1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_error.h" 28 #include "xfs_trans.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_log.h" 31 #include "xfs_log_priv.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_inode.h" 34 #include "xfs_trace.h" 35 #include "xfs_fsops.h" 36 #include "xfs_cksum.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 char *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return XFS_ERROR(EIO); 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return XFS_ERROR(EIO); 381 382 XFS_STATS_INC(xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent, 439 uint t_type) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return XFS_ERROR(EIO); 450 451 XFS_STATS_INC(xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return XFS_ERROR(ENOMEM); 458 459 tic->t_trans_type = t_type; 460 *ticp = tic; 461 462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 463 : tic->t_unit_res); 464 465 trace_xfs_log_reserve(log, tic); 466 467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 468 &need_bytes); 469 if (error) 470 goto out_error; 471 472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 474 trace_xfs_log_reserve_exit(log, tic); 475 xlog_verify_grant_tail(log); 476 return 0; 477 478 out_error: 479 /* 480 * If we are failing, make sure the ticket doesn't have any current 481 * reservations. We don't want to add this back when the ticket/ 482 * transaction gets cancelled. 483 */ 484 tic->t_curr_res = 0; 485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 486 return error; 487 } 488 489 490 /* 491 * NOTES: 492 * 493 * 1. currblock field gets updated at startup and after in-core logs 494 * marked as with WANT_SYNC. 495 */ 496 497 /* 498 * This routine is called when a user of a log manager ticket is done with 499 * the reservation. If the ticket was ever used, then a commit record for 500 * the associated transaction is written out as a log operation header with 501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 502 * a given ticket. If the ticket was one with a permanent reservation, then 503 * a few operations are done differently. Permanent reservation tickets by 504 * default don't release the reservation. They just commit the current 505 * transaction with the belief that the reservation is still needed. A flag 506 * must be passed in before permanent reservations are actually released. 507 * When these type of tickets are not released, they need to be set into 508 * the inited state again. By doing this, a start record will be written 509 * out when the next write occurs. 510 */ 511 xfs_lsn_t 512 xfs_log_done( 513 struct xfs_mount *mp, 514 struct xlog_ticket *ticket, 515 struct xlog_in_core **iclog, 516 uint flags) 517 { 518 struct xlog *log = mp->m_log; 519 xfs_lsn_t lsn = 0; 520 521 if (XLOG_FORCED_SHUTDOWN(log) || 522 /* 523 * If nothing was ever written, don't write out commit record. 524 * If we get an error, just continue and give back the log ticket. 525 */ 526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 527 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 528 lsn = (xfs_lsn_t) -1; 529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 530 flags |= XFS_LOG_REL_PERM_RESERV; 531 } 532 } 533 534 535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 536 (flags & XFS_LOG_REL_PERM_RESERV)) { 537 trace_xfs_log_done_nonperm(log, ticket); 538 539 /* 540 * Release ticket if not permanent reservation or a specific 541 * request has been made to release a permanent reservation. 542 */ 543 xlog_ungrant_log_space(log, ticket); 544 xfs_log_ticket_put(ticket); 545 } else { 546 trace_xfs_log_done_perm(log, ticket); 547 548 xlog_regrant_reserve_log_space(log, ticket); 549 /* If this ticket was a permanent reservation and we aren't 550 * trying to release it, reset the inited flags; so next time 551 * we write, a start record will be written out. 552 */ 553 ticket->t_flags |= XLOG_TIC_INITED; 554 } 555 556 return lsn; 557 } 558 559 /* 560 * Attaches a new iclog I/O completion callback routine during 561 * transaction commit. If the log is in error state, a non-zero 562 * return code is handed back and the caller is responsible for 563 * executing the callback at an appropriate time. 564 */ 565 int 566 xfs_log_notify( 567 struct xfs_mount *mp, 568 struct xlog_in_core *iclog, 569 xfs_log_callback_t *cb) 570 { 571 int abortflg; 572 573 spin_lock(&iclog->ic_callback_lock); 574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 575 if (!abortflg) { 576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 577 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 578 cb->cb_next = NULL; 579 *(iclog->ic_callback_tail) = cb; 580 iclog->ic_callback_tail = &(cb->cb_next); 581 } 582 spin_unlock(&iclog->ic_callback_lock); 583 return abortflg; 584 } 585 586 int 587 xfs_log_release_iclog( 588 struct xfs_mount *mp, 589 struct xlog_in_core *iclog) 590 { 591 if (xlog_state_release_iclog(mp->m_log, iclog)) { 592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 593 return EIO; 594 } 595 596 return 0; 597 } 598 599 /* 600 * Mount a log filesystem 601 * 602 * mp - ubiquitous xfs mount point structure 603 * log_target - buftarg of on-disk log device 604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 605 * num_bblocks - Number of BBSIZE blocks in on-disk log 606 * 607 * Return error or zero. 608 */ 609 int 610 xfs_log_mount( 611 xfs_mount_t *mp, 612 xfs_buftarg_t *log_target, 613 xfs_daddr_t blk_offset, 614 int num_bblks) 615 { 616 int error = 0; 617 int min_logfsbs; 618 619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 620 xfs_notice(mp, "Mounting Filesystem"); 621 else { 622 xfs_notice(mp, 623 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 624 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 625 } 626 627 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 628 if (IS_ERR(mp->m_log)) { 629 error = -PTR_ERR(mp->m_log); 630 goto out; 631 } 632 633 /* 634 * Validate the given log space and drop a critical message via syslog 635 * if the log size is too small that would lead to some unexpected 636 * situations in transaction log space reservation stage. 637 * 638 * Note: we can't just reject the mount if the validation fails. This 639 * would mean that people would have to downgrade their kernel just to 640 * remedy the situation as there is no way to grow the log (short of 641 * black magic surgery with xfs_db). 642 * 643 * We can, however, reject mounts for CRC format filesystems, as the 644 * mkfs binary being used to make the filesystem should never create a 645 * filesystem with a log that is too small. 646 */ 647 min_logfsbs = xfs_log_calc_minimum_size(mp); 648 649 if (mp->m_sb.sb_logblocks < min_logfsbs) { 650 xfs_warn(mp, 651 "Log size %d blocks too small, minimum size is %d blocks", 652 mp->m_sb.sb_logblocks, min_logfsbs); 653 error = EINVAL; 654 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 655 xfs_warn(mp, 656 "Log size %d blocks too large, maximum size is %lld blocks", 657 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 658 error = EINVAL; 659 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 660 xfs_warn(mp, 661 "log size %lld bytes too large, maximum size is %lld bytes", 662 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 663 XFS_MAX_LOG_BYTES); 664 error = EINVAL; 665 } 666 if (error) { 667 if (xfs_sb_version_hascrc(&mp->m_sb)) { 668 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 669 ASSERT(0); 670 goto out_free_log; 671 } 672 xfs_crit(mp, 673 "Log size out of supported range. Continuing onwards, but if log hangs are\n" 674 "experienced then please report this message in the bug report."); 675 } 676 677 /* 678 * Initialize the AIL now we have a log. 679 */ 680 error = xfs_trans_ail_init(mp); 681 if (error) { 682 xfs_warn(mp, "AIL initialisation failed: error %d", error); 683 goto out_free_log; 684 } 685 mp->m_log->l_ailp = mp->m_ail; 686 687 /* 688 * skip log recovery on a norecovery mount. pretend it all 689 * just worked. 690 */ 691 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 692 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 693 694 if (readonly) 695 mp->m_flags &= ~XFS_MOUNT_RDONLY; 696 697 error = xlog_recover(mp->m_log); 698 699 if (readonly) 700 mp->m_flags |= XFS_MOUNT_RDONLY; 701 if (error) { 702 xfs_warn(mp, "log mount/recovery failed: error %d", 703 error); 704 goto out_destroy_ail; 705 } 706 } 707 708 /* Normal transactions can now occur */ 709 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 710 711 /* 712 * Now the log has been fully initialised and we know were our 713 * space grant counters are, we can initialise the permanent ticket 714 * needed for delayed logging to work. 715 */ 716 xlog_cil_init_post_recovery(mp->m_log); 717 718 return 0; 719 720 out_destroy_ail: 721 xfs_trans_ail_destroy(mp); 722 out_free_log: 723 xlog_dealloc_log(mp->m_log); 724 out: 725 return error; 726 } 727 728 /* 729 * Finish the recovery of the file system. This is separate from the 730 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 731 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 732 * here. 733 * 734 * If we finish recovery successfully, start the background log work. If we are 735 * not doing recovery, then we have a RO filesystem and we don't need to start 736 * it. 737 */ 738 int 739 xfs_log_mount_finish(xfs_mount_t *mp) 740 { 741 int error = 0; 742 743 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 744 error = xlog_recover_finish(mp->m_log); 745 if (!error) 746 xfs_log_work_queue(mp); 747 } else { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 } 750 751 752 return error; 753 } 754 755 /* 756 * Final log writes as part of unmount. 757 * 758 * Mark the filesystem clean as unmount happens. Note that during relocation 759 * this routine needs to be executed as part of source-bag while the 760 * deallocation must not be done until source-end. 761 */ 762 763 /* 764 * Unmount record used to have a string "Unmount filesystem--" in the 765 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 766 * We just write the magic number now since that particular field isn't 767 * currently architecture converted and "Unmount" is a bit foo. 768 * As far as I know, there weren't any dependencies on the old behaviour. 769 */ 770 771 int 772 xfs_log_unmount_write(xfs_mount_t *mp) 773 { 774 struct xlog *log = mp->m_log; 775 xlog_in_core_t *iclog; 776 #ifdef DEBUG 777 xlog_in_core_t *first_iclog; 778 #endif 779 xlog_ticket_t *tic = NULL; 780 xfs_lsn_t lsn; 781 int error; 782 783 /* 784 * Don't write out unmount record on read-only mounts. 785 * Or, if we are doing a forced umount (typically because of IO errors). 786 */ 787 if (mp->m_flags & XFS_MOUNT_RDONLY) 788 return 0; 789 790 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 791 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 792 793 #ifdef DEBUG 794 first_iclog = iclog = log->l_iclog; 795 do { 796 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 797 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 798 ASSERT(iclog->ic_offset == 0); 799 } 800 iclog = iclog->ic_next; 801 } while (iclog != first_iclog); 802 #endif 803 if (! (XLOG_FORCED_SHUTDOWN(log))) { 804 error = xfs_log_reserve(mp, 600, 1, &tic, 805 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 806 if (!error) { 807 /* the data section must be 32 bit size aligned */ 808 struct { 809 __uint16_t magic; 810 __uint16_t pad1; 811 __uint32_t pad2; /* may as well make it 64 bits */ 812 } magic = { 813 .magic = XLOG_UNMOUNT_TYPE, 814 }; 815 struct xfs_log_iovec reg = { 816 .i_addr = &magic, 817 .i_len = sizeof(magic), 818 .i_type = XLOG_REG_TYPE_UNMOUNT, 819 }; 820 struct xfs_log_vec vec = { 821 .lv_niovecs = 1, 822 .lv_iovecp = ®, 823 }; 824 825 /* remove inited flag, and account for space used */ 826 tic->t_flags = 0; 827 tic->t_curr_res -= sizeof(magic); 828 error = xlog_write(log, &vec, tic, &lsn, 829 NULL, XLOG_UNMOUNT_TRANS); 830 /* 831 * At this point, we're umounting anyway, 832 * so there's no point in transitioning log state 833 * to IOERROR. Just continue... 834 */ 835 } 836 837 if (error) 838 xfs_alert(mp, "%s: unmount record failed", __func__); 839 840 841 spin_lock(&log->l_icloglock); 842 iclog = log->l_iclog; 843 atomic_inc(&iclog->ic_refcnt); 844 xlog_state_want_sync(log, iclog); 845 spin_unlock(&log->l_icloglock); 846 error = xlog_state_release_iclog(log, iclog); 847 848 spin_lock(&log->l_icloglock); 849 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 850 iclog->ic_state == XLOG_STATE_DIRTY)) { 851 if (!XLOG_FORCED_SHUTDOWN(log)) { 852 xlog_wait(&iclog->ic_force_wait, 853 &log->l_icloglock); 854 } else { 855 spin_unlock(&log->l_icloglock); 856 } 857 } else { 858 spin_unlock(&log->l_icloglock); 859 } 860 if (tic) { 861 trace_xfs_log_umount_write(log, tic); 862 xlog_ungrant_log_space(log, tic); 863 xfs_log_ticket_put(tic); 864 } 865 } else { 866 /* 867 * We're already in forced_shutdown mode, couldn't 868 * even attempt to write out the unmount transaction. 869 * 870 * Go through the motions of sync'ing and releasing 871 * the iclog, even though no I/O will actually happen, 872 * we need to wait for other log I/Os that may already 873 * be in progress. Do this as a separate section of 874 * code so we'll know if we ever get stuck here that 875 * we're in this odd situation of trying to unmount 876 * a file system that went into forced_shutdown as 877 * the result of an unmount.. 