xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 483eb062)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	char			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return XFS_ERROR(EIO);
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return XFS_ERROR(EIO);
381 
382 	XFS_STATS_INC(xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return XFS_ERROR(EIO);
450 
451 	XFS_STATS_INC(xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return XFS_ERROR(ENOMEM);
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	uint			flags)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 			flags |= XFS_LOG_REL_PERM_RESERV;
531 		}
532 	}
533 
534 
535 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
537 		trace_xfs_log_done_nonperm(log, ticket);
538 
539 		/*
540 		 * Release ticket if not permanent reservation or a specific
541 		 * request has been made to release a permanent reservation.
542 		 */
543 		xlog_ungrant_log_space(log, ticket);
544 		xfs_log_ticket_put(ticket);
545 	} else {
546 		trace_xfs_log_done_perm(log, ticket);
547 
548 		xlog_regrant_reserve_log_space(log, ticket);
549 		/* If this ticket was a permanent reservation and we aren't
550 		 * trying to release it, reset the inited flags; so next time
551 		 * we write, a start record will be written out.
552 		 */
553 		ticket->t_flags |= XLOG_TIC_INITED;
554 	}
555 
556 	return lsn;
557 }
558 
559 /*
560  * Attaches a new iclog I/O completion callback routine during
561  * transaction commit.  If the log is in error state, a non-zero
562  * return code is handed back and the caller is responsible for
563  * executing the callback at an appropriate time.
564  */
565 int
566 xfs_log_notify(
567 	struct xfs_mount	*mp,
568 	struct xlog_in_core	*iclog,
569 	xfs_log_callback_t	*cb)
570 {
571 	int	abortflg;
572 
573 	spin_lock(&iclog->ic_callback_lock);
574 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 	if (!abortflg) {
576 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 		cb->cb_next = NULL;
579 		*(iclog->ic_callback_tail) = cb;
580 		iclog->ic_callback_tail = &(cb->cb_next);
581 	}
582 	spin_unlock(&iclog->ic_callback_lock);
583 	return abortflg;
584 }
585 
586 int
587 xfs_log_release_iclog(
588 	struct xfs_mount	*mp,
589 	struct xlog_in_core	*iclog)
590 {
591 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 		return EIO;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * Mount a log filesystem
601  *
602  * mp		- ubiquitous xfs mount point structure
603  * log_target	- buftarg of on-disk log device
604  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
605  * num_bblocks	- Number of BBSIZE blocks in on-disk log
606  *
607  * Return error or zero.
608  */
609 int
610 xfs_log_mount(
611 	xfs_mount_t	*mp,
612 	xfs_buftarg_t	*log_target,
613 	xfs_daddr_t	blk_offset,
614 	int		num_bblks)
615 {
616 	int		error = 0;
617 	int		min_logfsbs;
618 
619 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
620 		xfs_notice(mp, "Mounting Filesystem");
621 	else {
622 		xfs_notice(mp,
623 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
624 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
625 	}
626 
627 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
628 	if (IS_ERR(mp->m_log)) {
629 		error = -PTR_ERR(mp->m_log);
630 		goto out;
631 	}
632 
633 	/*
634 	 * Validate the given log space and drop a critical message via syslog
635 	 * if the log size is too small that would lead to some unexpected
636 	 * situations in transaction log space reservation stage.
637 	 *
638 	 * Note: we can't just reject the mount if the validation fails.  This
639 	 * would mean that people would have to downgrade their kernel just to
640 	 * remedy the situation as there is no way to grow the log (short of
641 	 * black magic surgery with xfs_db).
642 	 *
643 	 * We can, however, reject mounts for CRC format filesystems, as the
644 	 * mkfs binary being used to make the filesystem should never create a
645 	 * filesystem with a log that is too small.
646 	 */
647 	min_logfsbs = xfs_log_calc_minimum_size(mp);
648 
649 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
650 		xfs_warn(mp,
651 		"Log size %d blocks too small, minimum size is %d blocks",
652 			 mp->m_sb.sb_logblocks, min_logfsbs);
653 		error = EINVAL;
654 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
655 		xfs_warn(mp,
656 		"Log size %d blocks too large, maximum size is %lld blocks",
657 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
658 		error = EINVAL;
659 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
660 		xfs_warn(mp,
661 		"log size %lld bytes too large, maximum size is %lld bytes",
662 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
663 			 XFS_MAX_LOG_BYTES);
664 		error = EINVAL;
665 	}
666 	if (error) {
667 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
668 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
669 			ASSERT(0);
670 			goto out_free_log;
671 		}
672 		xfs_crit(mp,
673 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
674 "experienced then please report this message in the bug report.");
675 	}
676 
677 	/*
678 	 * Initialize the AIL now we have a log.
679 	 */
680 	error = xfs_trans_ail_init(mp);
681 	if (error) {
682 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
683 		goto out_free_log;
684 	}
685 	mp->m_log->l_ailp = mp->m_ail;
686 
687 	/*
688 	 * skip log recovery on a norecovery mount.  pretend it all
689 	 * just worked.
690 	 */
691 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
692 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
693 
694 		if (readonly)
695 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
696 
697 		error = xlog_recover(mp->m_log);
698 
699 		if (readonly)
700 			mp->m_flags |= XFS_MOUNT_RDONLY;
701 		if (error) {
702 			xfs_warn(mp, "log mount/recovery failed: error %d",
703 				error);
704 			goto out_destroy_ail;
705 		}
706 	}
707 
708 	/* Normal transactions can now occur */
709 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
710 
711 	/*
712 	 * Now the log has been fully initialised and we know were our
713 	 * space grant counters are, we can initialise the permanent ticket
714 	 * needed for delayed logging to work.
715 	 */
716 	xlog_cil_init_post_recovery(mp->m_log);
717 
718 	return 0;
719 
720 out_destroy_ail:
721 	xfs_trans_ail_destroy(mp);
722 out_free_log:
723 	xlog_dealloc_log(mp->m_log);
724 out:
725 	return error;
726 }
727 
728 /*
729  * Finish the recovery of the file system.  This is separate from the
730  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
731  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
732  * here.
733  *
734  * If we finish recovery successfully, start the background log work. If we are
735  * not doing recovery, then we have a RO filesystem and we don't need to start
736  * it.
737  */
738 int
739 xfs_log_mount_finish(xfs_mount_t *mp)
740 {
741 	int	error = 0;
742 
743 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
744 		error = xlog_recover_finish(mp->m_log);
745 		if (!error)
746 			xfs_log_work_queue(mp);
747 	} else {
748 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 	}
750 
751 
752 	return error;
753 }
754 
755 /*
756  * Final log writes as part of unmount.
757  *
758  * Mark the filesystem clean as unmount happens.  Note that during relocation
759  * this routine needs to be executed as part of source-bag while the
760  * deallocation must not be done until source-end.
761  */
762 
763 /*
764  * Unmount record used to have a string "Unmount filesystem--" in the
765  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
766  * We just write the magic number now since that particular field isn't
767  * currently architecture converted and "Unmount" is a bit foo.
768  * As far as I know, there weren't any dependencies on the old behaviour.
769  */
770 
771 int
772 xfs_log_unmount_write(xfs_mount_t *mp)
773 {
774 	struct xlog	 *log = mp->m_log;
775 	xlog_in_core_t	 *iclog;
776 #ifdef DEBUG
777 	xlog_in_core_t	 *first_iclog;
778 #endif
779 	xlog_ticket_t	*tic = NULL;
780 	xfs_lsn_t	 lsn;
781 	int		 error;
782 
783 	/*
784 	 * Don't write out unmount record on read-only mounts.
785 	 * Or, if we are doing a forced umount (typically because of IO errors).
786 	 */
787 	if (mp->m_flags & XFS_MOUNT_RDONLY)
788 		return 0;
789 
790 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
791 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
792 
793 #ifdef DEBUG
794 	first_iclog = iclog = log->l_iclog;
795 	do {
796 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
797 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
798 			ASSERT(iclog->ic_offset == 0);
799 		}
800 		iclog = iclog->ic_next;
801 	} while (iclog != first_iclog);
802 #endif
803 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
804 		error = xfs_log_reserve(mp, 600, 1, &tic,
805 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
806 		if (!error) {
807 			/* the data section must be 32 bit size aligned */
808 			struct {
809 			    __uint16_t magic;
810 			    __uint16_t pad1;
811 			    __uint32_t pad2; /* may as well make it 64 bits */
812 			} magic = {
813 				.magic = XLOG_UNMOUNT_TYPE,
814 			};
815 			struct xfs_log_iovec reg = {
816 				.i_addr = &magic,
817 				.i_len = sizeof(magic),
818 				.i_type = XLOG_REG_TYPE_UNMOUNT,
819 			};
820 			struct xfs_log_vec vec = {
821 				.lv_niovecs = 1,
822 				.lv_iovecp = &reg,
823 			};
824 
825 			/* remove inited flag, and account for space used */
826 			tic->t_flags = 0;
827 			tic->t_curr_res -= sizeof(magic);
828 			error = xlog_write(log, &vec, tic, &lsn,
829 					   NULL, XLOG_UNMOUNT_TRANS);
830 			/*
831 			 * At this point, we're umounting anyway,
832 			 * so there's no point in transitioning log state
833 			 * to IOERROR. Just continue...
834 			 */
835 		}
836 
837 		if (error)
838 			xfs_alert(mp, "%s: unmount record failed", __func__);
839 
840 
841 		spin_lock(&log->l_icloglock);
842 		iclog = log->l_iclog;
843 		atomic_inc(&iclog->ic_refcnt);
844 		xlog_state_want_sync(log, iclog);
845 		spin_unlock(&log->l_icloglock);
846 		error = xlog_state_release_iclog(log, iclog);
847 
848 		spin_lock(&log->l_icloglock);
849 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
850 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
851 			if (!XLOG_FORCED_SHUTDOWN(log)) {
852 				xlog_wait(&iclog->ic_force_wait,
853 							&log->l_icloglock);
854 			} else {
855 				spin_unlock(&log->l_icloglock);
856 			}
857 		} else {
858 			spin_unlock(&log->l_icloglock);
859 		}
860 		if (tic) {
861 			trace_xfs_log_umount_write(log, tic);
862 			xlog_ungrant_log_space(log, tic);
863 			xfs_log_ticket_put(tic);
864 		}
865 	} else {
866 		/*
867 		 * We're already in forced_shutdown mode, couldn't
868 		 * even attempt to write out the unmount transaction.
869 		 *
870 		 * Go through the motions of sync'ing and releasing
871 		 * the iclog, even though no I/O will actually happen,
872 		 * we need to wait for other log I/Os that may already
873 		 * be in progress.  Do this as a separate section of
874 		 * code so we'll know if we ever get stuck here that
875 		 * we're in this odd situation of trying to unmount
876 		 * a file system that went into forced_shutdown as
877 		 * the result of an unmount..
878 		 */
879 		spin_lock(&log->l_icloglock);
880 		iclog = log->l_iclog;
881 		atomic_inc(&iclog->ic_refcnt);
882 
883 		xlog_state_want_sync(log, iclog);
884 		spin_unlock(&log->l_icloglock);
885 		error =  xlog_state_release_iclog(log, iclog);
886 
887 		spin_lock(&log->l_icloglock);
888 
889 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
890 			|| iclog->ic_state == XLOG_STATE_DIRTY
891 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
892 
893 				xlog_wait(&iclog->ic_force_wait,
894 							&log->l_icloglock);
895 		} else {
896 			spin_unlock(&log->l_icloglock);
897 		}
898 	}
899 
900 	return error;
901 }	/* xfs_log_unmount_write */
902 
903 /*
904  * Empty the log for unmount/freeze.
905  *
906  * To do this, we first need to shut down the background log work so it is not
907  * trying to cover the log as we clean up. We then need to unpin all objects in
908  * the log so we can then flush them out. Once they have completed their IO and
909  * run the callbacks removing themselves from the AIL, we can write the unmount
910  * record.
911  */
912 void
913 xfs_log_quiesce(
914 	struct xfs_mount	*mp)
915 {
916 	cancel_delayed_work_sync(&mp->m_log->l_work);
917 	xfs_log_force(mp, XFS_LOG_SYNC);
918 
919 	/*
920 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
921 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
922 	 * xfs_buf_iowait() cannot be used because it was pushed with the
923 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
924 	 * the IO to complete.
925 	 */
926 	xfs_ail_push_all_sync(mp->m_ail);
927 	xfs_wait_buftarg(mp->m_ddev_targp);
928 	xfs_buf_lock(mp->m_sb_bp);
929 	xfs_buf_unlock(mp->m_sb_bp);
930 
931 	xfs_log_unmount_write(mp);
932 }
933 
934 /*
935  * Shut down and release the AIL and Log.
936  *
937  * During unmount, we need to ensure we flush all the dirty metadata objects
938  * from the AIL so that the log is empty before we write the unmount record to
939  * the log. Once this is done, we can tear down the AIL and the log.
940  */
941 void
942 xfs_log_unmount(
943 	struct xfs_mount	*mp)
944 {
945 	xfs_log_quiesce(mp);
946 
947 	xfs_trans_ail_destroy(mp);
948 	xlog_dealloc_log(mp->m_log);
949 }
950 
951 void
952 xfs_log_item_init(
953 	struct xfs_mount	*mp,
954 	struct xfs_log_item	*item,
955 	int			type,
956 	const struct xfs_item_ops *ops)
957 {
958 	item->li_mountp = mp;
959 	item->li_ailp = mp->m_ail;
960 	item->li_type = type;
961 	item->li_ops = ops;
962 	item->li_lv = NULL;
963 
964 	INIT_LIST_HEAD(&item->li_ail);
965 	INIT_LIST_HEAD(&item->li_cil);
966 }
967 
968 /*
969  * Wake up processes waiting for log space after we have moved the log tail.
