xref: /openbmc/linux/fs/xfs/xfs_log.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*logoffsetp);
53 STATIC void
54 xlog_grant_push_ail(
55 	struct xlog		*log,
56 	int			need_bytes);
57 STATIC void
58 xlog_sync(
59 	struct xlog		*log,
60 	struct xlog_in_core	*iclog,
61 	struct xlog_ticket	*ticket);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_grant_tail(
65 	struct xlog *log);
66 STATIC void
67 xlog_verify_iclog(
68 	struct xlog		*log,
69 	struct xlog_in_core	*iclog,
70 	int			count);
71 STATIC void
72 xlog_verify_tail_lsn(
73 	struct xlog		*log,
74 	struct xlog_in_core	*iclog);
75 #else
76 #define xlog_verify_grant_tail(a)
77 #define xlog_verify_iclog(a,b,c)
78 #define xlog_verify_tail_lsn(a,b)
79 #endif
80 
81 STATIC int
82 xlog_iclogs_empty(
83 	struct xlog		*log);
84 
85 static int
86 xfs_log_cover(struct xfs_mount *);
87 
88 /*
89  * We need to make sure the buffer pointer returned is naturally aligned for the
90  * biggest basic data type we put into it. We have already accounted for this
91  * padding when sizing the buffer.
92  *
93  * However, this padding does not get written into the log, and hence we have to
94  * track the space used by the log vectors separately to prevent log space hangs
95  * due to inaccurate accounting (i.e. a leak) of the used log space through the
96  * CIL context ticket.
97  *
98  * We also add space for the xlog_op_header that describes this region in the
99  * log. This prepends the data region we return to the caller to copy their data
100  * into, so do all the static initialisation of the ophdr now. Because the ophdr
101  * is not 8 byte aligned, we have to be careful to ensure that we align the
102  * start of the buffer such that the region we return to the call is 8 byte
103  * aligned and packed against the tail of the ophdr.
104  */
105 void *
106 xlog_prepare_iovec(
107 	struct xfs_log_vec	*lv,
108 	struct xfs_log_iovec	**vecp,
109 	uint			type)
110 {
111 	struct xfs_log_iovec	*vec = *vecp;
112 	struct xlog_op_header	*oph;
113 	uint32_t		len;
114 	void			*buf;
115 
116 	if (vec) {
117 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
118 		vec++;
119 	} else {
120 		vec = &lv->lv_iovecp[0];
121 	}
122 
123 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
124 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
125 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
126 					sizeof(struct xlog_op_header);
127 	}
128 
129 	vec->i_type = type;
130 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
131 
132 	oph = vec->i_addr;
133 	oph->oh_clientid = XFS_TRANSACTION;
134 	oph->oh_res2 = 0;
135 	oph->oh_flags = 0;
136 
137 	buf = vec->i_addr + sizeof(struct xlog_op_header);
138 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
139 
140 	*vecp = vec;
141 	return buf;
142 }
143 
144 static void
145 xlog_grant_sub_space(
146 	struct xlog		*log,
147 	atomic64_t		*head,
148 	int			bytes)
149 {
150 	int64_t	head_val = atomic64_read(head);
151 	int64_t new, old;
152 
153 	do {
154 		int	cycle, space;
155 
156 		xlog_crack_grant_head_val(head_val, &cycle, &space);
157 
158 		space -= bytes;
159 		if (space < 0) {
160 			space += log->l_logsize;
161 			cycle--;
162 		}
163 
164 		old = head_val;
165 		new = xlog_assign_grant_head_val(cycle, space);
166 		head_val = atomic64_cmpxchg(head, old, new);
167 	} while (head_val != old);
168 }
169 
170 static void
171 xlog_grant_add_space(
172 	struct xlog		*log,
173 	atomic64_t		*head,
174 	int			bytes)
175 {
176 	int64_t	head_val = atomic64_read(head);
177 	int64_t new, old;
178 
179 	do {
180 		int		tmp;
181 		int		cycle, space;
182 
183 		xlog_crack_grant_head_val(head_val, &cycle, &space);
184 
185 		tmp = log->l_logsize - space;
186 		if (tmp > bytes)
187 			space += bytes;
188 		else {
189 			space = bytes - tmp;
190 			cycle++;
191 		}
192 
193 		old = head_val;
194 		new = xlog_assign_grant_head_val(cycle, space);
195 		head_val = atomic64_cmpxchg(head, old, new);
196 	} while (head_val != old);
197 }
198 
199 STATIC void
200 xlog_grant_head_init(
201 	struct xlog_grant_head	*head)
202 {
203 	xlog_assign_grant_head(&head->grant, 1, 0);
204 	INIT_LIST_HEAD(&head->waiters);
205 	spin_lock_init(&head->lock);
206 }
207 
208 STATIC void
209 xlog_grant_head_wake_all(
210 	struct xlog_grant_head	*head)
211 {
212 	struct xlog_ticket	*tic;
213 
214 	spin_lock(&head->lock);
215 	list_for_each_entry(tic, &head->waiters, t_queue)
216 		wake_up_process(tic->t_task);
217 	spin_unlock(&head->lock);
218 }
219 
220 static inline int
221 xlog_ticket_reservation(
222 	struct xlog		*log,
223 	struct xlog_grant_head	*head,
224 	struct xlog_ticket	*tic)
225 {
226 	if (head == &log->l_write_head) {
227 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
228 		return tic->t_unit_res;
229 	}
230 
231 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
232 		return tic->t_unit_res * tic->t_cnt;
233 
234 	return tic->t_unit_res;
235 }
236 
237 STATIC bool
238 xlog_grant_head_wake(
239 	struct xlog		*log,
240 	struct xlog_grant_head	*head,
241 	int			*free_bytes)
242 {
243 	struct xlog_ticket	*tic;
244 	int			need_bytes;
245 	bool			woken_task = false;
246 
247 	list_for_each_entry(tic, &head->waiters, t_queue) {
248 
249 		/*
250 		 * There is a chance that the size of the CIL checkpoints in
251 		 * progress at the last AIL push target calculation resulted in
252 		 * limiting the target to the log head (l_last_sync_lsn) at the
253 		 * time. This may not reflect where the log head is now as the
254 		 * CIL checkpoints may have completed.
255 		 *
256 		 * Hence when we are woken here, it may be that the head of the
257 		 * log that has moved rather than the tail. As the tail didn't
258 		 * move, there still won't be space available for the
259 		 * reservation we require.  However, if the AIL has already
260 		 * pushed to the target defined by the old log head location, we
261 		 * will hang here waiting for something else to update the AIL
262 		 * push target.
263 		 *
264 		 * Therefore, if there isn't space to wake the first waiter on
265 		 * the grant head, we need to push the AIL again to ensure the
266 		 * target reflects both the current log tail and log head
267 		 * position before we wait for the tail to move again.
268 		 */
269 
270 		need_bytes = xlog_ticket_reservation(log, head, tic);
271 		if (*free_bytes < need_bytes) {
272 			if (!woken_task)
273 				xlog_grant_push_ail(log, need_bytes);
274 			return false;
275 		}
276 
277 		*free_bytes -= need_bytes;
278 		trace_xfs_log_grant_wake_up(log, tic);
279 		wake_up_process(tic->t_task);
280 		woken_task = true;
281 	}
282 
283 	return true;
284 }
285 
286 STATIC int
287 xlog_grant_head_wait(
288 	struct xlog		*log,
289 	struct xlog_grant_head	*head,
290 	struct xlog_ticket	*tic,
291 	int			need_bytes) __releases(&head->lock)
292 					    __acquires(&head->lock)
293 {
294 	list_add_tail(&tic->t_queue, &head->waiters);
295 
296 	do {
297 		if (xlog_is_shutdown(log))
298 			goto shutdown;
299 		xlog_grant_push_ail(log, need_bytes);
300 
301 		__set_current_state(TASK_UNINTERRUPTIBLE);
302 		spin_unlock(&head->lock);
303 
304 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
305 
306 		trace_xfs_log_grant_sleep(log, tic);
307 		schedule();
308 		trace_xfs_log_grant_wake(log, tic);
309 
310 		spin_lock(&head->lock);
311 		if (xlog_is_shutdown(log))
312 			goto shutdown;
313 	} while (xlog_space_left(log, &head->grant) < need_bytes);
314 
315 	list_del_init(&tic->t_queue);
316 	return 0;
317 shutdown:
318 	list_del_init(&tic->t_queue);
319 	return -EIO;
320 }
321 
322 /*
323  * Atomically get the log space required for a log ticket.
324  *
325  * Once a ticket gets put onto head->waiters, it will only return after the
326  * needed reservation is satisfied.
327  *
328  * This function is structured so that it has a lock free fast path. This is
329  * necessary because every new transaction reservation will come through this
330  * path. Hence any lock will be globally hot if we take it unconditionally on
331  * every pass.
332  *
333  * As tickets are only ever moved on and off head->waiters under head->lock, we
334  * only need to take that lock if we are going to add the ticket to the queue
335  * and sleep. We can avoid taking the lock if the ticket was never added to
336  * head->waiters because the t_queue list head will be empty and we hold the
337  * only reference to it so it can safely be checked unlocked.
338  */
339 STATIC int
340 xlog_grant_head_check(
341 	struct xlog		*log,
342 	struct xlog_grant_head	*head,
343 	struct xlog_ticket	*tic,
344 	int			*need_bytes)
345 {
346 	int			free_bytes;
347 	int			error = 0;
348 
349 	ASSERT(!xlog_in_recovery(log));
350 
351 	/*
352 	 * If there are other waiters on the queue then give them a chance at
353 	 * logspace before us.  Wake up the first waiters, if we do not wake
354 	 * up all the waiters then go to sleep waiting for more free space,
355 	 * otherwise try to get some space for this transaction.
356 	 */
357 	*need_bytes = xlog_ticket_reservation(log, head, tic);
358 	free_bytes = xlog_space_left(log, &head->grant);
359 	if (!list_empty_careful(&head->waiters)) {
360 		spin_lock(&head->lock);
361 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
362 		    free_bytes < *need_bytes) {
363 			error = xlog_grant_head_wait(log, head, tic,
364 						     *need_bytes);
365 		}
366 		spin_unlock(&head->lock);
367 	} else if (free_bytes < *need_bytes) {
368 		spin_lock(&head->lock);
369 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
370 		spin_unlock(&head->lock);
371 	}
372 
373 	return error;
374 }
375 
376 bool
377 xfs_log_writable(
378 	struct xfs_mount	*mp)
379 {
380 	/*
381 	 * Do not write to the log on norecovery mounts, if the data or log
382 	 * devices are read-only, or if the filesystem is shutdown. Read-only
383 	 * mounts allow internal writes for log recovery and unmount purposes,
384 	 * so don't restrict that case.
385 	 */
386 	if (xfs_has_norecovery(mp))
387 		return false;
388 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
389 		return false;
390 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
391 		return false;
392 	if (xlog_is_shutdown(mp->m_log))
393 		return false;
394 	return true;
395 }
396 
397 /*
398  * Replenish the byte reservation required by moving the grant write head.
399  */
400 int
401 xfs_log_regrant(
402 	struct xfs_mount	*mp,
403 	struct xlog_ticket	*tic)
404 {
405 	struct xlog		*log = mp->m_log;
406 	int			need_bytes;
407 	int			error = 0;
408 
409 	if (xlog_is_shutdown(log))
410 		return -EIO;
411 
412 	XFS_STATS_INC(mp, xs_try_logspace);
413 
414 	/*
415 	 * This is a new transaction on the ticket, so we need to change the
416 	 * transaction ID so that the next transaction has a different TID in
417 	 * the log. Just add one to the existing tid so that we can see chains
418 	 * of rolling transactions in the log easily.
419 	 */
420 	tic->t_tid++;
421 
422 	xlog_grant_push_ail(log, tic->t_unit_res);
423 
424 	tic->t_curr_res = tic->t_unit_res;
425 	if (tic->t_cnt > 0)
426 		return 0;
427 
428 	trace_xfs_log_regrant(log, tic);
429 
430 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
431 				      &need_bytes);
432 	if (error)
433 		goto out_error;
434 
435 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
436 	trace_xfs_log_regrant_exit(log, tic);
437 	xlog_verify_grant_tail(log);
438 	return 0;
439 
440 out_error:
441 	/*
442 	 * If we are failing, make sure the ticket doesn't have any current
443 	 * reservations.  We don't want to add this back when the ticket/
444 	 * transaction gets cancelled.
445 	 */
446 	tic->t_curr_res = 0;
447 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
448 	return error;
449 }
450 
451 /*
452  * Reserve log space and return a ticket corresponding to the reservation.
453  *
454  * Each reservation is going to reserve extra space for a log record header.
455  * When writes happen to the on-disk log, we don't subtract the length of the
456  * log record header from any reservation.  By wasting space in each
457  * reservation, we prevent over allocation problems.
458  */
459 int
460 xfs_log_reserve(
461 	struct xfs_mount	*mp,
462 	int			unit_bytes,
463 	int			cnt,
464 	struct xlog_ticket	**ticp,
465 	bool			permanent)
466 {
467 	struct xlog		*log = mp->m_log;
468 	struct xlog_ticket	*tic;
469 	int			need_bytes;
470 	int			error = 0;
471 
472 	if (xlog_is_shutdown(log))
473 		return -EIO;
474 
475 	XFS_STATS_INC(mp, xs_try_logspace);
476 
477 	ASSERT(*ticp == NULL);
478 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
479 	*ticp = tic;
480 
481 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
482 					    : tic->t_unit_res);
483 
484 	trace_xfs_log_reserve(log, tic);
485 
486 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
487 				      &need_bytes);
488 	if (error)
489 		goto out_error;
490 
491 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
492 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
493 	trace_xfs_log_reserve_exit(log, tic);
494 	xlog_verify_grant_tail(log);
495 	return 0;
496 
497 out_error:
498 	/*
499 	 * If we are failing, make sure the ticket doesn't have any current
500 	 * reservations.  We don't want to add this back when the ticket/
501 	 * transaction gets cancelled.
502 	 */
503 	tic->t_curr_res = 0;
504 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
505 	return error;
506 }
507 
508 /*
509  * Run all the pending iclog callbacks and wake log force waiters and iclog
510  * space waiters so they can process the newly set shutdown state. We really
511  * don't care what order we process callbacks here because the log is shut down
512  * and so state cannot change on disk anymore. However, we cannot wake waiters
513  * until the callbacks have been processed because we may be in unmount and
514  * we must ensure that all AIL operations the callbacks perform have completed
515  * before we tear down the AIL.
516  *
517  * We avoid processing actively referenced iclogs so that we don't run callbacks
518  * while the iclog owner might still be preparing the iclog for IO submssion.
519  * These will be caught by xlog_state_iclog_release() and call this function
520  * again to process any callbacks that may have been added to that iclog.
521  */
522 static void
523 xlog_state_shutdown_callbacks(
524 	struct xlog		*log)
525 {
526 	struct xlog_in_core	*iclog;
527 	LIST_HEAD(cb_list);
528 
529 	iclog = log->l_iclog;
530 	do {
531 		if (atomic_read(&iclog->ic_refcnt)) {
532 			/* Reference holder will re-run iclog callbacks. */
533 			continue;
534 		}
535 		list_splice_init(&iclog->ic_callbacks, &cb_list);
536 		spin_unlock(&log->l_icloglock);
537 
538 		xlog_cil_process_committed(&cb_list);
539 
540 		spin_lock(&log->l_icloglock);
541 		wake_up_all(&iclog->ic_write_wait);
542 		wake_up_all(&iclog->ic_force_wait);
543 	} while ((iclog = iclog->ic_next) != log->l_iclog);
544 
545 	wake_up_all(&log->l_flush_wait);
546 }
547 
548 /*
549  * Flush iclog to disk if this is the last reference to the given iclog and the
550  * it is in the WANT_SYNC state.