878 */ 879 spin_lock(&log->l_icloglock); 880 iclog = log->l_iclog; 881 atomic_inc(&iclog->ic_refcnt); 882 883 xlog_state_want_sync(log, iclog); 884 spin_unlock(&log->l_icloglock); 885 error = xlog_state_release_iclog(log, iclog); 886 887 spin_lock(&log->l_icloglock); 888 889 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 890 || iclog->ic_state == XLOG_STATE_DIRTY 891 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 892 893 xlog_wait(&iclog->ic_force_wait, 894 &log->l_icloglock); 895 } else { 896 spin_unlock(&log->l_icloglock); 897 } 898 } 899 900 return error; 901 } /* xfs_log_unmount_write */ 902 903 /* 904 * Empty the log for unmount/freeze. 905 * 906 * To do this, we first need to shut down the background log work so it is not 907 * trying to cover the log as we clean up. We then need to unpin all objects in 908 * the log so we can then flush them out. Once they have completed their IO and 909 * run the callbacks removing themselves from the AIL, we can write the unmount 910 * record. 911 */ 912 void 913 xfs_log_quiesce( 914 struct xfs_mount *mp) 915 { 916 cancel_delayed_work_sync(&mp->m_log->l_work); 917 xfs_log_force(mp, XFS_LOG_SYNC); 918 919 /* 920 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 921 * will push it, xfs_wait_buftarg() will not wait for it. Further, 922 * xfs_buf_iowait() cannot be used because it was pushed with the 923 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 924 * the IO to complete. 925 */ 926 xfs_ail_push_all_sync(mp->m_ail); 927 xfs_wait_buftarg(mp->m_ddev_targp); 928 xfs_buf_lock(mp->m_sb_bp); 929 xfs_buf_unlock(mp->m_sb_bp); 930 931 xfs_log_unmount_write(mp); 932 } 933 934 /* 935 * Shut down and release the AIL and Log. 936 * 937 * During unmount, we need to ensure we flush all the dirty metadata objects 938 * from the AIL so that the log is empty before we write the unmount record to 939 * the log. Once this is done, we can tear down the AIL and the log. 940 */ 941 void 942 xfs_log_unmount( 943 struct xfs_mount *mp) 944 { 945 xfs_log_quiesce(mp); 946 947 xfs_trans_ail_destroy(mp); 948 xlog_dealloc_log(mp->m_log); 949 } 950 951 void 952 xfs_log_item_init( 953 struct xfs_mount *mp, 954 struct xfs_log_item *item, 955 int type, 956 const struct xfs_item_ops *ops) 957 { 958 item->li_mountp = mp; 959 item->li_ailp = mp->m_ail; 960 item->li_type = type; 961 item->li_ops = ops; 962 item->li_lv = NULL; 963 964 INIT_LIST_HEAD(&item->li_ail); 965 INIT_LIST_HEAD(&item->li_cil); 966 } 967 968 /* 969 * Wake up processes waiting for log space after we have moved the log tail. 970 */ 971 void 972 xfs_log_space_wake( 973 struct xfs_mount *mp) 974 { 975 struct xlog *log = mp->m_log; 976 int free_bytes; 977 978 if (XLOG_FORCED_SHUTDOWN(log)) 979 return; 980 981 if (!list_empty_careful(&log->l_write_head.waiters)) { 982 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 983 984 spin_lock(&log->l_write_head.lock); 985 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 986 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 987 spin_unlock(&log->l_write_head.lock); 988 } 989 990 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 991 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 992 993 spin_lock(&log->l_reserve_head.lock); 994 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 995 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 996 spin_unlock(&log->l_reserve_head.lock); 997 } 998 } 999 1000 /* 1001 * Determine if we have a transaction that has gone to disk that needs to be 1002 * covered. To begin the transition to the idle state firstly the log needs to 1003 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1004 * we start attempting to cover the log. 1005 * 1006 * Only if we are then in a state where covering is needed, the caller is 1007 * informed that dummy transactions are required to move the log into the idle 1008 * state. 1009 * 1010 * If there are any items in the AIl or CIL, then we do not want to attempt to 1011 * cover the log as we may be in a situation where there isn't log space 1012 * available to run a dummy transaction and this can lead to deadlocks when the 1013 * tail of the log is pinned by an item that is modified in the CIL. Hence 1014 * there's no point in running a dummy transaction at this point because we 1015 * can't start trying to idle the log until both the CIL and AIL are empty. 1016 */ 1017 int 1018 xfs_log_need_covered(xfs_mount_t *mp) 1019 { 1020 struct xlog *log = mp->m_log; 1021 int needed = 0; 1022 1023 if (!xfs_fs_writable(mp)) 1024 return 0; 1025 1026 if (!xlog_cil_empty(log)) 1027 return 0; 1028 1029 spin_lock(&log->l_icloglock); 1030 switch (log->l_covered_state) { 1031 case XLOG_STATE_COVER_DONE: 1032 case XLOG_STATE_COVER_DONE2: 1033 case XLOG_STATE_COVER_IDLE: 1034 break; 1035 case XLOG_STATE_COVER_NEED: 1036 case XLOG_STATE_COVER_NEED2: 1037 if (xfs_ail_min_lsn(log->l_ailp)) 1038 break; 1039 if (!xlog_iclogs_empty(log)) 1040 break; 1041 1042 needed = 1; 1043 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1044 log->l_covered_state = XLOG_STATE_COVER_DONE; 1045 else 1046 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1047 break; 1048 default: 1049 needed = 1; 1050 break; 1051 } 1052 spin_unlock(&log->l_icloglock); 1053 return needed; 1054 } 1055 1056 /* 1057 * We may be holding the log iclog lock upon entering this routine. 1058 */ 1059 xfs_lsn_t 1060 xlog_assign_tail_lsn_locked( 1061 struct xfs_mount *mp) 1062 { 1063 struct xlog *log = mp->m_log; 1064 struct xfs_log_item *lip; 1065 xfs_lsn_t tail_lsn; 1066 1067 assert_spin_locked(&mp->m_ail->xa_lock); 1068 1069 /* 1070 * To make sure we always have a valid LSN for the log tail we keep 1071 * track of the last LSN which was committed in log->l_last_sync_lsn, 1072 * and use that when the AIL was empty. 1073 */ 1074 lip = xfs_ail_min(mp->m_ail); 1075 if (lip) 1076 tail_lsn = lip->li_lsn; 1077 else 1078 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1079 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1080 atomic64_set(&log->l_tail_lsn, tail_lsn); 1081 return tail_lsn; 1082 } 1083 1084 xfs_lsn_t 1085 xlog_assign_tail_lsn( 1086 struct xfs_mount *mp) 1087 { 1088 xfs_lsn_t tail_lsn; 1089 1090 spin_lock(&mp->m_ail->xa_lock); 1091 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1092 spin_unlock(&mp->m_ail->xa_lock); 1093 1094 return tail_lsn; 1095 } 1096 1097 /* 1098 * Return the space in the log between the tail and the head. The head 1099 * is passed in the cycle/bytes formal parms. In the special case where 1100 * the reserve head has wrapped passed the tail, this calculation is no 1101 * longer valid. In this case, just return 0 which means there is no space 1102 * in the log. This works for all places where this function is called 1103 * with the reserve head. Of course, if the write head were to ever 1104 * wrap the tail, we should blow up. Rather than catch this case here, 1105 * we depend on other ASSERTions in other parts of the code. XXXmiken 1106 * 1107 * This code also handles the case where the reservation head is behind 1108 * the tail. The details of this case are described below, but the end 1109 * result is that we return the size of the log as the amount of space left. 1110 */ 1111 STATIC int 1112 xlog_space_left( 1113 struct xlog *log, 1114 atomic64_t *head) 1115 { 1116 int free_bytes; 1117 int tail_bytes; 1118 int tail_cycle; 1119 int head_cycle; 1120 int head_bytes; 1121 1122 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1123 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1124 tail_bytes = BBTOB(tail_bytes); 1125 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1126 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1127 else if (tail_cycle + 1 < head_cycle) 1128 return 0; 1129 else if (tail_cycle < head_cycle) { 1130 ASSERT(tail_cycle == (head_cycle - 1)); 1131 free_bytes = tail_bytes - head_bytes; 1132 } else { 1133 /* 1134 * The reservation head is behind the tail. 1135 * In this case we just want to return the size of the 1136 * log as the amount of space left. 1137 */ 1138 xfs_alert(log->l_mp, 1139 "xlog_space_left: head behind tail\n" 1140 " tail_cycle = %d, tail_bytes = %d\n" 1141 " GH cycle = %d, GH bytes = %d", 1142 tail_cycle, tail_bytes, head_cycle, head_bytes); 1143 ASSERT(0); 1144 free_bytes = log->l_logsize; 1145 } 1146 return free_bytes; 1147 } 1148 1149 1150 /* 1151 * Log function which is called when an io completes. 1152 * 1153 * The log manager needs its own routine, in order to control what 1154 * happens with the buffer after the write completes. 1155 */ 1156 void 1157 xlog_iodone(xfs_buf_t *bp) 1158 { 1159 struct xlog_in_core *iclog = bp->b_fspriv; 1160 struct xlog *l = iclog->ic_log; 1161 int aborted = 0; 1162 1163 /* 1164 * Race to shutdown the filesystem if we see an error. 1165 */ 1166 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 1167 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1168 xfs_buf_ioerror_alert(bp, __func__); 1169 xfs_buf_stale(bp); 1170 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1171 /* 1172 * This flag will be propagated to the trans-committed 1173 * callback routines to let them know that the log-commit 1174 * didn't succeed. 1175 */ 1176 aborted = XFS_LI_ABORTED; 1177 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1178 aborted = XFS_LI_ABORTED; 1179 } 1180 1181 /* log I/O is always issued ASYNC */ 1182 ASSERT(XFS_BUF_ISASYNC(bp)); 1183 xlog_state_done_syncing(iclog, aborted); 1184 /* 1185 * do not reference the buffer (bp) here as we could race 1186 * with it being freed after writing the unmount record to the 1187 * log. 1188 */ 1189 } 1190 1191 /* 1192 * Return size of each in-core log record buffer. 1193 * 1194 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1195 * 1196 * If the filesystem blocksize is too large, we may need to choose a 1197 * larger size since the directory code currently logs entire blocks. 1198 */ 1199 1200 STATIC void 1201 xlog_get_iclog_buffer_size( 1202 struct xfs_mount *mp, 1203 struct xlog *log) 1204 { 1205 int size; 1206 int xhdrs; 1207 1208 if (mp->m_logbufs <= 0) 1209 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1210 else 1211 log->l_iclog_bufs = mp->m_logbufs; 1212 1213 /* 1214 * Buffer size passed in from mount system call. 1215 */ 1216 if (mp->m_logbsize > 0) { 1217 size = log->l_iclog_size = mp->m_logbsize; 1218 log->l_iclog_size_log = 0; 1219 while (size != 1) { 1220 log->l_iclog_size_log++; 1221 size >>= 1; 1222 } 1223 1224 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1225 /* # headers = size / 32k 1226 * one header holds cycles from 32k of data 1227 */ 1228 1229 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1230 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1231 xhdrs++; 1232 log->l_iclog_hsize = xhdrs << BBSHIFT; 1233 log->l_iclog_heads = xhdrs; 1234 } else { 1235 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1236 log->l_iclog_hsize = BBSIZE; 1237 log->l_iclog_heads = 1; 1238 } 1239 goto done; 1240 } 1241 1242 /* All machines use 32kB buffers by default. */ 1243 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1244 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1245 1246 /* the default log size is 16k or 32k which is one header sector */ 1247 log->l_iclog_hsize = BBSIZE; 1248 log->l_iclog_heads = 1; 1249 1250 done: 1251 /* are we being asked to make the sizes selected above visible? */ 1252 if (mp->m_logbufs == 0) 1253 mp->m_logbufs = log->l_iclog_bufs; 1254 if (mp->m_logbsize == 0) 1255 mp->m_logbsize = log->l_iclog_size; 1256 } /* xlog_get_iclog_buffer_size */ 1257 1258 1259 void 1260 xfs_log_work_queue( 1261 struct xfs_mount *mp) 1262 { 1263 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1264 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1265 } 1266 1267 /* 1268 * Every sync period we need to unpin all items in the AIL and push them to 1269 * disk. If there is nothing dirty, then we might need to cover the log to 1270 * indicate that the filesystem is idle. 1271 */ 1272 void 1273 xfs_log_worker( 1274 struct work_struct *work) 1275 { 1276 struct xlog *log = container_of(to_delayed_work(work), 1277 struct xlog, l_work); 1278 struct xfs_mount *mp = log->l_mp; 1279 1280 /* dgc: errors ignored - not fatal and nowhere to report them */ 1281 if (xfs_log_need_covered(mp)) 1282 xfs_fs_log_dummy(mp); 1283 else 1284 xfs_log_force(mp, 0); 1285 1286 /* start pushing all the metadata that is currently dirty */ 1287 xfs_ail_push_all(mp->m_ail); 1288 1289 /* queue us up again */ 1290 xfs_log_work_queue(mp); 1291 } 1292 1293 /* 1294 * This routine initializes some of the log structure for a given mount point. 