1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_log_recover.h" 20 #include "xfs_inode.h" 21 #include "xfs_trace.h" 22 #include "xfs_fsops.h" 23 #include "xfs_cksum.h" 24 #include "xfs_sysfs.h" 25 #include "xfs_sb.h" 26 27 kmem_zone_t *xfs_log_ticket_zone; 28 29 /* Local miscellaneous function prototypes */ 30 STATIC int 31 xlog_commit_record( 32 struct xlog *log, 33 struct xlog_ticket *ticket, 34 struct xlog_in_core **iclog, 35 xfs_lsn_t *commitlsnp); 36 37 STATIC struct xlog * 38 xlog_alloc_log( 39 struct xfs_mount *mp, 40 struct xfs_buftarg *log_target, 41 xfs_daddr_t blk_offset, 42 int num_bblks); 43 STATIC int 44 xlog_space_left( 45 struct xlog *log, 46 atomic64_t *head); 47 STATIC int 48 xlog_sync( 49 struct xlog *log, 50 struct xlog_in_core *iclog); 51 STATIC void 52 xlog_dealloc_log( 53 struct xlog *log); 54 55 /* local state machine functions */ 56 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 57 STATIC void 58 xlog_state_do_callback( 59 struct xlog *log, 60 int aborted, 61 struct xlog_in_core *iclog); 62 STATIC int 63 xlog_state_get_iclog_space( 64 struct xlog *log, 65 int len, 66 struct xlog_in_core **iclog, 67 struct xlog_ticket *ticket, 68 int *continued_write, 69 int *logoffsetp); 70 STATIC int 71 xlog_state_release_iclog( 72 struct xlog *log, 73 struct xlog_in_core *iclog); 74 STATIC void 75 xlog_state_switch_iclogs( 76 struct xlog *log, 77 struct xlog_in_core *iclog, 78 int eventual_size); 79 STATIC void 80 xlog_state_want_sync( 81 struct xlog *log, 82 struct xlog_in_core *iclog); 83 84 STATIC void 85 xlog_grant_push_ail( 86 struct xlog *log, 87 int need_bytes); 88 STATIC void 89 xlog_regrant_reserve_log_space( 90 struct xlog *log, 91 struct xlog_ticket *ticket); 92 STATIC void 93 xlog_ungrant_log_space( 94 struct xlog *log, 95 struct xlog_ticket *ticket); 96 97 #if defined(DEBUG) 98 STATIC void 99 xlog_verify_dest_ptr( 100 struct xlog *log, 101 void *ptr); 102 STATIC void 103 xlog_verify_grant_tail( 104 struct xlog *log); 105 STATIC void 106 xlog_verify_iclog( 107 struct xlog *log, 108 struct xlog_in_core *iclog, 109 int count, 110 bool syncing); 111 STATIC void 112 xlog_verify_tail_lsn( 113 struct xlog *log, 114 struct xlog_in_core *iclog, 115 xfs_lsn_t tail_lsn); 116 #else 117 #define xlog_verify_dest_ptr(a,b) 118 #define xlog_verify_grant_tail(a) 119 #define xlog_verify_iclog(a,b,c,d) 120 #define xlog_verify_tail_lsn(a,b,c) 121 #endif 122 123 STATIC int 124 xlog_iclogs_empty( 125 struct xlog *log); 126 127 static void 128 xlog_grant_sub_space( 129 struct xlog *log, 130 atomic64_t *head, 131 int bytes) 132 { 133 int64_t head_val = atomic64_read(head); 134 int64_t new, old; 135 136 do { 137 int cycle, space; 138 139 xlog_crack_grant_head_val(head_val, &cycle, &space); 140 141 space -= bytes; 142 if (space < 0) { 143 space += log->l_logsize; 144 cycle--; 145 } 146 147 old = head_val; 148 new = xlog_assign_grant_head_val(cycle, space); 149 head_val = atomic64_cmpxchg(head, old, new); 150 } while (head_val != old); 151 } 152 153 static void 154 xlog_grant_add_space( 155 struct xlog *log, 156 atomic64_t *head, 157 int bytes) 158 { 159 int64_t head_val = atomic64_read(head); 160 int64_t new, old; 161 162 do { 163 int tmp; 164 int cycle, space; 165 166 xlog_crack_grant_head_val(head_val, &cycle, &space); 167 168 tmp = log->l_logsize - space; 169 if (tmp > bytes) 170 space += bytes; 171 else { 172 space = bytes - tmp; 173 cycle++; 174 } 175 176 old = head_val; 177 new = xlog_assign_grant_head_val(cycle, space); 178 head_val = atomic64_cmpxchg(head, old, new); 179 } while (head_val != old); 180 } 181 182 STATIC void 183 xlog_grant_head_init( 184 struct xlog_grant_head *head) 185 { 186 xlog_assign_grant_head(&head->grant, 1, 0); 187 INIT_LIST_HEAD(&head->waiters); 188 spin_lock_init(&head->lock); 189 } 190 191 STATIC void 192 xlog_grant_head_wake_all( 193 struct xlog_grant_head *head) 194 { 195 struct xlog_ticket *tic; 196 197 spin_lock(&head->lock); 198 list_for_each_entry(tic, &head->waiters, t_queue) 199 wake_up_process(tic->t_task); 200 spin_unlock(&head->lock); 201 } 202 203 static inline int 204 xlog_ticket_reservation( 205 struct xlog *log, 206 struct xlog_grant_head *head, 207 struct xlog_ticket *tic) 208 { 209 if (head == &log->l_write_head) { 210 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 211 return tic->t_unit_res; 212 } else { 213 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 214 return tic->t_unit_res * tic->t_cnt; 215 else 216 return tic->t_unit_res; 217 } 218 } 219 220 STATIC bool 221 xlog_grant_head_wake( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 int *free_bytes) 225 { 226 struct xlog_ticket *tic; 227 int need_bytes; 228 229 list_for_each_entry(tic, &head->waiters, t_queue) { 230 need_bytes = xlog_ticket_reservation(log, head, tic); 231 if (*free_bytes < need_bytes) 232 return false; 233 234 *free_bytes -= need_bytes; 235 trace_xfs_log_grant_wake_up(log, tic); 236 wake_up_process(tic->t_task); 237 } 238 239 return true; 240 } 241 242 STATIC int 243 xlog_grant_head_wait( 244 struct xlog *log, 245 struct xlog_grant_head *head, 246 struct xlog_ticket *tic, 247 int need_bytes) __releases(&head->lock) 248 __acquires(&head->lock) 249 { 250 list_add_tail(&tic->t_queue, &head->waiters); 251 252 do { 253 if (XLOG_FORCED_SHUTDOWN(log)) 254 goto shutdown; 255 xlog_grant_push_ail(log, need_bytes); 256 257 __set_current_state(TASK_UNINTERRUPTIBLE); 258 spin_unlock(&head->lock); 259 260 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 261 262 trace_xfs_log_grant_sleep(log, tic); 263 schedule(); 264 trace_xfs_log_grant_wake(log, tic); 265 266 spin_lock(&head->lock); 267 if (XLOG_FORCED_SHUTDOWN(log)) 268 goto shutdown; 269 } while (xlog_space_left(log, &head->grant) < need_bytes); 270 271 list_del_init(&tic->t_queue); 272 return 0; 273 shutdown: 274 list_del_init(&tic->t_queue); 275 return -EIO; 276 } 277 278 /* 279 * Atomically get the log space required for a log ticket. 280 * 281 * Once a ticket gets put onto head->waiters, it will only return after the 282 * needed reservation is satisfied. 283 * 284 * This function is structured so that it has a lock free fast path. This is 285 * necessary because every new transaction reservation will come through this 286 * path. Hence any lock will be globally hot if we take it unconditionally on 287 * every pass. 288 * 289 * As tickets are only ever moved on and off head->waiters under head->lock, we 290 * only need to take that lock if we are going to add the ticket to the queue 291 * and sleep. We can avoid taking the lock if the ticket was never added to 292 * head->waiters because the t_queue list head will be empty and we hold the 293 * only reference to it so it can safely be checked unlocked. 294 */ 295 STATIC int 296 xlog_grant_head_check( 297 struct xlog *log, 298 struct xlog_grant_head *head, 299 struct xlog_ticket *tic, 300 int *need_bytes) 301 { 302 int free_bytes; 303 int error = 0; 304 305 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 306 307 /* 308 * If there are other waiters on the queue then give them a chance at 309 * logspace before us. Wake up the first waiters, if we do not wake 310 * up all the waiters then go to sleep waiting for more free space, 311 * otherwise try to get some space for this transaction. 312 */ 313 *need_bytes = xlog_ticket_reservation(log, head, tic); 314 free_bytes = xlog_space_left(log, &head->grant); 315 if (!list_empty_careful(&head->waiters)) { 316 spin_lock(&head->lock); 317 if (!xlog_grant_head_wake(log, head, &free_bytes) || 318 free_bytes < *need_bytes) { 319 error = xlog_grant_head_wait(log, head, tic, 320 *need_bytes); 321 } 322 spin_unlock(&head->lock); 323 } else if (free_bytes < *need_bytes) { 324 spin_lock(&head->lock); 325 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 326 spin_unlock(&head->lock); 327 } 328 329 return error; 330 } 331 332 static void 333 xlog_tic_reset_res(xlog_ticket_t *tic) 334 { 335 tic->t_res_num = 0; 336 tic->t_res_arr_sum = 0; 337 tic->t_res_num_ophdrs = 0; 338 } 339 340 static void 341 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 342 { 343 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 344 /* add to overflow and start again */ 345 tic->t_res_o_flow += tic->t_res_arr_sum; 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 } 349 350 tic->t_res_arr[tic->t_res_num].r_len = len; 351 tic->t_res_arr[tic->t_res_num].r_type = type; 352 tic->t_res_arr_sum += len; 353 tic->t_res_num++; 354 } 355 356 /* 357 * Replenish the byte reservation required by moving the grant write head. 358 */ 359 int 360 xfs_log_regrant( 361 struct xfs_mount *mp, 362 struct xlog_ticket *tic) 363 { 364 struct xlog *log = mp->m_log; 365 int need_bytes; 366 int error = 0; 367 368 if (XLOG_FORCED_SHUTDOWN(log)) 369 return -EIO; 370 371 XFS_STATS_INC(mp, xs_try_logspace); 372 373 /* 374 * This is a new transaction on the ticket, so we need to change the 375 * transaction ID so that the next transaction has a different TID in 376 * the log. Just add one to the existing tid so that we can see chains 377 * of rolling transactions in the log easily. 378 */ 379 tic->t_tid++; 380 381 xlog_grant_push_ail(log, tic->t_unit_res); 382 383 tic->t_curr_res = tic->t_unit_res; 384 xlog_tic_reset_res(tic); 385 386 if (tic->t_cnt > 0) 387 return 0; 388 389 trace_xfs_log_regrant(log, tic); 390 391 error = xlog_grant_head_check(log, &log->l_write_head, tic, 392 &need_bytes); 393 if (error) 394 goto out_error; 395 396 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 397 trace_xfs_log_regrant_exit(log, tic); 398 xlog_verify_grant_tail(log); 399 return 0; 400 401 out_error: 402 /* 403 * If we are failing, make sure the ticket doesn't have any current 404 * reservations. We don't want to add this back when the ticket/ 405 * transaction gets cancelled. 406 */ 407 tic->t_curr_res = 0; 408 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 409 return error; 410 } 411 412 /* 413 * Reserve log space and return a ticket corresponding the reservation. 414 * 415 * Each reservation is going to reserve extra space for a log record header. 416 * When writes happen to the on-disk log, we don't subtract the length of the 417 * log record header from any reservation. By wasting space in each 418 * reservation, we prevent over allocation problems. 419 */ 420 int 421 xfs_log_reserve( 422 struct xfs_mount *mp, 423 int unit_bytes, 424 int cnt, 425 struct xlog_ticket **ticp, 426 uint8_t client, 427 bool permanent) 428 { 429 struct xlog *log = mp->m_log; 430 struct xlog_ticket *tic; 431 int need_bytes; 432 int error = 0; 433 434 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 435 436 if (XLOG_FORCED_SHUTDOWN(log)) 437 return -EIO; 438 439 XFS_STATS_INC(mp, xs_try_logspace); 440 441 ASSERT(*ticp == NULL); 442 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 443 KM_SLEEP | KM_MAYFAIL); 444 if (!tic) 445 return -ENOMEM; 446 447 *ticp = tic; 448 449 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 450 : tic->t_unit_res); 451 452 trace_xfs_log_reserve(log, tic); 453 454 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 455 &need_bytes); 456 if (error) 457 goto out_error; 458 459 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 460 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 461 trace_xfs_log_reserve_exit(log, tic); 462 xlog_verify_grant_tail(log); 463 return 0; 464 465 out_error: 466 /* 467 * If we are failing, make sure the ticket doesn't have any current 468 * reservations. We don't want to add this back when the ticket/ 469 * transaction gets cancelled. 470 */ 471 tic->t_curr_res = 0; 472 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 473 return error; 474 } 475 476 477 /* 478 * NOTES: 479 * 480 * 1. currblock field gets updated at startup and after in-core logs 481 * marked as with WANT_SYNC. 482 */ 483 484 /* 485 * This routine is called when a user of a log manager ticket is done with 486 * the reservation. If the ticket was ever used, then a commit record for 487 * the associated transaction is written out as a log operation header with 488 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 489 * a given ticket. If the ticket was one with a permanent reservation, then 490 * a few operations are done differently. Permanent reservation tickets by 491 * default don't release the reservation. They just commit the current 492 * transaction with the belief that the reservation is still needed. A flag 493 * must be passed in before permanent reservations are actually released. 494 * When these type of tickets are not released, they need to be set into 495 * the inited state again. By doing this, a start record will be written 496 * out when the next write occurs. 497 */ 498 xfs_lsn_t 499 xfs_log_done( 500 struct xfs_mount *mp, 501 struct xlog_ticket *ticket, 502 struct xlog_in_core **iclog, 503 bool regrant) 504 { 505 struct xlog *log = mp->m_log; 506 xfs_lsn_t lsn = 0; 507 508 if (XLOG_FORCED_SHUTDOWN(log) || 509 /* 510 * If nothing was ever written, don't write out commit record. 511 * If we get an error, just continue and give back the log ticket. 512 */ 513 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 514 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 515 lsn = (xfs_lsn_t) -1; 516 regrant = false; 517 } 518 519 520 if (!regrant) { 521 trace_xfs_log_done_nonperm(log, ticket); 522 523 /* 524 * Release ticket if not permanent reservation or a specific 525 * request has been made to release a permanent reservation. 526 */ 527 xlog_ungrant_log_space(log, ticket); 528 } else { 529 trace_xfs_log_done_perm(log, ticket); 530 531 xlog_regrant_reserve_log_space(log, ticket); 532 /* If this ticket was a permanent reservation and we aren't 533 * trying to release it, reset the inited flags; so next time 534 * we write, a start record will be written out. 535 */ 536 ticket->t_flags |= XLOG_TIC_INITED; 537 } 538 539 xfs_log_ticket_put(ticket); 540 return lsn; 541 } 542 543 /* 544 * Attaches a new iclog I/O completion callback routine during 545 * transaction commit. If the log is in error state, a non-zero 546 * return code is handed back and the caller is responsible for 547 * executing the callback at an appropriate time. 548 */ 549 int 550 xfs_log_notify( 551 struct xlog_in_core *iclog, 552 xfs_log_callback_t *cb) 553 { 554 int abortflg; 555 556 spin_lock(&iclog->ic_callback_lock); 557 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 558 if (!abortflg) { 559 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 560 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 561 cb->cb_next = NULL; 562 *(iclog->ic_callback_tail) = cb; 563 iclog->ic_callback_tail = &(cb->cb_next); 564 } 565 spin_unlock(&iclog->ic_callback_lock); 566 return abortflg; 567 } 568 569 int 570 xfs_log_release_iclog( 571 struct xfs_mount *mp, 572 struct xlog_in_core *iclog) 573 { 574 if (xlog_state_release_iclog(mp->m_log, iclog)) { 575 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 576 return -EIO; 577 } 578 579 return 0; 580 } 581 582 /* 583 * Mount a log filesystem 584 * 585 * mp - ubiquitous xfs mount point structure 586 * log_target - buftarg of on-disk log device 587 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 588 * num_bblocks - Number of BBSIZE blocks in on-disk log 589 * 590 * Return error or zero. 591 */ 592 int 593 xfs_log_mount( 594 xfs_mount_t *mp, 595 xfs_buftarg_t *log_target, 596 xfs_daddr_t blk_offset, 597 int num_bblks) 598 { 599 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 600 int error = 0; 601 int min_logfsbs; 602 603 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 604 xfs_notice(mp, "Mounting V%d Filesystem", 605 XFS_SB_VERSION_NUM(&mp->m_sb)); 606 } else { 607 xfs_notice(mp, 608 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 609 XFS_SB_VERSION_NUM(&mp->m_sb)); 610 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 611 } 612 613 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 614 if (IS_ERR(mp->m_log)) { 615 error = PTR_ERR(mp->m_log); 616 goto out; 617 } 618 619 /* 620 * Validate the given log space and drop a critical message via syslog 621 * if the log size is too small that would lead to some unexpected 622 * situations in transaction log space reservation stage. 