804 2805 #ifdef DEBUG 2806 /* 2807 * Make one last gasp attempt to see if iclogs are being left in limbo. 2808 * If the above loop finds an iclog earlier than the current iclog and 2809 * in one of the syncing states, the current iclog is put into 2810 * DO_CALLBACK and the callbacks are deferred to the completion of the 2811 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2812 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2813 * states. 2814 * 2815 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2816 * for ic_state == SYNCING. 2817 */ 2818 if (funcdidcallbacks) { 2819 first_iclog = iclog = log->l_iclog; 2820 do { 2821 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2822 /* 2823 * Terminate the loop if iclogs are found in states 2824 * which will cause other threads to clean up iclogs. 2825 * 2826 * SYNCING - i/o completion will go through logs 2827 * DONE_SYNC - interrupt thread should be waiting for 2828 * l_icloglock 2829 * IOERROR - give up hope all ye who enter here 2830 */ 2831 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2832 iclog->ic_state & XLOG_STATE_SYNCING || 2833 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2834 iclog->ic_state == XLOG_STATE_IOERROR ) 2835 break; 2836 iclog = iclog->ic_next; 2837 } while (first_iclog != iclog); 2838 } 2839 #endif 2840 2841 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2842 wake = 1; 2843 spin_unlock(&log->l_icloglock); 2844 2845 if (wake) 2846 wake_up_all(&log->l_flush_wait); 2847 } 2848 2849 2850 /* 2851 * Finish transitioning this iclog to the dirty state. 2852 * 2853 * Make sure that we completely execute this routine only when this is 2854 * the last call to the iclog. There is a good chance that iclog flushes, 2855 * when we reach the end of the physical log, get turned into 2 separate 2856 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2857 * routine. By using the reference count bwritecnt, we guarantee that only 2858 * the second completion goes through. 2859 * 2860 * Callbacks could take time, so they are done outside the scope of the 2861 * global state machine log lock. 2862 */ 2863 STATIC void 2864 xlog_state_done_syncing( 2865 xlog_in_core_t *iclog, 2866 int aborted) 2867 { 2868 struct xlog *log = iclog->ic_log; 2869 2870 spin_lock(&log->l_icloglock); 2871 2872 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2873 iclog->ic_state == XLOG_STATE_IOERROR); 2874 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2875 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2876 2877 2878 /* 2879 * If we got an error, either on the first buffer, or in the case of 2880 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2881 * and none should ever be attempted to be written to disk 2882 * again. 2883 */ 2884 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2885 if (--iclog->ic_bwritecnt == 1) { 2886 spin_unlock(&log->l_icloglock); 2887 return; 2888 } 2889 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2890 } 2891 2892 /* 2893 * Someone could be sleeping prior to writing out the next 2894 * iclog buffer, we wake them all, one will get to do the 2895 * I/O, the others get to wait for the result. 2896 */ 2897 wake_up_all(&iclog->ic_write_wait); 2898 spin_unlock(&log->l_icloglock); 2899 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2900 } /* xlog_state_done_syncing */ 2901 2902 2903 /* 2904 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2905 * sleep. We wait on the flush queue on the head iclog as that should be 2906 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2907 * we will wait here and all new writes will sleep until a sync completes. 2908 * 2909 * The in-core logs are used in a circular fashion. They are not used 2910 * out-of-order even when an iclog past the head is free. 2911 * 2912 * return: 2913 * * log_offset where xlog_write() can start writing into the in-core 2914 * log's data space. 2915 * * in-core log pointer to which xlog_write() should write. 2916 * * boolean indicating this is a continued write to an in-core log. 2917 * If this is the last write, then the in-core log's offset field 2918 * needs to be incremented, depending on the amount of data which 2919 * is copied. 2920 */ 2921 STATIC int 2922 xlog_state_get_iclog_space( 2923 struct xlog *log, 2924 int len, 2925 struct xlog_in_core **iclogp, 2926 struct xlog_ticket *ticket, 2927 int *continued_write, 2928 int *logoffsetp) 2929 { 2930 int log_offset; 2931 xlog_rec_header_t *head; 2932 xlog_in_core_t *iclog; 2933 int error; 2934 2935 restart: 2936 spin_lock(&log->l_icloglock); 2937 if (XLOG_FORCED_SHUTDOWN(log)) { 2938 spin_unlock(&log->l_icloglock); 2939 return -EIO; 2940 } 2941 2942 iclog = log->l_iclog; 2943 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2944 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2945 2946 /* Wait for log writes to have flushed */ 2947 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2948 goto restart; 2949 } 2950 2951 head = &iclog->ic_header; 2952 2953 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2954 log_offset = iclog->ic_offset; 2955 2956 /* On the 1st write to an iclog, figure out lsn. This works 2957 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2958 * committing to. If the offset is set, that's how many blocks 2959 * must be written. 