1295 * Its primary purpose is to fill in enough, so recovery can occur. However, 1296 * some other stuff may be filled in too. 1297 */ 1298 STATIC struct xlog * 1299 xlog_alloc_log( 1300 struct xfs_mount *mp, 1301 struct xfs_buftarg *log_target, 1302 xfs_daddr_t blk_offset, 1303 int num_bblks) 1304 { 1305 struct xlog *log; 1306 xlog_rec_header_t *head; 1307 xlog_in_core_t **iclogp; 1308 xlog_in_core_t *iclog, *prev_iclog=NULL; 1309 xfs_buf_t *bp; 1310 int i; 1311 int error = ENOMEM; 1312 uint log2_size = 0; 1313 1314 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1315 if (!log) { 1316 xfs_warn(mp, "Log allocation failed: No memory!"); 1317 goto out; 1318 } 1319 1320 log->l_mp = mp; 1321 log->l_targ = log_target; 1322 log->l_logsize = BBTOB(num_bblks); 1323 log->l_logBBstart = blk_offset; 1324 log->l_logBBsize = num_bblks; 1325 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1326 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1327 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1328 1329 log->l_prev_block = -1; 1330 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1331 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1332 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1333 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1334 1335 xlog_grant_head_init(&log->l_reserve_head); 1336 xlog_grant_head_init(&log->l_write_head); 1337 1338 error = EFSCORRUPTED; 1339 if (xfs_sb_version_hassector(&mp->m_sb)) { 1340 log2_size = mp->m_sb.sb_logsectlog; 1341 if (log2_size < BBSHIFT) { 1342 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1343 log2_size, BBSHIFT); 1344 goto out_free_log; 1345 } 1346 1347 log2_size -= BBSHIFT; 1348 if (log2_size > mp->m_sectbb_log) { 1349 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1350 log2_size, mp->m_sectbb_log); 1351 goto out_free_log; 1352 } 1353 1354 /* for larger sector sizes, must have v2 or external log */ 1355 if (log2_size && log->l_logBBstart > 0 && 1356 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1357 xfs_warn(mp, 1358 "log sector size (0x%x) invalid for configuration.", 1359 log2_size); 1360 goto out_free_log; 1361 } 1362 } 1363 log->l_sectBBsize = 1 << log2_size; 1364 1365 xlog_get_iclog_buffer_size(mp, log); 1366 1367 error = ENOMEM; 1368 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1369 if (!bp) 1370 goto out_free_log; 1371 bp->b_iodone = xlog_iodone; 1372 ASSERT(xfs_buf_islocked(bp)); 1373 log->l_xbuf = bp; 1374 1375 spin_lock_init(&log->l_icloglock); 1376 init_waitqueue_head(&log->l_flush_wait); 1377 1378 iclogp = &log->l_iclog; 1379 /* 1380 * The amount of memory to allocate for the iclog structure is 1381 * rather funky due to the way the structure is defined. It is 1382 * done this way so that we can use different sizes for machines 1383 * with different amounts of memory. See the definition of 1384 * xlog_in_core_t in xfs_log_priv.h for details. 1385 */ 1386 ASSERT(log->l_iclog_size >= 4096); 1387 for (i=0; i < log->l_iclog_bufs; i++) { 1388 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1389 if (!*iclogp) 1390 goto out_free_iclog; 1391 1392 iclog = *iclogp; 1393 iclog->ic_prev = prev_iclog; 1394 prev_iclog = iclog; 1395 1396 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1397 BTOBB(log->l_iclog_size), 0); 1398 if (!bp) 1399 goto out_free_iclog; 1400 1401 bp->b_iodone = xlog_iodone; 1402 iclog->ic_bp = bp; 1403 iclog->ic_data = bp->b_addr; 1404 #ifdef DEBUG 1405 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1406 #endif 1407 head = &iclog->ic_header; 1408 memset(head, 0, sizeof(xlog_rec_header_t)); 1409 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1410 head->h_version = cpu_to_be32( 1411 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1412 head->h_size = cpu_to_be32(log->l_iclog_size); 1413 /* new fields */ 1414 head->h_fmt = cpu_to_be32(XLOG_FMT); 1415 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1416 1417 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1418 iclog->ic_state = XLOG_STATE_ACTIVE; 1419 iclog->ic_log = log; 1420 atomic_set(&iclog->ic_refcnt, 0); 1421 spin_lock_init(&iclog->ic_callback_lock); 1422 iclog->ic_callback_tail = &(iclog->ic_callback); 1423 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1424 1425 ASSERT(xfs_buf_islocked(iclog->ic_bp)); 1426 init_waitqueue_head(&iclog->ic_force_wait); 1427 init_waitqueue_head(&iclog->ic_write_wait); 1428 1429 iclogp = &iclog->ic_next; 1430 } 1431 *iclogp = log->l_iclog; /* complete ring */ 1432 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1433 1434 error = xlog_cil_init(log); 1435 if (error) 1436 goto out_free_iclog; 1437 return log; 1438 1439 out_free_iclog: 1440 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1441 prev_iclog = iclog->ic_next; 1442 if (iclog->ic_bp) 1443 xfs_buf_free(iclog->ic_bp); 1444 kmem_free(iclog); 1445 } 1446 spinlock_destroy(&log->l_icloglock); 1447 xfs_buf_free(log->l_xbuf); 1448 out_free_log: 1449 kmem_free(log); 1450 out: 1451 return ERR_PTR(-error); 1452 } /* xlog_alloc_log */ 1453 1454 1455 /* 1456 * Write out the commit record of a transaction associated with the given 1457 * ticket. Return the lsn of the commit record. 1458 */ 1459 STATIC int 1460 xlog_commit_record( 1461 struct xlog *log, 1462 struct xlog_ticket *ticket, 1463 struct xlog_in_core **iclog, 1464 xfs_lsn_t *commitlsnp) 1465 { 1466 struct xfs_mount *mp = log->l_mp; 1467 int error; 1468 struct xfs_log_iovec reg = { 1469 .i_addr = NULL, 1470 .i_len = 0, 1471 .i_type = XLOG_REG_TYPE_COMMIT, 1472 }; 1473 struct xfs_log_vec vec = { 1474 .lv_niovecs = 1, 1475 .lv_iovecp = ®, 1476 }; 1477 1478 ASSERT_ALWAYS(iclog); 1479 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1480 XLOG_COMMIT_TRANS); 1481 if (error) 1482 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1483 return error; 1484 } 1485 1486 /* 1487 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1488 * log space. This code pushes on the lsn which would supposedly free up 1489 * the 25% which we want to leave free. We may need to adopt a policy which 1490 * pushes on an lsn which is further along in the log once we reach the high 1491 * water mark. In this manner, we would be creating a low water mark. 1492 */ 1493 STATIC void 1494 xlog_grant_push_ail( 1495 struct xlog *log, 1496 int need_bytes) 1497 { 1498 xfs_lsn_t threshold_lsn = 0; 1499 xfs_lsn_t last_sync_lsn; 1500 int free_blocks; 1501 int free_bytes; 1502 int threshold_block; 1503 int threshold_cycle; 1504 int free_threshold; 1505 1506 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1507 1508 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1509 free_blocks = BTOBBT(free_bytes); 1510 1511 /* 1512 * Set the threshold for the minimum number of free blocks in the 1513 * log to the maximum of what the caller needs, one quarter of the 1514 * log, and 256 blocks. 1515 */ 1516 free_threshold = BTOBB(need_bytes); 1517 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1518 free_threshold = MAX(free_threshold, 256); 1519 if (free_blocks >= free_threshold) 1520 return; 1521 1522 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1523 &threshold_block); 1524 threshold_block += free_threshold; 1525 if (threshold_block >= log->l_logBBsize) { 1526 threshold_block -= log->l_logBBsize; 1527 threshold_cycle += 1; 1528 } 1529 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1530 threshold_block); 1531 /* 1532 * Don't pass in an lsn greater than the lsn of the last 1533 * log record known to be on disk. Use a snapshot of the last sync lsn 1534 * so that it doesn't change between the compare and the set. 1535 */ 1536 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1537 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1538 threshold_lsn = last_sync_lsn; 1539 1540 /* 1541 * Get the transaction layer to kick the dirty buffers out to 1542 * disk asynchronously. No point in trying to do this if 1543 * the filesystem is shutting down. 1544 */ 1545 if (!XLOG_FORCED_SHUTDOWN(log)) 1546 xfs_ail_push(log->l_ailp, threshold_lsn); 1547 } 1548 1549 /* 1550 * Stamp cycle number in every block 1551 */ 1552 STATIC void 1553 xlog_pack_data( 1554 struct xlog *log, 1555 struct xlog_in_core *iclog, 1556 int roundoff) 1557 { 1558 int i, j, k; 1559 int size = iclog->ic_offset + roundoff; 1560 __be32 cycle_lsn; 1561 xfs_caddr_t dp; 1562 1563 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1564 1565 dp = iclog->ic_datap; 1566 for (i = 0; i < BTOBB(size); i++) { 1567 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1568 break; 1569 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1570 *(__be32 *)dp = cycle_lsn; 1571 dp += BBSIZE; 1572 } 1573 1574 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1575 xlog_in_core_2_t *xhdr = iclog->ic_data; 1576 1577 for ( ; i < BTOBB(size); i++) { 1578 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1579 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1580 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1581 *(__be32 *)dp = cycle_lsn; 1582 dp += BBSIZE; 1583 } 1584 1585 for (i = 1; i < log->l_iclog_heads; i++) 1586 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1587 } 1588 } 1589 1590 /* 1591 * Calculate the checksum for a log buffer. 1592 * 1593 * This is a little more complicated than it should be because the various 1594 * headers and the actual data are non-contiguous. 1595 */ 1596 __le32 1597 xlog_cksum( 1598 struct xlog *log, 1599 struct xlog_rec_header *rhead, 1600 char *dp, 1601 int size) 1602 { 1603 __uint32_t crc; 1604 1605 /* first generate the crc for the record header ... */ 1606 crc = xfs_start_cksum((char *)rhead, 1607 sizeof(struct xlog_rec_header), 1608 offsetof(struct xlog_rec_header, h_crc)); 1609 1610 /* ... then for additional cycle data for v2 logs ... */ 1611 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1612 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1613 int i; 1614 1615 for (i = 1; i < log->l_iclog_heads; i++) { 1616 crc = crc32c(crc, &xhdr[i].hic_xheader, 1617 sizeof(struct xlog_rec_ext_header)); 1618 } 1619 } 1620 1621 /* ... and finally for the payload */ 1622 crc = crc32c(crc, dp, size); 1623 1624 return xfs_end_cksum(crc); 1625 } 1626 1627 /* 1628 * The bdstrat callback function for log bufs. This gives us a central 1629 * place to trap bufs in case we get hit by a log I/O error and need to 1630 * shutdown. Actually, in practice, even when we didn't get a log error, 1631 * we transition the iclogs to IOERROR state *after* flushing all existing 1632 * iclogs to disk. This is because we don't want anymore new transactions to be 1633 * started or completed afterwards. 1634 */ 1635 STATIC int 1636 xlog_bdstrat( 1637 struct xfs_buf *bp) 1638 { 1639 struct xlog_in_core *iclog = bp->b_fspriv; 1640 1641 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1642 xfs_buf_ioerror(bp, EIO); 1643 xfs_buf_stale(bp); 1644 xfs_buf_ioend(bp, 0); 1645 /* 1646 * It would seem logical to return EIO here, but we rely on 1647 * the log state machine to propagate I/O errors instead of 1648 * doing it here. 1649 */ 1650 return 0; 1651 } 1652 1653 xfs_buf_iorequest(bp); 1654 return 0; 1655 } 1656 1657 /* 1658 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1659 * fashion. Previously, we should have moved the current iclog 1660 * ptr in the log to point to the next available iclog. This allows further 1661 * write to continue while this code syncs out an iclog ready to go. 1662 * Before an in-core log can be written out, the data section must be scanned 1663 * to save away the 1st word of each BBSIZE block into the header. We replace 1664 * it with the current cycle count. Each BBSIZE block is tagged with the 1665 * cycle count because there in an implicit assumption that drives will 1666 * guarantee that entire 512 byte blocks get written at once. In other words, 1667 * we can't have part of a 512 byte block written and part not written. By 1668 * tagging each block, we will know which blocks are valid when recovering 1669 * after an unclean shutdown. 1670 * 1671 * This routine is single threaded on the iclog. No other thread can be in 1672 * this routine with the same iclog. Changing contents of iclog can there- 1673 * fore be done without grabbing the state machine lock. Updating the global 1674 * log will require grabbing the lock though. 1675 * 1676 * The entire log manager uses a logical block numbering scheme. Only 1677 * log_sync (and then only bwrite()) know about the fact that the log may 1678 * not start with block zero on a given device. The log block start offset 1679 * is added immediately before calling bwrite(). 1680 */ 1681 1682 STATIC int 1683 xlog_sync( 1684 struct xlog *log, 1685 struct xlog_in_core *iclog) 1686 { 1687 xfs_buf_t *bp; 1688 int i; 1689 uint count; /* byte count of bwrite */ 1690 uint count_init; /* initial count before roundup */ 1691 int roundoff; /* roundoff to BB or stripe */ 1692 int split = 0; /* split write into two regions */ 1693 int error; 1694 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1695 int size; 1696 1697 XFS_STATS_INC(xs_log_writes); 1698 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1699 1700 /* Add for LR header */ 1701 count_init = log->l_iclog_hsize + iclog->ic_offset; 1702 1703 /* Round out the log write size */ 1704 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1705 /* we have a v2 stripe unit to use */ 1706 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1707 } else { 1708 count = BBTOB(BTOBB(count_init)); 1709 } 1710 roundoff = count - count_init; 1711 ASSERT(roundoff >= 0); 1712 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1713 roundoff < log->l_mp->m_sb.sb_logsunit) 1714 || 1715 (log->l_mp->m_sb.sb_logsunit <= 1 && 1716 roundoff < BBTOB(1))); 1717 1718 /* move grant heads by roundoff in sync */ 1719 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1720 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1721 1722 /* put cycle number in every block */ 1723 xlog_pack_data(log, iclog, roundoff); 1724 1725 /* real byte length */ 1726 size = iclog->ic_offset; 1727 if (v2) 1728 size += roundoff; 1729 iclog->ic_header.h_len = cpu_to_be32(size); 1730 1731 bp = iclog->ic_bp; 1732 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1733 1734 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1735 1736 /* Do we need to split this write into 2 parts? */ 1737 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1738 char *dptr; 1739 1740 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1741 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1742 iclog->ic_bwritecnt = 2; 1743 1744 /* 1745 * Bump the cycle numbers at the start of each block in the 1746 * part of the iclog that ends up in the buffer that gets 1747 * written to the start of the log. 1748 * 1749 * Watch out for the header magic number case, though. 