623 * 624 * Note: we can't just reject the mount if the validation fails. This 625 * would mean that people would have to downgrade their kernel just to 626 * remedy the situation as there is no way to grow the log (short of 627 * black magic surgery with xfs_db). 628 * 629 * We can, however, reject mounts for CRC format filesystems, as the 630 * mkfs binary being used to make the filesystem should never create a 631 * filesystem with a log that is too small. 632 */ 633 min_logfsbs = xfs_log_calc_minimum_size(mp); 634 635 if (mp->m_sb.sb_logblocks < min_logfsbs) { 636 xfs_warn(mp, 637 "Log size %d blocks too small, minimum size is %d blocks", 638 mp->m_sb.sb_logblocks, min_logfsbs); 639 error = -EINVAL; 640 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 641 xfs_warn(mp, 642 "Log size %d blocks too large, maximum size is %lld blocks", 643 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 644 error = -EINVAL; 645 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 646 xfs_warn(mp, 647 "log size %lld bytes too large, maximum size is %lld bytes", 648 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 649 XFS_MAX_LOG_BYTES); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logsunit > 1 && 652 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 653 xfs_warn(mp, 654 "log stripe unit %u bytes must be a multiple of block size", 655 mp->m_sb.sb_logsunit); 656 error = -EINVAL; 657 fatal = true; 658 } 659 if (error) { 660 /* 661 * Log check errors are always fatal on v5; or whenever bad 662 * metadata leads to a crash. 663 */ 664 if (fatal) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 747 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 748 749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 751 return 0; 752 } else if (readonly) { 753 /* Allow unlinked processing to proceed */ 754 mp->m_flags &= ~XFS_MOUNT_RDONLY; 755 } 756 757 /* 758 * During the second phase of log recovery, we need iget and 759 * iput to behave like they do for an active filesystem. 760 * xfs_fs_drop_inode needs to be able to prevent the deletion 761 * of inodes before we're done replaying log items on those 762 * inodes. Turn it off immediately after recovery finishes 763 * so that we don't leak the quota inodes if subsequent mount 764 * activities fail. 765 * 766 * We let all inodes involved in redo item processing end up on 767 * the LRU instead of being evicted immediately so that if we do 768 * something to an unlinked inode, the irele won't cause 769 * premature truncation and freeing of the inode, which results 770 * in log recovery failure. We have to evict the unreferenced 771 * lru inodes after clearing SB_ACTIVE because we don't 772 * otherwise clean up the lru if there's a subsequent failure in 773 * xfs_mountfs, which leads to us leaking the inodes if nothing 774 * else (e.g. quotacheck) references the inodes before the 775 * mount failure occurs. 776 */ 777 mp->m_super->s_flags |= SB_ACTIVE; 778 error = xlog_recover_finish(mp->m_log); 779 if (!error) 780 xfs_log_work_queue(mp); 781 mp->m_super->s_flags &= ~SB_ACTIVE; 782 evict_inodes(mp->m_super); 783 784 /* 785 * Drain the buffer LRU after log recovery. This is required for v4 786 * filesystems to avoid leaving around buffers with NULL verifier ops, 787 * but we do it unconditionally to make sure we're always in a clean 788 * cache state after mount. 789 * 790 * Don't push in the error case because the AIL may have pending intents 791 * that aren't removed until recovery is cancelled. 792 */ 793 if (!error && recovered) { 794 xfs_log_force(mp, XFS_LOG_SYNC); 795 xfs_ail_push_all_sync(mp->m_ail); 796 } 797 xfs_wait_buftarg(mp->m_ddev_targp); 798 799 if (readonly) 800 mp->m_flags |= XFS_MOUNT_RDONLY; 801 802 return error; 803 } 804 805 /* 806 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 807 * the log. 808 */ 809 int 810 xfs_log_mount_cancel( 811 struct xfs_mount *mp) 812 { 813 int error; 814 815 error = xlog_recover_cancel(mp->m_log); 816 xfs_log_unmount(mp); 817 818 return error; 819 } 820 821 /* 822 * Final log writes as part of unmount. 823 * 824 * Mark the filesystem clean as unmount happens. Note that during relocation 825 * this routine needs to be executed as part of source-bag while the 826 * deallocation must not be done until source-end. 827 */ 828 829 /* 830 * Unmount record used to have a string "Unmount filesystem--" in the 831 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 832 * We just write the magic number now since that particular field isn't 833 * currently architecture converted and "Unmount" is a bit foo. 834 * As far as I know, there weren't any dependencies on the old behaviour. 835 */ 836 837 static int 838 xfs_log_unmount_write(xfs_mount_t *mp) 839 { 840 struct xlog *log = mp->m_log; 841 xlog_in_core_t *iclog; 842 #ifdef DEBUG 843 xlog_in_core_t *first_iclog; 844 #endif 845 xlog_ticket_t *tic = NULL; 846 xfs_lsn_t lsn; 847 int error; 848 849 /* 850 * Don't write out unmount record on norecovery mounts or ro devices. 851 * Or, if we are doing a forced umount (typically because of IO errors). 852 */ 853 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 854 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 855 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 856 return 0; 857 } 858 859 error = xfs_log_force(mp, XFS_LOG_SYNC); 860 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 861 862 #ifdef DEBUG 863 first_iclog = iclog = log->l_iclog; 864 do { 865 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 866 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 867 ASSERT(iclog->ic_offset == 0); 868 } 869 iclog = iclog->ic_next; 870 } while (iclog != first_iclog); 871 #endif 872 if (! (XLOG_FORCED_SHUTDOWN(log))) { 873 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 874 if (!error) { 875 /* the data section must be 32 bit size aligned */ 876 struct { 877 uint16_t magic; 878 uint16_t pad1; 879 uint32_t pad2; /* may as well make it 64 bits */ 880 } magic = { 881 .magic = XLOG_UNMOUNT_TYPE, 882 }; 883 struct xfs_log_iovec reg = { 884 .i_addr = &magic, 885 .i_len = sizeof(magic), 886 .i_type = XLOG_REG_TYPE_UNMOUNT, 887 }; 888 struct xfs_log_vec vec = { 889 .lv_niovecs = 1, 890 .lv_iovecp = ®, 891 }; 892 893 /* remove inited flag, and account for space used */ 894 tic->t_flags = 0; 895 tic->t_curr_res -= sizeof(magic); 896 error = xlog_write(log, &vec, tic, &lsn, 897 NULL, XLOG_UNMOUNT_TRANS); 898 /* 899 * At this point, we're umounting anyway, 900 * so there's no point in transitioning log state 901 * to IOERROR. Just continue... 902 */ 903 } 904 905 if (error) 906 xfs_alert(mp, "%s: unmount record failed", __func__); 907 908 909 spin_lock(&log->l_icloglock); 910 iclog = log->l_iclog; 911 atomic_inc(&iclog->ic_refcnt); 912 xlog_state_want_sync(log, iclog); 913 spin_unlock(&log->l_icloglock); 914 error = xlog_state_release_iclog(log, iclog); 915 916 spin_lock(&log->l_icloglock); 917 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 918 iclog->ic_state == XLOG_STATE_DIRTY)) { 919 if (!XLOG_FORCED_SHUTDOWN(log)) { 920 xlog_wait(&iclog->ic_force_wait, 921 &log->l_icloglock); 922 } else { 923 spin_unlock(&log->l_icloglock); 924 } 925 } else { 926 spin_unlock(&log->l_icloglock); 927 } 928 if (tic) { 929 trace_xfs_log_umount_write(log, tic); 930 xlog_ungrant_log_space(log, tic); 931 xfs_log_ticket_put(tic); 932 } 933 } else { 934 /* 935 * We're already in forced_shutdown mode, couldn't 936 * even attempt to write out the unmount transaction. 937 * 938 * Go through the motions of sync'ing and releasing 939 * the iclog, even though no I/O will actually happen, 940 * we need to wait for other log I/Os that may already 941 * be in progress. Do this as a separate section of 942 * code so we'll know if we ever get stuck here that 943 * we're in this odd situation of trying to unmount 944 * a file system that went into forced_shutdown as 945 * the result of an unmount.. 946 */ 947 spin_lock(&log->l_icloglock); 948 iclog = log->l_iclog; 949 atomic_inc(&iclog->ic_refcnt); 950 951 xlog_state_want_sync(log, iclog); 952 spin_unlock(&log->l_icloglock); 953 error = xlog_state_release_iclog(log, iclog); 954 955 spin_lock(&log->l_icloglock); 956 957 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 958 || iclog->ic_state == XLOG_STATE_DIRTY 959 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 960 961 xlog_wait(&iclog->ic_force_wait, 962 &log->l_icloglock); 963 } else { 964 spin_unlock(&log->l_icloglock); 965 } 966 } 967 968 return error; 969 } /* xfs_log_unmount_write */ 970 971 /* 972 * Empty the log for unmount/freeze. 973 * 974 * To do this, we first need to shut down the background log work so it is not 975 * trying to cover the log as we clean up. We then need to unpin all objects in 976 * the log so we can then flush them out. Once they have completed their IO and 977 * run the callbacks removing themselves from the AIL, we can write the unmount 978 * record. 979 */ 980 void 981 xfs_log_quiesce( 982 struct xfs_mount *mp) 983 { 984 cancel_delayed_work_sync(&mp->m_log->l_work); 985 xfs_log_force(mp, XFS_LOG_SYNC); 986 987 /* 988 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 989 * will push it, xfs_wait_buftarg() will not wait for it. Further, 990 * xfs_buf_iowait() cannot be used because it was pushed with the 991 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 992 * the IO to complete. 993 */ 994 xfs_ail_push_all_sync(mp->m_ail); 995 xfs_wait_buftarg(mp->m_ddev_targp); 996 xfs_buf_lock(mp->m_sb_bp); 997 xfs_buf_unlock(mp->m_sb_bp); 998 999 xfs_log_unmount_write(mp); 1000 } 1001 1002 /* 1003 * Shut down and release the AIL and Log. 1004 * 1005 * During unmount, we need to ensure we flush all the dirty metadata objects 1006 * from the AIL so that the log is empty before we write the unmount record to 1007 * the log. Once this is done, we can tear down the AIL and the log. 1008 */ 1009 void 1010 xfs_log_unmount( 1011 struct xfs_mount *mp) 1012 { 1013 xfs_log_quiesce(mp); 1014 1015 xfs_trans_ail_destroy(mp); 1016 1017 xfs_sysfs_del(&mp->m_log->l_kobj); 1018 1019 xlog_dealloc_log(mp->m_log); 1020 } 1021 1022 void 1023 xfs_log_item_init( 1024 struct xfs_mount *mp, 1025 struct xfs_log_item *item, 1026 int type, 1027 const struct xfs_item_ops *ops) 1028 { 1029 item->li_mountp = mp; 1030 item->li_ailp = mp->m_ail; 1031 item->li_type = type; 1032 item->li_ops = ops; 1033 item->li_lv = NULL; 1034 1035 INIT_LIST_HEAD(&item->li_ail); 1036 INIT_LIST_HEAD(&item->li_cil); 1037 INIT_LIST_HEAD(&item->li_bio_list); 1038 INIT_LIST_HEAD(&item->li_trans); 1039 } 1040 1041 /* 1042 * Wake up processes waiting for log space after we have moved the log tail. 1043 */ 1044 void 1045 xfs_log_space_wake( 1046 struct xfs_mount *mp) 1047 { 1048 struct xlog *log = mp->m_log; 1049 int free_bytes; 1050 1051 if (XLOG_FORCED_SHUTDOWN(log)) 1052 return; 1053 1054 if (!list_empty_careful(&log->l_write_head.waiters)) { 1055 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1056 1057 spin_lock(&log->l_write_head.lock); 1058 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1059 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1060 spin_unlock(&log->l_write_head.lock); 1061 } 1062 1063 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1064 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1065 1066 spin_lock(&log->l_reserve_head.lock); 1067 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1068 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1069 spin_unlock(&log->l_reserve_head.lock); 1070 } 1071 } 1072 1073 /* 1074 * Determine if we have a transaction that has gone to disk that needs to be 1075 * covered. To begin the transition to the idle state firstly the log needs to 1076 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1077 * we start attempting to cover the log. 1078 * 1079 * Only if we are then in a state where covering is needed, the caller is 1080 * informed that dummy transactions are required to move the log into the idle 1081 * state. 1082 * 1083 * If there are any items in the AIl or CIL, then we do not want to attempt to 1084 * cover the log as we may be in a situation where there isn't log space 1085 * available to run a dummy transaction and this can lead to deadlocks when the 1086 * tail of the log is pinned by an item that is modified in the CIL. Hence 1087 * there's no point in running a dummy transaction at this point because we 1088 * can't start trying to idle the log until both the CIL and AIL are empty. 1089 */ 1090 static int 1091 xfs_log_need_covered(xfs_mount_t *mp) 1092 { 1093 struct xlog *log = mp->m_log; 1094 int needed = 0; 1095 1096 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1097 return 0; 1098 1099 if (!xlog_cil_empty(log)) 1100 return 0; 1101 1102 spin_lock(&log->l_icloglock); 1103 switch (log->l_covered_state) { 1104 case XLOG_STATE_COVER_DONE: 1105 case XLOG_STATE_COVER_DONE2: 1106 case XLOG_STATE_COVER_IDLE: 1107 break; 1108 case XLOG_STATE_COVER_NEED: 1109 case XLOG_STATE_COVER_NEED2: 1110 if (xfs_ail_min_lsn(log->l_ailp)) 1111 break; 1112 if (!xlog_iclogs_empty(log)) 1113 break; 1114 1115 needed = 1; 1116 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1117 log->l_covered_state = XLOG_STATE_COVER_DONE; 1118 else 1119 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1120 break; 1121 default: 1122 needed = 1; 1123 break; 1124 } 1125 spin_unlock(&log->l_icloglock); 1126 return needed; 1127 } 1128 1129 /* 1130 * We may be holding the log iclog lock upon entering this routine. 1131 */ 1132 xfs_lsn_t 1133 xlog_assign_tail_lsn_locked( 1134 struct xfs_mount *mp) 1135 { 1136 struct xlog *log = mp->m_log; 1137 struct xfs_log_item *lip; 1138 xfs_lsn_t tail_lsn; 1139 1140 assert_spin_locked(&mp->m_ail->ail_lock); 1141 1142 /* 1143 * To make sure we always have a valid LSN for the log tail we keep 1144 * track of the last LSN which was committed in log->l_last_sync_lsn, 1145 * and use that when the AIL was empty. 