2960 */ 2961 if (log_offset == 0) { 2962 ticket->t_curr_res -= log->l_iclog_hsize; 2963 xlog_tic_add_region(ticket, 2964 log->l_iclog_hsize, 2965 XLOG_REG_TYPE_LRHEADER); 2966 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2967 head->h_lsn = cpu_to_be64( 2968 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2969 ASSERT(log->l_curr_block >= 0); 2970 } 2971 2972 /* If there is enough room to write everything, then do it. Otherwise, 2973 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2974 * bit is on, so this will get flushed out. Don't update ic_offset 2975 * until you know exactly how many bytes get copied. Therefore, wait 2976 * until later to update ic_offset. 2977 * 2978 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2979 * can fit into remaining data section. 2980 */ 2981 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2982 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2983 2984 /* 2985 * If I'm the only one writing to this iclog, sync it to disk. 2986 * We need to do an atomic compare and decrement here to avoid 2987 * racing with concurrent atomic_dec_and_lock() calls in 2988 * xlog_state_release_iclog() when there is more than one 2989 * reference to the iclog. 2990 */ 2991 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2992 /* we are the only one */ 2993 spin_unlock(&log->l_icloglock); 2994 error = xlog_state_release_iclog(log, iclog); 2995 if (error) 2996 return error; 2997 } else { 2998 spin_unlock(&log->l_icloglock); 2999 } 3000 goto restart; 3001 } 3002 3003 /* Do we have enough room to write the full amount in the remainder 3004 * of this iclog? Or must we continue a write on the next iclog and 3005 * mark this iclog as completely taken? In the case where we switch 3006 * iclogs (to mark it taken), this particular iclog will release/sync 3007 * to disk in xlog_write(). 3008 */ 3009 if (len <= iclog->ic_size - iclog->ic_offset) { 3010 *continued_write = 0; 3011 iclog->ic_offset += len; 3012 } else { 3013 *continued_write = 1; 3014 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3015 } 3016 *iclogp = iclog; 3017 3018 ASSERT(iclog->ic_offset <= iclog->ic_size); 3019 spin_unlock(&log->l_icloglock); 3020 3021 *logoffsetp = log_offset; 3022 return 0; 3023 } /* xlog_state_get_iclog_space */ 3024 3025 /* The first cnt-1 times through here we don't need to 3026 * move the grant write head because the permanent 3027 * reservation has reserved cnt times the unit amount. 3028 * Release part of current permanent unit reservation and 3029 * reset current reservation to be one units worth. Also 3030 * move grant reservation head forward. 3031 */ 3032 STATIC void 3033 xlog_regrant_reserve_log_space( 3034 struct xlog *log, 3035 struct xlog_ticket *ticket) 3036 { 3037 trace_xfs_log_regrant_reserve_enter(log, ticket); 3038 3039 if (ticket->t_cnt > 0) 3040 ticket->t_cnt--; 3041 3042 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3043 ticket->t_curr_res); 3044 xlog_grant_sub_space(log, &log->l_write_head.grant, 3045 ticket->t_curr_res); 3046 ticket->t_curr_res = ticket->t_unit_res; 3047 xlog_tic_reset_res(ticket); 3048 3049 trace_xfs_log_regrant_reserve_sub(log, ticket); 3050 3051 /* just return if we still have some of the pre-reserved space */ 3052 if (ticket->t_cnt > 0) 3053 return; 3054 3055 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3056 ticket->t_unit_res); 3057 3058 trace_xfs_log_regrant_reserve_exit(log, ticket); 3059 3060 ticket->t_curr_res = ticket->t_unit_res; 3061 xlog_tic_reset_res(ticket); 3062 } /* xlog_regrant_reserve_log_space */ 3063 3064 3065 /* 3066 * Give back the space left from a reservation. 3067 * 3068 * All the information we need to make a correct determination of space left 3069 * is present. For non-permanent reservations, things are quite easy. The 3070 * count should have been decremented to zero. We only need to deal with the 3071 * space remaining in the current reservation part of the ticket. If the 3072 * ticket contains a permanent reservation, there may be left over space which 3073 * needs to be released. A count of N means that N-1 refills of the current 3074 * reservation can be done before we need to ask for more space. The first 3075 * one goes to fill up the first current reservation. Once we run out of 3076 * space, the count will stay at zero and the only space remaining will be 3077 * in the current reservation field. 3078 */ 3079 STATIC void 3080 xlog_ungrant_log_space( 3081 struct xlog *log, 3082 struct xlog_ticket *ticket) 3083 { 3084 int bytes; 3085 3086 if (ticket->t_cnt > 0) 3087 ticket->t_cnt--; 3088 3089 trace_xfs_log_ungrant_enter(log, ticket); 3090 trace_xfs_log_ungrant_sub(log, ticket); 3091 3092 /* 3093 * If this is a permanent reservation ticket, we may be able to free 3094 * up more space based on the remaining count. 3095 */ 3096 bytes = ticket->t_curr_res; 3097 if (ticket->t_cnt > 0) { 3098 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3099 bytes += ticket->t_unit_res*ticket->t_cnt; 3100 } 3101 3102 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3103 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3104 3105 trace_xfs_log_ungrant_exit(log, ticket); 3106 3107 xfs_log_space_wake(log->l_mp); 3108 } 3109 3110 /* 3111 * Flush iclog to disk if this is the last reference to the given iclog and 3112 * the WANT_SYNC bit is set. 3113 * 3114 * When this function is entered, the iclog is not necessarily in the 3115 * WANT_SYNC state. It may be sitting around waiting to get filled. 