1750 */ 1751 dptr = (char *)&iclog->ic_header + count; 1752 for (i = 0; i < split; i += BBSIZE) { 1753 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1754 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1755 cycle++; 1756 *(__be32 *)dptr = cpu_to_be32(cycle); 1757 1758 dptr += BBSIZE; 1759 } 1760 } else { 1761 iclog->ic_bwritecnt = 1; 1762 } 1763 1764 /* calculcate the checksum */ 1765 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1766 iclog->ic_datap, size); 1767 1768 bp->b_io_length = BTOBB(count); 1769 bp->b_fspriv = iclog; 1770 XFS_BUF_ZEROFLAGS(bp); 1771 XFS_BUF_ASYNC(bp); 1772 bp->b_flags |= XBF_SYNCIO; 1773 1774 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1775 bp->b_flags |= XBF_FUA; 1776 1777 /* 1778 * Flush the data device before flushing the log to make 1779 * sure all meta data written back from the AIL actually made 1780 * it to disk before stamping the new log tail LSN into the 1781 * log buffer. For an external log we need to issue the 1782 * flush explicitly, and unfortunately synchronously here; 1783 * for an internal log we can simply use the block layer 1784 * state machine for preflushes. 1785 */ 1786 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1787 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1788 else 1789 bp->b_flags |= XBF_FLUSH; 1790 } 1791 1792 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1793 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1794 1795 xlog_verify_iclog(log, iclog, count, true); 1796 1797 /* account for log which doesn't start at block #0 */ 1798 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1799 /* 1800 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1801 * is shutting down. 1802 */ 1803 XFS_BUF_WRITE(bp); 1804 1805 error = xlog_bdstrat(bp); 1806 if (error) { 1807 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1808 return error; 1809 } 1810 if (split) { 1811 bp = iclog->ic_log->l_xbuf; 1812 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1813 xfs_buf_associate_memory(bp, 1814 (char *)&iclog->ic_header + count, split); 1815 bp->b_fspriv = iclog; 1816 XFS_BUF_ZEROFLAGS(bp); 1817 XFS_BUF_ASYNC(bp); 1818 bp->b_flags |= XBF_SYNCIO; 1819 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1820 bp->b_flags |= XBF_FUA; 1821 1822 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1823 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1824 1825 /* account for internal log which doesn't start at block #0 */ 1826 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1827 XFS_BUF_WRITE(bp); 1828 error = xlog_bdstrat(bp); 1829 if (error) { 1830 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1831 return error; 1832 } 1833 } 1834 return 0; 1835 } /* xlog_sync */ 1836 1837 /* 1838 * Deallocate a log structure 1839 */ 1840 STATIC void 1841 xlog_dealloc_log( 1842 struct xlog *log) 1843 { 1844 xlog_in_core_t *iclog, *next_iclog; 1845 int i; 1846 1847 xlog_cil_destroy(log); 1848 1849 /* 1850 * always need to ensure that the extra buffer does not point to memory 1851 * owned by another log buffer before we free it. 1852 */ 1853 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1854 xfs_buf_free(log->l_xbuf); 1855 1856 iclog = log->l_iclog; 1857 for (i=0; i<log->l_iclog_bufs; i++) { 1858 xfs_buf_free(iclog->ic_bp); 1859 next_iclog = iclog->ic_next; 1860 kmem_free(iclog); 1861 iclog = next_iclog; 1862 } 1863 spinlock_destroy(&log->l_icloglock); 1864 1865 log->l_mp->m_log = NULL; 1866 kmem_free(log); 1867 } /* xlog_dealloc_log */ 1868 1869 /* 1870 * Update counters atomically now that memcpy is done. 1871 */ 1872 /* ARGSUSED */ 1873 static inline void 1874 xlog_state_finish_copy( 1875 struct xlog *log, 1876 struct xlog_in_core *iclog, 1877 int record_cnt, 1878 int copy_bytes) 1879 { 1880 spin_lock(&log->l_icloglock); 1881 1882 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1883 iclog->ic_offset += copy_bytes; 1884 1885 spin_unlock(&log->l_icloglock); 1886 } /* xlog_state_finish_copy */ 1887 1888 1889 1890 1891 /* 1892 * print out info relating to regions written which consume 1893 * the reservation 1894 */ 1895 void 1896 xlog_print_tic_res( 1897 struct xfs_mount *mp, 1898 struct xlog_ticket *ticket) 1899 { 1900 uint i; 1901 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1902 1903 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1904 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1905 "bformat", 1906 "bchunk", 1907 "efi_format", 1908 "efd_format", 1909 "iformat", 1910 "icore", 1911 "iext", 1912 "ibroot", 1913 "ilocal", 1914 "iattr_ext", 1915 "iattr_broot", 1916 "iattr_local", 1917 "qformat", 1918 "dquot", 1919 "quotaoff", 1920 "LR header", 1921 "unmount", 1922 "commit", 1923 "trans header" 1924 }; 1925 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1926 "SETATTR_NOT_SIZE", 1927 "SETATTR_SIZE", 1928 "INACTIVE", 1929 "CREATE", 1930 "CREATE_TRUNC", 1931 "TRUNCATE_FILE", 1932 "REMOVE", 1933 "LINK", 1934 "RENAME", 1935 "MKDIR", 1936 "RMDIR", 1937 "SYMLINK", 1938 "SET_DMATTRS", 1939 "GROWFS", 1940 "STRAT_WRITE", 1941 "DIOSTRAT", 1942 "WRITE_SYNC", 1943 "WRITEID", 1944 "ADDAFORK", 1945 "ATTRINVAL", 1946 "ATRUNCATE", 1947 "ATTR_SET", 1948 "ATTR_RM", 1949 "ATTR_FLAG", 1950 "CLEAR_AGI_BUCKET", 1951 "QM_SBCHANGE", 1952 "DUMMY1", 1953 "DUMMY2", 1954 "QM_QUOTAOFF", 1955 "QM_DQALLOC", 1956 "QM_SETQLIM", 1957 "QM_DQCLUSTER", 1958 "QM_QINOCREATE", 1959 "QM_QUOTAOFF_END", 1960 "SB_UNIT", 1961 "FSYNC_TS", 1962 "GROWFSRT_ALLOC", 1963 "GROWFSRT_ZERO", 1964 "GROWFSRT_FREE", 1965 "SWAPEXT" 1966 }; 1967 1968 xfs_warn(mp, 1969 "xlog_write: reservation summary:\n" 1970 " trans type = %s (%u)\n" 1971 " unit res = %d bytes\n" 1972 " current res = %d bytes\n" 1973 " total reg = %u bytes (o/flow = %u bytes)\n" 1974 " ophdrs = %u (ophdr space = %u bytes)\n" 1975 " ophdr + reg = %u bytes\n" 1976 " num regions = %u\n", 1977 ((ticket->t_trans_type <= 0 || 1978 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1979 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1980 ticket->t_trans_type, 1981 ticket->t_unit_res, 1982 ticket->t_curr_res, 1983 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1984 ticket->t_res_num_ophdrs, ophdr_spc, 1985 ticket->t_res_arr_sum + 1986 ticket->t_res_o_flow + ophdr_spc, 1987 ticket->t_res_num); 1988 1989 for (i = 0; i < ticket->t_res_num; i++) { 1990 uint r_type = ticket->t_res_arr[i].r_type; 1991 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 1992 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1993 "bad-rtype" : res_type_str[r_type-1]), 1994 ticket->t_res_arr[i].r_len); 1995 } 1996 1997 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 1998 "xlog_write: reservation ran out. Need to up reservation"); 1999 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2000 } 2001 2002 /* 2003 * Calculate the potential space needed by the log vector. Each region gets 2004 * its own xlog_op_header_t and may need to be double word aligned. 2005 */ 2006 static int 2007 xlog_write_calc_vec_length( 2008 struct xlog_ticket *ticket, 2009 struct xfs_log_vec *log_vector) 2010 { 2011 struct xfs_log_vec *lv; 2012 int headers = 0; 2013 int len = 0; 2014 int i; 2015 2016 /* acct for start rec of xact */ 2017 if (ticket->t_flags & XLOG_TIC_INITED) 2018 headers++; 2019 2020 for (lv = log_vector; lv; lv = lv->lv_next) { 2021 /* we don't write ordered log vectors */ 2022 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2023 continue; 2024 2025 headers += lv->lv_niovecs; 2026 2027 for (i = 0; i < lv->lv_niovecs; i++) { 2028 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2029 2030 len += vecp->i_len; 2031 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2032 } 2033 } 2034 2035 ticket->t_res_num_ophdrs += headers; 2036 len += headers * sizeof(struct xlog_op_header); 2037 2038 return len; 2039 } 2040 2041 /* 2042 * If first write for transaction, insert start record We can't be trying to 2043 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2044 */ 2045 static int 2046 xlog_write_start_rec( 2047 struct xlog_op_header *ophdr, 2048 struct xlog_ticket *ticket) 2049 { 2050 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2051 return 0; 2052 2053 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2054 ophdr->oh_clientid = ticket->t_clientid; 2055 ophdr->oh_len = 0; 2056 ophdr->oh_flags = XLOG_START_TRANS; 2057 ophdr->oh_res2 = 0; 2058 2059 ticket->t_flags &= ~XLOG_TIC_INITED; 2060 2061 return sizeof(struct xlog_op_header); 2062 } 2063 2064 static xlog_op_header_t * 2065 xlog_write_setup_ophdr( 2066 struct xlog *log, 2067 struct xlog_op_header *ophdr, 2068 struct xlog_ticket *ticket, 2069 uint flags) 2070 { 2071 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2072 ophdr->oh_clientid = ticket->t_clientid; 2073 ophdr->oh_res2 = 0; 2074 2075 /* are we copying a commit or unmount record? */ 2076 ophdr->oh_flags = flags; 2077 2078 /* 2079 * We've seen logs corrupted with bad transaction client ids. This 2080 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2081 * and shut down the filesystem. 2082 */ 2083 switch (ophdr->oh_clientid) { 2084 case XFS_TRANSACTION: 2085 case XFS_VOLUME: 2086 case XFS_LOG: 2087 break; 2088 default: 2089 xfs_warn(log->l_mp, 2090 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2091 ophdr->oh_clientid, ticket); 2092 return NULL; 2093 } 2094 2095 return ophdr; 2096 } 2097 2098 /* 2099 * Set up the parameters of the region copy into the log. This has 2100 * to handle region write split across multiple log buffers - this 2101 * state is kept external to this function so that this code can 2102 * be written in an obvious, self documenting manner. 2103 */ 2104 static int 2105 xlog_write_setup_copy( 2106 struct xlog_ticket *ticket, 2107 struct xlog_op_header *ophdr, 2108 int space_available, 2109 int space_required, 2110 int *copy_off, 2111 int *copy_len, 2112 int *last_was_partial_copy, 2113 int *bytes_consumed) 2114 { 2115 int still_to_copy; 2116 2117 still_to_copy = space_required - *bytes_consumed; 2118 *copy_off = *bytes_consumed; 2119 2120 if (still_to_copy <= space_available) { 2121 /* write of region completes here */ 2122 *copy_len = still_to_copy; 2123 ophdr->oh_len = cpu_to_be32(*copy_len); 2124 if (*last_was_partial_copy) 2125 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2126 *last_was_partial_copy = 0; 2127 *bytes_consumed = 0; 2128 return 0; 2129 } 2130 2131 /* partial write of region, needs extra log op header reservation */ 2132 *copy_len = space_available; 2133 ophdr->oh_len = cpu_to_be32(*copy_len); 2134 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2135 if (*last_was_partial_copy) 2136 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2137 *bytes_consumed += *copy_len; 2138 (*last_was_partial_copy)++; 2139 2140 /* account for new log op header */ 2141 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2142 ticket->t_res_num_ophdrs++; 2143 2144 return sizeof(struct xlog_op_header); 2145 } 2146 2147 static int 2148 xlog_write_copy_finish( 2149 struct xlog *log, 2150 struct xlog_in_core *iclog, 2151 uint flags, 2152 int *record_cnt, 2153 int *data_cnt, 2154 int *partial_copy, 2155 int *partial_copy_len, 2156 int log_offset, 2157 struct xlog_in_core **commit_iclog) 2158 { 2159 if (*partial_copy) { 2160 /* 2161 * This iclog has already been marked WANT_SYNC by 2162 * xlog_state_get_iclog_space. 2163 */ 2164 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2165 *record_cnt = 0; 2166 *data_cnt = 0; 2167 return xlog_state_release_iclog(log, iclog); 2168 } 2169 2170 *partial_copy = 0; 2171 *partial_copy_len = 0; 2172 2173 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2174 /* no more space in this iclog - push it. */ 2175 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2176 *record_cnt = 0; 2177 *data_cnt = 0; 2178 2179 spin_lock(&log->l_icloglock); 2180 xlog_state_want_sync(log, iclog); 2181 spin_unlock(&log->l_icloglock); 2182 2183 if (!commit_iclog) 2184 return xlog_state_release_iclog(log, iclog); 2185 ASSERT(flags & XLOG_COMMIT_TRANS); 2186 *commit_iclog = iclog; 2187 } 2188 2189 return 0; 2190 } 2191 2192 /* 2193 * Write some region out to in-core log 2194 * 2195 * This will be called when writing externally provided regions or when 2196 * writing out a commit record for a given transaction. 2197 * 2198 * General algorithm: 2199 * 1. Find total length of this write. This may include adding to the 2200 * lengths passed in. 2201 * 2. Check whether we violate the tickets reservation. 2202 * 3. While writing to this iclog 2203 * A. Reserve as much space in this iclog as can get 2204 * B. If this is first write, save away start lsn 2205 * C. While writing this region: 2206 * 1. If first write of transaction, write start record 2207 * 2. Write log operation header (header per region) 2208 * 3. Find out if we can fit entire region into this iclog 2209 * 4. Potentially, verify destination memcpy ptr 2210 * 5. Memcpy (partial) region 2211 * 6. If partial copy, release iclog; otherwise, continue 2212 * copying more regions into current iclog 2213 * 4. Mark want sync bit (in simulation mode) 2214 * 5. Release iclog for potential flush to on-disk log. 2215 * 2216 * ERRORS: 2217 * 1. Panic if reservation is overrun. This should never happen since 2218 * reservation amounts are generated internal to the filesystem. 2219 * NOTES: 2220 * 1. Tickets are single threaded data structures. 2221 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2222 * syncing routine. When a single log_write region needs to span 2223 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2224 * on all log operation writes which don't contain the end of the 2225 * region. The XLOG_END_TRANS bit is used for the in-core log 2226 * operation which contains the end of the continued log_write region. 