1146 */ 1147 lip = xfs_ail_min(mp->m_ail); 1148 if (lip) 1149 tail_lsn = lip->li_lsn; 1150 else 1151 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1152 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1153 atomic64_set(&log->l_tail_lsn, tail_lsn); 1154 return tail_lsn; 1155 } 1156 1157 xfs_lsn_t 1158 xlog_assign_tail_lsn( 1159 struct xfs_mount *mp) 1160 { 1161 xfs_lsn_t tail_lsn; 1162 1163 spin_lock(&mp->m_ail->ail_lock); 1164 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1165 spin_unlock(&mp->m_ail->ail_lock); 1166 1167 return tail_lsn; 1168 } 1169 1170 /* 1171 * Return the space in the log between the tail and the head. The head 1172 * is passed in the cycle/bytes formal parms. In the special case where 1173 * the reserve head has wrapped passed the tail, this calculation is no 1174 * longer valid. In this case, just return 0 which means there is no space 1175 * in the log. This works for all places where this function is called 1176 * with the reserve head. Of course, if the write head were to ever 1177 * wrap the tail, we should blow up. Rather than catch this case here, 1178 * we depend on other ASSERTions in other parts of the code. XXXmiken 1179 * 1180 * This code also handles the case where the reservation head is behind 1181 * the tail. The details of this case are described below, but the end 1182 * result is that we return the size of the log as the amount of space left. 1183 */ 1184 STATIC int 1185 xlog_space_left( 1186 struct xlog *log, 1187 atomic64_t *head) 1188 { 1189 int free_bytes; 1190 int tail_bytes; 1191 int tail_cycle; 1192 int head_cycle; 1193 int head_bytes; 1194 1195 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1196 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1197 tail_bytes = BBTOB(tail_bytes); 1198 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1199 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1200 else if (tail_cycle + 1 < head_cycle) 1201 return 0; 1202 else if (tail_cycle < head_cycle) { 1203 ASSERT(tail_cycle == (head_cycle - 1)); 1204 free_bytes = tail_bytes - head_bytes; 1205 } else { 1206 /* 1207 * The reservation head is behind the tail. 1208 * In this case we just want to return the size of the 1209 * log as the amount of space left. 1210 */ 1211 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1212 xfs_alert(log->l_mp, 1213 " tail_cycle = %d, tail_bytes = %d", 1214 tail_cycle, tail_bytes); 1215 xfs_alert(log->l_mp, 1216 " GH cycle = %d, GH bytes = %d", 1217 head_cycle, head_bytes); 1218 ASSERT(0); 1219 free_bytes = log->l_logsize; 1220 } 1221 return free_bytes; 1222 } 1223 1224 1225 /* 1226 * Log function which is called when an io completes. 1227 * 1228 * The log manager needs its own routine, in order to control what 1229 * happens with the buffer after the write completes. 1230 */ 1231 static void 1232 xlog_iodone(xfs_buf_t *bp) 1233 { 1234 struct xlog_in_core *iclog = bp->b_log_item; 1235 struct xlog *l = iclog->ic_log; 1236 int aborted = 0; 1237 1238 /* 1239 * Race to shutdown the filesystem if we see an error or the iclog is in 1240 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1241 * CRC errors into log recovery. 1242 */ 1243 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1244 iclog->ic_state & XLOG_STATE_IOABORT) { 1245 if (iclog->ic_state & XLOG_STATE_IOABORT) 1246 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1247 1248 xfs_buf_ioerror_alert(bp, __func__); 1249 xfs_buf_stale(bp); 1250 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1251 /* 1252 * This flag will be propagated to the trans-committed 1253 * callback routines to let them know that the log-commit 1254 * didn't succeed. 1255 */ 1256 aborted = XFS_LI_ABORTED; 1257 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1258 aborted = XFS_LI_ABORTED; 1259 } 1260 1261 /* log I/O is always issued ASYNC */ 1262 ASSERT(bp->b_flags & XBF_ASYNC); 1263 xlog_state_done_syncing(iclog, aborted); 1264 1265 /* 1266 * drop the buffer lock now that we are done. Nothing references 1267 * the buffer after this, so an unmount waiting on this lock can now 1268 * tear it down safely. As such, it is unsafe to reference the buffer 1269 * (bp) after the unlock as we could race with it being freed. 1270 */ 1271 xfs_buf_unlock(bp); 1272 } 1273 1274 /* 1275 * Return size of each in-core log record buffer. 1276 * 1277 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1278 * 1279 * If the filesystem blocksize is too large, we may need to choose a 1280 * larger size since the directory code currently logs entire blocks. 1281 */ 1282 1283 STATIC void 1284 xlog_get_iclog_buffer_size( 1285 struct xfs_mount *mp, 1286 struct xlog *log) 1287 { 1288 int size; 1289 int xhdrs; 1290 1291 if (mp->m_logbufs <= 0) 1292 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1293 else 1294 log->l_iclog_bufs = mp->m_logbufs; 1295 1296 /* 1297 * Buffer size passed in from mount system call. 1298 */ 1299 if (mp->m_logbsize > 0) { 1300 size = log->l_iclog_size = mp->m_logbsize; 1301 log->l_iclog_size_log = 0; 1302 while (size != 1) { 1303 log->l_iclog_size_log++; 1304 size >>= 1; 1305 } 1306 1307 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1308 /* # headers = size / 32k 1309 * one header holds cycles from 32k of data 1310 */ 1311 1312 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1313 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1314 xhdrs++; 1315 log->l_iclog_hsize = xhdrs << BBSHIFT; 1316 log->l_iclog_heads = xhdrs; 1317 } else { 1318 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1319 log->l_iclog_hsize = BBSIZE; 1320 log->l_iclog_heads = 1; 1321 } 1322 goto done; 1323 } 1324 1325 /* All machines use 32kB buffers by default. */ 1326 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1327 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1328 1329 /* the default log size is 16k or 32k which is one header sector */ 1330 log->l_iclog_hsize = BBSIZE; 1331 log->l_iclog_heads = 1; 1332 1333 done: 1334 /* are we being asked to make the sizes selected above visible? */ 1335 if (mp->m_logbufs == 0) 1336 mp->m_logbufs = log->l_iclog_bufs; 1337 if (mp->m_logbsize == 0) 1338 mp->m_logbsize = log->l_iclog_size; 1339 } /* xlog_get_iclog_buffer_size */ 1340 1341 1342 void 1343 xfs_log_work_queue( 1344 struct xfs_mount *mp) 1345 { 1346 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1347 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1348 } 1349 1350 /* 1351 * Every sync period we need to unpin all items in the AIL and push them to 1352 * disk. If there is nothing dirty, then we might need to cover the log to 1353 * indicate that the filesystem is idle. 1354 */ 1355 static void 1356 xfs_log_worker( 1357 struct work_struct *work) 1358 { 1359 struct xlog *log = container_of(to_delayed_work(work), 1360 struct xlog, l_work); 1361 struct xfs_mount *mp = log->l_mp; 1362 1363 /* dgc: errors ignored - not fatal and nowhere to report them */ 1364 if (xfs_log_need_covered(mp)) { 1365 /* 1366 * Dump a transaction into the log that contains no real change. 1367 * This is needed to stamp the current tail LSN into the log 1368 * during the covering operation. 1369 * 1370 * We cannot use an inode here for this - that will push dirty 1371 * state back up into the VFS and then periodic inode flushing 1372 * will prevent log covering from making progress. Hence we 1373 * synchronously log the superblock instead to ensure the 1374 * superblock is immediately unpinned and can be written back. 1375 */ 1376 xfs_sync_sb(mp, true); 1377 } else 1378 xfs_log_force(mp, 0); 1379 1380 /* start pushing all the metadata that is currently dirty */ 1381 xfs_ail_push_all(mp->m_ail); 1382 1383 /* queue us up again */ 1384 xfs_log_work_queue(mp); 1385 } 1386 1387 /* 1388 * This routine initializes some of the log structure for a given mount point. 1389 * Its primary purpose is to fill in enough, so recovery can occur. However, 1390 * some other stuff may be filled in too. 1391 */ 1392 STATIC struct xlog * 1393 xlog_alloc_log( 1394 struct xfs_mount *mp, 1395 struct xfs_buftarg *log_target, 1396 xfs_daddr_t blk_offset, 1397 int num_bblks) 1398 { 1399 struct xlog *log; 1400 xlog_rec_header_t *head; 1401 xlog_in_core_t **iclogp; 1402 xlog_in_core_t *iclog, *prev_iclog=NULL; 1403 xfs_buf_t *bp; 1404 int i; 1405 int error = -ENOMEM; 1406 uint log2_size = 0; 1407 1408 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1409 if (!log) { 1410 xfs_warn(mp, "Log allocation failed: No memory!"); 1411 goto out; 1412 } 1413 1414 log->l_mp = mp; 1415 log->l_targ = log_target; 1416 log->l_logsize = BBTOB(num_bblks); 1417 log->l_logBBstart = blk_offset; 1418 log->l_logBBsize = num_bblks; 1419 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1420 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1421 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1422 1423 log->l_prev_block = -1; 1424 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1425 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1426 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1427 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1428 1429 xlog_grant_head_init(&log->l_reserve_head); 1430 xlog_grant_head_init(&log->l_write_head); 1431 1432 error = -EFSCORRUPTED; 1433 if (xfs_sb_version_hassector(&mp->m_sb)) { 1434 log2_size = mp->m_sb.sb_logsectlog; 1435 if (log2_size < BBSHIFT) { 1436 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1437 log2_size, BBSHIFT); 1438 goto out_free_log; 1439 } 1440 1441 log2_size -= BBSHIFT; 1442 if (log2_size > mp->m_sectbb_log) { 1443 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1444 log2_size, mp->m_sectbb_log); 1445 goto out_free_log; 1446 } 1447 1448 /* for larger sector sizes, must have v2 or external log */ 1449 if (log2_size && log->l_logBBstart > 0 && 1450 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1451 xfs_warn(mp, 1452 "log sector size (0x%x) invalid for configuration.", 1453 log2_size); 1454 goto out_free_log; 1455 } 1456 } 1457 log->l_sectBBsize = 1 << log2_size; 1458 1459 xlog_get_iclog_buffer_size(mp, log); 1460 1461 /* 1462 * Use a NULL block for the extra log buffer used during splits so that 1463 * it will trigger errors if we ever try to do IO on it without first 1464 * having set it up properly. 1465 */ 1466 error = -ENOMEM; 1467 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1468 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1469 if (!bp) 1470 goto out_free_log; 1471 1472 /* 1473 * The iclogbuf buffer locks are held over IO but we are not going to do 1474 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1475 * when appropriately. 1476 */ 1477 ASSERT(xfs_buf_islocked(bp)); 1478 xfs_buf_unlock(bp); 1479 1480 /* use high priority wq for log I/O completion */ 1481 bp->b_ioend_wq = mp->m_log_workqueue; 1482 bp->b_iodone = xlog_iodone; 1483 log->l_xbuf = bp; 1484 1485 spin_lock_init(&log->l_icloglock); 1486 init_waitqueue_head(&log->l_flush_wait); 1487 1488 iclogp = &log->l_iclog; 1489 /* 1490 * The amount of memory to allocate for the iclog structure is 1491 * rather funky due to the way the structure is defined. It is 1492 * done this way so that we can use different sizes for machines 1493 * with different amounts of memory. See the definition of 1494 * xlog_in_core_t in xfs_log_priv.h for details. 1495 */ 1496 ASSERT(log->l_iclog_size >= 4096); 1497 for (i=0; i < log->l_iclog_bufs; i++) { 1498 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1499 if (!*iclogp) 1500 goto out_free_iclog; 1501 1502 iclog = *iclogp; 1503 iclog->ic_prev = prev_iclog; 1504 prev_iclog = iclog; 1505 1506 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1507 BTOBB(log->l_iclog_size), 1508 XBF_NO_IOACCT); 1509 if (!bp) 1510 goto out_free_iclog; 1511 1512 ASSERT(xfs_buf_islocked(bp)); 1513 xfs_buf_unlock(bp); 1514 1515 /* use high priority wq for log I/O completion */ 1516 bp->b_ioend_wq = mp->m_log_workqueue; 1517 bp->b_iodone = xlog_iodone; 1518 iclog->ic_bp = bp; 1519 iclog->ic_data = bp->b_addr; 1520 #ifdef DEBUG 1521 log->l_iclog_bak[i] = &iclog->ic_header; 1522 #endif 1523 head = &iclog->ic_header; 1524 memset(head, 0, sizeof(xlog_rec_header_t)); 1525 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1526 head->h_version = cpu_to_be32( 1527 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1528 head->h_size = cpu_to_be32(log->l_iclog_size); 1529 /* new fields */ 1530 head->h_fmt = cpu_to_be32(XLOG_FMT); 1531 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1532 1533 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1534 iclog->ic_state = XLOG_STATE_ACTIVE; 1535 iclog->ic_log = log; 1536 atomic_set(&iclog->ic_refcnt, 0); 1537 spin_lock_init(&iclog->ic_callback_lock); 1538 iclog->ic_callback_tail = &(iclog->ic_callback); 1539 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1540 1541 init_waitqueue_head(&iclog->ic_force_wait); 1542 init_waitqueue_head(&iclog->ic_write_wait); 1543 1544 iclogp = &iclog->ic_next; 1545 } 1546 *iclogp = log->l_iclog; /* complete ring */ 1547 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1548 1549 error = xlog_cil_init(log); 1550 if (error) 1551 goto out_free_iclog; 1552 return log; 1553 1554 out_free_iclog: 1555 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1556 prev_iclog = iclog->ic_next; 1557 if (iclog->ic_bp) 1558 xfs_buf_free(iclog->ic_bp); 1559 kmem_free(iclog); 1560 } 1561 spinlock_destroy(&log->l_icloglock); 1562 xfs_buf_free(log->l_xbuf); 1563 out_free_log: 1564 kmem_free(log); 1565 out: 1566 return ERR_PTR(error); 1567 } /* xlog_alloc_log */ 1568 1569 1570 /* 1571 * Write out the commit record of a transaction associated with the given 1572 * ticket. Return the lsn of the commit record. 1573 */ 1574 STATIC int 1575 xlog_commit_record( 1576 struct xlog *log, 1577 struct xlog_ticket *ticket, 1578 struct xlog_in_core **iclog, 1579 xfs_lsn_t *commitlsnp) 1580 { 1581 struct xfs_mount *mp = log->l_mp; 1582 int error; 1583 struct xfs_log_iovec reg = { 1584 .i_addr = NULL, 1585 .i_len = 0, 1586 .i_type = XLOG_REG_TYPE_COMMIT, 1587 }; 1588 struct xfs_log_vec vec = { 1589 .lv_niovecs = 1, 1590 .lv_iovecp = ®, 1591 }; 1592 1593 ASSERT_ALWAYS(iclog); 1594 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1595 XLOG_COMMIT_TRANS); 1596 if (error) 1597 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1598 return error; 1599 } 1600 1601 /* 1602 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1603 * log space. This code pushes on the lsn which would supposedly free up 1604 * the 25% which we want to leave free. We may need to adopt a policy which 1605 * pushes on an lsn which is further along in the log once we reach the high 1606 * water mark. In this manner, we would be creating a low water mark. 1607 */ 1608 STATIC void 1609 xlog_grant_push_ail( 1610 struct xlog *log, 1611 int need_bytes) 1612 { 1613 xfs_lsn_t threshold_lsn = 0; 1614 xfs_lsn_t last_sync_lsn; 1615 int free_blocks; 1616 int free_bytes; 1617 int threshold_block; 1618 int threshold_cycle; 1619 int free_threshold; 1620 1621 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1622 1623 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1624 free_blocks = BTOBBT(free_bytes); 1625 1626 /* 1627 * Set the threshold for the minimum number of free blocks in the 1628 * log to the maximum of what the caller needs, one quarter of the 1629 * log, and 256 blocks. 1630 */ 1631 free_threshold = BTOBB(need_bytes); 1632 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1633 free_threshold = max(free_threshold, 256); 1634 if (free_blocks >= free_threshold) 1635 return; 1636 1637 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1638 &threshold_block); 1639 threshold_block += free_threshold; 1640 if (threshold_block >= log->l_logBBsize) { 1641 threshold_block -= log->l_logBBsize; 1642 threshold_cycle += 1; 1643 } 1644 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1645 threshold_block); 1646 /* 1647 * Don't pass in an lsn greater than the lsn of the last 1648 * log record known to be on disk. Use a snapshot of the last sync lsn 1649 * so that it doesn't change between the compare and the set. 1650 */ 1651 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1652 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1653 threshold_lsn = last_sync_lsn; 1654 1655 /* 1656 * Get the transaction layer to kick the dirty buffers out to 1657 * disk asynchronously. No point in trying to do this if 1658 * the filesystem is shutting down. 1659 */ 1660 if (!XLOG_FORCED_SHUTDOWN(log)) 1661 xfs_ail_push(log->l_ailp, threshold_lsn); 1662 } 1663 1664 /* 1665 * Stamp cycle number in every block 1666 */ 1667 STATIC void 1668 xlog_pack_data( 1669 struct xlog *log, 1670 struct xlog_in_core *iclog, 1671 int roundoff) 1672 { 1673 int i, j, k; 1674 int size = iclog->ic_offset + roundoff; 1675 __be32 cycle_lsn; 1676 char *dp; 1677 1678 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1679 1680 dp = iclog->ic_datap; 1681 for (i = 0; i < BTOBB(size); i++) { 1682 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1683 break; 1684 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1685 *(__be32 *)dp = cycle_lsn; 1686 dp += BBSIZE; 1687 } 1688 1689 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1690 xlog_in_core_2_t *xhdr = iclog->ic_data; 1691 1692 for ( ; i < BTOBB(size); i++) { 1693 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1694 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1695 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1696 *(__be32 *)dp = cycle_lsn; 1697 dp += BBSIZE; 1698 } 1699 1700 for (i = 1; i < log->l_iclog_heads; i++) 1701 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1702 } 1703 } 1704 1705 /* 1706 * Calculate the checksum for a log buffer. 