970  */
971 void
972 xfs_log_space_wake(
973 	struct xfs_mount	*mp)
974 {
975 	struct xlog		*log = mp->m_log;
976 	int			free_bytes;
977 
978 	if (XLOG_FORCED_SHUTDOWN(log))
979 		return;
980 
981 	if (!list_empty_careful(&log->l_write_head.waiters)) {
982 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
983 
984 		spin_lock(&log->l_write_head.lock);
985 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
986 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
987 		spin_unlock(&log->l_write_head.lock);
988 	}
989 
990 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
991 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
992 
993 		spin_lock(&log->l_reserve_head.lock);
994 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
995 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
996 		spin_unlock(&log->l_reserve_head.lock);
997 	}
998 }
999 
1000 /*
1001  * Determine if we have a transaction that has gone to disk that needs to be
1002  * covered. To begin the transition to the idle state firstly the log needs to
1003  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1004  * we start attempting to cover the log.
1005  *
1006  * Only if we are then in a state where covering is needed, the caller is
1007  * informed that dummy transactions are required to move the log into the idle
1008  * state.
1009  *
1010  * If there are any items in the AIl or CIL, then we do not want to attempt to
1011  * cover the log as we may be in a situation where there isn't log space
1012  * available to run a dummy transaction and this can lead to deadlocks when the
1013  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1014  * there's no point in running a dummy transaction at this point because we
1015  * can't start trying to idle the log until both the CIL and AIL are empty.
1016  */
1017 int
1018 xfs_log_need_covered(xfs_mount_t *mp)
1019 {
1020 	struct xlog	*log = mp->m_log;
1021 	int		needed = 0;
1022 
1023 	if (!xfs_fs_writable(mp))
1024 		return 0;
1025 
1026 	if (!xlog_cil_empty(log))
1027 		return 0;
1028 
1029 	spin_lock(&log->l_icloglock);
1030 	switch (log->l_covered_state) {
1031 	case XLOG_STATE_COVER_DONE:
1032 	case XLOG_STATE_COVER_DONE2:
1033 	case XLOG_STATE_COVER_IDLE:
1034 		break;
1035 	case XLOG_STATE_COVER_NEED:
1036 	case XLOG_STATE_COVER_NEED2:
1037 		if (xfs_ail_min_lsn(log->l_ailp))
1038 			break;
1039 		if (!xlog_iclogs_empty(log))
1040 			break;
1041 
1042 		needed = 1;
1043 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1044 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1045 		else
1046 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1047 		break;
1048 	default:
1049 		needed = 1;
1050 		break;
1051 	}
1052 	spin_unlock(&log->l_icloglock);
1053 	return needed;
1054 }
1055 
1056 /*
1057  * We may be holding the log iclog lock upon entering this routine.
1058  */
1059 xfs_lsn_t
1060 xlog_assign_tail_lsn_locked(
1061 	struct xfs_mount	*mp)
1062 {
1063 	struct xlog		*log = mp->m_log;
1064 	struct xfs_log_item	*lip;
1065 	xfs_lsn_t		tail_lsn;
1066 
1067 	assert_spin_locked(&mp->m_ail->xa_lock);
1068 
1069 	/*
1070 	 * To make sure we always have a valid LSN for the log tail we keep
1071 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1072 	 * and use that when the AIL was empty.
1073 	 */
1074 	lip = xfs_ail_min(mp->m_ail);
1075 	if (lip)
1076 		tail_lsn = lip->li_lsn;
1077 	else
1078 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1079 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1080 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1081 	return tail_lsn;
1082 }
1083 
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn(
1086 	struct xfs_mount	*mp)
1087 {
1088 	xfs_lsn_t		tail_lsn;
1089 
1090 	spin_lock(&mp->m_ail->xa_lock);
1091 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1092 	spin_unlock(&mp->m_ail->xa_lock);
1093 
1094 	return tail_lsn;
1095 }
1096 
1097 /*
1098  * Return the space in the log between the tail and the head.  The head
1099  * is passed in the cycle/bytes formal parms.  In the special case where
1100  * the reserve head has wrapped passed the tail, this calculation is no
1101  * longer valid.  In this case, just return 0 which means there is no space
1102  * in the log.  This works for all places where this function is called
1103  * with the reserve head.  Of course, if the write head were to ever
1104  * wrap the tail, we should blow up.  Rather than catch this case here,
1105  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1106  *
1107  * This code also handles the case where the reservation head is behind
1108  * the tail.  The details of this case are described below, but the end
1109  * result is that we return the size of the log as the amount of space left.
1110  */
1111 STATIC int
1112 xlog_space_left(
1113 	struct xlog	*log,
1114 	atomic64_t	*head)
1115 {
1116 	int		free_bytes;
1117 	int		tail_bytes;
1118 	int		tail_cycle;
1119 	int		head_cycle;
1120 	int		head_bytes;
1121 
1122 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1123 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1124 	tail_bytes = BBTOB(tail_bytes);
1125 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1126 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1127 	else if (tail_cycle + 1 < head_cycle)
1128 		return 0;
1129 	else if (tail_cycle < head_cycle) {
1130 		ASSERT(tail_cycle == (head_cycle - 1));
1131 		free_bytes = tail_bytes - head_bytes;
1132 	} else {
1133 		/*
1134 		 * The reservation head is behind the tail.
1135 		 * In this case we just want to return the size of the
1136 		 * log as the amount of space left.
1137 		 */
1138 		xfs_alert(log->l_mp,
1139 			"xlog_space_left: head behind tail\n"
1140 			"  tail_cycle = %d, tail_bytes = %d\n"
1141 			"  GH   cycle = %d, GH   bytes = %d",
1142 			tail_cycle, tail_bytes, head_cycle, head_bytes);
1143 		ASSERT(0);
1144 		free_bytes = log->l_logsize;
1145 	}
1146 	return free_bytes;
1147 }
1148 
1149 
1150 /*
1151  * Log function which is called when an io completes.
1152  *
1153  * The log manager needs its own routine, in order to control what
1154  * happens with the buffer after the write completes.
1155  */
1156 void
1157 xlog_iodone(xfs_buf_t *bp)
1158 {
1159 	struct xlog_in_core	*iclog = bp->b_fspriv;
1160 	struct xlog		*l = iclog->ic_log;
1161 	int			aborted = 0;
1162 
1163 	/*
1164 	 * Race to shutdown the filesystem if we see an error.
1165 	 */
1166 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1167 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1168 		xfs_buf_ioerror_alert(bp, __func__);
1169 		xfs_buf_stale(bp);
1170 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1171 		/*
1172 		 * This flag will be propagated to the trans-committed
1173 		 * callback routines to let them know that the log-commit
1174 		 * didn't succeed.
1175 		 */
1176 		aborted = XFS_LI_ABORTED;
1177 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1178 		aborted = XFS_LI_ABORTED;
1179 	}
1180 
1181 	/* log I/O is always issued ASYNC */
1182 	ASSERT(XFS_BUF_ISASYNC(bp));
1183 	xlog_state_done_syncing(iclog, aborted);
1184 	/*
1185 	 * do not reference the buffer (bp) here as we could race
1186 	 * with it being freed after writing the unmount record to the
1187 	 * log.
1188 	 */
1189 }
1190 
1191 /*
1192  * Return size of each in-core log record buffer.
1193  *
1194  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1195  *
1196  * If the filesystem blocksize is too large, we may need to choose a
1197  * larger size since the directory code currently logs entire blocks.
1198  */
1199 
1200 STATIC void
1201 xlog_get_iclog_buffer_size(
1202 	struct xfs_mount	*mp,
1203 	struct xlog		*log)
1204 {
1205 	int size;
1206 	int xhdrs;
1207 
1208 	if (mp->m_logbufs <= 0)
1209 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1210 	else
1211 		log->l_iclog_bufs = mp->m_logbufs;
1212 
1213 	/*
1214 	 * Buffer size passed in from mount system call.
1215 	 */
1216 	if (mp->m_logbsize > 0) {
1217 		size = log->l_iclog_size = mp->m_logbsize;
1218 		log->l_iclog_size_log = 0;
1219 		while (size != 1) {
1220 			log->l_iclog_size_log++;
1221 			size >>= 1;
1222 		}
1223 
1224 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1225 			/* # headers = size / 32k
1226 			 * one header holds cycles from 32k of data
1227 			 */
1228 
1229 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1230 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1231 				xhdrs++;
1232 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1233 			log->l_iclog_heads = xhdrs;
1234 		} else {
1235 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1236 			log->l_iclog_hsize = BBSIZE;
1237 			log->l_iclog_heads = 1;
1238 		}
1239 		goto done;
1240 	}
1241 
1242 	/* All machines use 32kB buffers by default. */
1243 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1244 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1245 
1246 	/* the default log size is 16k or 32k which is one header sector */
1247 	log->l_iclog_hsize = BBSIZE;
1248 	log->l_iclog_heads = 1;
1249 
1250 done:
1251 	/* are we being asked to make the sizes selected above visible? */
1252 	if (mp->m_logbufs == 0)
1253 		mp->m_logbufs = log->l_iclog_bufs;
1254 	if (mp->m_logbsize == 0)
1255 		mp->m_logbsize = log->l_iclog_size;
1256 }	/* xlog_get_iclog_buffer_size */
1257 
1258 
1259 void
1260 xfs_log_work_queue(
1261 	struct xfs_mount        *mp)
1262 {
1263 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1264 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1265 }
1266 
1267 /*
1268  * Every sync period we need to unpin all items in the AIL and push them to
1269  * disk. If there is nothing dirty, then we might need to cover the log to
1270  * indicate that the filesystem is idle.
1271  */
1272 void
1273 xfs_log_worker(
1274 	struct work_struct	*work)
1275 {
1276 	struct xlog		*log = container_of(to_delayed_work(work),
1277 						struct xlog, l_work);
1278 	struct xfs_mount	*mp = log->l_mp;
1279 
1280 	/* dgc: errors ignored - not fatal and nowhere to report them */
1281 	if (xfs_log_need_covered(mp))
1282 		xfs_fs_log_dummy(mp);
1283 	else
1284 		xfs_log_force(mp, 0);
1285 
1286 	/* start pushing all the metadata that is currently dirty */
1287 	xfs_ail_push_all(mp->m_ail);
1288 
1289 	/* queue us up again */
1290 	xfs_log_work_queue(mp);
1291 }
1292 
1293 /*
1294  * This routine initializes some of the log structure for a given mount point.
1295  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1296  * some other stuff may be filled in too.
1297  */
1298 STATIC struct xlog *
1299 xlog_alloc_log(
1300 	struct xfs_mount	*mp,
1301 	struct xfs_buftarg	*log_target,
1302 	xfs_daddr_t		blk_offset,
1303 	int			num_bblks)
1304 {
1305 	struct xlog		*log;
1306 	xlog_rec_header_t	*head;
1307 	xlog_in_core_t		**iclogp;
1308 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1309 	xfs_buf_t		*bp;
1310 	int			i;
1311 	int			error = ENOMEM;
1312 	uint			log2_size = 0;
1313 
1314 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1315 	if (!log) {
1316 		xfs_warn(mp, "Log allocation failed: No memory!");
1317 		goto out;
1318 	}
1319 
1320 	log->l_mp	   = mp;
1321 	log->l_targ	   = log_target;
1322 	log->l_logsize     = BBTOB(num_bblks);
1323 	log->l_logBBstart  = blk_offset;
1324 	log->l_logBBsize   = num_bblks;
1325 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1326 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1327 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1328 
1329 	log->l_prev_block  = -1;
1330 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1331 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1332 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1333 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1334 
1335 	xlog_grant_head_init(&log->l_reserve_head);
1336 	xlog_grant_head_init(&log->l_write_head);
1337 
1338 	error = EFSCORRUPTED;
1339 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1340 	        log2_size = mp->m_sb.sb_logsectlog;
1341 		if (log2_size < BBSHIFT) {
1342 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1343 				log2_size, BBSHIFT);
1344 			goto out_free_log;
1345 		}
1346 
1347 	        log2_size -= BBSHIFT;
1348 		if (log2_size > mp->m_sectbb_log) {
1349 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1350 				log2_size, mp->m_sectbb_log);
1351 			goto out_free_log;
1352 		}
1353 
1354 		/* for larger sector sizes, must have v2 or external log */
1355 		if (log2_size && log->l_logBBstart > 0 &&
1356 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1357 			xfs_warn(mp,
1358 		"log sector size (0x%x) invalid for configuration.",
1359 				log2_size);
1360 			goto out_free_log;
1361 		}
1362 	}
1363 	log->l_sectBBsize = 1 << log2_size;
1364 
1365 	xlog_get_iclog_buffer_size(mp, log);
1366 
1367 	error = ENOMEM;
1368 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1369 	if (!bp)
1370 		goto out_free_log;
1371 	bp->b_iodone = xlog_iodone;
1372 	ASSERT(xfs_buf_islocked(bp));
1373 	log->l_xbuf = bp;
1374 
1375 	spin_lock_init(&log->l_icloglock);
1376 	init_waitqueue_head(&log->l_flush_wait);
1377 
1378 	iclogp = &log->l_iclog;
1379 	/*
1380 	 * The amount of memory to allocate for the iclog structure is
1381 	 * rather funky due to the way the structure is defined.  It is
1382 	 * done this way so that we can use different sizes for machines
1383 	 * with different amounts of memory.  See the definition of
1384 	 * xlog_in_core_t in xfs_log_priv.h for details.