551  *
552  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
553  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
554  * written to stable storage, and implies that a commit record is contained
555  * within the iclog. We need to ensure that the log tail does not move beyond
556  * the tail that the first commit record in the iclog ordered against, otherwise
557  * correct recovery of that checkpoint becomes dependent on future operations
558  * performed on this iclog.
559  *
560  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
561  * current tail into iclog. Once the iclog tail is set, future operations must
562  * not modify it, otherwise they potentially violate ordering constraints for
563  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
564  * the iclog will get zeroed on activation of the iclog after sync, so we
565  * always capture the tail lsn on the iclog on the first NEED_FUA release
566  * regardless of the number of active reference counts on this iclog.
567  */
568 int
569 xlog_state_release_iclog(
570 	struct xlog		*log,
571 	struct xlog_in_core	*iclog,
572 	struct xlog_ticket	*ticket)
573 {
574 	xfs_lsn_t		tail_lsn;
575 	bool			last_ref;
576 
577 	lockdep_assert_held(&log->l_icloglock);
578 
579 	trace_xlog_iclog_release(iclog, _RET_IP_);
580 	/*
581 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
582 	 * of the tail LSN into the iclog so we guarantee that the log tail does
583 	 * not move between the first time we know that the iclog needs to be
584 	 * made stable and when we eventually submit it.
585 	 */
586 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
587 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
588 	    !iclog->ic_header.h_tail_lsn) {
589 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
590 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
591 	}
592 
593 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
594 
595 	if (xlog_is_shutdown(log)) {
596 		/*
597 		 * If there are no more references to this iclog, process the
598 		 * pending iclog callbacks that were waiting on the release of
599 		 * this iclog.
600 		 */
601 		if (last_ref)
602 			xlog_state_shutdown_callbacks(log);
603 		return -EIO;
604 	}
605 
606 	if (!last_ref)
607 		return 0;
608 
609 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
610 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
611 		return 0;
612 	}
613 
614 	iclog->ic_state = XLOG_STATE_SYNCING;
615 	xlog_verify_tail_lsn(log, iclog);
616 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
617 
618 	spin_unlock(&log->l_icloglock);
619 	xlog_sync(log, iclog, ticket);
620 	spin_lock(&log->l_icloglock);
621 	return 0;
622 }
623 
624 /*
625  * Mount a log filesystem
626  *
627  * mp		- ubiquitous xfs mount point structure
628  * log_target	- buftarg of on-disk log device
629  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
630  * num_bblocks	- Number of BBSIZE blocks in on-disk log
631  *
632  * Return error or zero.
633  */
634 int
635 xfs_log_mount(
636 	xfs_mount_t	*mp,
637 	xfs_buftarg_t	*log_target,
638 	xfs_daddr_t	blk_offset,
639 	int		num_bblks)
640 {
641 	struct xlog	*log;
642 	int		error = 0;
643 	int		min_logfsbs;
644 
645 	if (!xfs_has_norecovery(mp)) {
646 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
647 			   XFS_SB_VERSION_NUM(&mp->m_sb),
648 			   &mp->m_sb.sb_uuid);
649 	} else {
650 		xfs_notice(mp,
651 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
652 			   XFS_SB_VERSION_NUM(&mp->m_sb),
653 			   &mp->m_sb.sb_uuid);
654 		ASSERT(xfs_is_readonly(mp));
655 	}
656 
657 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
658 	if (IS_ERR(log)) {
659 		error = PTR_ERR(log);
660 		goto out;
661 	}
662 	mp->m_log = log;
663 
664 	/*
665 	 * Now that we have set up the log and it's internal geometry
666 	 * parameters, we can validate the given log space and drop a critical
667 	 * message via syslog if the log size is too small. A log that is too
668 	 * small can lead to unexpected situations in transaction log space
669 	 * reservation stage. The superblock verifier has already validated all
670 	 * the other log geometry constraints, so we don't have to check those
671 	 * here.
672 	 *
673 	 * Note: For v4 filesystems, we can't just reject the mount if the
674 	 * validation fails.  This would mean that people would have to
675 	 * downgrade their kernel just to remedy the situation as there is no
676 	 * way to grow the log (short of black magic surgery with xfs_db).
677 	 *
678 	 * We can, however, reject mounts for V5 format filesystems, as the
679 	 * mkfs binary being used to make the filesystem should never create a
680 	 * filesystem with a log that is too small.
681 	 */
682 	min_logfsbs = xfs_log_calc_minimum_size(mp);
683 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
684 		xfs_warn(mp,
685 		"Log size %d blocks too small, minimum size is %d blocks",
686 			 mp->m_sb.sb_logblocks, min_logfsbs);
687 
688 		/*
689 		 * Log check errors are always fatal on v5; or whenever bad
690 		 * metadata leads to a crash.
691 		 */
692 		if (xfs_has_crc(mp)) {
693 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
694 			ASSERT(0);
695 			error = -EINVAL;
696 			goto out_free_log;
697 		}
698 		xfs_crit(mp, "Log size out of supported range.");
699 		xfs_crit(mp,
700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
701 	}
702 
703 	/*
704 	 * Initialize the AIL now we have a log.
705 	 */
706 	error = xfs_trans_ail_init(mp);
707 	if (error) {
708 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
709 		goto out_free_log;
710 	}
711 	log->l_ailp = mp->m_ail;
712 
713 	/*
714 	 * skip log recovery on a norecovery mount.  pretend it all
715 	 * just worked.
716 	 */
717 	if (!xfs_has_norecovery(mp)) {
718 		/*
719 		 * log recovery ignores readonly state and so we need to clear
720 		 * mount-based read only state so it can write to disk.
721 		 */
722 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
723 						&mp->m_opstate);
724 		error = xlog_recover(log);
725 		if (readonly)
726 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
727 		if (error) {
728 			xfs_warn(mp, "log mount/recovery failed: error %d",
729 				error);
730 			xlog_recover_cancel(log);
731 			goto out_destroy_ail;
732 		}
733 	}
734 
735 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
736 			       "log");
737 	if (error)
738 		goto out_destroy_ail;
739 
740 	/* Normal transactions can now occur */
741 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
742 
743 	/*
744 	 * Now the log has been fully initialised and we know were our
745 	 * space grant counters are, we can initialise the permanent ticket
746 	 * needed for delayed logging to work.
747 	 */
748 	xlog_cil_init_post_recovery(log);
749 
750 	return 0;
751 
752 out_destroy_ail:
753 	xfs_trans_ail_destroy(mp);
754 out_free_log:
755 	xlog_dealloc_log(log);
756 out:
757 	return error;
758 }
759 
760 /*
761  * Finish the recovery of the file system.  This is separate from the
762  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
763  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
764  * here.
765  *
766  * If we finish recovery successfully, start the background log work. If we are
767  * not doing recovery, then we have a RO filesystem and we don't need to start
768  * it.
769  */
770 int
771 xfs_log_mount_finish(
772 	struct xfs_mount	*mp)
773 {
774 	struct xlog		*log = mp->m_log;
775 	bool			readonly;
776 	int			error = 0;
777 
778 	if (xfs_has_norecovery(mp)) {
779 		ASSERT(xfs_is_readonly(mp));
780 		return 0;
781 	}
782 
783 	/*
784 	 * log recovery ignores readonly state and so we need to clear
785 	 * mount-based read only state so it can write to disk.
786 	 */
787 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
788 
789 	/*
790 	 * During the second phase of log recovery, we need iget and
791 	 * iput to behave like they do for an active filesystem.
792 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
793 	 * of inodes before we're done replaying log items on those
794 	 * inodes.  Turn it off immediately after recovery finishes
795 	 * so that we don't leak the quota inodes if subsequent mount
796 	 * activities fail.
797 	 *
798 	 * We let all inodes involved in redo item processing end up on
799 	 * the LRU instead of being evicted immediately so that if we do
800 	 * something to an unlinked inode, the irele won't cause
801 	 * premature truncation and freeing of the inode, which results
802 	 * in log recovery failure.  We have to evict the unreferenced
803 	 * lru inodes after clearing SB_ACTIVE because we don't
804 	 * otherwise clean up the lru if there's a subsequent failure in
805 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
806 	 * else (e.g. quotacheck) references the inodes before the
807 	 * mount failure occurs.
808 	 */
809 	mp->m_super->s_flags |= SB_ACTIVE;
810 	xfs_log_work_queue(mp);
811 	if (xlog_recovery_needed(log))
812 		error = xlog_recover_finish(log);
813 	mp->m_super->s_flags &= ~SB_ACTIVE;
814 	evict_inodes(mp->m_super);
815 
816 	/*
817 	 * Drain the buffer LRU after log recovery. This is required for v4
818 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
819 	 * but we do it unconditionally to make sure we're always in a clean
820 	 * cache state after mount.
821 	 *
822 	 * Don't push in the error case because the AIL may have pending intents
823 	 * that aren't removed until recovery is cancelled.
824 	 */
825 	if (xlog_recovery_needed(log)) {
826 		if (!error) {
827 			xfs_log_force(mp, XFS_LOG_SYNC);
828 			xfs_ail_push_all_sync(mp->m_ail);
829 		}
830 		xfs_notice(mp, "Ending recovery (logdev: %s)",
831 				mp->m_logname ? mp->m_logname : "internal");
832 	} else {
833 		xfs_info(mp, "Ending clean mount");
834 	}
835 	xfs_buftarg_drain(mp->m_ddev_targp);
836 
837 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
838 	if (readonly)
839 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
840 
841 	/* Make sure the log is dead if we're returning failure. */
842 	ASSERT(!error || xlog_is_shutdown(log));
843 
844 	return error;
845 }
846 
847 /*
848  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
849  * the log.
850  */
851 void
852 xfs_log_mount_cancel(
853 	struct xfs_mount	*mp)
854 {
855 	xlog_recover_cancel(mp->m_log);
856 	xfs_log_unmount(mp);
857 }
858 
859 /*
860  * Flush out the iclog to disk ensuring that device caches are flushed and
861  * the iclog hits stable storage before any completion waiters are woken.
862  */
863 static inline int
864 xlog_force_iclog(
865 	struct xlog_in_core	*iclog)
866 {
867 	atomic_inc(&iclog->ic_refcnt);
868 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
869 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
870 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
871 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
872 }
873 
874 /*
875  * Cycle all the iclogbuf locks to make sure all log IO completion
876  * is done before we tear down these buffers.
877  */
878 static void
879 xlog_wait_iclog_completion(struct xlog *log)
880 {
881 	int		i;
882 	struct xlog_in_core	*iclog = log->l_iclog;
883 
884 	for (i = 0; i < log->l_iclog_bufs; i++) {
885 		down(&iclog->ic_sema);
886 		up(&iclog->ic_sema);
887 		iclog = iclog->ic_next;
888 	}
889 }
890 
891 /*
892  * Wait for the iclog and all prior iclogs to be written disk as required by the
893  * log force state machine. Waiting on ic_force_wait ensures iclog completions
894  * have been ordered and callbacks run before we are woken here, hence
895  * guaranteeing that all the iclogs up to this one are on stable storage.
896  */
897 int
898 xlog_wait_on_iclog(
899 	struct xlog_in_core	*iclog)
900 		__releases(iclog->ic_log->l_icloglock)
901 {
902 	struct xlog		*log = iclog->ic_log;
903 
904 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
905 	if (!xlog_is_shutdown(log) &&
906 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
907 	    iclog->ic_state != XLOG_STATE_DIRTY) {
908 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
909 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
910 	} else {
911 		spin_unlock(&log->l_icloglock);
912 	}
913 
914 	if (xlog_is_shutdown(log))
915 		return -EIO;
916 	return 0;
917 }
918 
919 /*
920  * Write out an unmount record using the ticket provided. We have to account for
921  * the data space used in the unmount ticket as this write is not done from a
922  * transaction context that has already done the accounting for us.
923  */
924 static int
925 xlog_write_unmount_record(
926 	struct xlog		*log,
927 	struct xlog_ticket	*ticket)
928 {
929 	struct  {
930 		struct xlog_op_header ophdr;
931 		struct xfs_unmount_log_format ulf;
932 	} unmount_rec = {
933 		.ophdr = {
934 			.oh_clientid = XFS_LOG,
935 			.oh_tid = cpu_to_be32(ticket->t_tid),
936 			.oh_flags = XLOG_UNMOUNT_TRANS,
937 		},
938 		.ulf = {
939 			.magic = XLOG_UNMOUNT_TYPE,
940 		},
941 	};
942 	struct xfs_log_iovec reg = {
943 		.i_addr = &unmount_rec,
944 		.i_len = sizeof(unmount_rec),
945 		.i_type = XLOG_REG_TYPE_UNMOUNT,
946 	};
947 	struct xfs_log_vec vec = {
948 		.lv_niovecs = 1,
949 		.lv_iovecp = &reg,
950 	};
951 	LIST_HEAD(lv_chain);
952 	list_add(&vec.lv_list, &lv_chain);
953 
954 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
955 		      sizeof(struct xfs_unmount_log_format)) !=
956 							sizeof(unmount_rec));
957 
958 	/* account for space used by record data */
959 	ticket->t_curr_res -= sizeof(unmount_rec);
960 
961 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
962 }
963 
964 /*
965  * Mark the filesystem clean by writing an unmount record to the head of the
966  * log.
967  */
968 static void
969 xlog_unmount_write(
970 	struct xlog		*log)
971 {
972 	struct xfs_mount	*mp = log->l_mp;
973 	struct xlog_in_core	*iclog;
974 	struct xlog_ticket	*tic = NULL;
975 	int			error;
976 
977 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
978 	if (error)
979 		goto out_err;
980 
981 	error = xlog_write_unmount_record(log, tic);
982 	/*
983 	 * At this point, we're umounting anyway, so there's no point in
984 	 * transitioning log state to shutdown. Just continue...
985 	 */
986 out_err:
987 	if (error)
988 		xfs_alert(mp, "%s: unmount record failed", __func__);
989 
990 	spin_lock(&log->l_icloglock);
991 	iclog = log->l_iclog;
992 	error = xlog_force_iclog(iclog);
993 	xlog_wait_on_iclog(iclog);
994 
995 	if (tic) {
996 		trace_xfs_log_umount_write(log, tic);
997 		xfs_log_ticket_ungrant(log, tic);
998 	}
999 }
1000 
1001 static void
1002 xfs_log_unmount_verify_iclog(
1003 	struct xlog		*log)
1004 {
1005 	struct xlog_in_core	*iclog = log->l_iclog;
1006 
1007 	do {
1008 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1009 		ASSERT(iclog->ic_offset == 0);
1010 	} while ((iclog = iclog->ic_next) != log->l_iclog);
1011 }
1012 
1013 /*
1014  * Unmount record used to have a string "Unmount filesystem--" in the
1015  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1016  * We just write the magic number now since that particular field isn't
1017  * currently architecture converted and "Unmount" is a bit foo.
1018  * As far as I know, there weren't any dependencies on the old behaviour.
1019  */
1020 static void
1021 xfs_log_unmount_write(
1022 	struct xfs_mount	*mp)
1023 {
1024 	struct xlog		*log = mp->m_log;
1025 
1026 	if (!xfs_log_writable(mp))
1027 		return;
1028 
1029 	xfs_log_force(mp, XFS_LOG_SYNC);
1030 
1031 	if (xlog_is_shutdown(log))
1032 		return;
1033 
1034 	/*
1035 	 * If we think the summary counters are bad, avoid writing the unmount
1036 	 * record to force log recovery at next mount, after which the summary
1037 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1038 	 * more details.