3116 * 3117 * 3118 */ 3119 STATIC int 3120 xlog_state_release_iclog( 3121 struct xlog *log, 3122 struct xlog_in_core *iclog) 3123 { 3124 int sync = 0; /* do we sync? */ 3125 3126 if (iclog->ic_state & XLOG_STATE_IOERROR) 3127 return -EIO; 3128 3129 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3130 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3131 return 0; 3132 3133 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3134 spin_unlock(&log->l_icloglock); 3135 return -EIO; 3136 } 3137 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3138 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3139 3140 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3141 /* update tail before writing to iclog */ 3142 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3143 sync++; 3144 iclog->ic_state = XLOG_STATE_SYNCING; 3145 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3146 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3147 /* cycle incremented when incrementing curr_block */ 3148 } 3149 spin_unlock(&log->l_icloglock); 3150 3151 /* 3152 * We let the log lock go, so it's possible that we hit a log I/O 3153 * error or some other SHUTDOWN condition that marks the iclog 3154 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3155 * this iclog has consistent data, so we ignore IOERROR 3156 * flags after this point. 3157 */ 3158 if (sync) 3159 return xlog_sync(log, iclog); 3160 return 0; 3161 } /* xlog_state_release_iclog */ 3162 3163 3164 /* 3165 * This routine will mark the current iclog in the ring as WANT_SYNC 3166 * and move the current iclog pointer to the next iclog in the ring. 3167 * When this routine is called from xlog_state_get_iclog_space(), the 3168 * exact size of the iclog has not yet been determined. All we know is 3169 * that every data block. We have run out of space in this log record. 3170 */ 3171 STATIC void 3172 xlog_state_switch_iclogs( 3173 struct xlog *log, 3174 struct xlog_in_core *iclog, 3175 int eventual_size) 3176 { 3177 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3178 if (!eventual_size) 3179 eventual_size = iclog->ic_offset; 3180 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3181 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3182 log->l_prev_block = log->l_curr_block; 3183 log->l_prev_cycle = log->l_curr_cycle; 3184 3185 /* roll log?: ic_offset changed later */ 3186 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3187 3188 /* Round up to next log-sunit */ 3189 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3190 log->l_mp->m_sb.sb_logsunit > 1) { 3191 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3192 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3193 } 3194 3195 if (log->l_curr_block >= log->l_logBBsize) { 3196 /* 3197 * Rewind the current block before the cycle is bumped to make 3198 * sure that the combined LSN never transiently moves forward 3199 * when the log wraps to the next cycle. This is to support the 3200 * unlocked sample of these fields from xlog_valid_lsn(). Most 3201 * other cases should acquire l_icloglock. 3202 */ 3203 log->l_curr_block -= log->l_logBBsize; 3204 ASSERT(log->l_curr_block >= 0); 3205 smp_wmb(); 3206 log->l_curr_cycle++; 3207 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3208 log->l_curr_cycle++; 3209 } 3210 ASSERT(iclog == log->l_iclog); 3211 log->l_iclog = iclog->ic_next; 3212 } /* xlog_state_switch_iclogs */ 3213 3214 /* 3215 * Write out all data in the in-core log as of this exact moment in time. 3216 * 3217 * Data may be written to the in-core log during this call. However, 3218 * we don't guarantee this data will be written out. A change from past 3219 * implementation means this routine will *not* write out zero length LRs. 3220 * 3221 * Basically, we try and perform an intelligent scan of the in-core logs. 3222 * If we determine there is no flushable data, we just return. There is no 3223 * flushable data if: 3224 * 3225 * 1. the current iclog is active and has no data; the previous iclog 3226 * is in the active or dirty state. 3227 * 2. the current iclog is drity, and the previous iclog is in the 3228 * active or dirty state. 3229 * 3230 * We may sleep if: 3231 * 3232 * 1. the current iclog is not in the active nor dirty state. 3233 * 2. the current iclog dirty, and the previous iclog is not in the 3234 * active nor dirty state. 3235 * 3. the current iclog is active, and there is another thread writing 3236 * to this particular iclog. 3237 * 4. a) the current iclog is active and has no other writers 3238 * b) when we return from flushing out this iclog, it is still 3239 * not in the active nor dirty state. 3240 */ 3241 int 3242 _xfs_log_force( 3243 struct xfs_mount *mp, 3244 uint flags, 3245 int *log_flushed) 3246 { 3247 struct xlog *log = mp->m_log; 3248 struct xlog_in_core *iclog; 3249 xfs_lsn_t lsn; 3250 3251 XFS_STATS_INC(mp, xs_log_force); 3252 3253 xlog_cil_force(log); 3254 3255 spin_lock(&log->l_icloglock); 3256 3257 iclog = log->l_iclog; 3258 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3259 spin_unlock(&log->l_icloglock); 3260 return -EIO; 3261 } 3262 3263 /* If the head iclog is not active nor dirty, we just attach 3264 * ourselves to the head and go to sleep. 