1385 	 */
1386 	ASSERT(log->l_iclog_size >= 4096);
1387 	for (i=0; i < log->l_iclog_bufs; i++) {
1388 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1389 		if (!*iclogp)
1390 			goto out_free_iclog;
1391 
1392 		iclog = *iclogp;
1393 		iclog->ic_prev = prev_iclog;
1394 		prev_iclog = iclog;
1395 
1396 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1397 						BTOBB(log->l_iclog_size), 0);
1398 		if (!bp)
1399 			goto out_free_iclog;
1400 
1401 		bp->b_iodone = xlog_iodone;
1402 		iclog->ic_bp = bp;
1403 		iclog->ic_data = bp->b_addr;
1404 #ifdef DEBUG
1405 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1406 #endif
1407 		head = &iclog->ic_header;
1408 		memset(head, 0, sizeof(xlog_rec_header_t));
1409 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1410 		head->h_version = cpu_to_be32(
1411 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1412 		head->h_size = cpu_to_be32(log->l_iclog_size);
1413 		/* new fields */
1414 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1415 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1416 
1417 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1418 		iclog->ic_state = XLOG_STATE_ACTIVE;
1419 		iclog->ic_log = log;
1420 		atomic_set(&iclog->ic_refcnt, 0);
1421 		spin_lock_init(&iclog->ic_callback_lock);
1422 		iclog->ic_callback_tail = &(iclog->ic_callback);
1423 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1424 
1425 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1426 		init_waitqueue_head(&iclog->ic_force_wait);
1427 		init_waitqueue_head(&iclog->ic_write_wait);
1428 
1429 		iclogp = &iclog->ic_next;
1430 	}
1431 	*iclogp = log->l_iclog;			/* complete ring */
1432 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1433 
1434 	error = xlog_cil_init(log);
1435 	if (error)
1436 		goto out_free_iclog;
1437 	return log;
1438 
1439 out_free_iclog:
1440 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1441 		prev_iclog = iclog->ic_next;
1442 		if (iclog->ic_bp)
1443 			xfs_buf_free(iclog->ic_bp);
1444 		kmem_free(iclog);
1445 	}
1446 	spinlock_destroy(&log->l_icloglock);
1447 	xfs_buf_free(log->l_xbuf);
1448 out_free_log:
1449 	kmem_free(log);
1450 out:
1451 	return ERR_PTR(-error);
1452 }	/* xlog_alloc_log */
1453 
1454 
1455 /*
1456  * Write out the commit record of a transaction associated with the given
1457  * ticket.  Return the lsn of the commit record.
1458  */
1459 STATIC int
1460 xlog_commit_record(
1461 	struct xlog		*log,
1462 	struct xlog_ticket	*ticket,
1463 	struct xlog_in_core	**iclog,
1464 	xfs_lsn_t		*commitlsnp)
1465 {
1466 	struct xfs_mount *mp = log->l_mp;
1467 	int	error;
1468 	struct xfs_log_iovec reg = {
1469 		.i_addr = NULL,
1470 		.i_len = 0,
1471 		.i_type = XLOG_REG_TYPE_COMMIT,
1472 	};
1473 	struct xfs_log_vec vec = {
1474 		.lv_niovecs = 1,
1475 		.lv_iovecp = &reg,
1476 	};
1477 
1478 	ASSERT_ALWAYS(iclog);
1479 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1480 					XLOG_COMMIT_TRANS);
1481 	if (error)
1482 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1483 	return error;
1484 }
1485 
1486 /*
1487  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1488  * log space.  This code pushes on the lsn which would supposedly free up
1489  * the 25% which we want to leave free.  We may need to adopt a policy which
1490  * pushes on an lsn which is further along in the log once we reach the high
1491  * water mark.  In this manner, we would be creating a low water mark.
1492  */
1493 STATIC void
1494 xlog_grant_push_ail(
1495 	struct xlog	*log,
1496 	int		need_bytes)
1497 {
1498 	xfs_lsn_t	threshold_lsn = 0;
1499 	xfs_lsn_t	last_sync_lsn;
1500 	int		free_blocks;
1501 	int		free_bytes;
1502 	int		threshold_block;
1503 	int		threshold_cycle;
1504 	int		free_threshold;
1505 
1506 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1507 
1508 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1509 	free_blocks = BTOBBT(free_bytes);
1510 
1511 	/*
1512 	 * Set the threshold for the minimum number of free blocks in the
1513 	 * log to the maximum of what the caller needs, one quarter of the
1514 	 * log, and 256 blocks.
1515 	 */
1516 	free_threshold = BTOBB(need_bytes);
1517 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1518 	free_threshold = MAX(free_threshold, 256);
1519 	if (free_blocks >= free_threshold)
1520 		return;
1521 
1522 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1523 						&threshold_block);
1524 	threshold_block += free_threshold;
1525 	if (threshold_block >= log->l_logBBsize) {
1526 		threshold_block -= log->l_logBBsize;
1527 		threshold_cycle += 1;
1528 	}
1529 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1530 					threshold_block);
1531 	/*
1532 	 * Don't pass in an lsn greater than the lsn of the last
1533 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1534 	 * so that it doesn't change between the compare and the set.
1535 	 */
1536 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1537 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1538 		threshold_lsn = last_sync_lsn;
1539 
1540 	/*
1541 	 * Get the transaction layer to kick the dirty buffers out to
1542 	 * disk asynchronously. No point in trying to do this if
1543 	 * the filesystem is shutting down.
1544 	 */
1545 	if (!XLOG_FORCED_SHUTDOWN(log))
1546 		xfs_ail_push(log->l_ailp, threshold_lsn);
1547 }
1548 
1549 /*
1550  * Stamp cycle number in every block
1551  */
1552 STATIC void
1553 xlog_pack_data(
1554 	struct xlog		*log,
1555 	struct xlog_in_core	*iclog,
1556 	int			roundoff)
1557 {
1558 	int			i, j, k;
1559 	int			size = iclog->ic_offset + roundoff;
1560 	__be32			cycle_lsn;
1561 	xfs_caddr_t		dp;
1562 
1563 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1564 
1565 	dp = iclog->ic_datap;
1566 	for (i = 0; i < BTOBB(size); i++) {
1567 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1568 			break;
1569 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1570 		*(__be32 *)dp = cycle_lsn;
1571 		dp += BBSIZE;
1572 	}
1573 
1574 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1575 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1576 
1577 		for ( ; i < BTOBB(size); i++) {
1578 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1579 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1580 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1581 			*(__be32 *)dp = cycle_lsn;
1582 			dp += BBSIZE;
1583 		}
1584 
1585 		for (i = 1; i < log->l_iclog_heads; i++)
1586 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1587 	}
1588 }
1589 
1590 /*
1591  * Calculate the checksum for a log buffer.
1592  *
1593  * This is a little more complicated than it should be because the various
1594  * headers and the actual data are non-contiguous.
1595  */
1596 __le32
1597 xlog_cksum(
1598 	struct xlog		*log,
1599 	struct xlog_rec_header	*rhead,
1600 	char			*dp,
1601 	int			size)
1602 {
1603 	__uint32_t		crc;
1604 
1605 	/* first generate the crc for the record header ... */
1606 	crc = xfs_start_cksum((char *)rhead,
1607 			      sizeof(struct xlog_rec_header),
1608 			      offsetof(struct xlog_rec_header, h_crc));
1609 
1610 	/* ... then for additional cycle data for v2 logs ... */
1611 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1612 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1613 		int		i;
1614 
1615 		for (i = 1; i < log->l_iclog_heads; i++) {
1616 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1617 				     sizeof(struct xlog_rec_ext_header));
1618 		}
1619 	}
1620 
1621 	/* ... and finally for the payload */
1622 	crc = crc32c(crc, dp, size);
1623 
1624 	return xfs_end_cksum(crc);
1625 }
1626 
1627 /*
1628  * The bdstrat callback function for log bufs. This gives us a central
1629  * place to trap bufs in case we get hit by a log I/O error and need to
1630  * shutdown. Actually, in practice, even when we didn't get a log error,
1631  * we transition the iclogs to IOERROR state *after* flushing all existing
1632  * iclogs to disk. This is because we don't want anymore new transactions to be
1633  * started or completed afterwards.
1634  */
1635 STATIC int
1636 xlog_bdstrat(
1637 	struct xfs_buf		*bp)
1638 {
1639 	struct xlog_in_core	*iclog = bp->b_fspriv;
1640 
1641 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1642 		xfs_buf_ioerror(bp, EIO);
1643 		xfs_buf_stale(bp);
1644 		xfs_buf_ioend(bp, 0);
1645 		/*
1646 		 * It would seem logical to return EIO here, but we rely on
1647 		 * the log state machine to propagate I/O errors instead of
1648 		 * doing it here.
1649 		 */
1650 		return 0;
1651 	}
1652 
1653 	xfs_buf_iorequest(bp);
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1659  * fashion.  Previously, we should have moved the current iclog
1660  * ptr in the log to point to the next available iclog.  This allows further
1661  * write to continue while this code syncs out an iclog ready to go.
1662  * Before an in-core log can be written out, the data section must be scanned
1663  * to save away the 1st word of each BBSIZE block into the header.  We replace
1664  * it with the current cycle count.  Each BBSIZE block is tagged with the
1665  * cycle count because there in an implicit assumption that drives will
1666  * guarantee that entire 512 byte blocks get written at once.  In other words,
1667  * we can't have part of a 512 byte block written and part not written.  By
1668  * tagging each block, we will know which blocks are valid when recovering
1669  * after an unclean shutdown.
1670  *
1671  * This routine is single threaded on the iclog.  No other thread can be in
1672  * this routine with the same iclog.  Changing contents of iclog can there-
1673  * fore be done without grabbing the state machine lock.  Updating the global
1674  * log will require grabbing the lock though.
1675  *
1676  * The entire log manager uses a logical block numbering scheme.  Only
1677  * log_sync (and then only bwrite()) know about the fact that the log may
1678  * not start with block zero on a given device.  The log block start offset
1679  * is added immediately before calling bwrite().
1680  */
1681 
1682 STATIC int
1683 xlog_sync(
1684 	struct xlog		*log,
1685 	struct xlog_in_core	*iclog)
1686 {
1687 	xfs_buf_t	*bp;
1688 	int		i;
1689 	uint		count;		/* byte count of bwrite */
1690 	uint		count_init;	/* initial count before roundup */
1691 	int		roundoff;       /* roundoff to BB or stripe */
1692 	int		split = 0;	/* split write into two regions */
1693 	int		error;
1694 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1695 	int		size;
1696 
1697 	XFS_STATS_INC(xs_log_writes);
1698 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1699 
1700 	/* Add for LR header */
1701 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1702 
1703 	/* Round out the log write size */
1704 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1705 		/* we have a v2 stripe unit to use */
1706 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1707 	} else {
1708 		count = BBTOB(BTOBB(count_init));
1709 	}
1710 	roundoff = count - count_init;
1711 	ASSERT(roundoff >= 0);
1712 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1713                 roundoff < log->l_mp->m_sb.sb_logsunit)
1714 		||
1715 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1716 		 roundoff < BBTOB(1)));
1717 
1718 	/* move grant heads by roundoff in sync */
1719 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1720 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1721 
1722 	/* put cycle number in every block */
1723 	xlog_pack_data(log, iclog, roundoff);
1724 
1725 	/* real byte length */
1726 	size = iclog->ic_offset;
1727 	if (v2)
1728 		size += roundoff;
1729 	iclog->ic_header.h_len = cpu_to_be32(size);
1730 
1731 	bp = iclog->ic_bp;
1732 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1733 
1734 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1735 
1736 	/* Do we need to split this write into 2 parts? */
1737 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1738 		char		*dptr;
1739 
1740 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1741 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1742 		iclog->ic_bwritecnt = 2;
1743 
1744 		/*
1745 		 * Bump the cycle numbers at the start of each block in the
1746 		 * part of the iclog that ends up in the buffer that gets
1747 		 * written to the start of the log.
1748 		 *
1749 		 * Watch out for the header magic number case, though.
1750 		 */
1751 		dptr = (char *)&iclog->ic_header + count;
1752 		for (i = 0; i < split; i += BBSIZE) {
1753 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1754 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1755 				cycle++;
1756 			*(__be32 *)dptr = cpu_to_be32(cycle);
1757 
1758 			dptr += BBSIZE;
1759 		}
1760 	} else {
1761 		iclog->ic_bwritecnt = 1;
1762 	}
1763 
1764 	/* calculcate the checksum */
1765 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1766 					    iclog->ic_datap, size);
1767 
1768 	bp->b_io_length = BTOBB(count);
1769 	bp->b_fspriv = iclog;
1770 	XFS_BUF_ZEROFLAGS(bp);
1771 	XFS_BUF_ASYNC(bp);
1772 	bp->b_flags |= XBF_SYNCIO;
1773 
1774 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1775 		bp->b_flags |= XBF_FUA;
1776 
1777 		/*
1778 		 * Flush the data device before flushing the log to make
1779 		 * sure all meta data written back from the AIL actually made
1780 		 * it to disk before stamping the new log tail LSN into the
1781 		 * log buffer.  For an external log we need to issue the
1782 		 * flush explicitly, and unfortunately synchronously here;
1783 		 * for an internal log we can simply use the block layer
1784 		 * state machine for preflushes.
1785 		 */
1786 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1787 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1788 		else
1789 			bp->b_flags |= XBF_FLUSH;
1790 	}
1791 
1792 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1793 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1794 
1795 	xlog_verify_iclog(log, iclog, count, true);
1796 
1797 	/* account for log which doesn't start at block #0 */
1798 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1799 	/*
1800 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1801 	 * is shutting down.
1802 	 */
1803 	XFS_BUF_WRITE(bp);
1804 
1805 	error = xlog_bdstrat(bp);
1806 	if (error) {
1807 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1808 		return error;
1809 	}
1810 	if (split) {
1811 		bp = iclog->ic_log->l_xbuf;
1812 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1813 		xfs_buf_associate_memory(bp,
1814 				(char *)&iclog->ic_header + count, split);
1815 		bp->b_fspriv = iclog;
1816 		XFS_BUF_ZEROFLAGS(bp);
1817 		XFS_BUF_ASYNC(bp);
1818 		bp->b_flags |= XBF_SYNCIO;
1819 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1820 			bp->b_flags |= XBF_FUA;
1821 
1822 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1823 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1824 
1825 		/* account for internal log which doesn't start at block #0 */
1826 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1827 		XFS_BUF_WRITE(bp);
1828 		error = xlog_bdstrat(bp);
1829 		if (error) {
1830 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1831 			return error;
1832 		}
1833 	}
1834 	return 0;
1835 }	/* xlog_sync */
1836 
1837 /*
1838  * Deallocate a log structure
1839  */
1840 STATIC void
1841 xlog_dealloc_log(
1842 	struct xlog	*log)
1843 {
1844 	xlog_in_core_t	*iclog, *next_iclog;
1845 	int		i;
1846 
1847 	xlog_cil_destroy(log);
1848 
1849 	/*
1850 	 * always need to ensure that the extra buffer does not point to memory
1851 	 * owned by another log buffer before we free it.