1039 	 */
1040 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1041 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1042 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1043 				__func__);
1044 		return;
1045 	}
1046 
1047 	xfs_log_unmount_verify_iclog(log);
1048 	xlog_unmount_write(log);
1049 }
1050 
1051 /*
1052  * Empty the log for unmount/freeze.
1053  *
1054  * To do this, we first need to shut down the background log work so it is not
1055  * trying to cover the log as we clean up. We then need to unpin all objects in
1056  * the log so we can then flush them out. Once they have completed their IO and
1057  * run the callbacks removing themselves from the AIL, we can cover the log.
1058  */
1059 int
1060 xfs_log_quiesce(
1061 	struct xfs_mount	*mp)
1062 {
1063 	/*
1064 	 * Clear log incompat features since we're quiescing the log.  Report
1065 	 * failures, though it's not fatal to have a higher log feature
1066 	 * protection level than the log contents actually require.
1067 	 */
1068 	if (xfs_clear_incompat_log_features(mp)) {
1069 		int error;
1070 
1071 		error = xfs_sync_sb(mp, false);
1072 		if (error)
1073 			xfs_warn(mp,
1074 	"Failed to clear log incompat features on quiesce");
1075 	}
1076 
1077 	cancel_delayed_work_sync(&mp->m_log->l_work);
1078 	xfs_log_force(mp, XFS_LOG_SYNC);
1079 
1080 	/*
1081 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1082 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1083 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1084 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1085 	 * the IO to complete.
1086 	 */
1087 	xfs_ail_push_all_sync(mp->m_ail);
1088 	xfs_buftarg_wait(mp->m_ddev_targp);
1089 	xfs_buf_lock(mp->m_sb_bp);
1090 	xfs_buf_unlock(mp->m_sb_bp);
1091 
1092 	return xfs_log_cover(mp);
1093 }
1094 
1095 void
1096 xfs_log_clean(
1097 	struct xfs_mount	*mp)
1098 {
1099 	xfs_log_quiesce(mp);
1100 	xfs_log_unmount_write(mp);
1101 }
1102 
1103 /*
1104  * Shut down and release the AIL and Log.
1105  *
1106  * During unmount, we need to ensure we flush all the dirty metadata objects
1107  * from the AIL so that the log is empty before we write the unmount record to
1108  * the log. Once this is done, we can tear down the AIL and the log.
1109  */
1110 void
1111 xfs_log_unmount(
1112 	struct xfs_mount	*mp)
1113 {
1114 	xfs_log_clean(mp);
1115 
1116 	/*
1117 	 * If shutdown has come from iclog IO context, the log
1118 	 * cleaning will have been skipped and so we need to wait
1119 	 * for the iclog to complete shutdown processing before we
1120 	 * tear anything down.
1121 	 */
1122 	xlog_wait_iclog_completion(mp->m_log);
1123 
1124 	xfs_buftarg_drain(mp->m_ddev_targp);
1125 
1126 	xfs_trans_ail_destroy(mp);
1127 
1128 	xfs_sysfs_del(&mp->m_log->l_kobj);
1129 
1130 	xlog_dealloc_log(mp->m_log);
1131 }
1132 
1133 void
1134 xfs_log_item_init(
1135 	struct xfs_mount	*mp,
1136 	struct xfs_log_item	*item,
1137 	int			type,
1138 	const struct xfs_item_ops *ops)
1139 {
1140 	item->li_log = mp->m_log;
1141 	item->li_ailp = mp->m_ail;
1142 	item->li_type = type;
1143 	item->li_ops = ops;
1144 	item->li_lv = NULL;
1145 
1146 	INIT_LIST_HEAD(&item->li_ail);
1147 	INIT_LIST_HEAD(&item->li_cil);
1148 	INIT_LIST_HEAD(&item->li_bio_list);
1149 	INIT_LIST_HEAD(&item->li_trans);
1150 }
1151 
1152 /*
1153  * Wake up processes waiting for log space after we have moved the log tail.
1154  */
1155 void
1156 xfs_log_space_wake(
1157 	struct xfs_mount	*mp)
1158 {
1159 	struct xlog		*log = mp->m_log;
1160 	int			free_bytes;
1161 
1162 	if (xlog_is_shutdown(log))
1163 		return;
1164 
1165 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1166 		ASSERT(!xlog_in_recovery(log));
1167 
1168 		spin_lock(&log->l_write_head.lock);
1169 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1170 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1171 		spin_unlock(&log->l_write_head.lock);
1172 	}
1173 
1174 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1175 		ASSERT(!xlog_in_recovery(log));
1176 
1177 		spin_lock(&log->l_reserve_head.lock);
1178 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1179 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1180 		spin_unlock(&log->l_reserve_head.lock);
1181 	}
1182 }
1183 
1184 /*
1185  * Determine if we have a transaction that has gone to disk that needs to be
1186  * covered. To begin the transition to the idle state firstly the log needs to
1187  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1188  * we start attempting to cover the log.
1189  *
1190  * Only if we are then in a state where covering is needed, the caller is
1191  * informed that dummy transactions are required to move the log into the idle
1192  * state.
1193  *
1194  * If there are any items in the AIl or CIL, then we do not want to attempt to
1195  * cover the log as we may be in a situation where there isn't log space
1196  * available to run a dummy transaction and this can lead to deadlocks when the
1197  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1198  * there's no point in running a dummy transaction at this point because we
1199  * can't start trying to idle the log until both the CIL and AIL are empty.
1200  */
1201 static bool
1202 xfs_log_need_covered(
1203 	struct xfs_mount	*mp)
1204 {
1205 	struct xlog		*log = mp->m_log;
1206 	bool			needed = false;
1207 
1208 	if (!xlog_cil_empty(log))
1209 		return false;
1210 
1211 	spin_lock(&log->l_icloglock);
1212 	switch (log->l_covered_state) {
1213 	case XLOG_STATE_COVER_DONE:
1214 	case XLOG_STATE_COVER_DONE2:
1215 	case XLOG_STATE_COVER_IDLE:
1216 		break;
1217 	case XLOG_STATE_COVER_NEED:
1218 	case XLOG_STATE_COVER_NEED2:
1219 		if (xfs_ail_min_lsn(log->l_ailp))
1220 			break;
1221 		if (!xlog_iclogs_empty(log))
1222 			break;
1223 
1224 		needed = true;
1225 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1226 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1227 		else
1228 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1229 		break;
1230 	default:
1231 		needed = true;
1232 		break;
1233 	}
1234 	spin_unlock(&log->l_icloglock);
1235 	return needed;
1236 }
1237 
1238 /*
1239  * Explicitly cover the log. This is similar to background log covering but
1240  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1241  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1242  * must all be empty.
1243  */
1244 static int
1245 xfs_log_cover(
1246 	struct xfs_mount	*mp)
1247 {
1248 	int			error = 0;
1249 	bool			need_covered;
1250 
1251 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1252 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1253 		xlog_is_shutdown(mp->m_log));
1254 
1255 	if (!xfs_log_writable(mp))
1256 		return 0;
1257 
1258 	/*
1259 	 * xfs_log_need_covered() is not idempotent because it progresses the
1260 	 * state machine if the log requires covering. Therefore, we must call
1261 	 * this function once and use the result until we've issued an sb sync.
1262 	 * Do so first to make that abundantly clear.
1263 	 *
1264 	 * Fall into the covering sequence if the log needs covering or the
1265 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1266 	 * used for covering accumulates the in-core counters, so covering
1267 	 * handles this for us.
1268 	 */
1269 	need_covered = xfs_log_need_covered(mp);
1270 	if (!need_covered && !xfs_has_lazysbcount(mp))
1271 		return 0;
1272 
1273 	/*
1274 	 * To cover the log, commit the superblock twice (at most) in
1275 	 * independent checkpoints. The first serves as a reference for the
1276 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1277 	 * updates the in-core tail to the LSN of the first checkpoint. The
1278 	 * second commit updates the on-disk tail with the in-core LSN,
1279 	 * covering the log. Push the AIL one more time to leave it empty, as
1280 	 * we found it.
1281 	 */
1282 	do {
1283 		error = xfs_sync_sb(mp, true);
1284 		if (error)
1285 			break;
1286 		xfs_ail_push_all_sync(mp->m_ail);
1287 	} while (xfs_log_need_covered(mp));
1288 
1289 	return error;
1290 }
1291 
1292 /*
1293  * We may be holding the log iclog lock upon entering this routine.
1294  */
1295 xfs_lsn_t
1296 xlog_assign_tail_lsn_locked(
1297 	struct xfs_mount	*mp)
1298 {
1299 	struct xlog		*log = mp->m_log;
1300 	struct xfs_log_item	*lip;
1301 	xfs_lsn_t		tail_lsn;
1302 
1303 	assert_spin_locked(&mp->m_ail->ail_lock);
1304 
1305 	/*
1306 	 * To make sure we always have a valid LSN for the log tail we keep
1307 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1308 	 * and use that when the AIL was empty.
1309 	 */
1310 	lip = xfs_ail_min(mp->m_ail);
1311 	if (lip)
1312 		tail_lsn = lip->li_lsn;
1313 	else
1314 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1315 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1316 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1317 	return tail_lsn;
1318 }
1319 
1320 xfs_lsn_t
1321 xlog_assign_tail_lsn(
1322 	struct xfs_mount	*mp)
1323 {
1324 	xfs_lsn_t		tail_lsn;
1325 
1326 	spin_lock(&mp->m_ail->ail_lock);
1327 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1328 	spin_unlock(&mp->m_ail->ail_lock);
1329 
1330 	return tail_lsn;
1331 }
1332 
1333 /*
1334  * Return the space in the log between the tail and the head.  The head
1335  * is passed in the cycle/bytes formal parms.  In the special case where
1336  * the reserve head has wrapped passed the tail, this calculation is no
1337  * longer valid.  In this case, just return 0 which means there is no space
1338  * in the log.  This works for all places where this function is called
1339  * with the reserve head.  Of course, if the write head were to ever
1340  * wrap the tail, we should blow up.  Rather than catch this case here,
1341  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1342  *
1343  * If reservation head is behind the tail, we have a problem. Warn about it,
1344  * but then treat it as if the log is empty.
1345  *
1346  * If the log is shut down, the head and tail may be invalid or out of whack, so
1347  * shortcut invalidity asserts in this case so that we don't trigger them
1348  * falsely.
1349  */
1350 STATIC int
1351 xlog_space_left(
1352 	struct xlog	*log,
1353 	atomic64_t	*head)
1354 {
1355 	int		tail_bytes;
1356 	int		tail_cycle;
1357 	int		head_cycle;
1358 	int		head_bytes;
1359 
1360 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1361 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1362 	tail_bytes = BBTOB(tail_bytes);
1363 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1364 		return log->l_logsize - (head_bytes - tail_bytes);
1365 	if (tail_cycle + 1 < head_cycle)
1366 		return 0;
1367 
1368 	/* Ignore potential inconsistency when shutdown. */
1369 	if (xlog_is_shutdown(log))
1370 		return log->l_logsize;
1371 
1372 	if (tail_cycle < head_cycle) {
1373 		ASSERT(tail_cycle == (head_cycle - 1));
1374 		return tail_bytes - head_bytes;
1375 	}
1376 
1377 	/*
1378 	 * The reservation head is behind the tail. In this case we just want to
1379 	 * return the size of the log as the amount of space left.
1380 	 */
1381 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1382 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1383 		  tail_cycle, tail_bytes);
1384 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1385 		  head_cycle, head_bytes);
1386 	ASSERT(0);
1387 	return log->l_logsize;
1388 }
1389 
1390 
1391 static void
1392 xlog_ioend_work(
1393 	struct work_struct	*work)
1394 {
1395 	struct xlog_in_core     *iclog =
1396 		container_of(work, struct xlog_in_core, ic_end_io_work);
1397 	struct xlog		*log = iclog->ic_log;
1398 	int			error;
1399 
1400 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1401 #ifdef DEBUG
1402 	/* treat writes with injected CRC errors as failed */
1403 	if (iclog->ic_fail_crc)
1404 		error = -EIO;
1405 #endif
1406 
1407 	/*
1408 	 * Race to shutdown the filesystem if we see an error.
1409 	 */
1410 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1411 		xfs_alert(log->l_mp, "log I/O error %d", error);
1412 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1413 	}
1414 
1415 	xlog_state_done_syncing(iclog);
1416 	bio_uninit(&iclog->ic_bio);
1417 
1418 	/*
1419 	 * Drop the lock to signal that we are done. Nothing references the
1420 	 * iclog after this, so an unmount waiting on this lock can now tear it
1421 	 * down safely. As such, it is unsafe to reference the iclog after the
1422 	 * unlock as we could race with it being freed.
1423 	 */
1424 	up(&iclog->ic_sema);
1425 }
1426 
1427 /*
1428  * Return size of each in-core log record buffer.
1429  *
1430  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1431  *
1432  * If the filesystem blocksize is too large, we may need to choose a
1433  * larger size since the directory code currently logs entire blocks.
1434  */
1435 STATIC void
1436 xlog_get_iclog_buffer_size(
1437 	struct xfs_mount	*mp,
1438 	struct xlog		*log)
1439 {
1440 	if (mp->m_logbufs <= 0)
1441 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1442 	if (mp->m_logbsize <= 0)
1443 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1444 
1445 	log->l_iclog_bufs = mp->m_logbufs;
1446 	log->l_iclog_size = mp->m_logbsize;
1447 
1448 	/*
1449 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1450 	 */
1451 	log->l_iclog_heads =
1452 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1453 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1454 }
1455 
1456 void
1457 xfs_log_work_queue(
1458 	struct xfs_mount        *mp)
1459 {
1460 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1461 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1462 }
1463 
1464 /*
1465  * Clear the log incompat flags if we have the opportunity.
1466  *
1467  * This only happens if we're about to log the second dummy transaction as part
1468  * of covering the log and we can get the log incompat feature usage lock.
1469  */
1470 static inline void
1471 xlog_clear_incompat(
1472 	struct xlog		*log)
1473 {
1474 	struct xfs_mount	*mp = log->l_mp;
1475 
1476 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1477 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1478 		return;
1479 
1480 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1481 		return;
1482 
1483 	if (!down_write_trylock(&log->l_incompat_users))
1484 		return;
1485 
1486 	xfs_clear_incompat_log_features(mp);
1487 	up_write(&log->l_incompat_users);
1488 }
1489 
1490 /*
1491  * Every sync period we need to unpin all items in the AIL and push them to
1492  * disk. If there is nothing dirty, then we might need to cover the log to
1493  * indicate that the filesystem is idle.
1494  */
1495 static void
1496 xfs_log_worker(
1497 	struct work_struct	*work)
1498 {
1499 	struct xlog		*log = container_of(to_delayed_work(work),
1500 						struct xlog, l_work);
1501 	struct xfs_mount	*mp = log->l_mp;
1502 
1503 	/* dgc: errors ignored - not fatal and nowhere to report them */
1504 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1505 		/*
1506 		 * Dump a transaction into the log that contains no real change.
1507 		 * This is needed to stamp the current tail LSN into the log
1508 		 * during the covering operation.
1509 		 *
1510 		 * We cannot use an inode here for this - that will push dirty
1511 		 * state back up into the VFS and then periodic inode flushing
1512 		 * will prevent log covering from making progress. Hence we
1513 		 * synchronously log the superblock instead to ensure the
1514 		 * superblock is immediately unpinned and can be written back.