3265 */ 3266 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3267 iclog->ic_state == XLOG_STATE_DIRTY) { 3268 /* 3269 * If the head is dirty or (active and empty), then 3270 * we need to look at the previous iclog. If the previous 3271 * iclog is active or dirty we are done. There is nothing 3272 * to sync out. Otherwise, we attach ourselves to the 3273 * previous iclog and go to sleep. 3274 */ 3275 if (iclog->ic_state == XLOG_STATE_DIRTY || 3276 (atomic_read(&iclog->ic_refcnt) == 0 3277 && iclog->ic_offset == 0)) { 3278 iclog = iclog->ic_prev; 3279 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3280 iclog->ic_state == XLOG_STATE_DIRTY) 3281 goto no_sleep; 3282 else 3283 goto maybe_sleep; 3284 } else { 3285 if (atomic_read(&iclog->ic_refcnt) == 0) { 3286 /* We are the only one with access to this 3287 * iclog. Flush it out now. There should 3288 * be a roundoff of zero to show that someone 3289 * has already taken care of the roundoff from 3290 * the previous sync. 3291 */ 3292 atomic_inc(&iclog->ic_refcnt); 3293 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3294 xlog_state_switch_iclogs(log, iclog, 0); 3295 spin_unlock(&log->l_icloglock); 3296 3297 if (xlog_state_release_iclog(log, iclog)) 3298 return -EIO; 3299 3300 if (log_flushed) 3301 *log_flushed = 1; 3302 spin_lock(&log->l_icloglock); 3303 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3304 iclog->ic_state != XLOG_STATE_DIRTY) 3305 goto maybe_sleep; 3306 else 3307 goto no_sleep; 3308 } else { 3309 /* Someone else is writing to this iclog. 3310 * Use its call to flush out the data. However, 3311 * the other thread may not force out this LR, 3312 * so we mark it WANT_SYNC. 3313 */ 3314 xlog_state_switch_iclogs(log, iclog, 0); 3315 goto maybe_sleep; 3316 } 3317 } 3318 } 3319 3320 /* By the time we come around again, the iclog could've been filled 3321 * which would give it another lsn. If we have a new lsn, just 3322 * return because the relevant data has been flushed. 3323 */ 3324 maybe_sleep: 3325 if (flags & XFS_LOG_SYNC) { 3326 /* 3327 * We must check if we're shutting down here, before 3328 * we wait, while we're holding the l_icloglock. 3329 * Then we check again after waking up, in case our 3330 * sleep was disturbed by a bad news. 3331 */ 3332 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3333 spin_unlock(&log->l_icloglock); 3334 return -EIO; 3335 } 3336 XFS_STATS_INC(mp, xs_log_force_sleep); 3337 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3338 /* 3339 * No need to grab the log lock here since we're 3340 * only deciding whether or not to return EIO 3341 * and the memory read should be atomic. 3342 */ 3343 if (iclog->ic_state & XLOG_STATE_IOERROR) 3344 return -EIO; 3345 if (log_flushed) 3346 *log_flushed = 1; 3347 } else { 3348 3349 no_sleep: 3350 spin_unlock(&log->l_icloglock); 3351 } 3352 return 0; 3353 } 3354 3355 /* 3356 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3357 * about errors or whether the log was flushed or not. This is the normal 3358 * interface to use when trying to unpin items or move the log forward. 3359 */ 3360 void 3361 xfs_log_force( 3362 xfs_mount_t *mp, 3363 uint flags) 3364 { 3365 trace_xfs_log_force(mp, 0, _RET_IP_); 3366 _xfs_log_force(mp, flags, NULL); 3367 } 3368 3369 /* 3370 * Force the in-core log to disk for a specific LSN. 3371 * 3372 * Find in-core log with lsn. 3373 * If it is in the DIRTY state, just return. 3374 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3375 * state and go to sleep or return. 3376 * If it is in any other state, go to sleep or return. 3377 * 3378 * Synchronous forces are implemented with a signal variable. All callers 3379 * to force a given lsn to disk will wait on a the sv attached to the 3380 * specific in-core log. When given in-core log finally completes its 3381 * write to disk, that thread will wake up all threads waiting on the 3382 * sv. 3383 */ 3384 int 3385 _xfs_log_force_lsn( 3386 struct xfs_mount *mp, 3387 xfs_lsn_t lsn, 3388 uint flags, 3389 int *log_flushed) 3390 { 3391 struct xlog *log = mp->m_log; 3392 struct xlog_in_core *iclog; 3393 int already_slept = 0; 3394 3395 ASSERT(lsn != 0); 3396 3397 XFS_STATS_INC(mp, xs_log_force); 3398 3399 lsn = xlog_cil_force_lsn(log, lsn); 3400 if (lsn == NULLCOMMITLSN) 3401 return 0; 3402 3403 try_again: 3404 spin_lock(&log->l_icloglock); 3405 iclog = log->l_iclog; 3406 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3407 spin_unlock(&log->l_icloglock); 3408 return -EIO; 3409 } 3410 3411 do { 3412 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3413 iclog = iclog->ic_next; 3414 continue; 3415 } 3416 3417 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3418 spin_unlock(&log->l_icloglock); 3419 return 0; 3420 } 3421 3422 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3423 /* 3424 * We sleep here if we haven't already slept (e.g. 3425 * this is the first time we've looked at the correct 3426 * iclog buf) and the buffer before us is going to 3427 * be sync'ed. The reason for this is that if we 3428 * are doing sync transactions here, by waiting for 3429 * the previous I/O to complete, we can allow a few 3430 * more transactions into this iclog before we close 3431 * it down. 3432 * 3433 * Otherwise, we mark the buffer WANT_SYNC, and bump 3434 * up the refcnt so we can release the log (which 3435 * drops the ref count). The state switch keeps new 3436 * transaction commits from using this buffer. When 3437 * the current commits finish writing into the buffer, 3438 * the refcount will drop to zero and the buffer will 3439 * go out then. 3440 */ 3441 if (!already_slept && 3442 (iclog->ic_prev->ic_state & 3443 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3444 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3445 3446 XFS_STATS_INC(mp, xs_log_force_sleep); 3447 3448 xlog_wait(&iclog->ic_prev->ic_write_wait, 3449 &log->l_icloglock); 3450 if (log_flushed) 3451 *log_flushed = 1; 3452 already_slept = 1; 3453 goto try_again; 3454 } 3455 atomic_inc(&iclog->ic_refcnt); 3456 xlog_state_switch_iclogs(log, iclog, 0); 3457 spin_unlock(&log->l_icloglock); 3458 if (xlog_state_release_iclog(log, iclog)) 3459 return -EIO; 3460 if (log_flushed) 3461 *log_flushed = 1; 3462 spin_lock(&log->l_icloglock); 3463 } 3464 3465 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3466 !(iclog->ic_state & 3467 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3468 /* 3469 * Don't wait on completion if we know that we've 3470 * gotten a log write error. 3471 */ 3472 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3473 spin_unlock(&log->l_icloglock); 3474 return -EIO; 3475 } 3476 XFS_STATS_INC(mp, xs_log_force_sleep); 3477 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3478 /* 3479 * No need to grab the log lock here since we're 3480 * only deciding whether or not to return EIO 3481 * and the memory read should be atomic. 3482 */ 3483 if (iclog->ic_state & XLOG_STATE_IOERROR) 3484 return -EIO; 3485 3486 if (log_flushed) 3487 *log_flushed = 1; 3488 } else { /* just return */ 3489 spin_unlock(&log->l_icloglock); 3490 } 3491 3492 return 0; 3493 } while (iclog != log->l_iclog); 3494 3495 spin_unlock(&log->l_icloglock); 3496 return 0; 3497 } 3498 3499 /* 3500 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3501 * about errors or whether the log was flushed or not. This is the normal 3502 * interface to use when trying to unpin items or move the log forward. 3503 */ 3504 void 3505 xfs_log_force_lsn( 3506 xfs_mount_t *mp, 3507 xfs_lsn_t lsn, 3508 uint flags) 3509 { 3510 trace_xfs_log_force(mp, lsn, _RET_IP_); 3511 _xfs_log_force_lsn(mp, lsn, flags, NULL); 3512 } 3513 3514 /* 3515 * Called when we want to mark the current iclog as being ready to sync to 3516 * disk. 3517 */ 3518 STATIC void 3519 xlog_state_want_sync( 3520 struct xlog *log, 3521 struct xlog_in_core *iclog) 3522 { 3523 assert_spin_locked(&log->l_icloglock); 3524 3525 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3526 xlog_state_switch_iclogs(log, iclog, 0); 3527 } else { 3528 ASSERT(iclog->ic_state & 3529 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3530 } 3531 } 3532 3533 3534 /***************************************************************************** 3535 * 3536 * TICKET functions 3537 * 3538 ***************************************************************************** 3539 */ 3540 3541 /* 3542 * Free a used ticket when its refcount falls to zero. 3543 */ 3544 void 3545 xfs_log_ticket_put( 3546 xlog_ticket_t *ticket) 3547 { 3548 ASSERT(atomic_read(&ticket->t_ref) > 0); 3549 if (atomic_dec_and_test(&ticket->t_ref)) 3550 kmem_zone_free(xfs_log_ticket_zone, ticket); 3551 } 3552 3553 xlog_ticket_t * 3554 xfs_log_ticket_get( 3555 xlog_ticket_t *ticket) 3556 { 3557 ASSERT(atomic_read(&ticket->t_ref) > 0); 3558 atomic_inc(&ticket->t_ref); 3559 return ticket; 3560 } 3561 3562 /* 3563 * Figure out the total log space unit (in bytes) that would be 3564 * required for a log ticket. 3565 */ 3566 int 3567 xfs_log_calc_unit_res( 3568 struct xfs_mount *mp, 3569 int unit_bytes) 3570 { 3571 struct xlog *log = mp->m_log; 3572 int iclog_space; 3573 uint num_headers; 3574 3575 /* 3576 * Permanent reservations have up to 'cnt'-1 active log operations 3577 * in the log. A unit in this case is the amount of space for one 3578 * of these log operations. Normal reservations have a cnt of 1 3579 * and their unit amount is the total amount of space required. 3580 * 3581 * The following lines of code account for non-transaction data 3582 * which occupy space in the on-disk log. 3583 * 3584 * Normal form of a transaction is: 3585 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3586 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3587 * 3588 * We need to account for all the leadup data and trailer data 3589 * around the transaction data. 3590 * And then we need to account for the worst case in terms of using 3591 * more space. 3592 * The worst case will happen if: 3593 * - the placement of the transaction happens to be such that the 3594 * roundoff is at its maximum 3595 * - the transaction data is synced before the commit record is synced 3596 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3597 * Therefore the commit record is in its own Log Record. 3598 * This can happen as the commit record is called with its 3599 * own region to xlog_write(). 