1852 	 */
1853 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1854 	xfs_buf_free(log->l_xbuf);
1855 
1856 	iclog = log->l_iclog;
1857 	for (i=0; i<log->l_iclog_bufs; i++) {
1858 		xfs_buf_free(iclog->ic_bp);
1859 		next_iclog = iclog->ic_next;
1860 		kmem_free(iclog);
1861 		iclog = next_iclog;
1862 	}
1863 	spinlock_destroy(&log->l_icloglock);
1864 
1865 	log->l_mp->m_log = NULL;
1866 	kmem_free(log);
1867 }	/* xlog_dealloc_log */
1868 
1869 /*
1870  * Update counters atomically now that memcpy is done.
1871  */
1872 /* ARGSUSED */
1873 static inline void
1874 xlog_state_finish_copy(
1875 	struct xlog		*log,
1876 	struct xlog_in_core	*iclog,
1877 	int			record_cnt,
1878 	int			copy_bytes)
1879 {
1880 	spin_lock(&log->l_icloglock);
1881 
1882 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1883 	iclog->ic_offset += copy_bytes;
1884 
1885 	spin_unlock(&log->l_icloglock);
1886 }	/* xlog_state_finish_copy */
1887 
1888 
1889 
1890 
1891 /*
1892  * print out info relating to regions written which consume
1893  * the reservation
1894  */
1895 void
1896 xlog_print_tic_res(
1897 	struct xfs_mount	*mp,
1898 	struct xlog_ticket	*ticket)
1899 {
1900 	uint i;
1901 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1902 
1903 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1904 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1905 	    "bformat",
1906 	    "bchunk",
1907 	    "efi_format",
1908 	    "efd_format",
1909 	    "iformat",
1910 	    "icore",
1911 	    "iext",
1912 	    "ibroot",
1913 	    "ilocal",
1914 	    "iattr_ext",
1915 	    "iattr_broot",
1916 	    "iattr_local",
1917 	    "qformat",
1918 	    "dquot",
1919 	    "quotaoff",
1920 	    "LR header",
1921 	    "unmount",
1922 	    "commit",
1923 	    "trans header"
1924 	};
1925 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1926 	    "SETATTR_NOT_SIZE",
1927 	    "SETATTR_SIZE",
1928 	    "INACTIVE",
1929 	    "CREATE",
1930 	    "CREATE_TRUNC",
1931 	    "TRUNCATE_FILE",
1932 	    "REMOVE",
1933 	    "LINK",
1934 	    "RENAME",
1935 	    "MKDIR",
1936 	    "RMDIR",
1937 	    "SYMLINK",
1938 	    "SET_DMATTRS",
1939 	    "GROWFS",
1940 	    "STRAT_WRITE",
1941 	    "DIOSTRAT",
1942 	    "WRITE_SYNC",
1943 	    "WRITEID",
1944 	    "ADDAFORK",
1945 	    "ATTRINVAL",
1946 	    "ATRUNCATE",
1947 	    "ATTR_SET",
1948 	    "ATTR_RM",
1949 	    "ATTR_FLAG",
1950 	    "CLEAR_AGI_BUCKET",
1951 	    "QM_SBCHANGE",
1952 	    "DUMMY1",
1953 	    "DUMMY2",
1954 	    "QM_QUOTAOFF",
1955 	    "QM_DQALLOC",
1956 	    "QM_SETQLIM",
1957 	    "QM_DQCLUSTER",
1958 	    "QM_QINOCREATE",
1959 	    "QM_QUOTAOFF_END",
1960 	    "SB_UNIT",
1961 	    "FSYNC_TS",
1962 	    "GROWFSRT_ALLOC",
1963 	    "GROWFSRT_ZERO",
1964 	    "GROWFSRT_FREE",
1965 	    "SWAPEXT"
1966 	};
1967 
1968 	xfs_warn(mp,
1969 		"xlog_write: reservation summary:\n"
1970 		"  trans type  = %s (%u)\n"
1971 		"  unit res    = %d bytes\n"
1972 		"  current res = %d bytes\n"
1973 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1974 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1975 		"  ophdr + reg = %u bytes\n"
1976 		"  num regions = %u\n",
1977 		((ticket->t_trans_type <= 0 ||
1978 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1979 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1980 		ticket->t_trans_type,
1981 		ticket->t_unit_res,
1982 		ticket->t_curr_res,
1983 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1984 		ticket->t_res_num_ophdrs, ophdr_spc,
1985 		ticket->t_res_arr_sum +
1986 		ticket->t_res_o_flow + ophdr_spc,
1987 		ticket->t_res_num);
1988 
1989 	for (i = 0; i < ticket->t_res_num; i++) {
1990 		uint r_type = ticket->t_res_arr[i].r_type;
1991 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
1992 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1993 			    "bad-rtype" : res_type_str[r_type-1]),
1994 			    ticket->t_res_arr[i].r_len);
1995 	}
1996 
1997 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1998 		"xlog_write: reservation ran out. Need to up reservation");
1999 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2000 }
2001 
2002 /*
2003  * Calculate the potential space needed by the log vector.  Each region gets
2004  * its own xlog_op_header_t and may need to be double word aligned.
2005  */
2006 static int
2007 xlog_write_calc_vec_length(
2008 	struct xlog_ticket	*ticket,
2009 	struct xfs_log_vec	*log_vector)
2010 {
2011 	struct xfs_log_vec	*lv;
2012 	int			headers = 0;
2013 	int			len = 0;
2014 	int			i;
2015 
2016 	/* acct for start rec of xact */
2017 	if (ticket->t_flags & XLOG_TIC_INITED)
2018 		headers++;
2019 
2020 	for (lv = log_vector; lv; lv = lv->lv_next) {
2021 		/* we don't write ordered log vectors */
2022 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2023 			continue;
2024 
2025 		headers += lv->lv_niovecs;
2026 
2027 		for (i = 0; i < lv->lv_niovecs; i++) {
2028 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2029 
2030 			len += vecp->i_len;
2031 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2032 		}
2033 	}
2034 
2035 	ticket->t_res_num_ophdrs += headers;
2036 	len += headers * sizeof(struct xlog_op_header);
2037 
2038 	return len;
2039 }
2040 
2041 /*
2042  * If first write for transaction, insert start record  We can't be trying to
2043  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2044  */
2045 static int
2046 xlog_write_start_rec(
2047 	struct xlog_op_header	*ophdr,
2048 	struct xlog_ticket	*ticket)
2049 {
2050 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2051 		return 0;
2052 
2053 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2054 	ophdr->oh_clientid = ticket->t_clientid;
2055 	ophdr->oh_len = 0;
2056 	ophdr->oh_flags = XLOG_START_TRANS;
2057 	ophdr->oh_res2 = 0;
2058 
2059 	ticket->t_flags &= ~XLOG_TIC_INITED;
2060 
2061 	return sizeof(struct xlog_op_header);
2062 }
2063 
2064 static xlog_op_header_t *
2065 xlog_write_setup_ophdr(
2066 	struct xlog		*log,
2067 	struct xlog_op_header	*ophdr,
2068 	struct xlog_ticket	*ticket,
2069 	uint			flags)
2070 {
2071 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2072 	ophdr->oh_clientid = ticket->t_clientid;
2073 	ophdr->oh_res2 = 0;
2074 
2075 	/* are we copying a commit or unmount record? */
2076 	ophdr->oh_flags = flags;
2077 
2078 	/*
2079 	 * We've seen logs corrupted with bad transaction client ids.  This
2080 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2081 	 * and shut down the filesystem.
2082 	 */
2083 	switch (ophdr->oh_clientid)  {
2084 	case XFS_TRANSACTION:
2085 	case XFS_VOLUME:
2086 	case XFS_LOG:
2087 		break;
2088 	default:
2089 		xfs_warn(log->l_mp,
2090 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2091 			ophdr->oh_clientid, ticket);
2092 		return NULL;
2093 	}
2094 
2095 	return ophdr;
2096 }
2097 
2098 /*
2099  * Set up the parameters of the region copy into the log. This has
2100  * to handle region write split across multiple log buffers - this
2101  * state is kept external to this function so that this code can
2102  * be written in an obvious, self documenting manner.
2103  */
2104 static int
2105 xlog_write_setup_copy(
2106 	struct xlog_ticket	*ticket,
2107 	struct xlog_op_header	*ophdr,
2108 	int			space_available,
2109 	int			space_required,
2110 	int			*copy_off,
2111 	int			*copy_len,
2112 	int			*last_was_partial_copy,
2113 	int			*bytes_consumed)
2114 {
2115 	int			still_to_copy;
2116 
2117 	still_to_copy = space_required - *bytes_consumed;
2118 	*copy_off = *bytes_consumed;
2119 
2120 	if (still_to_copy <= space_available) {
2121 		/* write of region completes here */
2122 		*copy_len = still_to_copy;
2123 		ophdr->oh_len = cpu_to_be32(*copy_len);
2124 		if (*last_was_partial_copy)
2125 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2126 		*last_was_partial_copy = 0;
2127 		*bytes_consumed = 0;
2128 		return 0;
2129 	}
2130 
2131 	/* partial write of region, needs extra log op header reservation */
2132 	*copy_len = space_available;
2133 	ophdr->oh_len = cpu_to_be32(*copy_len);
2134 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2135 	if (*last_was_partial_copy)
2136 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2137 	*bytes_consumed += *copy_len;
2138 	(*last_was_partial_copy)++;
2139 
2140 	/* account for new log op header */
2141 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2142 	ticket->t_res_num_ophdrs++;
2143 
2144 	return sizeof(struct xlog_op_header);
2145 }
2146 
2147 static int
2148 xlog_write_copy_finish(
2149 	struct xlog		*log,
2150 	struct xlog_in_core	*iclog,
2151 	uint			flags,
2152 	int			*record_cnt,
2153 	int			*data_cnt,
2154 	int			*partial_copy,
2155 	int			*partial_copy_len,
2156 	int			log_offset,
2157 	struct xlog_in_core	**commit_iclog)
2158 {
2159 	if (*partial_copy) {
2160 		/*
2161 		 * This iclog has already been marked WANT_SYNC by
2162 		 * xlog_state_get_iclog_space.
2163 		 */
2164 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2165 		*record_cnt = 0;
2166 		*data_cnt = 0;
2167 		return xlog_state_release_iclog(log, iclog);
2168 	}
2169 
2170 	*partial_copy = 0;
2171 	*partial_copy_len = 0;
2172 
2173 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2174 		/* no more space in this iclog - push it. */
2175 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2176 		*record_cnt = 0;
2177 		*data_cnt = 0;
2178 
2179 		spin_lock(&log->l_icloglock);
2180 		xlog_state_want_sync(log, iclog);
2181 		spin_unlock(&log->l_icloglock);
2182 
2183 		if (!commit_iclog)
2184 			return xlog_state_release_iclog(log, iclog);
2185 		ASSERT(flags & XLOG_COMMIT_TRANS);
2186 		*commit_iclog = iclog;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Write some region out to in-core log
2194  *
2195  * This will be called when writing externally provided regions or when
2196  * writing out a commit record for a given transaction.
2197  *
2198  * General algorithm:
2199  *	1. Find total length of this write.  This may include adding to the
2200  *		lengths passed in.
2201  *	2. Check whether we violate the tickets reservation.
2202  *	3. While writing to this iclog
2203  *	    A. Reserve as much space in this iclog as can get
2204  *	    B. If this is first write, save away start lsn
2205  *	    C. While writing this region:
2206  *		1. If first write of transaction, write start record
2207  *		2. Write log operation header (header per region)
2208  *		3. Find out if we can fit entire region into this iclog
2209  *		4. Potentially, verify destination memcpy ptr
2210  *		5. Memcpy (partial) region
2211  *		6. If partial copy, release iclog; otherwise, continue
2212  *			copying more regions into current iclog
2213  *	4. Mark want sync bit (in simulation mode)
2214  *	5. Release iclog for potential flush to on-disk log.
2215  *
2216  * ERRORS:
2217  * 1.	Panic if reservation is overrun.  This should never happen since
2218  *	reservation amounts are generated internal to the filesystem.
2219  * NOTES:
2220  * 1. Tickets are single threaded data structures.
2221  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2222  *	syncing routine.  When a single log_write region needs to span
2223  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2224  *	on all log operation writes which don't contain the end of the
2225  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2226  *	operation which contains the end of the continued log_write region.
2227  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2228  *	we don't really know exactly how much space will be used.  As a result,
2229  *	we don't update ic_offset until the end when we know exactly how many
2230  *	bytes have been written out.
2231  */
2232 int
2233 xlog_write(
2234 	struct xlog		*log,
2235 	struct xfs_log_vec	*log_vector,
2236 	struct xlog_ticket	*ticket,
2237 	xfs_lsn_t		*start_lsn,
2238 	struct xlog_in_core	**commit_iclog,
2239 	uint			flags)
2240 {
2241 	struct xlog_in_core	*iclog = NULL;
2242 	struct xfs_log_iovec	*vecp;
2243 	struct xfs_log_vec	*lv;
2244 	int			len;
2245 	int			index;
2246 	int			partial_copy = 0;
2247 	int			partial_copy_len = 0;
2248 	int			contwr = 0;
2249 	int			record_cnt = 0;
2250 	int			data_cnt = 0;
2251 	int			error;
2252 
2253 	*start_lsn = 0;
2254 
2255 	len = xlog_write_calc_vec_length(ticket, log_vector);
2256 
2257 	/*
2258 	 * Region headers and bytes are already accounted for.