1515 		 */
1516 		xlog_clear_incompat(log);
1517 		xfs_sync_sb(mp, true);
1518 	} else
1519 		xfs_log_force(mp, 0);
1520 
1521 	/* start pushing all the metadata that is currently dirty */
1522 	xfs_ail_push_all(mp->m_ail);
1523 
1524 	/* queue us up again */
1525 	xfs_log_work_queue(mp);
1526 }
1527 
1528 /*
1529  * This routine initializes some of the log structure for a given mount point.
1530  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1531  * some other stuff may be filled in too.
1532  */
1533 STATIC struct xlog *
1534 xlog_alloc_log(
1535 	struct xfs_mount	*mp,
1536 	struct xfs_buftarg	*log_target,
1537 	xfs_daddr_t		blk_offset,
1538 	int			num_bblks)
1539 {
1540 	struct xlog		*log;
1541 	xlog_rec_header_t	*head;
1542 	xlog_in_core_t		**iclogp;
1543 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1544 	int			i;
1545 	int			error = -ENOMEM;
1546 	uint			log2_size = 0;
1547 
1548 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1549 	if (!log) {
1550 		xfs_warn(mp, "Log allocation failed: No memory!");
1551 		goto out;
1552 	}
1553 
1554 	log->l_mp	   = mp;
1555 	log->l_targ	   = log_target;
1556 	log->l_logsize     = BBTOB(num_bblks);
1557 	log->l_logBBstart  = blk_offset;
1558 	log->l_logBBsize   = num_bblks;
1559 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1560 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1561 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1562 
1563 	log->l_prev_block  = -1;
1564 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1565 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1566 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1567 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1568 
1569 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1570 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1571 	else
1572 		log->l_iclog_roundoff = BBSIZE;
1573 
1574 	xlog_grant_head_init(&log->l_reserve_head);
1575 	xlog_grant_head_init(&log->l_write_head);
1576 
1577 	error = -EFSCORRUPTED;
1578 	if (xfs_has_sector(mp)) {
1579 	        log2_size = mp->m_sb.sb_logsectlog;
1580 		if (log2_size < BBSHIFT) {
1581 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1582 				log2_size, BBSHIFT);
1583 			goto out_free_log;
1584 		}
1585 
1586 	        log2_size -= BBSHIFT;
1587 		if (log2_size > mp->m_sectbb_log) {
1588 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1589 				log2_size, mp->m_sectbb_log);
1590 			goto out_free_log;
1591 		}
1592 
1593 		/* for larger sector sizes, must have v2 or external log */
1594 		if (log2_size && log->l_logBBstart > 0 &&
1595 			    !xfs_has_logv2(mp)) {
1596 			xfs_warn(mp,
1597 		"log sector size (0x%x) invalid for configuration.",
1598 				log2_size);
1599 			goto out_free_log;
1600 		}
1601 	}
1602 	log->l_sectBBsize = 1 << log2_size;
1603 
1604 	init_rwsem(&log->l_incompat_users);
1605 
1606 	xlog_get_iclog_buffer_size(mp, log);
1607 
1608 	spin_lock_init(&log->l_icloglock);
1609 	init_waitqueue_head(&log->l_flush_wait);
1610 
1611 	iclogp = &log->l_iclog;
1612 	/*
1613 	 * The amount of memory to allocate for the iclog structure is
1614 	 * rather funky due to the way the structure is defined.  It is
1615 	 * done this way so that we can use different sizes for machines
1616 	 * with different amounts of memory.  See the definition of
1617 	 * xlog_in_core_t in xfs_log_priv.h for details.
1618 	 */
1619 	ASSERT(log->l_iclog_size >= 4096);
1620 	for (i = 0; i < log->l_iclog_bufs; i++) {
1621 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1622 				sizeof(struct bio_vec);
1623 
1624 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1625 		if (!iclog)
1626 			goto out_free_iclog;
1627 
1628 		*iclogp = iclog;
1629 		iclog->ic_prev = prev_iclog;
1630 		prev_iclog = iclog;
1631 
1632 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1633 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1634 		if (!iclog->ic_data)
1635 			goto out_free_iclog;
1636 		head = &iclog->ic_header;
1637 		memset(head, 0, sizeof(xlog_rec_header_t));
1638 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1639 		head->h_version = cpu_to_be32(
1640 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1641 		head->h_size = cpu_to_be32(log->l_iclog_size);
1642 		/* new fields */
1643 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1644 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1645 
1646 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1647 		iclog->ic_state = XLOG_STATE_ACTIVE;
1648 		iclog->ic_log = log;
1649 		atomic_set(&iclog->ic_refcnt, 0);
1650 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1651 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1652 
1653 		init_waitqueue_head(&iclog->ic_force_wait);
1654 		init_waitqueue_head(&iclog->ic_write_wait);
1655 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1656 		sema_init(&iclog->ic_sema, 1);
1657 
1658 		iclogp = &iclog->ic_next;
1659 	}
1660 	*iclogp = log->l_iclog;			/* complete ring */
1661 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1662 
1663 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1664 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1665 				    WQ_HIGHPRI),
1666 			0, mp->m_super->s_id);
1667 	if (!log->l_ioend_workqueue)
1668 		goto out_free_iclog;
1669 
1670 	error = xlog_cil_init(log);
1671 	if (error)
1672 		goto out_destroy_workqueue;
1673 	return log;
1674 
1675 out_destroy_workqueue:
1676 	destroy_workqueue(log->l_ioend_workqueue);
1677 out_free_iclog:
1678 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1679 		prev_iclog = iclog->ic_next;
1680 		kmem_free(iclog->ic_data);
1681 		kmem_free(iclog);
1682 		if (prev_iclog == log->l_iclog)
1683 			break;
1684 	}
1685 out_free_log:
1686 	kmem_free(log);
1687 out:
1688 	return ERR_PTR(error);
1689 }	/* xlog_alloc_log */
1690 
1691 /*
1692  * Compute the LSN that we'd need to push the log tail towards in order to have
1693  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1694  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1695  * log free space already meets all three thresholds, this function returns
1696  * NULLCOMMITLSN.
1697  */
1698 xfs_lsn_t
1699 xlog_grant_push_threshold(
1700 	struct xlog	*log,
1701 	int		need_bytes)
1702 {
1703 	xfs_lsn_t	threshold_lsn = 0;
1704 	xfs_lsn_t	last_sync_lsn;
1705 	int		free_blocks;
1706 	int		free_bytes;
1707 	int		threshold_block;
1708 	int		threshold_cycle;
1709 	int		free_threshold;
1710 
1711 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1712 
1713 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1714 	free_blocks = BTOBBT(free_bytes);
1715 
1716 	/*
1717 	 * Set the threshold for the minimum number of free blocks in the
1718 	 * log to the maximum of what the caller needs, one quarter of the
1719 	 * log, and 256 blocks.
1720 	 */
1721 	free_threshold = BTOBB(need_bytes);
1722 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1723 	free_threshold = max(free_threshold, 256);
1724 	if (free_blocks >= free_threshold)
1725 		return NULLCOMMITLSN;
1726 
1727 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1728 						&threshold_block);
1729 	threshold_block += free_threshold;
1730 	if (threshold_block >= log->l_logBBsize) {
1731 		threshold_block -= log->l_logBBsize;
1732 		threshold_cycle += 1;
1733 	}
1734 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1735 					threshold_block);
1736 	/*
1737 	 * Don't pass in an lsn greater than the lsn of the last
1738 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1739 	 * so that it doesn't change between the compare and the set.
1740 	 */
1741 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1742 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1743 		threshold_lsn = last_sync_lsn;
1744 
1745 	return threshold_lsn;
1746 }
1747 
1748 /*
1749  * Push the tail of the log if we need to do so to maintain the free log space
1750  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1751  * policy which pushes on an lsn which is further along in the log once we
1752  * reach the high water mark.  In this manner, we would be creating a low water
1753  * mark.
1754  */
1755 STATIC void
1756 xlog_grant_push_ail(
1757 	struct xlog	*log,
1758 	int		need_bytes)
1759 {
1760 	xfs_lsn_t	threshold_lsn;
1761 
1762 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1763 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1764 		return;
1765 
1766 	/*
1767 	 * Get the transaction layer to kick the dirty buffers out to
1768 	 * disk asynchronously. No point in trying to do this if
1769 	 * the filesystem is shutting down.
1770 	 */
1771 	xfs_ail_push(log->l_ailp, threshold_lsn);
1772 }
1773 
1774 /*
1775  * Stamp cycle number in every block
1776  */
1777 STATIC void
1778 xlog_pack_data(
1779 	struct xlog		*log,
1780 	struct xlog_in_core	*iclog,
1781 	int			roundoff)
1782 {
1783 	int			i, j, k;
1784 	int			size = iclog->ic_offset + roundoff;
1785 	__be32			cycle_lsn;
1786 	char			*dp;
1787 
1788 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1789 
1790 	dp = iclog->ic_datap;
1791 	for (i = 0; i < BTOBB(size); i++) {
1792 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1793 			break;
1794 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1795 		*(__be32 *)dp = cycle_lsn;
1796 		dp += BBSIZE;
1797 	}
1798 
1799 	if (xfs_has_logv2(log->l_mp)) {
1800 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1801 
1802 		for ( ; i < BTOBB(size); i++) {
1803 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1804 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1805 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1806 			*(__be32 *)dp = cycle_lsn;
1807 			dp += BBSIZE;
1808 		}
1809 
1810 		for (i = 1; i < log->l_iclog_heads; i++)
1811 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1812 	}
1813 }
1814 
1815 /*
1816  * Calculate the checksum for a log buffer.
1817  *
1818  * This is a little more complicated than it should be because the various
1819  * headers and the actual data are non-contiguous.
1820  */
1821 __le32
1822 xlog_cksum(
1823 	struct xlog		*log,
1824 	struct xlog_rec_header	*rhead,
1825 	char			*dp,
1826 	int			size)
1827 {
1828 	uint32_t		crc;
1829 
1830 	/* first generate the crc for the record header ... */
1831 	crc = xfs_start_cksum_update((char *)rhead,
1832 			      sizeof(struct xlog_rec_header),
1833 			      offsetof(struct xlog_rec_header, h_crc));
1834 
1835 	/* ... then for additional cycle data for v2 logs ... */
1836 	if (xfs_has_logv2(log->l_mp)) {
1837 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1838 		int		i;
1839 		int		xheads;
1840 
1841 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1842 
1843 		for (i = 1; i < xheads; i++) {
1844 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1845 				     sizeof(struct xlog_rec_ext_header));
1846 		}
1847 	}
1848 
1849 	/* ... and finally for the payload */
1850 	crc = crc32c(crc, dp, size);
1851 
1852 	return xfs_end_cksum(crc);
1853 }
1854 
1855 static void
1856 xlog_bio_end_io(
1857 	struct bio		*bio)
1858 {
1859 	struct xlog_in_core	*iclog = bio->bi_private;
1860 
1861 	queue_work(iclog->ic_log->l_ioend_workqueue,
1862 		   &iclog->ic_end_io_work);
1863 }
1864 
1865 static int
1866 xlog_map_iclog_data(
1867 	struct bio		*bio,
1868 	void			*data,
1869 	size_t			count)
1870 {
1871 	do {
1872 		struct page	*page = kmem_to_page(data);
1873 		unsigned int	off = offset_in_page(data);
1874 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1875 
1876 		if (bio_add_page(bio, page, len, off) != len)
1877 			return -EIO;
1878 
1879 		data += len;
1880 		count -= len;
1881 	} while (count);
1882 
1883 	return 0;
1884 }
1885 
1886 STATIC void
1887 xlog_write_iclog(
1888 	struct xlog		*log,
1889 	struct xlog_in_core	*iclog,
1890 	uint64_t		bno,
1891 	unsigned int		count)
1892 {
1893 	ASSERT(bno < log->l_logBBsize);
1894 	trace_xlog_iclog_write(iclog, _RET_IP_);
1895 
1896 	/*
1897 	 * We lock the iclogbufs here so that we can serialise against I/O
1898 	 * completion during unmount.  We might be processing a shutdown
1899 	 * triggered during unmount, and that can occur asynchronously to the
1900 	 * unmount thread, and hence we need to ensure that completes before
1901 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1902 	 * across the log IO to archieve that.
1903 	 */
1904 	down(&iclog->ic_sema);
1905 	if (xlog_is_shutdown(log)) {
1906 		/*
1907 		 * It would seem logical to return EIO here, but we rely on
1908 		 * the log state machine to propagate I/O errors instead of
1909 		 * doing it here.  We kick of the state machine and unlock
1910 		 * the buffer manually, the code needs to be kept in sync
1911 		 * with the I/O completion path.
1912 		 */
1913 		xlog_state_done_syncing(iclog);
1914 		up(&iclog->ic_sema);
1915 		return;
1916 	}
1917 
1918 	/*
1919 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1920 	 * IOs coming immediately after this one. This prevents the block layer
1921 	 * writeback throttle from throttling log writes behind background
1922 	 * metadata writeback and causing priority inversions.
1923 	 */
1924 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1925 		 howmany(count, PAGE_SIZE),
1926 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1927 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1928 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1929 	iclog->ic_bio.bi_private = iclog;
1930 
1931 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1932 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1933 		/*
1934 		 * For external log devices, we also need to flush the data
1935 		 * device cache first to ensure all metadata writeback covered
1936 		 * by the LSN in this iclog is on stable storage. This is slow,
1937 		 * but it *must* complete before we issue the external log IO.
1938 		 *
1939 		 * If the flush fails, we cannot conclude that past metadata
1940 		 * writeback from the log succeeded.  Repeating the flush is
1941 		 * not possible, hence we must shut down with log IO error to
1942 		 * avoid shutdown re-entering this path and erroring out again.
1943 		 */
1944 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1945 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) {
1946 			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1947 			return;
1948 		}
1949 	}
1950 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1951 		iclog->ic_bio.bi_opf |= REQ_FUA;
1952 
1953 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1954 
1955 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1956 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1957 		return;
1958 	}
1959 	if (is_vmalloc_addr(iclog->ic_data))
1960 		flush_kernel_vmap_range(iclog->ic_data, count);
1961 
1962 	/*
1963 	 * If this log buffer would straddle the end of the log we will have
1964 	 * to split it up into two bios, so that we can continue at the start.
1965 	 */
1966 	if (bno + BTOBB(count) > log->l_logBBsize) {
1967 		struct bio *split;
1968 
1969 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1970 				  GFP_NOIO, &fs_bio_set);
1971 		bio_chain(split, &iclog->ic_bio);
1972 		submit_bio(split);
1973 
1974 		/* restart at logical offset zero for the remainder */
1975 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1976 	}
1977 
1978 	submit_bio(&iclog->ic_bio);
1979 }
1980 
1981 /*
1982  * We need to bump cycle number for the part of the iclog that is
1983  * written to the start of the log. Watch out for the header magic
1984  * number case, though.
1985  */
1986 static void
1987 xlog_split_iclog(
1988 	struct xlog		*log,
1989 	void			*data,
1990 	uint64_t		bno,
1991 	unsigned int		count)
1992 {
1993 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1994 	unsigned int		i;
1995 
1996 	for (i = split_offset; i < count; i += BBSIZE) {
1997 		uint32_t cycle = get_unaligned_be32(data + i);
1998 
1999 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
2000 			cycle++;
2001 		put_unaligned_be32(cycle, data + i);
2002 	}
2003 }
2004 
2005 static int
2006 xlog_calc_iclog_size(
2007 	struct xlog		*log,
2008 	struct xlog_in_core	*iclog,
2009 	uint32_t		*roundoff)
2010 {
2011 	uint32_t		count_init, count;
2012 
2013 	/* Add for LR header */
2014 	count_init = log->l_iclog_hsize + iclog->ic_offset;
2015 	count = roundup(count_init, log->l_iclog_roundoff);
2016 
2017 	*roundoff = count - count_init;
2018 
2019 	ASSERT(count >= count_init);
2020 	ASSERT(*roundoff < log->l_iclog_roundoff);
2021 	return count;
2022 }
2023 
2024 /*
2025  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2026  * fashion.  Previously, we should have moved the current iclog
2027  * ptr in the log to point to the next available iclog.  This allows further
2028  * write to continue while this code syncs out an iclog ready to go.