1707 * 1708 * This is a little more complicated than it should be because the various 1709 * headers and the actual data are non-contiguous. 1710 */ 1711 __le32 1712 xlog_cksum( 1713 struct xlog *log, 1714 struct xlog_rec_header *rhead, 1715 char *dp, 1716 int size) 1717 { 1718 uint32_t crc; 1719 1720 /* first generate the crc for the record header ... */ 1721 crc = xfs_start_cksum_update((char *)rhead, 1722 sizeof(struct xlog_rec_header), 1723 offsetof(struct xlog_rec_header, h_crc)); 1724 1725 /* ... then for additional cycle data for v2 logs ... */ 1726 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1727 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1728 int i; 1729 int xheads; 1730 1731 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1732 if (size % XLOG_HEADER_CYCLE_SIZE) 1733 xheads++; 1734 1735 for (i = 1; i < xheads; i++) { 1736 crc = crc32c(crc, &xhdr[i].hic_xheader, 1737 sizeof(struct xlog_rec_ext_header)); 1738 } 1739 } 1740 1741 /* ... and finally for the payload */ 1742 crc = crc32c(crc, dp, size); 1743 1744 return xfs_end_cksum(crc); 1745 } 1746 1747 /* 1748 * The bdstrat callback function for log bufs. This gives us a central 1749 * place to trap bufs in case we get hit by a log I/O error and need to 1750 * shutdown. Actually, in practice, even when we didn't get a log error, 1751 * we transition the iclogs to IOERROR state *after* flushing all existing 1752 * iclogs to disk. This is because we don't want anymore new transactions to be 1753 * started or completed afterwards. 1754 * 1755 * We lock the iclogbufs here so that we can serialise against IO completion 1756 * during unmount. We might be processing a shutdown triggered during unmount, 1757 * and that can occur asynchronously to the unmount thread, and hence we need to 1758 * ensure that completes before tearing down the iclogbufs. Hence we need to 1759 * hold the buffer lock across the log IO to acheive that. 1760 */ 1761 STATIC int 1762 xlog_bdstrat( 1763 struct xfs_buf *bp) 1764 { 1765 struct xlog_in_core *iclog = bp->b_log_item; 1766 1767 xfs_buf_lock(bp); 1768 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1769 xfs_buf_ioerror(bp, -EIO); 1770 xfs_buf_stale(bp); 1771 xfs_buf_ioend(bp); 1772 /* 1773 * It would seem logical to return EIO here, but we rely on 1774 * the log state machine to propagate I/O errors instead of 1775 * doing it here. Similarly, IO completion will unlock the 1776 * buffer, so we don't do it here. 1777 */ 1778 return 0; 1779 } 1780 1781 xfs_buf_submit(bp); 1782 return 0; 1783 } 1784 1785 /* 1786 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1787 * fashion. Previously, we should have moved the current iclog 1788 * ptr in the log to point to the next available iclog. This allows further 1789 * write to continue while this code syncs out an iclog ready to go. 1790 * Before an in-core log can be written out, the data section must be scanned 1791 * to save away the 1st word of each BBSIZE block into the header. We replace 1792 * it with the current cycle count. Each BBSIZE block is tagged with the 1793 * cycle count because there in an implicit assumption that drives will 1794 * guarantee that entire 512 byte blocks get written at once. In other words, 1795 * we can't have part of a 512 byte block written and part not written. By 1796 * tagging each block, we will know which blocks are valid when recovering 1797 * after an unclean shutdown. 1798 * 1799 * This routine is single threaded on the iclog. No other thread can be in 1800 * this routine with the same iclog. Changing contents of iclog can there- 1801 * fore be done without grabbing the state machine lock. Updating the global 1802 * log will require grabbing the lock though. 1803 * 1804 * The entire log manager uses a logical block numbering scheme. Only 1805 * log_sync (and then only bwrite()) know about the fact that the log may 1806 * not start with block zero on a given device. The log block start offset 1807 * is added immediately before calling bwrite(). 1808 */ 1809 1810 STATIC int 1811 xlog_sync( 1812 struct xlog *log, 1813 struct xlog_in_core *iclog) 1814 { 1815 xfs_buf_t *bp; 1816 int i; 1817 uint count; /* byte count of bwrite */ 1818 uint count_init; /* initial count before roundup */ 1819 int roundoff; /* roundoff to BB or stripe */ 1820 int split = 0; /* split write into two regions */ 1821 int error; 1822 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1823 int size; 1824 1825 XFS_STATS_INC(log->l_mp, xs_log_writes); 1826 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1827 1828 /* Add for LR header */ 1829 count_init = log->l_iclog_hsize + iclog->ic_offset; 1830 1831 /* Round out the log write size */ 1832 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1833 /* we have a v2 stripe unit to use */ 1834 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1835 } else { 1836 count = BBTOB(BTOBB(count_init)); 1837 } 1838 roundoff = count - count_init; 1839 ASSERT(roundoff >= 0); 1840 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1841 roundoff < log->l_mp->m_sb.sb_logsunit) 1842 || 1843 (log->l_mp->m_sb.sb_logsunit <= 1 && 1844 roundoff < BBTOB(1))); 1845 1846 /* move grant heads by roundoff in sync */ 1847 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1848 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1849 1850 /* put cycle number in every block */ 1851 xlog_pack_data(log, iclog, roundoff); 1852 1853 /* real byte length */ 1854 size = iclog->ic_offset; 1855 if (v2) 1856 size += roundoff; 1857 iclog->ic_header.h_len = cpu_to_be32(size); 1858 1859 bp = iclog->ic_bp; 1860 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1861 1862 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1863 1864 /* Do we need to split this write into 2 parts? */ 1865 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1866 char *dptr; 1867 1868 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1869 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1870 iclog->ic_bwritecnt = 2; 1871 1872 /* 1873 * Bump the cycle numbers at the start of each block in the 1874 * part of the iclog that ends up in the buffer that gets 1875 * written to the start of the log. 1876 * 1877 * Watch out for the header magic number case, though. 1878 */ 1879 dptr = (char *)&iclog->ic_header + count; 1880 for (i = 0; i < split; i += BBSIZE) { 1881 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1882 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1883 cycle++; 1884 *(__be32 *)dptr = cpu_to_be32(cycle); 1885 1886 dptr += BBSIZE; 1887 } 1888 } else { 1889 iclog->ic_bwritecnt = 1; 1890 } 1891 1892 /* calculcate the checksum */ 1893 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1894 iclog->ic_datap, size); 1895 /* 1896 * Intentionally corrupt the log record CRC based on the error injection 1897 * frequency, if defined. This facilitates testing log recovery in the 1898 * event of torn writes. Hence, set the IOABORT state to abort the log 1899 * write on I/O completion and shutdown the fs. The subsequent mount 1900 * detects the bad CRC and attempts to recover. 1901 */ 1902 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1903 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1904 iclog->ic_state |= XLOG_STATE_IOABORT; 1905 xfs_warn(log->l_mp, 1906 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1907 be64_to_cpu(iclog->ic_header.h_lsn)); 1908 } 1909 1910 bp->b_io_length = BTOBB(count); 1911 bp->b_log_item = iclog; 1912 bp->b_flags &= ~XBF_FLUSH; 1913 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1914 1915 /* 1916 * Flush the data device before flushing the log to make sure all meta 1917 * data written back from the AIL actually made it to disk before 1918 * stamping the new log tail LSN into the log buffer. For an external 1919 * log we need to issue the flush explicitly, and unfortunately 1920 * synchronously here; for an internal log we can simply use the block 1921 * layer state machine for preflushes. 1922 */ 1923 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1924 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1925 else 1926 bp->b_flags |= XBF_FLUSH; 1927 1928 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1929 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1930 1931 xlog_verify_iclog(log, iclog, count, true); 1932 1933 /* account for log which doesn't start at block #0 */ 1934 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1935 1936 /* 1937 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1938 * is shutting down. 1939 */ 1940 error = xlog_bdstrat(bp); 1941 if (error) { 1942 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1943 return error; 1944 } 1945 if (split) { 1946 bp = iclog->ic_log->l_xbuf; 1947 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1948 xfs_buf_associate_memory(bp, 1949 (char *)&iclog->ic_header + count, split); 1950 bp->b_log_item = iclog; 1951 bp->b_flags &= ~XBF_FLUSH; 1952 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1953 1954 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1955 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1956 1957 /* account for internal log which doesn't start at block #0 */ 1958 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1959 error = xlog_bdstrat(bp); 1960 if (error) { 1961 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1962 return error; 1963 } 1964 } 1965 return 0; 1966 } /* xlog_sync */ 1967 1968 /* 1969 * Deallocate a log structure 1970 */ 1971 STATIC void 1972 xlog_dealloc_log( 1973 struct xlog *log) 1974 { 1975 xlog_in_core_t *iclog, *next_iclog; 1976 int i; 1977 1978 xlog_cil_destroy(log); 1979 1980 /* 1981 * Cycle all the iclogbuf locks to make sure all log IO completion 1982 * is done before we tear down these buffers. 1983 */ 1984 iclog = log->l_iclog; 1985 for (i = 0; i < log->l_iclog_bufs; i++) { 1986 xfs_buf_lock(iclog->ic_bp); 1987 xfs_buf_unlock(iclog->ic_bp); 1988 iclog = iclog->ic_next; 1989 } 1990 1991 /* 1992 * Always need to ensure that the extra buffer does not point to memory 1993 * owned by another log buffer before we free it. Also, cycle the lock 1994 * first to ensure we've completed IO on it. 1995 */ 1996 xfs_buf_lock(log->l_xbuf); 1997 xfs_buf_unlock(log->l_xbuf); 1998 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1999 xfs_buf_free(log->l_xbuf); 2000 2001 iclog = log->l_iclog; 2002 for (i = 0; i < log->l_iclog_bufs; i++) { 2003 xfs_buf_free(iclog->ic_bp); 2004 next_iclog = iclog->ic_next; 2005 kmem_free(iclog); 2006 iclog = next_iclog; 2007 } 2008 spinlock_destroy(&log->l_icloglock); 2009 2010 log->l_mp->m_log = NULL; 2011 kmem_free(log); 2012 } /* xlog_dealloc_log */ 2013 2014 /* 2015 * Update counters atomically now that memcpy is done. 2016 */ 2017 /* ARGSUSED */ 2018 static inline void 2019 xlog_state_finish_copy( 2020 struct xlog *log, 2021 struct xlog_in_core *iclog, 2022 int record_cnt, 2023 int copy_bytes) 2024 { 2025 spin_lock(&log->l_icloglock); 2026 2027 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2028 iclog->ic_offset += copy_bytes; 2029 2030 spin_unlock(&log->l_icloglock); 2031 } /* xlog_state_finish_copy */ 2032 2033 2034 2035 2036 /* 2037 * print out info relating to regions written which consume 2038 * the reservation 2039 */ 2040 void 2041 xlog_print_tic_res( 2042 struct xfs_mount *mp, 2043 struct xlog_ticket *ticket) 2044 { 2045 uint i; 2046 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2047 2048 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2049 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2050 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2051 REG_TYPE_STR(BFORMAT, "bformat"), 2052 REG_TYPE_STR(BCHUNK, "bchunk"), 2053 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2054 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2055 REG_TYPE_STR(IFORMAT, "iformat"), 2056 REG_TYPE_STR(ICORE, "icore"), 2057 REG_TYPE_STR(IEXT, "iext"), 2058 REG_TYPE_STR(IBROOT, "ibroot"), 2059 REG_TYPE_STR(ILOCAL, "ilocal"), 2060 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2061 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2062 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2063 REG_TYPE_STR(QFORMAT, "qformat"), 2064 REG_TYPE_STR(DQUOT, "dquot"), 2065 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2066 REG_TYPE_STR(LRHEADER, "LR header"), 2067 REG_TYPE_STR(UNMOUNT, "unmount"), 2068 REG_TYPE_STR(COMMIT, "commit"), 2069 REG_TYPE_STR(TRANSHDR, "trans header"), 2070 REG_TYPE_STR(ICREATE, "inode create") 2071 }; 2072 #undef REG_TYPE_STR 2073 2074 xfs_warn(mp, "ticket reservation summary:"); 2075 xfs_warn(mp, " unit res = %d bytes", 2076 ticket->t_unit_res); 2077 xfs_warn(mp, " current res = %d bytes", 2078 ticket->t_curr_res); 2079 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2080 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2081 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2082 ticket->t_res_num_ophdrs, ophdr_spc); 2083 xfs_warn(mp, " ophdr + reg = %u bytes", 2084 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2085 xfs_warn(mp, " num regions = %u", 2086 ticket->t_res_num); 2087 2088 for (i = 0; i < ticket->t_res_num; i++) { 2089 uint r_type = ticket->t_res_arr[i].r_type; 2090 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2091 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2092 "bad-rtype" : res_type_str[r_type]), 2093 ticket->t_res_arr[i].r_len); 2094 } 2095 } 2096 2097 /* 2098 * Print a summary of the transaction. 2099 */ 2100 void 2101 xlog_print_trans( 2102 struct xfs_trans *tp) 2103 { 2104 struct xfs_mount *mp = tp->t_mountp; 2105 struct xfs_log_item *lip; 2106 2107 /* dump core transaction and ticket info */ 2108 xfs_warn(mp, "transaction summary:"); 2109 xfs_warn(mp, " log res = %d", tp->t_log_res); 2110 xfs_warn(mp, " log count = %d", tp->t_log_count); 2111 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2112 2113 xlog_print_tic_res(mp, tp->t_ticket); 2114 2115 /* dump each log item */ 2116 list_for_each_entry(lip, &tp->t_items, li_trans) { 2117 struct xfs_log_vec *lv = lip->li_lv; 2118 struct xfs_log_iovec *vec; 2119 int i; 2120 2121 xfs_warn(mp, "log item: "); 2122 xfs_warn(mp, " type = 0x%x", lip->li_type); 2123 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2124 if (!lv) 2125 continue; 2126 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2127 xfs_warn(mp, " size = %d", lv->lv_size); 2128 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2129 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2130 2131 /* dump each iovec for the log item */ 2132 vec = lv->lv_iovecp; 2133 for (i = 0; i < lv->lv_niovecs; i++) { 2134 int dumplen = min(vec->i_len, 32); 2135 2136 xfs_warn(mp, " iovec[%d]", i); 2137 xfs_warn(mp, " type = 0x%x", vec->i_type); 2138 xfs_warn(mp, " len = %d", vec->i_len); 2139 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2140 xfs_hex_dump(vec->i_addr, dumplen); 2141 2142 vec++; 2143 } 2144 } 2145 } 2146 2147 /* 2148 * Calculate the potential space needed by the log vector. Each region gets 2149 * its own xlog_op_header_t and may need to be double word aligned. 