2259 	 * We only need to take into account start records and
2260 	 * split regions in this function.
2261 	 */
2262 	if (ticket->t_flags & XLOG_TIC_INITED)
2263 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2264 
2265 	/*
2266 	 * Commit record headers need to be accounted for. These
2267 	 * come in as separate writes so are easy to detect.
2268 	 */
2269 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2270 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2271 
2272 	if (ticket->t_curr_res < 0)
2273 		xlog_print_tic_res(log->l_mp, ticket);
2274 
2275 	index = 0;
2276 	lv = log_vector;
2277 	vecp = lv->lv_iovecp;
2278 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2279 		void		*ptr;
2280 		int		log_offset;
2281 
2282 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2283 						   &contwr, &log_offset);
2284 		if (error)
2285 			return error;
2286 
2287 		ASSERT(log_offset <= iclog->ic_size - 1);
2288 		ptr = iclog->ic_datap + log_offset;
2289 
2290 		/* start_lsn is the first lsn written to. That's all we need. */
2291 		if (!*start_lsn)
2292 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2293 
2294 		/*
2295 		 * This loop writes out as many regions as can fit in the amount
2296 		 * of space which was allocated by xlog_state_get_iclog_space().
2297 		 */
2298 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2299 			struct xfs_log_iovec	*reg;
2300 			struct xlog_op_header	*ophdr;
2301 			int			start_rec_copy;
2302 			int			copy_len;
2303 			int			copy_off;
2304 			bool			ordered = false;
2305 
2306 			/* ordered log vectors have no regions to write */
2307 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2308 				ASSERT(lv->lv_niovecs == 0);
2309 				ordered = true;
2310 				goto next_lv;
2311 			}
2312 
2313 			reg = &vecp[index];
2314 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2315 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2316 
2317 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2318 			if (start_rec_copy) {
2319 				record_cnt++;
2320 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2321 						   start_rec_copy);
2322 			}
2323 
2324 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2325 			if (!ophdr)
2326 				return XFS_ERROR(EIO);
2327 
2328 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2329 					   sizeof(struct xlog_op_header));
2330 
2331 			len += xlog_write_setup_copy(ticket, ophdr,
2332 						     iclog->ic_size-log_offset,
2333 						     reg->i_len,
2334 						     &copy_off, &copy_len,
2335 						     &partial_copy,
2336 						     &partial_copy_len);
2337 			xlog_verify_dest_ptr(log, ptr);
2338 
2339 			/* copy region */
2340 			ASSERT(copy_len >= 0);
2341 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2342 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2343 
2344 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2345 			record_cnt++;
2346 			data_cnt += contwr ? copy_len : 0;
2347 
2348 			error = xlog_write_copy_finish(log, iclog, flags,
2349 						       &record_cnt, &data_cnt,
2350 						       &partial_copy,
2351 						       &partial_copy_len,
2352 						       log_offset,
2353 						       commit_iclog);
2354 			if (error)
2355 				return error;
2356 
2357 			/*
2358 			 * if we had a partial copy, we need to get more iclog
2359 			 * space but we don't want to increment the region
2360 			 * index because there is still more is this region to
2361 			 * write.
2362 			 *
2363 			 * If we completed writing this region, and we flushed
2364 			 * the iclog (indicated by resetting of the record
2365 			 * count), then we also need to get more log space. If
2366 			 * this was the last record, though, we are done and
2367 			 * can just return.
2368 			 */
2369 			if (partial_copy)
2370 				break;
2371 
2372 			if (++index == lv->lv_niovecs) {
2373 next_lv:
2374 				lv = lv->lv_next;
2375 				index = 0;
2376 				if (lv)
2377 					vecp = lv->lv_iovecp;
2378 			}
2379 			if (record_cnt == 0 && ordered == false) {
2380 				if (!lv)
2381 					return 0;
2382 				break;
2383 			}
2384 		}
2385 	}
2386 
2387 	ASSERT(len == 0);
2388 
2389 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2390 	if (!commit_iclog)
2391 		return xlog_state_release_iclog(log, iclog);
2392 
2393 	ASSERT(flags & XLOG_COMMIT_TRANS);
2394 	*commit_iclog = iclog;
2395 	return 0;
2396 }
2397 
2398 
2399 /*****************************************************************************
2400  *
2401  *		State Machine functions
2402  *
2403  *****************************************************************************
2404  */
2405 
2406 /* Clean iclogs starting from the head.  This ordering must be
2407  * maintained, so an iclog doesn't become ACTIVE beyond one that
2408  * is SYNCING.  This is also required to maintain the notion that we use
2409  * a ordered wait queue to hold off would be writers to the log when every
2410  * iclog is trying to sync to disk.
2411  *
2412  * State Change: DIRTY -> ACTIVE
2413  */
2414 STATIC void
2415 xlog_state_clean_log(
2416 	struct xlog *log)
2417 {
2418 	xlog_in_core_t	*iclog;
2419 	int changed = 0;
2420 
2421 	iclog = log->l_iclog;
2422 	do {
2423 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2424 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2425 			iclog->ic_offset       = 0;
2426 			ASSERT(iclog->ic_callback == NULL);
2427 			/*
2428 			 * If the number of ops in this iclog indicate it just
2429 			 * contains the dummy transaction, we can
2430 			 * change state into IDLE (the second time around).
2431 			 * Otherwise we should change the state into
2432 			 * NEED a dummy.
2433 			 * We don't need to cover the dummy.
2434 			 */
2435 			if (!changed &&
2436 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2437 			   		XLOG_COVER_OPS)) {
2438 				changed = 1;
2439 			} else {
2440 				/*
2441 				 * We have two dirty iclogs so start over
2442 				 * This could also be num of ops indicates
2443 				 * this is not the dummy going out.
2444 				 */
2445 				changed = 2;
2446 			}
2447 			iclog->ic_header.h_num_logops = 0;
2448 			memset(iclog->ic_header.h_cycle_data, 0,
2449 			      sizeof(iclog->ic_header.h_cycle_data));
2450 			iclog->ic_header.h_lsn = 0;
2451 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2452 			/* do nothing */;
2453 		else
2454 			break;	/* stop cleaning */
2455 		iclog = iclog->ic_next;
2456 	} while (iclog != log->l_iclog);
2457 
2458 	/* log is locked when we are called */
2459 	/*
2460 	 * Change state for the dummy log recording.
2461 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2462 	 * we are done writing the dummy record.
2463 	 * If we are done with the second dummy recored (DONE2), then
2464 	 * we go to IDLE.
2465 	 */
2466 	if (changed) {
2467 		switch (log->l_covered_state) {
2468 		case XLOG_STATE_COVER_IDLE:
2469 		case XLOG_STATE_COVER_NEED:
2470 		case XLOG_STATE_COVER_NEED2:
2471 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2472 			break;
2473 
2474 		case XLOG_STATE_COVER_DONE:
2475 			if (changed == 1)
2476 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2477 			else
2478 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2479 			break;
2480 
2481 		case XLOG_STATE_COVER_DONE2:
2482 			if (changed == 1)
2483 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2484 			else
2485 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2486 			break;
2487 
2488 		default:
2489 			ASSERT(0);
2490 		}
2491 	}
2492 }	/* xlog_state_clean_log */
2493 
2494 STATIC xfs_lsn_t
2495 xlog_get_lowest_lsn(
2496 	struct xlog	*log)
2497 {
2498 	xlog_in_core_t  *lsn_log;
2499 	xfs_lsn_t	lowest_lsn, lsn;
2500 
2501 	lsn_log = log->l_iclog;
2502 	lowest_lsn = 0;
2503 	do {
2504 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2505 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2506 		if ((lsn && !lowest_lsn) ||
2507 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2508 			lowest_lsn = lsn;
2509 		}
2510 	    }
2511 	    lsn_log = lsn_log->ic_next;
2512 	} while (lsn_log != log->l_iclog);
2513 	return lowest_lsn;
2514 }
2515 
2516 
2517 STATIC void
2518 xlog_state_do_callback(
2519 	struct xlog		*log,
2520 	int			aborted,
2521 	struct xlog_in_core	*ciclog)
2522 {
2523 	xlog_in_core_t	   *iclog;
2524 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2525 						 * processed all iclogs once */
2526 	xfs_log_callback_t *cb, *cb_next;
2527 	int		   flushcnt = 0;
2528 	xfs_lsn_t	   lowest_lsn;
2529 	int		   ioerrors;	/* counter: iclogs with errors */
2530 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2531 	int		   funcdidcallbacks; /* flag: function did callbacks */
2532 	int		   repeats;	/* for issuing console warnings if
2533 					 * looping too many times */
2534 	int		   wake = 0;
2535 
2536 	spin_lock(&log->l_icloglock);
2537 	first_iclog = iclog = log->l_iclog;
2538 	ioerrors = 0;
2539 	funcdidcallbacks = 0;
2540 	repeats = 0;
2541 
2542 	do {
2543 		/*
2544 		 * Scan all iclogs starting with the one pointed to by the
2545 		 * log.  Reset this starting point each time the log is
2546 		 * unlocked (during callbacks).
2547 		 *
2548 		 * Keep looping through iclogs until one full pass is made
2549 		 * without running any callbacks.
2550 		 */
2551 		first_iclog = log->l_iclog;
2552 		iclog = log->l_iclog;
2553 		loopdidcallbacks = 0;
2554 		repeats++;
2555 
2556 		do {
2557 
2558 			/* skip all iclogs in the ACTIVE & DIRTY states */
2559 			if (iclog->ic_state &
2560 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2561 				iclog = iclog->ic_next;
2562 				continue;
2563 			}
2564 
2565 			/*
2566 			 * Between marking a filesystem SHUTDOWN and stopping
2567 			 * the log, we do flush all iclogs to disk (if there
2568 			 * wasn't a log I/O error). So, we do want things to
2569 			 * go smoothly in case of just a SHUTDOWN  w/o a
2570 			 * LOG_IO_ERROR.
2571 			 */
2572 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2573 				/*
2574 				 * Can only perform callbacks in order.  Since
2575 				 * this iclog is not in the DONE_SYNC/
2576 				 * DO_CALLBACK state, we skip the rest and
2577 				 * just try to clean up.  If we set our iclog
2578 				 * to DO_CALLBACK, we will not process it when
2579 				 * we retry since a previous iclog is in the
2580 				 * CALLBACK and the state cannot change since
2581 				 * we are holding the l_icloglock.
2582 				 */
2583 				if (!(iclog->ic_state &
2584 					(XLOG_STATE_DONE_SYNC |
2585 						 XLOG_STATE_DO_CALLBACK))) {
2586 					if (ciclog && (ciclog->ic_state ==
2587 							XLOG_STATE_DONE_SYNC)) {
2588 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2589 					}
2590 					break;
2591 				}
2592 				/*
2593 				 * We now have an iclog that is in either the
2594 				 * DO_CALLBACK or DONE_SYNC states. The other
2595 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2596 				 * caught by the above if and are going to
2597 				 * clean (i.e. we aren't doing their callbacks)
2598 				 * see the above if.
2599 				 */
2600 
2601 				/*
2602 				 * We will do one more check here to see if we
2603 				 * have chased our tail around.
2604 				 */
2605 
2606 				lowest_lsn = xlog_get_lowest_lsn(log);
2607 				if (lowest_lsn &&
2608 				    XFS_LSN_CMP(lowest_lsn,
2609 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2610 					iclog = iclog->ic_next;
2611 					continue; /* Leave this iclog for
2612 						   * another thread */
2613 				}
2614 
2615 				iclog->ic_state = XLOG_STATE_CALLBACK;
2616 
2617 
2618 				/*
2619 				 * Completion of a iclog IO does not imply that
2620 				 * a transaction has completed, as transactions
2621 				 * can be large enough to span many iclogs. We
2622 				 * cannot change the tail of the log half way
2623 				 * through a transaction as this may be the only
2624 				 * transaction in the log and moving th etail to
2625 				 * point to the middle of it will prevent
2626 				 * recovery from finding the start of the
2627 				 * transaction. Hence we should only update the
2628 				 * last_sync_lsn if this iclog contains
2629 				 * transaction completion callbacks on it.
2630 				 *
2631 				 * We have to do this before we drop the
2632 				 * icloglock to ensure we are the only one that
2633 				 * can update it.
2634 				 */
2635 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2636 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2637 				if (iclog->ic_callback)
2638 					atomic64_set(&log->l_last_sync_lsn,
2639 						be64_to_cpu(iclog->ic_header.h_lsn));
2640 
2641 			} else
2642 				ioerrors++;
2643 
2644 			spin_unlock(&log->l_icloglock);
2645 
2646 			/*
2647 			 * Keep processing entries in the callback list until
2648 			 * we come around and it is empty.  We need to
2649 			 * atomically see that the list is empty and change the
2650 			 * state to DIRTY so that we don't miss any more
2651 			 * callbacks being added.
2652 			 */
2653 			spin_lock(&iclog->ic_callback_lock);
2654 			cb = iclog->ic_callback;
2655 			while (cb) {
2656 				iclog->ic_callback_tail = &(iclog->ic_callback);
2657 				iclog->ic_callback = NULL;
2658 				spin_unlock(&iclog->ic_callback_lock);
2659 
2660 				/* perform callbacks in the order given */
2661 				for (; cb; cb = cb_next) {
2662 					cb_next = cb->cb_next;
2663 					cb->cb_func(cb->cb_arg, aborted);
2664 				}
2665 				spin_lock(&iclog->ic_callback_lock);
2666 				cb = iclog->ic_callback;
2667 			}
2668 
2669 			loopdidcallbacks++;
2670 			funcdidcallbacks++;
2671 
2672 			spin_lock(&log->l_icloglock);
2673 			ASSERT(iclog->ic_callback == NULL);
2674 			spin_unlock(&iclog->ic_callback_lock);
2675 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2676 				iclog->ic_state = XLOG_STATE_DIRTY;
2677 
2678 			/*
2679 			 * Transition from DIRTY to ACTIVE if applicable.