2029  * Before an in-core log can be written out, the data section must be scanned
2030  * to save away the 1st word of each BBSIZE block into the header.  We replace
2031  * it with the current cycle count.  Each BBSIZE block is tagged with the
2032  * cycle count because there in an implicit assumption that drives will
2033  * guarantee that entire 512 byte blocks get written at once.  In other words,
2034  * we can't have part of a 512 byte block written and part not written.  By
2035  * tagging each block, we will know which blocks are valid when recovering
2036  * after an unclean shutdown.
2037  *
2038  * This routine is single threaded on the iclog.  No other thread can be in
2039  * this routine with the same iclog.  Changing contents of iclog can there-
2040  * fore be done without grabbing the state machine lock.  Updating the global
2041  * log will require grabbing the lock though.
2042  *
2043  * The entire log manager uses a logical block numbering scheme.  Only
2044  * xlog_write_iclog knows about the fact that the log may not start with
2045  * block zero on a given device.
2046  */
2047 STATIC void
2048 xlog_sync(
2049 	struct xlog		*log,
2050 	struct xlog_in_core	*iclog,
2051 	struct xlog_ticket	*ticket)
2052 {
2053 	unsigned int		count;		/* byte count of bwrite */
2054 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2055 	uint64_t		bno;
2056 	unsigned int		size;
2057 
2058 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2059 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2060 
2061 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2062 
2063 	/*
2064 	 * If we have a ticket, account for the roundoff via the ticket
2065 	 * reservation to avoid touching the hot grant heads needlessly.
2066 	 * Otherwise, we have to move grant heads directly.
2067 	 */
2068 	if (ticket) {
2069 		ticket->t_curr_res -= roundoff;
2070 	} else {
2071 		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2072 		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2073 	}
2074 
2075 	/* put cycle number in every block */
2076 	xlog_pack_data(log, iclog, roundoff);
2077 
2078 	/* real byte length */
2079 	size = iclog->ic_offset;
2080 	if (xfs_has_logv2(log->l_mp))
2081 		size += roundoff;
2082 	iclog->ic_header.h_len = cpu_to_be32(size);
2083 
2084 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2085 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2086 
2087 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2088 
2089 	/* Do we need to split this write into 2 parts? */
2090 	if (bno + BTOBB(count) > log->l_logBBsize)
2091 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2092 
2093 	/* calculcate the checksum */
2094 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2095 					    iclog->ic_datap, size);
2096 	/*
2097 	 * Intentionally corrupt the log record CRC based on the error injection
2098 	 * frequency, if defined. This facilitates testing log recovery in the
2099 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2100 	 * write on I/O completion and shutdown the fs. The subsequent mount
2101 	 * detects the bad CRC and attempts to recover.
2102 	 */
2103 #ifdef DEBUG
2104 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2105 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2106 		iclog->ic_fail_crc = true;
2107 		xfs_warn(log->l_mp,
2108 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2109 			 be64_to_cpu(iclog->ic_header.h_lsn));
2110 	}
2111 #endif
2112 	xlog_verify_iclog(log, iclog, count);
2113 	xlog_write_iclog(log, iclog, bno, count);
2114 }
2115 
2116 /*
2117  * Deallocate a log structure
2118  */
2119 STATIC void
2120 xlog_dealloc_log(
2121 	struct xlog	*log)
2122 {
2123 	xlog_in_core_t	*iclog, *next_iclog;
2124 	int		i;
2125 
2126 	/*
2127 	 * Destroy the CIL after waiting for iclog IO completion because an
2128 	 * iclog EIO error will try to shut down the log, which accesses the
2129 	 * CIL to wake up the waiters.
2130 	 */
2131 	xlog_cil_destroy(log);
2132 
2133 	iclog = log->l_iclog;
2134 	for (i = 0; i < log->l_iclog_bufs; i++) {
2135 		next_iclog = iclog->ic_next;
2136 		kmem_free(iclog->ic_data);
2137 		kmem_free(iclog);
2138 		iclog = next_iclog;
2139 	}
2140 
2141 	log->l_mp->m_log = NULL;
2142 	destroy_workqueue(log->l_ioend_workqueue);
2143 	kmem_free(log);
2144 }
2145 
2146 /*
2147  * Update counters atomically now that memcpy is done.
2148  */
2149 static inline void
2150 xlog_state_finish_copy(
2151 	struct xlog		*log,
2152 	struct xlog_in_core	*iclog,
2153 	int			record_cnt,
2154 	int			copy_bytes)
2155 {
2156 	lockdep_assert_held(&log->l_icloglock);
2157 
2158 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2159 	iclog->ic_offset += copy_bytes;
2160 }
2161 
2162 /*
2163  * print out info relating to regions written which consume
2164  * the reservation
2165  */
2166 void
2167 xlog_print_tic_res(
2168 	struct xfs_mount	*mp,
2169 	struct xlog_ticket	*ticket)
2170 {
2171 	xfs_warn(mp, "ticket reservation summary:");
2172 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2173 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2174 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2175 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2176 }
2177 
2178 /*
2179  * Print a summary of the transaction.
2180  */
2181 void
2182 xlog_print_trans(
2183 	struct xfs_trans	*tp)
2184 {
2185 	struct xfs_mount	*mp = tp->t_mountp;
2186 	struct xfs_log_item	*lip;
2187 
2188 	/* dump core transaction and ticket info */
2189 	xfs_warn(mp, "transaction summary:");
2190 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2191 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2192 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2193 
2194 	xlog_print_tic_res(mp, tp->t_ticket);
2195 
2196 	/* dump each log item */
2197 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2198 		struct xfs_log_vec	*lv = lip->li_lv;
2199 		struct xfs_log_iovec	*vec;
2200 		int			i;
2201 
2202 		xfs_warn(mp, "log item: ");
2203 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2204 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2205 		if (!lv)
2206 			continue;
2207 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2208 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2209 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2210 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2211 
2212 		/* dump each iovec for the log item */
2213 		vec = lv->lv_iovecp;
2214 		for (i = 0; i < lv->lv_niovecs; i++) {
2215 			int dumplen = min(vec->i_len, 32);
2216 
2217 			xfs_warn(mp, "  iovec[%d]", i);
2218 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2219 			xfs_warn(mp, "    len	= %d", vec->i_len);
2220 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2221 			xfs_hex_dump(vec->i_addr, dumplen);
2222 
2223 			vec++;
2224 		}
2225 	}
2226 }
2227 
2228 static inline void
2229 xlog_write_iovec(
2230 	struct xlog_in_core	*iclog,
2231 	uint32_t		*log_offset,
2232 	void			*data,
2233 	uint32_t		write_len,
2234 	int			*bytes_left,
2235 	uint32_t		*record_cnt,
2236 	uint32_t		*data_cnt)
2237 {
2238 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2239 	ASSERT(*log_offset % sizeof(int32_t) == 0);
2240 	ASSERT(write_len % sizeof(int32_t) == 0);
2241 
2242 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2243 	*log_offset += write_len;
2244 	*bytes_left -= write_len;
2245 	(*record_cnt)++;
2246 	*data_cnt += write_len;
2247 }
2248 
2249 /*
2250  * Write log vectors into a single iclog which is guaranteed by the caller
2251  * to have enough space to write the entire log vector into.
2252  */
2253 static void
2254 xlog_write_full(
2255 	struct xfs_log_vec	*lv,
2256 	struct xlog_ticket	*ticket,
2257 	struct xlog_in_core	*iclog,
2258 	uint32_t		*log_offset,
2259 	uint32_t		*len,
2260 	uint32_t		*record_cnt,
2261 	uint32_t		*data_cnt)
2262 {
2263 	int			index;
2264 
2265 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2266 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2267 
2268 	/*
2269 	 * Ordered log vectors have no regions to write so this
2270 	 * loop will naturally skip them.
2271 	 */
2272 	for (index = 0; index < lv->lv_niovecs; index++) {
2273 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2274 		struct xlog_op_header	*ophdr = reg->i_addr;
2275 
2276 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2277 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2278 				reg->i_len, len, record_cnt, data_cnt);
2279 	}
2280 }
2281 
2282 static int
2283 xlog_write_get_more_iclog_space(
2284 	struct xlog_ticket	*ticket,
2285 	struct xlog_in_core	**iclogp,
2286 	uint32_t		*log_offset,
2287 	uint32_t		len,
2288 	uint32_t		*record_cnt,
2289 	uint32_t		*data_cnt)
2290 {
2291 	struct xlog_in_core	*iclog = *iclogp;
2292 	struct xlog		*log = iclog->ic_log;
2293 	int			error;
2294 
2295 	spin_lock(&log->l_icloglock);
2296 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2297 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2298 	error = xlog_state_release_iclog(log, iclog, ticket);
2299 	spin_unlock(&log->l_icloglock);
2300 	if (error)
2301 		return error;
2302 
2303 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2304 					log_offset);
2305 	if (error)
2306 		return error;
2307 	*record_cnt = 0;
2308 	*data_cnt = 0;
2309 	*iclogp = iclog;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Write log vectors into a single iclog which is smaller than the current chain
2315  * length. We write until we cannot fit a full record into the remaining space
2316  * and then stop. We return the log vector that is to be written that cannot
2317  * wholly fit in the iclog.
2318  */
2319 static int
2320 xlog_write_partial(
2321 	struct xfs_log_vec	*lv,
2322 	struct xlog_ticket	*ticket,
2323 	struct xlog_in_core	**iclogp,
2324 	uint32_t		*log_offset,
2325 	uint32_t		*len,
2326 	uint32_t		*record_cnt,
2327 	uint32_t		*data_cnt)
2328 {
2329 	struct xlog_in_core	*iclog = *iclogp;
2330 	struct xlog_op_header	*ophdr;
2331 	int			index = 0;
2332 	uint32_t		rlen;
2333 	int			error;
2334 
2335 	/* walk the logvec, copying until we run out of space in the iclog */
2336 	for (index = 0; index < lv->lv_niovecs; index++) {
2337 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2338 		uint32_t		reg_offset = 0;
2339 
2340 		/*
2341 		 * The first region of a continuation must have a non-zero
2342 		 * length otherwise log recovery will just skip over it and
2343 		 * start recovering from the next opheader it finds. Because we
2344 		 * mark the next opheader as a continuation, recovery will then
2345 		 * incorrectly add the continuation to the previous region and
2346 		 * that breaks stuff.
2347 		 *
2348 		 * Hence if there isn't space for region data after the
2349 		 * opheader, then we need to start afresh with a new iclog.
2350 		 */
2351 		if (iclog->ic_size - *log_offset <=
2352 					sizeof(struct xlog_op_header)) {
2353 			error = xlog_write_get_more_iclog_space(ticket,
2354 					&iclog, log_offset, *len, record_cnt,
2355 					data_cnt);
2356 			if (error)
2357 				return error;
2358 		}
2359 
2360 		ophdr = reg->i_addr;
2361 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2362 
2363 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2364 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2365 		if (rlen != reg->i_len)
2366 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2367 
2368 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2369 				rlen, len, record_cnt, data_cnt);
2370 
2371 		/* If we wrote the whole region, move to the next. */
2372 		if (rlen == reg->i_len)
2373 			continue;
2374 
2375 		/*
2376 		 * We now have a partially written iovec, but it can span
2377 		 * multiple iclogs so we loop here. First we release the iclog
2378 		 * we currently have, then we get a new iclog and add a new
2379 		 * opheader. Then we continue copying from where we were until
2380 		 * we either complete the iovec or fill the iclog. If we
2381 		 * complete the iovec, then we increment the index and go right
2382 		 * back to the top of the outer loop. if we fill the iclog, we
2383 		 * run the inner loop again.
2384 		 *
2385 		 * This is complicated by the tail of a region using all the
2386 		 * space in an iclog and hence requiring us to release the iclog
2387 		 * and get a new one before returning to the outer loop. We must
2388 		 * always guarantee that we exit this inner loop with at least
2389 		 * space for log transaction opheaders left in the current
2390 		 * iclog, hence we cannot just terminate the loop at the end
2391 		 * of the of the continuation. So we loop while there is no
2392 		 * space left in the current iclog, and check for the end of the
2393 		 * continuation after getting a new iclog.
2394 		 */
2395 		do {
2396 			/*
2397 			 * Ensure we include the continuation opheader in the
2398 			 * space we need in the new iclog by adding that size
2399 			 * to the length we require. This continuation opheader
2400 			 * needs to be accounted to the ticket as the space it
2401 			 * consumes hasn't been accounted to the lv we are
2402 			 * writing.
2403 			 */
2404 			error = xlog_write_get_more_iclog_space(ticket,
2405 					&iclog, log_offset,
2406 					*len + sizeof(struct xlog_op_header),
2407 					record_cnt, data_cnt);
2408 			if (error)
2409 				return error;
2410 
2411 			ophdr = iclog->ic_datap + *log_offset;
2412 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2413 			ophdr->oh_clientid = XFS_TRANSACTION;
2414 			ophdr->oh_res2 = 0;
2415 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2416 
2417 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2418 			*log_offset += sizeof(struct xlog_op_header);
2419 			*data_cnt += sizeof(struct xlog_op_header);
2420 
2421 			/*
2422 			 * If rlen fits in the iclog, then end the region
2423 			 * continuation. Otherwise we're going around again.
2424 			 */
2425 			reg_offset += rlen;
2426 			rlen = reg->i_len - reg_offset;
2427 			if (rlen <= iclog->ic_size - *log_offset)
2428 				ophdr->oh_flags |= XLOG_END_TRANS;
2429 			else
2430 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2431 
2432 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2433 			ophdr->oh_len = cpu_to_be32(rlen);
2434 
2435 			xlog_write_iovec(iclog, log_offset,
2436 					reg->i_addr + reg_offset,
2437 					rlen, len, record_cnt, data_cnt);
2438 
2439 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2440 	}
2441 
2442 	/*
2443 	 * No more iovecs remain in this logvec so return the next log vec to
2444 	 * the caller so it can go back to fast path copying.
2445 	 */
2446 	*iclogp = iclog;
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Write some region out to in-core log
2452  *
2453  * This will be called when writing externally provided regions or when
2454  * writing out a commit record for a given transaction.
2455  *
2456  * General algorithm:
2457  *	1. Find total length of this write.  This may include adding to the
2458  *		lengths passed in.
2459  *	2. Check whether we violate the tickets reservation.
2460  *	3. While writing to this iclog
2461  *	    A. Reserve as much space in this iclog as can get
2462  *	    B. If this is first write, save away start lsn
2463  *	    C. While writing this region:
2464  *		1. If first write of transaction, write start record
2465  *		2. Write log operation header (header per region)
2466  *		3. Find out if we can fit entire region into this iclog
2467  *		4. Potentially, verify destination memcpy ptr
2468  *		5. Memcpy (partial) region
2469  *		6. If partial copy, release iclog; otherwise, continue
2470  *			copying more regions into current iclog
2471  *	4. Mark want sync bit (in simulation mode)
2472  *	5. Release iclog for potential flush to on-disk log.