3600 * This then means that in the worst case, roundoff can happen for 3601 * the commit-rec as well. 3602 * The commit-rec is smaller than padding in this scenario and so it is 3603 * not added separately. 3604 */ 3605 3606 /* for trans header */ 3607 unit_bytes += sizeof(xlog_op_header_t); 3608 unit_bytes += sizeof(xfs_trans_header_t); 3609 3610 /* for start-rec */ 3611 unit_bytes += sizeof(xlog_op_header_t); 3612 3613 /* 3614 * for LR headers - the space for data in an iclog is the size minus 3615 * the space used for the headers. If we use the iclog size, then we 3616 * undercalculate the number of headers required. 3617 * 3618 * Furthermore - the addition of op headers for split-recs might 3619 * increase the space required enough to require more log and op 3620 * headers, so take that into account too. 3621 * 3622 * IMPORTANT: This reservation makes the assumption that if this 3623 * transaction is the first in an iclog and hence has the LR headers 3624 * accounted to it, then the remaining space in the iclog is 3625 * exclusively for this transaction. i.e. if the transaction is larger 3626 * than the iclog, it will be the only thing in that iclog. 3627 * Fundamentally, this means we must pass the entire log vector to 3628 * xlog_write to guarantee this. 3629 */ 3630 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3631 num_headers = howmany(unit_bytes, iclog_space); 3632 3633 /* for split-recs - ophdrs added when data split over LRs */ 3634 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3635 3636 /* add extra header reservations if we overrun */ 3637 while (!num_headers || 3638 howmany(unit_bytes, iclog_space) > num_headers) { 3639 unit_bytes += sizeof(xlog_op_header_t); 3640 num_headers++; 3641 } 3642 unit_bytes += log->l_iclog_hsize * num_headers; 3643 3644 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3645 unit_bytes += log->l_iclog_hsize; 3646 3647 /* for roundoff padding for transaction data and one for commit record */ 3648 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3649 /* log su roundoff */ 3650 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3651 } else { 3652 /* BB roundoff */ 3653 unit_bytes += 2 * BBSIZE; 3654 } 3655 3656 return unit_bytes; 3657 } 3658 3659 /* 3660 * Allocate and initialise a new log ticket. 3661 */ 3662 struct xlog_ticket * 3663 xlog_ticket_alloc( 3664 struct xlog *log, 3665 int unit_bytes, 3666 int cnt, 3667 char client, 3668 bool permanent, 3669 xfs_km_flags_t alloc_flags) 3670 { 3671 struct xlog_ticket *tic; 3672 int unit_res; 3673 3674 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3675 if (!tic) 3676 return NULL; 3677 3678 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3679 3680 atomic_set(&tic->t_ref, 1); 3681 tic->t_task = current; 3682 INIT_LIST_HEAD(&tic->t_queue); 3683 tic->t_unit_res = unit_res; 3684 tic->t_curr_res = unit_res; 3685 tic->t_cnt = cnt; 3686 tic->t_ocnt = cnt; 3687 tic->t_tid = prandom_u32(); 3688 tic->t_clientid = client; 3689 tic->t_flags = XLOG_TIC_INITED; 3690 if (permanent) 3691 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3692 3693 xlog_tic_reset_res(tic); 3694 3695 return tic; 3696 } 3697 3698 3699 /****************************************************************************** 3700 * 3701 * Log debug routines 3702 * 3703 ****************************************************************************** 3704 */ 3705 #if defined(DEBUG) 3706 /* 3707 * Make sure that the destination ptr is within the valid data region of 3708 * one of the iclogs. This uses backup pointers stored in a different 3709 * part of the log in case we trash the log structure. 3710 */ 3711 void 3712 xlog_verify_dest_ptr( 3713 struct xlog *log, 3714 void *ptr) 3715 { 3716 int i; 3717 int good_ptr = 0; 3718 3719 for (i = 0; i < log->l_iclog_bufs; i++) { 3720 if (ptr >= log->l_iclog_bak[i] && 3721 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3722 good_ptr++; 3723 } 3724 3725 if (!good_ptr) 3726 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3727 } 3728 3729 /* 3730 * Check to make sure the grant write head didn't just over lap the tail. If 3731 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3732 * the cycles differ by exactly one and check the byte count. 3733 * 3734 * This check is run unlocked, so can give false positives. Rather than assert 3735 * on failures, use a warn-once flag and a panic tag to allow the admin to 3736 * determine if they want to panic the machine when such an error occurs. For 3737 * debug kernels this will have the same effect as using an assert but, unlinke 3738 * an assert, it can be turned off at runtime. 3739 */ 3740 STATIC void 3741 xlog_verify_grant_tail( 3742 struct xlog *log) 3743 { 3744 int tail_cycle, tail_blocks; 3745 int cycle, space; 3746 3747 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3748 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3749 if (tail_cycle != cycle) { 3750 if (cycle - 1 != tail_cycle && 3751 !(log->l_flags & XLOG_TAIL_WARN)) { 3752 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3753 "%s: cycle - 1 != tail_cycle", __func__); 3754 log->l_flags |= XLOG_TAIL_WARN; 3755 } 3756 3757 if (space > BBTOB(tail_blocks) && 3758 !