2680 			 * NOP if STATE_IOERROR.
2681 			 */
2682 			xlog_state_clean_log(log);
2683 
2684 			/* wake up threads waiting in xfs_log_force() */
2685 			wake_up_all(&iclog->ic_force_wait);
2686 
2687 			iclog = iclog->ic_next;
2688 		} while (first_iclog != iclog);
2689 
2690 		if (repeats > 5000) {
2691 			flushcnt += repeats;
2692 			repeats = 0;
2693 			xfs_warn(log->l_mp,
2694 				"%s: possible infinite loop (%d iterations)",
2695 				__func__, flushcnt);
2696 		}
2697 	} while (!ioerrors && loopdidcallbacks);
2698 
2699 	/*
2700 	 * make one last gasp attempt to see if iclogs are being left in
2701 	 * limbo..
2702 	 */
2703 #ifdef DEBUG
2704 	if (funcdidcallbacks) {
2705 		first_iclog = iclog = log->l_iclog;
2706 		do {
2707 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2708 			/*
2709 			 * Terminate the loop if iclogs are found in states
2710 			 * which will cause other threads to clean up iclogs.
2711 			 *
2712 			 * SYNCING - i/o completion will go through logs
2713 			 * DONE_SYNC - interrupt thread should be waiting for
2714 			 *              l_icloglock
2715 			 * IOERROR - give up hope all ye who enter here
2716 			 */
2717 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2718 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2719 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2720 			    iclog->ic_state == XLOG_STATE_IOERROR )
2721 				break;
2722 			iclog = iclog->ic_next;
2723 		} while (first_iclog != iclog);
2724 	}
2725 #endif
2726 
2727 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2728 		wake = 1;
2729 	spin_unlock(&log->l_icloglock);
2730 
2731 	if (wake)
2732 		wake_up_all(&log->l_flush_wait);
2733 }
2734 
2735 
2736 /*
2737  * Finish transitioning this iclog to the dirty state.
2738  *
2739  * Make sure that we completely execute this routine only when this is
2740  * the last call to the iclog.  There is a good chance that iclog flushes,
2741  * when we reach the end of the physical log, get turned into 2 separate
2742  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2743  * routine.  By using the reference count bwritecnt, we guarantee that only
2744  * the second completion goes through.
2745  *
2746  * Callbacks could take time, so they are done outside the scope of the
2747  * global state machine log lock.
2748  */
2749 STATIC void
2750 xlog_state_done_syncing(
2751 	xlog_in_core_t	*iclog,
2752 	int		aborted)
2753 {
2754 	struct xlog	   *log = iclog->ic_log;
2755 
2756 	spin_lock(&log->l_icloglock);
2757 
2758 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2759 	       iclog->ic_state == XLOG_STATE_IOERROR);
2760 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2761 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2762 
2763 
2764 	/*
2765 	 * If we got an error, either on the first buffer, or in the case of
2766 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2767 	 * and none should ever be attempted to be written to disk
2768 	 * again.
2769 	 */
2770 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2771 		if (--iclog->ic_bwritecnt == 1) {
2772 			spin_unlock(&log->l_icloglock);
2773 			return;
2774 		}
2775 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2776 	}
2777 
2778 	/*
2779 	 * Someone could be sleeping prior to writing out the next
2780 	 * iclog buffer, we wake them all, one will get to do the
2781 	 * I/O, the others get to wait for the result.
2782 	 */
2783 	wake_up_all(&iclog->ic_write_wait);
2784 	spin_unlock(&log->l_icloglock);
2785 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2786 }	/* xlog_state_done_syncing */
2787 
2788 
2789 /*
2790  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2791  * sleep.  We wait on the flush queue on the head iclog as that should be
2792  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2793  * we will wait here and all new writes will sleep until a sync completes.
2794  *
2795  * The in-core logs are used in a circular fashion. They are not used
2796  * out-of-order even when an iclog past the head is free.
2797  *
2798  * return:
2799  *	* log_offset where xlog_write() can start writing into the in-core
2800  *		log's data space.
2801  *	* in-core log pointer to which xlog_write() should write.
2802  *	* boolean indicating this is a continued write to an in-core log.
2803  *		If this is the last write, then the in-core log's offset field
2804  *		needs to be incremented, depending on the amount of data which
2805  *		is copied.
2806  */
2807 STATIC int
2808 xlog_state_get_iclog_space(
2809 	struct xlog		*log,
2810 	int			len,
2811 	struct xlog_in_core	**iclogp,
2812 	struct xlog_ticket	*ticket,
2813 	int			*continued_write,
2814 	int			*logoffsetp)
2815 {
2816 	int		  log_offset;
2817 	xlog_rec_header_t *head;
2818 	xlog_in_core_t	  *iclog;
2819 	int		  error;
2820 
2821 restart:
2822 	spin_lock(&log->l_icloglock);
2823 	if (XLOG_FORCED_SHUTDOWN(log)) {
2824 		spin_unlock(&log->l_icloglock);
2825 		return XFS_ERROR(EIO);
2826 	}
2827 
2828 	iclog = log->l_iclog;
2829 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2830 		XFS_STATS_INC(xs_log_noiclogs);
2831 
2832 		/* Wait for log writes to have flushed */
2833 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2834 		goto restart;
2835 	}
2836 
2837 	head = &iclog->ic_header;
2838 
2839 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2840 	log_offset = iclog->ic_offset;
2841 
2842 	/* On the 1st write to an iclog, figure out lsn.  This works
2843 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2844 	 * committing to.  If the offset is set, that's how many blocks
2845 	 * must be written.
2846 	 */
2847 	if (log_offset == 0) {
2848 		ticket->t_curr_res -= log->l_iclog_hsize;
2849 		xlog_tic_add_region(ticket,
2850 				    log->l_iclog_hsize,
2851 				    XLOG_REG_TYPE_LRHEADER);
2852 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2853 		head->h_lsn = cpu_to_be64(
2854 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2855 		ASSERT(log->l_curr_block >= 0);
2856 	}
2857 
2858 	/* If there is enough room to write everything, then do it.  Otherwise,
2859 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2860 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2861 	 * until you know exactly how many bytes get copied.  Therefore, wait
2862 	 * until later to update ic_offset.
2863 	 *
2864 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2865 	 * can fit into remaining data section.
2866 	 */
2867 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2868 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2869 
2870 		/*
2871 		 * If I'm the only one writing to this iclog, sync it to disk.
2872 		 * We need to do an atomic compare and decrement here to avoid
2873 		 * racing with concurrent atomic_dec_and_lock() calls in
2874 		 * xlog_state_release_iclog() when there is more than one
2875 		 * reference to the iclog.
2876 		 */
2877 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2878 			/* we are the only one */
2879 			spin_unlock(&log->l_icloglock);
2880 			error = xlog_state_release_iclog(log, iclog);
2881 			if (error)
2882 				return error;
2883 		} else {
2884 			spin_unlock(&log->l_icloglock);
2885 		}
2886 		goto restart;
2887 	}
2888 
2889 	/* Do we have enough room to write the full amount in the remainder
2890 	 * of this iclog?  Or must we continue a write on the next iclog and
2891 	 * mark this iclog as completely taken?  In the case where we switch
2892 	 * iclogs (to mark it taken), this particular iclog will release/sync
2893 	 * to disk in xlog_write().
2894 	 */
2895 	if (len <= iclog->ic_size - iclog->ic_offset) {
2896 		*continued_write = 0;
2897 		iclog->ic_offset += len;
2898 	} else {
2899 		*continued_write = 1;
2900 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2901 	}
2902 	*iclogp = iclog;
2903 
2904 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2905 	spin_unlock(&log->l_icloglock);
2906 
2907 	*logoffsetp = log_offset;
2908 	return 0;
2909 }	/* xlog_state_get_iclog_space */
2910 
2911 /* The first cnt-1 times through here we don't need to
2912  * move the grant write head because the permanent
2913  * reservation has reserved cnt times the unit amount.
2914  * Release part of current permanent unit reservation and
2915  * reset current reservation to be one units worth.  Also
2916  * move grant reservation head forward.
2917  */
2918 STATIC void
2919 xlog_regrant_reserve_log_space(
2920 	struct xlog		*log,
2921 	struct xlog_ticket	*ticket)
2922 {
2923 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2924 
2925 	if (ticket->t_cnt > 0)
2926 		ticket->t_cnt--;
2927 
2928 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2929 					ticket->t_curr_res);
2930 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2931 					ticket->t_curr_res);
2932 	ticket->t_curr_res = ticket->t_unit_res;
2933 	xlog_tic_reset_res(ticket);
2934 
2935 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2936 
2937 	/* just return if we still have some of the pre-reserved space */
2938 	if (ticket->t_cnt > 0)
2939 		return;
2940 
2941 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2942 					ticket->t_unit_res);
2943 
2944 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2945 
2946 	ticket->t_curr_res = ticket->t_unit_res;
2947 	xlog_tic_reset_res(ticket);
2948 }	/* xlog_regrant_reserve_log_space */
2949 
2950 
2951 /*
2952  * Give back the space left from a reservation.
2953  *
2954  * All the information we need to make a correct determination of space left
2955  * is present.  For non-permanent reservations, things are quite easy.  The
2956  * count should have been decremented to zero.  We only need to deal with the
2957  * space remaining in the current reservation part of the ticket.  If the
2958  * ticket contains a permanent reservation, there may be left over space which
2959  * needs to be released.  A count of N means that N-1 refills of the current
2960  * reservation can be done before we need to ask for more space.  The first
2961  * one goes to fill up the first current reservation.  Once we run out of
2962  * space, the count will stay at zero and the only space remaining will be
2963  * in the current reservation field.
2964  */
2965 STATIC void
2966 xlog_ungrant_log_space(
2967 	struct xlog		*log,
2968 	struct xlog_ticket	*ticket)
2969 {
2970 	int	bytes;
2971 
2972 	if (ticket->t_cnt > 0)
2973 		ticket->t_cnt--;
2974 
2975 	trace_xfs_log_ungrant_enter(log, ticket);
2976 	trace_xfs_log_ungrant_sub(log, ticket);
2977 
2978 	/*
2979 	 * If this is a permanent reservation ticket, we may be able to free
2980 	 * up more space based on the remaining count.
2981 	 */
2982 	bytes = ticket->t_curr_res;
2983 	if (ticket->t_cnt > 0) {
2984 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2985 		bytes += ticket->t_unit_res*ticket->t_cnt;
2986 	}
2987 
2988 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2989 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2990 
2991 	trace_xfs_log_ungrant_exit(log, ticket);
2992 
2993 	xfs_log_space_wake(log->l_mp);
2994 }
2995 
2996 /*
2997  * Flush iclog to disk if this is the last reference to the given iclog and
2998  * the WANT_SYNC bit is set.
2999  *
3000  * When this function is entered, the iclog is not necessarily in the
3001  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3002  *
3003  *
3004  */
3005 STATIC int
3006 xlog_state_release_iclog(
3007 	struct xlog		*log,
3008 	struct xlog_in_core	*iclog)
3009 {
3010 	int		sync = 0;	/* do we sync? */
3011 
3012 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3013 		return XFS_ERROR(EIO);
3014 
3015 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3016 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3017 		return 0;
3018 
3019 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3020 		spin_unlock(&log->l_icloglock);
3021 		return XFS_ERROR(EIO);
3022 	}
3023 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3024 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3025 
3026 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3027 		/* update tail before writing to iclog */
3028 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3029 		sync++;
3030 		iclog->ic_state = XLOG_STATE_SYNCING;
3031 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3032 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3033 		/* cycle incremented when incrementing curr_block */
3034 	}
3035 	spin_unlock(&log->l_icloglock);
3036 
3037 	/*
3038 	 * We let the log lock go, so it's possible that we hit a log I/O
3039 	 * error or some other SHUTDOWN condition that marks the iclog
3040 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3041 	 * this iclog has consistent data, so we ignore IOERROR
3042 	 * flags after this point.
3043 	 */
3044 	if (sync)
3045 		return xlog_sync(log, iclog);
3046 	return 0;
3047 }	/* xlog_state_release_iclog */
3048 
3049 
3050 /*
3051  * This routine will mark the current iclog in the ring as WANT_SYNC
3052  * and move the current iclog pointer to the next iclog in the ring.
3053  * When this routine is called from xlog_state_get_iclog_space(), the
3054  * exact size of the iclog has not yet been determined.  All we know is
3055  * that every data block.  We have run out of space in this log record.
3056  */
3057 STATIC void
3058 xlog_state_switch_iclogs(
3059 	struct xlog		*log,
3060 	struct xlog_in_core	*iclog,
3061 	int			eventual_size)
3062 {
3063 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3064 	if (!eventual_size)
3065 		eventual_size = iclog->ic_offset;
3066 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3067 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3068 	log->l_prev_block = log->l_curr_block;
3069 	log->l_prev_cycle = log->l_curr_cycle;
3070 
3071 	/* roll log?: ic_offset changed later */
3072 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3073 
3074 	/* Round up to next log-sunit */
3075 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3076 	    log->l_mp->m_sb.sb_logsunit > 1) {
3077 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3078 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3079 	}
3080 
3081 	if (log->l_curr_block >= log->l_logBBsize) {
3082 		log->l_curr_cycle++;
3083 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3084 			log->l_curr_cycle++;
3085 		log->l_curr_block -= log->l_logBBsize;
3086 		ASSERT(log->l_curr_block >= 0);
3087 	}
3088 	ASSERT(iclog == log->l_iclog);
3089 	log->l_iclog = iclog->ic_next;
3090 }	/* xlog_state_switch_iclogs */
3091 
3092 /*
3093  * Write out all data in the in-core log as of this exact moment in time.
3094  *
3095  * Data may be written to the in-core log during this call.  However,
3096  * we don't guarantee this data will be written out.  A change from past
3097  * implementation means this routine will *not* write out zero length LRs.