2473  *
2474  * ERRORS:
2475  * 1.	Panic if reservation is overrun.  This should never happen since
2476  *	reservation amounts are generated internal to the filesystem.
2477  * NOTES:
2478  * 1. Tickets are single threaded data structures.
2479  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2480  *	syncing routine.  When a single log_write region needs to span
2481  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2482  *	on all log operation writes which don't contain the end of the
2483  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2484  *	operation which contains the end of the continued log_write region.
2485  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2486  *	we don't really know exactly how much space will be used.  As a result,
2487  *	we don't update ic_offset until the end when we know exactly how many
2488  *	bytes have been written out.
2489  */
2490 int
2491 xlog_write(
2492 	struct xlog		*log,
2493 	struct xfs_cil_ctx	*ctx,
2494 	struct list_head	*lv_chain,
2495 	struct xlog_ticket	*ticket,
2496 	uint32_t		len)
2497 
2498 {
2499 	struct xlog_in_core	*iclog = NULL;
2500 	struct xfs_log_vec	*lv;
2501 	uint32_t		record_cnt = 0;
2502 	uint32_t		data_cnt = 0;
2503 	int			error = 0;
2504 	int			log_offset;
2505 
2506 	if (ticket->t_curr_res < 0) {
2507 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2508 		     "ctx ticket reservation ran out. Need to up reservation");
2509 		xlog_print_tic_res(log->l_mp, ticket);
2510 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2511 	}
2512 
2513 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2514 					   &log_offset);
2515 	if (error)
2516 		return error;
2517 
2518 	ASSERT(log_offset <= iclog->ic_size - 1);
2519 
2520 	/*
2521 	 * If we have a context pointer, pass it the first iclog we are
2522 	 * writing to so it can record state needed for iclog write
2523 	 * ordering.
2524 	 */
2525 	if (ctx)
2526 		xlog_cil_set_ctx_write_state(ctx, iclog);
2527 
2528 	list_for_each_entry(lv, lv_chain, lv_list) {
2529 		/*
2530 		 * If the entire log vec does not fit in the iclog, punt it to
2531 		 * the partial copy loop which can handle this case.
2532 		 */
2533 		if (lv->lv_niovecs &&
2534 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2535 			error = xlog_write_partial(lv, ticket, &iclog,
2536 					&log_offset, &len, &record_cnt,
2537 					&data_cnt);
2538 			if (error) {
2539 				/*
2540 				 * We have no iclog to release, so just return
2541 				 * the error immediately.
2542 				 */
2543 				return error;
2544 			}
2545 		} else {
2546 			xlog_write_full(lv, ticket, iclog, &log_offset,
2547 					 &len, &record_cnt, &data_cnt);
2548 		}
2549 	}
2550 	ASSERT(len == 0);
2551 
2552 	/*
2553 	 * We've already been guaranteed that the last writes will fit inside
2554 	 * the current iclog, and hence it will already have the space used by
2555 	 * those writes accounted to it. Hence we do not need to update the
2556 	 * iclog with the number of bytes written here.
2557 	 */
2558 	spin_lock(&log->l_icloglock);
2559 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2560 	error = xlog_state_release_iclog(log, iclog, ticket);
2561 	spin_unlock(&log->l_icloglock);
2562 
2563 	return error;
2564 }
2565 
2566 static void
2567 xlog_state_activate_iclog(
2568 	struct xlog_in_core	*iclog,
2569 	int			*iclogs_changed)
2570 {
2571 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2572 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2573 
2574 	/*
2575 	 * If the number of ops in this iclog indicate it just contains the
2576 	 * dummy transaction, we can change state into IDLE (the second time
2577 	 * around). Otherwise we should change the state into NEED a dummy.
2578 	 * We don't need to cover the dummy.
2579 	 */
2580 	if (*iclogs_changed == 0 &&
2581 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2582 		*iclogs_changed = 1;
2583 	} else {
2584 		/*
2585 		 * We have two dirty iclogs so start over.  This could also be
2586 		 * num of ops indicating this is not the dummy going out.
2587 		 */
2588 		*iclogs_changed = 2;
2589 	}
2590 
2591 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2592 	iclog->ic_offset = 0;
2593 	iclog->ic_header.h_num_logops = 0;
2594 	memset(iclog->ic_header.h_cycle_data, 0,
2595 		sizeof(iclog->ic_header.h_cycle_data));
2596 	iclog->ic_header.h_lsn = 0;
2597 	iclog->ic_header.h_tail_lsn = 0;
2598 }
2599 
2600 /*
2601  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2602  * ACTIVE after iclog I/O has completed.
2603  */
2604 static void
2605 xlog_state_activate_iclogs(
2606 	struct xlog		*log,
2607 	int			*iclogs_changed)
2608 {
2609 	struct xlog_in_core	*iclog = log->l_iclog;
2610 
2611 	do {
2612 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2613 			xlog_state_activate_iclog(iclog, iclogs_changed);
2614 		/*
2615 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2616 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2617 		 */
2618 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2619 			break;
2620 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2621 }
2622 
2623 static int
2624 xlog_covered_state(
2625 	int			prev_state,
2626 	int			iclogs_changed)
2627 {
2628 	/*
2629 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2630 	 * wrote the first covering record (DONE). We go to IDLE if we just
2631 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2632 	 * non-covering write occurs.
2633 	 */
2634 	switch (prev_state) {
2635 	case XLOG_STATE_COVER_IDLE:
2636 		if (iclogs_changed == 1)
2637 			return XLOG_STATE_COVER_IDLE;
2638 		fallthrough;
2639 	case XLOG_STATE_COVER_NEED:
2640 	case XLOG_STATE_COVER_NEED2:
2641 		break;
2642 	case XLOG_STATE_COVER_DONE:
2643 		if (iclogs_changed == 1)
2644 			return XLOG_STATE_COVER_NEED2;
2645 		break;
2646 	case XLOG_STATE_COVER_DONE2:
2647 		if (iclogs_changed == 1)
2648 			return XLOG_STATE_COVER_IDLE;
2649 		break;
2650 	default:
2651 		ASSERT(0);
2652 	}
2653 
2654 	return XLOG_STATE_COVER_NEED;
2655 }
2656 
2657 STATIC void
2658 xlog_state_clean_iclog(
2659 	struct xlog		*log,
2660 	struct xlog_in_core	*dirty_iclog)
2661 {
2662 	int			iclogs_changed = 0;
2663 
2664 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2665 
2666 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2667 
2668 	xlog_state_activate_iclogs(log, &iclogs_changed);
2669 	wake_up_all(&dirty_iclog->ic_force_wait);
2670 
2671 	if (iclogs_changed) {
2672 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2673 				iclogs_changed);
2674 	}
2675 }
2676 
2677 STATIC xfs_lsn_t
2678 xlog_get_lowest_lsn(
2679 	struct xlog		*log)
2680 {
2681 	struct xlog_in_core	*iclog = log->l_iclog;
2682 	xfs_lsn_t		lowest_lsn = 0, lsn;
2683 
2684 	do {
2685 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2686 		    iclog->ic_state == XLOG_STATE_DIRTY)
2687 			continue;
2688 
2689 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2690 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2691 			lowest_lsn = lsn;
2692 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2693 
2694 	return lowest_lsn;
2695 }
2696 
2697 /*
2698  * Completion of a iclog IO does not imply that a transaction has completed, as
2699  * transactions can be large enough to span many iclogs. We cannot change the
2700  * tail of the log half way through a transaction as this may be the only
2701  * transaction in the log and moving the tail to point to the middle of it
2702  * will prevent recovery from finding the start of the transaction. Hence we
2703  * should only update the last_sync_lsn if this iclog contains transaction
2704  * completion callbacks on it.
2705  *
2706  * We have to do this before we drop the icloglock to ensure we are the only one
2707  * that can update it.
2708  *
2709  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2710  * the reservation grant head pushing. This is due to the fact that the push
2711  * target is bound by the current last_sync_lsn value. Hence if we have a large
2712  * amount of log space bound up in this committing transaction then the
2713  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2714  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2715  * should push the AIL to ensure the push target (and hence the grant head) is
2716  * no longer bound by the old log head location and can move forwards and make
2717  * progress again.
2718  */
2719 static void
2720 xlog_state_set_callback(
2721 	struct xlog		*log,
2722 	struct xlog_in_core	*iclog,
2723 	xfs_lsn_t		header_lsn)
2724 {
2725 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2726 	iclog->ic_state = XLOG_STATE_CALLBACK;
2727 
2728 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2729 			   header_lsn) <= 0);
2730 
2731 	if (list_empty_careful(&iclog->ic_callbacks))
2732 		return;
2733 
2734 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2735 	xlog_grant_push_ail(log, 0);
2736 }
2737 
2738 /*
2739  * Return true if we need to stop processing, false to continue to the next
2740  * iclog. The caller will need to run callbacks if the iclog is returned in the
2741  * XLOG_STATE_CALLBACK state.
2742  */
2743 static bool
2744 xlog_state_iodone_process_iclog(
2745 	struct xlog		*log,
2746 	struct xlog_in_core	*iclog)
2747 {
2748 	xfs_lsn_t		lowest_lsn;
2749 	xfs_lsn_t		header_lsn;
2750 
2751 	switch (iclog->ic_state) {
2752 	case XLOG_STATE_ACTIVE:
2753 	case XLOG_STATE_DIRTY:
2754 		/*
2755 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2756 		 */
2757 		return false;
2758 	case XLOG_STATE_DONE_SYNC:
2759 		/*
2760 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2761 		 * one more check here to see if we have chased our tail around.
2762 		 * If this is not the lowest lsn iclog, then we will leave it
2763 		 * for another completion to process.
2764 		 */
2765 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2766 		lowest_lsn = xlog_get_lowest_lsn(log);
2767 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2768 			return false;
2769 		xlog_state_set_callback(log, iclog, header_lsn);
2770 		return false;
2771 	default:
2772 		/*
2773 		 * Can only perform callbacks in order.  Since this iclog is not
2774 		 * in the DONE_SYNC state, we skip the rest and just try to
2775 		 * clean up.
2776 		 */
2777 		return true;
2778 	}
2779 }
2780 
2781 /*
2782  * Loop over all the iclogs, running attached callbacks on them. Return true if
2783  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2784  * to handle transient shutdown state here at all because
2785  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2786  * cleanup of the callbacks.
2787  */
2788 static bool
2789 xlog_state_do_iclog_callbacks(
2790 	struct xlog		*log)
2791 		__releases(&log->l_icloglock)
2792 		__acquires(&log->l_icloglock)
2793 {
2794 	struct xlog_in_core	*first_iclog = log->l_iclog;
2795 	struct xlog_in_core	*iclog = first_iclog;
2796 	bool			ran_callback = false;
2797 
2798 	do {
2799 		LIST_HEAD(cb_list);
2800 
2801 		if (xlog_state_iodone_process_iclog(log, iclog))
2802 			break;
2803 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2804 			iclog = iclog->ic_next;
2805 			continue;
2806 		}
2807 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2808 		spin_unlock(&log->l_icloglock);
2809 
2810 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2811 		xlog_cil_process_committed(&cb_list);
2812 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2813 		ran_callback = true;
2814 
2815 		spin_lock(&log->l_icloglock);
2816 		xlog_state_clean_iclog(log, iclog);
2817 		iclog = iclog->ic_next;
2818 	} while (iclog != first_iclog);
2819 
2820 	return ran_callback;
2821 }
2822 
2823 
2824 /*
2825  * Loop running iclog completion callbacks until there are no more iclogs in a
2826  * state that can run callbacks.
2827  */
2828 STATIC void
2829 xlog_state_do_callback(
2830 	struct xlog		*log)
2831 {
2832 	int			flushcnt = 0;
2833 	int			repeats = 0;
2834 
2835 	spin_lock(&log->l_icloglock);
2836 	while (xlog_state_do_iclog_callbacks(log)) {
2837 		if (xlog_is_shutdown(log))
2838 			break;
2839 
2840 		if (++repeats > 5000) {
2841 			flushcnt += repeats;
2842 			repeats = 0;
2843 			xfs_warn(log->l_mp,
2844 				"%s: possible infinite loop (%d iterations)",
2845 				__func__, flushcnt);
2846 		}
2847 	}
2848 
2849 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2850 		wake_up_all(&log->l_flush_wait);
2851 
2852 	spin_unlock(&log->l_icloglock);
2853 }
2854 
2855 
2856 /*
2857  * Finish transitioning this iclog to the dirty state.
2858  *
2859  * Callbacks could take time, so they are done outside the scope of the
2860  * global state machine log lock.
2861  */
2862 STATIC void
2863 xlog_state_done_syncing(
2864 	struct xlog_in_core	*iclog)
2865 {
2866 	struct xlog		*log = iclog->ic_log;
2867 
2868 	spin_lock(&log->l_icloglock);
2869 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2870 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2871 
2872 	/*
2873 	 * If we got an error, either on the first buffer, or in the case of
2874 	 * split log writes, on the second, we shut down the file system and
2875 	 * no iclogs should ever be attempted to be written to disk again.
2876 	 */
2877 	if (!xlog_is_shutdown(log)) {
2878 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2879 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2880 	}
2881 
2882 	/*
2883 	 * Someone could be sleeping prior to writing out the next
2884 	 * iclog buffer, we wake them all, one will get to do the
2885 	 * I/O, the others get to wait for the result.
2886 	 */
2887 	wake_up_all(&iclog->ic_write_wait);
2888 	spin_unlock(&log->l_icloglock);
2889 	xlog_state_do_callback(log);
2890 }
2891 
2892 /*
2893  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2894  * sleep.  We wait on the flush queue on the head iclog as that should be
2895  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2896  * we will wait here and all new writes will sleep until a sync completes.
2897  *
2898  * The in-core logs are used in a circular fashion. They are not used
2899  * out-of-order even when an iclog past the head is free.
2900  *
2901  * return:
2902  *	* log_offset where xlog_write() can start writing into the in-core
2903  *		log's data space.
2904  *	* in-core log pointer to which xlog_write() should write.
2905  *	* boolean indicating this is a continued write to an in-core log.
2906  *		If this is the last write, then the in-core log's offset field
2907  *		needs to be incremented, depending on the amount of data which
2908  *		is copied.
2909  */
2910 STATIC int
2911 xlog_state_get_iclog_space(
2912 	struct xlog		*log,
2913 	int			len,
2914 	struct xlog_in_core	**iclogp,
2915 	struct xlog_ticket	*ticket,
2916 	int			*logoffsetp)
2917 {
2918 	int		  log_offset;
2919 	xlog_rec_header_t *head;
2920 	xlog_in_core_t	  *iclog;
2921 
2922 restart:
2923 	spin_lock(&log->l_icloglock);
2924 	if (xlog_is_shutdown(log)) {
2925 		spin_unlock(&log->l_icloglock);
2926 		return -EIO;
2927 	}
2928 
2929 	iclog = log->l_iclog;
2930 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2931 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2932 
2933 		/* Wait for log writes to have flushed */
2934 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2935 		goto restart;
2936 	}
2937 
2938 	head = &iclog->ic_header;
2939 
2940 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2941 	log_offset = iclog->ic_offset;
2942 
2943 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2944 
2945 	/* On the 1st write to an iclog, figure out lsn.  This works
2946 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2947 	 * committing to.  If the offset is set, that's how many blocks
2948 	 * must be written.