2227 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2228 * we don't really know exactly how much space will be used. As a result, 2229 * we don't update ic_offset until the end when we know exactly how many 2230 * bytes have been written out. 2231 */ 2232 int 2233 xlog_write( 2234 struct xlog *log, 2235 struct xfs_log_vec *log_vector, 2236 struct xlog_ticket *ticket, 2237 xfs_lsn_t *start_lsn, 2238 struct xlog_in_core **commit_iclog, 2239 uint flags) 2240 { 2241 struct xlog_in_core *iclog = NULL; 2242 struct xfs_log_iovec *vecp; 2243 struct xfs_log_vec *lv; 2244 int len; 2245 int index; 2246 int partial_copy = 0; 2247 int partial_copy_len = 0; 2248 int contwr = 0; 2249 int record_cnt = 0; 2250 int data_cnt = 0; 2251 int error; 2252 2253 *start_lsn = 0; 2254 2255 len = xlog_write_calc_vec_length(ticket, log_vector); 2256 2257 /* 2258 * Region headers and bytes are already accounted for. 2259 * We only need to take into account start records and 2260 * split regions in this function. 2261 */ 2262 if (ticket->t_flags & XLOG_TIC_INITED) 2263 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2264 2265 /* 2266 * Commit record headers need to be accounted for. These 2267 * come in as separate writes so are easy to detect. 2268 */ 2269 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2270 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2271 2272 if (ticket->t_curr_res < 0) 2273 xlog_print_tic_res(log->l_mp, ticket); 2274 2275 index = 0; 2276 lv = log_vector; 2277 vecp = lv->lv_iovecp; 2278 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2279 void *ptr; 2280 int log_offset; 2281 2282 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2283 &contwr, &log_offset); 2284 if (error) 2285 return error; 2286 2287 ASSERT(log_offset <= iclog->ic_size - 1); 2288 ptr = iclog->ic_datap + log_offset; 2289 2290 /* start_lsn is the first lsn written to. That's all we need. */ 2291 if (!*start_lsn) 2292 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2293 2294 /* 2295 * This loop writes out as many regions as can fit in the amount 2296 * of space which was allocated by xlog_state_get_iclog_space(). 2297 */ 2298 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2299 struct xfs_log_iovec *reg; 2300 struct xlog_op_header *ophdr; 2301 int start_rec_copy; 2302 int copy_len; 2303 int copy_off; 2304 bool ordered = false; 2305 2306 /* ordered log vectors have no regions to write */ 2307 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2308 ASSERT(lv->lv_niovecs == 0); 2309 ordered = true; 2310 goto next_lv; 2311 } 2312 2313 reg = &vecp[index]; 2314 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2315 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2316 2317 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2318 if (start_rec_copy) { 2319 record_cnt++; 2320 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2321 start_rec_copy); 2322 } 2323 2324 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2325 if (!ophdr) 2326 return XFS_ERROR(EIO); 2327 2328 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2329 sizeof(struct xlog_op_header)); 2330 2331 len += xlog_write_setup_copy(ticket, ophdr, 2332 iclog->ic_size-log_offset, 2333 reg->i_len, 2334 ©_off, ©_len, 2335 &partial_copy, 2336 &partial_copy_len); 2337 xlog_verify_dest_ptr(log, ptr); 2338 2339 /* copy region */ 2340 ASSERT(copy_len >= 0); 2341 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2342 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2343 2344 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2345 record_cnt++; 2346 data_cnt += contwr ? copy_len : 0; 2347 2348 error = xlog_write_copy_finish(log, iclog, flags, 2349 &record_cnt, &data_cnt, 2350 &partial_copy, 2351 &partial_copy_len, 2352 log_offset, 2353 commit_iclog); 2354 if (error) 2355 return error; 2356 2357 /* 2358 * if we had a partial copy, we need to get more iclog 2359 * space but we don't want to increment the region 2360 * index because there is still more is this region to 2361 * write. 2362 * 2363 * If we completed writing this region, and we flushed 2364 * the iclog (indicated by resetting of the record 2365 * count), then we also need to get more log space. If 2366 * this was the last record, though, we are done and 2367 * can just return. 2368 */ 2369 if (partial_copy) 2370 break; 2371 2372 if (++index == lv->lv_niovecs) { 2373 next_lv: 2374 lv = lv->lv_next; 2375 index = 0; 2376 if (lv) 2377 vecp = lv->lv_iovecp; 2378 } 2379 if (record_cnt == 0 && ordered == false) { 2380 if (!lv) 2381 return 0; 2382 break; 2383 } 2384 } 2385 } 2386 2387 ASSERT(len == 0); 2388 2389 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2390 if (!commit_iclog) 2391 return xlog_state_release_iclog(log, iclog); 2392 2393 ASSERT(flags & XLOG_COMMIT_TRANS); 2394 *commit_iclog = iclog; 2395 return 0; 2396 } 2397 2398 2399 /***************************************************************************** 2400 * 2401 * State Machine functions 2402 * 2403 ***************************************************************************** 2404 */ 2405 2406 /* Clean iclogs starting from the head. This ordering must be 2407 * maintained, so an iclog doesn't become ACTIVE beyond one that 2408 * is SYNCING. This is also required to maintain the notion that we use 2409 * a ordered wait queue to hold off would be writers to the log when every 2410 * iclog is trying to sync to disk. 2411 * 2412 * State Change: DIRTY -> ACTIVE 2413 */ 2414 STATIC void 2415 xlog_state_clean_log( 2416 struct xlog *log) 2417 { 2418 xlog_in_core_t *iclog; 2419 int changed = 0; 2420 2421 iclog = log->l_iclog; 2422 do { 2423 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2424 iclog->ic_state = XLOG_STATE_ACTIVE; 2425 iclog->ic_offset = 0; 2426 ASSERT(iclog->ic_callback == NULL); 2427 /* 2428 * If the number of ops in this iclog indicate it just 2429 * contains the dummy transaction, we can 2430 * change state into IDLE (the second time around). 2431 * Otherwise we should change the state into 2432 * NEED a dummy. 2433 * We don't need to cover the dummy. 2434 */ 2435 if (!changed && 2436 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2437 XLOG_COVER_OPS)) { 2438 changed = 1; 2439 } else { 2440 /* 2441 * We have two dirty iclogs so start over 2442 * This could also be num of ops indicates 2443 * this is not the dummy going out. 2444 */ 2445 changed = 2; 2446 } 2447 iclog->ic_header.h_num_logops = 0; 2448 memset(iclog->ic_header.h_cycle_data, 0, 2449 sizeof(iclog->ic_header.h_cycle_data)); 2450 iclog->ic_header.h_lsn = 0; 2451 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2452 /* do nothing */; 2453 else 2454 break; /* stop cleaning */ 2455 iclog = iclog->ic_next; 2456 } while (iclog != log->l_iclog); 2457 2458 /* log is locked when we are called */ 2459 /* 2460 * Change state for the dummy log recording. 2461 * We usually go to NEED. But we go to NEED2 if the changed indicates 2462 * we are done writing the dummy record. 2463 * If we are done with the second dummy recored (DONE2), then 2464 * we go to IDLE. 2465 */ 2466 if (changed) { 2467 switch (log->l_covered_state) { 2468 case XLOG_STATE_COVER_IDLE: 2469 case XLOG_STATE_COVER_NEED: 2470 case XLOG_STATE_COVER_NEED2: 2471 log->l_covered_state = XLOG_STATE_COVER_NEED; 2472 break; 2473 2474 case XLOG_STATE_COVER_DONE: 2475 if (changed == 1) 2476 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2477 else 2478 log->l_covered_state = XLOG_STATE_COVER_NEED; 2479 break; 2480 2481 case XLOG_STATE_COVER_DONE2: 2482 if (changed == 1) 2483 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2484 else 2485 log->l_covered_state = XLOG_STATE_COVER_NEED; 2486 break; 2487 2488 default: 2489 ASSERT(0); 2490 } 2491 } 2492 } /* xlog_state_clean_log */ 2493 2494 STATIC xfs_lsn_t 2495 xlog_get_lowest_lsn( 2496 struct xlog *log) 2497 { 2498 xlog_in_core_t *lsn_log; 2499 xfs_lsn_t lowest_lsn, lsn; 2500 2501 lsn_log = log->l_iclog; 2502 lowest_lsn = 0; 2503 do { 2504 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2505 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2506 if ((lsn && !lowest_lsn) || 2507 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2508 lowest_lsn = lsn; 2509 } 2510 } 2511 lsn_log = lsn_log->ic_next; 2512 } while (lsn_log != log->l_iclog); 2513 return lowest_lsn; 2514 } 2515 2516 2517 STATIC void 2518 xlog_state_do_callback( 2519 struct xlog *log, 2520 int aborted, 2521 struct xlog_in_core *ciclog) 2522 { 2523 xlog_in_core_t *iclog; 2524 xlog_in_core_t *first_iclog; /* used to know when we've 2525 * processed all iclogs once */ 2526 xfs_log_callback_t *cb, *cb_next; 2527 int flushcnt = 0; 2528 xfs_lsn_t lowest_lsn; 2529 int ioerrors; /* counter: iclogs with errors */ 2530 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2531 int funcdidcallbacks; /* flag: function did callbacks */ 2532 int repeats; /* for issuing console warnings if 2533 * looping too many times */ 2534 int wake = 0; 2535 2536 spin_lock(&log->l_icloglock); 2537 first_iclog = iclog = log->l_iclog; 2538 ioerrors = 0; 2539 funcdidcallbacks = 0; 2540 repeats = 0; 2541 2542 do { 2543 /* 2544 * Scan all iclogs starting with the one pointed to by the 2545 * log. Reset this starting point each time the log is 2546 * unlocked (during callbacks). 2547 * 2548 * Keep looping through iclogs until one full pass is made 2549 * without running any callbacks. 2550 */ 2551 first_iclog = log->l_iclog; 2552 iclog = log->l_iclog; 2553 loopdidcallbacks = 0; 2554 repeats++; 2555 2556 do { 2557 2558 /* skip all iclogs in the ACTIVE & DIRTY states */ 2559 if (iclog->ic_state & 2560 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2561 iclog = iclog->ic_next; 2562 continue; 2563 } 2564 2565 /* 2566 * Between marking a filesystem SHUTDOWN and stopping 2567 * the log, we do flush all iclogs to disk (if there 2568 * wasn't a log I/O error). So, we do want things to 2569 * go smoothly in case of just a SHUTDOWN w/o a 2570 * LOG_IO_ERROR. 2571 */ 2572 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2573 /* 2574 * Can only perform callbacks in order. Since 2575 * this iclog is not in the DONE_SYNC/ 2576 * DO_CALLBACK state, we skip the rest and 2577 * just try to clean up. If we set our iclog 2578 * to DO_CALLBACK, we will not process it when 2579 * we retry since a previous iclog is in the 2580 * CALLBACK and the state cannot change since 2581 * we are holding the l_icloglock. 2582 */ 2583 if (!(iclog->ic_state & 2584 (XLOG_STATE_DONE_SYNC | 2585 XLOG_STATE_DO_CALLBACK))) { 2586 if (ciclog && (ciclog->ic_state == 2587 XLOG_STATE_DONE_SYNC)) { 2588 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2589 } 2590 break; 2591 } 2592 /* 2593 * We now have an iclog that is in either the 2594 * DO_CALLBACK or DONE_SYNC states. The other 2595 * states (WANT_SYNC, SYNCING, or CALLBACK were 2596 * caught by the above if and are going to 2597 * clean (i.e. we aren't doing their callbacks) 2598 * see the above if. 2599 */ 2600 2601 /* 2602 * We will do one more check here to see if we 2603 * have chased our tail around. 2604 */ 2605 2606 lowest_lsn = xlog_get_lowest_lsn(log); 2607 if (lowest_lsn && 2608 XFS_LSN_CMP(lowest_lsn, 2609 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2610 iclog = iclog->ic_next; 2611 continue; /* Leave this iclog for 2612 * another thread */ 2613 } 2614 2615 iclog->ic_state = XLOG_STATE_CALLBACK; 2616 2617 2618 /* 2619 * Completion of a iclog IO does not imply that 2620 * a transaction has completed, as transactions 2621 * can be large enough to span many iclogs. We 2622 * cannot change the tail of the log half way 2623 * through a transaction as this may be the only 2624 * transaction in the log and moving th etail to 2625 * point to the middle of it will prevent 2626 * recovery from finding the start of the 2627 * transaction. Hence we should only update the 2628 * last_sync_lsn if this iclog contains 2629 * transaction completion callbacks on it. 2630 * 2631 * We have to do this before we drop the 2632 * icloglock to ensure we are the only one that 2633 * can update it. 2634 */ 2635 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2636 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2637 if (iclog->ic_callback) 2638 atomic64_set(&log->l_last_sync_lsn, 2639 be64_to_cpu(iclog->ic_header.h_lsn)); 2640 2641 } else 2642 ioerrors++; 2643 2644 spin_unlock(&log->l_icloglock); 2645 2646 /* 2647 * Keep processing entries in the callback list until 2648 * we come around and it is empty. We need to 2649 * atomically see that the list is empty and change the 2650 * state to DIRTY so that we don't miss any more 2651 * callbacks being added. 2652 */ 2653 spin_lock(&iclog->ic_callback_lock); 2654 cb = iclog->ic_callback; 2655 while (cb) { 2656 iclog->ic_callback_tail = &(iclog->ic_callback); 2657 iclog->ic_callback = NULL; 2658 spin_unlock(&iclog->ic_callback_lock); 2659 2660 /* perform callbacks in the order given */ 2661 for (; cb; cb = cb_next) { 2662 cb_next = cb->cb_next; 2663 cb->cb_func(cb->cb_arg, aborted); 2664 } 2665 spin_lock(&iclog->ic_callback_lock); 2666 cb = iclog->ic_callback; 2667 } 2668 2669 loopdidcallbacks++; 2670 funcdidcallbacks++; 2671 2672 spin_lock(&log->l_icloglock); 2673 ASSERT(iclog->ic_callback == NULL); 2674 spin_unlock(&iclog->ic_callback_lock); 2675 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2676 iclog->ic_state = XLOG_STATE_DIRTY; 2677 2678 /* 2679 * Transition from DIRTY to ACTIVE if applicable. 2680 * NOP if STATE_IOERROR. 2681 */ 2682 xlog_state_clean_log(log); 2683 2684 /* wake up threads waiting in xfs_log_force() */ 2685 wake_up_all(&iclog->ic_force_wait); 2686 2687 iclog = iclog->ic_next; 2688 } while (first_iclog != iclog); 2689 2690 if (repeats > 5000) { 2691 flushcnt += repeats; 2692 repeats = 0; 2693 xfs_warn(log->l_mp, 2694 "%s: possible infinite loop (%d iterations)", 2695 __func__, flushcnt); 2696 } 2697 } while (!ioerrors && loopdidcallbacks); 2698 2699 /* 2700 * make one last gasp attempt to see if iclogs are being left in 2701 * limbo.. 