3098  *
3099  * Basically, we try and perform an intelligent scan of the in-core logs.
3100  * If we determine there is no flushable data, we just return.  There is no
3101  * flushable data if:
3102  *
3103  *	1. the current iclog is active and has no data; the previous iclog
3104  *		is in the active or dirty state.
3105  *	2. the current iclog is drity, and the previous iclog is in the
3106  *		active or dirty state.
3107  *
3108  * We may sleep if:
3109  *
3110  *	1. the current iclog is not in the active nor dirty state.
3111  *	2. the current iclog dirty, and the previous iclog is not in the
3112  *		active nor dirty state.
3113  *	3. the current iclog is active, and there is another thread writing
3114  *		to this particular iclog.
3115  *	4. a) the current iclog is active and has no other writers
3116  *	   b) when we return from flushing out this iclog, it is still
3117  *		not in the active nor dirty state.
3118  */
3119 int
3120 _xfs_log_force(
3121 	struct xfs_mount	*mp,
3122 	uint			flags,
3123 	int			*log_flushed)
3124 {
3125 	struct xlog		*log = mp->m_log;
3126 	struct xlog_in_core	*iclog;
3127 	xfs_lsn_t		lsn;
3128 
3129 	XFS_STATS_INC(xs_log_force);
3130 
3131 	xlog_cil_force(log);
3132 
3133 	spin_lock(&log->l_icloglock);
3134 
3135 	iclog = log->l_iclog;
3136 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3137 		spin_unlock(&log->l_icloglock);
3138 		return XFS_ERROR(EIO);
3139 	}
3140 
3141 	/* If the head iclog is not active nor dirty, we just attach
3142 	 * ourselves to the head and go to sleep.
3143 	 */
3144 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3145 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3146 		/*
3147 		 * If the head is dirty or (active and empty), then
3148 		 * we need to look at the previous iclog.  If the previous
3149 		 * iclog is active or dirty we are done.  There is nothing
3150 		 * to sync out.  Otherwise, we attach ourselves to the
3151 		 * previous iclog and go to sleep.
3152 		 */
3153 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3154 		    (atomic_read(&iclog->ic_refcnt) == 0
3155 		     && iclog->ic_offset == 0)) {
3156 			iclog = iclog->ic_prev;
3157 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3158 			    iclog->ic_state == XLOG_STATE_DIRTY)
3159 				goto no_sleep;
3160 			else
3161 				goto maybe_sleep;
3162 		} else {
3163 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3164 				/* We are the only one with access to this
3165 				 * iclog.  Flush it out now.  There should
3166 				 * be a roundoff of zero to show that someone
3167 				 * has already taken care of the roundoff from
3168 				 * the previous sync.
3169 				 */
3170 				atomic_inc(&iclog->ic_refcnt);
3171 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3172 				xlog_state_switch_iclogs(log, iclog, 0);
3173 				spin_unlock(&log->l_icloglock);
3174 
3175 				if (xlog_state_release_iclog(log, iclog))
3176 					return XFS_ERROR(EIO);
3177 
3178 				if (log_flushed)
3179 					*log_flushed = 1;
3180 				spin_lock(&log->l_icloglock);
3181 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3182 				    iclog->ic_state != XLOG_STATE_DIRTY)
3183 					goto maybe_sleep;
3184 				else
3185 					goto no_sleep;
3186 			} else {
3187 				/* Someone else is writing to this iclog.
3188 				 * Use its call to flush out the data.  However,
3189 				 * the other thread may not force out this LR,
3190 				 * so we mark it WANT_SYNC.
3191 				 */
3192 				xlog_state_switch_iclogs(log, iclog, 0);
3193 				goto maybe_sleep;
3194 			}
3195 		}
3196 	}
3197 
3198 	/* By the time we come around again, the iclog could've been filled
3199 	 * which would give it another lsn.  If we have a new lsn, just
3200 	 * return because the relevant data has been flushed.
3201 	 */
3202 maybe_sleep:
3203 	if (flags & XFS_LOG_SYNC) {
3204 		/*
3205 		 * We must check if we're shutting down here, before
3206 		 * we wait, while we're holding the l_icloglock.
3207 		 * Then we check again after waking up, in case our
3208 		 * sleep was disturbed by a bad news.
3209 		 */
3210 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3211 			spin_unlock(&log->l_icloglock);
3212 			return XFS_ERROR(EIO);
3213 		}
3214 		XFS_STATS_INC(xs_log_force_sleep);
3215 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3216 		/*
3217 		 * No need to grab the log lock here since we're
3218 		 * only deciding whether or not to return EIO
3219 		 * and the memory read should be atomic.
3220 		 */
3221 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3222 			return XFS_ERROR(EIO);
3223 		if (log_flushed)
3224 			*log_flushed = 1;
3225 	} else {
3226 
3227 no_sleep:
3228 		spin_unlock(&log->l_icloglock);
3229 	}
3230 	return 0;
3231 }
3232 
3233 /*
3234  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3235  * about errors or whether the log was flushed or not. This is the normal
3236  * interface to use when trying to unpin items or move the log forward.
3237  */
3238 void
3239 xfs_log_force(
3240 	xfs_mount_t	*mp,
3241 	uint		flags)
3242 {
3243 	int	error;
3244 
3245 	trace_xfs_log_force(mp, 0);
3246 	error = _xfs_log_force(mp, flags, NULL);
3247 	if (error)
3248 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3249 }
3250 
3251 /*
3252  * Force the in-core log to disk for a specific LSN.
3253  *
3254  * Find in-core log with lsn.
3255  *	If it is in the DIRTY state, just return.
3256  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3257  *		state and go to sleep or return.
3258  *	If it is in any other state, go to sleep or return.
3259  *
3260  * Synchronous forces are implemented with a signal variable. All callers
3261  * to force a given lsn to disk will wait on a the sv attached to the
3262  * specific in-core log.  When given in-core log finally completes its
3263  * write to disk, that thread will wake up all threads waiting on the
3264  * sv.
3265  */
3266 int
3267 _xfs_log_force_lsn(
3268 	struct xfs_mount	*mp,
3269 	xfs_lsn_t		lsn,
3270 	uint			flags,
3271 	int			*log_flushed)
3272 {
3273 	struct xlog		*log = mp->m_log;
3274 	struct xlog_in_core	*iclog;
3275 	int			already_slept = 0;
3276 
3277 	ASSERT(lsn != 0);
3278 
3279 	XFS_STATS_INC(xs_log_force);
3280 
3281 	lsn = xlog_cil_force_lsn(log, lsn);
3282 	if (lsn == NULLCOMMITLSN)
3283 		return 0;
3284 
3285 try_again:
3286 	spin_lock(&log->l_icloglock);
3287 	iclog = log->l_iclog;
3288 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3289 		spin_unlock(&log->l_icloglock);
3290 		return XFS_ERROR(EIO);
3291 	}
3292 
3293 	do {
3294 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3295 			iclog = iclog->ic_next;
3296 			continue;
3297 		}
3298 
3299 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3300 			spin_unlock(&log->l_icloglock);
3301 			return 0;
3302 		}
3303 
3304 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3305 			/*
3306 			 * We sleep here if we haven't already slept (e.g.
3307 			 * this is the first time we've looked at the correct
3308 			 * iclog buf) and the buffer before us is going to
3309 			 * be sync'ed. The reason for this is that if we
3310 			 * are doing sync transactions here, by waiting for
3311 			 * the previous I/O to complete, we can allow a few
3312 			 * more transactions into this iclog before we close
3313 			 * it down.
3314 			 *
3315 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3316 			 * up the refcnt so we can release the log (which
3317 			 * drops the ref count).  The state switch keeps new
3318 			 * transaction commits from using this buffer.  When
3319 			 * the current commits finish writing into the buffer,
3320 			 * the refcount will drop to zero and the buffer will
3321 			 * go out then.
3322 			 */
3323 			if (!already_slept &&
3324 			    (iclog->ic_prev->ic_state &
3325 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3326 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3327 
3328 				XFS_STATS_INC(xs_log_force_sleep);
3329 
3330 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3331 							&log->l_icloglock);
3332 				if (log_flushed)
3333 					*log_flushed = 1;
3334 				already_slept = 1;
3335 				goto try_again;
3336 			}
3337 			atomic_inc(&iclog->ic_refcnt);
3338 			xlog_state_switch_iclogs(log, iclog, 0);
3339 			spin_unlock(&log->l_icloglock);
3340 			if (xlog_state_release_iclog(log, iclog))
3341 				return XFS_ERROR(EIO);
3342 			if (log_flushed)
3343 				*log_flushed = 1;
3344 			spin_lock(&log->l_icloglock);
3345 		}
3346 
3347 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3348 		    !(iclog->ic_state &
3349 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3350 			/*
3351 			 * Don't wait on completion if we know that we've
3352 			 * gotten a log write error.
3353 			 */
3354 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355 				spin_unlock(&log->l_icloglock);
3356 				return XFS_ERROR(EIO);
3357 			}
3358 			XFS_STATS_INC(xs_log_force_sleep);
3359 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3360 			/*
3361 			 * No need to grab the log lock here since we're
3362 			 * only deciding whether or not to return EIO
3363 			 * and the memory read should be atomic.
3364 			 */
3365 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3366 				return XFS_ERROR(EIO);
3367 
3368 			if (log_flushed)
3369 				*log_flushed = 1;
3370 		} else {		/* just return */
3371 			spin_unlock(&log->l_icloglock);
3372 		}
3373 
3374 		return 0;
3375 	} while (iclog != log->l_iclog);
3376 
3377 	spin_unlock(&log->l_icloglock);
3378 	return 0;
3379 }
3380 
3381 /*
3382  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3383  * about errors or whether the log was flushed or not. This is the normal
3384  * interface to use when trying to unpin items or move the log forward.
3385  */
3386 void
3387 xfs_log_force_lsn(
3388 	xfs_mount_t	*mp,
3389 	xfs_lsn_t	lsn,
3390 	uint		flags)
3391 {
3392 	int	error;
3393 
3394 	trace_xfs_log_force(mp, lsn);
3395 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3396 	if (error)
3397 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3398 }
3399 
3400 /*
3401  * Called when we want to mark the current iclog as being ready to sync to
3402  * disk.
3403  */
3404 STATIC void
3405 xlog_state_want_sync(
3406 	struct xlog		*log,
3407 	struct xlog_in_core	*iclog)
3408 {
3409 	assert_spin_locked(&log->l_icloglock);
3410 
3411 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3412 		xlog_state_switch_iclogs(log, iclog, 0);
3413 	} else {
3414 		ASSERT(iclog->ic_state &
3415 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3416 	}
3417 }
3418 
3419 
3420 /*****************************************************************************
3421  *
3422  *		TICKET functions
3423  *
3424  *****************************************************************************
3425  */
3426 
3427 /*
3428  * Free a used ticket when its refcount falls to zero.
3429  */
3430 void
3431 xfs_log_ticket_put(
3432 	xlog_ticket_t	*ticket)
3433 {
3434 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3435 	if (atomic_dec_and_test(&ticket->t_ref))
3436 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3437 }
3438 
3439 xlog_ticket_t *
3440 xfs_log_ticket_get(
3441 	xlog_ticket_t	*ticket)
3442 {
3443 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3444 	atomic_inc(&ticket->t_ref);
3445 	return ticket;
3446 }
3447 
3448 /*
3449  * Figure out the total log space unit (in bytes) that would be
3450  * required for a log ticket.
3451  */
3452 int
3453 xfs_log_calc_unit_res(
3454 	struct xfs_mount	*mp,
3455 	int			unit_bytes)
3456 {
3457 	struct xlog		*log = mp->m_log;
3458 	int			iclog_space;
3459 	uint			num_headers;
3460 
3461 	/*
3462 	 * Permanent reservations have up to 'cnt'-1 active log operations
3463 	 * in the log.  A unit in this case is the amount of space for one
3464 	 * of these log operations.  Normal reservations have a cnt of 1
3465 	 * and their unit amount is the total amount of space required.
3466 	 *
3467 	 * The following lines of code account for non-transaction data
3468 	 * which occupy space in the on-disk log.
3469 	 *
3470 	 * Normal form of a transaction is:
3471 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3472 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3473 	 *
3474 	 * We need to account for all the leadup data and trailer data
3475 	 * around the transaction data.
3476 	 * And then we need to account for the worst case in terms of using
3477 	 * more space.
3478 	 * The worst case will happen if:
3479 	 * - the placement of the transaction happens to be such that the
3480 	 *   roundoff is at its maximum
3481 	 * - the transaction data is synced before the commit record is synced
3482 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3483 	 *   Therefore the commit record is in its own Log Record.
3484 	 *   This can happen as the commit record is called with its
3485 	 *   own region to xlog_write().
3486 	 *   This then means that in the worst case, roundoff can happen for
3487 	 *   the commit-rec as well.
3488 	 *   The commit-rec is smaller than padding in this scenario and so it is
3489 	 *   not added separately.
3490 	 */
3491 
3492 	/* for trans header */
3493 	unit_bytes += sizeof(xlog_op_header_t);
3494 	unit_bytes += sizeof(xfs_trans_header_t);
3495 
3496 	/* for start-rec */
3497 	unit_bytes += sizeof(xlog_op_header_t);
3498 
3499 	/*
3500 	 * for LR headers - the space for data in an iclog is the size minus
3501 	 * the space used for the headers. If we use the iclog size, then we
3502 	 * undercalculate the number of headers required.
3503 	 *
3504 	 * Furthermore - the addition of op headers for split-recs might
3505 	 * increase the space required enough to require more log and op
3506 	 * headers, so take that into account too.
3507 	 *
3508 	 * IMPORTANT: This reservation makes the assumption that if this
3509 	 * transaction is the first in an iclog and hence has the LR headers
3510 	 * accounted to it, then the remaining space in the iclog is
3511 	 * exclusively for this transaction.  i.e. if the transaction is larger
3512 	 * than the iclog, it will be the only thing in that iclog.