2949 	 */
2950 	if (log_offset == 0) {
2951 		ticket->t_curr_res -= log->l_iclog_hsize;
2952 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2953 		head->h_lsn = cpu_to_be64(
2954 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2955 		ASSERT(log->l_curr_block >= 0);
2956 	}
2957 
2958 	/* If there is enough room to write everything, then do it.  Otherwise,
2959 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2960 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2961 	 * until you know exactly how many bytes get copied.  Therefore, wait
2962 	 * until later to update ic_offset.
2963 	 *
2964 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2965 	 * can fit into remaining data section.
2966 	 */
2967 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2968 		int		error = 0;
2969 
2970 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2971 
2972 		/*
2973 		 * If we are the only one writing to this iclog, sync it to
2974 		 * disk.  We need to do an atomic compare and decrement here to
2975 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2976 		 * xlog_state_release_iclog() when there is more than one
2977 		 * reference to the iclog.
2978 		 */
2979 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2980 			error = xlog_state_release_iclog(log, iclog, ticket);
2981 		spin_unlock(&log->l_icloglock);
2982 		if (error)
2983 			return error;
2984 		goto restart;
2985 	}
2986 
2987 	/* Do we have enough room to write the full amount in the remainder
2988 	 * of this iclog?  Or must we continue a write on the next iclog and
2989 	 * mark this iclog as completely taken?  In the case where we switch
2990 	 * iclogs (to mark it taken), this particular iclog will release/sync
2991 	 * to disk in xlog_write().
2992 	 */
2993 	if (len <= iclog->ic_size - iclog->ic_offset)
2994 		iclog->ic_offset += len;
2995 	else
2996 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997 	*iclogp = iclog;
2998 
2999 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3000 	spin_unlock(&log->l_icloglock);
3001 
3002 	*logoffsetp = log_offset;
3003 	return 0;
3004 }
3005 
3006 /*
3007  * The first cnt-1 times a ticket goes through here we don't need to move the
3008  * grant write head because the permanent reservation has reserved cnt times the
3009  * unit amount.  Release part of current permanent unit reservation and reset
3010  * current reservation to be one units worth.  Also move grant reservation head
3011  * forward.
3012  */
3013 void
3014 xfs_log_ticket_regrant(
3015 	struct xlog		*log,
3016 	struct xlog_ticket	*ticket)
3017 {
3018 	trace_xfs_log_ticket_regrant(log, ticket);
3019 
3020 	if (ticket->t_cnt > 0)
3021 		ticket->t_cnt--;
3022 
3023 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3024 					ticket->t_curr_res);
3025 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3026 					ticket->t_curr_res);
3027 	ticket->t_curr_res = ticket->t_unit_res;
3028 
3029 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3030 
3031 	/* just return if we still have some of the pre-reserved space */
3032 	if (!ticket->t_cnt) {
3033 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3034 				     ticket->t_unit_res);
3035 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3036 
3037 		ticket->t_curr_res = ticket->t_unit_res;
3038 	}
3039 
3040 	xfs_log_ticket_put(ticket);
3041 }
3042 
3043 /*
3044  * Give back the space left from a reservation.
3045  *
3046  * All the information we need to make a correct determination of space left
3047  * is present.  For non-permanent reservations, things are quite easy.  The
3048  * count should have been decremented to zero.  We only need to deal with the
3049  * space remaining in the current reservation part of the ticket.  If the
3050  * ticket contains a permanent reservation, there may be left over space which
3051  * needs to be released.  A count of N means that N-1 refills of the current
3052  * reservation can be done before we need to ask for more space.  The first
3053  * one goes to fill up the first current reservation.  Once we run out of
3054  * space, the count will stay at zero and the only space remaining will be
3055  * in the current reservation field.
3056  */
3057 void
3058 xfs_log_ticket_ungrant(
3059 	struct xlog		*log,
3060 	struct xlog_ticket	*ticket)
3061 {
3062 	int			bytes;
3063 
3064 	trace_xfs_log_ticket_ungrant(log, ticket);
3065 
3066 	if (ticket->t_cnt > 0)
3067 		ticket->t_cnt--;
3068 
3069 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3070 
3071 	/*
3072 	 * If this is a permanent reservation ticket, we may be able to free
3073 	 * up more space based on the remaining count.
3074 	 */
3075 	bytes = ticket->t_curr_res;
3076 	if (ticket->t_cnt > 0) {
3077 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3078 		bytes += ticket->t_unit_res*ticket->t_cnt;
3079 	}
3080 
3081 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3082 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3083 
3084 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3085 
3086 	xfs_log_space_wake(log->l_mp);
3087 	xfs_log_ticket_put(ticket);
3088 }
3089 
3090 /*
3091  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3092  * the current iclog pointer to the next iclog in the ring.
3093  */
3094 void
3095 xlog_state_switch_iclogs(
3096 	struct xlog		*log,
3097 	struct xlog_in_core	*iclog,
3098 	int			eventual_size)
3099 {
3100 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3101 	assert_spin_locked(&log->l_icloglock);
3102 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3103 
3104 	if (!eventual_size)
3105 		eventual_size = iclog->ic_offset;
3106 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3107 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3108 	log->l_prev_block = log->l_curr_block;
3109 	log->l_prev_cycle = log->l_curr_cycle;
3110 
3111 	/* roll log?: ic_offset changed later */
3112 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3113 
3114 	/* Round up to next log-sunit */
3115 	if (log->l_iclog_roundoff > BBSIZE) {
3116 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3117 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3118 	}
3119 
3120 	if (log->l_curr_block >= log->l_logBBsize) {
3121 		/*
3122 		 * Rewind the current block before the cycle is bumped to make
3123 		 * sure that the combined LSN never transiently moves forward
3124 		 * when the log wraps to the next cycle. This is to support the
3125 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3126 		 * other cases should acquire l_icloglock.
3127 		 */
3128 		log->l_curr_block -= log->l_logBBsize;
3129 		ASSERT(log->l_curr_block >= 0);
3130 		smp_wmb();
3131 		log->l_curr_cycle++;
3132 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3133 			log->l_curr_cycle++;
3134 	}
3135 	ASSERT(iclog == log->l_iclog);
3136 	log->l_iclog = iclog->ic_next;
3137 }
3138 
3139 /*
3140  * Force the iclog to disk and check if the iclog has been completed before
3141  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3142  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3143  * If completion has already occurred, tell the caller so that it can avoid an
3144  * unnecessary wait on the iclog.
3145  */
3146 static int
3147 xlog_force_and_check_iclog(
3148 	struct xlog_in_core	*iclog,
3149 	bool			*completed)
3150 {
3151 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3152 	int			error;
3153 
3154 	*completed = false;
3155 	error = xlog_force_iclog(iclog);
3156 	if (error)
3157 		return error;
3158 
3159 	/*
3160 	 * If the iclog has already been completed and reused the header LSN
3161 	 * will have been rewritten by completion
3162 	 */
3163 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3164 		*completed = true;
3165 	return 0;
3166 }
3167 
3168 /*
3169  * Write out all data in the in-core log as of this exact moment in time.
3170  *
3171  * Data may be written to the in-core log during this call.  However,
3172  * we don't guarantee this data will be written out.  A change from past
3173  * implementation means this routine will *not* write out zero length LRs.
3174  *
3175  * Basically, we try and perform an intelligent scan of the in-core logs.
3176  * If we determine there is no flushable data, we just return.  There is no
3177  * flushable data if:
3178  *
3179  *	1. the current iclog is active and has no data; the previous iclog
3180  *		is in the active or dirty state.
3181  *	2. the current iclog is drity, and the previous iclog is in the
3182  *		active or dirty state.
3183  *
3184  * We may sleep if:
3185  *
3186  *	1. the current iclog is not in the active nor dirty state.
3187  *	2. the current iclog dirty, and the previous iclog is not in the
3188  *		active nor dirty state.
3189  *	3. the current iclog is active, and there is another thread writing
3190  *		to this particular iclog.
3191  *	4. a) the current iclog is active and has no other writers
3192  *	   b) when we return from flushing out this iclog, it is still
3193  *		not in the active nor dirty state.
3194  */
3195 int
3196 xfs_log_force(
3197 	struct xfs_mount	*mp,
3198 	uint			flags)
3199 {
3200 	struct xlog		*log = mp->m_log;
3201 	struct xlog_in_core	*iclog;
3202 
3203 	XFS_STATS_INC(mp, xs_log_force);
3204 	trace_xfs_log_force(mp, 0, _RET_IP_);
3205 
3206 	xlog_cil_force(log);
3207 
3208 	spin_lock(&log->l_icloglock);
3209 	if (xlog_is_shutdown(log))
3210 		goto out_error;
3211 
3212 	iclog = log->l_iclog;
3213 	trace_xlog_iclog_force(iclog, _RET_IP_);
3214 
3215 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3216 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3217 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3218 		/*
3219 		 * If the head is dirty or (active and empty), then we need to
3220 		 * look at the previous iclog.
3221 		 *
3222 		 * If the previous iclog is active or dirty we are done.  There
3223 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3224 		 * previous iclog and go to sleep.
3225 		 */
3226 		iclog = iclog->ic_prev;
3227 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3228 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3229 			/* We have exclusive access to this iclog. */
3230 			bool	completed;
3231 
3232 			if (xlog_force_and_check_iclog(iclog, &completed))
3233 				goto out_error;
3234 
3235 			if (completed)
3236 				goto out_unlock;
3237 		} else {
3238 			/*
3239 			 * Someone else is still writing to this iclog, so we
3240 			 * need to ensure that when they release the iclog it
3241 			 * gets synced immediately as we may be waiting on it.
3242 			 */
3243 			xlog_state_switch_iclogs(log, iclog, 0);
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * The iclog we are about to wait on may contain the checkpoint pushed
3249 	 * by the above xlog_cil_force() call, but it may not have been pushed
3250 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3251 	 * are flushed when this iclog is written.
3252 	 */
3253 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3254 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3255 
3256 	if (flags & XFS_LOG_SYNC)
3257 		return xlog_wait_on_iclog(iclog);
3258 out_unlock:
3259 	spin_unlock(&log->l_icloglock);
3260 	return 0;
3261 out_error:
3262 	spin_unlock(&log->l_icloglock);
3263 	return -EIO;
3264 }
3265 
3266 /*
3267  * Force the log to a specific LSN.
3268  *
3269  * If an iclog with that lsn can be found:
3270  *	If it is in the DIRTY state, just return.
3271  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3272  *		state and go to sleep or return.
3273  *	If it is in any other state, go to sleep or return.
3274  *
3275  * Synchronous forces are implemented with a wait queue.  All callers trying
3276  * to force a given lsn to disk must wait on the queue attached to the
3277  * specific in-core log.  When given in-core log finally completes its write
3278  * to disk, that thread will wake up all threads waiting on the queue.
3279  */
3280 static int
3281 xlog_force_lsn(
3282 	struct xlog		*log,
3283 	xfs_lsn_t		lsn,
3284 	uint			flags,
3285 	int			*log_flushed,
3286 	bool			already_slept)
3287 {
3288 	struct xlog_in_core	*iclog;
3289 	bool			completed;
3290 
3291 	spin_lock(&log->l_icloglock);
3292 	if (xlog_is_shutdown(log))
3293 		goto out_error;
3294 
3295 	iclog = log->l_iclog;
3296 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3297 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3298 		iclog = iclog->ic_next;
3299 		if (iclog == log->l_iclog)
3300 			goto out_unlock;
3301 	}
3302 
3303 	switch (iclog->ic_state) {
3304 	case XLOG_STATE_ACTIVE:
3305 		/*
3306 		 * We sleep here if we haven't already slept (e.g. this is the
3307 		 * first time we've looked at the correct iclog buf) and the
3308 		 * buffer before us is going to be sync'ed.  The reason for this
3309 		 * is that if we are doing sync transactions here, by waiting
3310 		 * for the previous I/O to complete, we can allow a few more
3311 		 * transactions into this iclog before we close it down.
3312 		 *
3313 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3314 		 * refcnt so we can release the log (which drops the ref count).
3315 		 * The state switch keeps new transaction commits from using
3316 		 * this buffer.  When the current commits finish writing into
3317 		 * the buffer, the refcount will drop to zero and the buffer
3318 		 * will go out then.
3319 		 */
3320 		if (!already_slept &&
3321 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3322 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3323 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3324 					&log->l_icloglock);
3325 			return -EAGAIN;
3326 		}
3327 		if (xlog_force_and_check_iclog(iclog, &completed))
3328 			goto out_error;
3329 		if (log_flushed)
3330 			*log_flushed = 1;
3331 		if (completed)
3332 			goto out_unlock;
3333 		break;
3334 	case XLOG_STATE_WANT_SYNC:
3335 		/*
3336 		 * This iclog may contain the checkpoint pushed by the
3337 		 * xlog_cil_force_seq() call, but there are other writers still
3338 		 * accessing it so it hasn't been pushed to disk yet. Like the
3339 		 * ACTIVE case above, we need to make sure caches are flushed
3340 		 * when this iclog is written.
3341 		 */
3342 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3343 		break;
3344 	default:
3345 		/*
3346 		 * The entire checkpoint was written by the CIL force and is on
3347 		 * its way to disk already. It will be stable when it
3348 		 * completes, so we don't need to manipulate caches here at all.
3349 		 * We just need to wait for completion if necessary.
3350 		 */
3351 		break;
3352 	}
3353 
3354 	if (flags & XFS_LOG_SYNC)
3355 		return xlog_wait_on_iclog(iclog);
3356 out_unlock:
3357 	spin_unlock(&log->l_icloglock);
3358 	return 0;
3359 out_error:
3360 	spin_unlock(&log->l_icloglock);
3361 	return -EIO;
3362 }
3363 
3364 /*
3365  * Force the log to a specific checkpoint sequence.
3366  *
3367  * First force the CIL so that all the required changes have been flushed to the
3368  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3369  * the iclog that needs to be flushed to stable storage. If the caller needs
3370  * a synchronous log force, we will wait on the iclog with the LSN returned by
3371  * xlog_cil_force_seq() to be completed.
3372  */
3373 int
3374 xfs_log_force_seq(
3375 	struct xfs_mount	*mp,
3376 	xfs_csn_t		seq,
3377 	uint			flags,
3378 	int			*log_flushed)
3379 {
3380 	struct xlog		*log = mp->m_log;
3381 	xfs_lsn_t		lsn;
3382 	int			ret;
3383 	ASSERT(seq != 0);
3384 
3385 	XFS_STATS_INC(mp, xs_log_force);
3386 	trace_xfs_log_force(mp, seq, _RET_IP_);
3387 
3388 	lsn = xlog_cil_force_seq(log, seq);
3389 	if (lsn == NULLCOMMITLSN)
3390 		return 0;
3391 
3392 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3393 	if (ret == -EAGAIN) {
3394 		XFS_STATS_INC(mp, xs_log_force_sleep);
3395 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3396 	}
3397 	return ret;
3398 }
3399 
3400 /*
3401  * Free a used ticket when its refcount falls to zero.
3402  */
3403 void
3404 xfs_log_ticket_put(
3405 	xlog_ticket_t	*ticket)
3406 {
3407 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3408 	if (atomic_dec_and_test(&ticket->t_ref))
3409 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3410 }
3411 
3412 xlog_ticket_t *
3413 xfs_log_ticket_get(
3414 	xlog_ticket_t	*ticket)
3415 {
3416 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3417 	atomic_inc(&ticket->t_ref);
3418 	return ticket;
3419 }
3420 
3421 /*
3422  * Figure out the total log space unit (in bytes) that would be
3423  * required for a log ticket.