2150 */ 2151 static int 2152 xlog_write_calc_vec_length( 2153 struct xlog_ticket *ticket, 2154 struct xfs_log_vec *log_vector) 2155 { 2156 struct xfs_log_vec *lv; 2157 int headers = 0; 2158 int len = 0; 2159 int i; 2160 2161 /* acct for start rec of xact */ 2162 if (ticket->t_flags & XLOG_TIC_INITED) 2163 headers++; 2164 2165 for (lv = log_vector; lv; lv = lv->lv_next) { 2166 /* we don't write ordered log vectors */ 2167 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2168 continue; 2169 2170 headers += lv->lv_niovecs; 2171 2172 for (i = 0; i < lv->lv_niovecs; i++) { 2173 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2174 2175 len += vecp->i_len; 2176 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2177 } 2178 } 2179 2180 ticket->t_res_num_ophdrs += headers; 2181 len += headers * sizeof(struct xlog_op_header); 2182 2183 return len; 2184 } 2185 2186 /* 2187 * If first write for transaction, insert start record We can't be trying to 2188 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2189 */ 2190 static int 2191 xlog_write_start_rec( 2192 struct xlog_op_header *ophdr, 2193 struct xlog_ticket *ticket) 2194 { 2195 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2196 return 0; 2197 2198 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2199 ophdr->oh_clientid = ticket->t_clientid; 2200 ophdr->oh_len = 0; 2201 ophdr->oh_flags = XLOG_START_TRANS; 2202 ophdr->oh_res2 = 0; 2203 2204 ticket->t_flags &= ~XLOG_TIC_INITED; 2205 2206 return sizeof(struct xlog_op_header); 2207 } 2208 2209 static xlog_op_header_t * 2210 xlog_write_setup_ophdr( 2211 struct xlog *log, 2212 struct xlog_op_header *ophdr, 2213 struct xlog_ticket *ticket, 2214 uint flags) 2215 { 2216 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2217 ophdr->oh_clientid = ticket->t_clientid; 2218 ophdr->oh_res2 = 0; 2219 2220 /* are we copying a commit or unmount record? */ 2221 ophdr->oh_flags = flags; 2222 2223 /* 2224 * We've seen logs corrupted with bad transaction client ids. This 2225 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2226 * and shut down the filesystem. 2227 */ 2228 switch (ophdr->oh_clientid) { 2229 case XFS_TRANSACTION: 2230 case XFS_VOLUME: 2231 case XFS_LOG: 2232 break; 2233 default: 2234 xfs_warn(log->l_mp, 2235 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2236 ophdr->oh_clientid, ticket); 2237 return NULL; 2238 } 2239 2240 return ophdr; 2241 } 2242 2243 /* 2244 * Set up the parameters of the region copy into the log. This has 2245 * to handle region write split across multiple log buffers - this 2246 * state is kept external to this function so that this code can 2247 * be written in an obvious, self documenting manner. 2248 */ 2249 static int 2250 xlog_write_setup_copy( 2251 struct xlog_ticket *ticket, 2252 struct xlog_op_header *ophdr, 2253 int space_available, 2254 int space_required, 2255 int *copy_off, 2256 int *copy_len, 2257 int *last_was_partial_copy, 2258 int *bytes_consumed) 2259 { 2260 int still_to_copy; 2261 2262 still_to_copy = space_required - *bytes_consumed; 2263 *copy_off = *bytes_consumed; 2264 2265 if (still_to_copy <= space_available) { 2266 /* write of region completes here */ 2267 *copy_len = still_to_copy; 2268 ophdr->oh_len = cpu_to_be32(*copy_len); 2269 if (*last_was_partial_copy) 2270 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2271 *last_was_partial_copy = 0; 2272 *bytes_consumed = 0; 2273 return 0; 2274 } 2275 2276 /* partial write of region, needs extra log op header reservation */ 2277 *copy_len = space_available; 2278 ophdr->oh_len = cpu_to_be32(*copy_len); 2279 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2280 if (*last_was_partial_copy) 2281 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2282 *bytes_consumed += *copy_len; 2283 (*last_was_partial_copy)++; 2284 2285 /* account for new log op header */ 2286 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2287 ticket->t_res_num_ophdrs++; 2288 2289 return sizeof(struct xlog_op_header); 2290 } 2291 2292 static int 2293 xlog_write_copy_finish( 2294 struct xlog *log, 2295 struct xlog_in_core *iclog, 2296 uint flags, 2297 int *record_cnt, 2298 int *data_cnt, 2299 int *partial_copy, 2300 int *partial_copy_len, 2301 int log_offset, 2302 struct xlog_in_core **commit_iclog) 2303 { 2304 if (*partial_copy) { 2305 /* 2306 * This iclog has already been marked WANT_SYNC by 2307 * xlog_state_get_iclog_space. 2308 */ 2309 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2310 *record_cnt = 0; 2311 *data_cnt = 0; 2312 return xlog_state_release_iclog(log, iclog); 2313 } 2314 2315 *partial_copy = 0; 2316 *partial_copy_len = 0; 2317 2318 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2319 /* no more space in this iclog - push it. */ 2320 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2321 *record_cnt = 0; 2322 *data_cnt = 0; 2323 2324 spin_lock(&log->l_icloglock); 2325 xlog_state_want_sync(log, iclog); 2326 spin_unlock(&log->l_icloglock); 2327 2328 if (!commit_iclog) 2329 return xlog_state_release_iclog(log, iclog); 2330 ASSERT(flags & XLOG_COMMIT_TRANS); 2331 *commit_iclog = iclog; 2332 } 2333 2334 return 0; 2335 } 2336 2337 /* 2338 * Write some region out to in-core log 2339 * 2340 * This will be called when writing externally provided regions or when 2341 * writing out a commit record for a given transaction. 2342 * 2343 * General algorithm: 2344 * 1. Find total length of this write. This may include adding to the 2345 * lengths passed in. 2346 * 2. Check whether we violate the tickets reservation. 2347 * 3. While writing to this iclog 2348 * A. Reserve as much space in this iclog as can get 2349 * B. If this is first write, save away start lsn 2350 * C. While writing this region: 2351 * 1. If first write of transaction, write start record 2352 * 2. Write log operation header (header per region) 2353 * 3. Find out if we can fit entire region into this iclog 2354 * 4. Potentially, verify destination memcpy ptr 2355 * 5. Memcpy (partial) region 2356 * 6. If partial copy, release iclog; otherwise, continue 2357 * copying more regions into current iclog 2358 * 4. Mark want sync bit (in simulation mode) 2359 * 5. Release iclog for potential flush to on-disk log. 2360 * 2361 * ERRORS: 2362 * 1. Panic if reservation is overrun. This should never happen since 2363 * reservation amounts are generated internal to the filesystem. 2364 * NOTES: 2365 * 1. Tickets are single threaded data structures. 2366 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2367 * syncing routine. When a single log_write region needs to span 2368 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2369 * on all log operation writes which don't contain the end of the 2370 * region. The XLOG_END_TRANS bit is used for the in-core log 2371 * operation which contains the end of the continued log_write region. 2372 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2373 * we don't really know exactly how much space will be used. As a result, 2374 * we don't update ic_offset until the end when we know exactly how many 2375 * bytes have been written out. 2376 */ 2377 int 2378 xlog_write( 2379 struct xlog *log, 2380 struct xfs_log_vec *log_vector, 2381 struct xlog_ticket *ticket, 2382 xfs_lsn_t *start_lsn, 2383 struct xlog_in_core **commit_iclog, 2384 uint flags) 2385 { 2386 struct xlog_in_core *iclog = NULL; 2387 struct xfs_log_iovec *vecp; 2388 struct xfs_log_vec *lv; 2389 int len; 2390 int index; 2391 int partial_copy = 0; 2392 int partial_copy_len = 0; 2393 int contwr = 0; 2394 int record_cnt = 0; 2395 int data_cnt = 0; 2396 int error; 2397 2398 *start_lsn = 0; 2399 2400 len = xlog_write_calc_vec_length(ticket, log_vector); 2401 2402 /* 2403 * Region headers and bytes are already accounted for. 2404 * We only need to take into account start records and 2405 * split regions in this function. 2406 */ 2407 if (ticket->t_flags & XLOG_TIC_INITED) 2408 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2409 2410 /* 2411 * Commit record headers need to be accounted for. These 2412 * come in as separate writes so are easy to detect. 2413 */ 2414 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2415 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2416 2417 if (ticket->t_curr_res < 0) { 2418 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2419 "ctx ticket reservation ran out. Need to up reservation"); 2420 xlog_print_tic_res(log->l_mp, ticket); 2421 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2422 } 2423 2424 index = 0; 2425 lv = log_vector; 2426 vecp = lv->lv_iovecp; 2427 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2428 void *ptr; 2429 int log_offset; 2430 2431 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2432 &contwr, &log_offset); 2433 if (error) 2434 return error; 2435 2436 ASSERT(log_offset <= iclog->ic_size - 1); 2437 ptr = iclog->ic_datap + log_offset; 2438 2439 /* start_lsn is the first lsn written to. That's all we need. */ 2440 if (!*start_lsn) 2441 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2442 2443 /* 2444 * This loop writes out as many regions as can fit in the amount 2445 * of space which was allocated by xlog_state_get_iclog_space(). 2446 */ 2447 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2448 struct xfs_log_iovec *reg; 2449 struct xlog_op_header *ophdr; 2450 int start_rec_copy; 2451 int copy_len; 2452 int copy_off; 2453 bool ordered = false; 2454 2455 /* ordered log vectors have no regions to write */ 2456 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2457 ASSERT(lv->lv_niovecs == 0); 2458 ordered = true; 2459 goto next_lv; 2460 } 2461 2462 reg = &vecp[index]; 2463 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2464 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2465 2466 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2467 if (start_rec_copy) { 2468 record_cnt++; 2469 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2470 start_rec_copy); 2471 } 2472 2473 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2474 if (!ophdr) 2475 return -EIO; 2476 2477 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2478 sizeof(struct xlog_op_header)); 2479 2480 len += xlog_write_setup_copy(ticket, ophdr, 2481 iclog->ic_size-log_offset, 2482 reg->i_len, 2483 ©_off, ©_len, 2484 &partial_copy, 2485 &partial_copy_len); 2486 xlog_verify_dest_ptr(log, ptr); 2487 2488 /* 2489 * Copy region. 2490 * 2491 * Unmount records just log an opheader, so can have 2492 * empty payloads with no data region to copy. Hence we 2493 * only copy the payload if the vector says it has data 2494 * to copy. 2495 */ 2496 ASSERT(copy_len >= 0); 2497 if (copy_len > 0) { 2498 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2499 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2500 copy_len); 2501 } 2502 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2503 record_cnt++; 2504 data_cnt += contwr ? copy_len : 0; 2505 2506 error = xlog_write_copy_finish(log, iclog, flags, 2507 &record_cnt, &data_cnt, 2508 &partial_copy, 2509 &partial_copy_len, 2510 log_offset, 2511 commit_iclog); 2512 if (error) 2513 return error; 2514 2515 /* 2516 * if we had a partial copy, we need to get more iclog 2517 * space but we don't want to increment the region 2518 * index because there is still more is this region to 2519 * write. 2520 * 2521 * If we completed writing this region, and we flushed 2522 * the iclog (indicated by resetting of the record 2523 * count), then we also need to get more log space. If 2524 * this was the last record, though, we are done and 2525 * can just return. 2526 */ 2527 if (partial_copy) 2528 break; 2529 2530 if (++index == lv->lv_niovecs) { 2531 next_lv: 2532 lv = lv->lv_next; 2533 index = 0; 2534 if (lv) 2535 vecp = lv->lv_iovecp; 2536 } 2537 if (record_cnt == 0 && !ordered) { 2538 if (!lv) 2539 return 0; 2540 break; 2541 } 2542 } 2543 } 2544 2545 ASSERT(len == 0); 2546 2547 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2548 if (!commit_iclog) 2549 return xlog_state_release_iclog(log, iclog); 2550 2551 ASSERT(flags & XLOG_COMMIT_TRANS); 2552 *commit_iclog = iclog; 2553 return 0; 2554 } 2555 2556 2557 /***************************************************************************** 2558 * 2559 * State Machine functions 2560 * 2561 ***************************************************************************** 2562 */ 2563 2564 /* Clean iclogs starting from the head. This ordering must be 2565 * maintained, so an iclog doesn't become ACTIVE beyond one that 2566 * is SYNCING. This is also required to maintain the notion that we use 2567 * a ordered wait queue to hold off would be writers to the log when every 2568 * iclog is trying to sync to disk. 2569 * 2570 * State Change: DIRTY -> ACTIVE 2571 */ 2572 STATIC void 2573 xlog_state_clean_log( 2574 struct xlog *log) 2575 { 2576 xlog_in_core_t *iclog; 2577 int changed = 0; 2578 2579 iclog = log->l_iclog; 2580 do { 2581 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2582 iclog->ic_state = XLOG_STATE_ACTIVE; 2583 iclog->ic_offset = 0; 2584 ASSERT(iclog->ic_callback == NULL); 2585 /* 2586 * If the number of ops in this iclog indicate it just 2587 * contains the dummy transaction, we can 2588 * change state into IDLE (the second time around). 2589 * Otherwise we should change the state into 2590 * NEED a dummy. 2591 * We don't need to cover the dummy. 2592 */ 2593 if (!changed && 2594 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2595 XLOG_COVER_OPS)) { 2596 changed = 1; 2597 } else { 2598 /* 2599 * We have two dirty iclogs so start over 2600 * This could also be num of ops indicates 2601 * this is not the dummy going out. 2602 */ 2603 changed = 2; 2604 } 2605 iclog->ic_header.h_num_logops = 0; 2606 memset(iclog->ic_header.h_cycle_data, 0, 2607 sizeof(iclog->ic_header.h_cycle_data)); 2608 iclog->ic_header.h_lsn = 0; 2609 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2610 /* do nothing */; 2611 else 2612 break; /* stop cleaning */ 2613 iclog = iclog->ic_next; 2614 } while (iclog != log->l_iclog); 2615 2616 /* log is locked when we are called */ 2617 /* 2618 * Change state for the dummy log recording. 2619 * We usually go to NEED. But we go to NEED2 if the changed indicates 2620 * we are done writing the dummy record. 