3513 	 * Fundamentally, this means we must pass the entire log vector to
3514 	 * xlog_write to guarantee this.
3515 	 */
3516 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3517 	num_headers = howmany(unit_bytes, iclog_space);
3518 
3519 	/* for split-recs - ophdrs added when data split over LRs */
3520 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3521 
3522 	/* add extra header reservations if we overrun */
3523 	while (!num_headers ||
3524 	       howmany(unit_bytes, iclog_space) > num_headers) {
3525 		unit_bytes += sizeof(xlog_op_header_t);
3526 		num_headers++;
3527 	}
3528 	unit_bytes += log->l_iclog_hsize * num_headers;
3529 
3530 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3531 	unit_bytes += log->l_iclog_hsize;
3532 
3533 	/* for roundoff padding for transaction data and one for commit record */
3534 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3535 		/* log su roundoff */
3536 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3537 	} else {
3538 		/* BB roundoff */
3539 		unit_bytes += 2 * BBSIZE;
3540         }
3541 
3542 	return unit_bytes;
3543 }
3544 
3545 /*
3546  * Allocate and initialise a new log ticket.
3547  */
3548 struct xlog_ticket *
3549 xlog_ticket_alloc(
3550 	struct xlog		*log,
3551 	int			unit_bytes,
3552 	int			cnt,
3553 	char			client,
3554 	bool			permanent,
3555 	xfs_km_flags_t		alloc_flags)
3556 {
3557 	struct xlog_ticket	*tic;
3558 	int			unit_res;
3559 
3560 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3561 	if (!tic)
3562 		return NULL;
3563 
3564 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3565 
3566 	atomic_set(&tic->t_ref, 1);
3567 	tic->t_task		= current;
3568 	INIT_LIST_HEAD(&tic->t_queue);
3569 	tic->t_unit_res		= unit_res;
3570 	tic->t_curr_res		= unit_res;
3571 	tic->t_cnt		= cnt;
3572 	tic->t_ocnt		= cnt;
3573 	tic->t_tid		= prandom_u32();
3574 	tic->t_clientid		= client;
3575 	tic->t_flags		= XLOG_TIC_INITED;
3576 	tic->t_trans_type	= 0;
3577 	if (permanent)
3578 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3579 
3580 	xlog_tic_reset_res(tic);
3581 
3582 	return tic;
3583 }
3584 
3585 
3586 /******************************************************************************
3587  *
3588  *		Log debug routines
3589  *
3590  ******************************************************************************
3591  */
3592 #if defined(DEBUG)
3593 /*
3594  * Make sure that the destination ptr is within the valid data region of
3595  * one of the iclogs.  This uses backup pointers stored in a different
3596  * part of the log in case we trash the log structure.
3597  */
3598 void
3599 xlog_verify_dest_ptr(
3600 	struct xlog	*log,
3601 	char		*ptr)
3602 {
3603 	int i;
3604 	int good_ptr = 0;
3605 
3606 	for (i = 0; i < log->l_iclog_bufs; i++) {
3607 		if (ptr >= log->l_iclog_bak[i] &&
3608 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3609 			good_ptr++;
3610 	}
3611 
3612 	if (!good_ptr)
3613 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3614 }
3615 
3616 /*
3617  * Check to make sure the grant write head didn't just over lap the tail.  If
3618  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3619  * the cycles differ by exactly one and check the byte count.
3620  *
3621  * This check is run unlocked, so can give false positives. Rather than assert
3622  * on failures, use a warn-once flag and a panic tag to allow the admin to
3623  * determine if they want to panic the machine when such an error occurs. For
3624  * debug kernels this will have the same effect as using an assert but, unlinke
3625  * an assert, it can be turned off at runtime.
3626  */
3627 STATIC void
3628 xlog_verify_grant_tail(
3629 	struct xlog	*log)
3630 {
3631 	int		tail_cycle, tail_blocks;
3632 	int		cycle, space;
3633 
3634 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3635 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3636 	if (tail_cycle != cycle) {
3637 		if (cycle - 1 != tail_cycle &&
3638 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3639 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3640 				"%s: cycle - 1 != tail_cycle", __func__);
3641 			log->l_flags |= XLOG_TAIL_WARN;
3642 		}
3643 
3644 		if (space > BBTOB(tail_blocks) &&
3645 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3646 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3647 				"%s: space > BBTOB(tail_blocks)", __func__);
3648 			log->l_flags |= XLOG_TAIL_WARN;
3649 		}
3650 	}
3651 }
3652 
3653 /* check if it will fit */
3654 STATIC void
3655 xlog_verify_tail_lsn(
3656 	struct xlog		*log,
3657 	struct xlog_in_core	*iclog,
3658 	xfs_lsn_t		tail_lsn)
3659 {
3660     int blocks;
3661 
3662     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3663 	blocks =
3664 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3665 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3666 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3667     } else {
3668 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3669 
3670 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3671 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3672 
3673 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3674 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3675 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3676     }
3677 }	/* xlog_verify_tail_lsn */
3678 
3679 /*
3680  * Perform a number of checks on the iclog before writing to disk.
3681  *
3682  * 1. Make sure the iclogs are still circular
3683  * 2. Make sure we have a good magic number
3684  * 3. Make sure we don't have magic numbers in the data
3685  * 4. Check fields of each log operation header for:
3686  *	A. Valid client identifier
3687  *	B. tid ptr value falls in valid ptr space (user space code)
3688  *	C. Length in log record header is correct according to the
3689  *		individual operation headers within record.
3690  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3691  *	log, check the preceding blocks of the physical log to make sure all
3692  *	the cycle numbers agree with the current cycle number.
3693  */
3694 STATIC void
3695 xlog_verify_iclog(
3696 	struct xlog		*log,
3697 	struct xlog_in_core	*iclog,
3698 	int			count,
3699 	bool                    syncing)
3700 {
3701 	xlog_op_header_t	*ophead;
3702 	xlog_in_core_t		*icptr;
3703 	xlog_in_core_2_t	*xhdr;
3704 	xfs_caddr_t		ptr;
3705 	xfs_caddr_t		base_ptr;
3706 	__psint_t		field_offset;
3707 	__uint8_t		clientid;
3708 	int			len, i, j, k, op_len;
3709 	int			idx;
3710 
3711 	/* check validity of iclog pointers */
3712 	spin_lock(&log->l_icloglock);
3713 	icptr = log->l_iclog;
3714 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3715 		ASSERT(icptr);
3716 
3717 	if (icptr != log->l_iclog)
3718 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3719 	spin_unlock(&log->l_icloglock);
3720 
3721 	/* check log magic numbers */
3722 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3723 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3724 
3725 	ptr = (xfs_caddr_t) &iclog->ic_header;
3726 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3727 	     ptr += BBSIZE) {
3728 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3729 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3730 				__func__);
3731 	}
3732 
3733 	/* check fields */
3734 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3735 	ptr = iclog->ic_datap;
3736 	base_ptr = ptr;
3737 	ophead = (xlog_op_header_t *)ptr;
3738 	xhdr = iclog->ic_data;
3739 	for (i = 0; i < len; i++) {
3740 		ophead = (xlog_op_header_t *)ptr;
3741 
3742 		/* clientid is only 1 byte */
3743 		field_offset = (__psint_t)
3744 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3745 		if (!syncing || (field_offset & 0x1ff)) {
3746 			clientid = ophead->oh_clientid;
3747 		} else {
3748 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3749 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3750 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3751 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3752 				clientid = xlog_get_client_id(
3753 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3754 			} else {
3755 				clientid = xlog_get_client_id(
3756 					iclog->ic_header.h_cycle_data[idx]);
3757 			}
3758 		}
3759 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3760 			xfs_warn(log->l_mp,
3761 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3762 				__func__, clientid, ophead,
3763 				(unsigned long)field_offset);
3764 
3765 		/* check length */
3766 		field_offset = (__psint_t)
3767 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3768 		if (!syncing || (field_offset & 0x1ff)) {
3769 			op_len = be32_to_cpu(ophead->oh_len);
3770 		} else {
3771 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3772 				    (__psint_t)iclog->ic_datap);
3773 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3774 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3775 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3776 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3777 			} else {
3778 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3779 			}
3780 		}
3781 		ptr += sizeof(xlog_op_header_t) + op_len;
3782 	}
3783 }	/* xlog_verify_iclog */
3784 #endif
3785 
3786 /*
3787  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3788  */
3789 STATIC int
3790 xlog_state_ioerror(
3791 	struct xlog	*log)
3792 {
3793 	xlog_in_core_t	*iclog, *ic;
3794 
3795 	iclog = log->l_iclog;
3796 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3797 		/*
3798 		 * Mark all the incore logs IOERROR.
3799 		 * From now on, no log flushes will result.
3800 		 */
3801 		ic = iclog;
3802 		do {
3803 			ic->ic_state = XLOG_STATE_IOERROR;
3804 			ic = ic->ic_next;
3805 		} while (ic != iclog);
3806 		return 0;
3807 	}
3808 	/*
3809 	 * Return non-zero, if state transition has already happened.
3810 	 */
3811 	return 1;
3812 }
3813 
3814 /*
3815  * This is called from xfs_force_shutdown, when we're forcibly
3816  * shutting down the filesystem, typically because of an IO error.
3817  * Our main objectives here are to make sure that:
3818  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3819  *	   parties to find out, 'atomically'.
3820  *	b. those who're sleeping on log reservations, pinned objects and
3821  *	    other resources get woken up, and be told the bad news.
3822  *	c. nothing new gets queued up after (a) and (b) are done.
3823  *	d. if !logerror, flush the iclogs to disk, then seal them off
3824  *	   for business.
3825  *
3826  * Note: for delayed logging the !logerror case needs to flush the regions
3827  * held in memory out to the iclogs before flushing them to disk. This needs
3828  * to be done before the log is marked as shutdown, otherwise the flush to the
3829  * iclogs will fail.
3830  */
3831 int
3832 xfs_log_force_umount(
3833 	struct xfs_mount	*mp,
3834 	int			logerror)
3835 {
3836 	struct xlog	*log;
3837 	int		retval;
3838 
3839 	log = mp->m_log;
3840 
3841 	/*
3842 	 * If this happens during log recovery, don't worry about
3843 	 * locking; the log isn't open for business yet.
3844 	 */
3845 	if (!log ||
3846 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3847 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3848 		if (mp->m_sb_bp)
3849 			XFS_BUF_DONE(mp->m_sb_bp);
3850 		return 0;
3851 	}
3852 
3853 	/*
3854 	 * Somebody could've already done the hard work for us.
3855 	 * No need to get locks for this.
3856 	 */
3857 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3858 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3859 		return 1;
3860 	}
3861 	retval = 0;
3862 
3863 	/*
3864 	 * Flush the in memory commit item list before marking the log as
3865 	 * being shut down. We need to do it in this order to ensure all the
3866 	 * completed transactions are flushed to disk with the xfs_log_force()
3867 	 * call below.
3868 	 */
3869 	if (!logerror)
3870 		xlog_cil_force(log);
3871 
3872 	/*
3873 	 * mark the filesystem and the as in a shutdown state and wake
3874 	 * everybody up to tell them the bad news.
3875 	 */
3876 	spin_lock(&log->l_icloglock);
3877 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3878 	if (mp->m_sb_bp)
3879 		XFS_BUF_DONE(mp->m_sb_bp);
3880 
3881 	/*
3882 	 * This flag is sort of redundant because of the mount flag, but
3883 	 * it's good to maintain the separation between the log and the rest
3884 	 * of XFS.
3885 	 */
3886 	log->l_flags |= XLOG_IO_ERROR;
3887 
3888 	/*
3889 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3890 	 * while we're still holding the loglock.
3891 	 */
3892 	if (logerror)
3893 		retval = xlog_state_ioerror(log);
3894 	spin_unlock(&log->l_icloglock);
3895 
3896 	/*
3897 	 * We don't want anybody waiting for log reservations after this. That
3898 	 * means we have to wake up everybody queued up on reserveq as well as
3899 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3900 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3901 	 * action is protected by the grant locks.
3902 	 */
3903 	xlog_grant_head_wake_all(&log->l_reserve_head);
3904 	xlog_grant_head_wake_all(&log->l_write_head);
3905 
3906 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3907 		ASSERT(!logerror);
3908 		/*
3909 		 * Force the incore logs to disk before shutting the
3910 		 * log down completely.
3911 		 */
3912 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3913 
3914 		spin_lock(&log->l_icloglock);
3915 		retval = xlog_state_ioerror(log);
3916 		spin_unlock(&log->l_icloglock);
3917 	}
3918 	/*
3919 	 * Wake up everybody waiting on xfs_log_force.
3920 	 * Callback all log item committed functions as if the
3921 	 * log writes were completed.
3922 	 */
3923 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3924 
3925 #ifdef XFSERRORDEBUG
3926 	{
3927 		xlog_in_core_t	*iclog;
3928 
3929 		spin_lock(&log->l_icloglock);
3930 		iclog = log->l_iclog;
3931 		do {
3932 			ASSERT(iclog->ic_callback == 0);
3933 			iclog = iclog->ic_next;
3934 		} while (iclog != log->l_iclog);
3935 		spin_unlock(&log->l_icloglock);
3936 	}
3937 #endif
3938 	/* return non-zero if log IOERROR transition had already happened */
3939 	return retval;
3940 }
3941 
3942 STATIC int
3943 xlog_iclogs_empty(
3944 	struct xlog	*log)
3945 {
3946 	xlog_in_core_t	*iclog;
3947 
3948 	iclog = log->l_iclog;
3949 	do {
3950 		/* endianness does not matter here, zero is zero in
3951 		 * any language.
3952 		 */
3953 		if (iclog->ic_header.h_num_logops)
3954 			return 0;
3955 		iclog = iclog->ic_next;
3956 	} while (iclog != log->l_iclog);
3957 	return 1;
3958 }
3959 
3960