2702 */ 2703 #ifdef DEBUG 2704 if (funcdidcallbacks) { 2705 first_iclog = iclog = log->l_iclog; 2706 do { 2707 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2708 /* 2709 * Terminate the loop if iclogs are found in states 2710 * which will cause other threads to clean up iclogs. 2711 * 2712 * SYNCING - i/o completion will go through logs 2713 * DONE_SYNC - interrupt thread should be waiting for 2714 * l_icloglock 2715 * IOERROR - give up hope all ye who enter here 2716 */ 2717 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2718 iclog->ic_state == XLOG_STATE_SYNCING || 2719 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2720 iclog->ic_state == XLOG_STATE_IOERROR ) 2721 break; 2722 iclog = iclog->ic_next; 2723 } while (first_iclog != iclog); 2724 } 2725 #endif 2726 2727 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2728 wake = 1; 2729 spin_unlock(&log->l_icloglock); 2730 2731 if (wake) 2732 wake_up_all(&log->l_flush_wait); 2733 } 2734 2735 2736 /* 2737 * Finish transitioning this iclog to the dirty state. 2738 * 2739 * Make sure that we completely execute this routine only when this is 2740 * the last call to the iclog. There is a good chance that iclog flushes, 2741 * when we reach the end of the physical log, get turned into 2 separate 2742 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2743 * routine. By using the reference count bwritecnt, we guarantee that only 2744 * the second completion goes through. 2745 * 2746 * Callbacks could take time, so they are done outside the scope of the 2747 * global state machine log lock. 2748 */ 2749 STATIC void 2750 xlog_state_done_syncing( 2751 xlog_in_core_t *iclog, 2752 int aborted) 2753 { 2754 struct xlog *log = iclog->ic_log; 2755 2756 spin_lock(&log->l_icloglock); 2757 2758 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2759 iclog->ic_state == XLOG_STATE_IOERROR); 2760 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2761 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2762 2763 2764 /* 2765 * If we got an error, either on the first buffer, or in the case of 2766 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2767 * and none should ever be attempted to be written to disk 2768 * again. 2769 */ 2770 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2771 if (--iclog->ic_bwritecnt == 1) { 2772 spin_unlock(&log->l_icloglock); 2773 return; 2774 } 2775 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2776 } 2777 2778 /* 2779 * Someone could be sleeping prior to writing out the next 2780 * iclog buffer, we wake them all, one will get to do the 2781 * I/O, the others get to wait for the result. 2782 */ 2783 wake_up_all(&iclog->ic_write_wait); 2784 spin_unlock(&log->l_icloglock); 2785 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2786 } /* xlog_state_done_syncing */ 2787 2788 2789 /* 2790 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2791 * sleep. We wait on the flush queue on the head iclog as that should be 2792 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2793 * we will wait here and all new writes will sleep until a sync completes. 2794 * 2795 * The in-core logs are used in a circular fashion. They are not used 2796 * out-of-order even when an iclog past the head is free. 2797 * 2798 * return: 2799 * * log_offset where xlog_write() can start writing into the in-core 2800 * log's data space. 2801 * * in-core log pointer to which xlog_write() should write. 2802 * * boolean indicating this is a continued write to an in-core log. 2803 * If this is the last write, then the in-core log's offset field 2804 * needs to be incremented, depending on the amount of data which 2805 * is copied. 2806 */ 2807 STATIC int 2808 xlog_state_get_iclog_space( 2809 struct xlog *log, 2810 int len, 2811 struct xlog_in_core **iclogp, 2812 struct xlog_ticket *ticket, 2813 int *continued_write, 2814 int *logoffsetp) 2815 { 2816 int log_offset; 2817 xlog_rec_header_t *head; 2818 xlog_in_core_t *iclog; 2819 int error; 2820 2821 restart: 2822 spin_lock(&log->l_icloglock); 2823 if (XLOG_FORCED_SHUTDOWN(log)) { 2824 spin_unlock(&log->l_icloglock); 2825 return XFS_ERROR(EIO); 2826 } 2827 2828 iclog = log->l_iclog; 2829 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2830 XFS_STATS_INC(xs_log_noiclogs); 2831 2832 /* Wait for log writes to have flushed */ 2833 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2834 goto restart; 2835 } 2836 2837 head = &iclog->ic_header; 2838 2839 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2840 log_offset = iclog->ic_offset; 2841 2842 /* On the 1st write to an iclog, figure out lsn. This works 2843 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2844 * committing to. If the offset is set, that's how many blocks 2845 * must be written. 2846 */ 2847 if (log_offset == 0) { 2848 ticket->t_curr_res -= log->l_iclog_hsize; 2849 xlog_tic_add_region(ticket, 2850 log->l_iclog_hsize, 2851 XLOG_REG_TYPE_LRHEADER); 2852 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2853 head->h_lsn = cpu_to_be64( 2854 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2855 ASSERT(log->l_curr_block >= 0); 2856 } 2857 2858 /* If there is enough room to write everything, then do it. Otherwise, 2859 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2860 * bit is on, so this will get flushed out. Don't update ic_offset 2861 * until you know exactly how many bytes get copied. Therefore, wait 2862 * until later to update ic_offset. 2863 * 2864 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2865 * can fit into remaining data section. 2866 */ 2867 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2868 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2869 2870 /* 2871 * If I'm the only one writing to this iclog, sync it to disk. 2872 * We need to do an atomic compare and decrement here to avoid 2873 * racing with concurrent atomic_dec_and_lock() calls in 2874 * xlog_state_release_iclog() when there is more than one 2875 * reference to the iclog. 2876 */ 2877 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2878 /* we are the only one */ 2879 spin_unlock(&log->l_icloglock); 2880 error = xlog_state_release_iclog(log, iclog); 2881 if (error) 2882 return error; 2883 } else { 2884 spin_unlock(&log->l_icloglock); 2885 } 2886 goto restart; 2887 } 2888 2889 /* Do we have enough room to write the full amount in the remainder 2890 * of this iclog? Or must we continue a write on the next iclog and 2891 * mark this iclog as completely taken? In the case where we switch 2892 * iclogs (to mark it taken), this particular iclog will release/sync 2893 * to disk in xlog_write(). 2894 */ 2895 if (len <= iclog->ic_size - iclog->ic_offset) { 2896 *continued_write = 0; 2897 iclog->ic_offset += len; 2898 } else { 2899 *continued_write = 1; 2900 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2901 } 2902 *iclogp = iclog; 2903 2904 ASSERT(iclog->ic_offset <= iclog->ic_size); 2905 spin_unlock(&log->l_icloglock); 2906 2907 *logoffsetp = log_offset; 2908 return 0; 2909 } /* xlog_state_get_iclog_space */ 2910 2911 /* The first cnt-1 times through here we don't need to 2912 * move the grant write head because the permanent 2913 * reservation has reserved cnt times the unit amount. 2914 * Release part of current permanent unit reservation and 2915 * reset current reservation to be one units worth. Also 2916 * move grant reservation head forward. 2917 */ 2918 STATIC void 2919 xlog_regrant_reserve_log_space( 2920 struct xlog *log, 2921 struct xlog_ticket *ticket) 2922 { 2923 trace_xfs_log_regrant_reserve_enter(log, ticket); 2924 2925 if (ticket->t_cnt > 0) 2926 ticket->t_cnt--; 2927 2928 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2929 ticket->t_curr_res); 2930 xlog_grant_sub_space(log, &log->l_write_head.grant, 2931 ticket->t_curr_res); 2932 ticket->t_curr_res = ticket->t_unit_res; 2933 xlog_tic_reset_res(ticket); 2934 2935 trace_xfs_log_regrant_reserve_sub(log, ticket); 2936 2937 /* just return if we still have some of the pre-reserved space */ 2938 if (ticket->t_cnt > 0) 2939 return; 2940 2941 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2942 ticket->t_unit_res); 2943 2944 trace_xfs_log_regrant_reserve_exit(log, ticket); 2945 2946 ticket->t_curr_res = ticket->t_unit_res; 2947 xlog_tic_reset_res(ticket); 2948 } /* xlog_regrant_reserve_log_space */ 2949 2950 2951 /* 2952 * Give back the space left from a reservation. 2953 * 2954 * All the information we need to make a correct determination of space left 2955 * is present. For non-permanent reservations, things are quite easy. The 2956 * count should have been decremented to zero. We only need to deal with the 2957 * space remaining in the current reservation part of the ticket. If the 2958 * ticket contains a permanent reservation, there may be left over space which 2959 * needs to be released. A count of N means that N-1 refills of the current 2960 * reservation can be done before we need to ask for more space. The first 2961 * one goes to fill up the first current reservation. Once we run out of 2962 * space, the count will stay at zero and the only space remaining will be 2963 * in the current reservation field. 2964 */ 2965 STATIC void 2966 xlog_ungrant_log_space( 2967 struct xlog *log, 2968 struct xlog_ticket *ticket) 2969 { 2970 int bytes; 2971 2972 if (ticket->t_cnt > 0) 2973 ticket->t_cnt--; 2974 2975 trace_xfs_log_ungrant_enter(log, ticket); 2976 trace_xfs_log_ungrant_sub(log, ticket); 2977 2978 /* 2979 * If this is a permanent reservation ticket, we may be able to free 2980 * up more space based on the remaining count. 2981 */ 2982 bytes = ticket->t_curr_res; 2983 if (ticket->t_cnt > 0) { 2984 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2985 bytes += ticket->t_unit_res*ticket->t_cnt; 2986 } 2987 2988 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 2989 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 2990 2991 trace_xfs_log_ungrant_exit(log, ticket); 2992 2993 xfs_log_space_wake(log->l_mp); 2994 } 2995 2996 /* 2997 * Flush iclog to disk if this is the last reference to the given iclog and 2998 * the WANT_SYNC bit is set. 2999 * 3000 * When this function is entered, the iclog is not necessarily in the 3001 * WANT_SYNC state. It may be sitting around waiting to get filled. 3002 * 3003 * 3004 */ 3005 STATIC int 3006 xlog_state_release_iclog( 3007 struct xlog *log, 3008 struct xlog_in_core *iclog) 3009 { 3010 int sync = 0; /* do we sync? */ 3011 3012 if (iclog->ic_state & XLOG_STATE_IOERROR) 3013 return XFS_ERROR(EIO); 3014 3015 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3016 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3017 return 0; 3018 3019 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3020 spin_unlock(&log->l_icloglock); 3021 return XFS_ERROR(EIO); 3022 } 3023 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3024 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3025 3026 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3027 /* update tail before writing to iclog */ 3028 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3029 sync++; 3030 iclog->ic_state = XLOG_STATE_SYNCING; 3031 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3032 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3033 /* cycle incremented when incrementing curr_block */ 3034 } 3035 spin_unlock(&log->l_icloglock); 3036 3037 /* 3038 * We let the log lock go, so it's possible that we hit a log I/O 3039 * error or some other SHUTDOWN condition that marks the iclog 3040 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3041 * this iclog has consistent data, so we ignore IOERROR 3042 * flags after this point. 3043 */ 3044 if (sync) 3045 return xlog_sync(log, iclog); 3046 return 0; 3047 } /* xlog_state_release_iclog */ 3048 3049 3050 /* 3051 * This routine will mark the current iclog in the ring as WANT_SYNC 3052 * and move the current iclog pointer to the next iclog in the ring. 3053 * When this routine is called from xlog_state_get_iclog_space(), the 3054 * exact size of the iclog has not yet been determined. All we know is 3055 * that every data block. We have run out of space in this log record. 3056 */ 3057 STATIC void 3058 xlog_state_switch_iclogs( 3059 struct xlog *log, 3060 struct xlog_in_core *iclog, 3061 int eventual_size) 3062 { 3063 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3064 if (!eventual_size) 3065 eventual_size = iclog->ic_offset; 3066 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3067 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3068 log->l_prev_block = log->l_curr_block; 3069 log->l_prev_cycle = log->l_curr_cycle; 3070 3071 /* roll log?: ic_offset changed later */ 3072 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3073 3074 /* Round up to next log-sunit */ 3075 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3076 log->l_mp->m_sb.sb_logsunit > 1) { 3077 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3078 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3079 } 3080 3081 if (log->l_curr_block >= log->l_logBBsize) { 3082 log->l_curr_cycle++; 3083 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3084 log->l_curr_cycle++; 3085 log->l_curr_block -= log->l_logBBsize; 3086 ASSERT(log->l_curr_block >= 0); 3087 } 3088 ASSERT(iclog == log->l_iclog); 3089 log->l_iclog = iclog->ic_next; 3090 } /* xlog_state_switch_iclogs */ 3091 3092 /* 3093 * Write out all data in the in-core log as of this exact moment in time. 3094 * 3095 * Data may be written to the in-core log during this call. However, 3096 * we don't guarantee this data will be written out. A change from past 3097 * implementation means this routine will *not* write out zero length LRs. 3098 * 3099 * Basically, we try and perform an intelligent scan of the in-core logs. 3100 * If we determine there is no flushable data, we just return. There is no 3101 * flushable data if: 3102 * 3103 * 1. the current iclog is active and has no data; the previous iclog 3104 * is in the active or dirty state. 