(log->l_flags & XLOG_TAIL_WARN)) { 3759 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3760 "%s: space > BBTOB(tail_blocks)", __func__); 3761 log->l_flags |= XLOG_TAIL_WARN; 3762 } 3763 } 3764 } 3765 3766 /* check if it will fit */ 3767 STATIC void 3768 xlog_verify_tail_lsn( 3769 struct xlog *log, 3770 struct xlog_in_core *iclog, 3771 xfs_lsn_t tail_lsn) 3772 { 3773 int blocks; 3774 3775 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3776 blocks = 3777 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3778 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3779 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3780 } else { 3781 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3782 3783 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3784 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3785 3786 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3787 if (blocks < BTOBB(iclog->ic_offset) + 1) 3788 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3789 } 3790 } /* xlog_verify_tail_lsn */ 3791 3792 /* 3793 * Perform a number of checks on the iclog before writing to disk. 3794 * 3795 * 1. Make sure the iclogs are still circular 3796 * 2. Make sure we have a good magic number 3797 * 3. Make sure we don't have magic numbers in the data 3798 * 4. Check fields of each log operation header for: 3799 * A. Valid client identifier 3800 * B. tid ptr value falls in valid ptr space (user space code) 3801 * C. Length in log record header is correct according to the 3802 * individual operation headers within record. 3803 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3804 * log, check the preceding blocks of the physical log to make sure all 3805 * the cycle numbers agree with the current cycle number. 3806 */ 3807 STATIC void 3808 xlog_verify_iclog( 3809 struct xlog *log, 3810 struct xlog_in_core *iclog, 3811 int count, 3812 bool syncing) 3813 { 3814 xlog_op_header_t *ophead; 3815 xlog_in_core_t *icptr; 3816 xlog_in_core_2_t *xhdr; 3817 void *base_ptr, *ptr, *p; 3818 ptrdiff_t field_offset; 3819 uint8_t clientid; 3820 int len, i, j, k, op_len; 3821 int idx; 3822 3823 /* check validity of iclog pointers */ 3824 spin_lock(&log->l_icloglock); 3825 icptr = log->l_iclog; 3826 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3827 ASSERT(icptr); 3828 3829 if (icptr != log->l_iclog) 3830 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3831 spin_unlock(&log->l_icloglock); 3832 3833 /* check log magic numbers */ 3834 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3835 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3836 3837 base_ptr = ptr = &iclog->ic_header; 3838 p = &iclog->ic_header; 3839 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3840 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3841 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3842 __func__); 3843 } 3844 3845 /* check fields */ 3846 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3847 base_ptr = ptr = iclog->ic_datap; 3848 ophead = ptr; 3849 xhdr = iclog->ic_data; 3850 for (i = 0; i < len; i++) { 3851 ophead = ptr; 3852 3853 /* clientid is only 1 byte */ 3854 p = &ophead->oh_clientid; 3855 field_offset = p - base_ptr; 3856 if (!syncing || (field_offset & 0x1ff)) { 3857 clientid = ophead->oh_clientid; 3858 } else { 3859 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3860 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3861 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3862 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3863 clientid = xlog_get_client_id( 3864 xhdr[j].hic_xheader.xh_cycle_data[k]); 3865 } else { 3866 clientid = xlog_get_client_id( 3867 iclog->ic_header.h_cycle_data[idx]); 3868 } 3869 } 3870 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3871 xfs_warn(log->l_mp, 3872 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3873 __func__, clientid, ophead, 3874 (unsigned long)field_offset); 3875 3876 /* check length */ 3877 p = &ophead->oh_len; 3878 field_offset = p - base_ptr; 3879 if (!syncing || (field_offset & 0x1ff)) { 3880 op_len = be32_to_cpu(ophead->oh_len); 3881 } else { 3882 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3883 (uintptr_t)iclog->ic_datap); 3884 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3885 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3886 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3887 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3888 } else { 3889 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3890 } 3891 } 3892 ptr += sizeof(xlog_op_header_t) + op_len; 3893 } 3894 } /* xlog_verify_iclog */ 3895 #endif 3896 3897 /* 3898 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3899 */ 3900 STATIC int 3901 xlog_state_ioerror( 3902 struct xlog *log) 3903 { 3904 xlog_in_core_t *iclog, *ic; 3905 3906 iclog = log->l_iclog; 3907 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3908 /* 3909 * Mark all the incore logs IOERROR. 3910 * From now on, no log flushes will result. 3911 */ 3912 ic = iclog; 3913 do { 3914 ic->ic_state = XLOG_STATE_IOERROR; 3915 ic = ic->ic_next; 3916 } while (ic != iclog); 3917 return 0; 3918 } 3919 /* 3920 * Return non-zero, if state transition has already happened. 3921 */ 3922 return 1; 3923 } 3924 3925 /* 3926 * This is called from xfs_force_shutdown, when we're forcibly 3927 * shutting down the filesystem, typically because of an IO error. 