2621 * If we are done with the second dummy recored (DONE2), then 2622 * we go to IDLE. 2623 */ 2624 if (changed) { 2625 switch (log->l_covered_state) { 2626 case XLOG_STATE_COVER_IDLE: 2627 case XLOG_STATE_COVER_NEED: 2628 case XLOG_STATE_COVER_NEED2: 2629 log->l_covered_state = XLOG_STATE_COVER_NEED; 2630 break; 2631 2632 case XLOG_STATE_COVER_DONE: 2633 if (changed == 1) 2634 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2635 else 2636 log->l_covered_state = XLOG_STATE_COVER_NEED; 2637 break; 2638 2639 case XLOG_STATE_COVER_DONE2: 2640 if (changed == 1) 2641 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2642 else 2643 log->l_covered_state = XLOG_STATE_COVER_NEED; 2644 break; 2645 2646 default: 2647 ASSERT(0); 2648 } 2649 } 2650 } /* xlog_state_clean_log */ 2651 2652 STATIC xfs_lsn_t 2653 xlog_get_lowest_lsn( 2654 struct xlog *log) 2655 { 2656 xlog_in_core_t *lsn_log; 2657 xfs_lsn_t lowest_lsn, lsn; 2658 2659 lsn_log = log->l_iclog; 2660 lowest_lsn = 0; 2661 do { 2662 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2663 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2664 if ((lsn && !lowest_lsn) || 2665 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2666 lowest_lsn = lsn; 2667 } 2668 } 2669 lsn_log = lsn_log->ic_next; 2670 } while (lsn_log != log->l_iclog); 2671 return lowest_lsn; 2672 } 2673 2674 2675 STATIC void 2676 xlog_state_do_callback( 2677 struct xlog *log, 2678 int aborted, 2679 struct xlog_in_core *ciclog) 2680 { 2681 xlog_in_core_t *iclog; 2682 xlog_in_core_t *first_iclog; /* used to know when we've 2683 * processed all iclogs once */ 2684 xfs_log_callback_t *cb, *cb_next; 2685 int flushcnt = 0; 2686 xfs_lsn_t lowest_lsn; 2687 int ioerrors; /* counter: iclogs with errors */ 2688 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2689 int funcdidcallbacks; /* flag: function did callbacks */ 2690 int repeats; /* for issuing console warnings if 2691 * looping too many times */ 2692 int wake = 0; 2693 2694 spin_lock(&log->l_icloglock); 2695 first_iclog = iclog = log->l_iclog; 2696 ioerrors = 0; 2697 funcdidcallbacks = 0; 2698 repeats = 0; 2699 2700 do { 2701 /* 2702 * Scan all iclogs starting with the one pointed to by the 2703 * log. Reset this starting point each time the log is 2704 * unlocked (during callbacks). 2705 * 2706 * Keep looping through iclogs until one full pass is made 2707 * without running any callbacks. 2708 */ 2709 first_iclog = log->l_iclog; 2710 iclog = log->l_iclog; 2711 loopdidcallbacks = 0; 2712 repeats++; 2713 2714 do { 2715 2716 /* skip all iclogs in the ACTIVE & DIRTY states */ 2717 if (iclog->ic_state & 2718 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2719 iclog = iclog->ic_next; 2720 continue; 2721 } 2722 2723 /* 2724 * Between marking a filesystem SHUTDOWN and stopping 2725 * the log, we do flush all iclogs to disk (if there 2726 * wasn't a log I/O error). So, we do want things to 2727 * go smoothly in case of just a SHUTDOWN w/o a 2728 * LOG_IO_ERROR. 2729 */ 2730 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2731 /* 2732 * Can only perform callbacks in order. Since 2733 * this iclog is not in the DONE_SYNC/ 2734 * DO_CALLBACK state, we skip the rest and 2735 * just try to clean up. If we set our iclog 2736 * to DO_CALLBACK, we will not process it when 2737 * we retry since a previous iclog is in the 2738 * CALLBACK and the state cannot change since 2739 * we are holding the l_icloglock. 2740 */ 2741 if (!(iclog->ic_state & 2742 (XLOG_STATE_DONE_SYNC | 2743 XLOG_STATE_DO_CALLBACK))) { 2744 if (ciclog && (ciclog->ic_state == 2745 XLOG_STATE_DONE_SYNC)) { 2746 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2747 } 2748 break; 2749 } 2750 /* 2751 * We now have an iclog that is in either the 2752 * DO_CALLBACK or DONE_SYNC states. The other 2753 * states (WANT_SYNC, SYNCING, or CALLBACK were 2754 * caught by the above if and are going to 2755 * clean (i.e. we aren't doing their callbacks) 2756 * see the above if. 2757 */ 2758 2759 /* 2760 * We will do one more check here to see if we 2761 * have chased our tail around. 2762 */ 2763 2764 lowest_lsn = xlog_get_lowest_lsn(log); 2765 if (lowest_lsn && 2766 XFS_LSN_CMP(lowest_lsn, 2767 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2768 iclog = iclog->ic_next; 2769 continue; /* Leave this iclog for 2770 * another thread */ 2771 } 2772 2773 iclog->ic_state = XLOG_STATE_CALLBACK; 2774 2775 2776 /* 2777 * Completion of a iclog IO does not imply that 2778 * a transaction has completed, as transactions 2779 * can be large enough to span many iclogs. We 2780 * cannot change the tail of the log half way 2781 * through a transaction as this may be the only 2782 * transaction in the log and moving th etail to 2783 * point to the middle of it will prevent 2784 * recovery from finding the start of the 2785 * transaction. Hence we should only update the 2786 * last_sync_lsn if this iclog contains 2787 * transaction completion callbacks on it. 2788 * 2789 * We have to do this before we drop the 2790 * icloglock to ensure we are the only one that 2791 * can update it. 2792 */ 2793 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2794 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2795 if (iclog->ic_callback) 2796 atomic64_set(&log->l_last_sync_lsn, 2797 be64_to_cpu(iclog->ic_header.h_lsn)); 2798 2799 } else 2800 ioerrors++; 2801 2802 spin_unlock(&log->l_icloglock); 2803 2804 /* 2805 * Keep processing entries in the callback list until 2806 * we come around and it is empty. We need to 2807 * atomically see that the list is empty and change the 2808 * state to DIRTY so that we don't miss any more 2809 * callbacks being added. 2810 */ 2811 spin_lock(&iclog->ic_callback_lock); 2812 cb = iclog->ic_callback; 2813 while (cb) { 2814 iclog->ic_callback_tail = &(iclog->ic_callback); 2815 iclog->ic_callback = NULL; 2816 spin_unlock(&iclog->ic_callback_lock); 2817 2818 /* perform callbacks in the order given */ 2819 for (; cb; cb = cb_next) { 2820 cb_next = cb->cb_next; 2821 cb->cb_func(cb->cb_arg, aborted); 2822 } 2823 spin_lock(&iclog->ic_callback_lock); 2824 cb = iclog->ic_callback; 2825 } 2826 2827 loopdidcallbacks++; 2828 funcdidcallbacks++; 2829 2830 spin_lock(&log->l_icloglock); 2831 ASSERT(iclog->ic_callback == NULL); 2832 spin_unlock(&iclog->ic_callback_lock); 2833 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2834 iclog->ic_state = XLOG_STATE_DIRTY; 2835 2836 /* 2837 * Transition from DIRTY to ACTIVE if applicable. 2838 * NOP if STATE_IOERROR. 2839 */ 2840 xlog_state_clean_log(log); 2841 2842 /* wake up threads waiting in xfs_log_force() */ 2843 wake_up_all(&iclog->ic_force_wait); 2844 2845 iclog = iclog->ic_next; 2846 } while (first_iclog != iclog); 2847 2848 if (repeats > 5000) { 2849 flushcnt += repeats; 2850 repeats = 0; 2851 xfs_warn(log->l_mp, 2852 "%s: possible infinite loop (%d iterations)", 2853 __func__, flushcnt); 2854 } 2855 } while (!ioerrors && loopdidcallbacks); 2856 2857 #ifdef DEBUG 2858 /* 2859 * Make one last gasp attempt to see if iclogs are being left in limbo. 2860 * If the above loop finds an iclog earlier than the current iclog and 2861 * in one of the syncing states, the current iclog is put into 2862 * DO_CALLBACK and the callbacks are deferred to the completion of the 2863 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2864 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2865 * states. 2866 * 2867 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2868 * for ic_state == SYNCING. 2869 */ 2870 if (funcdidcallbacks) { 2871 first_iclog = iclog = log->l_iclog; 2872 do { 2873 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2874 /* 2875 * Terminate the loop if iclogs are found in states 2876 * which will cause other threads to clean up iclogs. 2877 * 2878 * SYNCING - i/o completion will go through logs 2879 * DONE_SYNC - interrupt thread should be waiting for 2880 * l_icloglock 2881 * IOERROR - give up hope all ye who enter here 2882 */ 2883 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2884 iclog->ic_state & XLOG_STATE_SYNCING || 2885 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2886 iclog->ic_state == XLOG_STATE_IOERROR ) 2887 break; 2888 iclog = iclog->ic_next; 2889 } while (first_iclog != iclog); 2890 } 2891 #endif 2892 2893 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2894 wake = 1; 2895 spin_unlock(&log->l_icloglock); 2896 2897 if (wake) 2898 wake_up_all(&log->l_flush_wait); 2899 } 2900 2901 2902 /* 2903 * Finish transitioning this iclog to the dirty state. 2904 * 2905 * Make sure that we completely execute this routine only when this is 2906 * the last call to the iclog. There is a good chance that iclog flushes, 2907 * when we reach the end of the physical log, get turned into 2 separate 2908 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2909 * routine. By using the reference count bwritecnt, we guarantee that only 2910 * the second completion goes through. 2911 * 2912 * Callbacks could take time, so they are done outside the scope of the 2913 * global state machine log lock. 2914 */ 2915 STATIC void 2916 xlog_state_done_syncing( 2917 xlog_in_core_t *iclog, 2918 int aborted) 2919 { 2920 struct xlog *log = iclog->ic_log; 2921 2922 spin_lock(&log->l_icloglock); 2923 2924 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2925 iclog->ic_state == XLOG_STATE_IOERROR); 2926 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2927 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2928 2929 2930 /* 2931 * If we got an error, either on the first buffer, or in the case of 2932 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2933 * and none should ever be attempted to be written to disk 2934 * again. 2935 */ 2936 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2937 if (--iclog->ic_bwritecnt == 1) { 2938 spin_unlock(&log->l_icloglock); 2939 return; 2940 } 2941 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2942 } 2943 2944 /* 2945 * Someone could be sleeping prior to writing out the next 2946 * iclog buffer, we wake them all, one will get to do the 2947 * I/O, the others get to wait for the result. 2948 */ 2949 wake_up_all(&iclog->ic_write_wait); 2950 spin_unlock(&log->l_icloglock); 2951 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2952 } /* xlog_state_done_syncing */ 2953 2954 2955 /* 2956 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2957 * sleep. We wait on the flush queue on the head iclog as that should be 2958 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2959 * we will wait here and all new writes will sleep until a sync completes. 2960 * 2961 * The in-core logs are used in a circular fashion. They are not used 2962 * out-of-order even when an iclog past the head is free. 2963 * 2964 * return: 2965 * * log_offset where xlog_write() can start writing into the in-core 2966 * log's data space. 2967 * * in-core log pointer to which xlog_write() should write. 2968 * * boolean indicating this is a continued write to an in-core log. 2969 * If this is the last write, then the in-core log's offset field 2970 * needs to be incremented, depending on the amount of data which 2971 * is copied. 2972 */ 2973 STATIC int 2974 xlog_state_get_iclog_space( 2975 struct xlog *log, 2976 int len, 2977 struct xlog_in_core **iclogp, 2978 struct xlog_ticket *ticket, 2979 int *continued_write, 2980 int *logoffsetp) 2981 { 2982 int log_offset; 2983 xlog_rec_header_t *head; 2984 xlog_in_core_t *iclog; 2985 int error; 2986 2987 restart: 2988 spin_lock(&log->l_icloglock); 2989 if (XLOG_FORCED_SHUTDOWN(log)) { 2990 spin_unlock(&log->l_icloglock); 2991 return -EIO; 2992 } 2993 2994 iclog = log->l_iclog; 2995 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2996 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2997 2998 /* Wait for log writes to have flushed */ 2999 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 3000 goto restart; 3001 } 3002 3003 head = &iclog->ic_header; 3004 3005 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3006 log_offset = iclog->ic_offset; 3007 3008 /* On the 1st write to an iclog, figure out lsn. This works 3009 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3010 * committing to. If the offset is set, that's how many blocks 3011 * must be written. 3012 */ 3013 if (log_offset == 0) { 3014 ticket->t_curr_res -= log->l_iclog_hsize; 3015 xlog_tic_add_region(ticket, 3016 log->l_iclog_hsize, 3017 XLOG_REG_TYPE_LRHEADER); 3018 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3019 head->h_lsn = cpu_to_be64( 3020 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3021 ASSERT(log->l_curr_block >= 0); 3022 } 3023 3024 /* If there is enough room to write everything, then do it. Otherwise, 3025 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3026 * bit is on, so this will get flushed out. Don't update ic_offset 3027 * until you know exactly how many bytes get copied. Therefore, wait 3028 * until later to update ic_offset. 3029 * 3030 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3031 * can fit into remaining data section. 3032 */ 3033 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3034 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3035 3036 /* 3037 * If I'm the only one writing to this iclog, sync it to disk. 3038 * We need to do an atomic compare and decrement here to avoid 3039 * racing with concurrent atomic_dec_and_lock() calls in 3040 * xlog_state_release_iclog() when there is more than one 3041 * reference to the iclog. 3042 */ 3043 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3044 /* we are the only one */ 3045 spin_unlock(&log->l_icloglock); 3046 error = xlog_state_release_iclog(log, iclog); 3047 if (error) 3048 return error; 3049 } else { 3050 spin_unlock(&log->l_icloglock); 3051 } 3052 goto restart; 3053 } 3054 3055 /* Do we have enough room to write the full amount in the remainder 3056 * of this iclog? Or must we continue a write on the next iclog and 3057 * mark this iclog as completely taken? In the case where we switch 3058 * iclogs (to mark it taken), this particular iclog will release/sync 3059 * to disk in xlog_write(). 3060 */ 3061 if (len <= iclog->ic_size - iclog->ic_offset) { 3062 *continued_write = 0; 3063 iclog->ic_offset += len; 3064 } else { 3065 *continued_write = 1; 3066 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3067 } 3068 *iclogp = iclog; 3069 3070 ASSERT(iclog->ic_offset <= iclog->ic_size); 3071 spin_unlock(&log->l_icloglock); 3072 3073 *logoffsetp = log_offset; 3074 return 0; 3075 } /* xlog_state_get_iclog_space */ 3076 3077 /* The first cnt-1 times through here we don't need to 3078 * move the grant write head because the permanent 3079 * reservation has reserved cnt times the unit amount. 3080 * Release part of current permanent unit reservation and 3081 * reset current reservation to be one units worth. Also 3082 * move grant reservation head forward. 3083 */ 3084 STATIC void 3085 xlog_regrant_reserve_log_space( 3086 struct xlog *log, 3087 struct xlog_ticket *ticket) 3088 { 3089 trace_xfs_log_regrant_reserve_enter(log, ticket); 3090 3091 if (ticket->t_cnt > 0) 3092 ticket->t_cnt--; 3093 3094 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3095 ticket->t_curr_res); 3096 xlog_grant_sub_space(log, &log->l_write_head.grant, 3097 ticket->t_curr_res); 3098 ticket->t_curr_res = ticket->t_unit_res; 3099 xlog_tic_reset_res(ticket); 3100 3101 trace_xfs_log_regrant_reserve_sub(log, ticket); 3102 3103 /* just return if we still have some of the pre-reserved space */ 3104 if (ticket->t_cnt > 0) 3105 return; 3106 3107 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3108 ticket->t_unit_res); 3109 3110 trace_xfs_log_regrant_reserve_exit(log, ticket); 3111 3112 ticket->t_curr_res = ticket->t_unit_res; 3113 xlog_tic_reset_res(ticket); 3114 } /* xlog_regrant_reserve_log_space */ 3115 3116 3117 /* 3118 * Give back the space left from a reservation. 