3105 * 2. the current iclog is drity, and the previous iclog is in the 3106 * active or dirty state. 3107 * 3108 * We may sleep if: 3109 * 3110 * 1. the current iclog is not in the active nor dirty state. 3111 * 2. the current iclog dirty, and the previous iclog is not in the 3112 * active nor dirty state. 3113 * 3. the current iclog is active, and there is another thread writing 3114 * to this particular iclog. 3115 * 4. a) the current iclog is active and has no other writers 3116 * b) when we return from flushing out this iclog, it is still 3117 * not in the active nor dirty state. 3118 */ 3119 int 3120 _xfs_log_force( 3121 struct xfs_mount *mp, 3122 uint flags, 3123 int *log_flushed) 3124 { 3125 struct xlog *log = mp->m_log; 3126 struct xlog_in_core *iclog; 3127 xfs_lsn_t lsn; 3128 3129 XFS_STATS_INC(xs_log_force); 3130 3131 xlog_cil_force(log); 3132 3133 spin_lock(&log->l_icloglock); 3134 3135 iclog = log->l_iclog; 3136 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3137 spin_unlock(&log->l_icloglock); 3138 return XFS_ERROR(EIO); 3139 } 3140 3141 /* If the head iclog is not active nor dirty, we just attach 3142 * ourselves to the head and go to sleep. 3143 */ 3144 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3145 iclog->ic_state == XLOG_STATE_DIRTY) { 3146 /* 3147 * If the head is dirty or (active and empty), then 3148 * we need to look at the previous iclog. If the previous 3149 * iclog is active or dirty we are done. There is nothing 3150 * to sync out. Otherwise, we attach ourselves to the 3151 * previous iclog and go to sleep. 3152 */ 3153 if (iclog->ic_state == XLOG_STATE_DIRTY || 3154 (atomic_read(&iclog->ic_refcnt) == 0 3155 && iclog->ic_offset == 0)) { 3156 iclog = iclog->ic_prev; 3157 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3158 iclog->ic_state == XLOG_STATE_DIRTY) 3159 goto no_sleep; 3160 else 3161 goto maybe_sleep; 3162 } else { 3163 if (atomic_read(&iclog->ic_refcnt) == 0) { 3164 /* We are the only one with access to this 3165 * iclog. Flush it out now. There should 3166 * be a roundoff of zero to show that someone 3167 * has already taken care of the roundoff from 3168 * the previous sync. 3169 */ 3170 atomic_inc(&iclog->ic_refcnt); 3171 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3172 xlog_state_switch_iclogs(log, iclog, 0); 3173 spin_unlock(&log->l_icloglock); 3174 3175 if (xlog_state_release_iclog(log, iclog)) 3176 return XFS_ERROR(EIO); 3177 3178 if (log_flushed) 3179 *log_flushed = 1; 3180 spin_lock(&log->l_icloglock); 3181 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3182 iclog->ic_state != XLOG_STATE_DIRTY) 3183 goto maybe_sleep; 3184 else 3185 goto no_sleep; 3186 } else { 3187 /* Someone else is writing to this iclog. 3188 * Use its call to flush out the data. However, 3189 * the other thread may not force out this LR, 3190 * so we mark it WANT_SYNC. 3191 */ 3192 xlog_state_switch_iclogs(log, iclog, 0); 3193 goto maybe_sleep; 3194 } 3195 } 3196 } 3197 3198 /* By the time we come around again, the iclog could've been filled 3199 * which would give it another lsn. If we have a new lsn, just 3200 * return because the relevant data has been flushed. 3201 */ 3202 maybe_sleep: 3203 if (flags & XFS_LOG_SYNC) { 3204 /* 3205 * We must check if we're shutting down here, before 3206 * we wait, while we're holding the l_icloglock. 3207 * Then we check again after waking up, in case our 3208 * sleep was disturbed by a bad news. 3209 */ 3210 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3211 spin_unlock(&log->l_icloglock); 3212 return XFS_ERROR(EIO); 3213 } 3214 XFS_STATS_INC(xs_log_force_sleep); 3215 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3216 /* 3217 * No need to grab the log lock here since we're 3218 * only deciding whether or not to return EIO 3219 * and the memory read should be atomic. 3220 */ 3221 if (iclog->ic_state & XLOG_STATE_IOERROR) 3222 return XFS_ERROR(EIO); 3223 if (log_flushed) 3224 *log_flushed = 1; 3225 } else { 3226 3227 no_sleep: 3228 spin_unlock(&log->l_icloglock); 3229 } 3230 return 0; 3231 } 3232 3233 /* 3234 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3235 * about errors or whether the log was flushed or not. This is the normal 3236 * interface to use when trying to unpin items or move the log forward. 3237 */ 3238 void 3239 xfs_log_force( 3240 xfs_mount_t *mp, 3241 uint flags) 3242 { 3243 int error; 3244 3245 trace_xfs_log_force(mp, 0); 3246 error = _xfs_log_force(mp, flags, NULL); 3247 if (error) 3248 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3249 } 3250 3251 /* 3252 * Force the in-core log to disk for a specific LSN. 3253 * 3254 * Find in-core log with lsn. 3255 * If it is in the DIRTY state, just return. 3256 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3257 * state and go to sleep or return. 3258 * If it is in any other state, go to sleep or return. 3259 * 3260 * Synchronous forces are implemented with a signal variable. All callers 3261 * to force a given lsn to disk will wait on a the sv attached to the 3262 * specific in-core log. When given in-core log finally completes its 3263 * write to disk, that thread will wake up all threads waiting on the 3264 * sv. 3265 */ 3266 int 3267 _xfs_log_force_lsn( 3268 struct xfs_mount *mp, 3269 xfs_lsn_t lsn, 3270 uint flags, 3271 int *log_flushed) 3272 { 3273 struct xlog *log = mp->m_log; 3274 struct xlog_in_core *iclog; 3275 int already_slept = 0; 3276 3277 ASSERT(lsn != 0); 3278 3279 XFS_STATS_INC(xs_log_force); 3280 3281 lsn = xlog_cil_force_lsn(log, lsn); 3282 if (lsn == NULLCOMMITLSN) 3283 return 0; 3284 3285 try_again: 3286 spin_lock(&log->l_icloglock); 3287 iclog = log->l_iclog; 3288 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3289 spin_unlock(&log->l_icloglock); 3290 return XFS_ERROR(EIO); 3291 } 3292 3293 do { 3294 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3295 iclog = iclog->ic_next; 3296 continue; 3297 } 3298 3299 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3300 spin_unlock(&log->l_icloglock); 3301 return 0; 3302 } 3303 3304 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3305 /* 3306 * We sleep here if we haven't already slept (e.g. 3307 * this is the first time we've looked at the correct 3308 * iclog buf) and the buffer before us is going to 3309 * be sync'ed. The reason for this is that if we 3310 * are doing sync transactions here, by waiting for 3311 * the previous I/O to complete, we can allow a few 3312 * more transactions into this iclog before we close 3313 * it down. 3314 * 3315 * Otherwise, we mark the buffer WANT_SYNC, and bump 3316 * up the refcnt so we can release the log (which 3317 * drops the ref count). The state switch keeps new 3318 * transaction commits from using this buffer. When 3319 * the current commits finish writing into the buffer, 3320 * the refcount will drop to zero and the buffer will 3321 * go out then. 3322 */ 3323 if (!already_slept && 3324 (iclog->ic_prev->ic_state & 3325 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3326 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3327 3328 XFS_STATS_INC(xs_log_force_sleep); 3329 3330 xlog_wait(&iclog->ic_prev->ic_write_wait, 3331 &log->l_icloglock); 3332 if (log_flushed) 3333 *log_flushed = 1; 3334 already_slept = 1; 3335 goto try_again; 3336 } 3337 atomic_inc(&iclog->ic_refcnt); 3338 xlog_state_switch_iclogs(log, iclog, 0); 3339 spin_unlock(&log->l_icloglock); 3340 if (xlog_state_release_iclog(log, iclog)) 3341 return XFS_ERROR(EIO); 3342 if (log_flushed) 3343 *log_flushed = 1; 3344 spin_lock(&log->l_icloglock); 3345 } 3346 3347 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3348 !(iclog->ic_state & 3349 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3350 /* 3351 * Don't wait on completion if we know that we've 3352 * gotten a log write error. 3353 */ 3354 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3355 spin_unlock(&log->l_icloglock); 3356 return XFS_ERROR(EIO); 3357 } 3358 XFS_STATS_INC(xs_log_force_sleep); 3359 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3360 /* 3361 * No need to grab the log lock here since we're 3362 * only deciding whether or not to return EIO 3363 * and the memory read should be atomic. 3364 */ 3365 if (iclog->ic_state & XLOG_STATE_IOERROR) 3366 return XFS_ERROR(EIO); 3367 3368 if (log_flushed) 3369 *log_flushed = 1; 3370 } else { /* just return */ 3371 spin_unlock(&log->l_icloglock); 3372 } 3373 3374 return 0; 3375 } while (iclog != log->l_iclog); 3376 3377 spin_unlock(&log->l_icloglock); 3378 return 0; 3379 } 3380 3381 /* 3382 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3383 * about errors or whether the log was flushed or not. This is the normal 3384 * interface to use when trying to unpin items or move the log forward. 3385 */ 3386 void 3387 xfs_log_force_lsn( 3388 xfs_mount_t *mp, 3389 xfs_lsn_t lsn, 3390 uint flags) 3391 { 3392 int error; 3393 3394 trace_xfs_log_force(mp, lsn); 3395 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3396 if (error) 3397 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3398 } 3399 3400 /* 3401 * Called when we want to mark the current iclog as being ready to sync to 3402 * disk. 3403 */ 3404 STATIC void 3405 xlog_state_want_sync( 3406 struct xlog *log, 3407 struct xlog_in_core *iclog) 3408 { 3409 assert_spin_locked(&log->l_icloglock); 3410 3411 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3412 xlog_state_switch_iclogs(log, iclog, 0); 3413 } else { 3414 ASSERT(iclog->ic_state & 3415 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3416 } 3417 } 3418 3419 3420 /***************************************************************************** 3421 * 3422 * TICKET functions 3423 * 3424 ***************************************************************************** 3425 */ 3426 3427 /* 3428 * Free a used ticket when its refcount falls to zero. 3429 */ 3430 void 3431 xfs_log_ticket_put( 3432 xlog_ticket_t *ticket) 3433 { 3434 ASSERT(atomic_read(&ticket->t_ref) > 0); 3435 if (atomic_dec_and_test(&ticket->t_ref)) 3436 kmem_zone_free(xfs_log_ticket_zone, ticket); 3437 } 3438 3439 xlog_ticket_t * 3440 xfs_log_ticket_get( 3441 xlog_ticket_t *ticket) 3442 { 3443 ASSERT(atomic_read(&ticket->t_ref) > 0); 3444 atomic_inc(&ticket->t_ref); 3445 return ticket; 3446 } 3447 3448 /* 3449 * Figure out the total log space unit (in bytes) that would be 3450 * required for a log ticket. 3451 */ 3452 int 3453 xfs_log_calc_unit_res( 3454 struct xfs_mount *mp, 3455 int unit_bytes) 3456 { 3457 struct xlog *log = mp->m_log; 3458 int iclog_space; 3459 uint num_headers; 3460 3461 /* 3462 * Permanent reservations have up to 'cnt'-1 active log operations 3463 * in the log. A unit in this case is the amount of space for one 3464 * of these log operations. Normal reservations have a cnt of 1 3465 * and their unit amount is the total amount of space required. 3466 * 3467 * The following lines of code account for non-transaction data 3468 * which occupy space in the on-disk log. 3469 * 3470 * Normal form of a transaction is: 3471 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3472 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3473 * 3474 * We need to account for all the leadup data and trailer data 3475 * around the transaction data. 3476 * And then we need to account for the worst case in terms of using 3477 * more space. 3478 * The worst case will happen if: 3479 * - the placement of the transaction happens to be such that the 3480 * roundoff is at its maximum 3481 * - the transaction data is synced before the commit record is synced 3482 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3483 * Therefore the commit record is in its own Log Record. 3484 * This can happen as the commit record is called with its 3485 * own region to xlog_write(). 3486 * This then means that in the worst case, roundoff can happen for 3487 * the commit-rec as well. 3488 * The commit-rec is smaller than padding in this scenario and so it is 3489 * not added separately. 3490 */ 3491 3492 /* for trans header */ 3493 unit_bytes += sizeof(xlog_op_header_t); 3494 unit_bytes += sizeof(xfs_trans_header_t); 3495 3496 /* for start-rec */ 3497 unit_bytes += sizeof(xlog_op_header_t); 3498 3499 /* 3500 * for LR headers - the space for data in an iclog is the size minus 3501 * the space used for the headers. If we use the iclog size, then we 3502 * undercalculate the number of headers required. 3503 * 3504 * Furthermore - the addition of op headers for split-recs might 3505 * increase the space required enough to require more log and op 3506 * headers, so take that into account too. 3507 * 3508 * IMPORTANT: This reservation makes the assumption that if this 3509 * transaction is the first in an iclog and hence has the LR headers 3510 * accounted to it, then the remaining space in the iclog is 3511 * exclusively for this transaction. i.e. if the transaction is larger 3512 * than the iclog, it will be the only thing in that iclog. 