3424  */
3425 static int
3426 xlog_calc_unit_res(
3427 	struct xlog		*log,
3428 	int			unit_bytes,
3429 	int			*niclogs)
3430 {
3431 	int			iclog_space;
3432 	uint			num_headers;
3433 
3434 	/*
3435 	 * Permanent reservations have up to 'cnt'-1 active log operations
3436 	 * in the log.  A unit in this case is the amount of space for one
3437 	 * of these log operations.  Normal reservations have a cnt of 1
3438 	 * and their unit amount is the total amount of space required.
3439 	 *
3440 	 * The following lines of code account for non-transaction data
3441 	 * which occupy space in the on-disk log.
3442 	 *
3443 	 * Normal form of a transaction is:
3444 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3445 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3446 	 *
3447 	 * We need to account for all the leadup data and trailer data
3448 	 * around the transaction data.
3449 	 * And then we need to account for the worst case in terms of using
3450 	 * more space.
3451 	 * The worst case will happen if:
3452 	 * - the placement of the transaction happens to be such that the
3453 	 *   roundoff is at its maximum
3454 	 * - the transaction data is synced before the commit record is synced
3455 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3456 	 *   Therefore the commit record is in its own Log Record.
3457 	 *   This can happen as the commit record is called with its
3458 	 *   own region to xlog_write().
3459 	 *   This then means that in the worst case, roundoff can happen for
3460 	 *   the commit-rec as well.
3461 	 *   The commit-rec is smaller than padding in this scenario and so it is
3462 	 *   not added separately.
3463 	 */
3464 
3465 	/* for trans header */
3466 	unit_bytes += sizeof(xlog_op_header_t);
3467 	unit_bytes += sizeof(xfs_trans_header_t);
3468 
3469 	/* for start-rec */
3470 	unit_bytes += sizeof(xlog_op_header_t);
3471 
3472 	/*
3473 	 * for LR headers - the space for data in an iclog is the size minus
3474 	 * the space used for the headers. If we use the iclog size, then we
3475 	 * undercalculate the number of headers required.
3476 	 *
3477 	 * Furthermore - the addition of op headers for split-recs might
3478 	 * increase the space required enough to require more log and op
3479 	 * headers, so take that into account too.
3480 	 *
3481 	 * IMPORTANT: This reservation makes the assumption that if this
3482 	 * transaction is the first in an iclog and hence has the LR headers
3483 	 * accounted to it, then the remaining space in the iclog is
3484 	 * exclusively for this transaction.  i.e. if the transaction is larger
3485 	 * than the iclog, it will be the only thing in that iclog.
3486 	 * Fundamentally, this means we must pass the entire log vector to
3487 	 * xlog_write to guarantee this.
3488 	 */
3489 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3490 	num_headers = howmany(unit_bytes, iclog_space);
3491 
3492 	/* for split-recs - ophdrs added when data split over LRs */
3493 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3494 
3495 	/* add extra header reservations if we overrun */
3496 	while (!num_headers ||
3497 	       howmany(unit_bytes, iclog_space) > num_headers) {
3498 		unit_bytes += sizeof(xlog_op_header_t);
3499 		num_headers++;
3500 	}
3501 	unit_bytes += log->l_iclog_hsize * num_headers;
3502 
3503 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3504 	unit_bytes += log->l_iclog_hsize;
3505 
3506 	/* roundoff padding for transaction data and one for commit record */
3507 	unit_bytes += 2 * log->l_iclog_roundoff;
3508 
3509 	if (niclogs)
3510 		*niclogs = num_headers;
3511 	return unit_bytes;
3512 }
3513 
3514 int
3515 xfs_log_calc_unit_res(
3516 	struct xfs_mount	*mp,
3517 	int			unit_bytes)
3518 {
3519 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3520 }
3521 
3522 /*
3523  * Allocate and initialise a new log ticket.
3524  */
3525 struct xlog_ticket *
3526 xlog_ticket_alloc(
3527 	struct xlog		*log,
3528 	int			unit_bytes,
3529 	int			cnt,
3530 	bool			permanent)
3531 {
3532 	struct xlog_ticket	*tic;
3533 	int			unit_res;
3534 
3535 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3536 
3537 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3538 
3539 	atomic_set(&tic->t_ref, 1);
3540 	tic->t_task		= current;
3541 	INIT_LIST_HEAD(&tic->t_queue);
3542 	tic->t_unit_res		= unit_res;
3543 	tic->t_curr_res		= unit_res;
3544 	tic->t_cnt		= cnt;
3545 	tic->t_ocnt		= cnt;
3546 	tic->t_tid		= get_random_u32();
3547 	if (permanent)
3548 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3549 
3550 	return tic;
3551 }
3552 
3553 #if defined(DEBUG)
3554 /*
3555  * Check to make sure the grant write head didn't just over lap the tail.  If
3556  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3557  * the cycles differ by exactly one and check the byte count.
3558  *
3559  * This check is run unlocked, so can give false positives. Rather than assert
3560  * on failures, use a warn-once flag and a panic tag to allow the admin to
3561  * determine if they want to panic the machine when such an error occurs. For
3562  * debug kernels this will have the same effect as using an assert but, unlinke
3563  * an assert, it can be turned off at runtime.
3564  */
3565 STATIC void
3566 xlog_verify_grant_tail(
3567 	struct xlog	*log)
3568 {
3569 	int		tail_cycle, tail_blocks;
3570 	int		cycle, space;
3571 
3572 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3573 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3574 	if (tail_cycle != cycle) {
3575 		if (cycle - 1 != tail_cycle &&
3576 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3577 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3578 				"%s: cycle - 1 != tail_cycle", __func__);
3579 		}
3580 
3581 		if (space > BBTOB(tail_blocks) &&
3582 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3583 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3584 				"%s: space > BBTOB(tail_blocks)", __func__);
3585 		}
3586 	}
3587 }
3588 
3589 /* check if it will fit */
3590 STATIC void
3591 xlog_verify_tail_lsn(
3592 	struct xlog		*log,
3593 	struct xlog_in_core	*iclog)
3594 {
3595 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3596 	int		blocks;
3597 
3598     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3599 	blocks =
3600 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3601 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3602 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3603     } else {
3604 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3605 
3606 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3607 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3608 
3609 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3610 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3611 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3612     }
3613 }
3614 
3615 /*
3616  * Perform a number of checks on the iclog before writing to disk.
3617  *
3618  * 1. Make sure the iclogs are still circular
3619  * 2. Make sure we have a good magic number
3620  * 3. Make sure we don't have magic numbers in the data
3621  * 4. Check fields of each log operation header for:
3622  *	A. Valid client identifier
3623  *	B. tid ptr value falls in valid ptr space (user space code)
3624  *	C. Length in log record header is correct according to the
3625  *		individual operation headers within record.
3626  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3627  *	log, check the preceding blocks of the physical log to make sure all
3628  *	the cycle numbers agree with the current cycle number.
3629  */
3630 STATIC void
3631 xlog_verify_iclog(
3632 	struct xlog		*log,
3633 	struct xlog_in_core	*iclog,
3634 	int			count)
3635 {
3636 	xlog_op_header_t	*ophead;
3637 	xlog_in_core_t		*icptr;
3638 	xlog_in_core_2_t	*xhdr;
3639 	void			*base_ptr, *ptr, *p;
3640 	ptrdiff_t		field_offset;
3641 	uint8_t			clientid;
3642 	int			len, i, j, k, op_len;
3643 	int			idx;
3644 
3645 	/* check validity of iclog pointers */
3646 	spin_lock(&log->l_icloglock);
3647 	icptr = log->l_iclog;
3648 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3649 		ASSERT(icptr);
3650 
3651 	if (icptr != log->l_iclog)
3652 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3653 	spin_unlock(&log->l_icloglock);
3654 
3655 	/* check log magic numbers */
3656 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3657 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3658 
3659 	base_ptr = ptr = &iclog->ic_header;
3660 	p = &iclog->ic_header;
3661 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3662 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3663 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3664 				__func__);
3665 	}
3666 
3667 	/* check fields */
3668 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3669 	base_ptr = ptr = iclog->ic_datap;
3670 	ophead = ptr;
3671 	xhdr = iclog->ic_data;
3672 	for (i = 0; i < len; i++) {
3673 		ophead = ptr;
3674 
3675 		/* clientid is only 1 byte */
3676 		p = &ophead->oh_clientid;
3677 		field_offset = p - base_ptr;
3678 		if (field_offset & 0x1ff) {
3679 			clientid = ophead->oh_clientid;
3680 		} else {
3681 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3682 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3683 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3684 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3685 				clientid = xlog_get_client_id(
3686 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3687 			} else {
3688 				clientid = xlog_get_client_id(
3689 					iclog->ic_header.h_cycle_data[idx]);
3690 			}
3691 		}
3692 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3693 			xfs_warn(log->l_mp,
3694 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3695 				__func__, i, clientid, ophead,
3696 				(unsigned long)field_offset);
3697 		}
3698 
3699 		/* check length */
3700 		p = &ophead->oh_len;
3701 		field_offset = p - base_ptr;
3702 		if (field_offset & 0x1ff) {
3703 			op_len = be32_to_cpu(ophead->oh_len);
3704 		} else {
3705 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3706 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3707 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3708 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3709 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3710 			} else {
3711 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3712 			}
3713 		}
3714 		ptr += sizeof(xlog_op_header_t) + op_len;
3715 	}
3716 }
3717 #endif
3718 
3719 /*
3720  * Perform a forced shutdown on the log.
3721  *
3722  * This can be called from low level log code to trigger a shutdown, or from the
3723  * high level mount shutdown code when the mount shuts down.
3724  *
3725  * Our main objectives here are to make sure that:
3726  *	a. if the shutdown was not due to a log IO error, flush the logs to
3727  *	   disk. Anything modified after this is ignored.
3728  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3729  *	   parties to find out. Nothing new gets queued after this is done.
3730  *	c. Tasks sleeping on log reservations, pinned objects and
3731  *	   other resources get woken up.
3732  *	d. The mount is also marked as shut down so that log triggered shutdowns
3733  *	   still behave the same as if they called xfs_forced_shutdown().
3734  *
3735  * Return true if the shutdown cause was a log IO error and we actually shut the
3736  * log down.
3737  */
3738 bool
3739 xlog_force_shutdown(
3740 	struct xlog	*log,
3741 	uint32_t	shutdown_flags)
3742 {
3743 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3744 
3745 	if (!log)
3746 		return false;
3747 
3748 	/*
3749 	 * Flush all the completed transactions to disk before marking the log
3750 	 * being shut down. We need to do this first as shutting down the log
3751 	 * before the force will prevent the log force from flushing the iclogs
3752 	 * to disk.
3753 	 *
3754 	 * When we are in recovery, there are no transactions to flush, and
3755 	 * we don't want to touch the log because we don't want to perturb the
3756 	 * current head/tail for future recovery attempts. Hence we need to
3757 	 * avoid a log force in this case.
3758 	 *
3759 	 * If we are shutting down due to a log IO error, then we must avoid
3760 	 * trying to write the log as that may just result in more IO errors and
3761 	 * an endless shutdown/force loop.
3762 	 */
3763 	if (!log_error && !xlog_in_recovery(log))
3764 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3765 
3766 	/*
3767 	 * Atomically set the shutdown state. If the shutdown state is already
3768 	 * set, there someone else is performing the shutdown and so we are done
3769 	 * here. This should never happen because we should only ever get called
3770 	 * once by the first shutdown caller.
3771 	 *
3772 	 * Much of the log state machine transitions assume that shutdown state
3773 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3774 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3775 	 * operation to set the shutdown state.
3776 	 */
3777 	spin_lock(&log->l_icloglock);
3778 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3779 		spin_unlock(&log->l_icloglock);
3780 		return false;
3781 	}
3782 	spin_unlock(&log->l_icloglock);
3783 
3784 	/*
3785 	 * If this log shutdown also sets the mount shutdown state, issue a
3786 	 * shutdown warning message.
3787 	 */
3788 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3789 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3790 "Filesystem has been shut down due to log error (0x%x).",
3791 				shutdown_flags);
3792 		xfs_alert(log->l_mp,
3793 "Please unmount the filesystem and rectify the problem(s).");
3794 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3795 			xfs_stack_trace();
3796 	}
3797 
3798 	/*
3799 	 * We don't want anybody waiting for log reservations after this. That
3800 	 * means we have to wake up everybody queued up on reserveq as well as
3801 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3802 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3803 	 * action is protected by the grant locks.
3804 	 */
3805 	xlog_grant_head_wake_all(&log->l_reserve_head);
3806 	xlog_grant_head_wake_all(&log->l_write_head);
3807 
3808 	/*
3809 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3810 	 * as if the log writes were completed. The abort handling in the log
3811 	 * item committed callback functions will do this again under lock to
3812 	 * avoid races.
3813 	 */
3814 	spin_lock(&log->l_cilp->xc_push_lock);
3815 	wake_up_all(&log->l_cilp->xc_start_wait);
3816 	wake_up_all(&log->l_cilp->xc_commit_wait);
3817 	spin_unlock(&log->l_cilp->xc_push_lock);
3818 
3819 	spin_lock(&log->l_icloglock);
3820 	xlog_state_shutdown_callbacks(log);
3821 	spin_unlock(&log->l_icloglock);
3822 
3823 	wake_up_var(&log->l_opstate);
3824 	return log_error;
3825 }
3826 
3827 STATIC int
3828 xlog_iclogs_empty(
3829 	struct xlog	*log)
3830 {
3831 	xlog_in_core_t	*iclog;
3832 
3833 	iclog = log->l_iclog;
3834 	do {
3835 		/* endianness does not matter here, zero is zero in
3836 		 * any language.
3837 		 */
3838 		if (iclog->ic_header.h_num_logops)
3839 			return 0;
3840 		iclog = iclog->ic_next;
3841 	} while (iclog != log->l_iclog);
3842 	return 1;
3843 }
3844 
3845 /*
3846  * Verify that an LSN stamped into a piece of metadata is valid. This is
3847  * intended for use in read verifiers on v5 superblocks.
3848  */
3849 bool
3850 xfs_log_check_lsn(
3851 	struct xfs_mount	*mp,
3852 	xfs_lsn_t		lsn)
3853 {
3854 	struct xlog		*log = mp->m_log;
3855 	bool			valid;
3856 
3857 	/*
3858 	 * norecovery mode skips mount-time log processing and unconditionally
3859 	 * resets the in-core LSN. We can't validate in this mode, but
3860 	 * modifications are not allowed anyways so just return true.
3861 	 */
3862 	if (xfs_has_norecovery(mp))
3863 		return true;
3864 
3865 	/*
3866 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3867 	 * handled by recovery and thus safe to ignore here.
3868 	 */
3869 	if (lsn == NULLCOMMITLSN)
3870 		return true;
3871 
3872 	valid = xlog_valid_lsn(mp->m_log, lsn);
3873 
3874 	/* warn the user about what's gone wrong before verifier failure */
3875 	if (!valid) {
3876 		spin_lock(&log->l_icloglock);
3877 		xfs_warn(mp,
3878 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3879 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3880 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3881 			 log->l_curr_cycle, log->l_curr_block);
3882 		spin_unlock(&log->l_icloglock);
3883 	}
3884 
3885 	return valid;
3886 }
3887 
3888 /*
3889  * Notify the log that we're about to start using a feature that is protected
3890  * by a log incompat feature flag.  This will prevent log covering from
3891  * clearing those flags.
3892  */
3893 void
3894 xlog_use_incompat_feat(
3895 	struct xlog		*log)
3896 {
3897 	down_read(&log->l_incompat_users);
3898 }
3899 
3900 /* Notify the log that we've finished using log incompat features. */
3901 void
3902 xlog_drop_incompat_feat(
3903 	struct xlog		*log)
3904 {
3905 	up_read(&log->l_incompat_users);
3906 }
3907