3119 * 3120 * All the information we need to make a correct determination of space left 3121 * is present. For non-permanent reservations, things are quite easy. The 3122 * count should have been decremented to zero. We only need to deal with the 3123 * space remaining in the current reservation part of the ticket. If the 3124 * ticket contains a permanent reservation, there may be left over space which 3125 * needs to be released. A count of N means that N-1 refills of the current 3126 * reservation can be done before we need to ask for more space. The first 3127 * one goes to fill up the first current reservation. Once we run out of 3128 * space, the count will stay at zero and the only space remaining will be 3129 * in the current reservation field. 3130 */ 3131 STATIC void 3132 xlog_ungrant_log_space( 3133 struct xlog *log, 3134 struct xlog_ticket *ticket) 3135 { 3136 int bytes; 3137 3138 if (ticket->t_cnt > 0) 3139 ticket->t_cnt--; 3140 3141 trace_xfs_log_ungrant_enter(log, ticket); 3142 trace_xfs_log_ungrant_sub(log, ticket); 3143 3144 /* 3145 * If this is a permanent reservation ticket, we may be able to free 3146 * up more space based on the remaining count. 3147 */ 3148 bytes = ticket->t_curr_res; 3149 if (ticket->t_cnt > 0) { 3150 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3151 bytes += ticket->t_unit_res*ticket->t_cnt; 3152 } 3153 3154 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3155 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3156 3157 trace_xfs_log_ungrant_exit(log, ticket); 3158 3159 xfs_log_space_wake(log->l_mp); 3160 } 3161 3162 /* 3163 * Flush iclog to disk if this is the last reference to the given iclog and 3164 * the WANT_SYNC bit is set. 3165 * 3166 * When this function is entered, the iclog is not necessarily in the 3167 * WANT_SYNC state. It may be sitting around waiting to get filled. 3168 * 3169 * 3170 */ 3171 STATIC int 3172 xlog_state_release_iclog( 3173 struct xlog *log, 3174 struct xlog_in_core *iclog) 3175 { 3176 int sync = 0; /* do we sync? */ 3177 3178 if (iclog->ic_state & XLOG_STATE_IOERROR) 3179 return -EIO; 3180 3181 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3182 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3183 return 0; 3184 3185 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3186 spin_unlock(&log->l_icloglock); 3187 return -EIO; 3188 } 3189 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3190 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3191 3192 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3193 /* update tail before writing to iclog */ 3194 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3195 sync++; 3196 iclog->ic_state = XLOG_STATE_SYNCING; 3197 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3198 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3199 /* cycle incremented when incrementing curr_block */ 3200 } 3201 spin_unlock(&log->l_icloglock); 3202 3203 /* 3204 * We let the log lock go, so it's possible that we hit a log I/O 3205 * error or some other SHUTDOWN condition that marks the iclog 3206 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3207 * this iclog has consistent data, so we ignore IOERROR 3208 * flags after this point. 3209 */ 3210 if (sync) 3211 return xlog_sync(log, iclog); 3212 return 0; 3213 } /* xlog_state_release_iclog */ 3214 3215 3216 /* 3217 * This routine will mark the current iclog in the ring as WANT_SYNC 3218 * and move the current iclog pointer to the next iclog in the ring. 3219 * When this routine is called from xlog_state_get_iclog_space(), the 3220 * exact size of the iclog has not yet been determined. All we know is 3221 * that every data block. We have run out of space in this log record. 3222 */ 3223 STATIC void 3224 xlog_state_switch_iclogs( 3225 struct xlog *log, 3226 struct xlog_in_core *iclog, 3227 int eventual_size) 3228 { 3229 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3230 if (!eventual_size) 3231 eventual_size = iclog->ic_offset; 3232 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3233 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3234 log->l_prev_block = log->l_curr_block; 3235 log->l_prev_cycle = log->l_curr_cycle; 3236 3237 /* roll log?: ic_offset changed later */ 3238 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3239 3240 /* Round up to next log-sunit */ 3241 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3242 log->l_mp->m_sb.sb_logsunit > 1) { 3243 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3244 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3245 } 3246 3247 if (log->l_curr_block >= log->l_logBBsize) { 3248 /* 3249 * Rewind the current block before the cycle is bumped to make 3250 * sure that the combined LSN never transiently moves forward 3251 * when the log wraps to the next cycle. This is to support the 3252 * unlocked sample of these fields from xlog_valid_lsn(). Most 3253 * other cases should acquire l_icloglock. 3254 */ 3255 log->l_curr_block -= log->l_logBBsize; 3256 ASSERT(log->l_curr_block >= 0); 3257 smp_wmb(); 3258 log->l_curr_cycle++; 3259 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3260 log->l_curr_cycle++; 3261 } 3262 ASSERT(iclog == log->l_iclog); 3263 log->l_iclog = iclog->ic_next; 3264 } /* xlog_state_switch_iclogs */ 3265 3266 /* 3267 * Write out all data in the in-core log as of this exact moment in time. 3268 * 3269 * Data may be written to the in-core log during this call. However, 3270 * we don't guarantee this data will be written out. A change from past 3271 * implementation means this routine will *not* write out zero length LRs. 3272 * 3273 * Basically, we try and perform an intelligent scan of the in-core logs. 3274 * If we determine there is no flushable data, we just return. There is no 3275 * flushable data if: 3276 * 3277 * 1. the current iclog is active and has no data; the previous iclog 3278 * is in the active or dirty state. 3279 * 2. the current iclog is drity, and the previous iclog is in the 3280 * active or dirty state. 3281 * 3282 * We may sleep if: 3283 * 3284 * 1. the current iclog is not in the active nor dirty state. 3285 * 2. the current iclog dirty, and the previous iclog is not in the 3286 * active nor dirty state. 3287 * 3. the current iclog is active, and there is another thread writing 3288 * to this particular iclog. 3289 * 4. a) the current iclog is active and has no other writers 3290 * b) when we return from flushing out this iclog, it is still 3291 * not in the active nor dirty state. 3292 */ 3293 int 3294 xfs_log_force( 3295 struct xfs_mount *mp, 3296 uint flags) 3297 { 3298 struct xlog *log = mp->m_log; 3299 struct xlog_in_core *iclog; 3300 xfs_lsn_t lsn; 3301 3302 XFS_STATS_INC(mp, xs_log_force); 3303 trace_xfs_log_force(mp, 0, _RET_IP_); 3304 3305 xlog_cil_force(log); 3306 3307 spin_lock(&log->l_icloglock); 3308 iclog = log->l_iclog; 3309 if (iclog->ic_state & XLOG_STATE_IOERROR) 3310 goto out_error; 3311 3312 if (iclog->ic_state == XLOG_STATE_DIRTY || 3313 (iclog->ic_state == XLOG_STATE_ACTIVE && 3314 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3315 /* 3316 * If the head is dirty or (active and empty), then we need to 3317 * look at the previous iclog. 3318 * 3319 * If the previous iclog is active or dirty we are done. There 3320 * is nothing to sync out. Otherwise, we attach ourselves to the 3321 * previous iclog and go to sleep. 3322 */ 3323 iclog = iclog->ic_prev; 3324 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3325 iclog->ic_state == XLOG_STATE_DIRTY) 3326 goto out_unlock; 3327 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3328 if (atomic_read(&iclog->ic_refcnt) == 0) { 3329 /* 3330 * We are the only one with access to this iclog. 3331 * 3332 * Flush it out now. There should be a roundoff of zero 3333 * to show that someone has already taken care of the 3334 * roundoff from the previous sync. 3335 */ 3336 atomic_inc(&iclog->ic_refcnt); 3337 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3338 xlog_state_switch_iclogs(log, iclog, 0); 3339 spin_unlock(&log->l_icloglock); 3340 3341 if (xlog_state_release_iclog(log, iclog)) 3342 return -EIO; 3343 3344 spin_lock(&log->l_icloglock); 3345 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn || 3346 iclog->ic_state == XLOG_STATE_DIRTY) 3347 goto out_unlock; 3348 } else { 3349 /* 3350 * Someone else is writing to this iclog. 3351 * 3352 * Use its call to flush out the data. However, the 3353 * other thread may not force out this LR, so we mark 3354 * it WANT_SYNC. 3355 */ 3356 xlog_state_switch_iclogs(log, iclog, 0); 3357 } 3358 } else { 3359 /* 3360 * If the head iclog is not active nor dirty, we just attach 3361 * ourselves to the head and go to sleep if necessary. 3362 */ 3363 ; 3364 } 3365 3366 if (!(flags & XFS_LOG_SYNC)) 3367 goto out_unlock; 3368 3369 if (iclog->ic_state & XLOG_STATE_IOERROR) 3370 goto out_error; 3371 XFS_STATS_INC(mp, xs_log_force_sleep); 3372 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3373 if (iclog->ic_state & XLOG_STATE_IOERROR) 3374 return -EIO; 3375 return 0; 3376 3377 out_unlock: 3378 spin_unlock(&log->l_icloglock); 3379 return 0; 3380 out_error: 3381 spin_unlock(&log->l_icloglock); 3382 return -EIO; 3383 } 3384 3385 static int 3386 __xfs_log_force_lsn( 3387 struct xfs_mount *mp, 3388 xfs_lsn_t lsn, 3389 uint flags, 3390 int *log_flushed, 3391 bool already_slept) 3392 { 3393 struct xlog *log = mp->m_log; 3394 struct xlog_in_core *iclog; 3395 3396 spin_lock(&log->l_icloglock); 3397 iclog = log->l_iclog; 3398 if (iclog->ic_state & XLOG_STATE_IOERROR) 3399 goto out_error; 3400 3401 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3402 iclog = iclog->ic_next; 3403 if (iclog == log->l_iclog) 3404 goto out_unlock; 3405 } 3406 3407 if (iclog->ic_state == XLOG_STATE_DIRTY) 3408 goto out_unlock; 3409 3410 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3411 /* 3412 * We sleep here if we haven't already slept (e.g. this is the 3413 * first time we've looked at the correct iclog buf) and the 3414 * buffer before us is going to be sync'ed. The reason for this 3415 * is that if we are doing sync transactions here, by waiting 3416 * for the previous I/O to complete, we can allow a few more 3417 * transactions into this iclog before we close it down. 3418 * 3419 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3420 * refcnt so we can release the log (which drops the ref count). 3421 * The state switch keeps new transaction commits from using 3422 * this buffer. When the current commits finish writing into 3423 * the buffer, the refcount will drop to zero and the buffer 3424 * will go out then. 3425 */ 3426 if (!already_slept && 3427 (iclog->ic_prev->ic_state & 3428 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3429 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3430 3431 XFS_STATS_INC(mp, xs_log_force_sleep); 3432 3433 xlog_wait(&iclog->ic_prev->ic_write_wait, 3434 &log->l_icloglock); 3435 return -EAGAIN; 3436 } 3437 atomic_inc(&iclog->ic_refcnt); 3438 xlog_state_switch_iclogs(log, iclog, 0); 3439 spin_unlock(&log->l_icloglock); 3440 if (xlog_state_release_iclog(log, iclog)) 3441 return -EIO; 3442 if (log_flushed) 3443 *log_flushed = 1; 3444 spin_lock(&log->l_icloglock); 3445 } 3446 3447 if (!(flags & XFS_LOG_SYNC) || 3448 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) 3449 goto out_unlock; 3450 3451 if (iclog->ic_state & XLOG_STATE_IOERROR) 3452 goto out_error; 3453 3454 XFS_STATS_INC(mp, xs_log_force_sleep); 3455 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3456 if (iclog->ic_state & XLOG_STATE_IOERROR) 3457 return -EIO; 3458 return 0; 3459 3460 out_unlock: 3461 spin_unlock(&log->l_icloglock); 3462 return 0; 3463 out_error: 3464 spin_unlock(&log->l_icloglock); 3465 return -EIO; 3466 } 3467 3468 /* 3469 * Force the in-core log to disk for a specific LSN. 3470 * 3471 * Find in-core log with lsn. 3472 * If it is in the DIRTY state, just return. 3473 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3474 * state and go to sleep or return. 3475 * If it is in any other state, go to sleep or return. 3476 * 3477 * Synchronous forces are implemented with a wait queue. All callers trying 3478 * to force a given lsn to disk must wait on the queue attached to the 3479 * specific in-core log. When given in-core log finally completes its write 3480 * to disk, that thread will wake up all threads waiting on the queue. 3481 */ 3482 int 3483 xfs_log_force_lsn( 3484 struct xfs_mount *mp, 3485 xfs_lsn_t lsn, 3486 uint flags, 3487 int *log_flushed) 3488 { 3489 int ret; 3490 ASSERT(lsn != 0); 3491 3492 XFS_STATS_INC(mp, xs_log_force); 3493 trace_xfs_log_force(mp, lsn, _RET_IP_); 3494 3495 lsn = xlog_cil_force_lsn(mp->m_log, lsn); 3496 if (lsn == NULLCOMMITLSN) 3497 return 0; 3498 3499 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false); 3500 if (ret == -EAGAIN) 3501 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true); 3502 return ret; 3503 } 3504 3505 /* 3506 * Called when we want to mark the current iclog as being ready to sync to 3507 * disk. 3508 */ 3509 STATIC void 3510 xlog_state_want_sync( 3511 struct xlog *log, 3512 struct xlog_in_core *iclog) 3513 { 3514 assert_spin_locked(&log->l_icloglock); 3515 3516 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3517 xlog_state_switch_iclogs(log, iclog, 0); 3518 } else { 3519 ASSERT(iclog->ic_state & 3520 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3521 } 3522 } 3523 3524 3525 /***************************************************************************** 3526 * 3527 * TICKET functions 3528 * 3529 ***************************************************************************** 3530 */ 3531 3532 /* 3533 * Free a used ticket when its refcount falls to zero. 3534 */ 3535 void 3536 xfs_log_ticket_put( 3537 xlog_ticket_t *ticket) 3538 { 3539 ASSERT(atomic_read(&ticket->t_ref) > 0); 3540 if (atomic_dec_and_test(&ticket->t_ref)) 3541 kmem_zone_free(xfs_log_ticket_zone, ticket); 3542 } 3543 3544 xlog_ticket_t * 3545 xfs_log_ticket_get( 3546 xlog_ticket_t *ticket) 3547 { 3548 ASSERT(atomic_read(&ticket->t_ref) > 0); 3549 atomic_inc(&ticket->t_ref); 3550 return ticket; 3551 } 3552 3553 /* 3554 * Figure out the total log space unit (in bytes) that would be 3555 * required for a log ticket. 3556 */ 3557 int 3558 xfs_log_calc_unit_res( 3559 struct xfs_mount *mp, 3560 int unit_bytes) 3561 { 3562 struct xlog *log = mp->m_log; 3563 int iclog_space; 3564 uint num_headers; 3565 3566 /* 3567 * Permanent reservations have up to 'cnt'-1 active log operations 3568 * in the log. A unit in this case is the amount of space for one 3569 * of these log operations. Normal reservations have a cnt of 1 3570 * and their unit amount is the total amount of space required. 3571 * 3572 * The following lines of code account for non-transaction data 3573 * which occupy space in the on-disk log. 3574 * 3575 * Normal form of a transaction is: 3576 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3577 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3578 * 3579 * We need to account for all the leadup data and trailer data 3580 * around the transaction data. 3581 * And then we need to account for the worst case in terms of using 3582 * more space. 3583 * The worst case will happen if: 3584 * - the placement of the transaction happens to be such that the 3585 * roundoff is at its maximum 3586 * - the transaction data is synced before the commit record is synced 3587 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3588 * Therefore the commit record is in its own Log Record. 3589 * This can happen as the commit record is called with its 3590 * own region to xlog_write(). 3591 * This then means that in the worst case, roundoff can happen for 3592 * the commit-rec as well. 3593 * The commit-rec is smaller than padding in this scenario and so it is 3594 * not added separately. 