3513 * Fundamentally, this means we must pass the entire log vector to 3514 * xlog_write to guarantee this. 3515 */ 3516 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3517 num_headers = howmany(unit_bytes, iclog_space); 3518 3519 /* for split-recs - ophdrs added when data split over LRs */ 3520 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3521 3522 /* add extra header reservations if we overrun */ 3523 while (!num_headers || 3524 howmany(unit_bytes, iclog_space) > num_headers) { 3525 unit_bytes += sizeof(xlog_op_header_t); 3526 num_headers++; 3527 } 3528 unit_bytes += log->l_iclog_hsize * num_headers; 3529 3530 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3531 unit_bytes += log->l_iclog_hsize; 3532 3533 /* for roundoff padding for transaction data and one for commit record */ 3534 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3535 /* log su roundoff */ 3536 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3537 } else { 3538 /* BB roundoff */ 3539 unit_bytes += 2 * BBSIZE; 3540 } 3541 3542 return unit_bytes; 3543 } 3544 3545 /* 3546 * Allocate and initialise a new log ticket. 3547 */ 3548 struct xlog_ticket * 3549 xlog_ticket_alloc( 3550 struct xlog *log, 3551 int unit_bytes, 3552 int cnt, 3553 char client, 3554 bool permanent, 3555 xfs_km_flags_t alloc_flags) 3556 { 3557 struct xlog_ticket *tic; 3558 int unit_res; 3559 3560 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3561 if (!tic) 3562 return NULL; 3563 3564 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3565 3566 atomic_set(&tic->t_ref, 1); 3567 tic->t_task = current; 3568 INIT_LIST_HEAD(&tic->t_queue); 3569 tic->t_unit_res = unit_res; 3570 tic->t_curr_res = unit_res; 3571 tic->t_cnt = cnt; 3572 tic->t_ocnt = cnt; 3573 tic->t_tid = prandom_u32(); 3574 tic->t_clientid = client; 3575 tic->t_flags = XLOG_TIC_INITED; 3576 tic->t_trans_type = 0; 3577 if (permanent) 3578 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3579 3580 xlog_tic_reset_res(tic); 3581 3582 return tic; 3583 } 3584 3585 3586 /****************************************************************************** 3587 * 3588 * Log debug routines 3589 * 3590 ****************************************************************************** 3591 */ 3592 #if defined(DEBUG) 3593 /* 3594 * Make sure that the destination ptr is within the valid data region of 3595 * one of the iclogs. This uses backup pointers stored in a different 3596 * part of the log in case we trash the log structure. 3597 */ 3598 void 3599 xlog_verify_dest_ptr( 3600 struct xlog *log, 3601 char *ptr) 3602 { 3603 int i; 3604 int good_ptr = 0; 3605 3606 for (i = 0; i < log->l_iclog_bufs; i++) { 3607 if (ptr >= log->l_iclog_bak[i] && 3608 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3609 good_ptr++; 3610 } 3611 3612 if (!good_ptr) 3613 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3614 } 3615 3616 /* 3617 * Check to make sure the grant write head didn't just over lap the tail. If 3618 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3619 * the cycles differ by exactly one and check the byte count. 3620 * 3621 * This check is run unlocked, so can give false positives. Rather than assert 3622 * on failures, use a warn-once flag and a panic tag to allow the admin to 3623 * determine if they want to panic the machine when such an error occurs. For 3624 * debug kernels this will have the same effect as using an assert but, unlinke 3625 * an assert, it can be turned off at runtime. 3626 */ 3627 STATIC void 3628 xlog_verify_grant_tail( 3629 struct xlog *log) 3630 { 3631 int tail_cycle, tail_blocks; 3632 int cycle, space; 3633 3634 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3635 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3636 if (tail_cycle != cycle) { 3637 if (cycle - 1 != tail_cycle && 3638 !(log->l_flags & XLOG_TAIL_WARN)) { 3639 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3640 "%s: cycle - 1 != tail_cycle", __func__); 3641 log->l_flags |= XLOG_TAIL_WARN; 3642 } 3643 3644 if (space > BBTOB(tail_blocks) && 3645 !(log->l_flags & XLOG_TAIL_WARN)) { 3646 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3647 "%s: space > BBTOB(tail_blocks)", __func__); 3648 log->l_flags |= XLOG_TAIL_WARN; 3649 } 3650 } 3651 } 3652 3653 /* check if it will fit */ 3654 STATIC void 3655 xlog_verify_tail_lsn( 3656 struct xlog *log, 3657 struct xlog_in_core *iclog, 3658 xfs_lsn_t tail_lsn) 3659 { 3660 int blocks; 3661 3662 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3663 blocks = 3664 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3665 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3666 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3667 } else { 3668 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3669 3670 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3671 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3672 3673 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3674 if (blocks < BTOBB(iclog->ic_offset) + 1) 3675 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3676 } 3677 } /* xlog_verify_tail_lsn */ 3678 3679 /* 3680 * Perform a number of checks on the iclog before writing to disk. 3681 * 3682 * 1. Make sure the iclogs are still circular 3683 * 2. Make sure we have a good magic number 3684 * 3. Make sure we don't have magic numbers in the data 3685 * 4. Check fields of each log operation header for: 3686 * A. Valid client identifier 3687 * B. tid ptr value falls in valid ptr space (user space code) 3688 * C. Length in log record header is correct according to the 3689 * individual operation headers within record. 3690 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3691 * log, check the preceding blocks of the physical log to make sure all 3692 * the cycle numbers agree with the current cycle number. 3693 */ 3694 STATIC void 3695 xlog_verify_iclog( 3696 struct xlog *log, 3697 struct xlog_in_core *iclog, 3698 int count, 3699 bool syncing) 3700 { 3701 xlog_op_header_t *ophead; 3702 xlog_in_core_t *icptr; 3703 xlog_in_core_2_t *xhdr; 3704 xfs_caddr_t ptr; 3705 xfs_caddr_t base_ptr; 3706 __psint_t field_offset; 3707 __uint8_t clientid; 3708 int len, i, j, k, op_len; 3709 int idx; 3710 3711 /* check validity of iclog pointers */ 3712 spin_lock(&log->l_icloglock); 3713 icptr = log->l_iclog; 3714 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3715 ASSERT(icptr); 3716 3717 if (icptr != log->l_iclog) 3718 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3719 spin_unlock(&log->l_icloglock); 3720 3721 /* check log magic numbers */ 3722 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3723 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3724 3725 ptr = (xfs_caddr_t) &iclog->ic_header; 3726 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3727 ptr += BBSIZE) { 3728 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3729 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3730 __func__); 3731 } 3732 3733 /* check fields */ 3734 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3735 ptr = iclog->ic_datap; 3736 base_ptr = ptr; 3737 ophead = (xlog_op_header_t *)ptr; 3738 xhdr = iclog->ic_data; 3739 for (i = 0; i < len; i++) { 3740 ophead = (xlog_op_header_t *)ptr; 3741 3742 /* clientid is only 1 byte */ 3743 field_offset = (__psint_t) 3744 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3745 if (!syncing || (field_offset & 0x1ff)) { 3746 clientid = ophead->oh_clientid; 3747 } else { 3748 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3749 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3750 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3751 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3752 clientid = xlog_get_client_id( 3753 xhdr[j].hic_xheader.xh_cycle_data[k]); 3754 } else { 3755 clientid = xlog_get_client_id( 3756 iclog->ic_header.h_cycle_data[idx]); 3757 } 3758 } 3759 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3760 xfs_warn(log->l_mp, 3761 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3762 __func__, clientid, ophead, 3763 (unsigned long)field_offset); 3764 3765 /* check length */ 3766 field_offset = (__psint_t) 3767 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3768 if (!syncing || (field_offset & 0x1ff)) { 3769 op_len = be32_to_cpu(ophead->oh_len); 3770 } else { 3771 idx = BTOBBT((__psint_t)&ophead->oh_len - 3772 (__psint_t)iclog->ic_datap); 3773 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3774 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3775 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3776 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3777 } else { 3778 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3779 } 3780 } 3781 ptr += sizeof(xlog_op_header_t) + op_len; 3782 } 3783 } /* xlog_verify_iclog */ 3784 #endif 3785 3786 /* 3787 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3788 */ 3789 STATIC int 3790 xlog_state_ioerror( 3791 struct xlog *log) 3792 { 3793 xlog_in_core_t *iclog, *ic; 3794 3795 iclog = log->l_iclog; 3796 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3797 /* 3798 * Mark all the incore logs IOERROR. 3799 * From now on, no log flushes will result. 3800 */ 3801 ic = iclog; 3802 do { 3803 ic->ic_state = XLOG_STATE_IOERROR; 3804 ic = ic->ic_next; 3805 } while (ic != iclog); 3806 return 0; 3807 } 3808 /* 3809 * Return non-zero, if state transition has already happened. 3810 */ 3811 return 1; 3812 } 3813 3814 /* 3815 * This is called from xfs_force_shutdown, when we're forcibly 3816 * shutting down the filesystem, typically because of an IO error. 3817 * Our main objectives here are to make sure that: 3818 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3819 * parties to find out, 'atomically'. 3820 * b. those who're sleeping on log reservations, pinned objects and 3821 * other resources get woken up, and be told the bad news. 3822 * c. nothing new gets queued up after (a) and (b) are done. 3823 * d. if !logerror, flush the iclogs to disk, then seal them off 3824 * for business. 3825 * 3826 * Note: for delayed logging the !logerror case needs to flush the regions 3827 * held in memory out to the iclogs before flushing them to disk. This needs 3828 * to be done before the log is marked as shutdown, otherwise the flush to the 3829 * iclogs will fail. 3830 */ 3831 int 3832 xfs_log_force_umount( 3833 struct xfs_mount *mp, 3834 int logerror) 3835 { 3836 struct xlog *log; 3837 int retval; 3838 3839 log = mp->m_log; 3840 3841 /* 3842 * If this happens during log recovery, don't worry about 3843 * locking; the log isn't open for business yet. 3844 */ 3845 if (!log || 3846 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3847 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3848 if (mp->m_sb_bp) 3849 XFS_BUF_DONE(mp->m_sb_bp); 3850 return 0; 3851 } 3852 3853 /* 3854 * Somebody could've already done the hard work for us. 3855 * No need to get locks for this. 3856 */ 3857 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3858 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3859 return 1; 3860 } 3861 retval = 0; 3862 3863 /* 3864 * Flush the in memory commit item list before marking the log as 3865 * being shut down. We need to do it in this order to ensure all the 3866 * completed transactions are flushed to disk with the xfs_log_force() 3867 * call below. 3868 */ 3869 if (!logerror) 3870 xlog_cil_force(log); 3871 3872 /* 3873 * mark the filesystem and the as in a shutdown state and wake 3874 * everybody up to tell them the bad news. 3875 */ 3876 spin_lock(&log->l_icloglock); 3877 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3878 if (mp->m_sb_bp) 3879 XFS_BUF_DONE(mp->m_sb_bp); 3880 3881 /* 3882 * This flag is sort of redundant because of the mount flag, but 3883 * it's good to maintain the separation between the log and the rest 3884 * of XFS. 3885 */ 3886 log->l_flags |= XLOG_IO_ERROR; 3887 3888 /* 3889 * If we hit a log error, we want to mark all the iclogs IOERROR 3890 * while we're still holding the loglock. 3891 */ 3892 if (logerror) 3893 retval = xlog_state_ioerror(log); 3894 spin_unlock(&log->l_icloglock); 3895 3896 /* 3897 * We don't want anybody waiting for log reservations after this. That 3898 * means we have to wake up everybody queued up on reserveq as well as 3899 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3900 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3901 * action is protected by the grant locks. 3902 */ 3903 xlog_grant_head_wake_all(&log->l_reserve_head); 3904 xlog_grant_head_wake_all(&log->l_write_head); 3905 3906 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3907 ASSERT(!logerror); 3908 /* 3909 * Force the incore logs to disk before shutting the 3910 * log down completely. 3911 */ 3912 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3913 3914 spin_lock(&log->l_icloglock); 3915 retval = xlog_state_ioerror(log); 3916 spin_unlock(&log->l_icloglock); 3917 } 3918 /* 3919 * Wake up everybody waiting on xfs_log_force. 3920 * Callback all log item committed functions as if the 3921 * log writes were completed. 3922 */ 3923 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3924 3925 #ifdef XFSERRORDEBUG 3926 { 3927 xlog_in_core_t *iclog; 3928 3929 spin_lock(&log->l_icloglock); 3930 iclog = log->l_iclog; 3931 do { 3932 ASSERT(iclog->ic_callback == 0); 3933 iclog = iclog->ic_next; 3934 } while (iclog != log->l_iclog); 3935 spin_unlock(&log->l_icloglock); 3936 } 3937 #endif 3938 /* return non-zero if log IOERROR transition had already happened */ 3939 return retval; 3940 } 3941 3942 STATIC int 3943 xlog_iclogs_empty( 3944 struct xlog *log) 3945 { 3946 xlog_in_core_t *iclog; 3947 3948 iclog = log->l_iclog; 3949 do { 3950 /* endianness does not matter here, zero is zero in 3951 * any language. 3952 */ 3953 if (iclog->ic_header.h_num_logops) 3954 return 0; 3955 iclog = iclog->ic_next; 3956 } while (iclog != log->l_iclog); 3957 return 1; 3958 } 3959 3960