3928 * Our main objectives here are to make sure that: 3929 * a. if !logerror, flush the logs to disk. Anything modified 3930 * after this is ignored. 3931 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3932 * parties to find out, 'atomically'. 3933 * c. those who're sleeping on log reservations, pinned objects and 3934 * other resources get woken up, and be told the bad news. 3935 * d. nothing new gets queued up after (b) and (c) are done. 3936 * 3937 * Note: for the !logerror case we need to flush the regions held in memory out 3938 * to disk first. This needs to be done before the log is marked as shutdown, 3939 * otherwise the iclog writes will fail. 3940 */ 3941 int 3942 xfs_log_force_umount( 3943 struct xfs_mount *mp, 3944 int logerror) 3945 { 3946 struct xlog *log; 3947 int retval; 3948 3949 log = mp->m_log; 3950 3951 /* 3952 * If this happens during log recovery, don't worry about 3953 * locking; the log isn't open for business yet. 3954 */ 3955 if (!log || 3956 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3957 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3958 if (mp->m_sb_bp) 3959 mp->m_sb_bp->b_flags |= XBF_DONE; 3960 return 0; 3961 } 3962 3963 /* 3964 * Somebody could've already done the hard work for us. 3965 * No need to get locks for this. 3966 */ 3967 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3968 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3969 return 1; 3970 } 3971 3972 /* 3973 * Flush all the completed transactions to disk before marking the log 3974 * being shut down. We need to do it in this order to ensure that 3975 * completed operations are safely on disk before we shut down, and that 3976 * we don't have to issue any buffer IO after the shutdown flags are set 3977 * to guarantee this. 3978 */ 3979 if (!logerror) 3980 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3981 3982 /* 3983 * mark the filesystem and the as in a shutdown state and wake 3984 * everybody up to tell them the bad news. 3985 */ 3986 spin_lock(&log->l_icloglock); 3987 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3988 if (mp->m_sb_bp) 3989 mp->m_sb_bp->b_flags |= XBF_DONE; 3990 3991 /* 3992 * Mark the log and the iclogs with IO error flags to prevent any 3993 * further log IO from being issued or completed. 3994 */ 3995 log->l_flags |= XLOG_IO_ERROR; 3996 retval = xlog_state_ioerror(log); 3997 spin_unlock(&log->l_icloglock); 3998 3999 /* 4000 * We don't want anybody waiting for log reservations after this. That 4001 * means we have to wake up everybody queued up on reserveq as well as 4002 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4003 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4004 * action is protected by the grant locks. 4005 */ 4006 xlog_grant_head_wake_all(&log->l_reserve_head); 4007 xlog_grant_head_wake_all(&log->l_write_head); 4008 4009 /* 4010 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4011 * as if the log writes were completed. The abort handling in the log 4012 * item committed callback functions will do this again under lock to 4013 * avoid races. 4014 */ 4015 wake_up_all(&log->l_cilp->xc_commit_wait); 4016 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4017 4018 #ifdef XFSERRORDEBUG 4019 { 4020 xlog_in_core_t *iclog; 4021 4022 spin_lock(&log->l_icloglock); 4023 iclog = log->l_iclog; 4024 do { 4025 ASSERT(iclog->ic_callback == 0); 4026 iclog = iclog->ic_next; 4027 } while (iclog != log->l_iclog); 4028 spin_unlock(&log->l_icloglock); 4029 } 4030 #endif 4031 /* return non-zero if log IOERROR transition had already happened */ 4032 return retval; 4033 } 4034 4035 STATIC int 4036 xlog_iclogs_empty( 4037 struct xlog *log) 4038 { 4039 xlog_in_core_t *iclog; 4040 4041 iclog = log->l_iclog; 4042 do { 4043 /* endianness does not matter here, zero is zero in 4044 * any language. 4045 */ 4046 if (iclog->ic_header.h_num_logops) 4047 return 0; 4048 iclog = iclog->ic_next; 4049 } while (iclog != log->l_iclog); 4050 return 1; 4051 } 4052 4053 /* 4054 * Verify that an LSN stamped into a piece of metadata is valid. This is 4055 * intended for use in read verifiers on v5 superblocks. 4056 */ 4057 bool 4058 xfs_log_check_lsn( 4059 struct xfs_mount *mp, 4060 xfs_lsn_t lsn) 4061 { 4062 struct xlog *log = mp->m_log; 4063 bool valid; 4064 4065 /* 4066 * norecovery mode skips mount-time log processing and unconditionally 4067 * resets the in-core LSN. We can't validate in this mode, but 4068 * modifications are not allowed anyways so just return true. 4069 */ 4070 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4071 return true; 4072 4073 /* 4074 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4075 * handled by recovery and thus safe to ignore here. 4076 */ 4077 if (lsn == NULLCOMMITLSN) 4078 return true; 4079 4080 valid = xlog_valid_lsn(mp->m_log, lsn); 4081 4082 /* warn the user about what's gone wrong before verifier failure */ 4083 if (!valid) { 4084 spin_lock(&log->l_icloglock); 4085 xfs_warn(mp, 4086 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4087 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4088 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4089 log->l_curr_cycle, log->l_curr_block); 4090 spin_unlock(&log->l_icloglock); 4091 } 4092 4093 return valid; 4094 } 4095