3595 */ 3596 3597 /* for trans header */ 3598 unit_bytes += sizeof(xlog_op_header_t); 3599 unit_bytes += sizeof(xfs_trans_header_t); 3600 3601 /* for start-rec */ 3602 unit_bytes += sizeof(xlog_op_header_t); 3603 3604 /* 3605 * for LR headers - the space for data in an iclog is the size minus 3606 * the space used for the headers. If we use the iclog size, then we 3607 * undercalculate the number of headers required. 3608 * 3609 * Furthermore - the addition of op headers for split-recs might 3610 * increase the space required enough to require more log and op 3611 * headers, so take that into account too. 3612 * 3613 * IMPORTANT: This reservation makes the assumption that if this 3614 * transaction is the first in an iclog and hence has the LR headers 3615 * accounted to it, then the remaining space in the iclog is 3616 * exclusively for this transaction. i.e. if the transaction is larger 3617 * than the iclog, it will be the only thing in that iclog. 3618 * Fundamentally, this means we must pass the entire log vector to 3619 * xlog_write to guarantee this. 3620 */ 3621 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3622 num_headers = howmany(unit_bytes, iclog_space); 3623 3624 /* for split-recs - ophdrs added when data split over LRs */ 3625 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3626 3627 /* add extra header reservations if we overrun */ 3628 while (!num_headers || 3629 howmany(unit_bytes, iclog_space) > num_headers) { 3630 unit_bytes += sizeof(xlog_op_header_t); 3631 num_headers++; 3632 } 3633 unit_bytes += log->l_iclog_hsize * num_headers; 3634 3635 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3636 unit_bytes += log->l_iclog_hsize; 3637 3638 /* for roundoff padding for transaction data and one for commit record */ 3639 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3640 /* log su roundoff */ 3641 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3642 } else { 3643 /* BB roundoff */ 3644 unit_bytes += 2 * BBSIZE; 3645 } 3646 3647 return unit_bytes; 3648 } 3649 3650 /* 3651 * Allocate and initialise a new log ticket. 3652 */ 3653 struct xlog_ticket * 3654 xlog_ticket_alloc( 3655 struct xlog *log, 3656 int unit_bytes, 3657 int cnt, 3658 char client, 3659 bool permanent, 3660 xfs_km_flags_t alloc_flags) 3661 { 3662 struct xlog_ticket *tic; 3663 int unit_res; 3664 3665 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3666 if (!tic) 3667 return NULL; 3668 3669 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3670 3671 atomic_set(&tic->t_ref, 1); 3672 tic->t_task = current; 3673 INIT_LIST_HEAD(&tic->t_queue); 3674 tic->t_unit_res = unit_res; 3675 tic->t_curr_res = unit_res; 3676 tic->t_cnt = cnt; 3677 tic->t_ocnt = cnt; 3678 tic->t_tid = prandom_u32(); 3679 tic->t_clientid = client; 3680 tic->t_flags = XLOG_TIC_INITED; 3681 if (permanent) 3682 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3683 3684 xlog_tic_reset_res(tic); 3685 3686 return tic; 3687 } 3688 3689 3690 /****************************************************************************** 3691 * 3692 * Log debug routines 3693 * 3694 ****************************************************************************** 3695 */ 3696 #if defined(DEBUG) 3697 /* 3698 * Make sure that the destination ptr is within the valid data region of 3699 * one of the iclogs. This uses backup pointers stored in a different 3700 * part of the log in case we trash the log structure. 3701 */ 3702 STATIC void 3703 xlog_verify_dest_ptr( 3704 struct xlog *log, 3705 void *ptr) 3706 { 3707 int i; 3708 int good_ptr = 0; 3709 3710 for (i = 0; i < log->l_iclog_bufs; i++) { 3711 if (ptr >= log->l_iclog_bak[i] && 3712 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3713 good_ptr++; 3714 } 3715 3716 if (!good_ptr) 3717 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3718 } 3719 3720 /* 3721 * Check to make sure the grant write head didn't just over lap the tail. If 3722 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3723 * the cycles differ by exactly one and check the byte count. 3724 * 3725 * This check is run unlocked, so can give false positives. Rather than assert 3726 * on failures, use a warn-once flag and a panic tag to allow the admin to 3727 * determine if they want to panic the machine when such an error occurs. For 3728 * debug kernels this will have the same effect as using an assert but, unlinke 3729 * an assert, it can be turned off at runtime. 3730 */ 3731 STATIC void 3732 xlog_verify_grant_tail( 3733 struct xlog *log) 3734 { 3735 int tail_cycle, tail_blocks; 3736 int cycle, space; 3737 3738 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3739 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3740 if (tail_cycle != cycle) { 3741 if (cycle - 1 != tail_cycle && 3742 !(log->l_flags & XLOG_TAIL_WARN)) { 3743 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3744 "%s: cycle - 1 != tail_cycle", __func__); 3745 log->l_flags |= XLOG_TAIL_WARN; 3746 } 3747 3748 if (space > BBTOB(tail_blocks) && 3749 !(log->l_flags & XLOG_TAIL_WARN)) { 3750 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3751 "%s: space > BBTOB(tail_blocks)", __func__); 3752 log->l_flags |= XLOG_TAIL_WARN; 3753 } 3754 } 3755 } 3756 3757 /* check if it will fit */ 3758 STATIC void 3759 xlog_verify_tail_lsn( 3760 struct xlog *log, 3761 struct xlog_in_core *iclog, 3762 xfs_lsn_t tail_lsn) 3763 { 3764 int blocks; 3765 3766 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3767 blocks = 3768 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3769 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3770 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3771 } else { 3772 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3773 3774 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3775 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3776 3777 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3778 if (blocks < BTOBB(iclog->ic_offset) + 1) 3779 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3780 } 3781 } /* xlog_verify_tail_lsn */ 3782 3783 /* 3784 * Perform a number of checks on the iclog before writing to disk. 3785 * 3786 * 1. Make sure the iclogs are still circular 3787 * 2. Make sure we have a good magic number 3788 * 3. Make sure we don't have magic numbers in the data 3789 * 4. Check fields of each log operation header for: 3790 * A. Valid client identifier 3791 * B. tid ptr value falls in valid ptr space (user space code) 3792 * C. Length in log record header is correct according to the 3793 * individual operation headers within record. 3794 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3795 * log, check the preceding blocks of the physical log to make sure all 3796 * the cycle numbers agree with the current cycle number. 3797 */ 3798 STATIC void 3799 xlog_verify_iclog( 3800 struct xlog *log, 3801 struct xlog_in_core *iclog, 3802 int count, 3803 bool syncing) 3804 { 3805 xlog_op_header_t *ophead; 3806 xlog_in_core_t *icptr; 3807 xlog_in_core_2_t *xhdr; 3808 void *base_ptr, *ptr, *p; 3809 ptrdiff_t field_offset; 3810 uint8_t clientid; 3811 int len, i, j, k, op_len; 3812 int idx; 3813 3814 /* check validity of iclog pointers */ 3815 spin_lock(&log->l_icloglock); 3816 icptr = log->l_iclog; 3817 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3818 ASSERT(icptr); 3819 3820 if (icptr != log->l_iclog) 3821 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3822 spin_unlock(&log->l_icloglock); 3823 3824 /* check log magic numbers */ 3825 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3826 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3827 3828 base_ptr = ptr = &iclog->ic_header; 3829 p = &iclog->ic_header; 3830 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3831 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3832 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3833 __func__); 3834 } 3835 3836 /* check fields */ 3837 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3838 base_ptr = ptr = iclog->ic_datap; 3839 ophead = ptr; 3840 xhdr = iclog->ic_data; 3841 for (i = 0; i < len; i++) { 3842 ophead = ptr; 3843 3844 /* clientid is only 1 byte */ 3845 p = &ophead->oh_clientid; 3846 field_offset = p - base_ptr; 3847 if (!syncing || (field_offset & 0x1ff)) { 3848 clientid = ophead->oh_clientid; 3849 } else { 3850 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3851 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3852 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3853 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3854 clientid = xlog_get_client_id( 3855 xhdr[j].hic_xheader.xh_cycle_data[k]); 3856 } else { 3857 clientid = xlog_get_client_id( 3858 iclog->ic_header.h_cycle_data[idx]); 3859 } 3860 } 3861 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3862 xfs_warn(log->l_mp, 3863 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3864 __func__, clientid, ophead, 3865 (unsigned long)field_offset); 3866 3867 /* check length */ 3868 p = &ophead->oh_len; 3869 field_offset = p - base_ptr; 3870 if (!syncing || (field_offset & 0x1ff)) { 3871 op_len = be32_to_cpu(ophead->oh_len); 3872 } else { 3873 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3874 (uintptr_t)iclog->ic_datap); 3875 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3876 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3877 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3878 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3879 } else { 3880 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3881 } 3882 } 3883 ptr += sizeof(xlog_op_header_t) + op_len; 3884 } 3885 } /* xlog_verify_iclog */ 3886 #endif 3887 3888 /* 3889 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3890 */ 3891 STATIC int 3892 xlog_state_ioerror( 3893 struct xlog *log) 3894 { 3895 xlog_in_core_t *iclog, *ic; 3896 3897 iclog = log->l_iclog; 3898 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3899 /* 3900 * Mark all the incore logs IOERROR. 3901 * From now on, no log flushes will result. 3902 */ 3903 ic = iclog; 3904 do { 3905 ic->ic_state = XLOG_STATE_IOERROR; 3906 ic = ic->ic_next; 3907 } while (ic != iclog); 3908 return 0; 3909 } 3910 /* 3911 * Return non-zero, if state transition has already happened. 3912 */ 3913 return 1; 3914 } 3915 3916 /* 3917 * This is called from xfs_force_shutdown, when we're forcibly 3918 * shutting down the filesystem, typically because of an IO error. 3919 * Our main objectives here are to make sure that: 3920 * a. if !logerror, flush the logs to disk. Anything modified 3921 * after this is ignored. 3922 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3923 * parties to find out, 'atomically'. 3924 * c. those who're sleeping on log reservations, pinned objects and 3925 * other resources get woken up, and be told the bad news. 3926 * d. nothing new gets queued up after (b) and (c) are done. 3927 * 3928 * Note: for the !logerror case we need to flush the regions held in memory out 3929 * to disk first. This needs to be done before the log is marked as shutdown, 3930 * otherwise the iclog writes will fail. 3931 */ 3932 int 3933 xfs_log_force_umount( 3934 struct xfs_mount *mp, 3935 int logerror) 3936 { 3937 struct xlog *log; 3938 int retval; 3939 3940 log = mp->m_log; 3941 3942 /* 3943 * If this happens during log recovery, don't worry about 3944 * locking; the log isn't open for business yet. 3945 */ 3946 if (!log || 3947 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3948 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3949 if (mp->m_sb_bp) 3950 mp->m_sb_bp->b_flags |= XBF_DONE; 3951 return 0; 3952 } 3953 3954 /* 3955 * Somebody could've already done the hard work for us. 3956 * No need to get locks for this. 3957 */ 3958 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3959 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3960 return 1; 3961 } 3962 3963 /* 3964 * Flush all the completed transactions to disk before marking the log 3965 * being shut down. We need to do it in this order to ensure that 3966 * completed operations are safely on disk before we shut down, and that 3967 * we don't have to issue any buffer IO after the shutdown flags are set 3968 * to guarantee this. 3969 */ 3970 if (!logerror) 3971 xfs_log_force(mp, XFS_LOG_SYNC); 3972 3973 /* 3974 * mark the filesystem and the as in a shutdown state and wake 3975 * everybody up to tell them the bad news. 3976 */ 3977 spin_lock(&log->l_icloglock); 3978 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3979 if (mp->m_sb_bp) 3980 mp->m_sb_bp->b_flags |= XBF_DONE; 3981 3982 /* 3983 * Mark the log and the iclogs with IO error flags to prevent any 3984 * further log IO from being issued or completed. 3985 */ 3986 log->l_flags |= XLOG_IO_ERROR; 3987 retval = xlog_state_ioerror(log); 3988 spin_unlock(&log->l_icloglock); 3989 3990 /* 3991 * We don't want anybody waiting for log reservations after this. That 3992 * means we have to wake up everybody queued up on reserveq as well as 3993 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3994 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3995 * action is protected by the grant locks. 3996 */ 3997 xlog_grant_head_wake_all(&log->l_reserve_head); 3998 xlog_grant_head_wake_all(&log->l_write_head); 3999 4000 /* 4001 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4002 * as if the log writes were completed. The abort handling in the log 4003 * item committed callback functions will do this again under lock to 4004 * avoid races. 4005 */ 4006 wake_up_all(&log->l_cilp->xc_commit_wait); 4007 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4008 4009 #ifdef XFSERRORDEBUG 4010 { 4011 xlog_in_core_t *iclog; 4012 4013 spin_lock(&log->l_icloglock); 4014 iclog = log->l_iclog; 4015 do { 4016 ASSERT(iclog->ic_callback == 0); 4017 iclog = iclog->ic_next; 4018 } while (iclog != log->l_iclog); 4019 spin_unlock(&log->l_icloglock); 4020 } 4021 #endif 4022 /* return non-zero if log IOERROR transition had already happened */ 4023 return retval; 4024 } 4025 4026 STATIC int 4027 xlog_iclogs_empty( 4028 struct xlog *log) 4029 { 4030 xlog_in_core_t *iclog; 4031 4032 iclog = log->l_iclog; 4033 do { 4034 /* endianness does not matter here, zero is zero in 4035 * any language. 4036 */ 4037 if (iclog->ic_header.h_num_logops) 4038 return 0; 4039 iclog = iclog->ic_next; 4040 } while (iclog != log->l_iclog); 4041 return 1; 4042 } 4043 4044 /* 4045 * Verify that an LSN stamped into a piece of metadata is valid. This is 4046 * intended for use in read verifiers on v5 superblocks. 4047 */ 4048 bool 4049 xfs_log_check_lsn( 4050 struct xfs_mount *mp, 4051 xfs_lsn_t lsn) 4052 { 4053 struct xlog *log = mp->m_log; 4054 bool valid; 4055 4056 /* 4057 * norecovery mode skips mount-time log processing and unconditionally 4058 * resets the in-core LSN. We can't validate in this mode, but 4059 * modifications are not allowed anyways so just return true. 4060 */ 4061 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4062 return true; 4063 4064 /* 4065 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4066 * handled by recovery and thus safe to ignore here. 4067 */ 4068 if (lsn == NULLCOMMITLSN) 4069 return true; 4070 4071 valid = xlog_valid_lsn(mp->m_log, lsn); 4072 4073 /* warn the user about what's gone wrong before verifier failure */ 4074 if (!valid) { 4075 spin_lock(&log->l_icloglock); 4076 xfs_warn(mp, 4077 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4078 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4079 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4080 log->l_curr_cycle, log->l_curr_block); 4081 spin_unlock(&log->l_icloglock); 4082 } 4083 4084 return valid; 4085 } 4086